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Abstract

The relationship between function learning and other
types of concept acquisition is far from well understood.
Some models of function learning have used approaches
that are very different from current models of categoriza-
tion, while more recent function learning models have
used exemplar representations, following the categoriza-
tion literature. This paper describes two new models
of function learning that combine well-studied “off-the-
shelf” approaches to category learning (ALCOVE and
SUSTAIN) with recent work in knowledge partitioning.
These models are shown to perform basic function learn-
ing tasks, to partition knowledge of functions, and to be
capable of addressing some individual differences in at-
tention and generalization.

Introduction
Although most research in concept learning focuses on
learning of discrete categories, people also learn func-
tions of continuous variables. Cognitive tasks such as
estimating how long you can stay in the sun before
you burn, or how much a used car might be worth, re-
quire prediction of a quantitative value, given a com-
bination of qualitative and quantitative cues. Labora-
tory tasks in the literature include prediction of the rate
of spread of wildfires, given windspeed and slope, and
prediction of the amount of food aliens might require,
given size and physical attributes. Formally, function
learning is the task of learning a mapping from a multi-
dimensional domain space to a continuous value. For
the purposes of this paper, we are concerned with the
mapping (C1, . . . , Cn−1, Rd) ⇒ Rr, where the Ci are bi-
nary cue features, and Rd and Rr are the domain and
range respectively of the function to be learned1. This
framework can occur when the function to be learned is
partitioned, or separated into a number of subfunctions,
each of which is learned separately. For example, one
type of animal may require a lot more food as its size
increases, while another type may require only a little
more food. Recent work has shown that both category
and function learning tasks often involve partitioning of
knowledge to particular contexts (Lewandowsky, Kalish,
and Ngang 2002; Lewandowsky and Kirsner 2000).

1Experimental research into cognitive function learning
has not yet carefully investigated how and when people learn
functions of two or more continuous variables. Extensions of
the models presented here could potentially make interesting
predictions about performance on these tasks.

In experimental investigations of function learning,
several properties of the human capacity for function
learning have been discovered. For example, functions
that are linear (in an appropriate psychological space)
are easier to learn than functions that have curvature,
functions that increase are easier to learn than functions
that decrease, and extrapolation is less accurate than
interpolation (Busemeyer, Byun, Delosh, and McDaniel
1997).

Several different categories of models have been used
to explore function learning. Briefly, rule-based models
perform mathematical regression given the stimuli (Koh
and Meyer 1991), exemplar models use interpolation and
extrapolation techniques to generalize over stored exam-
ples (Busemeyer, Byun, Delosh, and McDaniel 1997; De-
Losh, Busemeyer, and McDaniel 1997; Guigon 2004),
and gating models learn a piecewise-linear approxima-
tion to the function using simple experts and a gating
module (Kalish, Lewandowsky, and Kruschke 2004).

Experimental results have generally not been consis-
tent with the predictions of rule-based models, and they
have generally been left behind. Exemplar models, such
as ALM (Busemeyer et al. 1997) and EXAM (DeLosh
et al. 1997), have been more promising, but cannot ac-
count for multi-modal patterns of extrapolation results
seen when multiple functions are learned simultaneously
(Lewandowsky et al. 2002). The POLE (Population
Of Linear Experts) model of function learning (Kalish,
Lewandowsky, and Kruschke 2004) is an attempt to ad-
dress this. POLE is a complex model which uses a large
number of fixed linear experts, controlled by a gating
network. The gating network learns which experts are
most accurate for particular input domains, then gates
the experts in a probabilistic manner. POLE can repli-
cate the multi-modal patterns, but has significant flaws
(summarized in the discussion) that limit the extent to
which its results support its laudable framework.

The work presented here is an effort to improve on
some of the basic assumptions of POLE, by using well-
understood computational models of category learning
as major components of the model. These models ac-
count for a wide variety of categorization phenomena,
and their use as components of this new work allows it
to be better tied to research regarding attention alloca-
tion, exemplar and cluster formation, and other impor-
tant aspects of concept and skill acquisition.

