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Highlights

•

Properties and processes of the GW–SW interface are variable in space and 

time.

•

Revealing hydrological and biogeochemical heterogeneity remains a challenge.

•

Geophysics offer useful tools for addressing variability across multiple scales.

•

Future studies should incorporate geophysical progress gained in parallel fields.

Abstract

Interactions between groundwater (GW) and surface water (SW) have important 

implications for water quantity, water quality, and ecological health. The subsurface 

region proximal to SW bodies, the GW–SW interface, is crucial as it actively regulates 

the transfer of nutrients, contaminants, and water between GW systems and SW 

environments. However, geological, hydrological, and biogeochemical heterogeneity in 

the GW–SW interface makes it difficult to characterise with direct observations. Over the

past two decades geophysics has been increasingly used to characterise spatial and 

temporal variability throughout the GW–SW interface. Geophysics is a powerful tool in 

evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring 

hydrological processes. Geophysics should be used alongside traditional hydrological 

and biogeochemical methods to provide additional information about the subsurface. 

Further integration of commonly used geophysical techniques, and adoption of 

emerging techniques, has the potential to improve understanding of the properties and 
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processes of the GW–SW interface, and ultimately the implications for water quality and

environmental health.
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1. Introduction

It is widely recognised that groundwater (GW) and surface water (SW) form a 

continuum and are not isolated components (Winter et     al., 1998, Malard et     al., 

2002, Sophocleous, 2002). GW–SW interactions have significant implications for water 

quantity, water quality, and health of aquatic ecosystems, at site to catchment scales 

(Winter, 1976, Stanford and Ward, 1993, Findlay, 1995, Boulton et     al., 1998, Boulton 

et     al., 2010, Buss et     al., 2009, Harvey and Gooseff, 2015). For instance, contaminated 

GW discharge can degrade streams, lakes, deltas and wetlands, and associated 

habitats; conversely GW discharge may also supply vital nutrients and act as a thermal 

buffer to maintain ecological function (Power et     al., 1999, Brunke and Gonser, 

1997, Hayashi and Rosenberry, 2002, Marzadri et     al., 2013a, Marzadri et     al., 2013b). 

Over-abstraction of GW can also result in the redistribution or disappearance of SW 

resources (Winter     et     al., 1998), and in coastal regions, the contamination of fresh 

water aquifers (Ingham     et     al., 2006).

The transition zone between SW environments and GW systems, the GW–SW 

interface, is important as it governs the exchange of water, nutrients, and pollutants 

(Kalbus et     al., 2006, Buss et     al., 2009, Fleckenstein et     al., 2010, Lin, 2010, Lansdown 

et     al., 2015). Despite conceptually representing an interface, the term GW–SW interface

is commonly used to describe alluvial sediments proximal to SW bodies, e.g. stream 

beds, lake beds, riparian zones, and flood plains. Therefore, it typically has vertical 

extents up to several metres and horizontal extents on the order of hundreds of metres. 

It is important to note that here the term GW–SW interface is not synonymous with 

the hyporheic zone (HZ). The HZs definition is ambiguous and discipline dependent 

(Stanford and Ward, 1988, Triska et     al., 1989, Tonina and Buffington, 2009, Boulton 

et     al., 2010, Ward, 2016, Hester et     al., 2017); however it is perhaps best described as 
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the region of the GW–SW interface that occurs non-continuously in both space and 

time, and permits the mixing of both GW and SW (e.g. Gooseff,     2010). Therefore it is 

not as ubiquitous as is commonly assumed and mixing is often limited to narrow zones 

(Hester     et     al., 2013, 2017). The physical dimensions of the hyporheic zone are also 

difficult to define, however, the majority of HZ studies focus on lateral scales of 1–10 m 

and vertical scales of < 1 m (Ward,     2016).

There are numerous established methods that exist for characterisation of the GW–SW 

interface (Cook and Herczeg, 2000, Stonestrom and Constantz, 2003, Bridge, 

2005, Greswell, 2005, Kalbus et     al., 2006, Rosenberry and LaBaugh, 

2008, Fleckenstein et     al., 2010). However, despite providing direct measurements, use 

of piezometers, seepagemeters, and boreholes may be limited by site conditions, 

environmental protection, or installation costs. In this way information may be spatially 

limited and unrepresentative. Conversely, tracer experiments (e.g. Findlay et     al., 

1993, Triska et     al., 1993, Harvey et     al., 1996, Harvey and Fuller, 1998, González-Pinzón

et     al., 2015, Xie et     al., 2016) provide information that is averaged over larger volumes 

and therefore may fail to characterise spatial heterogeneity, e.g. identifying low mobility 

and high mobility zones in the subsurface (Singha     et     al., 2008).

In the past two decades, near surface geophysics has been increasingly used in 

characterisation of the GW–SW interface, in addition to other environmental 

applications (Binley et     al., 2015, Parsekian et     al., 2015, Singha et     al., 2015). 

Geophysical techniques are sensitive to geophysical properties of the subsurface and 

hence act as proxies for geological, hydrological, and biogeochemical parameters. It is 

important to note that while advances in geophysical instruments and subsequent 

modelling have allowed for more reliable data interpretation, geophysical data can still 

be ambiguous and often special consideration is required for the deployment of 

geophysical tools in different settings. Nonetheless, geophysical tools offer the 

unprecedented opportunity to characterise subsurface parameters at vertical scales of 

centimetres to hundreds of metres, horizontal scales of metres to hundreds of metres, 

and temporal resolutions of minutes to hours. Furthermore, given that multidisciplinary 

research has been essential in GW–SW interface research (Newbold et     al., 

1982, Bencala, 1984, Valett et     al., 1993;Sophocleous, 2002, Wojnar et     al., 2013, Ward, 

2016), the wider application of geophysical tools would be beneficial. However, it is 

essential that geophysics is used to address hydrogeological or biochemical problems, 

rather than hydrogeological or biogeochemical solutions being used to explain 

geophysical results.
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This review focuses on various geophysical tools relevant to characterising properties 

and processes of the GW–SW interface. In this review, the GW–SW interface and GW–

SW interactions are first considered, common geophysical approaches are outlined, 

various geophysical applications are then reviewed, and finally, avenues of future 

research are discussed. Although important in governing zones of GW–SW interaction, 

more general geophysical studies investigating properties of the bedrock aquifers are 

not included here, but have been the subject of a number of reviews (e.g. Rubin and 

Hubbard, 2005, Linde et     al., 2006, Singha et     al., 2007, Holliger, 2008, Hubbard and 

Linde, 2011, Binley et     al., 2015, Singha et     al., 2015, Boaga, 2017). However, large scale

airborne geophysical studies, which typically sense to depths of tens to hundreds of 

metres, are considered as they have the potential to provide a large scale context for 

processes occurring across the GW–SW interface. Moreover, these applications fit well 

into the requirements of GW–SW interactions to be considered at catchment scales 

(Kaika, 2003, Hering et     al., 2010, Buss et     al., 2009, Harvey and Gooseff, 2015).

2. The groundwater–surface water interface

The GW–SW interface is subjected to exchanges spanning multiple spatial scales 

(Tóth, 1963, Woessner, 2000). At large scales, GW flow paths are principally influenced 

by hydrostatic forces arising from topography and geology, and occur on scales of 

metres to hundreds of kilometres (Tóth, 1963, Freeze and Witherspoon, 1967, Winter 

et     al., 1998). On smaller scales, flow paths originating in the SW may temporarily enter 

the subsurface and allow for GW–SW mixing. These flow paths are commonly referred 

to as hyporheic exchange flows (HEFs) and are principally governed 

by geomorphological features (Elliott and Brooks, 1997, Käser et     al., 2009, Boano et     al.,

2014, Hester et     al., 2017). HEFs are generally reported to be driven by hydrodynamic 

forces induced by sand dunes, and cobbles at millimetre to centimetre scales or by 

hydrostatic forces generated by pool-riffle sequences, sediment bars, meanders, 

and riparian zones at metres to tens of metres (Harvey et     al., 1996, Woessner, 

2000, Lautz and Siegel, 2006, Tonina and Buffington, 2007, Tonina and Buffington, 

2009, Käser et     al., 2009, Käser et     al., 2013, Stonedahl et     al., 2010, Stonedahl et     al., 

2013, Boano et     al., 2014). In this way, hydrological pathways are typically viewed as 

being nested within in each other (Fig.     1). In reality, this distinction is somewhat arbitrary

as HEFs have been stated to occur laterally over hundreds of metres (Boano     et     al., 

2014). Ideally, the point at which the water originating from SW, mixes with and, more 

closely resembles the GW is the point at which it becomes groundwater 

recharge regardless of where and when it returns to the surface.
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1. Download high-res image     (508KB)

2. Download full-size image

Fig. 1. (a) Various scales of groundwater flow paths and their relation to (b) macro-scale
and (c) micro-scale exchanges in a fluvial and floodplain hyporheic zones (after Tóth, 
1963, Winter et     al., 1998, Stonedahl et     al., 2010).

