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Scattering of light by molecules over
a rough surface
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We present a theory for the multiple scattering of light by obstacles situated over a rough surface. This prob-
lem is important for applications in biological and chemical sensors. To keep the formulation of this theory
simple, we study scalar waves. This theory requires knowledge of the scattering operator (t-matrix) for each of
the obstacles as well as the reflection operator for the rough surface. The scattering operator gives the field
scattered by the obstacle due to an exciting field incident on the scatterer. The reflection operator gives the field
reflected by the rough surface due to an exciting field incident on the rough surface. We apply this general
theory for the special case of point scatterers and a slightly rough surface with homogeneous Dirichlet and
Neumann boundary conditions. We show examples that demonstrate the utility of this theory. © 2010 Optical
Society of America

OCIS codes: 290.5825, 290.5880, 290.5850, 290.4210.
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. INTRODUCTION
etection and discernment of nucleic acids, proteins, and
ther biologically relevant small molecules are of critical
iagnostic importance [1]. The ability to identify such
ith high sensitivity enables accurate pathogen identifi-

ation for environmental protection, food safety, and early
isease diagnosis [2]. It allows also for better and faster
esponse to bio-terrorism threats. Most molecular identi-
cation methods currently rely on fluorescence readouts

n which fluorophores are coupled to specific bio-
olecules of interest for detection [3].
As the unique blueprint to every organism, nucleic acid

equences are important molecular signatures. The poly-
erase chain reaction (PCR) coupled with molecular fluo-

ophore readouts enables rapid nucleic acid sequencing
or high-sensitivity molecular identification [4]. However,
he PCR is complex, costly, and sensitive to contamina-
ion. Moreover, it is limited in its ability to multiplex mul-
iple targets [5].

Abnormal protein levels reflect infections and diseases.
he gold standard for protein analysis is the fluorescent
ased enzyme-linked immunosorbent assay (ELISA),
ith detection limits typically in the picomolar range [5].
igher sensitivity enables protein markers of infectious
iseases and cancers to be detected earlier, at lower con-
entrations. Earlier diagnosis enables more effective
reatment and therefore potentially higher patient sur-
ival rates [1]. Despite their exquisite sensitivity and
revalence in molecular detection, fluorophores have sig-
ificant drawbacks, including photo-bleaching, broad
bsorption/emission bands, and dependence on expensive
xcitation and detection equipment. Moreover, fluores-
ence based labeling and detection typically requires mul-
iple steps [6].
1084-7529/10/051002-10/$15.00 © 2
Label-free approaches are more adaptable to point-of-
are diagnostics, in which rapid, low-cost, low-powered,
ortable, and robust systems are required. This is par-
icularly important for first responders of bio-terrorist
hreats as well as diagnostics for the developing world. Af-
nity bio-sensors allow for the real-time analysis of bio-
pecific interactions without the need for labeling mol-
cules. Various optical methods for label-free bio-
olecular detection have been explored. Plasmonics

nvolves manipulating light in the subwavelength regime.
ano-structured free-electron metals can be resonantly

xcited using visible light to produce surface plasmon os-
illations that lead to surface-bound electromagnetic
elds; these fields can then be manipulated in various
ays to detect bio-molecules [2,7,8]. For example, in sur-

ace plasmon resonance sensing, molecular adsorption
an be detected through changes in the refractive index.

Surface plasmon excitations which leverage subwave-
ength field localization can also be used for enhanced
uorescence spectroscopy (metal-enhanced fluorescence)
r label-free spectroscopy, such as surface-enhanced Ra-
an spectroscopy (SERS) based on more efficient inelas-

ic scattering of light by a molecule in proximity to nano-
tructured metals. The SERS provides chemical bond
nformation and is considerably more sensitive (down to
ingle molecule sensitivity) than either refractometric or
olormetric assays [9]. While one of the best label-free ap-
roaches, the challenge with the SERS lies in the trade-
ff between reliability (with structures made from surface
oughening or colloids) and manufacturability (with
tructures requiring high cost ion beam or electron beam
ano-fabrication approaches) [10,11].
We have recently developed a new, low-cost, and nano-

tructured metallic substrate which can be readily and ro-
010 Optical Society of America
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ustly integrated into microfluidic devices [12]. These
elf-assembled nano-structures are due to the stiffness
ismatch between retracting shape memory polymers