The remainder of this paper describes two new,
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Figure 1: AEGLE and SEGLE function learning sys-
tems, block diagram. For AEGLE, the gating network
is ALCOVE; for SEGLE, it is SUSTAIN.

closely-related algorithms for modeling function learn-
ing, based on the concepts underlying POLE and the
mixture-of-experts algorithm from the neural network
literature (Jacobs, Jordan, Nowlan, and Hinton 1991)
but combined with well-understood psychological mod-
els of category learning as the gating component. These
models account for a number of the effects observed in
function learning experiments, and suggest new ways to
explore this rather complicated set of behaviors. The
next two sections introduce these new models, followed
by an overview of some basic simulations performed us-
ing the models, and some concluding analysis.

AEGLE

The first new model is called AEGLE, for ALCOVE-
based Ensemble of Gated Linear Experts. It uses, as
a core component, the ALCOVE (Attention Learning
COVEring map) model of classification (Kruschke 1992).
ALCOVE learns to classify using an exemplar-based rep-
resentation, with error-driven changes to weights and
attention. AEGLE is thus a model of function learn-
ing that uses a well-studied model of classification as its
gating network. Figure 1 shows its overall architecture.

The experts are simple Least-Mean-Square (LMS) lin-
ear nodes, receiving only a single real value as input.
The gating network gets all input attributes, and learns
to predict which experts will perform well for each ex-
ample. Both the experts and the gating network learn
in an error-driven manner.

The input is vector I1, . . . , In, where I1 is a distin-
guished real-valued feature in [0, 1], used as the input to
the experts, and I2, . . . , In are boolean context features,
used only as inputs to the gating network.

When a stimulus arrives at the gating network, it is
processed exactly as in ALCOVE:

ahid
j = exp[−c(

∑
i

αi|hji − Ii|r)q/r] (1)

Gk =
∑

j

gkja
hid
j (2)

Each input Ii is compared to the exemplars, hji,
weighted by each attribute’s attention value, αi, and
transformed by an exponential function with parame-
ters c, q, andr, giving ahid

j , the activation of each hidden
(exemplar) unit. These activations are then transformed
through a weight matrix (gkj) to get G, the activation of
the k gating nodes (equivalent to aout

K in ALCOVE). G
is then used to compute the ensemble output probability
distribution:

P (O = Ok) =
exp(φGk)∑
z exp(φGz)

= G′
k (3)

O is the overall ensemble output, and Ok is the output
of each of the simple linear experts, computed as:

Ok = wkI1 − bk (4)

where wk and bk are each expert’s weight and bias.
When the ensemble is learning, a teaching value is

then used to update the model’s weights. Each expert’s
error is minimized using a variation on the usual LMS
rule, where the error is the normal sum-squared error.
The weight and bias update rules are modulated by the
gating values (G′

k), so that an expert that made a large
error would be updated only minimally if it was unlikely
to have been selected. Additionally, the use of momen-
tum (m) speeds up learning, and an adjustment to the
bias update rule slows down learning so as not to over-
whelm the weight updates when learning rates are large.

∆wk = (∆wk ·m) + ηw(T −Ok)G′
kI1 (5)

∆bk = (∆bk ·m)− ηw(T −Ok)G′
k mean(I1) (6)

where ηw is the learning rate, T is the training signal,
and mean(I1) is the average value of the inputs to the
experts.

Then, the teaching signal (target vector) for the gating
network is computed as follows:

T ′
k =

(|T −Ok|+ ε)θ

maxz[(|T −Oz|+ ε)θ]
, (7)

where ε is a very small number to prevent division by
zero, and θ is a parameter. That is, the target value
is near 1 when the expert made only a small prediction
error, relative to the other experts, but near 0 when the
expert made a large prediction error, relative to the other
experts. The updates to weights and attention are the
normal ALCOVE update rules:

∆gkj = ηg(T ′
k −Gk)ahid

j (8)

∆αi = ηα

∑
j

[
∑

k

(T ′
k −Gk)gkj ]ahid

j c|hji − Ii| (9)
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Note that αi is constrained to be non-negative.
The initial values of the expert weights are selected

from a normal distribution. As positive-sloped functions
are easier to learn, that distribution has mean 1 and
standard deviation 2. The biases are initially set to 0.5.
The initial values of the gating network’s weights are as
follows: αi = 1, gkj = 0. Following ALCOVE, we use
the training examples to set the exemplar nodes, hji.