The GW–SW interface is also influenced by temporal variability across scales of 

milliseconds to years. For instance, turbulent flow in rivers can drive GW–SW mixing 

within several millimetres of the sediment–water interface on timescales of milliseconds 

to seconds (Menichino and Hester, 2014, Chandler et     al., 2016). On larger timescales, 

periodic variations in precipitation, snowmelt, evapotranspiration, and flood pulses can 

modify, or reverse, GW–SW interactions (Boano et     al., 2008, Loheide and Lundquist, 

2009, Wondzell et     al., 2010, Larsen et     al., 2014, Zimmer and Lautz, 2014, Dudley-

Southern and Binley, 2015, Malzone et     al., 2016, Schmadel et     al., 2016). GW–SW 

interactions can also be influenced by waves and tides (Harvey et     al., 1987, King et     al., 

2009, Bianchin et     al., 2011), or driven by density contrasts (Musgrave and Reeburgh, 

1982, Webster et     al., 1996, Boano et     al., 2009).
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Properties and processes of the GW–SW interface are therefore highly spatially and 

temporally heterogeneous. Heterogeneity in alluvial deposits can influence 

permeability, dispersivity, subsurface residence times, and zones of GW–SW exchange.

Also bedrock  aquifers can dictate whether interaction are localised (e.g. in fractured or 

karstic settings) or distributed (e.g. in clastic aquifers), and consequently they influence 

hydrological and biogeochemical conditions at the GW–SW interface (Nagorski and 

Moore, 1999, Gandy et     al., 2007, Kennedy et     al., 2009). Temporal variability in 

hydrostatic forces can influence locations and timings of GW–SW interactions, the 

interaction of GW discharge and HEFs, and consequently biogeochemical reactions 

(Boano     et     al., 2014). Biogeochemical properties, such as cation exchange capacity, 

redox gradients, and thermal gradients, have long been known to be important 

(e.g. Bencala     et     al., 1984; von Gunten et     al., 1991; Winter et     al., 1998, Power et     al., 

1999) but are highly variable, making it difficult to predict pollutant attenuation 

and nutrient cycling. Furthermore, there have been a limited number of investigations 

into HZ and GW–SW interface processes across different orders of streams, and their 

relevance to the catchment (e.g. Gomez-Velez and Harvey, 2014, Kiel and Cardenas, 

2014, Marzadri et     al., 2017). Therefore, field methods that provide spatially and 

temporally complete data sets about geological, hydrological, and biogeochemical 

information at site to catchment scales are required (Buss et     al., 2009, Boano et     al., 

2014, Harvey and Gooseff, 2015, Ward, 2016, Hester et     al., 2017).

3. Geophysical approaches

The general premise of geophysics is to obtain information about the geophysical 

properties of the subsurface to infer information about geological, hydrological, and 

biogeochemical properties (Binley     et     al., 2015). Geophysical properties can be 

interpreted using petrophysical models, calibration with other methodologies (both non-

geophysical and geophysical), and analysis of temporally distributed data sets of 

dynamic processes. Geophysical techniques considered here are electrical resistivity 

(ER), induced polarisation(IP), self-potential (SP), electromagnetic induction (EMI), 

ground penetrating radar (GPR), and seismic methods (Table     1). Furthermore, forward, 

inverse, and petrophysical modelling are also briefly discussed due to their importance 

in data interpretation. Fundamental geophysical theory (e.g. Telford     et     al., 2010) is 

beyond the scope of this section, and instead focus is given to the basic principles of 

field and modelling techniques. Applications of temperature sensing in GW–SW 

interface studies are also beyond the scope of this review (e.g. Stonestrom and 
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Constantz, 2003, Irvine and Lautz, 2015, Hare et     al., 2015, Irvine et     al., 2016, Wilson 

et     al., 2016).

Table 1. Geophysical techniques and the parameters which they relate to. Rough indications of 

investigation depths and temporal resolution are also included. In practice, terrestrial surveys typically 

involve horizontal scales of metres to hundreds of metres, whereas for waterborne and airborne surveys, 

horizontal extents may be hundreds of metres to tens of kilometres and hundreds of metres to hundreds 

of kilometres, respectively.

Geophysical 
technique

Geophysical properties Examples of derived 
environmental parameters

Typical 
investigation 
depths

Typical 
acquisition time 
for 100 m 
transect

Electrical 
resistivity

Electrical conductivity Water content, clay content, 
pore water conductivity, 
porosity, stratigraphy

Metres to tens of
metres

Tens of minutes

Induced 
polarisation

Electrical conductivity, 
chargeability

Water content, clay content, 
pore water conductivity, surface 
area, permeability, stratigraphy

Meters to tens of
meters

Tens of minutes to 
hours

Spectral induced 
polarisation

Electrical conductivity, 
chargeability (with 
frequency dependency)

Water content, clay content, 
pore water conductivity, surface 
area, permeability, stratigraphy

Meters to tens of
metres

Tens of minutes to 
hours

Self-potential Electrical potential Hydrological flux, permeability,
redox gradients

Metres Seconds to 
minutes

Electromagnetic 
induction

Electrical conductivity Water content, clay content, 
salinity

Metres to 
Hundreds of 
Metres

Seconds to 
minutes

Ground 
penetrating radar

Dielectric permittivity, 
electrical conductivity

Water content, porosity, 
stratigraphy

Metres to tens of
metres

Minutes to tens of 
minutes

Seismic Bulk density, elastic 
moduli

Porosity, stratigraphy Metres to tens of
metres

Tens of minutes

3.1. Electrical resistivity

ER methods are used to determine subsurface electrical resistivity by injecting low 

frequency ( < 1 kHz) electrical currents into the ground with two current electrodes and 

measuring the resultant voltage between two or more potential electrodes 

(Binley,     2015). ER methods are typically minimally invasive as they commonly involve 

placing stainless steel electrodes several centimetres into the subsurface, however, in 

some cases borehole ER is used for enhanced characterisation (e.g. Slater et     al., 

1997, Crook et     al., 2008, Wilkinson et     al., 2010, Coscia et     al., 2011, 2012). In 

environmental applications the ER signal is typically dependent on the characteristics of

the pore fluid and grain-fluid interface (Glover,     2015). Modern ER instruments are 

capable of systematically using different combinations of electrodes arranged in lines or 

https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0072
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/porosity
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0044
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0043
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0256
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0045
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0203
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0203
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/boreholes
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0016
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/electric-potential
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/electrodes
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/airborne-survey
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/temporal-resolution
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0263
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0263
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0102
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0078
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0101
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0219


grids to image the subsurface in 2D or 3D surveys (Loke     et     al., 2013). These types of 

surveys are often referred to as ER imaging (ERI) or ER tomography (ERT). In addition 

to 2D and 3D surveys, temporally distributed measurements can be used to monitor 

dynamic processes (e.g. Ward et     al., 2010a, Johnson et     al., 2012, Uhlemann et     al., 

2016).

3.2. Induced polarisation

IP methods are effectively an extension of ER methods and use low frequency ( < 1 kHz)

currents to assess the capacitive properties of the subsurface (Binley,     2015). The IP 

signal typically arises due to the temporary accumulation of ions in porous 

media following the injection of an electric current (Kemna     et     al., 2012). Whereas the 

ER signal is dependent on the properties of both the pore fluid and the porous media, 

the IP signal is more closely associated with the properties of the grain-fluid interface 

(Revil     et     al., 2012). IP can therefore provide information about lithological properties 

with minimal interference from pore waterconductivity (Vinegar and Waxman, 

1984, Kemna et     al., 2000, Lesmes and Frye, 2001, Weller et     al., 2013, Glover, 2015). 