nd a thin film of metal. Because the metal cannot re-
ract, it buckles in a predictable manner with controllable
redominant wavelengths. A diagram showing this pro-
ess appears in Fig. 1. These complex non-periodic struc-
ures demonstrate strong and tunable plasmon reso-
ances.
A key step in enabling this new fabrication technology

or optical sensors lies in understanding optical signals
manating from molecules situated over nanoscale rough
etal surfaces. These signals are inherently complicated

ue to the multiple scattering from the molecules and the
ough metal surface. This problem is challenging because
ne must take into account accurately all of the interac-
ions between the small obstacle and the rough surface.
cattering by the obstacle and the rough surface consti-
utes challenging problems by themselves. Our objective
ere is to develop a multiple scattering theory that takes

nto account interactions between the obstacle and a
ough surface.

There are several studies that address obstacle scatter-
ng over flat planar surfaces in a variety of contexts
13–15]. For scattering by an obstacle over a rough sur-
ace, there are fewer results. In particular, Chiu and Sa-
abandi [16] studied the special case in which the obstacle
s a dielectric cylinder and the surface is only slightly
ough. Using the angular correlation function, Jin and Li
17] described a method to detect a scatter target over a
andomly rough surface. Johnson [18] studied this prob-
em numerically by taking into account up to fourth-order
nteractions between the obstacle and the rough surface.
ecently, Guo et al. [19] used a parallel implementation of

he finite-difference/time-domain method to study this
roblem.
In this paper, we present a systematic method for

tudying the multiple scattering due to an obstacle situ-
ted over a rough surface. This theory requires knowledge
f the scattering properties of the obstacle and the rough
urface separately. We combine these two operations in a
elf-consistent way. This theory is simply an extension to
he Foldy–Lax theory for multiple scattering [20–23]. We
how explicitly that this theory takes into account infi-
itely many interactions between an obstacle and the
ough surface. Thus, this theory provides a foundation for
tudying carefully the multiple scattering by obstacles
ver rough surfaces provided that scattering by the ob-
tacle and the rough surface themselves is sufficiently ac-
urate.

ig. 1. (Color online) Method for fabricating low-cost and nano-
tructured metallic substrates reported in [12]. A shape memory
olymer is coated with a thin film of metal. Upon heating, the
olymer retracts, but the metal does not lead to a buckling of the
etal surface. The final image on the right shows a scanning

lectron micrograph of one such nano-structured metallic sub-
trate fabricated using this method.
It is important to establish here that we do not consider
he rough surface to be a random rough surface. Although
ne may not know the exact spatial properties of the sur-
ace for these applications, the surface is fixed. Thus, one
ay perform several calibration steps, if necessary. In

articular, we work under the assumption that we can
rst measure the light scattered by the rough surface
ithout the presence of the obstacles. Then we can mea-

ure the light scattered by the obstacles over the rough
urface. For this reason, we do not compute any statistical
uantities. One may consider computing statistical quan-
ities using this method to make statements about an en-
emble of sensors. However, we do not address this issue
ere.
The remainder of this paper is as follows. In Section 2,

e describe the physical problem. We present the self-
onsistent multiple scattering theory in Section 3. In Sec-
ion 4, we consider the special case in which the obstacles
re point scatterers and the rough surface is a slightly
ough perfect electric conductor. We use that simplified
pecial case to work through some examples explicitly in
ection 5. We give the conclusions in Section 6. Appen-
ixes A and B give details of the reflection operator for Di-
ichlet and Neumann slightly rough surfaces, respec-
ively.

. DESCRIPTION OF THE PROBLEM
e seek to develop a theoretical framework to study the

nteractions of light scattered by obstacles over a rough
urface. To study this problem in a simple setting, we
tudy time-harmonic (monochromatic light), scalar wave
ropagation, and scattering. In particular, we consider a
ave incident on several obstacles situated over a rough

urface. A sketch of this problem appears in Fig. 2.
In Fig. 2 the rough surface is given by the function z

f�x ,y�. We consider time-harmonic wave propagation
ith time dependence e−i�t and circular frequency �. For

his scattering problem, we need to solve the following re-
uced wave or Helmholtz equation:

�2u + k2u = − k2 �
m=1

M

Vmu, in z � f�x,y�, �2.1�

ith �2=�x
2+�y

2+�z
2 denoting the Laplacian. Here, Vm for

=1, . . . ,M denotes the M scattering “potentials” for each
f the M scattering obstacles situated over the rough sur-
ace. To solve Eq. (2.1), we must prescribe boundary con-
itions. In particular, we study two different boundary

ig. 2. A sketch of the physical problem. A wave is incident on
everal obstacles situated over a rough surface. The rough sur-
ace is given by the function z= f�x ,y�. Light scatters from the ob-
tacles and the rough surface.
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onditions: Dirichlet and Neumann. The Dirichlet bound-
ry condition is given by

u = 0 on z = f�x,y�, �2.2�

nd the Neumann boundary condition is given by

� · �u = 0 on z = f�x,y�, �2.3�

ith

� =
��xf,�yf,− 1�

���xf�2 + ��yf�2 + 1
�2.4�

enoting the unit normal to the rough surface.
We write the solution of Eq. (2.1) subject to Eq. (2.2) or

q. (2.3) as the sum of the incident and scattered fields:
=ui+us. The incident field ui is an incoming solution of
omogeneous problem,

�2u + k2u = 0, �2.5�

ear the bounding surface z= f�x ,y�. We assume that ui is
nown explicitly. The scattered field us is an outgoing so-
ution of Eq. (2.1) and is to be found. For this scattered
eld, we prescribe also Sommerfeld radiation conditions
ar away from the boundary surface and scattering ob-
tacles.

. SELF-CONSISTENT MULTIPLE
CATTERING THEORY FOR OBSTACLES
VER A ROUGH SURFACE

n what follows, we develop a self-consistent theory for
he multiple scattering of light by M obstacles situated
ver a rough surface. This theory requires knowledge of
he scattering operator or the t-matrix for each of the ob-
tacles and the reflection operator for the rough surface.
nce those operators are established, we combine them in
self-consistent manner to obtain a multiple scattering

heory.
The scattering operator Sm gives the field scattered by

he mth obstacle due to an exciting field. When Sm is
nown, the scattered field produced by the field uE excit-
ng the obstacle is given by SmuE. The scattering operator
m (otherwise known as the t-matrix or transition opera-

or) with kernel tm�r ,r�� for the mth obstacle is given by

SmuE�r� =�
�m

tm�r,r��uE�r��dr�. �3.1�

ere, �m corresponds to the support of the mth obstacle.
The reflection operator R gives the field reflected by the

ough surface due to an exciting field. When R is known,
he reflected field produced by the field uE exciting the
ough surface is given by RuE. In general, R is defined by
he solution of a surface integral equation derived from
he Kirchhoff theory [22–24]. For the special case of a
lightly rough surface, we obtain an asymptotic result for

which we will use later.
For the problem corresponding to M obstacles situated

ver a rough surface, we represent the total field as the
ollowing sum:
u = ui + �
m=1

M

Sm�m + R�. �3.2�

ere, �m denotes the field exciting the mth obstacle and �
epresents the field exciting the rough surface. These
elds are to be determined. Once we have determined
hem, we can compute u�r� through the evaluation of Eq.
3.2).

We represent the exciting fields as

�m = ui + �
n=1

n�m

M

Sn�n + R� in �m, m = 1, . . . ,M,

�3.3�

� = ui + �
m=1

M

Sm�m on z = f�x,y�. �3.4�

quations (3.3) and (3.4) comprise a self-consistent sys-
em for the exciting fields �m and �. This self-consistent
ystem is an extension of the so-called Foldy–Lax theory
or multiple scattering [20–23]. This extension incorpo-
ates scattering by the rough surface. In the same way
hat the Foldy–Lax theory includes infinitely many inter-
ctions, Eqs. (3.3) and (3.4) include infinitely many inter-
ctions between the obstacles and the rough surface.
Through substituting Eq. (3.4) into Eq. (3.3), we can

onstruct an M�M system of equations for exciting fields
t the obstacles: �m for m=1, . . . ,M. When those exciting
elds are known, we compute � through the evaluation of
q. (3.4). In what follows, we will show this computation
xplicitly for the special case of point obstacles over a
lightly rough surface.