Table 1 summarizes the parameters for AEGLE.
Summary. AEGLE is a mixture-of-experts learning

model, using the standard ALCOVE classification model
as a gating module, and commonly-used linear LMS
nodes as experts. Like POLE, it does gated piecewise-
linear approximation based on an exemplar representa-
tion of the stimulus space. Unlike POLE, it uses rel-
atively standard computation and update rules for the
experts and for the gating module.

SEGLE
The second new model is called SEGLE, for SUSTAIN-
based Ensemble of Gated Linear Experts. It uses
the SUSTAIN (Supervised and Unsupervised STratified
Adaptive Incremental Network) model of classification
(Love, Medin, and Gureckis 2004) in essentially the same
framework as AEGLE. SUSTAIN has a similar architec-
ture to ALCOVE, but uses incrementally-created clus-
ters as the internal representation of the input, rather
than exemplars. The allocation of attention also differs,
as noted below. SEGLE thus extends AEGLE by us-
ing a newer model of categorization, one that builds a
multiple-prototype model of the stimuli rather than us-
ing a large number of arguably implausible exemplars.

The SUSTAIN gating network is initialized with a sin-
gle cluster prototype, the location of the first training ex-
emplar. The position of a cluster in the instance space is
given by the vector Hpos

j . The weights wkj for the first
cluster are initialized to 1

n .
When making a prediction, the following steps occur:

update µ̄j , a vector of the average distances (one per in-
put dimension) of the exemplars to each cluster; compute
Hact

j , the activation of each cluster; do winner-take-all
and compute Hout

j , the output of each cluster; compute
Cout

k , the activation of each gating unit. Then, as with
AEGLE, compute P (O = Oi) = G′ and select an ex-
pert to make a prediction. These steps are expressed
algebraically as follows:

µij = |Ij −Hpos
ij | (10)

µ̄j = γ(
1
j

∑
i

µij) + (1− γ)µ̄j (11)

Hact
j =

∑n
i=1(λi)re−λiµj∑n

i=1(λi)r
(12)

winner = argmaxHact
j (13)

Hout
winner =

(Hact
winner)

β∑
j(H

act
j )β

(14)

Hout
notwinner = 0 (15)

Cout
k =

∑
j

wkjH
out
j (16)

P (O = Ok) =
exp(d Cout

k )∑
z exp(d Cout

z )
= G′

k (17)

These equations are the same as those shown in (Love
et al. 2004), except that µ is computed for scalar rather
than nominal inputs, and then a running average is com-
puted. SUSTAIN’s rule for updating λ, the tuning of
cluster receptive fields, does not converge for scalar in-
puts that get arbitrarily close to the cluster prototype
(Brad Love, personal communication), and this averag-
ing allows convergence.

The teaching signal for the SUSTAIN-based gating
module is the same vector T ′

i as used for ALCOVE in
AEGLE. After computing the teaching signal, the expert
weights are updated (as with AEGLE), then the follow-
ing steps occur to update the gating network: update
the prototype for the winning cluster, Hpos

winner; update
the attention tuning vector, λ; and update the weights,
wjk. Those steps are notated as follows:

∆Hpos
i,winner = ηg(Ii −Hpos

i,winner) (18)

∆λi = ηge
−λiµ̄ij (1− λiµ̄ij) (19)

∆wjk = ηgH
out
j (Tk − Cout

k ) (20)

SUSTAIN has two modes for adding new clusters. Ei-
ther new clusters can be added when an exemplar is too
dissimilar to existing clusters, or they can be added when
the error on an exemplar is too high. Here, we use the
first method, an unsupervised approach. (The second,
supervised method, is too sensitive to instability in the
gating network’s training signal.) When Hact

winner < τ ,
a new cluster is added, with center equal to the offend-
ing example, and with gating weights set so that it will
initially prefer to use experts that are rarely used:

wnew,k =
(
∑

j wjk)−1∑
z(

∑
j wjz)−1

(21)

The only significant changes to SUSTAIN for its ap-
plication to SEGLE are the averaging of µ to allow con-
vergence, the weights for new clusters, and the method
used to generate a training signal. All other details of
processing and learning are identical. See Table 1 for a
summary of SEGLE’s parameters.

Summary. Like AEGLE, SEGLE is a mixture-of-
experts learning model. It uses a variant of the SUS-
TAIN classification model as its gating module, and
shares the same LMS experts as AEGLE. Unlike AE-
GLE and POLE, its gating module uses SUSTAIN’s
dynamically-created clusters as its internal representa-
tion instead of exemplars.

