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ABSTRACT OF THE DISSERTATION

Computational Studies on Biomolecular Diffusion and Electrostatics

by

Nuo Wang

Doctor of Philosophy in Chemistry

University of California, San Diego, 2015

Professor James A. McCammon, Chair

As human understandings of physics, chemistry and biology converge and the

development of computers proceeds, computational chemistry or computational bio-

physics has become a substantial field of research. It serves to explore the fundamentals

of life and also has extended applications in the field of medicine. Among the many

aspects of computational chemistry, this Ph. D. work focuses on the numerical methods

for studying diffusion and electrostatics of biomolecules at the nanoscale. Diffusion

and electrostatics are two independent subjects in terms of their physics, but closely

related in applications. In living cells, the mechanism of diffusion powers a ligand to

move towards its binding target. And electrostatic forces between the ligand and the

xiv



target or the ligand and the environment guide the direction of the diffusion, the correct

binding orientation and, together with other molecular forces, ensure the stability of the

bound complex. More abstractly, diffusion describes the stochastic manner biomolecules

move on their energy landscape and electrostatic forces are a major contributor to the

shape of the energy landscape. This Ph. D. work aims to acquire a good understanding

of both biomolecular diffusion and electrostatics and how the two are used together

in numerical calculations. Three projects are presented. The first project is a proof of

concept of the bead-model approach to calculate the diffusion tensor. The second project

is the benchmark for a new electrostatics method, the size-modified Poisson-Boltzmann

equation. The third project is an application that combines diffusion and electrostatics to

calculate the substrate channeling efficiency between the human thymidylate synthase

and dihydrofolate reductase.
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Chapter 1

A Brief Overview of the Computational

Methods of Biomolecular Diffusion and

Electrostatics

This chapter provides the background information on the field of study of this

thesis and some of the key theoretical foundations for Chapters 2, 3 and 4. Specifically,

Section 1.2.1 introduces the diffusion tensor, which is the focus of study in Chapter 2.

Section 1.2.2 illustrates the Langevin equation, which is used for the diffusion simulations

in Chapter 4. Sections 1.3.1 and 1.3.2 explain the Poisson-Boltzmann equation, which is

the basis for the development of its improvement, the size-modified Poisson-Boltzmann

equation, in Chapter 3.

1



2

1.1 Background

1.1.1 The Importance of the Diffusion Process and Electrostatic In-

teractions in Living Organisms

In living organisms, biomolecules are being constantly transported within a cell

and across cells. This flux of biomolecules is a fundamental process of life.1 There

is the energy-consuming active transport by the membrane transporters2 or cellular

vesicles;3 there is also the passive transport by diffusion down the concentration gradient

of biomolecules that does not require energy input but instead increases the entropy of

the system. The journey of a biomolecule from its location of creation to its location of

function is usually a combination of active transport and passive diffusion. For example,

once a protein enters its destination organelle through active transport, it still needs to

encounter its reaction partner in the organelle by the mechanism of diffusion. Diffusion is

a ubiquitous and crucial part of the cellular and tissue-wide biomolecule trafficking that

needs to be decoded for a better understanding of the machineries in biology Biomolecular

diffusion is driven by the concentration gradient but also heavily influenced by external

forces, especially the long-range electrostatic forces. The electrostatic influence on

biomolecular diffusion is both at the mesoscopic4,5 and the microscopic scales.6,7 There

are cases where electrostatic forces help to guide the diffusional encounter and the

interaction between a ligand and its binding target, and effectively increasing the reaction

rate between the two.8 But more generally, the effect that electrostatic forces have on the

diffusion pattern of biomolecules is more elusive and involves a system of proteins, it

cannot be summarized by the increase or decrease of a single reaction rate.4,5 Setting

aside diffusion, electrostatics itself is also a major energy component of biomolecular

systems and contributes to the shape of the energy landscape of the system. The energetics

of a biomolecule highly determines its structure and function. Electrostatics can guide
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protein folding,9 it can also play a key role in enzymatic reactions.10 Being able to

calculate and understand the electrostatic features of a biomolecular system is thus vital

to the unveiling of the mysteries in biology.

1.1.2 The Value of Computational Chemistry

As much as technologies have been invented and improved at an unprecedented

rate in the past century, the number of experiments that humans can conduct to observe the

phenomena in nature, such as those of biological systems, cannot encompass everything

that humans would like to understand. On the other hand, physicists and chemists have

developed a set of self-consistent theories from the quantum level to the classical level

that covers almost all of the fundamental mechanisms of nature. Ideally, the complexities

of nature, such as life, that are built upon these fundamental mechanisms can be theorized

or modeled by building upon the fundamental physical laws, such as Newton’s law.

However, in reality, when theories are applied to comprehend a biological system that is

reasonably-sized and at a relevant time-scale, more often than not, no analytical solution

can be obtained from the theories, the only way is to solve the problem numerically by

modern computers. This line of works is called computational chemistry or computational

biophysics. The foundation of computational chemistry is rooted in the discovery of

quantum mechanics in the early twentieth century.11 It became an accessible scientific

method to the general researchers since the invention of the first microprocessor in

1971.12 Computational chemistry or biophysics can be applied at various scales, from

climate change13 to the function of a single protein.14 Computational chemistry is used

to provide insights on the puzzle pieces that cannot be collected by experiments and guide

the direction of further experiments, which in return confirm the computational results.

This computation-experiment cycle is an especially promising workflow in the computer-

aided drug design field and helped in the successful development of a number of drug



4

molecules.15,16 In this thesis, computational chemistry is used to study the currently

experimentally inaccessible details of biomolecular diffusion and electrostatics.

1.2 Biomolecular Diffusion

One of the most common macroscopic examples of diffusion is a drop of dye

spreading along its concentration gradient in a beaker of water. The microscopic expla-

nation of this lies in the existence of atoms and their thermal motions. This example

only involves diffusion in the physical space, while diffusion in general can happen in

any degree of freedom, i.e. position and momentum, or collective degree of freedom

of a system. All of the works in this thesis are in the classical regime. In classical

mechanics, everything is deterministic, however the theory of diffusion models a system

using probability. The non-deterministic behavior of diffusion comes from the neglect of

a large number of degrees of freedom. This neglect is due to the facts that first, it is too

expensive and tedious to keep track of all of the degrees of freedom of a realistically-sized

physical system; second, typically, only a fraction of the degrees of freedom is of interest.

In the case of biomolecular systems, the degrees of freedom that are usually neglected

are those of the solvent in a solution of biomolecules of interest. The probabilistic

perturbations from the neglected degrees of freedom require the degrees of freedom

of interest to be modeled as stochastic variables that take defined ranges of values and

have defined probability distributions over their ranges. An ensemble of the realizations

of such stochastic variables over time is called a stochastic process. The equilibrium

state properties of a system with incomplete information are calculated as the ensemble

averages of all of the possible configurations of the stochastic variables weighted by the

corresponding probability of occurrence. The dynamics of the system is calculated by

the deterministic energy function of the biomolecule together with the stochastic energy
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input from the solvent molecules. There are multiple mathematical models to implement

the stochasticity of a system. One that is relevant to a lot of chemistry and physics

problems is called the Markov process. The stochastic process of stochastic variable x

is a Markov process if at any time tn, the probability of x to take value xn is uniquely

determined by the immediate previous state of the system xn−1 at tn−1 and is not affected

by the state of the system at any time prior to tn−1. In other words, a Markov process

has no memory. Brownian dynamics or Brownian motion that is used in this thesis is a

subcategory of Markov process. The discovery of Brownian motion is credited to botanist

Robert Brown who observed the random motions of pollen in water in 1827. Between

1905 and 1906, Albert Einstein and Marian Smoluchowski made theoretical explanations

of this phenomenon based on the existence of atoms and molecules. Brownian motion

is typically expressed in two ways: one is the Langevin equation, which is a stochastic

equation of motion of the stochastic variables; the other is the Fokker-Planck equation,

which is a deterministic equation for the probability density of the stochastic variables.

