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ABSTRACT OF THE DISSERTATION

Internet of Things-Based Collaborative Position-Sensing Systems for Cardiopulmonary
Resuscitation and Indoor Localization

By

Hsinchung Chen

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2022

Professor Emeritus Pai H. Chou, Chair

The ubiquitous IoT devices have promoted the growth of applications that require target position-

ing. While precise positioning remains a challenge for IoT devices, existing methods mainly focus

on optimizing the positioning algorithms or expanding the sensing modalities. One opportunity

area of improvement is to leverage their wireless communication capability to exchange sensing

data of different modalities with nearby devices. This work proposes collaborative sensing frame-

works to enhance the accuracy of position inference.

Our approach to collaborative sensing is divided into selection of reliable devices, the data-exchange

mechanism, and the data-fusion algorithm. We demonstrate our approach on two different position-

sensing systems: one for chest compression-depth estimation and one for indoor pedestrian lo-

calization. The key components used in the frameworks include quality assessment of sensor

data using mutual information, data-fusion algorithms based on the chest-compression model and

the pedestrian-encounter model, and the data-exchange mechanism using Bluetooth Low Energy

(BLE). A real-time position-estimation method based on our chest-compression model is proposed

to remove the noise and handle the cumulative error. A collaborative conditional random field algo-

rithm is developed to reduce the convergence distance in the localization estimation. Experimental

results show our collaborative-sensing approach achieves higher rate of convergence than the ex-

xii



isting solutions in terms of real-time estimated position.

This dissertation proposes an alternative approach to optimizing the position-sensing systems

through collaborative sensing. Our work represents the first step towards the universal positioning

on IoT devices and provides research opportunities for further improvement and exploration.
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Chapter 1

Introduction

The advances in wireless communications and the ubiquity of mobile IoT (Internet of Things)

devices have enabled collaborative position sensing. This chapter first motivates our work on

collaborative position sensing with two positioning applications, followed by the contributions and

an outline of this dissertation.

1.1 Collaborative Position Sensing on IoT Devices

Location has become one of the fundamental features for applications that provide location-based

services (LBS) [47]. A positioning process can be divided into detecting target actions and esti-

mating the target positions based on the characterization of the scenario and the sensing modality.

Positioning systems have been widely studied and deployed, such as the use of Global Positioning

System (GPS) for outdoor localization. While positioning based on a combination of GPS and

cellular tower triangulation is relatively mature and well understood, positioning based on other

sensing modalities remains a challenge especially for indoor environments [63].

Positioning is one of the main objectives in the IoT [5]. The advances in semiconductor and

1



wireless communication technologies for integrating different sensing, processing, and wireless

connectivity hardware components into a stand-alone system have made possible the IoT position-

sensing and distance-measuring systems [26]. The IoT positioning systems sense their physical

surroundings and send the corresponding response to service providers to offer users ubiquitous

and mobile IoT services [69].

The communication capabilities of IoT devices enable not only data transmission but often also

collaborative sensing or data sharing among nearby devices to provide IoT services [51]. The exist-

ing approaches have explored various sensing modalities to enable collaborative sensing [24, 41].

However, it is impractical to deploy a variety of sensing systems and process large amounts of

heterogeneous data that is received from all the IoT devices. Specifically, the estimated position

typically has a higher correlation with the data measured by the nearby sensing systems. In addi-

tion, the validity of sensing data is also dependent on the position and its physical surroundings.

Therefore, a framework that assists system designers with the deployment and selection of devices

and evaluation of the quality of shared data is needed to make the best inference [71].

To highlight the core problems in collaborative positioning on mobile IoT devices, we consider

two real-world applications: chest compression depth (CCD), the measurement of how deep the

sternum is compressed during CPR, and pedestrian dead reckoning (PDR). What these two prob-

lems have in common are that both make use of inertial sensors, and the positioning algorithms

must be lightweight and real-time to run on resource-limited IoT devices.

Two collaborative algorithms covering sensor selection, data fusion algorithms, and data exchange

mechanisms for the CCD and PDR applications are proposed. We demonstrate the feasibility and

practicality of our solutions by actual implementations that exploit the communication capability

on real-world IoT devices.

2



1.2 Dissertation Contributions

Our research proposes the collaborative positioning system design based on the short-range com-

munication capability of IoT. Our system design principle, which extends the sensing modality

from an individual IoT device to a cluster of IoT devices, is a major step toward enabling position

sensing universally by all mobile IoT devices. We study two position-sensing systems for chest

compression depth estimation and pedestrian indoor localization to demonstrate the advantages of

collaborative sensing on IoT devices. The contributions of our research are as follows:

1. A collaborative position-sensing framework for real-time CCD estimation that includes

• A novel chest-compression model for a data fusion algorithm to suppress cumulative

error in depth estimation.

• A mutual-information-based evaluation method for IoT device placement to obtain

qualified sensor data.

2. A collaborative indoor localization system among mobile IoT devices, as enabled by

• A power-efficient encounter model to discover nearby devices and exchange data

• A collaborative data fusion algorithm to enable universal location sensing by all mobile

IoT devices

1.3 Dissertation Outline

This dissertation is organized into two parts: Part I covers the chest compression problem, and

Part II investigates collaborative indoor localization. In Part I, Chapter 2 provides a background

and related work on chest compression depth estimation in general, and Chapter 3 presents our

technical approach to the chest compression problem, including our model suitable for IoT devices,

3



with an evaluation in Chapter 4. Part II is organized also as three chapters, where Chapter 5

surveys related work on indoor localization, Chapter 6 presents our technical approach based on

an encounter-based model, and Chapter 7 provides our experimental results. Finally, Chapter 8

concludes this dissertation with directions for future research.

4



Part I

Chest Compression Depth Estimation
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Chapter 2

Background and Related Work

Cardiopulmonary resuscitation (CPR) is a emergency life-saving procedure performed to revive a

patient who is unconscious and not breathing. This chapter provides a background on CPR and the

existing electronic devices that were developed to assist in performing CPR. Related work is sur-

veyed on chest compression and a table is provided to summarizes the techniques and algorithms

for comparison with our work.

2.1 Background

This section elaborates the CPR procedure and the metrics to evaluate the quality of performed

CPR and motivates the need for a CPR data logger. Specifically, the data logger should capture

chest compression rate and depth as a main requirements.

6



2.1.1 CPR

CPR, for cardiopulmonary resuscitation, is an emergency procedure performed on a person who

is in a cardiac or respiratory arrest. It is useful in many different scenarios, including a heart attack

or drowning. CPR entails chest compression followed by assisted breathing. By keeping the blood

flowing and carrying oxygen to the body, CPR can keep the patient’s vital organs alive before the

regular heart rhythm is restored. It can be performed on adults and children by trained and even

untrained individuals while being coached live over the phone.

2.1.2 CPR Quality

The quality of CPR can directly impact the survival rate of the patients. In 2020, the American

Heart Association (AHA) updated the Guidelines for CPR and Emergency Cardiovascular Care

[8] to include an algorithm to handle adult cardiac arrest as shown in Fig. 2.1. The algorithm

quantified the quality metrics of critical components of the resuscitation procedures [8] including

proper chest compression depth (minimum depth of 2 inches or 5 cm), fast chest compression rate

(100-120 per minute), minimizing interruptions in chest compressions, and avoiding excessive ven-

tilation. In addition, the assessment of cardiac rhythm determines when to perform defibrillation

and administer medication.

2.1.3 Improving CPR by Instant Feedback

Real-time feedback is useful to correct deviation from proper CPR. Specifically, instant feedback

on chest compression depth (CCD) and chest compression rate (CCR) can be provided in resusci-

tation education by selecting mannequins or task trainers on the basis of the availability of chest

compression features [15]. The assumption is that by repeated practicing, the trainee will more

likely be able to perform CPR correctly. However, without a clear indication, there is a high

7



Figure 2.1: CPR Flow for Adult Cardiac Arrest [8]

chance that those criteria will not be met such that the survival rate decreases [52, 53, 49]. Sig-

nificant variability was observed that a survival rate of only 9% at night was achieved compared

to nearly 37% survival in operating rooms or postanesthesia care units during the day [56]. Even

in hospitals, the survival rate is over 20% if the arrest occurs between 7 am and 11 pm, but only

15% between 11 pm and 7 am [56]. Therefore, instant feedback should be considered during the

CPR procedure to address these issues. The feedback is also important for identifying errors and

improving performance in post-CPR debriefings [66, 20, 18, 81, 4]. The high survival variability

in different conditions suggests the need of feedback for CPR reviews [30].

2.1.4 Need for CPR Sensors and Loggers

Several electronic devices have been developed to assist rescuers in performing CPR [42, 83].

However, they have not been in wide use, as they need precise placement to be accurate, and they

8



can easily interfere with the CPR procedure. In addition, since the integration of various sensors

into one miniature device can enable physiological sensing [31], this type of usage may impede

the possibility of multimodal sensing and analysis.

2.2 Related Work

This section surveys existing work on chest compression depth estimation. Related work can be

classified into non-inertial sensor-based and inertial sensor-based solutions. The latter is further

elaborated based on the used technique and proposed algorithms. Finally, this section summarizes

the existing works in a table.

2.2.1 Non-Inertial Sensor-Based Solutions

A varietiy of devices and sensors are used for estimating CCD along with proposed methods.

Computed tomography by Jin et al. [34] can provide the thorax scan to estimate CCD, but it is for

studying purpose and is not applicable to out-of-hospital or real-time use. The use of force and

pressure sensors [50] for CCD estimation are based on the correlation between compression force

and displacement of chest. However, the research in evaluating the consistency among individuals

is too limited to support the applicability. Thoracic impedance (TI) is studied to identify chest

compression [9], but a recent study has shown that TI is unreliable as a predictor of CCD [6].

Other sensing modalities such as vision-based or radio signal-based sensors are adopted for CCD

estimation. Mini-VREM by Semeraro et al. [62] is a vision-based system implemented on a PC and

uses cameras to estimates CCD by using image processing techniques. The CCD estimation flow

of Mini-VREM, which first detects chest compression and then estimates the CCD, is similar to

other sensor-measurement methods, but the algorithms are developed based on image-processing

techniques. QCPR cam-app [84] is an app that evaluates if it is feasible to provide feedback in real-

9



time by using a smartphone camera. The study only provides chest compression rate but lacks CCD

estimation. The radio signal-based method that uses transmission losses of RF [29] during chest

compression is evaluated, but the CCD is not provided. Ultrasound and ulra-wideband (UWB)

sensors are adopted in Dolgov et al. [19] and Yu et al. [79], respectively, to estimate the CCD by

the product of the signal travel time and the signal transmission speed in human body. To obtain

the radio signal measurement, a pair of transceiver and receiver must be placed on the chest and

the back of the patient correspondingly for the signal traveling through the thorax. The complex

setup required by the above mentioned methods is less favorable in real rescue processes.

2.2.2 Inertial Sensor-Based Solutions

Inertial sensors such as accelerometer and gyroscope are more popular than the mentioned sensors

due to their low cost, miniature form factor, and ease of deployment. However, the evaluation in

Kowalczuk and Merta [39] indicates that the use of inertial sensors to estimate position suffers

from the sensor noise. Another evaluation by Pang and Liu [55] shows that the accelerometer is

acceptable as a short duration distance-measuring device, though a periodic calibration is required

to correct the sensor drift.

Double Integration and Digital Signal Processing Techniques

Two accelerometers are used to handle the random noise in the measured acceleration signal. In

Aase and Myklebust [3], the second accelerometer is placed on the floor next to the mannequin and

used as the reference of external acceleration components that is subtracted from the acceleration

measured on chest. The calculated acceleration signal is then processed by a high-pass filter to

remove the gravity components and the CCD is estimated by double integration of the processed

acceleration. The cumulative error is eliminated by the boundary-reset mechanism that resets the

acceleration, velocity, and displacement to zero at the end of each compression period. However,
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the proposed reset mechanism may result in the loss of real sensing data and impact the accuracy

of estimation. In addition, the proposed method is not designed for providing real-time feedback

and require the pressure sensor to identify the chest compressions. Another work by Oh et al.

[54] placed the second acceleration on the back of mannequin and apply a de-trending method to

the integrated signal in each individual compression period to remove the cumulative error. The

lowest point in a compression is regarded as the offset component and is removed from the whole

signal that is measured in the period of compression. The CCD is then estimated by taking the

difference between the highest and the lowest points. The de-trending process is an improved

mechanism compared to Aase and Myklebust [3] and also handles the problem of overestimated

CCD, which is caused by performing the chest compression on the patients lying on a soft surface.

However, the misalignment of sensors may worsen the accuracy and the de-trending process needs

to be preformed after each integration. In addition, the work has shown that attaching the second

accelerometer on the subject’s back may interrupt the chest compression and reduce the quality of

the CPR.