Simulations
Four simulations show that AEGLE and SEGLE can ac-
count for a number of properties of function learning
seen in experiments.
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Table 1: Parameters for AEGLE and SEGLE

AEGLE SEGLE
Param. Description Value Param. Description Value
ηw expert learning rate free ηw expert learning rate free
ηg gating learning rate free ηw gating learning rate free
ηα attention learning rate free
c specifity free r attentional focus free
φ decision consistency free d decision consistency free

β cluster competition free
τ new cluster threshold free

θ gating target exponent 2 θ gating target exponent 2
r distance metric 1 γ µ decay constant 0.1
q similarity gradient 1

Simulation 1
Following (Kalish et al. 2004), the parameter space
of SEGLE was explored to confirm that it finds the
same functions difficult as people do. Over 20,000
models with parameters selected randomly were taught
seven functions. The free parameters were selected
from the following ranges: r ∈ [.1, 4], β ∈ [1, 10], d ∈
[1, 10], ηg ∈ [.01, 1], τ ∈ [.1, 1], ηw ∈ [.01, 1],m ∈ [0, 1].
5 experts were used in all cases. The seven functions,
all with domain and range in [0, 1], were (a) random,
y = random; (b) positive linear, y = x; (c) negative lin-
ear, y = 1 − x; (d) monotonic increasing, y = x2; (e)
monotonic non-decreasing, y = 1

2 + 8(x − 1
2 )3; (f) non-

monotonic quadratic, y = 1− 4( 1
2 − x)2; and (g) cyclic,

y = 1
2 + .2 sin(20x).

After training on 5 blocks of 60 examples each, the
mean-squared error on the training examples were com-
puted, and used to rank the difficulty of each function.
Experimental work has shown a ranking of b < c < d ∼
e ∼ f < g ∼ a. Over the very wide range of param-
eters explored, over 21% matched this ordering. All of
the first six of the principles described by (Busemeyer
et al. 1997) were confirmed: 90.6% of the models found
cyclic and random functions most difficult, 94.5% found
positive linear functions easier than negative linear func-
tions, 98.6% found monotonic increasing functions eas-
ier than non-monotonic functions, and the linear func-
tion was easier than the monotonic increasing function
77.0% of the time. All of these patterns are similar to
those observed in POLE, although we explored a sig-
nificantly larger area of the parameter space, reducing
overall accuracy.

These results show that over a fairly wide range of
parameters, SEGLE finds similar sorts of functions dif-
ficult, and easy, as do humans learning functions in the
lab.

Simulation 2
To account for the sort of knowledge partitioning de-
scribed by (Lewandowsky et al. 2002), POLE was shown
to extrapolate in a discontinuous manner when there
was a gap between qualitatively different segments of the
training examples (Kalish et al. 2004, Exp. 1). SEGLE
also easily shows this effect, as shown in Figure 2. Note
the discontinuity at x = 0.5. The expert used for x > 0.5

0 0.5 1
Stimulus

0

0.5

1

R
es

po
ns

e

Training
Testing

Figure 2: Performance of SEGLE on a replication of the
effect seen in Kalish et al. (2004), Exp. 1. Small dark
circles are the training examples, while large dark circles
are SEGLE’s responses on the final training block. Small
light circles are the predicted ideal responses to the test
stimuli, and the light diamonds are SEGLE’s responses
to those stimuli.

learned the slope of the line better than did the expert
used for x < 0.5.

Simulation 3
In addition to partitioning based on sub-ranges of the
input attribute used to make the function prediction,
SEGLE can partition based on an external cue. POLE
was not explicitly tested on this sort of function, al-
though it should be able to learn it, so new stimuli were
created to illustrate this ability.

The stimuli consisted of a binary cue, c ∈ {0, 1}, and a
domain variable that ranged from 0 to 1. The function to
be learned was y = 1

2 (1+x2) if c = 0, and y = 1
2 (1−x2) if

c = 1. 33 examples repeated in 10 blocks were presented
to SEGLE. The parameters, which required almost no
tuning from an initial guess, were as follows: r = 1, β =
10, d = 10, ηw = .15, ηg = .8,m = .8, experts = 8, τ = .5.

