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Abstract
Environments pose antagonistic demands on individual and
collective cognition, such as trading off cognitive stability
against cognitive flexibility. Manifestations of this tradeoff
have been shown to vary across individuals, leading to differ-
ences in individual task switching performance. In this simula-
tion study, we examine how individual differences in cognitive
stability and flexibility contribute to collective task switching
performance. Specifically, we study whether diversity in cog-
nitive stability and flexibility among members of a group can
facilitate collaborative task switching. We test this hypothesis
by probing task switching performance of a multi-agent dy-
namical system, and by varying the heterogeneity of cognitive
stability and flexibility among agents. We find that heteroge-
neous (compared to homogeneous) groups perform better in
environments with high switch rates, especially if the most
flexible agents receive task switch instructions. We discuss the
implications of these findings for normative accounts of cogni-
tive heterogeneity, as well as clinical and educational settings.
Keywords: cognitive control; task switching; stability-
flexibility tradeoff; opinion dynamics; multi-agent systems.

Introduction
Humans are exceptionally good at focusing on goal-relevant
tasks in the face of distraction—an ability attributed to our
capacity for cognitive control. Yet, the requirement to focus
on a task is often superseded by the demand to quickly switch
from one task to another. These antagonistic demands can re-
quire humans to balance cognitive stability against flexibility
(Goschke, 2000; Musslick & Cohen, 2021).

Individual differences in the balance between cognitive
stability and flexibility have been reported to result in dif-
ferences in task switching performance (Crofts et al., 2001;
Ueltzhöffer et al., 2015; Musslick et al., 2019), leading in-
dividuals with greater cognitive flexibility to switch faster
and individuals with greater cognitive stability to be less dis-
tracted. Yet, it is unclear how individual differences in cogni-
tive stability and flexibility contribute to a group’s collective
task switching performance, and whether heterogeneity in
cognitive stability and flexibility benefits group performance.

Computational analyses suggest that the optimal balance
between cognitive stability and flexibility varies with the de-
mand for task switches. Previous modeling efforts formal-
ized this problem in terms of a nonlinear dynamical sys-
tem, in which an individual’s focus on a particular task is
represented by an attractor (Ueltzhöffer et al., 2015; Mus-
slick et al., 2018). Switching between tasks requires a re-
configuration of the dynamical system, moving its state from

one attractor to another. The balance between cognitive sta-
bility and flexibility can be regulated by means of the at-
tractor depth: deeper attractors promote robustness against
distraction (cognitive stability), whereas shallower attractors
promote fast switches between tasks (cognitive flexibility).
According to these models, limited focus on a task, imple-
mented by shallower attractors, can be beneficial if frequent
task switching is required (Musslick & Bizyaeva, 2024).

Computational analyses suggests that, for a given rate of
task switches, there is a single optimal balance between
cognitive stability and flexibility when attempting to maxi-
mize individual task switching performance (Musslick et al.,
2019). However, it is unclear whether such a balance would
also optimize the collective performance of a group of indi-
viduals in the same task switching environment. Given that
individuals can differ in their cognitive stability and flexibil-
ity (Crofts et al., 2001; Moustafa et al., 2008; Ueltzhöffer et
al., 2015; Musslick et al., 2019), one might wonder whether
such differences can improve collective performance.

In this computational study, we test the hypothesis that het-
erogeneity in cognitive stability and flexibility can benefit the
collective performance of a group of individuals. To illus-
trate this hypothesis, consider a scenario in which a group
of students collaboratively study for an exam. Students with
high cognitive stability may be able to focus on their exam
preparation despite distracting background noise. Students
with low cognitive stability may study less effectively, but
may notice and communicate environmental cues indicating
the demand for a task switch (e.g., the last bus approaching
the nearby station). In this scenario, students with low cog-
nitive stability may achieve a low individual outcome on the
primary task (studying for the exam), but may contribute to
the collective outcome of the group (all students can catch the
last bus). Here, we explore the conditions under which het-
erogeneity in terms of cognitive stability and flexibility can
benefit group performance, through the lens of a multi-agent
dynamical system. Using this system, we conduct numeri-
cal simulations in a task switching environment, comparing
the performance of homogeneous groups with shared cogni-
tive traits to heterogeneous groups. We find that heteroge-
neous groups can outperform homogeneous ones, particularly
in scenarios characterized by a high task switching rate and
limited external instructions for task switching. Critically, we
find that the benefits of heterogeneous groups arise from par-
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Figure 1: Multi-agent dynamical system model. (a) Graphic representation of inputs to a single processing unit for a single agent; ai
1 is the

activity (focus) of agent i on Task 1, w1,1 represents self-excitation of the respective tasks (blue), while w1,2 represents inhibition from the
second task ai

