UC Irvine

UC Irvine Previously Published Works

Title

Isometries of the trace class

Permalink

https://escholarship.org/uc/item/6b54c6cg

```
Journal
Proceedings of the American Mathematical Society, 23(1)
```


ISSN

0002-9939

Author

Russo, Bernard

Publication Date

1969

DOI

10.1090/s0002-9939-1969-0247491-x

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0

Peer reviewed

ISOMETRIES OF THE TRACE CLASS

BERNARD RUSSO ${ }^{1}$

Let J denote the Banach space of trace class operators on a complex Hilbert space H, in the norm $\|T\|_{1}=\operatorname{Tr}(|T|)$. The space J is a two-sided ideal in the algebra \mathfrak{L} of all bounded operators on H. See [4].

Theorem. If Φ is a linear isometry of the Banach space \bar{J} onto itself, then there exists a^{*}-automorphism or a^{*}-antiautomorphism α of \mathfrak{L} and a unitary operator U in \mathfrak{L} such that $\Phi(T)=\alpha(T U)$, (T in J).

Remark 1. The theorem provides a partial answer to [3, Remark 1, p. 231].

Proof. The adjoint Φ^{\prime} is a linear isometry of $\mathfrak{\&}$ onto $\mathfrak{\&}$ so by results of Kadison [2, Theorem 7, Corollary 11] has the form $\Phi^{\prime}(A)$ $=U \alpha(A)$ where α and U are as described in the statement of the theorem. It is elementary that $\Phi(T)=\Psi(T U)$ where $\Psi^{\prime}=\alpha$. The proof will be complete if it is shown that α is the adjoint of α^{-1} (restricted to 5). By the folk result $[1, \mathrm{pp} .256,9]$ it is sufficient to check this in the following two cases:
(i) $\alpha(A)=V A V^{-1}$ with V a fixed unitary operator; then $\langle T, \alpha(A)\rangle$ $=\left\langle T, V A V^{-1}\right\rangle=\left\langle V^{-1} T V, A\right\rangle=\left\langle\alpha^{-1}(T), A\right\rangle$,
(ii) after the choice of an orthonormal basis, $\alpha(A)$ is the transposed matrix of A; then $\langle T, \alpha(A)\rangle=\operatorname{Tr}(T \alpha(A))=\operatorname{Tr}(\alpha(T) A)=\left\langle\alpha^{-1}(T), A\right\rangle$.

Remark 2. A previous version of the above proof exploited a knowledge of the extreme points of the unit sphere of \mathfrak{J}. These were determined to be the partial isometries with initial (hence final) domain one-dimensional.

References

1. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
2. R. V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325-338.
3. B. Russo, Isometries of L^{p} spaces associated with finite von Neumann algebras, Bull. Amer. Math. Soc. 74 (1968), 228-232.
4. R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960.

University of California, Irvine
Received by the editors March 7, 1969.
${ }^{1}$ This research was supported by the National Science Foundation Grant GP8291.

