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Abstract

Problem solving is understood as a process through which
states of problem solving are transferred from the initial state
to the goal state by applying adequate operators.  Within this
framework, knowledge and strategies are given as operators
for the search.  One of the most important points of
researchers’ interest in the domain of problem solving is to
explain the performance of problem solving behavior based
on the knowledge and strategies that the problem solver has.
We call the interplay between problem solvers’
knowledge/strategies and their behavior the causal relation
between mental operations and behavior.  It is crucially
important, we believe, for novice learners in this domain to
understand the causal relation between mental operations and
behavior.  Based on this insight, we have constructed a
learning system in which learners can control mental
operations of a computational agent that solves a task, such as
knowledge, heuristics, and cognitive capacity, and can
observe its behavior.  We also introduce this system to a
university class, and discuss which findings were discovered
by the participants.

Introduction
In the traditional theory of human problem solving, human
behavior in solving a problem has been regarded as a search
for a problem space.  In this perspective, problem solving is
understood as a process through which states of problem
solving are transferred from the initial state to the goal state
by applying adequate operators.

The utility of this theoretical framework, especially
in the early stages of problem solving studies, was
supported by many empirical studies in which simple
puzzle-like experimental tasks were used.  Following after
these studies, this view was expanded into a more general
framework, and has taken a central role in providing
fundamental principles for explaining complex human
cognition.  For example, there are some representative
studies such as: a series of Klahr’s studies where scientific
discovery is regarded as a search for dual problem spaces:
rule and data spaces (Klahr & Dunbar, 1988, 2000, Kulkarni
& Simon, 1988); studies on insight problem solving where
insight is brought about by switching a problem space
searched (Kaplan & Simon, 1990); studies on diagrammatic

problem solving where the superiority of using diagrams has
been very often analyzed from the viewpoint of the
efficiency of the problem space search (Larkin & Simon,
1987); and studies on distributed cognition, where the
efficiency of distributed cognition is explained based on the
merging of multiple problem spaces represented in the
internal and external world (Zhang & Norman, 1994).

Within this framework, knowledge and strategies
are given as operators for the search.  One of the most
important points of researchers’ interest in the domain of
problem solving is to explain the performance of problem
solving behavior based on the knowledge and strategies that
the problem solver has.  In the production system, the most
popular computer architecture used in studies on human
problem solving, operators are represented as production
rules (e.g., Klahr, Langley, & Neches, 1987).  There have
been many trials in which the difference of rules
implemented in a cognitive model tries to explain a variety
of human problem solving behavior.  In one landmark book,
Human Problem Solving, published in 1972, Newell and
Simon indicated that complex human behavior can be
generated by repeated applications of a relatively small
amount of simple operators, and a wide variety of behavior
can be successfully explained based on the addition and
elimination of a very small number of specific operators
(Newell & Simon, 1972).  These findings strongly
influenced following studies on human problem solving.  In
this paper, we call the interplay between problem solvers’
knowledge/strategies and their behavior the causal relation
between mental operations and behavior.

Many introductory textbooks on cognitive science
and cognitive psychology introduce the theoretical
framework of problem solving mentioned above.  It is
crucially important, we believe, for novice learners in this
domain to understand the causal relation between mental
operations and behavior.  Based on this insight, we have
constructed a learning system in which learners can control
mental operations of a computational agent that solves a
task, such as knowledge, heuristics, and cognitive capacity,
and can observe its behavior.  The users are expected to
notice many aspects of the causal relation between mental
operations and behavior while simulating the human
problem solving process using our system.  We also
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introduce this system to a university class, and discuss
which findings were discovered by the participants.

Model and System
Our system functions as a hypothesis-deduction system
where it infers what behavior emerges when a set of mental
operations are assumed.  Learners repeatedly observe sets of
an assumption of operations - deduction - behavior while
being supported by the system’s deduction function.
Learners are guided to understand heuristically the causal
relation between mental operators and behavior by using
this system.  Figure 1 shows a schematic illustration of the
overall framework employed by our system.

Figure 1 Basic framework employed by our system.

Task
We used the cryptarithmetic task as an experimental task.
The following is an example problem.

 DONALD     D=5
+GERALD
 ROBERT
The problem is to assign digits (0, 1, 2, …, 9) to

the letters (A, B, D, E, G, L, N, O, R, and T), so that when
the letters are replaced by their corresponding digits, the
sum is satisfied.  Here the information D=5 is given in the
initial statement of the problem.