2 (pink). The weight ws modulates the focus on the task derived from social interactions (green). Finally, I is the external relevant
task instruction (purple). Every agent has a gain parameter g that encodes their ability to focus. (b) Task Gt graph; the two processing units
(one per task) have self-recurrent positive weights and the inhibitory (negative) weight from the other unit (top). Note that w2,1 and w2,2 are
not shown in panel (a) to avoid visual cluttering. Communication graph Ga structure for a group of four agents, all connected to all (bottom).
Every connection has a positive weight, reflecting that agents tell each other to perform the task they are currently performing. (c) Effect of
varying the external input strength on shape of the normalized gradient potential landscape. The landscape is obtained by restricting Equation
(1) to the line a1 + a1 = 0, with g = 5. Local minimum at a positive (negative) value on the horizontal axis corresponds to an attractor for
Task 1 (Task 2). Increasing strength of input for Task 1 breaks the symmetry in the potential landscape and removes the attractor for Task 2.

ticular configurations of groups in which flexible agents re-
ceive the task switch cues. We conclude by discussing the
implications of our findings with respect to interpreting ex-
treme forms of cognitive stability and flexibility in clinical,
educational and corporate team contexts.

Model
Here, we formalize collaborative task switching within a
multi-agent dynamical system. We begin by introducing a
version of this system used to study the stability-flexibility
tradeoff within a single individual (Musslick et al., 2019), and
then extend the model to study the trade-off within a group of
interacting agents. The collaborative task switching model
we arrive at is a specialization of a multi-dimensional social
belief formation model recently introduced and analyzed in
(Bizyaeva et al., 2023b,a).

For the purposes of this study, we consider environments
with two tasks and groups of N total agents. Each agent’s
focus on a task is represented by the activity of two associated
processing units, indexed by 1,2. The activity ai

1(t) of the
agent i on Task 1 (for Task 2 we have symmetric equations)
evolves over time t according to:

dai
1(t)
dt = τ−1

[
−d ai

1(t)︸ ︷︷ ︸
decay term

+σ
(
gi

internal dynamics︷ ︸︸ ︷
fi(ai

1(t)) + Ii,1
ext(t)︸ ︷︷ ︸

external inputs

)]
(1)

where the focus is influenced by a general decay (towards no
focus on the corresponding task), internal dynamics of focus-
ing on one task versus another, and external inputs indicating
the relevant task to be performed. In this model, τ is a tem-
poral constant, d is the coefficient of the decay term of the

activity, and σ(·) = tanh(·) is a non-linear activation function
that bounds the total activity. The stability-flexibility tradeoff
of a given individual is regulated by the parameter gi (gain)
which influences the slope of the saturation function. The
gain effectively regulates the depth of the task attractors and,
thereby, an agent’s balance between cognitive stability and
flexibility: a higher (lower) value of g indicates greater cog-
nitive stability (flexibility). Specifically, higher g values lead
to greater cognitive control allocated to a given task, result-
ing in increased neural activation and greater cognitive sta-
bility. However, this also leads to greater persistence during
task switches, causing switch costs, and reducing flexibility.
Here, we simulate individual differences in cognitive stability
vs. flexibility, by assuming different values of g for different
agents.

Inside the saturation function σ, fi(ai
1(t)) represents the

internal dynamics of agent i (illustrated in Figure 1b):

fi(ai
1(t)) =

1
Ni+1 (w1,1 ai

1(t)+w1,2 ai
2(t)), (2)

which is a linear combination of the unit’s own activity ai
1(t)

multiplied by the self-excitatory weight w1,1 and the activity
ai

2(t) of the other unit multiplied by an inhibitory weight w1,2.
The self-excitatory weight implements task-set inertia, mak-
ing the agent maintain the focus on the currently performed
task, whereas the inhibitory weight implements the assump-
tion that the two tasks are mutually inhibitory (McClelland &
Rumelhart, 1981).