The two equations are equivalent to each other. Here the Fokker-Planck equation is

derived first and then its relationship to the Langevin equation is shown.

1.2.1 The Fokker-Planck Equation

The derivation in this section follows two books, one by N. G. van Kampen,17 one

by W. J. Coffey et al.18 All of the stochastic variables are in general multi-dimensional

vectors, but here they are presented as one-dimensional variables for simplicity. Mathe-

matically, a Markov process is defined as:

P1|n−1(xn, tn|x1, t1; ...;xn−1, tn−1) = P1|1(xn, tn|xn−1, tn−1) (1.1)
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where Pa|b is the conditional probability for a stochastic variable to take certain values

at a different times given their values fixed at b other times. From the definition of a

Markov process, the joint probability P3 for stochastic variable x to take values x1, x2, x3

at times t1 < t2 < t3 is:

P3(x1, t1;x2, t2;x3, t3) = P1(x1, t1)P1|1(x2, t2|x1, t1)P1|1(x3, t3|x2, t2) (1.2)

Integrating the above equation over x2 and dividing P1(x1, t1) on both sides gives the

Chapman-Kolmogorov equation:

P1|1(x3, t3|x1, t1) =
∫

∞

−∞

P1|1(x3, t3|x2, t2)P1|1(x2, t2|x1, t1)dx2 (1.3)

The Chapman-Kolmogorov equation is the starting point of the derivation of the Fokker-

Planck equation.

Now consider an arbitrary function f (x) of the stochastic variable x. At x =±∞,

f (x) equals 0 and all of its derivatives exist. Write the following expression:

∫
∞

−∞

f (x3)
∂P1|1(x3, t3|x1, t1)

∂ t3
dx3 =

lim
∆t→0

1
∆t

∫
∞

−∞

f (x3)
(
P1|1(x3, t3 +∆t|x1, t1)−P1|1(x3, t3|x1, t1)

)
dx3 (1.4)

The naming of the variables in Equation (1.4) is arbitrary but times t1 < t3. Using the

Chapman-Kolmogorov equation on P1|1(x3, t3+∆t|x1, t1), the right hand side of Equation

(1.4) becomes:

lim
∆t→0

1
∆t

∫
∞

−∞

∫
∞

−∞

f (x3)P1|1(x3, t3 +∆t|x2, t3)P1|1(x2, t3|x1, t1)dx2dx3

− lim
∆t→0

1
∆t

∫
∞

−∞

f (x3)P1|1(x3, t3|x1, t1)dx3 (1.5)
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Expand f (x3) in a Taylor series around x3 = x2 and keep only the first three terms (this

will be justified later):

f (x3)≈ f (x2)+(x3− x2) f ′(x2)+
(x3− x2)

2

2!
f ′′(x2) (1.6)

Plugging Equations (1.5) and (1.6) into Equation (1.4) and substituting x3 as x2 for the

terms where they are not integrated together:

∫
∞

−∞

f (x2)
∂P1|1(x2, t3|x1, t1)

∂ t3
dx2

= lim
∆t→0

1
∆t

[∫
∞

−∞

∫
∞

−∞

(
f (x2)+(x3− x2) f ′(x2)+

(x3− x2)
2

2!
f ′′(x2)

)
P1|1(x3, t3 +∆t|x2, t3)P1|1(x2, t3|x1, t1)dx2dx3

]
− lim

∆t→0

1
∆t

∫
∞

−∞

f (x2)P1|1(x2, t3|x1, t1)dx2 (1.7)

= lim
∆t→0

1
∆t

[∫
∞

−∞

∫
∞

−∞

(
(x3− x2) f ′(x2)+ s

(x3− x2)
2

2!
f ′′(x2)

)
P1|1(x3, t3 +∆t|x2, t3)P1|1(x2, t3|x1, t1)dx2dx3

]
+

lim
∆t→0

1
∆t

[∫
∞

−∞

∫
∞

−∞

f (x2)P1|1(x3, t3 +∆t|x2, t3)P1|1(x2, t3|x1, t1)dx2dx3

−
∫

∞

−∞

f (x2)P1|1(x2, t3|x1, t1)dx2

]
(1.8)

The last lim∆t→0
1
∆t [· · · ] term in Equation (1.8) becomes zero because

∫
∞

−∞
P1|1(x3, t3 +

∆t|x2, t3)dx3 = 1. With this, exchange the order of the integral over x2 and the limit, and

define:

Dn(x2, t3) = lim
∆t→0

∫
∞

−∞
(x3− x2)

nP1|1(x3, t3 +∆t|x2, t3)dx3

n!∆t
(1.9)

Equation (1.8) becomes:

∫
∞

−∞

f (x2)
∂P1|1(x2, t3|x1, t1)

∂ t3
dx2
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=
∫

∞

−∞

(
D1(x2, t3) f ′(x2)+D2(x2, t3) f ′′(x2)

)
P1|1(x2, t3|x1, t1)dx2 (1.10)

Integrating by parts for the terms containing f ′(x2) and f ′′(x2) in Equation (1.10),

Equation (1.10) becomes:

∫
∞

−∞

f (x2)
∂P1|1(x2, t3|x1, t1)

∂ t3
dx2

=
∫

∞

−∞

f (x2)

[
− ∂

∂x2

(
D1(x2, t3)P1|1(x2, t3|x1, t1)

)
+

∂ 2

∂x2
2

(
D2(x2, t3)P1|1(x2, t3|x1, t1)

)]
dx2 (1.11)

For Equation (1.11) to fulfill any arbitrary function f (x), the following condition has to

be met:

∂P1|1(x2, t3|x1, t1)
∂ t3

=

− ∂

∂x2

(
D1(x2, t3)P1|1(x2, t3|x1, t1)

)
+

∂ 2

∂x2
2

(
D2(x2, t3)P1|1(x2, t3|x1, t1)

)
(1.12)

Simplifying the variable naming in Equation (1.12), a clean form of the Fokker-Planck

equation is obtained:

∂P(x, t)
∂ t

=− ∂

∂x

(
D1(x, t)P(x, t)

)
+

∂ 2

∂x2

(
D2(x, t)P(x, t)

)
(1.13)

In Equation (1.6), the terms after the third one are truncated. This is because of

the approximation that variable x is perturbed by white noise. Referring to Equation (1.9),

when n = 1, D1 has the unit of velocity, it is physically the drift velocity of the stochastic

variables under an external potential field. If there is no external field, D1 = 0, which is

the mean of the white noise. When n = 2, D2 is the variance of the white noise. With a
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change of symbols:

D2(x, t) = lim
∆t→0

∫
∞

−∞
(x− y)2P1|1(x, t +∆t|y, t)dy

2!∆t

= lim
∆t→0

2D∆t
2!∆t

= D (1.14)

where D is the diffusion tensor. It is usually approximated by a constant, the diffusion

constant, for an isotropic solution with spherical solutes that do not interact with each

other. However, it can be more accurately represented by an n by n square matrix, where

n is the number of degrees of freedom of interest of the system. Chapter 2 contains

a detailed description of one of the ways to realize the diffusion tensor. The higher

moments (n > 2) of the white noise are zero.

When it comes to applying the Fokker-Planck equation to study the diffusion

of macro-biomolecules, such as proteins and nucleic acids, a specialized version of the

equation, the Smoluchowski equation, is usually used. The Smoluchowski equation

can be expressed in the same abstract form as Equation (1.13), but it differs from the

Fokker-Planck equation in two key aspects:

1. The Smoluchowski equation only models the Brownian motion at the time

scale much longer than the velocity relaxation time, where the Brownian particles have

no acceleration, i.e. the over-damped regime. This is true for macro-biomolecules,

which are significantly bigger than the solvent water molecules that provide the random

perturbations.