. POINT OBSTACLES OVER A SLIGHTLY
OUGH SURFACE
e specialize the general theory given in the previous

ection to point obstacles situated over a slightly rough
urface. For this specific case, the problem reduces to a
inear system of algebraic equations. Nonetheless, these
implifications lead to a model problem that allows us to
tudy the complicated interactions between the obstacles
nd the rough surface.
We say an obstacle, with a characteristic length scale a,

s small when ka�1. For that case, we may use the point
catterer approximation [25] in which the scattering op-
rator for a point obstacle at position rm is given by

Smui�r� = 	mG0�r;rm�ui�rm�, �4.1�

ith 	m denoting the scattering cross-section for the point
bstacle and

G0�r;rm� =
eik�r−rm� − e−�r−rm�/a

4
�1 + �ka�2��r − rm�
�4.2�

s the free-space Green’s function regularized to remove
he singularity at r=rm [25]. For M point obstacles at po-
itions rm with scattering cross-sections 	m for m
1, . . . ,M, Eq. (3.3) reduces to
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�m = ui�rm� + �
n=1

n�m

M

	nG0�rm;rn��n + R��rm�, m = 1, . . . ,M.

�4.3�

urthermore, Eq. (3.4) reduces to

��r� = ui�r� + �
m=1

M

	mG0�r;rm��m on z = f�x,y�.

�4.4�

he exciting fields �m for the point obstacles are just com-
lex scalars.
We now consider the case in which the roughness of the

urface z= f�x ,y� is small compared to the wavelength.
oreover, we assume that the gradient of the rough sur-

ace is small compared to the wavelength. To make this
ssumption explicit, we introduce the small dimension-
ess parameter 0���1 so that the rough surface is given
y z=�f�x ,y�. We call this rough surface a “slightly” rough
urface. We assume that the function f�x ,y� and the pa-
ameter � are known.

In the limit as �→0+, we can compute an asymptotic
pproximation of the reflection operator R as a perturba-
ion expansion [26,27]. We consider an incident field of
he form

ui�x,y,z� =�� A�,��eix+i�y−i�zdd�, �4.5�

ith A denoting the angular spectrum of the incident field
nd

� = ��,�� =	 �k2 − 2 − �2, 2 + �2 � k2

i�2 + �2 − k2, 2 + �2 � k2
 . �4.6�

he field reflected by the slightly rough surface, Rui can
hen be represented as

Rui�x,y,z� =�� RA�,��eix+i�y+i�zdd�, �4.7�

ith R denoting a linear operator that takes into account
cattering due to the surface roughness. In Appendix A,
e derive an asymptotic approximation for RD, the opera-

or for the Dirichlet problem. In Appendix B, we derive an
symptotic approximation for RN, the operator for the
eumann problem. In what follows, we proceed as if R is
nown explicitly.
Evaluating Eq. (4.4) at z=0, we find that

��x,y,0� = ui�x,y,0� + �
m=1

M

	mG0�x,y,0;rm��m. �4.8�

ourier transforming this result with respect to x and y,
e obtain

��,�� = A�,�� + �
m=1

M

	mĝ0�,�;rm��m, �4.9�

ith A� ,�� defined in Eq. (4.5),
��,�� =
1

�2
�2�� ��x,y,0�e−ix−i�ydxdy, �4.10�

ĝ0�,�;rm� =
i

8
2�
e−ixm−i�ym+i��zm�. �4.11�

n Eq. (4.9), we have made use of the Weyl representation
or G0 given by

G0�r;r�� =
1

�2
�2�� i

2�
exp�i�x − x��

+ i��y − y�� + i��z − z���dd�. �4.12�

quations (4.11) and (4.12) correspond to the free-space
reen’s function rather than Eq. (4.2) since we are not

valuating them near the singularity. Now, we introduce
he quantities

RG0�r;rn� =�� Rĝ0�,�;rn�eix+i�y+i�zdd�,

�4.13�

Rui�r� =�� RA�,��eix+i�y+i�zdd�. �4.14�

otice that RG0�r ;rn� is the field reflected by the slightly
ough surface due to a point source at position rn. Simi-
arly, Rui�r� is the incident field reflected by the slightly
ough surface evaluated at position r.

By applying the reflection operator to Eq. (4.8) and
valuating that result at position rm, we obtain

R��rm� = Rui�rm� + �
n=1

M

	nRG0�rm;rn��n. �4.15�

hus, substituting Eq. (4.15) into Eq. (4.3) and rearrang-
ng terms yields the following M�M linear system:

�
n=1

M

Amn�n = ui�rm� + Rui�rm�, m = 1, . . . ,M,

�4.16�

ith

Amn = 	1 − 	mRG0�rm;rm�, m = n

− 	n�G0�rm;rn� + RG0�rm;rn��, m � n.