The reasons for using this task are: (1) the
cryptarithmetic task has a characteristic that problem
solving behavior is remarkably influenced by changes of
mental operations able to be used, (2) a computational
cognitive model (problem solver) solving this task has been
already proposed, and (3) reliable psychological data on
processes of solving this task have been provided (Newell &
Simon, 1972).

Summary of the model’s behavior
Figure 2 shows an example behavior of the problem solver.
The behavior of the problem solver can be organized as
Episodes, each of which comprises a sequence of inferences.

An episode starts either with assigning one of the digits to
one of the letters, or with selecting a column to be processed.
For example, the first episode, Episode 1, begins with an
assignment, in which the digit 5 is assigned to the letter D.
(This assignment is a special case because the information
D=5 is given by the experimenter.)  The experimenter does
not give the problem solver any further information, so it
tries to test assignments systematically, which sometimes
produces trial-and-error behavior.  Another way an episode
can begin is with selecting a column.  For example, the fifth
column, O+E=O, can be worked on independently without
the other columns.  In this example, the problem solver
selects this column in the initial stage of Episode 2, and can
directly infer from it E=0 or E=9, without any arbitrary
assignments or other information obtained from previous
episodes.  Either type of episode continues until all obvious
information has been inferred based on the assignment of
digits to letters or the selection and examination of a column.
After an episode ends, the next episode begins with another
assignment or column selection.  A detailed description of
the model can be seen in Miwa & Simon (1993) and Miwa
(1999).

Figure 2 Behavior of the complete model.

Process Column
The core operations for inferences in our problem solver are
the Process Column (PC) operation and the Coordination
(CD) operation.  For example, in Figure 2, the inferences in
Episode 1 develop as follows: (1) D=5, (2) T=0 & carry2=1
(the carry into the second column equals 1), (3) R=odd, (4)
R>4 & G<5, (5) R=5, R=7, or R=9, and (6) R=7 or R=9.

After obtaining the initial assignment in (1), the
following three inferences in (2), (3), and (4) are drawn by
the PC operation.  The PC operation infers new information
from other assignments by processing each column.  For
example, in (2), T=0 & carry2=1 are obtained from D=5 by
processing the first column; in (3), R=odd is obtained from
the second column; and in (4), R>4 & G<5 are obtained
from the sixth column.

User Operators

Deduction

Behavior

Causal
Relation

Control

Observation

System

Problem Solver

？
D‹5Episode 1

Episode 2

Episode 3

Episode 4

T=0, Carry2=1 R=odd R>4, G<5

R=5 or 7 or 9 R=7 or 9

E=0 or 9 E=9 R=7 Carry5=1, Carry6=1

G=1, Carry7=0 A=4, Carry3=1, Carry4=0

L=8, Carry2=1 N>2, B<7 N=3 or 6

N‹6 B=3, Carry5=1

O‹2

Da1 Pb1 Ia2

CDa CDd

Dc1 CDc CDb Dc2

Da1 Db2

Db1 Ia1 CDd

Da1
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In our problem solver, twelve different PC
operations are installed.  Seven operations infer digit
information (three of the seven operations, Da1, Da2, and
Da3, process a column whose arrangement of letters is
A+B=C, two operations, Db1 and Db2, process a column
whose arrangement of letters is A+A=B, and other two
operators, Dc1 and Dc2, process a column whose
arrangement of letters is A+B=A.)  Two operations, Pa
(used in A+B=C) and Pb (in A+A=B), infer parity
information, and three operations, Ia1, Ia2 (in A+B=C), and
Ib (in A+A=B), infer inequality information.  Details of the
functions of these operations are given in Table 1 (a).

Coordination
The other inferences in (5) and (6) are obtained by the CD
operation.  After obtaining new information through the PC
operation, the problem solver tries to coordinate the new
information with other information that has been already
obtained.  For example, after R>4 in (5) is obtained, the
problem solver infers R=5, R=7, or R=9 by coordinating
R>4, which is newly inferred, with R=odd which is already
known.  In (6), the problem solver also restricts this
undecided information into R=7 or R=9 by checking all
information already known and noticing that the digit 5 has
already been used for the letter D.
Four kinds of CD operation, CDa, CDb, CDc, and CDd, are
installed in our model.  Details of the functions of these
operations are presented in Table 1(b).