2. Generalized variable x in Equation (1.13) represents a vector of both position

and momentum; But because that the velocity of the Brownian particles is effectively

constant under the Smoluchowski time-scale, the Smoluchowski equation is an equation

of the particle positions only.

As in most cases, when the position coordinates in the Smoluchowski equation
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are the x, y, z coordinates of the Brownian particles in the physical space, the probability

density in the Smoluchowski equation is naturally the concentration of the particles.

Solving the Smoluchowski equation with the appropriate initial and boundary conditions

grants the time-dependent concentration profile of the Brownian particles of interest. A

good example of the application of the Smoluchowski equation is its use in simulating

the calcium sparks in cardiomyocytes.19 In this paper, the solution of the Smoluchowski

equation is able to provide direct information on the duration and the magnitude of the

sparks, as well as the localization and density of Ca2+ near the Ca2+ handling proteins.

Finite element method is usually used to solve the Smoluchowski equation. An

example is program SMOL20 that utilizes the Finite Element Tool Kit (FETK).21 A

newer Smoluchowski solver Smolfin22 instead makes use of the finite element libraries

from the FEniCS project.23

Although the works done in this thesis do not involve solving the Fokker-Planck

or the Smoluchowski equation, Chapter 2 discusses the bead model approach and its

validity to calculate realistic multi-dimensional diffusion tensors that can be used as input

in solving the Fokker-Planck or Smoluchowski equation. Specifically, the bead model

calculated diffusion tensor can be used to substitute the D2 term in Equation (1.13).24

1.2.2 The Langevin Equation

The Langevin equation is similar to the Newton’s second law of motion, F = ma,

but with the addition of the random force. Here the Langevin equation will be directly

given:

m
d2x
dt2 =−γ

dx
dt
− dU(x)

dx
+η (1.15)

x and m are the position and mass of the diffusing particle. γ = 6πλ r is the friction

coefficient of the solvent, where λ is viscosity, r is the radius of the diffusing particle. γ
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is related to the diffusion constant D by the Stokes-Einstein relation D = kBT/γ . U(x) is

the external potential field on the system, it causes the "drifting" of the diffusing particles.

η is the stochastic force that obeys Gaussian distribution, i.e. white noise, it has the

following properties:

〈η(t)〉= 0

〈η(t1)η(t2)〉= 2kBT γδ (t2− t1)

These properties correspond to that of D1 and D2 when n = 1 and n = 2 in Equation

(1.9).

Here, a brief proof of the equivalency of the Fokker-Planck equation and the

Langevin equation is shown. The derivation in this section follows Zwanzig’s Nonequi-

librium Statistical Mechanics25 and the lecture notes by Lennart Sjögren at the University

of Gothenburg.26

Writing down a general Langevin equation of variable a:

da
dt

= ν(a)+F(t) (1.16)

where ν(a) is a given function of a. F(t) is Gaussian noise with zero mean and variance

〈F(t1)F(t2)〉= 2Bδ (t2− t1), B is a constant. f (a, t), the density of matter at coordinate

a, is a conserved function of a, it obeys the continuity equation:

∇ · J(a, t)+ ∂ f (a, t)
∂ t

= 0 (1.17)

J(a, t) = f (a, t)(∂a/∂ t) is the flux of the density of matter. Plugging Equation (1.16)
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into Equation (1.17):

∂ f (a, t)
∂ t

=− ∂

∂a
(ν(a) f (a, t)+F(t) f (a, t)) (1.18)

Define L0 =
∂

∂aν(a), L1 =
∂

∂aF(t), Equation (1.18) becomes:

∂ f (a, t)
∂ t

= (−L0−L1) f (a, t) (1.19)

Represent f by f (a, t) = e−L0tσ(a, t). Plugging it into Equation (1.19):

∂σ(a, t)
∂ t

=−eL0tL1(t)e−L0t
σ(a, t) =−V (t)σ(a, t) (1.20)

where V (t) = eL0tL1(t)e−L0t . The solution of Equation (1.20) is:

σ(a, t) = e−
∫ t

0 V (t ′)dt ′
σ(a,0) = eiX

σ(a,0) (1.21)

where X(t) = i
∫ t

0 V (t ′)dt ′. Taking the average of σ(a, t) over Gaussian noise F(t):

〈σ(a, t)〉F(t) =
〈
eiX〉

F(t)σ(a,0) (1.22)

〈σ(a, t)〉F(t) takes the form of the characteristic function of the variable X = X(V (F(t))),

which also behaves as Gaussian noise. The mean of X is 0, the variance of X is:

〈
X(t)2〉

F(t) =
∫ t

0

∫ t

0
〈V (t1)V (t2)〉F(t) dt1dt2 (1.23)

=
∫ t

0

∫ t

0

〈
eL0t1 ∂

∂a
F(t1)e−L0t1eL0t2 ∂

∂a
F(t2)e−L0t2

〉
F(t)

dt1dt2

=
∫ t

0

∫ t

0
eL0t1 ∂

∂a
e−L0t1eL0t2 ∂

∂a
e−L0t2 2Bδ (t1− t2) dt1dt2

= 2B
∫ t

0
eL0t1 ∂ 2

∂a2 e−L0t1dt1 (1.24)
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For Gaussian variable X(t) with 0 mean,
〈
eiX〉= e−〈X(t)2〉/2, so:

〈σ(a, t)〉F(t) = e−〈X(t)2〉/2
σ(0, t) (1.25)

∂ 〈σ(a, t)〉F(t)

∂ t
= BeL0t ∂ 2

∂a2 e−L0t 〈σ(a, t)〉F(t) (1.26)

Plugging σ(a, t) = eL0t f (a, t) into Equation (1.26), rewriting 〈 f (a, t)〉F(t) as probability

density P(a, t) and using the full form of L0, a Fokker-Planck-like equation is obtained :

∂

∂ t
P(a, t) =− ∂

∂a
(ν(a)P(a, t))+B

∂ 2

∂a2 P(a, t) (1.27)

In the most general case, a = [x1,x2, ...xn, p1, p2, ..., pn] is a vector of all of the

degrees of freedom of the system, x is position and p is momentum, Equation (1.27) is

the Fokker-Planck equation. However, when a is the particle position only, comparing

Equation (1.16) to Equation (1.15), it can be seen that the particle acceleration is absent.

In this case, Equation (1.16) is the over-damped Langevin equation and Equation

(1.27) is the Smoluchowski equation with external potential field ν(a).

As is mentioned in the previous section, the Smoluchowski equation, instead

of the more general Fokker-Planck equation, is usually used to study the diffusion of

macro-biomolecules. For the same reason, the over-damped Langevin equation is usually

used for macro-biomolecules instead of the Langevin equation.

Although both of the over-damped Langevin equation and the Smoluchowski

equation can be used to calculate reaction rates and to observe the localization of the

diffusing particles, the numerical solutions of the two equations that are used to generate

these quantities are different. The Smoluchowski equation offers the concentration map,

P(x), of the diffusing particle over the entire system while the over-damped Langevin

equation, as an equation of motion, generates individual trajectories, x(t), of the diffusing
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particle. The Smoluchowski solution gives the ensemble information of the system at a

lower resolution while the over-damped Langevin equation provides the instances of the

ensemble at a higher resolution. The lower resolution of the Smoluchowski approach lies

in the facts that first, the system needs to be discretized for its numerical solution and

second, the diffusing particles are modeled as concentrations at each point in space and

the information of their shapes cannot be included. Neither of these two approximations

is necessary in the Langevin approach. If one simulates enough numbers of trajectories

by the over-damped Langevin equation, they should obtain the Smoluchowski solution

by averaging over all of the trajectories.27 Which equation to use is usually a choice

between computational efficiency and accuracy. Note that, from the numerical calculation

and programming point of view, as soon as more than one diffusing species and time-

dependent boundary conditions, e.g. opening or closing of a channel, are involved, the

over-damped Langevin approach becomes significantly easier to apply.