As with ER methods, IP measurements can be made using two current electrodes and 

two potential electrodes. Modern multichannel systems permit the use of multiple 

potential dipoles simultaneously in addition to recording the full waveform of the IP 

signal. Induced polarisation can be conducted in either the time or the frequency 

domain (Revil     et     al., 2012). Time domain IP methods involve injecting a direct electrical 

current between the current electrodes before abruptly switching it off and measuring 

the voltage decay over a specific time interval between the potential electrodes. 

Frequency domain IP involves injecting alternating electrical currents and measuring 

the impedance and the phase lag of the current and voltage waves. Frequency domain 

IP methods can also be carried out using multiple frequencies to assess the frequency 

dependent impedance and phase shift between injected current and measured voltage, 

this is typically referred to as spectral IP (SIP).

3.3. Self-potential

Unlike ER and IP methods, SP methods are passive in that they measure naturally 

occurring voltages within the subsurface (Jackson,     2015). The SP method is relatively 

simple in that voltages can be measured using non-polarising electrodes and a high 

impedance voltmeter(Minsley     et     al., 2007). Non-polarising electrodes are required to 

minimise polarisation at the electrode surface and a high impedance voltmeter is 

required to avoid drawing current from the ground. Under natural conditions the SP 
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signals arise from electro-kinetic, electro-chemical and thermo-electric effects (Wynn 

and Sherwood, 1986, Revil, 2012, Jackson, 2015). The electro-kinetic effect, or 

streaming potential, arises from the advective transfer of excess charges 

through porous materials (Rizzo     et     al., 2004). The electro-chemical effect originates 

from the presence of ion and electron concentration gradients, such as those resulting 

from redox conditions (Sato and Mooney, 1960, Revil et     al., 2010). The thermo-electric 

effect is caused by the differential thermal diffusion of ions in pore fluid and electrons 

and donor ions in porous media (Wynn and Sherwood, 1986).

3.4. Electromagnetic induction

Whereas ER, IP, and SP use low frequency ( < 1 kHz) electrical 

currents, electromagnetic methods (e.g. EMI and GPR) use higher frequency signals to 

induce electromagnetic effects in the subsurface. EMI instruments operate in either the 

frequency domain (FD-EMI) or the time domain (TD-EMI) and use primary and 

secondary coils to determine subsurface electrical conductivity and magnetic 

susceptibility (Everett and Meju, 2005, Fitterman, 2015). In FD-EMI systems a primary 

current with a specific angular frequency is generated in the primary coil; this induces a 

primary magnetic field that is out-of-phase with the initial current. The primary magnetic 

field creates an electromagnetic force that induces eddy currents in the subsurface and 

a consequent secondary magnetic field. The secondary magnetic field is detected by 

the secondary coil and is used to infer information about in-phase and out-of-phase 

components of the subsurface electromagnetic properties. In TD-EMI systems, a current

is typically passed around the primary coil before it is abruptly switched off. This current 

generates a primary magnetic field which induces an electromagnetic force, both of 

which are in-phase with the primary current. The electromagnetic force generates eddy 

currents that decay by ohmic dissipation following termination of the primary current. 

The decay of the eddy currents produces a secondary magnetic field and its rate of 

change through time is measured by the secondary coil to infer subsurface conductivity 

(Nabighian     and Macnae,     1991). Modern FD-EMI instruments contain multiple secondary

coils and can be used to detect information from several depths simultaneously. EMI 

systems have advantages over electrical methods in that they do not require contact 

with the subsurface, allowing for easier usage in waterborne or airborne 

surveys (e.g. Butler et     al., 2004, Binley et     al., 2013, Harrington et     al., 2014).

3.5. Ground penetrating radar
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As with EMI, GPR methods use electromagnetic signals to assess subsurface 

properties. However the frequencies used in GPR are higher (10 MHz to 2 GHz), such 

that the signal travels by wave propagation, rather than by diffusion. In GPR systems a 

high frequency signal is emitted into the subsurface via a transmitter antenna before it 

travels to the receiver antenna, e.g. by reflection from an interface of 

contrasting electrical properties (Huisman et al., 2003; Annan,     2005; van     der 

Kruk,     2015). The amplitudes and travel times of the returning waves are then used to 

determine dielectric properties and locate boundaries in the subsurface. Field studies 

often involve time domain GPR systems and typically use frequencies between 50 and 

500 MHz. Frequency domain systems are also available, and in some cases using wider

bandwidth permits more accurate modelling of the subsurface (Lambot     et     al., 

2004, 2006). The depth of penetration of the signal is dependent upon the electrical 

conductivity of the subsurface and the frequencies used. Due to frequency dependent 

attenuation mechanisms, higher frequencies do not penetrate to as great depths but 

permit higher resolution images. Furthermore, highly electrically conductive 

environments may attenuate the signal and reduce the penetration depth.

3.6. Seismic methods

Seismic methods operate in a similar way to GPR but use the propagation 

of acousticenergy to infer information about the mechanical properties of the subsurface

(Steeples, 2005, Schmitt, 2015). Seismic surveys can be conducted by generating 

waves with an acoustic source (e.g. a sledgehammer). When these waves reach 

boundaries of contrasting mechanical properties, some energy may refract along the 

boundary before returning to the surface. Returning seismic waves are detected by a 

series of receivers (geophones) on the surface and can be used to calculate seismic 

wave velocity, mechanical impedance, elastic moduli, and determine the locations of 

structural boundaries.

3.7. Geophysical modelling

Forward modelling is used to calculate the data that would theoretically be observed for 

a given distribution of geophysical properties. The underlying principles of geophysical 

methods are well understood, so the creation of synthetic data sets from a model of 

geophysical properties is straight forward (Binley,     2015). Forward modelling serves two 

key purposes: (1) to aid survey design and (2) to assist in inversion and interpretation of

data. For instance, different geophysical methods and measurement schemes have 

different strengths and weaknesses. Therefore, by making reasonable estimates of the 
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subsurface properties, the usefulness of a geophysical technique can be assessed prior

to its deployment (Terry et     al., 2017). Forward modelling may also be useful in guiding 

interpretation of unusual features, and prior to sufficient computational power, 

geophysical data was often interpreted by comparing data with forward models, such as

ER sounding curves (Loke     et     al., 2013).

Inverse modelling is the process of determining the distribution of subsurface 

geophysical properties based on observed geophysical data and any prior information. 

The principles of geophysical inversion are beyond the scope of this paper but 

information can be found elsewhere (e.g. Aster et     al., 2005, Tarantola, 2005, Menke, 

2012, Linde et     al., 2015). The majority of inverse problems are non-unique in that there 

can be an infinite number of solutions for one geophysical data set. In order to constrain

the inversions, regularisation may be used to introduce assumptions to prevent over 

fitting of data and encourage unique solutions, e.g. lateral smoothing in stratified 

deposits (Constable, 1987, Tarantola, 2005). Moreover, uncertainty can further be 

reduced by carrying out joint or coupled inversions. In hydrogeophysics, joint inversions 

involve incorporation of various geophysical and hydrogeological data sets (e.g. Linde 

et     al., 2006, Herckenrath et     al., 2013) while coupled inversions model geophysical data 

within the bounds of prior hydrological models (e.g. Hinnell et     al., 2010, Huisman et     al., 

2010).

In order to be of use in hydrogeology, geophysical models are often interpreted in terms

of geological, hydrological, or biogeochemical parameters. Although geophysical data 

can be interpreted qualitatively (e.g. by locating contrasts in geophysical properties), by 

monitoring dynamic processes (Johnson et     al., 2012, Singha et     al., 2015), or through 

combination with other methods (e.g. Day-Lewis and Lane, 2004, Moysey et     al., 

2005, Huisman et     al., 2010, Miller et     al., 2014), petrophysical relationships are 

commonly used. Petrophysical relations can be used in joint inversions to relate two 

independent geophysical methods (e.g. Hoversten et     al., 2006, Zhang and Revil, 2015) 

or after geophysical inversion to translate geophysical data. Although mechanistic 

petrophysical models exist (e.g. Leroy and Revil, 2009, Montaron, 2009; Revil     et     al., 

2012), the majority of models used are semi-empirical or empirical. For instance, 

models have been developed to relate electrical conductivity and porosity (Archie     et     al., 

1942; Waxman     and Smits, 1968), to link water content 

with dielectric  permittivity (Topp     et     al., 1980), and to interpret and IP responses with 

surface area, grain size, and permeability (Vinegar and Waxman, 1984, Börner and 

Schön, 1991, Slater and Lesmes, 2002, Binley et     al., 2005, Slater, 2007, Weller et     al., 

2013, Weller et     al., 2015a, Weller et     al., 2015b, Weller and Slater, 2015). It is also 
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important to note that electrical conductivity is also linked to temperature, and as a 

result, ERI monitoring studies are often corrected for temperature (e.g. Brunet et     al., 

2010, Chambers et     al., 2014a, Uhlemann et     al., 2016).