�4.17�

pon the solution of Eq. (4.16), we obtain the M complex
umbers �1 ,�2 , . . . ,�M. With those complex numbers
nown, we can compute � through the evaluation of Eq.
4.4). Thus, the field scattered by the point obstacles and
he slightly rough surface is given by

us�r� = Rui�r� + �
m=1

M

	m�G0�r;rm� + RG0�r;rm���m.

�4.18�

o summarize the results of this section, we give the fol-
owing procedure to compute the field scattered by M
oint obstacles situated over a slightly rough surface.
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1. Prescribe the slightly rough surface z=�f�x ,y�.
2. With that slightly rough surface, compute the

symptotic approximation to R using Eq. (A12) for a Di-
ichlet surface (Appendix A) or Eq. (B13) for a Neumann
urface (Appendix B).

3. Set the positions rm and scattering cross-sections 	m
or the M point obstacles.

4. Solve Eq. (4.16) to obtain �1 ,�2 , . . . ,�M.
5. Evaluate Eq. (4.18) to obtain us�r�.

. EXAMPLES
n what follows, we consider two particular examples. The
rst one is for a single point obstacle situated over a
lightly rough surface. The second one is for two point ob-
tacles situated over a slightly rough surface. These two
xamples are relevant for applications of optical sensors
or point-of-care diagnostics. The ability to detect ex-
remely low concentrations of analytes in a solution is im-
ortant for this application, but remains a persistent
hallenge. For example, the limit of detection for the
LISA, the gold standard, is typically in the picomolar
ange. To be able to detect molecules at much more dilute
oncentrations would enable earlier stage detection with
less invasive sampling. Thus, we assume only a few ob-

tacles in a site specific region to test the ability to detect
xtremely low concentrations.

For both of these examples, we are able to obtain ana-
ytical results that we interpret physically. Using those
nalytical results, we compute asymptotic results for the
cattered field us�r� evaluated in the far-field.

. One Point Obstacle
hen there is only one point obstacle with scattering

ross-section 	1 situated over a slightly rough surface at
osition r1, Eq. (4.15) reduces to

�1 − 	1RG0�r1;r1���1 = ui�r1� + Rui�r1�. �5.1�

he solution is given by

�1 =
ui�r1� + Rui�r1�

1 − 	1RG0�r1;r1�
. �5.2�

xpanding Eq. (5.2) formally, we find that

�1 = �
n=0

�

�	1RG0�r1;r1��n�ui�r1� + Rui�r1��. �5.3�

e can interpret this result in the following way. The first
erm corresponds to the incident field ui and the incident
eld reflected by the slightly rough surface, Rui, exciting
he point obstacle. The next term corresponds to the scat-
ering of that exciting field down to the slightly rough sur-
ace and reflected back up to excite the point scatterer,
nd so on. A diagram showing these interactions appears
n Fig. 3. Thus, Eq. (5.3) shows that this theory takes into
ccount infinitely many interactions between the point
bstacle and the slightly rough surface.

Now that �1 is known explicitly, we compute the scat-
ered field through the evaluation of
us�r� = Rui�r� + 	1�G0�r;r1� + RG0�r;r1���1. �5.4�

e have computed numerically the results given by Eq.
5.4). All quantities that are given below are in units of
he wavelength �. For these numerical calculations, we
onsider a uni-axial slightly rough surface of the form z
�f�x� with �=0.05. For this example, we generated one
ealization of a Gaussian correlated random rough sur-
ace with a correlation length of 1.5 and a RMS height of

[23]. The point obstacle has scattering cross-section set
o 	1=1. It is located at position r1= �11.7,0.0,0.1�. The lo-
ation of the point obstacle in relation to this rough sur-
ace is shown in Fig. 4.

A plane wave propagating in the xz-plane of the form
i=exp�−ikz� is incident on the point obstacle and rough
urface. With these considerations, the symmetry with re-
pect to the xz-plane is broken only due to scattering by
he point obstacle. To compute these fields, we replaced
he Fourier transforms in the results from the previous
ection with the discrete Fourier transforms computed on

512�512 grid of the computational domain:
−25.6,25.6�� �−25.6,25.6�. Figure 5 shows contour plots
f the image I�x ,y� defined as