A number of research papers used the over-damped Langevin equation to calculate

the reaction rates between biomolecules.6,7,28 People also used the equation to observe

other interesting biological phenomena, such as biomolecular crowding effects.29,30 A

few known Langevin dynamics or Brownian dynamics simulation software are UHBD,31

SDA,32 BrownDye,33 BD_BOX.34 Some molecular dynamics software, for example

GROMACS,35 can also be used to simulate Langevin dynamics.

The Chapter 4 in this thesis uses software BrownDye to simulate thousands of

stochastic trajectories by the over-damped Langevin equation to calculate the reaction

rate of a small ligand that is being released as the product from one enzyme active site

and reacts as the substrate with another enzyme active site. The "substrate channeling

efficiency" is then calculated, i.e. the number of substrates that reacted with the active site

over the total number of substrates produced (that includes the reacted and the escaped

substrates). Substrate channeling is an important catalytic strategy of the multi-enzyme
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complexes in vivo, and numerical diffusion simulation is a powerful tool to tackle such

problems.36

1.3 Biomolecular Electrostatics

Biomolecules always carry partial charges and the electrostatic interactions be-

tween these partial charges contribute a significant amount of energy, the electrostatic

energy, to the total energy of biomolecular systems. Usually, the charges on the atoms in

the biomolecules are represented by point charges centered at their atomic center. When

it comes to representing the charges on the water and the ions in the solvent, usually two

approaches are taken, the explicit solvent model and the implicit solvent model.37

In the explicit solvent model, the charges on the water and the ions are represented

exactly as that of the biomolecule. However, in the implicit solvent model, the net charge

on the water molecules is taken as zero and the charges on ions are represented by a

continuous charge density. The electrostatic screening of the polar water molecules is

modeled by a high dielectric constant, usually taken as 78 or 80, versus the low dielectric

constant in the biomolecule, usually taken as 1 or 2. The implicit solvent model is

invented because first, again, it is not always necessary to keep track of the full details of

the solvent degrees of freedom. And second, in biomolecular simulations, a large number

of solvent molecules needs to be added to reasonably represent a solvated biomolecule

and computing the dynamics or energetics of the solvent’s degrees of freedom takes a

significant amount of computing power. It is more economical if these computations

can be saved at the cost of a small decrease in accuracy. The implicit solvent model

is frequently used in the diffusion simulations to study biological problems at long

time-scale or large length-scale.38

To solve for the electrostatic properties of the biomolecular systems in the implicit
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solvent model, the Poisson’s equation and its approximations are used. The popular

approximations are the Poisson-Boltzmann equation39 and the generalized Born model,40

which is a further approximation of the Poisson-Boltzmann equation. In this thesis, the

Poisson-Boltzmann equation is exclusively used and it will be explained in more details

in the following text.

1.3.1 The Poisson-Boltzmann Equation

The Poisson-Boltzmann equation was invented independently by Louis George

Gouy and David Leonard Chapman in 1910 and 1913. An informal derivation of the

equation is given below starting from the Poisson’s equation.

Poisson’s equation is the fundamental equation for calculating the electrostatic

potential of a system with a given charge distribution ρ . The differential form of Gauss’s

law is ∇ · (εE) = ρ and the electric field E = −∇φ , where ε is the dielectric constant

and φ is the electrostatic potential. Combining the two equations results in the Poisson’s

equation for electrostatics:

∇ · ε∇φ =−ρ (1.28)

In the implicit solvent model, for biomolecules in a box of pure water, the

Poisson’s equation applies. In this case, ρ = ρ(x) is the partial charge distribution on the

biomolecule, while the partial charges on the atoms in water are considered as a whole to

be zero and are not represented in ρ(x). Dielectric constant ε takes on different values

depending on the location:

ε(x) =


2 x ∈ biomolecule

78 x ∈ solvent
(1.29)

Equation (1.29) describes a sudden jump in ε at the solute-solvent boundary. Alternatively
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a smooth interpolation between 78 and 2 can be used across the boundary and the

"boundary" will no longer be a two dimensional surface but a three dimensional shell

surrounding the biomolecule. Note that values 2 and 78 are the typical dielectric constants

used for protein and water, alternative values are also allowed. When Equation (1.28)

is solved by numerical methods, the electrostatic potential φ(x) over space is obtained.

From φ(x), the electrostatic free energy of the system can be calculated.

If the biomolecule is solvated in a box of water that contains ionic species, like

in the cellular environment, the charges on the ions need to be included in ρ(x) for

the accurate calculation of φ(x). In this case, the Poisson-Boltzmann equation is used

instead:

∇ · ε∇φ =−

(
ρ +∑

i
zicbulk

i e−ziφ/(kBT )

)
(1.30)

where index i represents the ith ionic species in the solution; zi is the charge carried by

one ion i in the unit of elementary charge e; cbulk
i is the bulk concentration for ion species

i; kB and T are Boltzmann constant and temperature. The Poisson-Boltzmann equation is

strictly a steady-state equation that assumes that the ion distribution in the steady-state

obeys the Boltzmann distribution e−ziφ/(kBT ).

The Smoluchowski equation can be used to prove the validity of the Boltzmann

distribution of ions in the steady-state. The ion distribution achieves steady-state in

solution by diffusion. In the steady-state, only the position of the ions matters and

the ion density in space no longer changes with time. Take Equation (1.13) as the

Smoluchowski equation, D2 = D is the diffusion constant; D1 = −(D/kBT )(∂ zφ/∂x)

is the drift velocity of the ion of charge z under electrostatic potential φ , φ is generated

together by the charges on the biomolecule and the ions themselves. Equation (1.13) can
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be written as:

∂c
∂ t

=− ∂

∂x

(
− D

kBT
∂ zφ

∂x
c(x)

)
+

∂ 2

∂x2

(
Dc(x)

)
∂c
∂ t

=
∂

∂x

(
D

kBT
∂ zφ

∂x
c(x)+D

∂

∂x
c(x)

)
∂c
∂ t

=
∂

∂x
De−zφ/(kBT ) ∂

∂x

(
ezφ/(kBT )c(x)

)

From Equation (1.17), ∂c/∂ t =−∂J/∂x, J is flux. And in the steady-state, the net flux

of ions in solution is zero, so:

J =−De−zφ/(kBT ) ∂

∂x

(
ezφ/(kBT )c(x)

)
= 0

∂

∂x

(
ezφ/(kBT )c(x)

)
= 0

c(x) = cbulke−zφ/(kBT ) (1.31)

cbulk appears due to the boundary condition used in the integration. At the "boundary",

the bulk solution, the ion concentration equals to its bulk value. Equation (1.31) is exactly

the Boltzmann distribution. And it is concluded that in steady-state, ions obey the

Boltzmann distribution. Solving the Poisson-Boltzmann equation gives the electrostatic

potential φ of the biomolecular system in an ionic solution. Some common Poisson-

Boltzmann equation solvers are UHBD,31 APBS41 and DelPhi.42 VISM is a newer

development that uses a more physics-based approach to generate molecular surfaces.43

1.3.2 Solvation and Binding Free Energy

The Poisson-Boltzmann equation and the generalized Born model have been

widely used in the calculation of the electrostatic component of the solvation free energy

and binding free energy of biomolecules.44,45 Molecular mechanics/generalized Born
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surface area (MM/GBSA) and molecular mechanics/Poisson-Boltzmann surface area

(MM/PBSA) are the names of the specific computational procedures.46,47 Accurately

calculating the free energies of biomolecular systems helps the understanding of their

structure and function. Particularly, the calculation of binding free energy is essential in

computer-aided drug discovery. MM/GBSA and MM/PBSA are relatively fast computa-

tional methods used to filter out the top drug binders out of hundreds of candidates for

the further selection by the computationally more demanding and more accurate methods

like thermodynamic integration.48,49

In MM/GBSA and MM/PBSA, the expression for the solvation free energy of a

biomolecule is:50

∆Gsolvation = (Gelec
solvated−Gelec

ref )+Gnonpolar
SASA (1.32)

where Gelec
solvated is the electrostatic interaction energy between the biomolecule and the

solvent; Gelec
ref is the electrostatic interaction energy between the biomolecule and an

environment of the same dielectric constant as the biomolecule; Gnonpolar
SASA = γA is the

nonpolar solvation free energy component calculated by the product of surface tension γ

and the solvent accessible surface area (SASA) A of the biomolecule. The determination

of the optimum location of the solvent accessible surface is itself a sub-field of study,

software like VISM (variational implicit-solvent model) specifically aims at tackling this

problem,43,51 more details can be found in the references.