4. Geophysical characterisation of groundwater–surface water interactions

Geophysical applications to characterise properties and processes at the GW–SW 

interface can be split into three principle areas: (1) characterising subsurface structure, 

(2) mapping zones of GW–SW connectivity, and (3) monitoring hydrological processes. 

Whereas structural characterisation and GW–SW exchange mapping have included 

studies at site and catchment scales, monitoring dynamic processes has been 

conducted solely at site scales. In this section various geophysical applications relevant 

to characterising the GW–SW interface are discussed. The majority of studies have 

focused on freshwater streams and rivers; however, studies have also been conducted 

in wetlands, deltas, and lakes.

4.1. Structural characterisation

Structural characterisation is essential as the structure governs hydrological properties 

and subsequent processes. Although minimally intrusive, calibration of geophysics with 

intrusive methodologies is often required to interpret geophysical information (e.g. Zhou 

and Greenhalgh, 2000, Chambers et     al., 2014b). Also, in some cases borehole methods

involving ERT, IP, GPR, or seismic methods may be used for increased resolution of the

deeper subsurface (e.g. Slater et     al., 1997, Huisman et     al., 2003, Kemna et     al., 

2004, Crook et     al., 2008, Dorn et     al., 2011). Nonetheless, geophysical methods provide 

a level of resolution that would be unachievable through use of point measurements 

alone.

4.1.1. Small scale structural characterisation

Several applications have used geophysics to characterise subsurface structure at 

the Hanford Nuclear Site (Washington, US) to assess pollution pathways to the 

Columbia River (Johnson     et     al., 2015). For example, Slater     et     al. (2010) used 

waterborne ERI and IP surveys to determine the contact depth of a high permeability 

unit and low permeability sections of the underlying unit. Depressions in the contact 

interface were interpreted to be palaeochannels, and were shown to be areas of GW 

discharge by using distributed temperature sensing. Land-based IP surveys were also 

conducted at the site and were effective in revealing contrasts between the two units 

and locating palaeochannels (Mwakanyamale     et     al., 2012). The locations of these 

palaeochannels were also in agreement with later studies that used temporally 
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distributed ERI to monitor GW–SW interactions (Johnson et     al., 2012, Wallin et     al., 

2013), as discussed in Section     4.3. Also at the Hanford Site, Williams et     al., 

2012a, Williams et     al., 2012b, Williams et     al., 2012c, Williams et     al., 2012d used seismic

surveys over several tens of kilometres to interpolate the sandstone-basalt interface 

between boreholes. They identified significant lows in the contact and determined 

additional potential pollution pathways to the Columbia River.

A number of geophysical studies have also been conducted at a riparian wetland 

(Boxford, UK). Crook     et     al.     (2008) used surface and down borehole ER methods to 

reveal geological boundaries beneath the neighbouring River Lambourn. In the 

wetland, Chambers     et     al. (2014b) used ERI, soil probing and borehole data to 

characterise the 3D structure of the subsurface. They identified different superficial 

deposits, determined the depth to the chalk bedrock, and identified the weathering 

profile within the chalk, all of which are likely to have important hydrological implications 

(Fig.     2). Loke     et     al. (2015) compared a standard ERI Wenner array and an optimised 

array and found that the optimised array was able to locate geological interfaces with 

greater accuracy. In another study, surface GPR revealed that the gravels subdivide into

a lower section of chalky gravels and an upper section of coarse flintgravel 

(Newell     et     al., 2015). The study also found that gravels below a depth of 2 m were 

relatively structureless whereas the shallower gravels displayed potential point bar 

lateral accretion surfaces in association with the peat channels, which are likely to have 

further implication for hydrology of the site.
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Fig. 2. 3D resistivity model of the Boxford riparian wetland. Solid volumes are shown for 
regions with resistivities of less than 50 Ohm .m (peat) and with resistivities greater than
150 Ohm .m (gravel) (Chambers     et     al., 2014b).

Geophysics has also been employed successfully for site scale structural 

characterisation in a variety of other settings. Crook     et     al. (2008) used ERI to evaluate 

the structure and volume of alluvial deposits in Oregon (US), highlighting how it could 

be used to provide valuable information to model biogeochemical exchange. In 

comparison, Mermillod-Blondin     et     al. (2015) characterised alluvial structure using GPR 

in the Rhone River (Lyon, France). They identified two lithofacies and 

installed piezometers to monitor hydraulic head and temperature. Samples were also 

taken to assess water chemistry, sedimentology, and bacterial 

and invertebrate assemblages. They found that HEFs were faster in the 

cobble/gravel facies than the gravel/sand facies, and that faster flow led to a greater 

delivery of organic carbon and an increase in microbial 

activity. Revil     et     al.     (2005) demonstrated how ERI can be used to determine the 3D 

geometry of a palaeochannel and showed that SP can be used to determine preferential

flow paths (Camargue, France). Several studies have also indicated how multiple 

geophysical techniques can be used to more accurately characterise the subsurface 

structure (e.g. Gallardo and Meju, 2004, Günther and Rucker, 2006, JafarGandomi and 

Binley, 2013). For instance, Doetsch     et     al. (2012a) and Zhou     et     al. (2014)were able to 

improve structural characterisation at the Thur River, Switzerland by structurally guiding 

ERI inversion with GPR data. As well as constraining geological boundaries, geophysics

has been used to enhance the spatial extent of hydrogeological information. For 

example, Doro     et     al. (2013) correlated ERI with slug and pumping tests at the River 

Steinlach, Germany and Miller et al. (2014) used ERI and permeameters at several 

alluvial floodplains in Oklahoma, US.

Although the majority of structural studies provide static images of the system, SW 

systems, particularly rivers, are characterised by dynamic erosional and depositional 

patterns. This dynamic nature is known to have important hydrological and 

biogeochemical implications for processes in the GW–SW interface (Elliott and Brooks, 

1997, Packman and MacKay, 2003, Harvey et     al., 2012). Toran et al. (2012) used ERI to

determine changes in sedimentationfollowing installation of a restoration structure, 

however the dynamic nature of river beds is more widely studied in civil engineering 

where scouring may lead to undermining of bridge foundations (Anderson et al., 2007). 

Several methods (e.g. echo sounding, intrusive measurements, bulk electrical 

conductivity probes) have been used to assess changes in channel bed geometry 
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(Prendergast     and Gavin,     2014). However, GPR and seismic methods have been 

particularly useful as they can provide information about the channel geometry and 

sediment structure beneath the sediment–water interface without the need for intrusive 

measurements (Webb et     al., 2000, Prendergast and Gavin, 2014).

4.1.2. Large scale structural characterisation

Large scale structural characterisation has typically used airborne TD-EMI (AEM) in 

association with other data sets. Harrington     et     al. (2014) used AEM, geological maps, 

and environmental tracers to infer aquifer architecture beneath a large river in north-

western Australia at the catchment scale (Fig.     3). They postulated zones of GW 

discharge which could be useful in targeting sites for future investigation. AEM has also 

been used alongside geological mapping data to reveal sedimentary structures and 

faults (Jørgensen     et     al., 2012), with ERI to reveal geological variability in deltaic 

deposits (Meier     et     al., 2014), with borehole data to identify hydrofacies in glacial 

deposits (He     et     al., 2014), with seismic methods to identify the bedrock-superficial 

interface (Oldenborger     et     al., 2016), and with modelling to aid in predicting nitrate 

reduction at catchment scales (Refsgaard     et     al., 2014). Although AEM dominates 

regional scale geophysical surveys, other techniques have also been 

used. Froese     et     al. (2005) used ERI and GPR at 20– 40 km intervals, along with 

lithological descriptions of bank cuttings to characterise alluvial deposits along a 

1000 km reach of the Yukon River (N. America), and Ball     et     al. (2006) used waterborne 

ERI and geological borehole data to characterise leakage potential in the Interstate and 

Tristate Canals (US). Columbero     et     al.     (2014) also used waterborne ERI surveys to 

characterise the subsurface structure of a glacial lake (NW Italy). They identified an 

area where lacustrine silts had reduced thickness, and found that this region coincided 

with anomalous SP signals. They tentatively suggested that SP could be used to locate 

zones of GW discharge.
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Fig. 3. Combined plot showing (A) river water sample locations and AEM survey line 
with respect to basement geology, (B) isotope data, (C) chemical data, and (D) an 
inverted conductivity-depth section with litho-stratigraphic interpretation along AEM flight
path, as shown in (A). Solid black lines in (A) and (D) represent faults, dashed lines and 
arrows in (D) represent interpreted lithological boundaries and groundwater 
flow directions. The conductivity-depth section is vertically exaggerated with a V:H ratio 
of 1:100 (Harrington     et     al., 2014).