When considering a single agent alone, the input may be
exclusively driven by an external task cue. However, when
considering the agent in a group, the input will also be driven
by social input derived from the communication between the
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agents (illustrated in Figure 1b). Thus, the total external input
Ii,1
ext(t) received by the agent i for Task 1 is composed of two

terms:
Ii,1
ext(t) = Ii,1

cue(t)+ Ii,1
social(t) . (3)

The first term, Ii,1
cue(t), is the external task instruction specifi-

cally for Task 1. Its value is positive when the task cue directs
the agent to focus on Task 1 and negative when the task cue
instructs the agent to focus on Task 2. It is 0 when the agent
does not receive the external task cue. In this study, we will
manipulate the number of agents Ncue that have access to the
same task cue.

The second term, Ii,1
social(t), is the external input received

from other agents. Since the model is idealized, we as-
sume that sending agents communicate their own activity
state directly to the receiving agents, thus biasing the re-
ceiving agents towards performing the task that the sending
agents are focusing on:

Ii,1
social(t) = gi

ws
Ni+1 ∑

N
j=1, j ̸=i Aa

i j a j
1(t) , (4)

where Aa
i j are elements of the adjacency matrices of the com-

munication graph between the agents Ga (Aa
i j = 1 ∀ i, j in

our case). The social component of the external input is mod-
ulated by the parameter ws. Within the saturation function,
there is also a normalization term that considers the number
of agents with whom agent i interacts in the communication
graph: Ni.

Simulation Experiments
This simulation study aims to examine the performance of
heterogeneous and homogeneous groups of agents, with re-
spect to their individual differences in the stability-flexibility
balance, in a collaborative task switching environment. As
described above, we represent individual cognitive differ-
ences in this balance using the gain parameter g. Accordingly,
a homogeneous group is formed by agents with identical g
values, whereas a heterogeneous group is composed of agents
with diverse g values. Individual g values are drawn from a
Gaussian distribution with mean µ and coefficient of varia-
tion cv. Thus, cv regulates the heterogeneity of the group,
with greater values resulting in starker individual differences
between agents. We use the coefficient of variation since it
is a relative measure of dispersion and gives a standardized
measure that is independent of the scale of the gain.

We investigate the effects of heterogeneity across three
simulation experiments. The first experiment demonstrates
that the model described above can reproduce the stability-
flexibility trade-off for an individual agent. Furthermore, we
determine the optimal stability-flexibility balance for (a) in-
dividual agents, (b) homogeneous groups, and (c) heteroge-
neous groups as a function of task switch rate. The second ex-
periment analyzes collaborative task switching performance
as a function of group heterogeneity. Here, we identify en-
vironmental conditions under which heterogeneous groups
can outperform homogeneous ones. The third experiment

then examines the characteristics that a heterogeneous group
should possess to surpass the performance of a homogeneous
group.

1

0

1

a i

I1
cue

(a)

0 500 1000 1500 2000
Simulation Time

1

0

1

a i

(b)

Good Perf.
Penalty

Figure 2: Evolution of task focus and performance. (a) Evolution
of the task focus ai for a group of four agents with different values of
gain g, all receiving the external task cue (black line). ai is obtained
as ai

1 − ai
2; it takes positive values if the agent is more focused on

the first task and negative values if more focused on the second task.
Vertical dashed lines denote task switches indicated by I1

cue. (b) The
performance metric quantifies how much the agent is focusing on
the currently relevant task (green) versus the wrong task (red).

General Simulation Methods
For simplicity, we restrict the scope of our study to an ex-
amplary case with groups involving N = 4 agents, each con-
nected to all others with equal weight ws in the communica-
tion network (Figure 1b). As outlined above, the agents are
tasked to switch between two tasks. Each task is associated
with one of two processing units whose activity—ai

1 or ai
2—

represents the focus on the respective task.
We study the evolution of the task focus for each agent.