The expression for the binding free energy between biomolecules A and B is:50

∆Gbinding =GAB−GA−GB (1.33)

GA =∆Gsolvation
A +GCoul

A +GvdW
A −T SA (1.34)

where AB is the bound complex of biomolecules A and B. Equation (1.34) also applies

for GAB and GB in Equation (1.33). In Equation (1.34), ∆Gsolvation
A is taken from Equation
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(1.32); GCoul
A and GvdW

A are the Coulombic electrostatic interaction energy and the van der

Waals interaction energy between the atoms within the biomolecule; T is temperature; SA

is the entropy of the biomolecule. SA can be ignored, taken as only the translational and

rotational entropy of a rigid biomolecule, or calculated by normal mode analysis52 from

a molecular dynamics trajectory depending on the nature of the biomolecular system and

the desired accuracy.

In MM/GBSA and MM/PBSA, the atomic charges, radii and the van der Waals

parameters of the biomolecule are assigned according to the choice of the molecular

mechanics (MM), aka molecular dynamics, force field. Terms ∆Gsolvation
A , GCoul

A and

GvdW
A in Equation (1.34) are all calculated based on the MM force field parameters. SA’s

dependency on the MM parameters is decided by how it is calculated. "GB" and "PB"

reflect how the electrostatic terms in ∆Gsolvation
A is calculated. "SA" reflects how the

nonplolar term in ∆Gsolvation
A is calculated.

All of the terms in Equations (1.32) and (1.34) can be calculated separately.

And then they are combined to produce the final binding free energy between two

biomolecules. Chapter 3 of this thesis studies a method that is potentially more accurate

than the Poisson-Boltzmann equation in the calculation of the electrostatic terms in

∆Gsolvation
A .

The Poisson-Boltzmann equation is an approximate way to model the ionic

solution. One of the approximations made is that the ions are point charges and they

experience no steric hindrance from each other, i.e. no repulsive energy is reflected in

the energy term zφ in Equation (1.31). The problem caused by this approximation is

that even for only moderately charged biomolecular surfaces, there tends to be an over

accumulation of counterions near the biomolecular surface, which leads to over-screening

of the electrostatic potential exerted by the biomolecule. This problem is traditionally

accounted for by using an ad hoc Stern layer,53 while in Chapter 3, a more physics-based
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method, the size-modified Poisson-Boltzmann equation, that uses the lattice gas theory

to model the size of the ions54 into the Poisson-Boltzmann equation is illustrated in the

realistic lipid bilayer systems.55
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Chapter 2

Assessing the Two-Body Diffusion

Tensor Calculated by the Bead Models

2.1 Abstract

The diffusion tensor of complex macromolecules in Stokes flow is often approxi-

mated by the bead models. The bead models are known to reproduce the experimental

diffusion coefficients of a single macromolecule, but the accuracy of their calculation

of the whole multi-body diffusion tensor, which is important for Brownian dynamics

simulations, has not been closely investigated. As a first step, we assess the accuracy

of the bead model calculated diffusion tensor of two spheres. Our results show that the

bead models produce very accurate diffusion tensors for two spheres where a reasonable

number of beads are used and there is no bead overlap.

26
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2.2 Introduction

Calculating the diffusion tensor of the macromolecules is an essential step in

their Brownian dynamics simulations.1 An analytical form of the diffusion tensor of

macromolecules based on their exact complex structure is impossible to obtain and the

tensor is commonly approximated numerically by the bead models. The bead model

was inspired by Kirkwood’s fundamental works on the hydrodynamic properties of

macromolecules.2,3,4 Its initial form was proposed by Bloomfield et al;5,6,7 and later it

was extensively studied and implemented in scientific software packages by the García

de la Torre group.8,9,10,11,12

The bead model belongs to the type of diffusion tensor calculation methods

that approximate the complex structure of macromolecules by smaller geometrically

simple frictional elements for which an exact or approximate analytical diffusion ten-

sor is available. And then these methods tackle the solvable frictional element-level

hydrodynamic problems in place of the analytically unsolvable macromolecule-level

problem. We summarize that all of the bead models have two key components: the way

the macromolecules are approximated by a collection of beads, which we call the bead

representation, and the way in which one formulates the diffusion tensor between beads.

We also want to point out that the frictional elements can be points as in Kirkwood’s

model, spherical beads as in the bead models, triangular patches as in a boundary element

method,13 or possibly other geometrical shapes. Here we study the bead model because

it is more widely used in Brownian dynamics simulations than the boundary element

method and it gives more accurate results than Kirkwood’s "point model".

Generally, the bead models can be applied to two types of Brownian dynamics sim-

ulations. The first type is the Brownian dynamics simulation of one macromolecule,14,15

where the macromolecule is set to be at least partly flexible. Each (bio)chemical unit,
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which can be an atom, amino acid, or even a protein domain, is approximated as one

bead, and only the bead-level diffusion tensor needs to be calculated. The second

type is the Brownian dynamics simulation of the diffusional association of multiple

macromolecules,16,17,18 where the macromolecules are modeled as rigid bodies and

(preferably) beads are packed on the surface of the macromolecules without considering

their chemical structures.11 Aside from calculating the bead-level diffusion tensor, an

extra step is needed to convert the bead-level diffusion tensor into the diffusion tensor of

the macromolecules. Note that the above two types of simulations can be combined with

one another and do not necessarily have to incorporate the bead models or any kind of

diffusion tensor calculations. The hydrodynamic interactions of the macromolecules are

often ignored in order to save computational time.

The calculation of the one-body diffusion coefficients, i.e. the diagonal elements

of the diffusion tensor, using the bead models has been shown to be computationally

manageable and accurate.11,12,19 However, the performance of the bead models in calcu-

lating the diffusion coefficients and the off-diagonal elements of the diffusion tensors for

two or more bodies has not been closely investigated.

In this work, we focus on the application of the bead models in the diffusional

association type of Brownian dynamics simulations. As a first step, we assess the accuracy

of the bead model calculation of the whole diffusion tensor of two spheres. We chose

the two-sphere system because first, it is the simplest two-body system and each sphere

represents one of the two biomolecules in a two-body diffusional association process.

Second, the analytical and series solution of the diffusion tensor for the two-sphere

system exists,20 to which we can easily compare our bead model calculation results.

Specifically, to build our bead models, we chose a type of bead representation called the

shell (S) representation,5,10 which uses a shell of beads to represent the surface of the

spheres. The bead-level diffusion tensor was then calculated by the popular modified
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Rotne-Prager (RP) tensor.8,21,22 From here on, "bead model" and "SRP model" both refer

to the bead models consisting of the shell representation and the RP tensor.