The results from a typical run of the simulation are
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Figure 3: Performance of SEGLE on a cue-partitioned
function. Lines are the two target functions, and the per-
formance on the last of 10 blocks of training are shown.

shown in Figure 3. On the last block of training, SEGLE
showed close fidelity to the target function, correctly us-
ing the cue to partition the experts (with the exception
of one gating error at x = 0.59). Note that performance
on the downward-sloping part of the c = 1 function was
worse than elsewhere, consistent with the general princi-
ple that functions with positive slope are easier to learn.

Simulation 4
Minda and Ross recently investigated the interactions
between two simultaneous concept-learning tasks, a cate-
gorization task and a function-learning task, sharing the
same stimuli (Minda and Ross 2004). For the present
simulation, we consider just the results from a condition
where only the function learning task was performed.

The stimuli contained both a criterial attribute (CA)
and a family resemblance (FR) structure of 5 attributes
(see Table 1 of Minda and Ross, 2004), plus a scalar at-
tribute. The function target could be predicted given
the scalar attribute and either the CA or FR informa-
tion. They found significant individual differences in at-
tention and generalization. After learning to a criterion,
subjects saw conflict items where the CA and FR in-
formation conflicted. 58% of responses to those conflict
items were consistent with the use of the single criterial
attribute, while 31% of responses were consistent with
the use of the broad family resemblance structure.

This task can be modeled using AEGLE2, treating the
CA and FR attributes as cues and the scalar attribute
as the domain of the function. That is, AEGLE can
learn to partition its knowledge based on the cues, gating
different functions based on those cues.

2Unfortunately, the scheme used in SUSTAIN to tune at-
tention is based on maximizing coverage of examples, not
minimizing error. As a result, attention to attributes is not
differentially affected by error, and SEGLE is inadequate for
exploring this data set.
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Figure 4: Results showing performance of AEGLE on
Minda and Ross (2004) cued function-prediction task.
Lines with symbols and error bars show similarity to
“ideal” responses, if only CA or only FR information was
used. The CA/FR attention ratio (axis on the right) is
high if most of the attention is on the CA attribute.

The parameters for AEGLE were roughly tuned to
get good performance on the training task, as follows:
φ = 4, ηw = .5,m = .1, ηg = .1, ηα = .9, experts = 2, τ =
2. To illustrate individual differences, c, the specificity
of activation of the stored exemplars in the gating net-
work, was varied from 0.2 to 2. 10 replications of the
model (for each value of c) were trained for 10 blocks,
and their responses on the conflict items were compared
to “ideal” responses based solely on the CA and FR in-
formation. The results are shown in Figure 4, along with
the (low and relatively constant) training error and a
measure of differential attention. With c near 1.1, re-
sponses on the conflict items tended to be most similar
to the responses expected if attention were focused on
the criterial attribute. Indeed, the ratio of attention to
the CA attribute to the mean attention to the FR at-
tributes reaches its peak at c = 1.4. With c near 0 or
2, attention is more evenly distributed, and responses to
the conflict items reflect that.

These results are consistent with Minda and Ross’ ar-
gument that individual differences in generalization on
their task are due to differential weighting of attention
to the CA and FR attributes. Further work is neces-
sary to confirm whether the parameter c, representing
the extent to which exemplars in the ALCOVE gating
network are activated by distant inputs, is a good ex-
planation for those individual differences. It should be
noted that Nosofsky and Zaki (1998) used variations in
this same parameter to explain the differences between
controls and amnesiac patients in recognition and cate-
gorization tasks.
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Discussion

Of the myriad possible models of function learning, AE-
GLE and SEGLE illustrate two variants on the mixture-
of-experts approach pioneered by POLE (Kalish et al.
2004). Like POLE, AEGLE and SEGLE conceptualize
function learning as a process of learning how to select
simple experts. SEGLE finds the learning of different
functions roughly as difficult as do experimental sub-
jects, can partition stimuli based on regions of the func-
tion domain, and can partition stimuli based on external
cue variables. Work with AEGLE suggests further ap-
proaches for modeling individual differences in learning
with many potential cues.