I�x,y� = �us�x,y,z0��2 − �Rui�x,y,z0��2 �5.5�

or both the Dirichlet (top) and Neumann (bottom) cases.
ere, the plane z0=5.0 corresponds to the plane on which

he light is detected. This difference image I�x ,y� corre-
ponds to the subtraction of the direct image without the
oint obstacles taken at the detector plane from the direct
mage with the point obstacles taken at the detector

ig. 3. A diagram showing the interactions between the point
bstacle and the slightly rough surface given by Eq. (5.3). In the
rst diagram, the incident field and the incident field reflected by
he rough surface excite the point obstacle. Next, that exciting
eld is scattered by the point obstacle and reflected by the rough
urface to excite the point obstacle again. This series continues to
nclude infinitely many interactions between the point obstacle
nd the slightly rough surface.

ig. 4. A plot of the rough surface and point obstacle shown on
he y=0 plane. The point obstacle is located at position r1
�11.7,0.0,0.1� in units of wavelengths.
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lane. It is normalized to the maximum absolute value of
�x ,y�. This difference image shows the complicated inter-
ctions between the rough surface and the point obstacle.
n Fig. 5, we see distortions of the scattering by the point
bstacle by the uni-axial rough surface as faint vertical
ands. The Dirichlet surface produces a more localized
mage about the point obstacle than does the Neumann
urface. However, we have observed widely varying re-
ults depending on the location of the point obstacle to the
ough surface.

Using the standard expression for the far-field Green’s
unction and the method of stationary phase [28], we find
hat

us � F1�ŝ�
eikR

R
, kR → �, �5.6�

ith

F1�ŝ� = − i2
kszRA�ksx,ksy�

+ 	1�1� e−ikŝ·r1

4

− i2
kszRĝ0�ksx,ksy;r1� .

�5.7�

ere, ŝ= �s ,s ,s �= �sin � cos � ,sin � sin � , cos ��, with �

ig. 5. (Color online) Contour plots of the image I�x ,y� defined
n Eq. (5.5) corresponding to a single point obstacle shown in Fig.

for the Dirichlet (top) and Neumann (bottom) cases.
x y z
enoting the polar angle and � denoting the azimuthal
ngle.

. Two Point Obstacles
hen there are two point obstacles with scattering cross-

ections 	1 and 	2 situated over a slightly rough surface
t positions r1 and r2, respectively, Eq. (4.15) reduces to

�A11 A12

A21 A22
��1

�2
 = �b1

b2
 , �5.8�

ith Amn defined in Eq. (4.16) and

�b1

b2
 = �ui�r1� + Rui�r1�

ui�r2� + Rui�r2� . �5.9�

his linear system is solved easily and we find that

�1 =
1

det�A�
��1 − 	2RG0�r2;r2��b1 − 	2�G0�r1;r2�

+ RG0�r1;r2��b2�, �5.10�

�2 =
1

det�A�
��1 − 	1RG0�r1;r1��b2 − 	1�G0�r2;r1�

+ RG0�r2;r1��b1�, �5.11�

ith

det�A� = 1 − 	1RG0�r1;r1� − 	2RG0�r2;r2�

− 	1	2�G0�r1;r1�G0�r2;r2� + G0�r1;r1�RG0�r2;r2�

+ RG0�r1;r1�G0�r2;r2��. �5.12�

ow that �1 and �2 are known explicitly, we compute the
cattered field us�r� through the evaluation of

us�r� = Rui�r� + 	1�G0�r;r1� + RG0�r;r1���1 + 	2�G0�r;r2�

+ RG0�r;r2���2. �5.13�

We have computed numerically the results given by Eq.
5.13). We use the same rough surface that we used for
he numerical example above. The two point obstacles
ave scattering cross-section set to 	1=	2=1. One of the
oint obstacles is located at position r1= �11.7,0.0,0.1�.
he other point obstacle is located at position r2
�9.7,0.0,0.1�. Thus, the two point obstacles are two
avelengths apart from one another. The location of the

wo point obstacles in relation to this rough surface is
hown in Fig. 6.

In Fig. 7 we plot the image I�x ,y� defined in Eq. (5.5) for
oth the Dirichlet (top) and Neumann (bottom) cases.
ust as with Fig. 5, the detector plane is z0=5.0. These re-
ults are similar qualitatively to those in Fig. 5. However,
ne can observe a distorted dipole pattern resulting from
he scattering by the two point obstacles.