A spectral techniques based on Fourier series decomposition (FSD) for CCD is proposed by Ruiz

de Gauna et al. [61] and González-Otero et al. [23]. Drift compensation or additional sensors

are not required, but only one accelerometer is used. The FSD technique assumes that all chest

compressions within the operation interval are similar. Therefore, the acceleration and CCD are

regarded as periodic signals and could be approximated by using sinusoidal function. Fast Fourier

transform is performed in the selected interval in the acceleration signal, and the first three harmon-

ics and their fundamental frequency are picked up and used to reconstruct the depth signals. The

CCD is estimated by taking the difference between the highest and the lowest points of the recon-

structed depth signal. In reality, the periodicity assumption may not hold true and thus negatively

affect the validity of the reconstructed depth signal. In addition, their experimental results show

the estimation is accurate for analysis intervals of a few seconds during continuous chest compres-

sions. The feasibility and reliability of the proposed method in a real resuscitation scenario remain

to be evaluated.
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Kalman Filter-Based Technique

The positioning algorithms developed based on inertial sensors can be leveraged to estimate CCD.

An inertial navigation algorithm based on Kalman filter [11] generates the pseudo-measurements

of acceleration to remove the noise in acceleration. The pseudo-measurements are generated by

recording the acceleration signal in a static state in which the inertial sensors are placed in a certain

tilted angle. In reality, the assumption may not hold true universally, since the noise may vary in

different times and places. Thus, the algorithm only works in the specific scenario.

Statistical Model-Based Techniques

The use of statistical models represents an alternative approach to CCD estimation. Unlike the

kinematic equations-based methods [39] that suffer from the cumulative error due to the use of

double integration, the statistical methods directly predict the CCD based on the features extracted

from the sensor data. Lu et al. [46] proposes a statistical model to estimate the CCD using a

polynomial function, two handcrafted features, compression rate, and a statistical value M. The

feature M was defined as the average of acceleration during a specific time interval considering the

correlation between the magnitude of acceleration and CCD. Although their results show that the

mean of difference is close to zero, the confidence interval is over 1 cm.

Deep neural networks have achieved great success in extracting features and providing promising

results in various applications [1]. Convolutional neural network (CNN) is a type of the deep neural

networks commonly used for identifying spatial patterns for computer vision and image process-

ing [37]. While CNN is typically adopted to deal with two-dimensional data, recent studies also

demonstrate the outstanding capability to process one-dimensional time-series or sequential data

such as ECG biometric recognition [2], stock price forecasting [13], and step-length estimation

[33]. An advantage of using 1D CNN is the low computational cost, because a 1D convolution

uses scalar multiplication and addition rather than matrix operation.
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CNN has been adopted to estimate the displacement based on the features extracted from inertial

sensor data. A pedestrian step model based on CNN is applied to the inertial sensor data for

gait-feature extraction and step-length estimation [64]. In addition, a step-length model based on

CNN achieves better results than the other methods using double integration [25]. A 1D CNN is

proposed for CCD feedback [82]. Instead of directly estimating the CCD, the proposed method

turns the regression problem into binary classification, and the feedback of normal and abnormal

chest compression is provided to indicate if the CCD is within the recommended range. Although

this work performs well in identifying most CCDs, misjudgements happen on the boundaries of

recommended CCD, which are 2 and 2.4 inches. Therefore, a better solution may be to directly

provide the real-value output of CCD with rescuers to assist them in performing CPR.
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Table 2.1: Related Work on CCD Estimation

System/Author
Name - Year

Sensor Technique Device Place-
ment

Positioning
Algorithm

Jin et al. - 2016
[34]

Tomography Chest Computed
Tmography (CT)

- -

Shinnosukekun -
2016 [50]

Force and
pressure
sensors

- Chest -

Mini-VREM -
2013 [62]

Camera Image Processing Remote Sensing -

Dolgov et al. -
2011 [19]

Ultrasound - Chest and back Mutiply signal
travel velocity by
travel time

Yu et al. - 2017
[79]

UWB - Chest and back Mutiply signal
travel velocity by
travel time

Aase et al. - 2002
[3]

Accelerometer Double Integration One on chest and
one on floor

Reset mechanism
for cumulative er-
ror

Oh et al. - 2012
[54]

Accelerometer Double Integration Chest and back De-trending
approach

Boussen et al. -
2016 [11]

Accelerometer Kalman filter Chest The use of artifi-
cial measurement

González-Oteor
et al. - 2014 [23]

Accelerometer Kinematic equations Chest Fourier series de-
composition

Lu et al. - 2018
[46]

Accelerometer Statistical model Wrist Author defined
polynomial
function

Zhao et al. - 2021
[82]

Accelerometer Deep learning Chest 1D CNN
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Chapter 3

Technical Approach

This chapter presents our technical approach to building a displacement-measuring system for es-

timating the depth of chest compression during CPR using inertial-sensing data. The challenge is

the high precision in real-time feedback requirements. We divide the problem into compression-

event detection and compression-depth estimation. A low-computational-complexity solution is

proposed based on our motion model that suppresses the cumulative error in the displacement-

measuring process by fusing inertial-sensing data measured by two IMUs. An information-theoretic

metric called mutual information is used to evaluate the accuracy improvement by using data fu-

sion. We compare an implementation of our approach with existing work and discuss the experi-

mental results.

3.1 Problem Statement

The problem to be addressed by our work is the cumulative error resulting from applying dou-

ble integration method to noisy acceleration signal in the CCD estimation process. Without error

handling methods, the estimated CCD is inaccurate and cannot be used to assist rescuers in per-
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forming CPR. Our solution uses two IMUs to suppress the cumulative error. More specifically, one

IMU is used to measure the vertical movement of chest and the other one is placed away from the

chest compression center to measure the rotational motion. The chest compression rate and chest

compression depth are estimated by our proposed data-fusion algorithm and provided in real time.

3.2 IMU Data Characterization

This section presents our observation on the collected inertial sensor data recorded during chest

compression. Two IMUs, each of which contains an accelerometer and a gyroscope, are placed on

different locations of the chest, namely the chest center point and a spot two inches away from the

compression point along the nipple line. The collected IMU data are evaluated by using mutual

information to exploit the information content, and the characteristics of IMU data are explored by

our proposed rotational-motion model to enable data-fusion techniques.

3.2.1 Estimation of Chest-Compression Depth using IMU

A major disadvantage of using IMUs to estimate the displacement or attitude of an object by

using the kinematic equations is the cumulative error. The error is accumulated in the estimated

result due to the continuous integration of the measured noisy signal with respect to time. Without

removing the noise in the measured signal, the continuous integration results in the growth of linear

error in velocity and angle of rotation and quadratic error in displacement. Therefore, we propose

a data-fusion algorithm that uses two IMUs to suppress the noise. In our solution, the first IMU

is placed on the chest-compression point, and the measurements are used by a depth-prediction

model that uses kinematic equations to estimate the displacement. On the other hand, the second

IMU is placed away from the chest-compression point and used as a reference to remove the noise

from the predicted depth estimated by the prediction model.
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Figure 3.1: Inertial Sensor Data measured at the Compression Point during Chest Compressions

3.2.2 IMU Data Patterns

The acceleration and angular velocity data measured with the first IMU placed on the compression

point during chest compressions are used to calculate the vertical acceleration for depth estima-

tion. Fig. 3.1a shows the measured triaxial acceleration starting from the static state over several

compressions. The non-zero triaxial offsets in the beginning are generated by gravity and should

be removed to obtain the vertical acceleration generated by chest-compression force. The Z-axis

acceleration in the chest-compression region shows a repetitive pattern that is a rough accelera-

tion and deceleration trend and can be used to split the triaxial acceleration into segments, each of

which represents an individual chest compression. The compression rate can be calculated by the

period of chest compression, which is the product of sample period and number of samples in the

segment. The angular velocity as shown in Fig. 3.1b shows the orientation of IMU keeps chang-

ing in chest compressions so that the effect of gravity on the three axes also varies. Therefore,
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Figure 3.2: IMU Data Measured in Different Placements during Chest Compressions

the orientation of the IMU during chest compressions is required in order to extract the vertical

acceleration of chest movement from the raw acceleration.

Different patterns are observed in the acceleration and angular velocity when the IMU is placed on

the different location that is two inches away from the compression point. As shown in Fig. 3.2,

the Y- and Z-axis acceleration, and X- and Y-axis angular velocity measurements have more regu-

lar waveforms, since the IMU placement leads to greater change of orientation, and the gravity is

distributed more to the Y-axis acceleration. In addition, the kinematic equation is no longer work-

ing for compression-depth estimation by using the second IMU measurement, because the IMU

was not moving vertically with the compression point. The pattern of sinusoidal-like waves in the

angular velocity is a better feature to use for splitting the signal into segments compared to the use

of vertical acceleration. By taking the zero-crossing points in the angular velocity, we can find the

boundary between compression events and the time point of the deepest position.
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Figure 3.3: Spectral analysis of real depth, vertical acceleration, and angular velocity

The real depth and inertial-sensor data collected during chest compression can be regarded as

periodic signals since the repetitive patterns are observed. We apply the FFT spectral analysis to

the real depth signal, vertical acceleration from the first IMU, and X-axis angular velocity from the

second IMU for comparison in frequency domain. As shown in Fig. 3.3, the real depth and the data

from both inertial sensors can be approximated as a periodic signal consisting of the fundamental

frequency component and the corresponding harmonic components at the same frequencies. The

fundamental frequency component is the dominant frequency and carries the most energy. The

similar result from spectral analysis motivates our proposed sensor-fusion algorithm by using two

IMUs placed at different locations.

3.3 Rotational Motion

We propose a chest compression model that follows the rotational motion to fuse the data from

two IMUs. In the rotational motion, the tangential velocity is the product of rotational radius and

angular velocity as shown in Eq. (3.1). The tangential acceleration is the derivative of tangential

velocity with respect to time and is calculated by multiplying the rotational radius by the angular

acceleration α as shown in Eq. (3.2). We first calculate the vertical acceleration by removing the

gravity from the Z-axis acceleration measured by the first IMU. We found the vertical acceleration
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as shown in Fig. 3.4a to have high similarity with α , i.e., the derivative of the angular velocity from

the second IMU as shown in Fig. 3.4b. Therefore, we assume that the tangential acceleration can

be represented by the vertical acceleration and can be calculated by using the angular acceleration

if the rotational radius is given. Fig. 3.4c shows the similarity between the vertical acceleration

and the tangential acceleration that is the product of angular acceleration and estimated rotational

radius by our algorithm, which will be provided in the Section 3.5. Our proposed algorithm uses

the Kalman filter to fuse the two acceleration streams to estimate the vertical velocity. The chest-

compression velocity is derived from the gold standard for the real depth, which is measured using

the displacement sensor. Fig. 3.4d shows the similarity between the vertical velocity and the real

velocity.

vt = rω (3.1)

at = v̇t = rω̇ = r
dω

dt
= rα (3.2)

3.4 Information-theoretic Metric for Sensor Data Evaluation

To better evaluate the effect of different sensor placements on sensor data as shown in Section

3.2, an information-theoretic metric, called mutual information, is used to quantify the correlation

between the real CCD, which is measured from displacement sensor, and the sensor data collected

from IMU. In addition, to validate our rotational model proposed in Section 3.3, the dependency

between the real CCD and vertical velocity or depth estimated by our proposed rotational model

are also discussed in the remaining section.

The IMU-based chest-compression sensing system can be represented as a simple communication

system as shown in Fig. 3.5. In this representation, the real CCD data is generated by successive

chest compressions and processed through an encoder for data transmission. Different locations

on chest for IMU placement can be regarded as noisy communication channels that are used to
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Figure 3.5: Chest compression represented by a communication system

transmit the CCD data to the receivers, which are the two IMUs used in our system. The received

data, including both measured acceleration and angular velocity, is processed through decoders,

which are the distance-measuring techniques, to estimate the CCD.

Suppose that a discrete random variable X is defined for chest compression and that the depth of a

chest compression is an event drawn from a probability distribution function p(x). The information

of an event, which is regarded as uncertainty, is then defined by Eq. (3.3), and the entropy of the

random variable X , which quantifies the average uncertainty, is the expectation of possible out-

comes of the random variable defined by Eq. (3.4). Likewise, the entropy of random variable A and

that of G are defined by Eq. (3.5) and Eq. (3.6) for acceleration and angular velocity, respectively.