2.3 The Mathematical Formulation of the Bead Model

2.3.1 The Two-Sphere Diffusion Tensor D

The system studied here is two rigid non-overlapping equal-sized spheres in

Stokes flow. The velocities/angular velocities of the spheres and the external forces/torques

acting on the spheres are related to each other through the diffusion tensor D and the

resistance tensor R:

V = D ·F (2.1)

F = R ·V (2.2)

D=



Dtt
11 Dtt

12 Dtr
11 Dtr

12

Dtt
21 Dtt

22 Dtr
21 Dtr

22

Drt
11 Drt

12 Drr
11 Drr

12

Drt
21 Drt

22 Drr
21 Drr

22


(2.3)

F =

[
F1 F2 T 1 T 2

]T

(2.4)

V =

[
V 1 V 2 Ω1 Ω2

]T

(2.5)

Both D and R are in the form of symmetric 12 by 12 matrices. D is the inverse of R

and vice versa. Each sub-matrix in Equation (2.3) is itself a 3 by 3 (x,y,z by x,y,z)

matrix. The subscripts 1 and 2 refer to sphere 1 and 2, the superscripts t and r refer to the

translational and rotational motions. In Equations (2.4) and (2.5), F i, T i, V i and Ωi are

the external force, external torque, velocity and angular velocity of sphere i, i ∈ {1,2}.
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Except for the 12 diagonal elements in D, the element on the column i and the row j in

Dab
cd , i, j ∈ {x,y,z}, a,b ∈ {r, t}, c,d ∈ {1,2}, models the coupling between the a motion

of sphere c along the i-axis and the b motion of sphere d along the j-axis. The diagonal

elements are not coupling terms, they model the translational or rotational motion of a

sphere along an axis.

We define a "block" of the diffusion tensor to be an arbitrary group of terms in

the tensor (the locations of those terms in the tensor do not have to form a connected

rectangular block); for example, the tt block refers to all terms with the superscript tt.

In the Numerical Results section, we assess the accuracy of the whole tensor and its

different blocks separately.

The analytical and series expressions of the terms in D and R for two spheres

have been derived over the years and are summarized in a paper by Jeffrey and Onishi

(JO).20 Here, we call it the JO solution set; it will be considered to give the exact values

for D and all of our SRP model calculation results will be compared against it to assess

the model’s accuracy.

2.3.2 The Bead-level Diffusion Tensor D

One of the two key components of a bead model is the way in which one formu-

lates the diffusion tensor between beads. In this work, for a two-sphere system, we always

use the same number of spherical beads for each sphere. If each sphere is represented by

N beads and the system contains 2N beads in total, then the grand diffusion tensor D and

the grand resistance tensor R for all of the beads are:

v = D · f (2.6)

f = R · v (2.7)
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D =


D11 . . . D1,2N

... . . . ...

D2N,1 . . . D2N,2N

 (2.8)

Similar to Equations (2.4) and (2.5), f and v are the force/torque and velocity/angular

velocity vectors of all of the beads. Theoretically, in this coupled 2N-body system, each

Di j is a 6 by 6 matrix containing four blocks with superscripts tt, tr, rt, rr, and depends

on the coordinates and sizes of all of the beads. Unfortunately, such a complicated

grand diffusion tensor is unsolvable. To make the calculations feasible, we only use

approximate diffusion tensors for the many-bead system. Particularly, in the modified

Rotne-Prager (RP) tensor,8,21,22 only the two-body hydrodynamic interactions are taken

into account to the 3rd order of the inverse of the inter-bead distances. The rotational

motions of the beads are also ignored. The form of the RP tensor is as follows:

When i = j

Dii =
1

6πµai
I (2.9)

When i 6= j

Di j =
1

8πµr3
i j

[(
r2

i jI + ri j⊗ ri j
)
+

a2
i +a2

j

r2
i j

(
r2

i j

3
I− ri j⊗ ri j

)]

(ai +a j ≤ ri j) (2.10)

Di j =
1

6πµa

[(
1− 9

32
ri j

a

)
I +

3
32

ri j⊗ ri j

ari j

]
(ai +a j > ri j) (2.11)

where ai is the radius of bead i, a = (ai +a j)/2, ri j is the vector pointing from the center

of bead i to the center of bead j, ri j is the length of ri j, ⊗ represents outer product, µ is

the solvent viscosity, and I is a 3 by 3 identity matrix. Note that Equation (2.11) only
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applies to beads with the same radius.

Aside from the RP tensor we use here, there is the lower order Oseen tensor,23 the

higher order Reuland-Felderhof-Jones,24 Mazur-van Saarloos,25 Goldstein26 tensors and

the JO solution set (not exact for the many-bead system). However, the RP tensor appears

to be the best compromise between accuracy and computational power and it is the most

commonly used diffusion tensor in Brownian dynamics simulations of biomolecules. So

in this work, we use only the RP tensor to calculate the bead-level diffusion tensors.

2.3.3 From D to D

To apply the bead models to the diffusional association of rigid macromolecules,

D needs to be calculated from D. During the D to D calculation procedure, all of the

inter-bead hydrodynamic interactions are summed up to get the total hydrodynamic

interaction between the two spheres. One of the steps is the inversion of D. The

computational complexity of the conventional matrix inversion operation for a n by n

matrix is O(n3), making it the most time-consuming step in the bead model diffusion

tensor calculations. The calculation procedure can be found in previous works.8,27,28

Here we used an equivalent but slightly different approach described below.

We first define a "12-case" velocity matrix, V 12-case, for the two-sphere system.

The twelve cases correspond to the twelve degrees of freedom of the system; in order

they are: the translation of sphere 1 along x, y and z-axis, the translation of sphere 2

along x, y and z-axis, the rotation of sphere 1 about x, y and z-axis, the rotation of sphere

2 about x, y and z-axis. In the i-th case, we let the system move by unit speed/angular

speed only along its i-th degree of freedom. From the twelve cases, we obtain twelve

velocity/angular velocity vectors of the system; together we write them into V 12-case and
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it is numerically equal to an identity matrix:

V 12-case =

[
V case 1 . . . V case 12

]
12×12

= I (2.12)

And then from Equation (2.2):

R ·V 12-case = F12-case

R= F12-case

D= (F12-case)−1 (2.13)

F12-case is the matrix that contains the forces and torques experienced by the two spheres

in the twelve cases. R and F12-case are only numerically identical; matrix I is not explicitly

written out in Equation (2.13) but it bears units.

Having obtained Equation (2.13), the next step is to calculate F12-case, invert it

and get D. Since the two spheres are rigid, for each case, we can easily calculate the

velocity vector, vcase i, of all the beads given the velocity/angular velocity vector, V case i,

of the spheres. Note that since we use the RP tensor, the angular velocities of the beads

do not enter vcase i.

vcase i =



V case i
1 +Ω

case i
1 × r1

...

V case i
1 +Ω

case i
1 × rN

V case i
2 +Ω

case i
2 × rN+1

...

V case i
2 +Ω

case i
2 × r2N


(2.14)

where ri is the vector that starts at the center of the sphere that bead i is on and ends

at the center of bead i. After calculating the twelve vcase i, we write them together as

(v12-case)6N×12. The grand resistance tensor R is the inverse of the grand diffusion tensor
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D, which is calculated by the RP tensor, and we have:

f 12-case = R · v12-case

= D−1 · v12-case (2.15)

Here we obtain f 12-case, which stores the twelve force vectors of the beads in

the twelve cases. For each case, we can calculate the force/torque vector Fcase i of the

spheres from force vector f case i of the beads by:

Fcase i =



N

∑
j=1

f case i
j

2N

∑
j=N+1

f case i
j

N

∑
j=1

r j× f case i
j

2N

∑
j=N+1

r j× f case i
j


(2.16)

where subscript j is the index of the beads. This way we obtain F12-case from f 12-case.

And last, we obtain D as the numerical inverse of F12-case.

2.4 Generating Bead Representations For Spheres

The other key component of the bead models is the way in which one approx-

imates the macromolecules by a collection of spherical beads, or as we call it, a bead

representation. There are several types of bead representations.10 Here we work with

one type of bead representation only, the shell representation (most literature calls it

"shell model", but to avoid ambiguity, we call it the "shell representation" here). It only

assigns beads to the surface of the spheres and it best represents the physical picture of
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the hydrodynamics of the rigid nonporous spheres because hydrodynamic interactions

are fully screened in the interior of the spheres.