Just as we have done for the one point obstacle, we can
valuate us�r� in the far-field limit. In doing so, we find
hat

us � F2�ŝ�
eikR

R
, kR → �, �5.14�

ith
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F2�ŝ� = − i2
kszRA�ksx,ksy�

+ 	1�1� eikŝ·r1

4

− i2
kszRĝ0�ksx,ksy;r1�

+ 	2�2� eikŝ·r2

4

− i2
kszRĝ0�ksx,ksy;r2� .

�5.15�

. CONCLUSIONS
e have developed a theoretical framework to study ob-

tacle scattering over a rough surface. This theory in-
olves combining each of the scattering operators for each
f the obstacles and the reflection operator for the rough
urface in a self-consistent way. For the simple case of
oint obstacles over a slightly rough Dirichlet or Neu-
ann surface, we are able to obtain analytical results. We
ave shown analytical and numerical results for the cases

nvolving one and two point obstacles.
This theoretical framework provides, to our knowledge,
critical first step in studying the multiple scattering of

ight by nano-structured metallic substrates for sensor
pplications. It takes into account the interactions made
etween a single molecule and a rough surface. Here, we
ave addressed this problem in an idealized setting. The
bstacles are point scatterers and the rough surface is a
mall perturbation from a plane. Moreover, the surface is
ssumed to be a perfect electric conductor.
There remain several theoretical challenges to realize

he potential of using nano-structured metallic surfaces
or chemical and biological sensors. For example, we will
eed to consider very rough surfaces rather than slightly
ough surfaces. Preliminary data taken from the nano-
tructured metallic substrates indicate very large surface
oughnesses. That means that we will need to compute
umerically the reflection operator rather than use an
nalytical approximation. By assuming that the surface is
perfect electric conductor, we ignore surface plasmons in

he problem. To harness the full potential of these sen-
ors, we will need to include these surface plasmons.
herefore, we will have to take into account the optical
roperties of the metallic material more accurately. In ad-
ition, a point scatterer model may be insufficient for cap-
uring the scattering properties of single molecules. Thus,
e will have to consider more sophisticated scattering op-
rators.

Despite the fact this simple model that we have studied
s limited in practice, it provides valuable insight into this
roblem. Moreover, it gives a simple setting to test and
esign single molecule detection and characterization al-
orithms which require solving the associated inverse
roblem. We will extend this theory to be more practically
seful in the ways mentioned above in our future work.

PPENDIX A: THE DIRICHLET PROBLEM
he Dirichlet boundary value problem for a slightly rough
urface is

�2u + k2u = 0 in z � �f�x,y�, �A1�
ig. 6. A plot of the rough surface and two point obstacles
hown on the y=0 plane. The point obstacles are located at posi-
ions r1= �11.7,0.0,0.1� and r2= �9.7,0.0,0.1� in units of
ig. 7. (Color online) Contour plots of the image I�x ,y� defined
n Eq. (5.5) corresponding to two point obstacles shown in Fig. 6
or the Dirichlet (top) and Neumann (bottom) cases.
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u = 0 on z = �f�x,y�. �A2�

e seek the wave field as the sum u=ui+Rui, with ui de-
oting the wave field incident on the slightly rough sur-
ace and Rui denoting the wave field scattered by the
ough surface. To solve this boundary value problem, we
xpand ui+Rui in Eq. (A2) in a Taylor series about z=0
nd set z=�f�x ,y� to obtain

�1 + �f�z + �2 1
2 f2�z

2 + O��3���ui + Rui� = 0 on z = 0.

�A3�

We derive the asymptotic approximation for the reflec-
ion operator RD introduced in Eq. (4.7). Here, the D sub-
cript identifies that this operator is for the Dirichlet
roblem. The incident field ui is given in Eq. (4.5). We
eek the scattered field Rui in the form

Rui�x,y,z� =�� B�,��eix+i�y+i�zdd�, �A4�

ith B� ,�� to be found. Substituting Eqs. (4.5) and (A4)
nto Eq. (A3) and Fourier transforming that result with
espect to x and y, we find that

B�,�� = − A�,�� + �i�� F� − �,� − ������,����A��,���

− B��,����d�d�� + �2
1

2�� F� − �,� − ���

��� F�� − �,�� − ����2��,����A��,���

+ B��,����d�d��d�d��. �A5�

ow, we expand B in powers of � in the form

B�,�� = B0�,�� + �B1�,�� + �2B2�,�� + O��3�. �A6�

o determine the terms in Eq. (A6), we substitute Eq. (A3)
nto Eq. (A5) and equate the coefficient of each power of �
o zero. Thus, to O�1�, we obtain