The conditional entropy quantifies the uncertainty of random variable X given that the information

of random variable A is provided. The joint and conditional probability of the random variables

are used to calculate the entropy of X conditional on A and G as defined by Eq. (3.7) and Eq. (3.8),

respectively. The larger the conditional entropy, the more information the random variable provides
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to describe the outcomes of chest compression. Thus, the mutual information as defined in Eq. (3.9)

is interpreted as how much uncertainty is removed from random variable X after obtaining the

information of random variable A.

h(x) =− log2 p(x) (3.3)

H(X) =−∑
x∈X

p(x) log2 p(x) (3.4)

H(A) =−∑
a∈A

p(a) log2 p(a) (3.5)

H(G) =−∑
g∈G

p(g) log2 p(g) (3.6)

H(X |A) =−∑
a∈A

∑
x∈X

p(x,a) log2 p(x|a) (3.7)

H(X |G) =−∑
g∈G

∑
x∈X

p(x,g) log2 p(x|g) (3.8)

I(X ;A) = H(X)−H(X |A) (3.9)

I(X ;A)≥ I(X ;D), D = fd(A) (3.10)

I(X ;T )≥ I(V ;T ) = H(V )−H(V |T ), V = fv(X),T = ft(A,G) (3.11)

The data processing inequality in Eq. (3.10) states that the information content cannot be increased

by any post-processing techniques. Let D be the discrete random variable representing the CCD

estimated by using IMU acceleration. By the data processing inequality, the estimated CCD will

not provide more information about the real chest compression depth than the IMU acceleration.

Thus, the mutual information between the real depth and raw acceleration provides the upper bound

to evaluate the accuracy of the data processing techniques by comparing the mutual information

between real and estimated depth with the upper bound. In addition, by placing the second IMU at

different locations and calculating the mutual information I(X ;G), the location where the highest

mutual information is calculated can be chosen as the best to place the IMU.

Our proposed algorithm can be evaluated by mutual information of the compression velocity,

which is derived from CCD, and the velocity estimated by our algorithm. According to Eq. (3.11),
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Figure 3.6: Flow for Depth Estimation

the upper bound of our algorithm is constrained by I(X ,T ) and the conditional entropy H(V |T ) in-

dicates the dependency between the compression velocity and estimated velocity. H(V |T ) is used

to validate the feasibility of our proposed rotational model. In addition, I(X ;T ) can be used as the

metric to compare estimated accuracy among different algorithms. The experimental results on

the IMU placement and the comparison between data-processing algorithms are given in Section

4.2.1.

3.5 Framework

This section presents our framework for estimating chest-compression depth. It is composed of

gravity removal, data segmentation, vertical velocity estimation, and CCD estimation. The struc-

ture of this framework is shown in Fig. 3.6.
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3.5.1 Gravity Removal from Acceleration

The gravity-removal stage uses the estimated IMU orientation to remove the gravity component

in acceleration. Our framework considers the scenario where the patient lies on a flat surface

and assumes the earth coordinates. Therefore, when the IMU is tilted, the surface coordinates

deviates from the IMU coordinates, since the gravity is distributed to all three axes. To remove the

gravity from the vertical acceleration, which is perpendicular to the patient’s chest, the orientation

is needed to transform the IMU measurement from IMU coordinates to earth coordinates.

The Madgwick filter is a quaternion-based sensor-fusion algorithm that fuses IMU data to estimate

the orientation [48]. A rotation quaternion for three-dimensional space is a four-dimensional com-

plex number and can represent any rotation or sequence of rotations by using an Euler axis ~u and

an angle β as shown in Equation (3.12).

q = [q1 q2 q3 q4]

=

[
cos

β

2
ux sin

β

2
uy sin

β

2
uz sin

β

2

] (3.12)

The orientation of a static object in three dimensional space can be regarded as the result of suc-

cessive rotations around corresponding coordinate axes. For example, the extrinsic rotations define

the sequence of rotations using Euler angles φ , θ , ψ with respect to x, y, and z axes, respectively.

The Euler angles can be found from the rotation quaternion using Equation (3.13) and are used to

define a rotation matrix. The acceleration with respect to the earth coordinates, arawearth, can be

calculated by multiplying the IMU acceleration by the rotation matrix and the amov, which is the

acceleration generated by the force of chest compression, is extracted from arawearth by removing

the gravity. Our model uses φ and θ and sets ψ to zero to generate the rotation matrix, since the Z
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axis is parallel to gravity.

φ = arctan
(

2q3q4−2q1q2

2q2
1 +2q2

4−1

)
θ =−arcsin(2q2q4 +2q1q3)

ψ = arctan
(

2q2q3−2q1q4

2q2
1 +2q2

2−1

) (3.13)

3.5.2 Data Segmentation and Chest Compression Rate

The IMU data is segmented by chest compression, and the chest compression rate can be directly

calculated by the inverse of the segmented chest compression interval. The segmentation algorithm

is developed based on the local peak detection algorithm. When the chest is compressed to the

deepest point, the displacement or the tilt angle of IMU is the local maximum within the period of

the chest compression. The local minimum between two successive local maxima is the boundary

between chest compressions, that is, where the current chest compression ends and the next one

starts. Each successive pair of local-minimum points locates a chest compression in the IMU data.

Our framework develops an online algorithm for IMU data segmentation by using the angular

velocity measured from the second IMU. As described in Section 3.2.2, the zero-crossing points in

angular velocity can be used to segment the chest compressions. However, we found the pattern of

fluctuation around zero in the data due to the very short amount time in static state when the chest

is at the deepest point or back to the originally decompressed position. Therefore, we transform

the problem of finding zero-crossing points in angular velocity into the peak detection problem in

the estimated angle of rotation. The vantage of using the peak detection solution is that the peak

points and the valley points represent the deepest compression point and the boundary of chest

compressions respectively so that the extra pattern recognition for classifying zero-crossing points

into deepest point or boundary between compression point is not needed.
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The segmentation process in our algorithm is designed to be activated when chest compression is

performed. When the change of angular velocity is over the predefined threshold, the last zero-

crossing point is annotated as the beginning of a chest compression, and the peak-detection algo-

rithm is applied to the sliding window, which stores the measured data of a certain period, to find

the local maximum. The AHA guidelines suggests a chest-compression rate of 100 to 120 per

minute, so that the size of the sliding window in our algorithm is set to 250, which is half of the

sampling rate. When the local maximum is found, the sliding window is relocated and starts from

the local-maximum data point, and the segmentation process applies the valley-detection algo-

rithm to find the local minimum. The segmentation process keeps running until chest compression

stops, when the IMU remains static and observes minor fluctuation of angular velocity around

zero. In addition, local maximum found after the pause of chest compression is also close to zero.

Therefore, the termination condition is satisfied when the difference between the local minimum

and local maximum is smaller than the designed termination threshold. The segmentation process

restarts upon meeting the activation condition, that is, the change of angular velocity exceeds the

predefined threshold.

Algorithm 1: Real-time Data Segmentation and Compression Rate Estimation
Input: Angular Velocity

#    »
Gyr, Acceleration

#   »
Acc, Sample Rate Rate

Output: Compression event parameters cpParam
1 Function PEAKVALLEYDETECTION(

#    »
Gyr,

#   »
Acc, Rate):

2 Diff ← CHANGEOFDATA(
#    »
Gyr)

3 TStart← FINDLASTZEROCROSSING(
#    »
Gyr)

4 while Diff > ActivationThreshold do
5

#             »

WinBuf ← ANGLEFROMMADGWICKFILTER(
#    »
Gyr,

#   »
Acc,TStart,Rate)

6 TMaximum,Peak← PEAKDETECTION(
#             »

WinBuf ,
#    »
Gyr)

7
#             »

WinBuf ← RELOCBUF(
#    »
Gyr,

#   »
Acc,TMaximum,Samp)

8 TMinimum,Valley← VALLEYDETECTION(
#             »

WinBuf ,
#    »
Gyr)

9
#                »
cpParam← APPENDCPRPARAM(TStart,TMaximum,TMinimum)

10 cpm← (TMinimum−TStart)÷Rate×60
11 TStart← TMinimum
12 Diff ← Peak−Valley

13 return #                »
cpParam

Algorithm 1 provides the pseudo code to segment the data by chest compressions and to calculate
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(a) Z-axis Velocity and Angular Velocity (b) Z-axis Velocity and Tangential Velocity

Figure 3.7: Z-axis Velocity and Tangential Velocity

the chest-compression rate in real-time. When the change of angular velocity is over the pre-

defined threshold, the algorithm is activated, and the timestamp of the last zero-crossing point in

angular velocity is annotated as the start of chest compression. The Madgwick filter is used to

estimate the rotational angles, and the angles are kept in the sliding window. The peak-detection

method is applied to the sliding window until the local maximum is found. The sliding window

is relocated to the timestamp of the found local maximum, and the valley-detection algorithm is

applied for the local minimum. The local minimum is at the end of current chest compression and

is used as the start of the next chest compression for the sliding window. The three time-stamps are

used to locate the chest compression and to calculate the chest-compression rate. If the difference

between the maximum and minimum is smaller than the threshold, then the segmentation algorithm

is stopped until the next chest compression is detected.

3.5.3 Vertical Velocity Estimation

The rotational radius is first calculated by matching the angular velocity with the vertical velocity

in order to obtain the tangential velocity. The velocity estimated by using the Z-axis acceleration

from the first IMU in the first chest compression is chosen to represent the tangential velocity.
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We assume the estimated velocity has minimum drift error, and an empirical scaling factor can be

obtained by matching the amplitude of tangential velocity with the one of angular velocities, as

shown in Fig. 3.7a. The scaling factor is then applied to the following angular velocity signal to

compute the tangential velocity as shown in Fig. 3.7b.

The states, state-transition model, observation model, input, and observation matrices are defined

as shown in Eq. (3.14) for parameters used in Kalman filter. The state vector X is composed

of position and velocity. The prediction matrix A and the control vector B follow the kinematic

equations to predict position and velocity by using the vertical acceleration u as input. The vector

H is the observation model that maps the state space to the measurement space, and the z is the

tangential velocity, which is the product of rotational radius and angular velocity.

Definition of Matrices:

x =

P

V

 , A =

1 ∆t

0 1

 , B =

∆t2

2

∆t

 H = [0 1]

u =

[
Vertical Acceleration

]
z =
[

R×Angular Velocity

]
(3.14)

Predict:
x̂t|t−1 =Ax̂t−1|t−1 +But

Pt|t−1 =APt−1|t−1AT +Q
(3.15)

Update:

yt =zt−Hx̂t|t−1

St =HPt|t−1HT +R

Kt =Pt|t−1HT S−1
t

x̂t|t =x̂t|t−1 +Ktyt

Pt|t =(I−KtH)Pt|t−1

(3.16)

The adaptive Kalman filter is used to fuse the data from two IMUs to estimate the vertical veloc-
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ity. A conventional Kalman filter can be implemented based on Equations (3.15) and (3.16). An

online estimation approach [73] is adopted to adaptively determine the covariance matrix of the

measurement noise R. The measurement filtering residuals Vzt is calculated using Eq. (3.17):

Vzt = Zt−Hx̂t|t

= Zt−H(x̂t|t−1 +Ktyt)

= (E−HKt)yt

(3.17)

Qzt =Rt−HPt|tH
T (3.18)

By applying the error propagation law to Eq. (3.17), the covariance matrix Qzt is computed as

shown in Eq. (3.18) and the covariance matrix R is then calculated using Eq. (3.19).

Rt = Qzt +HPt|tH
T

=
1
m

m−1

∑
i=0

Vzt−1V
T
zt−1

+HPt|tH
T

(3.19)

In Eq. (3.19), the m is the number of samples used to calculate the residuals Vzt . Extra computation

is required for Vzt and HPt|tHT since neither is generated in the process of conventional Kalman

filter.

Algorithm 2: Chest Compression Depth Estimation
Input: Angular Velocity

#    »
Gyr, Acceleration

#   »
Acc, Compression event parameters cpParam

Output: Chest Compression Depth CCD
1 Function DEPTHESTIMATION(

#    »
Gyr,

#   »
Acc, cpParam):

2
#                      »

verticalAcc← REMOVEGRAVITY(
#    »
Gyr,

#   »
Acc)

3
#              »segment← DATASEGMENTATION(

#    »
Gyr,

#                      »

verticalAcc,cpParam)

4 rotationalRadius← ESTIMATEROTATIONALRADIUS(
#                      »

verticalAcc,
#    »
Gyr)

5
#                                »

verticalVelocity← ADAPTIVEKALMANFILTER(
#              »segment,rotationalRadius)

6
#       »
CCD← COMPLEMENTARYFILTER(

#                                »

verticalVelocity,
#   »
Acc)

7 return #       »
CCD
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3.5.4 Estimating Chest-Compression Depth

Our proposed method for CCD estimation assumes the depth can be approximated by the tilt angle

of the IMU. The CCD can be calculated by using the vertical velocity from Kalman filter and

the kinematic equation in Eq. (3.20). However, as discussed earlier, this approach results in the

linear growth of cumulative error in the estimated displacement. To handle the error, we transform

the depth-estimation problem into an orientation-estimation problem. The vertical velocity can be

regarded as scaling angular velocity in Eq. (3.21) and the depth estimation equal angle estimation

in Eq. (3.23). To estimate the tilt angle, the acceleration measured from the second IMU is used.