Specifically, we consider the relative focus on Task 1 versus
Task 2, ai = ai

1 − ai
2 in this task-switching scenario; ai takes

positive values if the agent is more focused on the first task
and negative values if it is more focused on the second task.
All agents start with initial condition ai = 0 (balanced focus
between Tasks 1 and 2). At certain time steps, a subset of
agents in the group receives a cue indicating that the rele-
vant task has switched, Ii,1

cue. Crucially, even agents who do
not receive task instructions directly are capable of switching
the task on which they are focusing by receiving information
from the other agents via Ii,1

social about the task on which they
are currently focusing (Equation 4).

Throughout the simulations, we keep all model parame-
ters fixed except for four parameters that are varied system-
atically: (a) the mean and (b) the variance of the distribu-
tion of gains g, (c) the rate of task switching ω, and (d) the
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number of agents receiving external task cue Ncue. The to-
tal time of the simulation is kept constant in all simulations
(T = 2200). We identified the fixed parameters of the model
through grid search (Table 1), so to maximize the tradeoff be-
tween cognitive stability and flexibility postulated in earlier
work (Bizyaeva et al., 2023a; Goschke, 2000; Ueltzhöffer et
al., 2015; Musslick & Bizyaeva, 2024; Musslick et al., 2019).

Table 1: Parameters of the Model.

Parameter Value Description
g 0 - 20 gain
d 0.2 task decay
w1,1,w2,2 0.02 task self-excitation
w1,2,w2,1 - 0.01 between-task inhibition
ws 0.02 social influence

τ 10 integration constant
Icue -0.1,0.1 external task cue

We quantify (collaborative) task switching performance
based on the degree to which the agent(s) are focusing on
the currently relevant task. For instance, if I1

cue > 0 then all
agents should be focusing on Task 1, i.e., ai > 0. We quantify
performance by computing the area between the ai curve and
the x-axis around zero. We assign positive values to the area
where agents focus on the currently relevant task (green in
Figure 2) and negative values where they focus on the wrong
task (red in Figure 2), considering this area as a penalty. Thus,
the performance of an agent i can be quantified as follows:

Pi =
∫

t
ai(t) · sgn(I1

cue) dt

where I1
cue is the function representing the black curve in Fig-

ure 2a and sgn(·) is the sign function.
By summing these areas, we obtain the total performance

for all agents in the group, representing the collective task
switching performance P = ∑i Pi.

Simulation Study 1: Stability-Flexibility Trade-off
and Optimal Gain
The aim of this simulation study is to determine the optimal
value of the gain parameter g—reflecting the ideal balance
between cognitive stability and flexibility—as a function of
the task switch rate ω, the number of agents receiving the
task cue Ncue, and the group (individual agent, homogeneous
group, heterogeneous group).

Simulation Procedure We determined the optimal g for
different combinations of ω, ranging from 0.002 to 0.007 (to
have 4 to 14 successive switches), and Ncue, ranging from 1
to 4 agents receiving the task cue. For each parameter con-
figuration (ω,Ncue), we simulated the system for a range of
gains g (from 0.1 to 10) for (a) a single agent, (b) a homo-
geneous group of 4 agents, and (c) a heterogeneous group of
4 agents. For heterogeneous groups, we computed that per-
formance as the average performance over 100 simulations,

each with a newly drawn distribution of g, and reported the
mean of the distribution of gains (with cv = 0.5). For each of
the three scenarios, we determined the g that maximizes the
(collective) task switching performance P.

0.002 0.003 0.004 0.005 0.006 0.007
Task Switch Rate 

0

3

6

O
pt

im
al

 G
ai

n 
g

Figure 3: Optimal gain ggg as a function of task switching rate
ωωω for a single agent, homogeneous group, and heterogeneous
group. For the groups, each data point represents the average g
value obtained across simulations with varying Ncue. The optimal g
decreases with increasing task switching rate.

Results The simulations of the agents’ activity evolution
over time directly indicate a tradeoff between cognitive sta-
bility and flexibility: agents with higher stability can focus
more on a single task but take longer to switch to the other
task (Figure 1a). Furthermore, the simulation results indicate
that the optimal gain parameter g decreases with an increase
in the task-switching rate ω (Figure 3). This suggests that
when the task environment requires more frequent switching
between tasks, it is beneficial to prioritize flexibility at the
expense of stability. This trend holds true at the individual
level, consistent with previous results (Musslick et al., 2019),
and extends to both homogeneous and heterogeneous groups
of agents. Interestingly, both groups have a higher optimal g
compared to single agents across different task switch rates
ω, suggesting that the collective task switching performance
of groups benefits from greater cognitive stability than indi-
vidual task switching performance (Figure 3).