B0�,�� = − A�,��. �A7�

o O���, we obtain

B1�,�� = i�� F� − �,� − ������,����A��,���

− B0��,����d�d�� �A8�

ubstituting Eq. (A7) into Eq. (A8), we find that

B1�,�� = i2�� F� − �,� − ������,���A��,���d�d��

= i2F � ��A�. �A9�

o O��2�, we obtain
B2�,�� =
1

2�� F� − �,� − ���� � F�� − �,��

− ����2��,����A��,��� + B0��,����d�d��d�d��

− i�� F� − �,� − ������,���B1��,���d�d��.

�A10�

ubstituting Eq. (A7) into Eq. (A10), we find that the first
erm in Eq. (A10) vanishes identically. Thus, we find, af-
er substituting Eq. (A9), that Eq. (A10) becomes

B2�,�� = 2�� F� − �,� − ������,���� � F�� − �,��

− ������,���A��,���d�d��d�d��

= 2F � ��F � ��A��. �A11�

ombining the results, we find that

B�,�� = RDA = − A + �i2F � �A + �22F � ��F � ��A��

+ O��3�. �A12�

PPENDIX B: THE NEUMANN PROBLEM
he Neumann boundary value problem for a slightly
ough surface is given by

�2u + k2u = 0 in z � �f�x,y�, �B1�

� · �u = 0 on z = �f�x,y�. �B2�

ust as we have done for the Dirichlet problem in Appen-
ix A, we seek the wave field u as the sum u=ui+Rui. To
olve this boundary value problem, we expand ui+Rui in
q. (B2) in a Taylor series about z=0 and set z=�f�x ,y� to
btain

− ��z + ��f�z
2 − fx�x − fy�y� + �2� 1

2 f2�z
3 − ffx�x�z − ffy�y�z�

+ O��3���ui + Rui� = 0 on z = 0. �B3�

We derive an asymptotic approximation for the reflec-
ion operator RN introduced in Eq. (4.7). Here, the N sub-
cript identifies that this operator is for the Neumann
roblem. We follow the same procedure that we have done
or the Dirichlet problem in Appendix A. By substituting
qs. (4.5) and (A4) into Eq. (B3) and Fourier transforming

hat result with respect to x and y, we obtain

− i�B�,�� = − i�A�,�� + ��� F� − �,� − �����2��,���

− �� − �2� − ���� − ��2���A��,���

+ B��,����d�d�� − �2i�� F� − �,� − ���

��� F�� − �,�� − ���� 1
2�2��,���

− ��� − �2� − ����� − ��2�����,����A��,���
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− B��,����d�d��d�d��. �B4�

e use the same expansion for B given in Eq. (A6). To
�1�, we find that

B0�,�� = A�,��. �B5�

o O���, we find that

− i�B1�,�� =�� F� − �,� − �����2��,��� − �� − �2�

− ���� − ��2���A��,��� + B0��,����d�d��.

�B6�

ubstituting Eq. (B5) and making use of the fact that

�2��,��� − �� − �2� − ���� − ��2� = k2 − � − ���,

�B7�

e find that Eq. (B6) simplifies to

1�,�� = i2�� F� − �,� − �����,�;�,���A��,���d�d��

= i2F � ��A�, �B8�

ith

��,�;�,��� =
k2 − � − ���

��,��
. �B9�

ext, to O��2� we obtain

− i�B2�,�� = i�� F� − �,� − ���� � F�� − �,�� − ���

�� 1
2�2��,��� − ��� − �2�

− ����� − ��2�����,����A��,���

− B0��,����d�d��d�d��

+�� F� − �,� − �����2��,��� − �� − �2�

− ���� − ��2��B1��,���d�d��. �B10�

ubstituting Eqs. (B5) and (B7), we find that Eq. (B6) re-
uces to

2�,�� = i�� F� − �,� − �����,�;�,���B1��,���d�d��.

�B11�

ubstituting Eq. (B8) into Eq. (B11), we find that

B2�,�� = − 2�� F� − �,� − �����,�;�,���

��� F�� − �,�� − ������,��;�,���

�A��,���d�d��d�d��

= − 2F � ��F � ��A��. �B12�

ombining the results, we obtain
B�,�� = RNA = A + �i2F � ��A� − �22F � ��F � ��A��

+ O��3�. �B13�
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