In our IMU placement, we assume the pitch angle is required to represent the tile angle, which can

be calculated by using Eq. (3.24).

CCDt = CCDt-1+VKF Tsampleperiod (3.20)

∼ CCDt-1+r ωt Tsampleperiod (3.21)

= r Anglekf
t-1+r ωt Tsampleperiod (3.22)

= r Anglekf
t (3.23)

Angleacc
t = arctan

Accy

Accz
(3.24)

A complementary filter is used to fuse the calculated angle to constrain the growth of error. In the

short period, the estimation using the kinematic equation is accurate but suffers from the cumula-

tive error. On the other hand, the angle calculated from acceleration does not drift and provides

very accurate angle estimation from the gravity component as long as the IMU is in static state.

Complementary filter is a simple and typical sensor fusion technique that consists of a low-pass

and a high-pass filter. To handle the cumulative error, the angle calculated from acceleration is

processed through high-pass filter and the low-pass filter is applied to the angle estimated from

gyroscope measurement. As shown in Eq. (3.25), we choose 0.993 and 0.007 for the α and β

31



respectively to estimate the CCD.

CCDt = r Anglet

= r α Anglekf
t +r β Angleacc

t

α +β = 1

(3.25)

Algorithm 2 provides the pseudo code for CCD estimation. The algorithm first calculates the

vertical acceleration by removing the gravity from the acceleration data measured by the first IMU.

With the chest compression parameters, the inertial data is segmented by chest compression. The

vertical velocity is estimated by segments, and the depths are calculated as scaled angle by using

the complementary filter that fuses the vertical velocity and the calculated tilted angle obtained

from acceleration.

3.6 Summary

In this chapter, we observed different patterns in sensor data when IMUs are placed at different

location. The observed patterns motivate our rotational model and two algorithms for estimating

vertical velocity and CCD by using two IMUs. Our proposed algorithms work in real time and are

low computational cost. In addition, an informational-theory metric, call mutual information, is

used to validate our proposed rotational model. The experimental results will be provided in the

next chapter.
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Chapter 4

Evaluation

This chapter presents and evaluation of our CCD estimation algorithm. We first describe our ex-

perimental setup and the test scenario, followed by a comparison of sensor placement for accuracy

and complexity.

4.1 Experimental Setup

We collected chest-compression data using a 3rd-generation prototype of a medical device called

Bluebox (BB). BB is designed as a data logger to record vital signs such as body and ambient

temperature, 1-lead ECG, breathing and ambient sounds, and blood-oxygen concentration (SpO2)

in a code blue event. We use only the data from the 9-DoF IMU on BB for the purpose of evaluating

our CCD algorithm. We program the BB firmware to store the sensor data in the internal flash

storage during CPR, and the data can be offloaded through USB interface afterwards.

A mannequin for CPR training as shown in Fig. 4.1 is used for the simulation of chest compression.

To measure chest movement during CPR, two BBs are placed at two different locations, one on the

compression point and the other 2 inches away. A displacement sensor is attached to the chest of
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Figure 4.1: Experimental Setup

mannequin to generate the ground truth for evaluating the estimated accuracy.

Two test scenarios are performed to evaluate the accuracy of the chest compression model and the

proposed real-time algorithm. In the first test scenario, we tried placing the second BB at different

locations of chest: 1.5, 2, 3, and 4 inches away from the compression point. The results are used

to evaluate the impact of different displacement on the rotational motion model. In the second

test scenario, the second BB is placed on the location 2 inches away from the compression point

to evaluate the accuracy. In both test scenarios, the first BB is always placed on the compression

point for acceleration measurement.
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Figure 4.2: Placement Evaluation using Mutual Information

4.2 Experimental Results

The section evaluates the impact of sensor placement on estimated accuracy. Our proposed frame-

work first uses mutual information to demonstrate the best location selected for vertical velocity

estimation. The estimation accuracy is compared between our proposed method and the Fourier

series decomposition (FSD) method [61, 23]. The complexity of the algorithms are also studied to

demonstrate the feasibility of real-time feedback.

4.2.1 Evaluation of Second IMU Placement

The mutual information between the real depth and the signals measured by the sensor placed at

four different locations are provided in Table 4.1. The selected signals include angular velocity,

vertical velocity estimated by KF, and estimated depth. In addition, the mutual information of the
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Table 4.1: Mutual Information for Sensor Placement Evaluation

Placement Evaluation using Mutual Information
Distance (Inch) 1.5 2 3 4
Angular Veclocity 1.079 1.153 1.083 0.739
Vertical Velocity(KF) 1.101 1.162 1.100 0.769
Estimated Depth 0.775 1.407 1.434 0.530
Velocity (KF and Gold
Standard)

1.469 1.876 1.515 0.754

vertical velocity and the velocity derived from the gold standard is also calculated. The results

are visualized as shown in Fig. 4.2. First, from the results of angular velocity, we can find that

placing the sensor 2 inches away from the chest compression point achieves the highest mutual

information. The fourth location results in the lowest mutual information, because because it is

at the outskirt of the compression region and sensor rotates within a smaller range. The mutual

information of estimated vertical velocity is approximately the same as the mutual information of

angular velocity. This is because the measurement model of Kalman filter is based on rotational

motion. The angular velocity is used to generate the tangential velocity that is used to constrain

the cumulative error in the vetical velocity estimaion. The mutual information between estimated

vertical velocity and the real velocity derived from the gold standard also shows the second location

to be the best among the four locations to estimate the vertical velocity. Fig. 4.3 compares the

estimated velocity and real velocity. Our sensor-fusion algorithm is able to suppress the cumulative

error in vertical velocity estimation. However, in Fig. 4.3d, the waveform of the estimated velocity

is less smooth and much more noisy comparing to the other three.

Although the first three locations can provide high-quality vertical velocity estimation, the mutual

information between CCD and vertical velocity estimated at the second and third locations are

much higher than that at the first location. However, high mutual information does not imply high

accuracy. Our depth-estimation algorithm assumes the device placement location is flat so that

the product of rotational radius and angle of rotation can be regarded as the displacement. The

depth estimation of the first location is shown in Fig. 4.5. Since the complementary filter uses the
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Figure 4.4: Estimated Depth on Third location
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Figure 4.5: Estimated Depth on First Location

angle of rotation to handle the cumulative error in depth estimation, the uneven surface results in a

negative displacement added into the initial position as shown in Fig. 4.5b. Compare to the results

in Fig. 4.5a without using complementary filter, the CCD is overestimated by around 2cm with

using complementary filter. As shown in Fig. 4.4b, the initial tilt angle on the third location also

generates a negative displacement of around 6.5 cm in compression depth. In addition, the tilt angle

is calculated by Eq. (3.24) using acceleration signals. The acceleration may be interfered with chest

compression force so that the value of mutual information on the first location is decreased.

4.2.2 Accuracy Comparison

Fig. 4.6 shows the accuracy comparison between our proposed method and FSD method over

eleven sessions, which produced 1363 CCD records. Our proposed method is able to provide

more accurate estimation with a mean of difference of 0.23 cm, compared to 1.22 cm using the

FSD method. In addition, the range of 95% limits of agreement (−2.88,0.44) in FSD method

is also wider than our method. The results using the FSD method are shown in Fig. 4.6b, as the

differences between estimation and gold standard are aggregated in the center of mean difference

region. This is because the FSD method assumes the signal is periodic, and the Fourier-series
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Figure 4.6: Bland-Altman Plot of the Mean Difference

representation is unable to handle the DC component. Thus, the CCD is estimated by the difference

between the highest and lowest data points in the interval of a chest compression as shown in

Fig. 4.7b. However, in the decompression stage, the chest may not return to the original position,

and the incomplete chest compression leads to an offset between the original position and the

decompression position as shown in Fig. 4.7a. The FSD method is unable to find the offset, so

that the estimation is inaccurate. Our proposed method estimates the depth by complementary

filter that directly estimates the depth rather than taking the difference between the peak and valley

points. Thus, it is more accurate without losing the offset component. However, an oblique ellipse

is shown in Fig. 4.6a from our estimated results. We observe that this results from the inconsistent

rotational radius calculated by our amplitude-matching method. Our method uses the difference

between the peak and valley points to find the scale factor, but it is not guaranteed as the best

real value to match the two signals. The rotational radius has high impact on the accuracy of our

vertical velocity estimation. Inaccurate radius estimation results in the deviation in the successive

velocity and depth estimation. The smaller and larger estimated rotational radius result in lower

and higher depth estimations, respectively, such that the oblique ellipse shape is observed.
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Figure 4.7: Imperfect Chest Compression

4.2.3 Computation complexity comparison

Our proposed framework is light-weight and real-time. We utilize the rotational motion and com-

plementary filter to estimate the depth. Since our observation is assumed to be the tangential

velocity, the Kalman filter used in vertical velocity estimation does not require to compute the po-

sition so that our depth estimation framework can be further simplified as scalar operations. On the

other hand, the other proposed methods such as the FSD method use Fourier series representation

and the computationally expensive FFT operation is required. The other methods use band-pass

filters to remove the cumulative error, but the filtering cost is still expensive.

4.3 Discussion

In this section, we discuss the limitations of our proposed method and the possible optimizations

for improvement of system accuracy and robustness.
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Rotational Radius

The rotational radius is the key to enabling the sensor-fusion algorithm. Although in the accuracy

experiments we placed our sensor on a flat surface of the chest, from the placement evaluation

experiments, we found the sensor-fusion algorithm to able to provide accurate estimation for ver-

tical velocity as long as the sensor is in rotational motion during the chest compression process.

This finding suggests that the behavior of rotational motion in the chest compression scenario is

two-dimensional, and that the rotational model can be applied if the sensor is placed in the com-

pressed region of the chest. Typically, in an emergency, the doctors have very limited time to

set up the equipment to perform resuscitation. A more thorough study on the compression re-

gion can improve the convenience of the BB device. At the same time, a more robust rotational

radius-estimation method is definitely required to provide accurate velocity estimation.

Tilt-Angle Compensation

Our experimental results have shown that compensation is required to account for the uneven

surface for sensor placement. We adopted the complementary filter for its simplicity. To deal with

the orientation problem, one possible solution is the attitude initialization in sensor system before

the start of chest compression. A more sophisticated orientation-estimation technique such as the

Madgwick filter, which we used to remove the gravity, can be adopted to estimate the rotation

angle for the purpose of tilt-angle compensation.
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Chapter 5

Background and Related Work

Positioning and localization are two of the key enablers of location-based services and applications.

A variety of techniques based on different sensing modalities have been proposed. This chapter

first provides a background on the stages of the positioning and localization process and categorizes

the commonly used techniques. After a summary of indoor localization, we survey related works

that serve as baseline of comparison with our work.

5.1 Overview of Positioning and Localization

Object positioning and localization by our definition are shown in Fig. 5.1. Object localization

is the process that compares the current estimated position with the spatial information obtained

from prior investigation of environmental space in order to determine the target location. The

object localization process can be divided into three stages: data processing, positioning, and map-

matching. For example, the received Global Positioning System (GPS) signals are used to measure

the distances between the receiver and the satellites, and the target position can be estimated with

respect to the positions of satellites. The target location can be determined by matching the target
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Figure 5.1: Stages of Object Localization

position at the specific location on the map.

The data processing stage takes as input a certain type of measurements based on the sensing

modality and transforms the metadata into feature vectors that can better represent the target state

in the environment. We classify the sensing system as either active or passive based on the criterion

that if the device used in the sensing system can obtain the input data independently, then the

system is considered an active system. Thus, GPS is classified as a passive system, since the

receiver requires satellites to transmit the GPS signals. This classification of the sensing system is

used to organize the following positioning techniques.

Positioning techniques are classified as absolute or relative based on whether the estimated target

position is related to known environmental factors. The environmental factors are typically the

position of the reference nodes such as beacons, landmarks, or anchor nodes that keep broadcasting

their positions through wireless signals. In general, the absolute position is usually estimated

through a passive sensing system, since receiving input data from reference points usually implies

the positions of the reference points are also known. Taking GPS as an example, GPS signals

carry the position information of satellites so that the estimated position using GPS is absolute.

On the contrary, a relative target position is estimated with respect to the origin of the coordinates
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at the center of the target’s starting position. When the target moves, the latest target position

can be obtained by updating the previous target position with the estimated displacement. Taking

kinematic equations as an example, the displacement and velocity can be derived if measurement

time and acceleration are available. The displacement can be derived from data from passive

sensors such as an accelerometer. Therefore, unlike those absolute positioning techniques that rely

on the positions of the reference nodes in the infrastructure, relative positioning techniques are

more flexible in deployment.

The last stage of localization is to match the target’s estimated position on the map to obtain

the corrected target location. Unlike absolute positioning, which considers environmental factors,

relative positioning requires information such as the initial target location or landmark positions

obtained during the target movement to match the relative position on the map.