Although the general framework used by POLE is
shared by AEGLE and SEGLE, both the experts and the
gating network are radically different, and in many ways,
simpler and more suitable for analysis. Several of the
parameters used in POLE have subtle and non-obvious
effects and interactions. The use of a multiplicative gain
for each expert makes POLE’s predictions extremely sen-
sitive to the initial conditions and to changes to that
gain. As another example, if not for a threshold at 0, the
three parameters ω, λw, and λb would have only two de-
grees of freedom. These sorts of interactions, combined
with a very novel sort of gating module, make analysis
very difficult. In addition, the first author, despite the
gracious assistance of Michael Kalish (including a por-
tion of the original POLE source code) was unable to
get a reimplementation of POLE to show the behaviors
described in Kalish et al. (2004) without radical changes
from the reported parameters. Although POLE’s under-
lying motivations are novel and compelling, our concerns
about its replicability and transparency limit the extent
to which the model can be successfully applied.

It should also be noted that although AEGLE and
SEGLE should be more suitable to analysis than POLE,
they both have significant limitations that will be ad-
dressed by future exploration. The simple LMS experts
used in the model, although adequate for the simulations
described here, don’t learn very quickly or accurately. In
addition, LMS experts would predict that immediate and
accurate learning of a single repeated exemplar could not
occur, while it certainly could. As for the gating mod-
ules, ALCOVE, by virtue of being an exemplar model,
requires a large number of training examples to learn all
of the gating weights, and does not efficiently represent
this knowledge in the manner that SUSTAIN’s clusters
do. Future models in the tradition of SUSTAIN may
improve upon that approach’s ability to learn attention
weights in an error-driven manner (Brad Love, personal
communication), and these advances will be very use-
ful in extensions to AEGLE and SEGLE. Clearly, the
class of mixture-of-experts models of function learning
allow insight into the sorts of partitioning and example-
driven processes that underly human function learning,
but some details and a truly complete, comprehensive
model remain for future work.

Acknowledgments
This work was supported by National Institute on Deaf-
ness and Other Communication Disorders Grant DC-
005765 to James S. Magnuson. Thanks to Jim Magnuson
and the reviewers for comments on drafts of this paper,
and to Lewis Bott, Michael Kalish, and Brad Love for
their suggestions regarding this project.

References
Busemeyer, J. R., E. Byun, E. L. Delosh, and M. A.

McDaniel (1997). Learning functional relations
based on experience with input-output pairs by
humans and artificial neural networks. In K. Lam-
berts and D. Shanks (Eds.), Knowledge, concepts,
and categories, Chapter 11, pp. 405–437. Cam-
bridge, MA: MIT Press.

DeLosh, E. L., J. R. Busemeyer, and M. A. McDaniel
(1997). Extrapolation: The sine qua non for ab-
straction in function learning. Journal of Experi-
mental Psychology: Learning, Memory and Cogni-
tion 23 (4), 968–986.

Guigon, E. (2004). Interpolation and extrapolation in
human behavior and neural networks. Journal of
Cognitive Neuroscience 16 (3), 382–389.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E.
Hinton (1991). Adaptive mixtures of local experts.
Neural Computation 3, 79–87.

Kalish, M. L., S. Lewandowsky, and J. K. Kruschke
(2004). Population of linear experts: Knowledge
partitioning and function learning. Psychological
Review 111 (4), 1072–1099.

Koh, K. and D. E. Meyer (1991). Function learning:
Induction of continuous stimulus-response rela-
tions. Journal of Experimental Psychology: Learn-
ing, Memory & Cognition 17, 811–836.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based
connectionist model of category learning. Psycho-
logical Review 99 (1), 22–44.

Lewandowsky, S., M. Kalish, and S. K. Ngang (2002).
Simplified learning in complex situations: Knowl-
edge partitioning in function learning. Journal of
Experimental Psychology: General 131 (2), 163–
193.

Lewandowsky, S. and K. Kirsner (2000). Knowledge
partitioning: Context-dependent use of expertise.
Memory & Cognition 28, 295–305.

Love, B. C., D. L. Medin, and T. M. Gureckis (2004).
SUSTAIN: A network model of category learning.
Psychological Review 111 (2), 309–332.

Minda, J. P. and B. H. Ross (2004). Learning cat-
egories by making predictions: an investigation
of indirect category learning. Memory and Cogni-
tion 32 (8), 1355–1368.

Nosofsky, R. M. and S. R. Zaki (1998). Dissociations
between categorization and recognition in amnesic
and normal individuals: An exemplar-based inter-
pretation. Psychological Science 9 (4), 247–255.

910