4.2. Mapping zones of groundwater–surface water exchange

A principle consequence of structural heterogeneity is that it generates variability in 

GW–SW connectivity. Identification of zones of enhanced GW–SW connectivity is 

important for informing water management and locating areas of potential 

environmental significance (Buss et     al., 2009, Binley et     al., 2013). Methods for 

assessing spatial variability in GW–SW exchange (e.g. seepagemeters and 

piezometers) can be labour intensive to install. Several geophysical applications have 

demonstrated how geophysics can exploit the contrasts in electrical and thermal 

properties of SW and GW to identify areas of GW–SW interaction at site to catchment 

scales more quickly. In this way geophysics can be used as a reconnaissance tool for 

identifying important areas for further study or as an additional data source to 

extrapolate information between traditional measurements.

4.2.1. Local scale mapping of groundwater–surface water interactions

Although contrasts in the electrical properties of GW and SW are relatively small 

in freshwater environments, several geophysical studies have been successful in 

revealing areas of GW–SW exchange. For instance, Mansoor     et     al. (2006, 2007) used 

waterborne ERI to detect locations of elevated pore water conductivities within an urban

wetland which arose due to leaching from marginal landfill sites during rainfall 

events. Nyquist     et     al. (2008)mapped locations of GW–SW exchange within a stream 

section at metre-scale resolution by comparing 2D ERI sections collected at high and 

low stage. Differences in the inverted models were interpreted as zones of GW–SW 

exchange; these zones correlated with the thinning of a clay layer located beneath a 

carbonate aquifer and the overlying alluvium. FD-EMI methods have also been used to 

reveal contrasts in electrical conductivity and locate zones of GW–SW 

connectivity. Butler     et     al. (2004) used FD-EMI and seismic methods to locate a 

clay aquitard and the extent of a clay window recharge zone. Binley     et     al. (2013)used 
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waterborne FD-EMI surveys alongside piezometric data and chemical sampling 

(Heppell     et     al., 2014) to reveal spatial variability in GW discharge. Areas of high 

electrical conductivity were correlated with upwelling of more solute rich GW, while 

areas of low electrical conductivity coincided with areas exhibiting horizontal hydraulic 

gradients (Fig.     4).

1. Download high-res image     (369KB)

2. Download full-size image

Fig. 4. Comparison of interpolated hydraulic heads obtained 
from piezometers and electrical conductivityobtained from waterborne FD-EMI survey. 
(a) Horizontal profile obtained from 100 cm deep piezometers. Symbols show 
measurement locations. (b) Vertical profile obtained from 20, 50, and 100 cm deep 
piezometers. The dashed line shows measured stage profile. (c) Map of river 
bed electrical conductivity obtained using Geonics EM38. Hydraulic heads are shown in 
metres above ordinance datum (metres above sea level) (after Binley     et     al., 2013).
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Contrasts in electrical conductivity have also been used in coastal environments where 

the contrasts can be much larger. For instance, Zarroca     et     al. (2014) used ERI methods 

in association with piezometric and natural tracer data in a coastal wetland. They were 

able to identify zones of focused upwelling and distinguish between local and regional 

GW flow paths, and the intrusion of seawater which converged in the 

wetland. Kinnear     et     al. (2013)demonstrated that FD-EMI could be used to map lateral 

variability in electrical conductivity. They found that fresh GW discharge in the brackish 

Ringkøbing Fjord (Denmark) was constrained to the shoreline and demonstrated the 

potential for geophysical techniques to aid in assessing water budgets over larger 

areas.

4.2.2. Catchment scale GW–SW connectivity mapping

In a similar way as structural characterisation, there have been several applications to 

map GW–SW connectivity at larger scales (hundreds of metres to tens of 

kilometres). Paine     (2003) used field based FD-EMI to determine ranges in electrical 

conductivity and AEM to locate salinisation sources, in addition to quantifying lateral 

extent and intensity of salinitisation, by developing relationships from borehole water 

samples in northern Texas (US). In the Venice Lagoon (Italy), Viezzoli     et     al. (2010) used 

AEM to assess saltwater intrusion in the coastal aquifer and to characterise the 

transition between freshwater saturated sediments and overlying saltwater saturated 

sediments beneath the lagoon. Kirkegaard     et     al. (2011) used AEM in the Ringkøbing 

Fjord (Denmark) finding that buried valleys beneath the lagoon were characterised by 

high salinity waters while some areas of the lagoon were characterised by fresher 

waters. ERI has also been used to map locations of GW–SW discharge. Kelly     et     al. 

(2009) used a towed waterborne ERI array and tracer data to differentiate between local

and regional GW discharge along a 50 km river reach in South East Australia.

4.3. Monitoring groundwater–surface water interactions

In addition to using contrasts in the geophysical properties of GW and SW to map areas

of exchange, geophysical techniques have been used to monitor and quantify 

processes of the GW–SW interface at local scales (metres to tens of metres). Aside 

from heat tracing methods, geophysical monitoring studies have almost exclusively 

involved ERI. However, Christiansen     et     al. (2011) demonstrated how time-lapse gravity 

measurements can be used assess river-riparian zone exchanges. ERI methods are 

somewhat analogous to monitoring wells in tracer experiments in that changes in 

resistivity are used to infer changes in hydrological properties or conditions (e.g. 
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saturation or pore water conductivity). ERI can be used to image the entire region 

immediately beneath an electrode array. This means that low mobility zones, which are 

likely to be important in biogeochemical cycling, can be also be detected (Singha et     al., 

2008, Toran et     al., 2013b).

Temporally distributed ERI surveys have been used at the Hanford Site (US) to 

monitor inland water intrusion in relation to changes in river stage and to detect high 

and low mobility zones in the riparian zone (Johnson et     al., 2012, Wallin et     al., 2013). 

They used time-series and time-frequency analysis to reveal the timing and location of 

GW–SW interactions. Cardenas     and Markowski     (2011) imaged a flood cycle in a dam 

regulated river finding that the HZ was laterally discontinuous and varied with time. In 

addition to surface electrodes, cross borehole ERI has been used to increase sensitivity

at depths and locate areas of high and low permeability by monitoring 3D hydrological 

processes within the riparian zone of the Thur River, Switzerland (Coscia     et     al., 

2011, 2012). At the Boxford riparian wetland, Uhlemann     et     al. (2016) found that peat 

exhibited a two layer behaviour separated by an intermittent clay layer; the upper layer 

showed a reduction in resistivity during the summer due to increased pore water 

conductivity and the lower layer exhibited an increase in resistivity during the winter 

months due to the reception of resistive GW.

Studies in fresh water environments have also used salt tracers to artificially induce 

electrical conductivity contrasts. For instance, Ward     et     al. (2010a) estimated the relative 

areas of the HZ by comparing a pre-injection ERI model with subsequent post-injection 

ERI models (Fig.     5). More recently, Ward     et     al. (2013) monitored changes in the HZ 

finding that hydraulic gradients parallel and perpendicular to the valley gradient had 

minimal influence on HZ extent and that the HZ extent increased with decreasing 

vertical gradients away from the stream. Similarly, Toran     et     al. (2013a) found that 

persistence of the saline tracer was more dependent on thickness and grain size rather 

than on the presence of restoration structures. Recently, Houzé et     al.     (2017) used a 3D 

array to obtain 7 m × 1 m × 1 m resistivity images of the subsurface following the 

injection of a tracer into the subsurface and note the importance of characterising 

boundary conditions for inverse modelling.
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1. Download high-res image     (665KB)
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Fig. 5. Electrical resistivity imaging of solute transport in subsurface of a stream during a
21 h injection. Transects run perpendicular to the stream, with flow direction out of the 
page. (A) Pre-injection electrical resistivity model. (B) Model sensitivity based on the 
positions of electrodes in the electrode array. (C-G) Time-lapse ERI results, at time 
elapsed after beginning the conservative solute injection, results are shown as 
percentage change in resistivity from background conditions. (H) Interpretation of 
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resistivity images. Resistive feature in pre-injection model is interpreted to be an 
abandoned cobble bed (Singha     et     al., 2015; adapted from Ward     et     al., 2010a).