In the following sections, we organize the commonly used positioning techniques based on our

classification of positioning techniques.

5.2 Positioning Techniques

This section presents a taxonomy of positioning techniques, as shown in Fig. 5.2. Positioning

techniques can be classified into relative and absolute ones. Motion measurement-based and radio-

based techniques are representative of relative positioning and absolute positioning, respectively.

Sensor fusion techniques are used to combine data measured by more than one sensing modality to

make estimation. Training model-based techniques use abundant data to train probabilistic models

for estimation. The sensor fusion and training model-based techniques can be used for both relative

and absolute positioning. Table 5.1 summarizes these techniques by listing the sensing modality,

features, and the algorithms used.
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Figure 5.2: Taxonomy of Positioning Techniques.

5.2.1 Radio-Based Positioning

Radio-based positioning techniques exploit the characteristics of the received radio wave signals

transmitted from the reference points to estimate the target position. The data processing stage

generates a variety of features such as connectivity, distance, angle, and signal strength based

on the sensing modality. This section reviews how radio-based techniques use different sensing

modalities for object positioning.

Proximity and Fingerprinting

Proximity techniques rely on the broadcast signals sent from the reference points deployed in

the infrastructure. The coverage of each reference point defines the area where the transmitted

signal can be received or the connectivity can be established. The position of the reference point

is assigned to the target position if the target is located within the coverage. The accuracy of

estimation is dependent on the number and the density of the reference points, and the estimated
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target position can be anywhere in the coverage of the reference nodes. Due to the simplicity, the

estimated position is usually used as error-constrained information and assists other positioning

techniques in achieving higher accuracy of estimation[80].

Fingerprinting techniques are similar to proximity positioning but use quantified measurements

such as received signal strength indicator (RSSI) [65] or channel state information (CSI) [74] as

fingerprints to estimate the target position. The implementation of fingerprinting techniques is di-

vided into offline and online phases. In the offline phase, infrastructure deployed with reference

points is required to construct fingerprint maps. The fingerprint map is composed of fingerprint

vectors, each of which is a vector of fingerprints with respect to the reference points and is mea-

sured at each possible position in the environment. In the online phase, the measured fingerprint

vector is associated with the closest one on the pre-built fingerprint map to find the most proba-

ble target position. Fingerprinting techniques based on RSSI can be easily implemented due to

the popularity of smartphones and other smart wearable devices. However, as a result of the cost

of infrastructure setup and fingerprint map construction, the fingerprinting techniques are usually

implemented as part of sensor-fusion techniques similar to proximity techniques.

Direct Distance Measurement

Direct distance measurement techniques use the travel distance of radio signal and the position of

the transmitters to estimate the receiver position. Based on the inverse square law, the intensity

of signal is inversely proportional to the square of the distance from a transmitter. Therefore,

RSSI, which is the strength of the received signal measured by a receiver, is leveraged to build

the signal propagation model for different RF modules such as wireless sensor networks (WSN)

[78] or Bluetooth Low Energy (BLE) [68]. The target position can be determined by applying

trilateration techniques to the estimated distance and the positions of the reference nodes, which

are the position of transmitters in the signal propagation model. The line-of-sight (LOS) condition

is assumed in the signal propagation models. Therefore, in reality, the accuracy of estimation is
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subject to environmental noise and the obstacles in the signal-transmission pathway.

Time of Arrival

Time of Arrival (ToA) techniques use the signal-transmission time to estimate the distance be-

tween two nodes. With two timestamps that indicate the times at which the signal was sent and

received, respectively, and the signal transmission speed, the distance between the transmitter and

the receiver can be estimated by multiplying the signal transmission speed by the transmission

time. Similar to direct distance measurement (Section 5.2.1), the estimated distance can be further

used to estimate the target position by geometry-based approaches. For example, the WLAN in-

frastructure is leveraged to estimate the target position with respect to the routers’ position [32].

ToA uses signal transmission time so that the precise time synchronization between the transmitter

and the receiver is required to obtain accurate distance estimation.

Time Difference of Arrival

Time Difference of Arrival (TDoA) is a variation of ToA. Instead of requiring the timestamp at

which signal is transmitted, the target broadcasts the signal to the reference nodes and uses the dif-

ference of signal transmission time to estimate the target position [21]. Unlike ToA, which directly

measures the distance between two nodes, TDoA measures the difference in distance between the

target and each reference node to obviate time synchronization.

Angle of Arrival

Angle of Arrival (AoA) computes the angle of the received signal and uses triangulation to es-

timate the target position [40]. Compared to ToA based methods, AoA does not require precise

time synchronization but requires directional antennas or antenna arrays to obtain the angle of the
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received signals. However, the cost of setting up the infrastructure for AoA is greater than that for

RSSI. In addition, unlike the RSSI techniques that can use existing mobile devices, extra hardware

is required for AoA techniques. Thus, the AoA techniques are less frequently used compared to

RSSI techniques.

5.2.2 Motion Measurement-Based Positioning

Motion measurement-based methods use physical features associated with a moving object to es-

timate the target position. Physical features such as acceleration, angular velocity, or images that

contain the target position information related to the environment are commonly used as input to

the existing approaches.

Kinematic Equations

Kinematic equations (5.1) relate acceleration, velocity, displacement, and time to describe the

motion of an object. An accelerometer is an electronic device that can provide acceleration mea-

surement every sample period. By kinematic equations, the velocity and displacement can be

sequentially obtained using the measured acceleration and the corresponding sample period.

~v = ~v0 +~a · t

~d =
~v0 +~v

2
· t

= ~v0 · t +
1
2
~a · t2

(5.1)

Dead reckoning (DR) is an iterative technique that estimates the current position by the the previ-

ous estimated position and the current measured data such as speed, direction, time, the number

of pedestrian steps, or the number of turns of the wheels. DR is a simple and fundamental option

for positioning when GPS signal is not available. Combining DR with kinematic equations using

accelerometers [27], the current position is the sum of the previous position and the displacement,
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which is computed using equations (5.1). The position estimated by the combination of kinematic

equations and DR is a relative position, since the initial position or environmental factors are not

required. However, the noise in the acceleration measurement will lead to quick drift of the esti-

mation in a few seconds since the displacement is calculated by double integration, which results

in a quadratically growing error in the displacement estimation. The error keeps accumulating in

the new estimated results since the new estimation is based on the previous estimation, and DR

itself has no explicit correction mechanism. Therefore, an error handling mechanism such as the

boundary condition, which uses zero velocity when the target is static, is required to suppress the

growth of error [3].

Vision-based Positioning

Vision-based techniques use image processing for position estimation. Similar to radio-fingerprinting

techniques, an image database is built to cover all possible positions in the specific environment,

and a photo taken by the target is compared with the database to find the most probable position.

The cost of vision-based techniques is the environment investigation for image databases and the

intensive computation capability for image processing so that central servers are usually leveraged

to solve the image-matching problem [67].

5.2.3 Kalman Filter

Kalman filter is an iterative sensor fusion technique, which takes as input different types of sensor

data to compensate for the insufficiency of individual sensors. A vector of states is maintained and

iteratively processed along with the new input data for new estimation. Kalman filter is divided

into two steps: prediction and update.

In the prediction step, a state-transition model and a control-input model are developed to predict
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the current state based on the previous state vector and the current input data. Meanwhile, a

covariance matrix is used to indicate how accurate the current prediction is based on previous

covariance matrix and process noise, which models unknown external uncertainties and follows a

zero-mean multivariate normal distribution.

The update step aims at improving accuracy of the predicted state vector by the extra information

from the observation, the other input data that provides information about the current state. An

observation model is developed and the observation noise is assumed to be zero-mean Gaussian

white noise.

In order to find the optimal estimation, the Kalman gain, which is the measure of how reliable

the prediction and observation are, is calculated based on the covariance of process noise and

observation noise. The predicted state is then updated by adding the proportion of difference

between predicted state and observation determined by the Kalman gain.

Taking the IMU and fingerprinting data as an example [65], the prediction step develops the state-

transient model and control-input model based on the kinematic equations and DR. The update

step uses the fingerprinting measurement as observation to associate the possible position. The

Kalman gain is determined by the hyper-parameters for the covariance noises, and the final target

position is estimated by following the update steps of Kalman filter.

The Kalman filter assumes the system being modeled is linear dynamic system (LDS). Variations

such as Extended Kalman filter and Unscented Kalman filter are developed to handle the nonlin-

ear system. The LDS assumption and the use of Gaussian distribution make Kalman filter less

flexible. However, compared to other alternatives such as particle filter or hidden Markov model,

Kalman filter is less computationally intensive, and the state-transient model is well developed for

positioning applications such that Kalman filter is still one of the most popular approaches.
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5.2.4 Statistical model-Based Positioning

A statistical model is a mathematical model that takes as input a random variable and estimates the

possible output a probability distribution. This section elaborates the popular techniques that use

machine learning and deep learning to construct the statistical models for object positioning.

Hidden Markov Models

Hidden Markov model (HMM) is a probability model that defines a joint probability distribution

based on Markov process over a sequence of states and a sequence of corresponding observations.

The hidden states are those states that are not observable but can be inferred through the observa-

tions. HMM models system behavior by two parameters: the state-transient probabilities matrix

and emission probability matrix. The state-transient probabilities matrix provides the probability

of a state transition. The emission probability matrix represents the probabilities of observations in

each state. A joint probability distribution of states and observations is defined by state-transient

distribution and emission distribution. HMM makes the assumption that the observations are con-

ditionally independent of all other given states, and the property of Markov process indicates that

the next possible state is only dependent on the current state. By applying the assumption and

property, the joint probability distribution can be interpreted as the distribution over all possible

states by taking as input the current state and the measured observation. The work [28] solves

the positioning problem by using an HMM that considers the fusion of two sensing modalities. A

set of states is created to represent the possible positions on the floor plan, and the sequence of

observations are composed of pairs of RSSI fingerprint and step-detection information. The HMM

can be used for position estimation after it is trained with the collected observations under the def-

inition of states. The disadvantage of HMM is the cost of estimation, since all the states have to be

paired with observations to find the maximum of the joint probability distribution.
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Particle Filter Particle filter is a probabilistic model based on Bayesian filtering and importance

sampling. It also assumes that the system is modeled as a Markov process. Similar to Kalman

filter, particle filter is implemented in an iterative algorithm that can be divided into two steps:

prediction and update step. In the prediction step, the current state is estimated based on the

previous state. The update step takes the current measurement to update the predicted estimation.

However, unlike Kalman filter that assumes linear system and Gaussian distribution, particle filter

uses numerical methods to approximate the expectation of the posterior probability distribution.

By importance sampling techniques, the samples, also called particles, are drawn from the state

transition probability distribution, which is acquired in model training. In addition, the sample

weights are repetitively computed by multiplying the probabilities of observations by previous

sample weights. The expectation of state estimation is the sum of the product of the normalized

sample weights and the corresponding samples. Particle filters can be implemented in the way

of sensor fusion using IMU and fingerprint measurements [76]. In the prediction step, the IMU

data is used with previous estimation to predict the current state. The predicted state and the state

estimated from fingerprint observations are used in importance sampling to compute the weights

of particles. The weight can be regarded as the probability of the fingerprint observed from the

predicted state using IMU data. The weights are multiplied by the drawn particles, which represent

the predicted states, to find the most probable position. The estimation of particle filters relies on

the particles and the corresponding weights. Therefore, the quality of sampled particles have a

direct impact on the accuracy. In addition, the disadvantage of the particle filter is it requires many

particles to achieve good performance, which can be computationally expensive.

Conditional Random Fields Conditional random fields (CRFs) are a class of statistical models used

for structured prediction, which makes the prediction considering the correlations in the sequence

of input data. Linear-chain CRF is one that defines a conditional probability of a sequence of

output estimation given a sequence of input observation in which the sequential dependencies of

input are explored. The Linear-chain CRF can be regarded as the implementation of a set of feature

functions along with the corresponding weights. The feature functions are defined as the joint
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probability distribution of the estimated state and the input observations. However, they can also

be defined as the joint probability distribution of sequential state transition and the observations.

The weights of features are learned in the model training process. By summing up the product

of feature function outputs and the corresponding weights, the linear chain CDFs output the most

probable sequence of states based on the sequence of input. The work [77] uses linear-chain CRFs

to solve the positioning and map-matching problem based on the IMU data and RSSI fingerprint

measurements. Two feature functions are implemented by using the moving distance and the

orientation estimated from IMU data. These two feature functions are defined to find the most

probable pair of states that best fit the change of position resulting from the object movement.

Another feature function uses the previous output estimations and the orientations of displacement

in a recent time window to correct the current orientation and find the most probable consecutive

states. The last feature directly uses the fingerprints to find the most probable state. Combining all

the features, the estimation turns out to be the object trajectory describing the relative position and

object movement.