Interface of the learning system
The interface of our learning system that contains the
problem solver explained above consists of two main
windows: the operation window and the behavior window.
The operation window: In the operation window, users
control the knowledge and heuristics of the problem solver.
Each of the PC and CD operations is easily plugged in or
removed from the problem solver by clicking a check box
corresponding to each operation.  Other factors that users
can control are: (1) a strategy for selecting a column
processed; (2) a strategy for selecting a letter when
assigning a digit; (3) a strategy for selecting a digit for the
assignment; and (4) memory capacities of the problem
solver (i.e., to what degree the problem solver can activate
information that has been already inferred from its memory).
The behavior window: In the behavior window, users can
observe the problem solver’s behavior when a certain set of
operations is implemented.  The behavior is displayed as
inference sequences such as the ones shown in Figure 2.

Behavior
Figure 2 showed the behavior of the complete problem
solver into which all sets of PC and CD operations are
plugged in.  In Figure 2, the types of operation used in each
step of the inferences are concretely indicated.  Figure 3
shows overall patterns of representative behaviors of other
transformed problem solvers where some of the operations
are removed.  In Figure 3, the circle nodes indicate
information drawn by the PC operations, while the square
nodes indicate information by the CD operations.  The
letters indicated at the beginning of each episode denote

Da1
Da2
Da3
Db1
Db2
Dc1
Dc2
Pa
Pb
Ia1

Ia2

Ib

Two letters and Carry
Two letters
Three letters
Bottom letter and Carry+
Bottom letter
Nothing
Middle letter
Two letters and Carry
Carry
Top (or Middle) letter, 
Carry, and Carry+
Top (or Middle) letter,
Carry+
Carry+

The other letter, Carry+
The other letter, Carry+
Carry, Carry+
Top (= Middle) letter, Carry
Top (= Middle) letter, Carry
Middle letter
Carry, Carry+
The other letter
Bottom letter
Middle (or Top) letter,
Bottom letter
Middle (or Top) letter,
Bottom letter
Top (= Middle) letter

A+B=C
A+B=C
A+B=C
A+A=B
A+A=B
A+B=A
A+B=A
A+B=C
A+A=B
A+B=C

A+B=C

A+A=B

A=5, C=2, Carry=1 
A=5, C=2 
A=5, B=6, C=2
B=2, Carry+=1
B=2

B=9
A=odd, C=odd, Carry=0
Carry=1
B=6, Carry=1, 
Carry+=0
B=6, Carry+=0

Carry+=1

B=6, Carry+=1
B=6 or 7, Carry+=1
Carry=1, Carry+=1
A=6, Carry=0
A=1 or 6, Carry=0
B=0 or 9
Carry=1, Carry+=1
B=even
B=odd
C>6, A<3

C>5, A<4

A>5

Digit

Parity

In-
equality

Type of
Information

Status of
Column

Known
Information

Inferred Information
An example

Known Information Inferred Information

If a new ambiguous assignment is inferred, and merging the assignment in 
an already-known ambiguous assignment restricts the ambiguity, 
      Then do so.
If a decisive assignment is newly inferred, and the assignment is one of 
two alternatives already known.
      Then restrict the two alternatives to a decisive assignment.  
If two alternatives are newly inferred, and one of the two alternatives is 
already assigned.  
      Then restrict the two alternatives to a decisive assignment.  
If a new ambiguous assignment is inferred, and merging the assignment in 
digits left over restricts the ambiguity.
      Then do so. 

A=5
A=6 or 8

B=8

A=6

A=3 or 9

A=3 or 5
A>5

A=6

A=6 or 8

A=odd

A=5 or 6
A=even

B=6 or 8

B=8

Digits 3, 6, 8, 9
are left over.

CDa

CDb

CDc

CDd

Processing New info. Known info. Inferred info.

(b) CD operations

(a) PC operations

Table 1 Core operations that the problem solver can use.  (Carry means a carry at the processed column, and Carry+
means a carry into the left-side column.)
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letters to which digits were assigned in the trial-and-error
manner.

The overall characteristics described above
reproduced the results of hand-simulations conducted in
Newell and Simon’s Human Problem Solving.  The most
interesting finding is that the replacement of a very small
amount of operations drastically influences the behavior.
For example, as can be seen in Figure 3(d), the absence of a
single operation, Dc1, greatly lengthened the problem
solving path.  The problem solver repeated the trial-and-
error behavior until it reached the solution because of the
lack of an ability to process the fifth column, O+E=O.