ERI and salt tracer studies have also been used to monitor processes in the riparian 

zone. To investigate the importance of voids in the riparian zone Menichino     et     al. 

(2014) created an artificial macro-pore and monitored intra-meander flow using ERI. 

They found that their open macro-pore enabled more solute transport and increased 

solute tailing, both of which are likely to be important in hydrological and 

biogeochemical processes. Whereas Doetsch     et     al. (2012b) used a 3D ERI monitoring 

array to estimate riparian zone infiltration velocities and found agreement with 

monitoring well data.

Similar to mapping zones of exchange, the natural conductivity contrasts in coastal 

environments can be used to monitor GW–SW interaction processes. Swarzenski     et     al. 

(2007) investigated bidirectional exchange between a coastal aquifer and sea water 

using ERI, electromagnetic seepage meters and geochemical tracers. They found that 

the tide strongly influenced hydraulic gradients such that during high tides GW 

discharge was reversed and sea water infiltrated into the coastal aquifer. In a similar 

experiment, Henderson     et     al. (2010) found that their ERI also indicated suppressed GW

discharge, whereas temperature measurements indicated GW discharge continued at 

high tide. Their sensitivity modelling indicated that during high tide electrical current was

preferentially focused in the conductive SW and that consequently, the resistive GW 

could not be easily resolved. This demonstrates the issue that methods may be limited 

in certain environments, it therefore highlights the importance of forward modelling to 

realise the sensitivity of geophysical data.

5. Discussion

Geophysical techniques have successfully provided information about processes and 

properties relevant to the GW–SW interface, with research focusing on three key areas: 

(1) characterising structure, (2) mapping zones of GW–SW interaction, and (3) 

monitoring dynamic processes. However, studies of properties and processes in the 

GW–SW interface would benefit from continued geophysical input, for which there are 

several avenues of potential research. In this section the strengths, challenges, and 

recent developments in geophysical techniques are discussed alongside opportunities 

for the future.

5.1. Strengths of geophysics
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It is convenient to organise geophysical techniques into more general themes to 

consider their strengths as tools to: (1) guide more focused investigations, (2) 

supplement other data sets, and (3) monitor dynamic processes. These strengths are 

also apparent in other fields of near surface geophysics (e.g. Singha et     al., 2015, Binley 

et     al., 2015, Parsekian et     al., 2015). Their presence highlights the scope of geophysics 

for studies concerned with the GW–SW interface and more general environmental 

applications.

5.1.1. Reconnaissance tools

Often the usefulness of data can only be appreciated following the instrumentation of a 

site. By targeting specific sites based on preliminary geophysical investigations it may 

be possible to save resources and obtain more representative and useful information. In

addition, at catchment scales the decision to select a particular site may be purely 

incidental to land access and prior instrumentation. At local scales FD-EMI (e.g. Butler 

et     al., 2004, Binley et     al., 2013) and ERI (e.g. Mansoor and Slater, 2007, Nyquist et     al., 

2008) have been shown to be capable of identifying zones of hydrological interest. 

However, geophysics has also been used to locate areas of biogeochemical interest. 

For example, Uhlemann     et     al. (2017) used ERI to guide biogeochemical and 

hydrological sampling of an arseniccontaminated aquifer in Cambodia (Richards     et     al., 

2017) by characterising its sedimentological setting. In this way, geophysics can also be

used to improve the confidence that intrusive data is representative or appropriate for 

characterisation of the site.

Additionally, geophysics has also been used as a reconnaissance tool at catchment 

scales; AEM has been used for locating palaeochannels (Worrall et     al., 1999, Abraham 

et     al., 2012) and areas of GW–SW connectivity (Jørgensen et     al., 2012, Harrington 

et     al., 2014). As noted by Kruse     (2013), there is significant potential for 

combining remote sensing data with aerial and land based geophysics. These methods 

are highly complementary given that remote sensing data is typically sensitive to the 

surface and shallow subsurface ( < 1 m) whereas geophysical techniques may be 

sensitive up to depths of several tens or hundreds of metres (Parsekian     et     al., 2015). 

Geophysics and remote sensing has been combined in permafrost studies, for instance 

AEM (Pastick     et     al., 2013) and ground based ERI and GPR (Yoshikawa     and 

Hinzman,     2003) was used alongside remote sensing data to assess the thickness and 

distribution of permafrost. Approaches such as those employed by Wilson     et     al. (2016), 

whereby lakes were prioritised based on their geological setting before thermal imagery 

was analysed, could be enhanced by inclusion of geophysical data. The combination of 
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remote sensing data and geophysics would be useful in linking surface and subsurface 

properties and would be a powerful tool in GW–SW interaction studies. Furthermore, 

these applications could provide additional constraints for catchment scale 

considerations of HEFs (e.g. Kiel and Cardenas, 2014, Gomez-Velez and Harvey, 

2014).

5.1.2. Supplementing other data sets

Geophysical measurements that are sensitive to geological, hydrological or 

biogeochemical properties can be used to reduce interpolation uncertainty and increase

the spatial coverage of information. The combination of methods has additional 

advantages in that by combining different data sources, poor sensitivity and other 

methodological limitations can be reduced. Combining data sets is common in GW–SW 

interface research. For instance, González-Pinzón     et     al. (2015) combined centimetre 

scale probes with chemical tracers, piezometers, fibre-optic distributed temperature 

sensing, temperature sensors and ERI to improve conceptual understanding of a river 

reach at several scales. The development of integrated and standardised approaches 

may also be beneficial for generating common data sets to compare field sites and 

improve conceptual models. Multi-method approaches are similarly used in 

hydrogeophysical research to combine geophysical techniques with hydrological and 

geophysical techniques (e.g. Moysey et     al., 2005, Hinnell et     al., 2010). The grouping of 

traditional and geophysical applications can improve the spatial extent of available 

information across a range of scales and improve the quantative interpretation of 

geophysical data. To date most geophysical studies of the GW–SW interface have 

focused on characterising the geological structure. Future applications should 

endeavour to extract information about the hydrological and biogeochemical properties 

of the subsurface.

5.1.3. Monitoring dynamic processes

Processes occurring at the GW–SW interface can be highly dynamic. It can be difficult 

to characterise these processes with traditional methods as they can interrupt 

processes and continuous measurements may not be possible. In this review, the ability

of ERI to characterise dynamic processes has been demonstrated (e.g. Ward et     al., 

2010a, Johnson et     al., 2012, Wallin et     al., 2013). These strengths are also highlighted in

related fields where ERI and IP have been used to monitor contaminant transport, 

biological activity and biogeochemical processes (e.g. Michot et     al., 2003, Garré et     al., 

2011, Atekwana and Slater, 2009, Johnson et     al., 2010, Flores Orozco et     al., 

https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0065
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0108
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0008
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0070
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0070
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0156
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/contaminant-transport
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0241
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0109
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0242
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0242
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/geological-structure
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0093
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0162
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/temperature-sensors
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/fiber-optics
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/piezometers
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0074
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0073
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0073
https://www.sciencedirect.com/science/article/pii/S0309170817304463?via%3Dihub#bib0122


2011, Chen et     al., 2009; Singha     et     al., 2015). It is anticipated that knowledge from these

fields could be applied to characterisation of the GW–SW interface. In addition, 

temporally distributed surveys of other geophysical methods may be beneficial, for 

example FD-EMI could be used to extend the information obtained in ERI monitoring 

studies and temporally distributed GPR, or seismic, surveyscould be used to better 

characterise the dynamic nature of river bed geomorphology.

5.2. Challenges of geophysics

Despite the progress made by geophysics it is also important to appreciate the 

challenges of geophysical methods. These are related to geophysics in general and are 

on-going issues in geophysical research. The principal challenges of geophysical 

techniques are that: (1) geophysics is inherently uncertain, (2) site specific 

considerations are often needed, and (3) geophysics needs to be processed and 

modelled for quantitative interpretation. These limitations greatly contribute to the 

reluctance to adopt geophysical techniques in environmental studies. Here these 

challenges are discussed briefly but it is anticipated that by addressing the issues more 

thoroughly, application of geophysics in environmental sensing will become more 

common.

