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ISOMETRIES OF THE TRACE CLASS

BERNARD RUSSO1

Let 3 denote the Banach space of trace class operators on a com-

plex Hilbert space H, in the norm ||P||i=Tr(| P|). The space 3 is a

two-sided ideal in the algebra £ of all bounded operators on H.

See [4].

Theorem. //<t> is a linear isometry of the Banach space 3 onto itself,

then there exists a *-automorphism or a * -antiautomorphism a of £

and a unitary operator U in £ such that $(T)=a(TU), (T in 3).

Remark 1. The theorem provides a partial answer to [3, Remark

l,p. 231].
Proof. The adjoint <!>' is a linear isometry of £ onto £ so by re-

sults of Kadison [2, Theorem 7, Corollary 11 ] has the form $'(A)

= Ua(A) where a and U are as described in the statement of the

theorem. It is elementary that $(T)='$'(TU) where ^'=a. The

proof will be complete if it is shown that a is the adjoint of a~l

(restricted to 3). By the folk result [l, pp. 256, 9] it is sufficient to

check this in the following two cases:

(i) a(A) = VA F_1 with V a fixed unitary operator; then (T, a(A))

= <F, VAV->) = {V-iTV, A) = (a->(T), A),
(ii) after the choice of an orthonormal basis, a(A) is the transposed

matrix of A; then <P, a(A)) =Tr(Ta(A)) =Tr(a(T)A) = (a'^T), A).

Remark 2. A previous version of the above proof exploited a

knowledge of the extreme points of the unit sphere of 3. These were

determined to be the partial isometries with initial (hence final)

domain one-dimensional.
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