Additionally, the order of assignments was
substantially varied in each case.  When no more
information can be drawn, the problem solver begins to
move to trial-and-error behavior; i.e., the problem solver
assigns a digit to each letter systematically.  Basically, the
order of assignments in Figure 3 followed the alphabetical
order.  However, to let the length of problem solving path
minimum, a letter whose constraint of assignment is
stronger is first tested.  For example, in Figure 2, at the
beginning of Episode 3, the letter N was first tested because
in the previous episode the information N=3 or 6 was
obtained.  Many kinds of ambiguous information, such as

D

N

O

D

E

G Rejection

G

N

O

No information

No information

No information

No information

No information

No information

(a) Complete model

(b) Absence of Da1

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

D

O
(c) Absence of Db1

(e) Absence of Dc2

No information
L

B Rejection

B

1

2

3

4

5

6

7

D

No information

1

2

3

4

5

6

7

G

B Rejection

B

O

8

9

10

11

Rejection

B Rejection

G

B

O

D

(f) Absence of Pa

(g) Absence of Ia1

1

2

3

4 L Rejection

5

6

7

L

N

O

D1

2

3 B Rejection

B4

5 O

D

N

O

1

2

3

4
(h) Absence of Ia2

D

(d) Absence of Dc1

No information

R

A

B Rejection

B Rejection

B Rejection

A Rejection

A

O Rejection

B Rejection

B

O Rejection

B

R

1

2

3

4

5

6

7

13

14

15

16

17

18

19

20

A

N

O

84

85

86

A Rejection

A

B Rejection

B Rejection

B Rejection

8

9

10

11

12

(Episodes 35 to 83 were omitted.)

21

22

23

24

25

26

27

33

34

28

29

30

31

32

No information

No information

G

No information

No information

L

A Rejection

A

B

O Rejection

B Rejection

B Rejection

A
Rejection

A

Figure 3 Representative patterns of the problem solver’s behavior
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parity and inequality information, generated in the process
of problem solving, are drawn, and the intermediate
information is determined by the operations the problem
solver can use.  This factor produces the variety of patterns
of problem solving paths shown in Figure 3.

Evaluation

Procedure
To test the utility of this system, we actually had graduate
students use it, and then evaluated the results.  This
experiment was conducted in a cognitive science course
opened in the first author’s university.  The purposes of the
experiment were: (1) to confirm whether or not the
participants’ understanding of the problem solver’s
operations and behavior deepens by using this system, and
(2) to discuss what types of findings are discovered on the
causal relation between mental operations and behavior.

Two class hours were assigned for evaluation.  In
the first class hour, the participants actually solved a
cryptarithmetic task identical to the one the problem solver
solved.  They then learned the basic specifications of the
problem solver, such as the basic flow of the model’s
behavior and the PC and CD operations that the participants
manipulate.  After instruction, the pre test was conducted.
In the pre test, another type of cryptarithmetic task,
CROSS+ROADS=DANGER: where S=3, was used.  The
pre test consisted of two categories of items.  For the first
category, after the participants were presented with
assignments that had already been decided, they were
required to identify which operation is used and what
information is inferred.  For the second category, the
participants were required to indicate sequences of
inferences with a form presented in Figure 2 from the initial
state until the problem is solved.

The second class hour was conducted one week
after the first class.  The participants were required to trace
the complete problem solver’s behavior using this system
for treatment.  At every step of each problem solving
sequence, they were first required to identify which
operation is used and what information is inferred, then they
confirmed whether their prediction was correct by having
one step of inferences of the problem solver proceed.  After
this treatment, a post test was conducted.  The post test was
identical to the pre test.

After the post test was conducted, the participants
were allowed to use the system as they like.  They explored
changes in the problem solver’s behavior while
manipulating the operations that the problem solver can use.
While using the system, they were required to make notes of
their findings on the causal relation between mental
operations and behavior.

Result
Figure 4 shows a comparison of the results of the pre and
post tests.  The results of the nine participants who took part

in both of the two class hours were analyzed.  A 2 (pre/post
tests) x 2 (categories of test) ANOVA revealed that a main
effect of the pre/post tests reached significance (p < 0.01,
F(1, 32)=17.16) and the interaction between the two factors
was not significant (F < 1).  This analysis shows that the
participants learned to identify operations that should be
used in a certain situation and to trace the problem solver’s
behavior more accurately.  This result indicates that the
participants successfully learned to understand the problem
solver’s operations and behavior more deeply through using
this system.

Figure 4 The results of the pre and post tests.