5.2.1. Geophysical uncertainty

Geophysical data and modelling methods are uncertain. Despite the broad recognition 

of errors in geophysical methods, they can be poorly dealt with and as a result, incorrect

interpretations of geophysical data can be made (Binley     et     al., 2015). For instance, GPR

and EMI survey devices often need to be corrected for instrument drift (Jacob and 

Hermance, 2004, De Smedt et     al., 2016). Particular interest has been given to errors in 

ERI data. Typically, stacked or reciprocal measurements are used to assess the quality 

of measurements and weight them appropriately in inverse modelling (Binley, 

2015, Singha et     al., 2015). Stacked errors are obtained from consecutive repeat 

measurements for each current injection and reciprocal errors are obtained by reversing

the measurement sequence and conducting a secondary survey. Reciprocal 

measurements are typically viewed as being more robust, as stacked measurements 

may underestimate measurement error (Tso     et     al., 2017). However, it should be noted 

that if the process of interest is occurring faster than a direct and reciprocal 

measurement scheme, then reciprocal errors may not be so useful (e.g. Ward     et     al., 

2010a). Additionally, some studies have also looked at assessing the value of 

information within geophysical images in order to assess how reliable geophysical 
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models are (e.g. Oldenburg and Li, 1999, Daily et     al., 2005). For 

instance, Oldenburg     and Li     (1999)use a depth of investigation method to assess the 

vertical reliability of ER and IP models. More recently, JafarGardomi     and 

Binley     (2013) investigated the information content of combined ERI, FD-EMI and GPR 

data sets, and Nenna     and Knight     (2013) assessed the benefit of adding geophysical 

data to assess maintenance of a coastal aquifer. Methods similar to these could assist 

in determining the value of data assimilation and help to aid in survey design.

5.2.2. Site specific considerations

In all applications, it is important to consider the target, scale of interest and the likely 

subsurface properties in order to return the most beneficial information. For instance, 

larger electrode spacing in ERI and IP or lower frequencies in GPR surveys will permit 

characterisation to deeper depths, but will sacrifice resolution (Binley et     al., 2015, van 

der Kruk, 2015). Forward modelling tools such as Terry et al. (2017) can help to guide 

survey design based on the targets of interest and the expected subsurface properties. 

In some cases, geophysical surveys may also be optimised, for example in ERI 

electrode number, position and measurement geometry can be designed to 

improve spatial resolution whilst removing unnecessary measurements and 

consequently reducing measurement time (Wilkinson     et     al., 2006, Wilkinson et     al., 

2012, Loke et     al., 2015).

It is useful to briefly note some of the considerations necessary to applications in SW 

bodies. The water column can be problematic as it can create current focusing effects in

methods influenced by electrical conductivity. For instance, in in-stream ERI surveys the

depth of investigation required, the river level, and electrical conductivity of river 

water should be taken into consideration when deciding the electrode spacing; 

furthermore consideration of whether use floating arrays or bed electrodes is also 

important (Snyder     et     al., 2002). These measurements can also aid in interpretation of 

data (e.g. Slater et     al., 2010, Binley et     al., 2013). However, it should be noted that 

additional constraints make it more difficult to solve inverse problems and errors in 

measurements of water depth or in-stream electrical conductivity may generate 

significant inversion artefacts (Day-Lewis     et     al., 2006). ERI studies in SW bodies have 

involved static arrays (Nyquist et     al., 2008, Crook et     al., 2008) and towed arrays 

(e.g. Kelly et     al., 2009, Slater et     al., 2010). The latter methodology has benefits in that it 

can improve survey productivity; however, it precludes error quantification (Slater     et     al., 

2010) and requires various electrode spacings to improve vertical resolution 

(Allen,     2007). In addition to resolution and methodology considerations, some 
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geophysical applications may not be appropriate for the setting. For example, use of salt

tracers and ERI may be prohibited in ecologically sensitive areas, or GPR signals may 

be attenuated in highly electrically conductive areas.

5.2.3. Extracting quantitative information

Recovering quantitative information from geophysics is a major challenge and has been

the subject of numerous reviews (e.g. Rubin and Hubbard, 2005, Singha et     al., 

2007, Singha et     al., 2015, Loke et     al., 2013). Hydrogeological information can be 

extracted from geophysical data by using petrophysical relationships, interpreting time-

lapse data and through combination with other techniques. Petrophysical models are 

commonly used due to their simplicity; however, their usage can be problematic. As 

noted by Singha     et     al. (2015)translation of geophysical images with poorly resolved 

heterogeneity or inversion artefacts will be erroneous, the support volumes of 

geophysical and hydrological parameters are often different, meaning conversions can 

be poor, and the resolution of geophysical images can be spatially and temporally 

variable such that petrophysical transformations may be inconsistent. Geophysical 

information can also be interpreted temporally without the need for petrophysical 

transformations. Johnson     et     al. (2012) and Wallin     et     al. (2013) used time-series and 

time-frequency analyses of the Columbia River stage and ERI to reveal preferential 

pathways, whereas Ward     et     al. (2010b) demonstrated that temporal moments of ER 

and solute transport data were well correlated for diffusive transport in the HZ. 

Geophysical data may also be interpreted from the combination with other techniques. 

For example, calibrating geophysical and hydrological data at point scale and estimating

the correlation at field scale (Day-Lewis     and Lane,     2004), by using changes in 

geophysical properties to calibrate hydrological models (e.g. Binley     et     al., 2002), or by 

coupled (e.g. Hinnel     et     al., 2010) and joint inversions (Kowalsky et     al., 2005, Johnson 

et     al., 2009).

As noted, many applications to characterise the structure of the GW–SW interface (i.e. 

static surveys) have been qualitative in that they are used to reveal geometry of 

geological deposits. Future applications should aim to characterise properties such as 

permeability, surface area and cation exchange capacity. Although petrophysical models

are often used to translate static geophysical data following inversion, in recent years 

there has been increasing interest in joint inversions. Joint inversions use petrophysical 

relations to link multiple geophysical data sets with each other, or with hydrological data 

sets. They have demonstrated significant potential in recovering hydrological properties 

(Kowalsky et     al., 2005, Johnson et     al., 2009, Jardani et     al., 2013, Soueid Ahmed et     al., 
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2014, 2016) and are a promising direction for quantative interpretation of geophysical 

surveys of the GW–SW interface.

5.3. Recent developments in geophysical applications

Since the advent of hydrogeophysics during the 1990s (Binley,     2015), geophysical 

techniques have evolved from their traditional exploratory usage to being capable of 

characterisation of hydrological states and dynamic processes. Additionally, in more 

recent years the field of biogeophysics, which aims to relate the biological processes 

and modifications of the subsurface to geophysical properties, has emerged 

(Atekwana     and Slater,     2009). Biogeophysical applications have typically involved 

characterising reactive conditions (e.g. Naudet et     al., 2003, Sassen et     al., 2012, Chen 

et     al., 2013), detecting biogeochemical by-products (e.g. Slater and Binley, 

2006, Comas et     al., 2007, Comas et     al., 2014, Parsekian et     al., 2011), detecting 

changes to physical structure as a result of microbial activity (e.g. Williams et     al., 

2005, Slater et     al., 2008), or monitoring plant-water interactions (e.g. Michot et     al., 

2003, Shanahan et     al., 2015). In addition, the usage of unmanned vehicles in 

environmental research has vastly increased and it is expected that automated 

deployment of miniaturised geophysical devices could become common in future years. 

In this section developments in: (1) electrical resistivity monitoring, (2) induced 

polarisation, (3) self-potential, (4) multi-coil electromagnetic induction, and (5) 

unmanned vehicles, and their potential application in GW–SW characterisation are 

discussed.

5.3.1. Electrical resistivity monitoring

ERI is one of the most commonly and widely applied geophysical methods. There has 

been significant interest in developing low power, automated instruments for long term 

monitoring (e.g. Daily et     al., 2004, Kuras et     al., 2009, Ogilvy et     al., 2009, Chambers 

et     al., 2015). These instruments have the potential to provide spatially extensive data 

sets, with high spatial and temporal resolution. Moreover, instruments can also transmit 

data to high performance computers to allow for real time monitoring of subsurface 

processes (Singha     et     al., 2015). For instance, computational advances in inversion 

schemes, e.g. image differencing to avoid regularisation in the time dimension 

(Wallin     et     al., 2013) or parameterisation based on the physics of plume shape evolution 

(e.g. Miled     and Miller, 2007; Pidlisecky     et     al., 2011), are promising tools for extracting 

hydrological information from ERI monitoring data. As noted, time-lapse ERI to monitor 

processes in the HZ typically do not use reciprocal measurements as a more robust 
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estimate of error as acquisition times are perhaps too long for revealing processes of 

interest. ERI acquisition times could be reduced using multi-channel systems, optimised

electrode arrays (e.g. Wilkinson     et     al., 2012), or shorter current injection. However, it 

should be noted that use of short injection times could result in unreliable 

measurements of resistivity (Binley,     2015). Also, although most studies have been 

conducted over periods of several hours, longer ERI monitoring studies such as that 

of Uhlemann     et     al. (2016) could be used to aid in revealing seasonal variation in 

GW upwellingor river-riparian zone interactions.