Neural Network Artificial neural networks (ANNs), usually called neural networks (NNs), have

become one of the dominant models of applications. The structure of an ANN is composed of

three layers: input, hidden, and output layer. The input layer is the interface that transforms the

input data into a certain format that can be processed by the hidden layer. The hidden layer is the

core of an NN in that it discovers patterns in the data and generates feature vectors. The feature

vectors are fed into the output layer to generate the predicted result based on the type of problem

being solved. In addition, the NNs are very powerful tools to extract the features, which can be used

to improve the capabilities of other machine learning models compared to using the raw features.

Thanks to the powerful data processing and prediction capabilities, deep learning is developed and

variations of NNs are proposed to better explore the dependency between input data and predicted

outputs. Variations such as the convolutional neural networks (CNNs) are proposed to explore the

spatial patterns, and recurrent neural networks (RNNs) are used to explore temporal dependency

in input data. Architectures of NNs and their variations are on-going research.
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Table 5.1: Positioning Techniques

Positioning Tech-
niques

Sensing Modality Features Positioning Algo-
rithm

Type of Localiza-
tion

Radio-Based
Proximity Wireless Sensing Connectivity Database Associ-

ation
Absolute

Fingerprinting Wireless Sensing RSSI, CSI Database Associ-
ation

Absolute

Direct Distance
Measuring

Wireless Sensing RSSI Trilateration Absolute

TOA Wireless Sensing Signal Transmis-
sion Time

Trilateration Absolute

TDoA Wireless Sensing Difference of
Signal Transmis-
sion Time

Trilateration Absolute

AOA Antenna Array Angle of Re-
ceived Signals

Triangulation Absolute

Motion Measurement-Based
Kinematic Equa-
tions

IMU Acceleration Dead-Reckoning Relative

Vision-based Camera Object Recogni-
tion

Image Processing Relative

Sensor Fusion
Kalman Filter IMU, RSSI Acceleration Linear System

Model, Gaussian
Distribution

Relative

Training Model-Based
Hidden Markov
Model

Wireless Sensing,
IMU

Acceleration,
RSSI

Joint Probability
Model, Markov
Process

Relative

5.3 Indoor Localization

Indoor localization generally infers the target object located in an indoor environment without

the access of GPS signals. Unlike GPS, which has been the dominant mechanism for outdoor

localization, indoor localization is realized through a variety of techniques considering the diverse

scenarios of applications. For example, the firefighters require accurate location information to

provide assistance at the scene of an emergency. The information of floorplan or infrastructure is
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usually unavailable such that those techniques that depend on the reference points are inadequate.

However, another application such as parking can adopt sensor fusion that takes as input the IMU

measurement and RSSI fingerprint to estimate the user location and plans the route for the user

to reach the target parking spot. Our work elaborated in chapter 5 assumes the floorplan and the

information of the reference points are available. The following section surveys related works, and

their proposed techniques will be implemented for comparison with our solution.

5.4 Related Work

UPTIME [7] is a user movement tracking system that generate a pedestrian trajectory based on

Pedestrian dead reckoning (PDR) using only the inertial sensors embedded in user’s mobile phone.

The proposed system uses the inertial sensor data to develop a step detection method that activates

the state transition, which is the change of position, when the pedestrian is moving. A gait type

classification model estimates the displacement of pedestrian movement by mapping the identified

gait type with the predefined step length. Similar tracking systems are proposed and enhanced by

modeling the step pattern to dynamically estimate step length. The work [58] evaluates the impact

on accuracy by using three different step length models. SmartPDR [36] further improve a existing

step model [75] that assumes the vertical impact occurred from walking activity is proportional to

step length. However, the step models still use predefined parameters to estimate the step length by

measured acceleration. The vantage of the mentioned system is only inertial sensors are required

but the accuracy highly depends on the estimation of user step length and the error is accumulated

in the estimation since only the inertial sensors is used and the lack of error correction mechanism.

A sensor fusion algorithm [45], Inertial Sensors and WiFi Fingerprint (ISWF) algorithm, is de-

veloped to handle the cumulative error resulted from DR. Unlike other works using the reference

information to correct the error in the estimation, ISWF uses the distance measured by AoA tech-

nique to improve the step length estimated by using inertial sensor data. Another work, UnLoc
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[72], uses the step count method to estimate the step length. UnLoc classifies the inertial sensor

data by patterns and use the identified patterns to infer the possibly encountered landmarks on the

map. By using the knowledge of floor map and the step count, the step length can be estimated.

To obtain accurate results, these methods require extra information like fingerprint map or the

capability of pattern recognition for landmark identification.

Other existing works propose KF-based sensor fusion algorithms that can directly optimize the

estimated position. Various sensors are used to get the measurement data. [16] deploys cameras

around corners in indoor environment to measure the user position. [57] uses a distance sensor,

LIDAR, to detect the wall on corridors and the detected walls are used as constraint to correct

the heading of the pedestrian path. The barometer [38] is used with the accelerometer for height

estimation. The RSSI of received wireless signals is also leveraged to measure the distance between

the target devices and the deployed beacons. The wireless technologies such as WiFi [43, 14] and

RF [60] are broadly adopted. The measurement model for observation is required to enable KF

and the performance of KF will be decreased if the model is not accurate such as the system is not

linear or the covariance matrices of noise do not follow the normal distribution in reality.

The Zee [59] solution adopts particle filter to fuse inertial sensor data and RSSI fingerprints to

estimate a four-dimensional state vector that were used to calculate the user position. The state

vector contains the estimations of step length and direction. The map constraints are also reviewed

to remove unqualified particles such as the change of position is overlapped with the wall on

the map. The PF can provide better result than KF but is computationally expensive in terms

of the number of particles used. In addition, the work [10] compares the performance of the

step counting-based DR combining with the map-matching algorithm with PF that only use the

inertial sensor for estimation without considering the map constraint. The developed algorithm

leverages the pattern of pedestrian walking in a corridor that the step direction is quasi-straight line

to calibrate the sensor orientation. The result shows the proposed DR algorithm can provide more

accurate estimation than PF.
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MapCraft [77] provides an affordable solution based on Conditional random field (CRF) for de-

vices with lower computation capability. The feature functions in MapCraft are defined by using

step length, step direction, RSSI fingerprints respectively. The map constraint is considered while

defining the state. Therefore, MapCraft does not spend extra cost to remove unqualified state as

the removal of particles in PF resampling step. In addition, the estimated results are the normal-

ized sum of the feature function output and the number of feature function is far less the number

of particles required in PF. Therefore, CRF is adopted in our system that will be demonstrated in

chapter 5.

Researchers have proposed techniques that use shared information to enhance localization. The

location can be estimated through the information exchanged between known location reference

nodes like deployed beacons or other devices [70]. The centralized design that use servers to

coordinate devices have also been proposed to estimate the location of devices systematically [17,

35]. However, these techniques involve a third party to manage and process the information for

IoT devices and suffer from the constraints of flexibility and real-time response. A decentralized

information exchanged mechanism is proposed and described in chapter 5.
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Chapter 6

Technical Approach

6.1 Background

This section presents the sensing modality and the generation of pedestrian trajectory, which is

exchanged when users are in an encounter. The pedestrian trajectory is generated by Pedestrian

Dead Reckoning (PDR) using an inertial sensor. This section first reviews the sensing modalities

for pedestrian trajectory, followed by step detection, which triggers the estimation of heading and

step length.

6.1.1 Sensing Modalities

Pedestrian dead reckoning (PDR) can be done using IMU sensors and RF-based proximity sensors,

both of which are found on virtually all wearables, smartphones, and tablets.

An IMU sensor typically consists of an accelerometer, a gyroscope, and optionally a magnetometer.

IMUs are miniature in size and incur minimal power consumption. The IMU data can be used

to model the step behavior of pedestrians, and the pedestrian trajectories can be generated by
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Figure 6.1: Peak-and-Valley for Step Detection

collecting the sequential step data.

Virtually all wearables and mobiles support Bluetooth Low Energy (BLE) for low-power, short-

range communication. One key feature of BLE is that it can also be used for proximity sensing

between two BLE nodes to detect encounter events. Section 6.2 provides the details on the use of

BLE for our encounter model.

6.1.2 Step Detection

Step detection is the problem of inputting pedestrian motion data and outputting events that delimit

the steps. The peak-and-valley detection method [44] can monitor pedestrian activities based on

the measured accelerometer data shown in Fig. 6.1. The patterns of acceleration are evaluated

to determine the user movement behavior. We first define the acceleration change threshold and

the time window and then continuously monitor the magnitude of acceleration. If the difference

between the maximum and minimum acceleration values within the time window is larger than the

threshold, then a step event is triggered.
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6.1.3 Heading Estimation

Heading estimation is the problem of computing the orientation. The heading can be estimated

by the product of the gravity vector and the magnetic vector provided by the accelerometer and

magnetometer, respectively. Accurate orientation estimation is a challenge due to the interference

by the user movement and the physical environment to the accelerometer and magnetometer. On

the other hand, a gyroscope suffers much less interference and can provide more accurate measure-

ment for the heading orientation. The rotated angles can be calculated by multiplying the sensor

output by the sample period. The current orientation can then be obtained by summing up the

successive calculated angles over time. In order to remove the accumulated error in the estimated

orientation, a low-pass filter is applied to the calculated orientation data, and the output is used as

trajectory for data exchanged in an encounter.

6.1.4 Step-Length Estimation

The estimation of step length relies on the accelerometer. However, the estimation is influenced

by individual factors such as step frequency, walking speed, age, etc. Step-length estimation is

outside the scope of this work. Without loss of generality, we assume the step length is fixed, and

a better step-length estimator can be plugged in to improve the accuracy of this work.

6.2 Encounter Model

The encounter among multiple devices is modeled to enhance the efficiency of indoor localization

by sharing the trajectories. A low-power, device-to-device (D2D) RF interface such as Bluetooth

Low Energy (BLE) serves as the mechanism for both communication and proximity sensing. A

proximity threshold is defined to trigger the encounter event, which enables the sharing of trajec-
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tories among devices.

6.2.1 Proximity Threshold

The encounter model uses the capability of detecting the proximity of other users to define an

encounter event in terms of the distance threshold between two devices. The detection is similar

to the pairing process where two devices discover each other and establish the connection. The

proximity sensing is defined by the BLE protocol and is widely used thanks to the low power

consumption and low cost. Therefore, our encounter model utilizes the pairing process of BLE

protocol to implement the proximity feature based on Bluetooth 4.1, in which the BLE stack sup-

ports simultaneous advertising and scanning. During the pairing process, a device, which acts as

a scanner, periodically scans the advertising packets sent from other BLE devices, which act as

advertisers. The scanner can estimate the distance between itself and the advertiser based on the

RSSI.

log10 D =
A−RSSI[dBm]

10n
(6.1)

An encounter event is triggered if the packets from the advertisers are scanned and detected in a

certain range. Due to the use of omnidirectional antennas in most BLE-based systems, it is difficult

to determine the direction. Thus, in our system design, the encounter event happens only if the

distance between scanner and advertiser is within the step length. Eq. (6.1) is used to measure the

distance between two devices. To detect that the encounter happens, we set the value of distance

as the step length, which is the maximum distance between two encountering users, and the RSSI

is measured to find the proximity threshold, which is the minimum RSSI value that two nodes can

measure from the received packets within a step length.

Fig. 6.2 shows our RSSI measurements of scanned advertising packets between two devices. Based
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Figure 6.2: The Proximity Threshold of RSSI

on our experiment, for n = 2 and A = 54, the average RSSI value of −54 dBm corresponds to our

chosen step length D. Thus, an encounter event occurs whenever the RSSI is −54 dBm or higher.

6.2.2 Trajectory Exchange

We extend the proximity sensing with trajectory exchange to enable the collaborative localization.

BLE allows data to be piggy-backed onto its advertising payload. Therefore, it is not necessary to

send the trajectory data in a separate transaction or to go through an extra connection procedure,

which would incur time and power overhead. However, due to the limited size of the payload, a

node sends only a portion of its trajectory instead of the entirety. The original size of the orientation

data is 32 bits floating point format.

To represent the trajectory in a compact format, we assume that the subject takes one step at a time

and can move in only one of eight possible directions (i.e., in 45◦ increments). This enables us to

encode the state transition using only 3 bits using only about 1/10 the original trajectory size. This

translates into about 42 steps of trajectory in BLE 4.0 and 4.1, and BLE 4.2 increases the payload

size by nearly an order of magnitude.
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6.3 Collaborative Indoor Localization

The core of EcoLoc is to combine the user trajectory with the exchanged ones to enhance the es-

timation capability of positioning. As with any DR, the initial location is required to match the

trajectory on the map for user location estimation. Since our PDR mainly relies on the fidelity of

inertial sensor data, the sensor noise can severely influence the accuracy of our PDR. The supple-

mentary information and available constraints, such as the beacon signal or the corridor walls on

the floorplan that users cannot penetrate, can be exploited to correct the error during estimation.