Simulation Study 2: Homogeneous Versus
Heterogeneous Group Performance
Next, we seek to compare the collaborative task switch-
ing performance of homogeneous groups with heterogeneous
groups across a wide range of simulation parameters. Specif-
ically, we examine conditions under which heterogeneous
groups may outperform homogeneous ones.

Simulation procedure As in the first simulation experi-
ment, we simulated group performance for different com-
binations of ω and Ncue, varying ω from 0.002 to 0.012 in
steps of 0.002 and Ncue from 1 to 4. Furthermore, we con-
sidered different values of g ranging from 1 to 6 in steps of
1. We evaluated the performance for every value of g for
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Figure 4: Homogeneous versus heterogeneous group perfor-
mance. (a) Mean group performance value of the heterogeneous
group in different settings of Ncue and ω. Every point is the mean
performance value corresponding to a single set of simulations, with
defined Ncue and ω. Error bars represent the standard deviation of
the simulated average performance across different values of µ and
cv of the Gaussian distribution from which the g vectors of the group
are extracted. The black dashed line represents the average trend of
the performance value and it is obtained by interpolating a quadratic
curve through the original data points. Performance decreases with
increasing task switching rate and with fewer agents receiving task
cues. (b) Percentage of the heterogeneous groups outperforming
homogeneous groups in terms of mean group performance. Points
correspond to the mean percentage value of success (heterogeneous
group performance > homogeneous group performance), averaged
across different sets of µ and cv. Error bars and black dashed line
same as in (a).

the homogeneous group, and then we compared this value
with 300 simulations of the heterogeneous group. We sim-
ulated different levels of heterogeneity by varying the coef-
ficient of variation cv with which g is sampled, from 0.25
to 1 in steps of 0.25. We ensured that the mean of the vec-
tor elements of g for the heterogeneous group matched the g
value of the homogeneous group, isolating the impact of het-
erogeneity (spread) of g. For each combination of µ = g and
cv, we assessed the mean group performance P̄ over the 300
simulations, the distribution of group performances P for the
heterogeneous group, and the percentage of times (out of 300)
that the heterogeneous group outperformed the homogeneous
one in terms of P.

Results: Comparative Performance Simulation results
indicate that heterogeneity in the balance between cognitive
stability and flexibility does not universally enhance group
performance (Figure 4). In general, we observe that the mean
performance of the heterogeneous group decreases as switch
rate increases, and increases with the number of agents re-
ceiving the task cue (Figure 4a). Interestingly, on average,
the heterogeneous group tends to outperform the homoge-
neous one (> 50%) only in scenarios characterized by high
switching rates and a small number of agents receiving the

task cue (Figure 4b). In contrast, if the task switch rate is low
or the task cue is provided to all agents, then heterogeneous
groups do not outperform homogeneous groups on average.
We observe an exception to this pattern for cases with the
lowest switching rate, yet even in this instance, there is con-
siderable variability in the performance values within the het-
erogeneous group. When assessing the best heterogeneous
group performance over the 300 simulations in comparison
to the homogeneous group, we observed that there is almost
always at least one heterogeneous group capable of outper-
forming the homogeneous one, with the exception being the
scenario in which all four agents receive task instructions.
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Figure 5: Group performance as a function of average ggg for
agents receiving IIIcue. Simulation data is shown for ω = 0.012 and
varying Ncue. The points represent the heterogeneous group perfor-
mance for each simulation. Different colors refer to different val-
ues of µ used to sample the g vector for a group. Dashed lines in-
dicate the homogeneous group performances (one single value per
µ = ghom). The colored straight lines are obtained doing a linear re-
gression on the performance points. The impact of the average gain
of agents receiving the task cue increases with fewer agents receiv-
ing the cue.