2.4.1 Building the Shell Representations

Figure 2.1: The shell representation for two spheres. Both spheres are placed along the
vector (1,1,1), the dashed line, at an equal distance from the origin. In this example,
both spheres have the same radius and each sphere surface consists of 50 beads.

To build a N-bead shell representation for a single sphere, we restrict the N beads

to be tangential to the sphere surface from the inside and apply a pseudo-repulsive force

between all pairs of beads. We iteratively minimize the pseudo-potential energy of the

system and adjust the bead radius (which is same for all of the beads) such that no beads

overlap and at least one pair of beads is tangential to each other.

The shell representation we use here is different from the commonly seen shell

representations.5,29 In our shell building method, the surface of the sphere is roughly

evenly divided by the beads, the shell of beads is smooth, and we can build a shell repre-

sentation with an arbitrary number of beads. We believe that such shell representation
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will more evenly account for the hydrodynamic interactions at every part of the sphere

surface. A view of our shell representation for the two-sphere system is shown in Figure

2.1. We put the two spheres along vector (1,1,1) instead of an axis to avoid zero entries

in the JO solution set calculated diffusion tensor and so the accuracy of all of the entries

in the diffusion tensor can be assessed.

2.4.2 Calibrating the Shell Representations

Before attempting to calculate the two-sphere diffusion tensor using the bead

models we made, we want to make sure that they can be used to calculate the single-

sphere (ss) diffusion tensor accurately. The single-sphere diffusion tensor follows Stokes’

law; its unitless form is:

Dss = I (2.17)

where I is a 6 by 6 identity matrix. The diagonal elements of the Dss calculated by

our bead models that use the shell representations built in the previous section are all

bigger than 1. And the off-diagonal coupling terms are non-zero; but they have very

small magnitudes (< 10−5). This is because, according to the way we build the shell

representations, there are holes in between the beads and the bead centers are located

on the inside of the sphere. These two factors lead to underestimated frictional forces

experienced by the sphere.

We calibrate the bead models calculated Dss to be as close to the Stokes’ law as

possible by scaling the shell representations. According to Equations (2.9)-(2.11), the

grand diffusion tensor, Equation (2.8), is inversely proportional to the length scale of the

shell representation, as such, we can shrink or stretch the shell representation of a bead

model by multiplying a scaling factor c to all of the bead coordinates and radii to make

its calculated Dss as close to I as possible.
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We first define the optimized scaling factor, copt, which scales the bead model

calculated Dss to have the smallest standard deviation from I. For comparison, we also

defined another two scaling factors, ct and cr, that respectively scales the calculated

average translational and rotational diffusion coefficients to 1.
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Figure 2.2: The values of the scaling factors for the bead models with different shell
representations. The scaling factors calibrate the bead model calculated single-sphere
diffusion tensors to be as close to the Stokes’ law as possible. When a larger number of
beads are used, the shell representation requires less scaling (scaling factor closer to
1), and therefore a smaller degree of calibration. Scaling factors ct, cr and copt are as
described in the text. Their values are calculated for 23 bead models and plotted with
respect to N, the number of beads in a bead model. The R is the radius of the sphere, set
to be 10 unit length here.

The values of the scaling factors only depend on two parameters, the number of

beads used, N, and the sphere radius, R (Figure 2.2). The value of copt falls between ct

and cr and all three scaling factors are very close to each other at all N. After scaling

with copt, for all 23 bead models used Figure 2.2, the average diffusion coefficient is less

than 2% different from the Stokes’ law. We can also see that, when more beads are used

(larger N), less scaling, therefore less calibration, is needed (scaling factors closer to 1, 1
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means no scaling). This means that the bead models with more beads give more accurate

Dss without scaling.

According to our original shell representation building approach, for the two-

sphere system, no bead overlap occurs as long as the spheres do not overlap. However,

after scaling, the shell representations get stretched out (all the scaling factors are bigger

than 1). The beads on different spheres will overlap when the two spheres are close. The

smaller the number of beads used, the more the overlap when the two spheres are nearly

touching.

In the following Numerical Results section, all of the bead models used are scaled

by copt.

2.5 Numerical Results

For all of the test cases shown in this section, the two-sphere diffusion tensor

was calculated by both the JO solution set and the SRP model, and we denote the

two differently calculated diffusion tensors as DJO and DSRP. Then, we measured the

accuracy of the diffusion tensor by Frobenius norm and Pearson’s Correlation Coefficient.

Note that all of the lengths and tensors calculated are converted to be unitless for easy

comparison.20

First, we want to compare the differences between the magnitudes of DJO and

DSRP. The magnitude of individual tensors can be calculated from their Frobenius norm,

see Equation (2.18). Likewise the magnitude of the difference between DJO and DSRP

can be calculated from the Frobenius norm of the difference of the two tensors. We

standardize the magnitude difference by the norm percent deviation (NPD), see Equation
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(2.19), to make the difference comparable across different system configurations.

‖D‖=

√√√√ 12

∑
i, j=1

d2
i j (2.18)

NPD =
‖DSRP−DJO‖
‖DJO‖

(2.19)

where di j denotes the element in the diffusion tensor and NPD ∈ [0,+∞). NPD tells us the

average accuracy of the elements in DSRP, but it does not say anything about the accuracy

of the individual elements. To address whether the accuracies of the individual elements

in DSRP are similar, we calculate the Pearson’s correlation coefficient (PCC) between the

two tensors. PCC measures the degree of linear correlation, or proportionality, between

DSRP and DJO and is defined by Equation (2.20):

PCC =

12

∑
i, j=1

(
(dJO)i j− d̄JO

)(
(dSRP)i j− d̄SRP

)
√√√√ 12

∑
i, j=1

(
(dJO)i j− d̄JO

)2

√√√√ 12

∑
i, j=1

(
(dSRP)i j− d̄SRP

)2

(2.20)

where d̄JO and d̄SRP denote the mean of the elements in DJO and DSRP and PCC ∈ [−1,1].

When PCC = 0, the two tensors have no linear correlation and the accuracies of the

elements in DSRP, i.e. the differences between each element in DSRP and its corresponding

element in DJO, have large standard deviation. When PCC = ±1, DSRP =±αDJO and

NPD= |1∓α|, α is a positive constant, the accuracies of the elements in DSRP are the

same, despite the fact that they can be equally high or equally low. Note that the signs in

the diffusion tensor have physical meanings, any PCC ≤ 0 indicates a wrongly calculated

DSRP. An accurate bead model calculation should give an NPD value close to 0 and a

PCC value close to 1. Note that both the NPD and PCC values can be calculated for any

block of DSRP with respect to the corresponding block of DJO.
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2.5.1 The Whole Tensor

We first assessed the accuracy of the whole diffusion tensor calculated by six

different bead models at various sphere separations (Figure 2.3). We see that as the

two spheres get further apart or as more beads are used in the calculation, the NPD

value gets closer to 0 and the PCC value gets closer to 1 consistently, meaning an

increasing accuracy of the bead model calculated diffusion tensors. However, the degree

of improvement of the NPD and PCC values also gets smaller at the same time.

In Figure 2.3, for all of the bead models used, when there are bead overlaps (d <

the sphere separations marked by the filled dots), the NPD values are much bigger than

0 and the PCC values are less close to 1, meaning a poor accuracy of the bead model

calculated diffusion tensors. Also, with overlaps, the NPD and PCC curves show irregular

behaviors, e.g. the 50-bead model curve crossing over the 100-bead model curve in both

Figure 2.3(A) and (B). But as the sphere separation gets larger, the NPD and PCC values

sharply tend towards 0 and 1. When the gap between the bead shells fits exactly one bead

(d = the sphere separations marked by the filled triangles), the NPD and PCC values

have basically converged.

As a side note here, since none of the shell representations for the sphere are

symmetric along all the lines that pass through the sphere center, different orientations

of the shell representation for each bead model lead to slightly different DSRP tensors.