In EcoLoc, the collaborative CRF is proposed to manage the trajectories and a real-time tracking

algorithm is developed to estimate the user’s location.

6.3.1 Background Models

A collaborative CRF (CCRF) is implemented in EcoLoc to exploit the trajectories obtained from

the opportunistic encounter. We first introduce the Hidden Markov Model and Maximum Entropy

Model, and the CRF is derived by integrating both models. The feature functions for CCRF are

defined to fuse the exchanged trajectories to estimate the user location.

Hidden Markov Model (HMM)

HMM models the distribution of a sequence of observations without the knowledge of a sequence

of observed states and is able to estimate the most likely states to generate the same observations

we have. For sequence reasoning, two assumptions are made: (1) the probability of going to a state

at time t depends only on the state at time t−1, and (2) the probability of the observation at time t

depends only on the current state at time t. Therefore, given a set of states X = {s0,s1, ...,sm} and

a set of observations Y = {z0,z1, . . . ,zn}, the HMM can be formulated as follows:
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p(~S,~Z) =
T

∏
t=1

p(st |st−1)p(zt |st) (6.2)

where~S and~Z represent the estimated sequence of states and the sequence of observations we have,

respectively. The joint probability distribution of chosen states and observations points out the

possibility of chosen states so that we can explore the most likely series of states. However, several

shortcomings make HMM less attractive considering the accuracy and efficiency. The probability

joint distribution is not efficient enough for HMM since the effort to model the observations is

unnecessary and only the output states provide the information we want.

The dependency assumption between the estimated states and the corresponding observations lim-

its the capability to consider the correlation of observations. Given a sequence of observation,

the conditional probability cannot be maximized globally, thereby undermining the accuracy of

estimation.

Maximum Entropy Model (MaxEnt)

MaxEnt is able to handle the local optimum problems suffered by HMM since MacEnt assumes

nothing about what is unknown. In other words, MaxEnt does not assume the dependency between

state and observation so that output state is estimated based on entire observation data.

The main idea of MaxEnt is to provide a most uniform distribution (highest entropy) model if

incomplete information about the probability distribution is given. Given the input random variable

set X and output variable set Y , conditional entropy quantifies the uncertainty of described situation

as:

H(y|x) =− ∑
(x,y)∈(X ,Y )

p(y,x) log p(y|x) (6.3)

The goal of MaxEnt is to find the set of model p∗(y|x) that is consistent with the training set

and outputs the model that provides the largest conditional entropy. A model is consistent with
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the training set only if the expected value of each feature function in the empirical distribution as

modeled by Eq. (6.4) is equal to its expected value in the model distribution in Eq. (6.5). Here, the

feature functions are those that link the observation from the training set with the output states we

want to estimate.

Ep̃( fi) = ∑
X×Y

p̃(y,x) fi(y,x) (6.4)

Ep( fi) = ∑
X×Y

p(y,x) fi(y,x)

= ∑
X×Y

p̃(x)p(y|x) fi(y,x) (6.5)

Ep̃( fi) = Ep( fi) (6.6)

With these constraints, the expected value must be the same between the model and the training

set as shown in Eq. (6.6), such that the MaxEnt can be treated as solving an optimization problem

by using Lagrange multipliers, λi, for constraints. The MaxEnt model can be formulated as:

p∗(s|z) = 1
Z~λ (z)

m

∏
i=1

exp(λi fi(s,z)) (6.7)

Z~λ (z) = ∑
s∈S

exp(λi fi(s,z)) (6.8)

6.3.2 Conditional Random Field

CRF can be understood as a sequential extension to the MaxEnt model and represented by various

feature functions accompanied by weight λi formulated as shown in Eq. (6.9), where j denotes

the position in the observation sequence and m is the number of feature functions. CRF combines

the benefits of HMM and MaxEnt. It is capable of realizing the probability of state transition by

defining complex features such that CRF can take context into account in training and testing phase

to enhance the accuracy of estimation. The feature functions fi represent the constraints provided
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by the collected observations such as floor map or trajectory in the scenarios of localization.

p(~S|~Z) ∝

n

∏
j=1

exp

(
m

∑
i=1

(λi fi(s j−1,s j,~Z, j)

)
(6.9)

In EcoLoc, CRFs consist of feature functions that describe the possibility of location transition

by using the corresponding observation [77]. The step detection decides when to activate the

CRF estimation. The heading orientation, Zθ
t , is used as the observation to define our first feature

function as shown in Eq. (6.10). We assume the heading orientation is a log-normally distributed

random variable so that the probability density of the log-normal distribution can be leveraged to

formulate our feature function. The σ2
θ

is the heading variance of observations Zθ
t , and θ(St−1,St)

is the heading orientation between the last state St−1 and the state St that we estimate for the current

step.

f1 = ln

 1√
2πσ2

θ

− (Zθ
t −θ(St−1,St))

2

2σ2
θ

(6.10)

The second feature function is defined by using the RSSI observation. It is optional and is con-

sidered only when the beacon signal is available in the indoor environment. Similar to our first

feature function, we use the RSSI observation to calculate the distance, Zd
t , between the user and

the beacon Bi to formulate the feature function as follows:

f2 = ln

 1√
2πσ2

d

− (Zd
t −D(Bi,St))

2

2σ2
d

(6.11)

where the σ2
d is the distance variance of the observations Zd

t and D(Bi,St) is the distance between

the beacon and the estimated state.
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Figure 6.3: Encounter Event in our CCRF

Figure 6.4: Collaborative Conditional Random Fields

6.3.3 Collaborative Conditional Random Field

Our CCRF merges the shared trajectory with our own trajectory to improve the convergence dis-

tance of localization. As a simple example shown in Fig. 6.3, two possible locations are estimated

by ordinary CRFs. After combining the trajectories, our CCRF eliminates the upper location but

selects the lower one because that is the only feasible location that allows the combined trajectory

to satisfy the floor-plan constraints.

Our CCRF is illustrated in Fig. 6.4. It extends the current trajectory with the acquired trajectory
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from the encounter events. Suppose the length of the acquired trajectory is k steps and our tra-

jectory is t steps, the merged trajectory may not be used to estimate the current location since the

estimated location is at step (t + k) instead of step t. Therefore, our CCRF reverses the acquired

trajectory and estimate the location at step (t +2k). The CCRF can be formulated as follows:

p(~S|~Z) ∝

t+2k

∏
j=1

exp
( m

∑
i=1

(λi fi(s j−1,s j,~Z, j)
)

(6.12)

6.3.4 Real-Time Tracking Algorithm

Algorithm 3 shows our real-time tracking algorithm based on Viterbi’s [22]. It provides real-time

update for IoT devices without estimating location from the scratch.

Algorithm 3: Real-time tracking algorithm
Input: The length of output T , observation ~Z, state ~S
Output: The most likely hidden states sequences ~X

1 Function HeuristicRealtime (T , ~Z, ~S)
2 begin

// Calculate the score

3 foreach sx ∈~S do
4 score[sx, j]← max

y∈Valid
(score[sy, j−1]×Ψ j(sx|sy,~Z)) ; // Estimate the score of states at

step j

5 path[sx, j]← argmax
y∈Valid

(score[sy, j−1]×Ψ j(sx|sy,~Z)) ; // Store the path of states at step

j

6 max state← argmax
si

score[si,T ] ; // Find the highest score of state at step T

7 foreach i ∈ 〈0,1, . . . ,T −1〉 do
8 Xi← path[max state, i] ; // Output the path

9 return X ;

When a user takes a step, each possible locations on the map, which are the pre-defined states, will

get a score that represents the probability of walking to it from other possible states. Given the

observation~z at step j, the score of sx transferred from state sy is calculated through the following

equations:
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score(sx, j) = score(sy, j−1)×Ψ j(sx|sy,~z) (6.13)

Ψ j(sx|sy,~z) = exp

(
m

∑
i=1

(λi fi(sy,sx,~Z, j)

)
(6.14)

Suppose there are possible states S = {s0,s1, ...,sn} and the length of observation is T . The se-

quence of the highest score at each step is the trajectory we want. Compared to the exhaustive

Viterbi search, the time complexity of our tracking algorithm is O(|S|2T ) instead of O(|S|T ). Fur-

thermore, because only eight states per transition are possible, the time complexity per step is

optimized to O(|S|×8) = O(|S|).

Our algorithm works as follows. First, each state is assigned a score, which is the highest score

among eight calculated results, by using the observation and the score of neighbor states at the

previous step (Lines 3-5). The current location is then determined as the state with the highest

score (Line 6) and the trajectory is generated as well (Line 8).
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Chapter 7

Evaluation

7.1 Experimental Validation

We have implemented our proposed work on two system platforms and set up a number of test

environments to evaluate our work. The same setup is used to evaluate a number of competing

techniques.

7.1.1 System Prototypes

To show the applicability of our proposed technique to a wide range of hardware, we implemented

our proposed technique on two platforms: a tablet and a sensor tag. The tablet shown in Fig. 7.1b

we use is the Nexus 9, which contains inertial sensors (accelerometer, gyroscope, and magne-

tometer) as most tablets do and runs Android 6 Marshmallow OS with Bluetooth 4.1 (dual-mode)

support. On the lower end, we use the Broadcom WICED Sense Bluetooth Smart Sensor Tag [12]

shown in Fig. 7.1a, which contains not only inertial sensors but also a barometer, temperature and

light sensors, a buzzer, and USB slave controller, all controlled by the BCM20737S, the Broadcom
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(a) Broadcom WICED Sense
Tag

(b) Android Nexus 9 Tablet

Figure 7.1: Two Platforms used for Our Evaluation

System-in-Package (SiP) with ARM Cortex-M3 MCU with an integrated BLE transceiver running

the 4.1 stack.

The implementation on WICED Sense validates EcoLoc’s applicability to resource-constrained

IoT devices. WICED Sense provides the sensing functions and requires a connection to a central

device such a smartphone, tablet, or PC with a BLE transceiver. The central device retrieves the

results from the WICED Sense tag and reports the estimated location to the user. However, due

to the lack of computation capability, only CRF and CCRF could be running, as PF requires too

much memory and computation power for mobile devices.

7.1.2 Experimental Setup

The ground truth is measured to generate the map for location estimation. Several evaluation

points are decided on the floor plan, and the untrained participants can choose any route they like

to reach the evaluation points. The user trajectories would then be collected for the comparison
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(a) Office Floor Plan (b) Lab Floor Plan
(c) 1st Floor Plan (d) 5th Floor Plan

Figure 7.2: Floor Plans for Our Experiments.

with competing works over several real-world floor plans, as shown in Fig. 7.2. The tablet-based

devices are tested in two different places, but the sensor tags are tested only with the smaller floor

plan due to the limited physical memory for storing the map information. The improvement from

the assistance of radio fingerprinting is also evaluated. The deployments of the beacons are shown

on the same smaller floor plan for the tablet but not the sensor tag, due to the limited computing

capability.

The results of the location estimation are collected and compared with the ground truth when the

participants reach the evaluation points. Another result we collect is the convergence distance, in

this case defined to be the number of steps required before the localizer outputs a location within

a 5-meter radius, which is the precision of GPS, from the ground truth. The overhead of running

CCRF is also compared in terms of the execution time on the smartphone and power on the sensor

tag. Finally, when running the CCRF on the tablet, the influence of different sampling rates of the

sensors on power consumption is evaluated.

7.1.3 Comparison

We implemented a number of related techniques for the purpose of comparison with our proposed

CCRF. They include (1) ordinary CRF, (2) Particle Filter, (3) and encounter-based collaborative

Particle Filter (CPF). The ordinary CRF does not consider encounter but just uses the same feature
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functions as CCRF, and the result can show how the CRF benefits from the encounter mechanism.

Particle Filter is another popular model for indoor localization. In our implementation, a total of

200 particles are used for estimation. Meanwhile, the dead reckoning and fingerprinting techniques

are the same as those used in CRF. The result is used to compare the advantage of CRF considering

the computation overhead and accuracy. The last one is the encounter-based collaborative Particle

Filter. We add the encounter mechanism to Particle Filter to fuse the standard deviation and the

central, instead of all samples particles, so that the particles in the intersection of the standard

deviations are resampled to improve the computation efficiency.

7.2 Results

EcoLoc is evaluated using two Broadcom IoT devices, the WICED Sense tag, in two indoor en-

vironments and using two Android devices, Nexus 9 tablet, in other two indoor environments to

demonstrate its universal applicability. On lower-end IoT devices, EcoLoc provides basic localiza-

tion functions, but on more resource-rich devices, it can be extendable to take advantage of existing

infrastructure such as beacons to enhance the convergence distance and accuracy.