5.3.2. Induced polarisation

Despite being less commonly used than ERI, many modern ERI instruments are also 

capable of IP measurements. Although, ERI is more robust in that it has higher signal to 

noise ratios, the IP signal is more closely related to geological characteristics and 

petrophysical relationships exist for relating IP signal to surface area, permeability and 

cation exchange (Vinegar and Waxman, 1984, Börner and Schön, 1991, Slater, 

2007, Revil, 2012, Weller and Slater, 2015). These properties have clear relevance to 

the GW–SW interface, however, IP studies of the GW–SW interface have been limited 

(e.g. Slater et     al., 2010, Mwakanyamale et     al., 2012). The limited application, in 

comparison to ERI, is probably due to the complexity associated with analysis of data 

and future applications should be cautious in interpretation of IP data. Nonetheless, it is 

anticipated that IP would be beneficial in revealing variability in permeability, surface 

area and cation exchange capacity, and potentially biogeochemical processes 

(e.g. Flores Orozco et     al., 2011, Chen et     al., 2009, Chen et     al., 2013), at the GW–SW 

interface.

5.3.3. Self-potential

Similar to IP, usage of SP in GW–SW interaction studies has been less frequent; 

however, there are several possible applications. The SP signal arises from electro-

kinetic, electro-chemical, and thermo-electric sources. SP has been used to 

characterise hydraulic properties during pumping tests (Rizzo     et     al., 2004; Revil et     al., 

2008, Soueid Ahmed et     al., 2014, 2016), through palaeochannels (Revil     et     al., 2005), 

through fractures (Wishart     et     al., 2006, 2008), and in arctic hill-slopes (Voytek     et     al., 

2016). Applications in GW–SW interface research could involve assessing the spatial 

and temporal variability of GW discharge (e.g. Colombero     et     al., 2014) or HEFs, or 

characterising hydraulic conductivity. However, perhaps the most intriguing use of SP at

the GW–SW interface would be to characterise the variability in redox conditions. SP 
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has been used to extend the spatial coverage of redox measurements obtained from 

monitoring wells associated with a contaminant plume at the Entressen Landfill in 

France (Fig.     6) (Naudet     et     al., 2003, Naudet et     al., 2004, Arora et     al., 2007, Linde and 

Revil, 2007). Naudet     et     al. (2004) removed the electro-kinetic contribution using 

piezometric head data and found that the SP signal and redox potential values showed 

good correlation (R2 = 0.85). It is however important to note the differentiation of SP 

sources may be more complex in the GW–SW interface, and the electro-kinetic effect 

may dominate the signal. Any work involving SP would need to account for all sources 

of the SP signal appropriately in addition to adequate understanding of redox chemistry.
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Fig. 6. Map of self-potential obtained by linear interpolation of measurements made at 
10 m resolution in first 2 km from landfill site and 20 m elsewhere. Hydraulic gradients 
obtained from piezometers(Naudet     et     al., 2004).

5.3.4. Multi-coil electromagnetic induction

In recent years FD-EMI instruments have been increasingly used in hydrological 

investigations due to their improved reliability and stability (Boaga,     2017). Furthermore, 
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FD-EMI methods have the advantage over ERI in that they do not require contact with 

the ground and can therefore be more productive. Modern FD-EMI instruments contain 

multiple coils and are able to provide information about vertical variability in addition to 

lateral variability. They therefore make it possible to extend the application of FD-EMI 

beyond qualitative mapping of GW–SW interactions (e.g. Butler et     al., 2004, Binley 

et     al., 2013, Kinnear et     al., 2013). In addition, as noted recently by Christiansen     et     al. 

(2016), the majority of studies present apparent electrical conductivity, e.g. without 

appropriate data processing or inverse modelling. Advances in data filtering and 

inversion schemes, such as EM4Soil (EMTOMO,     2013), Aarhus Workbench 

(Christiansen     et     al., 2016) or FEMIC (Elwaseif     et     al., 2017), permit more accurate 

modelling of subsurface conductivity structure and may lead to more reliable subsurface

characterisation using FD-EMI

Furthermore, temporally distributed FD-EMI surveys similar to Robinson et     al., 

2012, Shanahan et     al., 2015 and Huang     et     al. (2017) could prove useful in GW–SW 

interface characterisation. For instance, FD-EMI instruments could be used to 

investigate diurnal dynamics of salt water wedges in coastal environments or seasonal 

changes in GW upwelling, provided there are substantial contrasts in the electrical 

conductivity of GW and SW. It is important, however, to note that some authors 

(e.g. Lavoué et     al., 2010) argue for the need to calibrate FD-EMI with ERI, this may be 

particularly true in time-lapse measurements where ambient conditions, or the operator, 

may influence the readings obtained.

5.3.5. Unmanned vehicles

Given the significant increase in the availability and application of automated ground-

based, waterborne and aerial technology in many aspects of environmental sensing, the

translation to geophysical sensing is inevitable. Automated aerial, terrestrial and 

waterborne vehicles offer the ability for precise and repeatable data 

collection. Unmanned aerial vehicles have the ability to fly at lower elevations (∼30 m) 

than typical aircraft, and are therefore able to provide high resolution data sets without 

sacrificing productivity. Geophysical applications using automated vehicles have 

predominantly involved magnetic mapping to locate manmade features (Stoll, 

2013, Phelps et     al., 2014). Automated vehicles may also be able to simultaneously 

process and contour data, and transmit information in real time (Phelps     et     al., 2014). 

Furthermore, automated systems could be programmed in such a way that anomalous 

regions are re-surveyed in higher resolution automatically.
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The majority of unmanned aerial vehicles are small ( < 25 kg) and are limited to light 

weight instruments, however larger vehicles capable of carrying heavier payloads are 

available (Whitehead     et     al., 2014a, 2014b). It can be envisaged that miniaturisation (or 

weight reduction) of geophysical tools, and the increasing pay loads of UAVs, could 

allow for increased collection of automated aerial geophysical data. However, non-aerial

geophysical applications could easily be adapted to use automated vehicles, for 

instance roving surveys using plate electrodes for ERI (Christensen     and 

Sørensen,     1998), large scale FD-EMI surveys (Christiansen     et     al., 2016) or waterborne 

surveys (Kelly et     al., 2009, Binley et     al., 2013, Colombero et     al., 2014) would not be 

difficult to automate and may aid in collection of data across larger scale, e.g. to 

investigate parameters at catchment scales.

6. Summary

Geophysical tools have clear application in revealing geological, hydrological and 

biogeochemical heterogeneity at the GW–SW interface. Geophysical tools are highly 

complementary to traditional tools as they are sensitive to regions of the subsurface not 

always reachable by direct measurements. The majority of geophysical applications 

have focused on characterising subsurface structure, revealing spatial variability in 

GW–SW interaction and imaging hydrological processes. Data sets obtained from these

field studies have significant potential to improve characterisation and modelling of 

parameters at the GW–SW interface. Over the last 20 years geophysical methods have 

grown to be powerful tools in hydrogeological research, in part due to the view that 

geophysical tools be used to aid hydrogeological problems alongside traditional 

methods. Geophysics provides valuable practical tools for assessing many unknowns of

the GW–SW interface. Moreover, although caution in quantative interpretation of 

geophysical data is warranted, attempts at improving uncertainty quantification, 

inversion routines and translating data are on-going. Efforts to provide solutions to these

issues can only continue to improve confidence in geophysics so that its potential can 

be more widely appreciated and applied across a variety of scales. In recent years, 

there has been significant development in techniques and methodologies in parallel 

research areas, some of which would enhance the information obtained in studies of the

GW–SW interface. Continued integration of geophysical methods would be beneficial in 

characterising hydrological and biogeochemical heterogeneity in the GW–SW interface 

and understanding the implications for water quality and ecological health.
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