Results: Characteristics of Well-Performing Hetero-
geneous Groups After establishing that heterogeneous
groups can outperform homogeneous ones, especially in cer-
tain scenarios, we examine the characteristics of heteroge-
neous groups that can result in performance benefits com-
pared to homogeneous groups. As shown in Figure 4b, higher
variance in the g vector can either enhance or diminish the
performance of the heterogeneous group compared to the ho-
mogeneous group. Thus, variance alone appears insufficient
to discriminate group performance consistently.

Our follow-up analyses indicated a critical role of the g
values for the subset of agents receiving the external task cue.
In Figure 5, we examined simulations with ω = 0.012 while
decreasing Ncue, focusing on the average value of the gain
parameter for agents receiving the task cue. In scenario (a)
where all the agent receive the Icue (Ncue = 4), we find that
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the mean of the vector of g coincides with the µ = ghom val-
ues, consistent with the construction of the g vectors. Here,
introducing heterogeneity in most cases does not lead to an
enhancement in group performance. However, as we reduced
the number of agents receiving external instructions, the av-
erage gain parameter for the subset of agents receiving the
task cue became increasingly critical for the performance of
heterogeneous groups. The best-performing heterogeneous
groups are the ones where the average g of the agents receiv-
ing Icue is lower, meaning that they are, on average, more
flexible. Figure 6 focuses on scenarios on which only one
agent receives the task cue (Ncue = 1), across different task
switch rates ω. In a low task switch rate scenario (Figure 6a),
heterogeneous performance is improved the more cognitively
stable the only agent receiving Icue is (higher g value). Con-
versely, in scenarios with higher switch rates (Figure 6c-d;
cf. Figure 5), the situation is reversed: heterogeneous groups
outperform homogeneous groups if the only agent receiving
external task instructions is very flexible (lower g value). The
situation is more mixed for ω = 0.006 (Figure 6b), and the
trend appeared nonlinear. Our findings suggest that, in gen-
eral, better performance for heterogeneous groups is achieved
when, in scenarios with Ncue < 4 and high ω, the agents with
external instruction are the most flexible in the group. Con-
versely, when the task-switching rate is low, it is more ad-
vantageous for the agents with external instruction to be the
most stable ones in the group. However, here in most cases,
we did not observe heterogeneous groups outperforming the
homogeneous ones.
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Figure 6: Group performance as a function of ggg of the agent re-
ceiving IIIcue. Simulation data is shown for Ncue = 1 and varying
ω. The points represent the heterogeneous group performance for
each simulation. Different colors refer to different values of µ used
to sample the g vector for a group. Dashed lines indicate the ho-
mogeneous group performances (one single value per µ = ghom). In
low task switch rates, better heterogeneous performance is linked to
a more cognitively stable agent receiving Icue. Conversely, in high
switch rates, better performance is associated with a more flexible
agent receiving instructions.

General Discussion and Conclusion

Humans have been found to adapt to varying demands
for flexibility, presumably by balancing cognitive stability
against flexibility (Braem, 2017; Dreisbach & Fröber, 2019;
Goschke, 2000; Mayr & Kliegl, 2000; Monsell & Mizon,
2006; Musslick & Cohen, 2021). Perhaps unsurprisingly, not
every participant has been found to exhibit the same balance,
with some participants exhibiting greater flexibility at the ex-
pense of cognitive stability while others show the reverse pat-
tern (Crofts et al., 2001; Ueltzhöffer et al., 2015; Musslick
et al., 2019), although this tradeoff may not always manifest
(Egner, 2023; Mayr & Grätz, 2024). In this study, we leverage
a multi-agent dynamical systems model to examine whether
groups of individuals can benefit from such individual differ-
ences when exposed to task switching environments.

Our simulation results indicate that group heterogeneity in
the balance between cognitive stability and flexibility does
not consistently enhance collective task switching perfor-
mance compared to group homogeneity. Yet, we found that
heterogeneous groups can outperform homogeneous groups
if (a) task switches are more frequent and (b) only a few in-
dividuals have access to information about the relevant task
to perform. In the latter cases, heterogeneous groups perform
better if the agents receiving the task cue are the most flexible
ones in the group. Conversely, in scenarios with infrequent
task switches, better performance is observed when external
task cues are provided to the most stable agents.