7.2.1 Convergence Distance

The convergence distance we present here is the displacement required in the estimation to provide

a location within a 5-meter radius from the ground truth. Note that convergence distance is a metric

mainly for beaconless operation, i.e., (P)DR under floor plan constraints but without the starting

location. Convergence distance is less of a concern for reference-based localization. EcoLoc can

still take advantage of beacons when available. A short convergence distance means EcoLoc can

operate either without beacons or can operate well while requiring much lower density of deployed

beacons.
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Figure 7.3: The Comparison of Convergence Distance for WICED-Sense among Five Evaluation
Points

Improvement from Encounter

We first evaluate how encounter affects the CCRF on the IoT device and the applicability of EcoLoc

on the IoT devices. Fig. 7.3 shows the convergence distance is significantly shortened by up to 50%

compared to the non-encounter CRF in first three evaluation points. This is because the indoor

space is limited and the evaluation points we put are closer to the middle of hallway. The two

participants walk from either end of the corridor to reach the evaluation points. The convergence

distance measured from the rest of two evaluation points did not get improved significantly because

of the small indoor space such that the shorter distance is enough to estimate location. We show

that the convergence distance can benefit from the trajectories exchanged upon encounter.

The experimental results on the tablet conducted on the 1st and 5th floors of the campus Building

are shown in Fig. 7.4. We compare the results of PF, CRF, CPF, and CCRF. The convergence

distances on the 5th floor of all four localization techniques are less than 50 meters, which are all

shorter than the results on the 1st floor, because the trajectory on the 5th floor are more constrained
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Figure 7.4: The Comparison of Average Convergence Distance for Tablet on the 1st and 5th Floors

by the floor plan by a turn in the corner. In addition, both CRF and CCRF have shorter convergence

distances than PF and CPF do. This is because CRF captures the constraints and is able to provide

the most probable location immediately based on the prebuilt states; in contrast, PF iteratively

generates the new particles to explore the possible locations. In PF, each particle is assigned a

weight to represent the probability of that particle staying at the user ground truth location. In each

iteration, the weight of each particle is updated, and the weight of a particle may decrease due to

constraint violation such as walking through a wall. PF gradually discards the low-weight particles

and generates a new set of particles for the next iteration. Therefore, the resampling process of PF

results in longer distance to obtain the most probable location.

Interestingly, CPF has longer convergence distance than PF does. This is because the resam-

pling process of PF that we used for encounter also considers unreachable locations. As shown

in Fig. 7.5, the area of the the standard deviation are calculated upon encounter. The new set of

particles would then be spread in the intersection area. The right and left corridors are inside the in-

tersection area and some particles are spread. These particle cause the extra cost for the calculation

of convergence distance.
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Standard Deviation 

(a) Before encounter, the areas of the standard devia-
tion are large and almost overlapped.

Intersection 

(b) After encounter, the particles are resampled in the
intersection area.

Figure 7.5: The bad situation of encounter event for CPF.

Encounter in Open Space

Fig. 7.4 shows the convergence distance conducted on the 1st floor. The difference between the 5th

and 1st floors is that the 1st floor is an open indoor space with much fewer floor-plan constraints,

so that convergence distance increases for all experiments. However, the results in Fig. 7.4 show

the convergence distance of CCRF is significantly reduced comparing to CRF since the encounter

provides opportunities for sharing trajectories among users. In contrast, the encounter events did

not provide much more assistance since PF-based systems work poorly in open-space environ-

ments such as an atrium. In summary, the CRF-based systems need shorter convergence distance

than the PF-based systems do. Meanwhile, the encounter mechanism significantly help CRF-based

localization to reduce the convergence distance.
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Figure 7.6: The Comparison of Accuracy for WICED-Sense among Five Evaluation Points.

7.2.2 Accuracy

We quantify accuracy by measuring how close to the ground truth location each technique can es-

timate. Our experiments are conducted in different indoor environments with multiple participants

to evaluate the accuracy of CRF-based and PF-based localization.

On IoT Platform

The results we collected for IoT devices are shown in Fig. 7.6. The results for CCRFs and CRFs are

similar, where the error difference is within one step length. The accuracy of CCRF is sometimes

worse than CRF, primarily due to the noisy sensor data that cannot be removed by exchanging

trajectories. In addition, without sufficient observations such as RSSI fingerprints or locations of

beacons, the merged trajectories may accumulate more errors that result from PDR and worsen the

accuracy of estimation.
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Figure 7.7: The Comparison of Average Accuracy for Tablet on the 1st and 5th Floors without
Beacons

On Tablet

Fig. 7.7 compares the average accuracy of these localization techniques on the tablet on the 1st

and 5th floors of the campus Building. Overall, the CCRF and CRF can provide the same level of

accurate results and similar results as we have seen on the IoT platform. The CRF-based systems

are also more accurate than the PF-based systems.

Noise Tolerance

The results of individual evaluation points on the 5th floor are shown in Fig. 7.8. We observe that

at the evaluation point 6, PF is more accurate than CRF. This is because most of the participants

walk diagonally to reach this evaluation point. Since we assume the step length is a fix value when

generating the state map, the diagonal distance is longer than the distance between two states. The

error is thus accumulated and worsens the accuracy. PF is not influenced by the diagonal walking

because it is not restricted to the state transition, and it utilizes the sampling particles to explore the
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Figure 7.8: The Comparison of Accuracy for Tablet on the 5th Floor without Beacons

possible location. At evaluation points 2 and 5, due to the magnetic field noise caused by the metal

building materials, the magnetometer sensor data worsens the accuracy of all systems, especially

PF. It shows that CRF-based systems have higher tolerance to the sensor noise than PF-based ones.

The results of individual evaluation points on the 1st floor are shown in Fig. 7.9. It is a relatively

open, unconstrained space. In the experiment, the participants walk randomly to reach the eval-

uation points. Similar to the 5th floor, the CRF-based systems provide less accurate estimation

due to the frequently diagonal movement. In addition, the results of PF are worse because we use

Gaussian distribution at the Importance Weighting step. When we resample the particles, a small

subset should be chosen and assigned different heading orientations based on the Gaussian distri-

bution for error modeling in each iteration. Without floor-plan constraints in the open space, every

particle is always active such that more particles accumulate errors after several iterations.
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Figure 7.9: The Comparison of Accuracy for Tablet on the 1st Floor without Beacons

Figure 7.10: The Comparison of Average Accuracy for Tablet on the 1st and 5th Floors with
Beacons
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Figure 7.11: The Comparison of Accuracy for Tablet on the 5th Floor with Beacons

With Beacons

The results of the techniques with beacon assistance are shown in Fig. 7.10. As explained in the

section on the encounter model, due to the limited packets size, the beacon information is used

only by the individual device for estimation but not shared with other users.

The estimated errors of all of the systems are all improved, since the beacons provide the extra

reference for error correction. Again, we check the result at evaluation point 6 on the 5th floor

shown in Fig. 7.11, which suffers from the error caused by the diagonal walking. Though the

beacons can improve the accuracy, it does not work perfectly to remove the accumulated error

from the diagonal walking. On the other hand, with the help of beacons, the estimated results at

the evaluation point 5 is significantly improved since the system can infer that the user location is

in the conference room. Fig. 7.12 shows the experimental result collected on the 1st floor, and the

accuracy is also improved by the reference of the beacons. Note that only 5 beacons are used in

the experiment, and we expect the accuracy to be further improved by deploying more beacons.

In summary, a CRF-based system can provide more accurate estimated results than a PF-based sys-
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Figure 7.12: The Comparison of Accuracy for Tablet on the 1st Floor with Beacons

tem can. A CRF-based system has better performance with or without the assistance of constraints.

Although the diagonal movement decreases the accuracy, the error can be bounded using the fin-

gerprinting technique such as the beacons we use in the experiment. Meanwhile, a CRF-based

system has higher resistance to the sensor noise compared to a PF system in the same environ-

ment. However, the information estimated from the dead reckoning technique directly influences

the accuracy of all the system.

7.2.3 Algorithm Overhead

The overhead is evaluated by measuring the power consumption of our implementation, since the

APIs for timing measurement are not open-source, and we are unable to instrument the system

software. We observe the overhead mostly coming from the pairing behavior (scanning and adver-

tising).

We compare the time complexity of the CRF-based system and the CPF system running on the

tablet. The CPF requires 35.36 ms for the processing in each steps, while the CCRF spends only
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Figure 7.13: Overhead of Power Consumption for WICED-Sense.

4.56 ms. Fig. 7.14 shows that the execution time when the encounter events occur. Although

the CPF can execute the process within 20 ms, which is much lower than CCRF (215.44 ms), it

sacrifices the accuracy and convergence distance that we evaluate in the previous sections for the

lower time complexity.

7.3 Summary

The knowledge of location is fundamental to intelligent behavior of interconnected devices. Cur-

rently, location is a privilege afforded mainly by higher-end systems equipped with GPS, cameras,

or acoustic, or other ranging devices that are bulky, costly, or consume relatively high power. Low-

end sensor nodes rely on either specialized devices or infrastructure support.

To make location knowledge a universal right of all IoT devices, not just the resource-rich ones,

we propose EcoLoc, which requires only low-end processing capabilities and low-power inertial

sensors in packages as small as 2×2 mm2. It exploits sharing of trajectories between devices upon

encounter as a way to estimate the location on the map while requiring up to 50% shorter con-
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Figure 7.14: Comparison of Time Complexity between CCRF and CPF

vergence distance than previous techniques. The computation effort is also reduced significantly,

thanks to the use of our CCRF model. The use of BLE makes it practical because it uses the exist-

ing RF interface for not only communication but also proximity sensing and encounter exchange.

The overhead we measured on IoT device in terms of current consumption of 15 mA.
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Chapter 8

Conclusions

This dissertation has presented collaborative sensing approaches to solving the position inference

problems. This chapter concludes this dissertation with a summary and research directions for

future work.

8.1 Summary

Collaborative sensing approaches are proposed and implemented in two position sensing systems.

This dissertation consists of two parts, Part I presents a framework for chest compression depth

estimation, and part II proposed a collaborative approach for indoor localization.

8.1.1 Chest Compression Depth Estimation

A collaborative sensing system is proposed to provide real-time chest compression depth feedback.

We exploit the rotational motion to enable the collaborative sensing by using two IMUs. One

IMU is placed on the center of chest to measure the acceleration and the other one is placed 2
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inches away from the center to measure the angular velocity. Kalman filter and complementary

filter are used for depth estimation. The experimental results show our proposed compression

depth estimation method provides more accurate results than the comparing method. Our proposed

method is lightweight and designed for resource-limited IoT devices.

The contribution of our proposed collaborative position-sensing framework for real-time CCD

estimation includes

• A novel chest-compression model for a data fusion algorithm to handle cumulative error in

depth estimation.

• A mutual-information-based evaluation method for IoT device placement to obtain qualified

sensor data.

8.1.2 Collaborative Indoor Localization

A collaborative indoor localization system is proposed to enable universal location sensing among

IoT devices by utilizing the encounter events. The BLE advertising protocol is exploit for proxim-

ity sensing and the advertising packet contains the user trajectory for data exchange. A collabora-

tive conditional random field is proposed to merge the received trajectories and generate the most

probable locations while significantly shortening the convergence distance compared to the state-

of-the-art techniques. Our collaborative position sensing runs in real-time and can be distributed

to resource-limited IoT devices.

The contribution of our collaborative indoor localization system includes

• A power-efficient encounter model to discover nearby devices and exchange data

• A collaborative data fusion algorithm to enable universal location sensing by all mobile IoT

devices
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8.2 Future Work

Many research opportunities still remain for further improvement and exploration in our proposed

position sensing system. Research directions for future work based on our proposed system are

provided.

8.2.1 Chest Compression Depth Estimation

Our rotational model assumes that the z-axis velocity can represent the tangential velocity. An

orientation estimation model to find the tangential component of the velocity can be developed

to improve the accuracy of rotation radius estimation. Our depth estimation method assumes that

the sensor is placed on a flat surface. The algorithm can be further improved by integrating an

advanced orientation estimation system. The statistical model can be used to replace our rotational

model but the acquirement of training data may be a challenge. The clinical trial is essential to the

medical system design and also provides the opportunities to collect the training data. However,

CPR is not a general procedure can be perform on real people. Therefore, the study on data

collection is a potential research topic to develop the statistic-based method.

8.2.2 Collaborative Indoor Localization

Our work currently assumes the step length is fixed and the encounter event happened when the

distance between two users are within one step length. A more general step-length estimation

model can be added and the encounter event can be further defined in term of distance to improve

the accuracy. In addition, since the trajectory is broadcast using advertising packet, the privacy

and security issues should be considered. User nehavior can be infereed by analyzing the shared

trajectory. Thus, a randomly generated, single-use identifier such as randomized MAC address

used in iBeacons can be considered to protect the privacy.
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