Table 2 shows representative findings discovered
by the twelve participants who participated in the second
class hours.  Eight of the twelve participants mentioned
findings relating to the causal relation between mental
operations and behavior.  Furthermore, many participants
successfully noticed important aspects of influences of the
system’s cognitive abilities, such as mental operations that
can be used, on the problem solving behavior.  Some of the
aspects had also been focused on in traditional literatures on
human problem solving, such as Human Problem Solving in
1972.

Discussion and Conclusions
There are some other trials where a cognitive model as a
hypothesis-deduction system is used in cognitive science
education.  For example, COGENT provides learners with
an educational environment in which they are allowed to
construct computational models while setting up various
types of mental operation and simulate the behavior by
executing the models on a computer (Cooper, 2002).

COGENT is a cognitive architecture on which
students construct individual models working various
domains by themselves.  COGENT seems to be designed for
advanced graduate students who are specifically interested
in cognitive modeling, since to handle COGENT effectively
a considerable number of hours are generally needed for
training.  Moreover, the students must be familiar with basic
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Table 2 Representative findings on the relation between
mental operations and behavior.

Participant 2
Knowledge for processing parity and inequality information was
more difficult for me to understand than knowledge for processing
digit information.  So I tried to eliminate these types of knowledge
and then simulated the behavior.  As a result, many contradictions
appeared, enormous trial and error processes emerged, and the
length of the problem solving path became much longer.  Even
though humans can use unconscious knowledge in solving a
problem, it may be difficult to identify the knowledge explicitly.
Participant 3
The amount of knowledge and the problem solving performance
did not necessarily correlate.  Even if knowledge used many times
was absent, the performance did not become so different.
Participant 6
Knowledge is essential to solve a problem.  However when certain
specific knowledge was absent, other certain knowledge
sometimes prevented the problem solver from solving the problem
effectively.
When solving a problem, all knowledge relating to the problem
solving is not necessarily applied.
Participant 7
Complete knowledge is not necessarily needed to solve a problem.
However if certain knowledge cannot be used, the length of
problem solving path becomes much longer.
Participant 8
Dc1 is the knowledge that humans are most likely to forget.  When
this knowledge was absent, the problem solver tried to test many
assignments arbitrarily and faced enormous contradictions.  Even
though this type of crucial knowledge is absent, the problem solver
can reach the solution; however, the time for acquiring the solution
becomes much longer.
Participant 10
When I solved the problem, I often forgot to coordinate
information.  So I eliminated the CD operations from the problem
solver.  As a result, the length of problem solving path became two
or three times longer.  It was not so impressive to me because
coordination of information is crucial for solving this problem.
Participant 11
When I solved the problem, the only knowledge I could not
imagine was only Dc1 and Dc2.  In the complete problem solver,
these pieces of knowledge fired only twice.  I was surprised,
however, that 94 episodes were needed to solve the problem when
the problem solver could not apply these pieces.
Participant 12
When the CD operations were absent, the number of arbitrary
assignments became greater.  An episode moves to another episode
when a contradiction is identified.  When the problem solver
accidentally hit a correct assignment, the problem solving
progressed suddenly.
Even though a part of the knowledge is absent, the problem can be
solved by an exhaustive search.

techniques of artificial intelligence.  In contrast, our system
has been developed for introductory students in cognitive
science/psychology, who may not be very interested in
computational modeling.  Neither specific knowledge nor
training is needed to use our system.  Without specific
preparations, the learners are guided to explore various
aspects of the relationship between mental operations and

behavior, which is crucially important for introductory
students.

Contrary to COGENT, it is important to note a
strong constraint that in our system a task and operations for
solving the task were initially determined.  However, the
findings discovered by the participants, as shown in Table 2,
are relatively general and task-independent, which relate to
many domains of problem solving.  Additionally, it should
be noted that some of the participants, such as Participants 2,
8, 10, and 11, designed their simulation based on their own
experience of problem solving that was engaged in the
initial stage of the first class hour, and they tried to interpret
the problem solver’s behavior while connected with their
own problem solving activities.  This implies that our
system could function as an environment for experiencing
meta cognitive activities where the participants are guided
to perform self-reflective activities with their own problem
solving processes.

We believe that these activities are important for
introductory students who are interested in studies dealing
with human/machine intelligence, and can be brought about
by the learners’ self-organized exploration of “an
assumption of operations - deduction – behavior” cycles in
the framework shown in Figure 1.
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