The simulation results support a normative perspective on
diversity in cognitive traits, such as individual differences in
the balance between cognitive stability and flexibility. Specif-
ically, our results suggest that individuals with extreme forms
of stability or flexibility can benefit group performance de-
spite below-average individual performance. This aligns with
a utilitarian perspective on psychiatric dysfunctions associ-
ated with extremes on both ends of the balance spectrum.
This perspective is also salient in educational settings as
contemporary pedagogical frameworks, such as Disability
Studies in Education, emphasize strengths-based rather than
deficit models of ability/disability (Connor et al., 2008). The
same principle may apply in corporate team work environ-
ments, where group heterogeneity is an active domain of
study (Laureiro-Martı́nez & Brusoni, 2018; Hmieleski & En-
sley, 2007). Finally, the simulation study complements exist-
ing frameworks of rational boundedness Musslick & Cohen
(2021); Musslick & Ması́s (2023), in so far as that it suggests
a rational role for individual limitations in cognitive stability
or flexibility at the level of group performance.

While this study of group heterogeneity provided initial in-
sights, one must acknowledge that it relied on multiple sim-
plifying assumptions, such as that all agents are informed
about the task state of other agents at any point in time. Future
analyses are needed to probe the generality of these findings,
and to put them to empirical test in collaborative task switch-
ing environments.
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Dreisbach, G., & Fröber, K. (2019). On how to be flexi-
ble (or not): Modulation of the stability-flexibility balance.
Current Directions in Psychological Science, 28(1), 3–9.

Egner, T. (2023). Principles of cognitive control over task fo-
cus and task switching. Nature Reviews Psychology, 2(11),
702–714.

Goschke, T. (2000, 01). Intentional reconfiguration and invol-
untary persistence in task-set switching. Control of Cogni-
tive Processes: Attention and Performance XVIII, 331-355
(2000), 18.

Hmieleski, K. M., & Ensley, M. D. (2007). A contextual
examination of new venture performance: Entrepreneur
leadership behavior, top management team heterogeneity,
and environmental dynamism. Journal of Organizational
Behavior: The International Journal of Industrial, Oc-
cupational and Organizational Psychology and Behavior,
28(7), 865–889.

Laureiro-Martı́nez, D., & Brusoni, S. (2018). Cognitive flexi-
bility and adaptive decision-making: Evidence from a lab-
oratory study of expert decision makers. Strategic Man-
agement Journal, 39(4), 1031–1058.

Mayr, U., & Grätz, D. (2024). Does cognitive control have
a general stability/flexibility tradeoff problem? Current
Opinion in Behavioral Sciences, 57, 101389.

Mayr, U., & Kliegl, R. (2000). Task-set switching and long-
term memory retrieval.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive
activation model of context effects in letter perception: I.
an account of basic findings. Psychological review, 88(5),
375–407.

Monsell, S., & Mizon, G. A. (2006). Can the task-cuing
paradigm measure an endogenous task-set reconfiguration
process? Journal of Experimental Psychology: Human
Perception and Performance, 32(3), 493–516.

Moustafa, A. A., Sherman, S. J., & Frank, M. J. (2008).
A dopaminergic basis for working memory, learning and
attentional shifting in parkinsonism. Neuropsychologia,
46(13), 3144–3156.

Musslick, S., & Bizyaeva, A. (2024). Examining cogni-
tive flexibility and stability through the lens of dynami-
cal systems. Current Opinion in Behavioral Sciences, 57,
101375.

Musslick, S., Bizyaeva, A., Agaron, S., Leonard, N., & Co-
hen, J. D. (2019). Stability-flexibility dilemma in cognitive
control: A dynamical system perspective. In Proceedings
of the 41st annual meeting of the cognitive science society.

Musslick, S., & Cohen, J. D. (2021). Rationalizing con-
straints on the capacity for cognitive control. Trends in
Cognitive Sciences, 25(9), 757–775.

Musslick, S., Jang, S. J., Shvartsman, M., Shenhav, A., &
Cohen, J. (2018, 08). Constraints associated with cognitive
control and the stability-flexibility dilemma..

Musslick, S., & Ması́s, J. (2023). Pushing the bounds of
bounded optimality and rationality. Cognitive Science,
47(4), e13259.
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