For each bead model calculation in Figure 2.3, we took 10 random orientations of the

bead model to calculate the NPD and PCC values. However, the standard deviations of

the 10 NPD and the 10 PCC values for the 20-bead model when the two bead shells are

exactly touching are only 0.0002 and 0.000004. For models with more beads and at larger

separations, the standard deviations are essentially zero. Since different orientations give

little differences in most cases, from here on, we will only use one orientation for each

bead model calculation.
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Figure 2.3: The accuracy of different bead models at different sphere separations.
The bead model calculated diffusion tensor becomes more accurate (the NPD value
approaches 0 and the PCC value approaches 1) as the distance between the spheres
increases or as more beads are used in the calculation. The sphere separation, d, is the
distance between the centers of two spheres. The two spheres here both have a radius
of 10 in unit length. For each bead model, the filled dots mark the distance at which
the gap between the outer surfaces of the two bead shells is 0. The filled triangles mark
the distance at which the gap between the outer surfaces of the two bead shells can fit
exactly one bead.
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2.5.2 Different Tensor Blocks

Here, we used the 50-bead model for the investigation of the accuracy of different

tensor blocks. In Figure 2.4, we present only the NPD values because, similarly to Figure

2.3, the NPD and PCC values change with d according to the same trend; presenting both

of them would be repetitive.

In Figure 2.4, the tensor blocks are sorted by the type of motion coupling, the

coupling between the translational motions (tt), the coupling between the rotational

motions (rr), and the coupling between the translational and the rotational motions

(tr/rt). For each type of motion coupling, the bead model always calculates the coupling

between the motions of different spheres more accurately than the coupling between the

motions of the same sphere. For example, in Figure 2.4(A), the tensor block consists of

Dtt
12 and Dtt

21 achieves lower NPD values than the tensor block consists of the off-diagonal

elements of Dtt
11 and Dtt

22. Aside from this observation, the NPD value of the Dtt
12, Dtt

21

block converges to near 0 at large d, while the NPD value of the off-diagonal Dtt
11, Dtt

22

block keeps increasing as d increases, meaning that the elements in the block only get

more and more different from the exact solution as d increases. Similar results are seen

in Figure 2.4(B) and (C).

The NPD values of the diagonal elements in D are presented separately because

they model the translational or rotational motions of the single spheres, not the couplings

between the motions. The accuracy of the bead model calculated diagonal elements falls

between the accuracies of the couplings terms between spheres and the couplings terms

within each sphere; as can be seen from their median NPD values in Figure 2.4(A) and

(B). The NPD values of the whole tensor D are also plotted in Figure 2.4 as a reference.

In Figure 2.4, bead overlaps again lead to inaccuracies (large NPD values) and

irregular NPD trends. However, except for the NPD values of the off-diagonal 11/22

sub-blocks, the NPD values of the tensor blocks improve and converge quickly as d
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increases and bead overlaps disappear.

2.6 Discussion

In this paper, we assess the accuracy of the whole diffusion tensor calculated by

the bead models through the calculation of NPD and PCC values instead of assessing

the accuracy of only the diagonal elements of the tensor.11,12 In the Brownian dynamics

simulations that take hydrodynamics into account, the whole diffusion tensor should be

used,1 therefore it is important to assess the accuracy of all its entries.

The presented NPD and PCC measurements have direct physical meanings. In

Brownian dynamics simulations, an NPD value closer to 0 means a more accurate average

propagation speed of the system by DSRP; A PCC value closer to 1 means a more accurate

shape of the propagation path generated by DSRP. If we perform Brownian dynamics

simulations of the same system with the same sequence of random kicks, but two different

diffusion tensors DSRP and DJO and we obtain two trajectories, when NPD = 0 and PCC

= 1, DSRP = DJO and the two trajectories can be exactly superimposed onto each other.

When NPD > 0 and PCC = 1, DSRP = αDJO and NPD = |1−α |. For this case, the two

trajectories will have the same shape, but the DJO trajectory needs to be enlarged/shrunk

by a factor of α to be superimposed onto the DSRP trajectory; This is because the system

propagated by DSRP will move a factor of α faster/slower than the system propagated

by DJO. When NPD = 0 and PCC < 1, on average the systems in the two trajectories

move at the same speed, but they follow two different propagation paths that cannot be

superimposed onto each other by simple enlarging or shrinking.

The accuracy of the bead model calculated diffusion tensors gets better when more

beads are used in the calculation. The reason for this is that when more beads are used,

the bead model becomes equivalent to the boundary element method,13 which becomes
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equivalent to the exact solution to the Stokes equations as the boundary elements become

infinitesimally small. The accuracy also gets better when the two spheres are further

apart. Because the RP tensor was derived for well-separated beads and as the spheres get

further apart, the beads on different spheres get further apart, the bead configuration fits

more into the regime where the RP tensor was derived.

The magnitude accuracy (reflected by the NPD values) and proportionality ac-

curacy (reflected by the PCC values) improve and decline according to the same trend.

This means that, e.g. in simulations, the two-sphere system trajectory generated by the

bead models with more beads will follow a more accurate path with a more accurate

speed. In Figure 2.3, all six bead models acquired a less than 2% difference between the

magnitudes of DSRP and DJO, and a PCC value bigger than 0.9998, meaning that all of

the DSRP are nearly proportional to DJO. This is a quite satisfying result, because, even

with a small number of beads (20 beads), the DSRP is still fairly accurate.

The hydrodynamic interactions between the beads on the same sphere are always

more poorly accounted for than those between the beads on different spheres. In the two-

sphere system, the hydrodynamic interactions between the different degrees of freedom

of the same sphere should diminish quickly as the two spheres move apart. But because

of the intrinsic asymmetry of the shell representations, these hydrodynamic interactions

never disappear. And this leads to the big inaccuracy of the off-diagonal elements with

subscripts 11 or 22 at large sphere separation. Fortunately, these elements are usually

small enough that they do not contribute significantly to the overall error of DSRP. The

RP tensor does not predict the hydrodynamic interactions between non-overlapping, but

closely placed, beads as accurately as those of distantly placed beads, primarily because

the derivation of the RP tensor assumes that the beads are well separated.

It has been reported that the bead models using the RP tensor do not produce

accurate enough rotational diffusion coefficients because the rotational motion is only
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accounted for at the center of the beads.19,28,30 Our bead models with scaling greatly

improved the accuracy of the rotational tensor block and the whole tensor. The term

0.031(4πR2/(N +12))1/2 in the fitted formula of the scaling factor shown in Figure 2.2

makes up for the unaccounted hydrodynamic interactions due to the holes between the

beads on a sphere surface of area 4πR2 and the unaccounted bead volumes. Note that

when using scaling in our calculations, the ranking of the average accuracy of the three

types of coupling terms, tt, rr and tr/rt, depends on the choice of the scaling factor. We

chose copt in our calculations because it optimizes the average accuracy of all terms in D.

On the other hand, e.g. ct optimizes the average accuracy of the tt terms only and leaves

the rr and tr/rt terms less accurate.

For a two-sphere system, the bead models give consistent accuracy except for at

small sphere separations. In general, for any bead model used here, when the bead shells

of the two spheres overlap, the accuracy of DSRP is always fairly low (Figure 2.3), and

the accuracies of different tensor blocks show irregular improvements and declinations

(Figure 2.4). Using the RP tensor on overlapping beads requires extra precaution,31

and it may lead to unexpected results as shown here. Avoiding the bead overlapping

situation helps us calculate more accurate diffusion tensors. In the diffusional association

Brownian dynamics simulations of two proteins modeled by beads, one could use less

beads at large separations to save computation times and more beads at small separations

to avoid overlaps.

The method of Brownian dynamics simulations with hydrodynamics calculated

by the bead models was first developed more than 30 years ago.1 Until today, the

full hydrodynamics of the simulated biomolecules is still often ignored due to the size

and complexity of the biomolecules. Usually, only the diagonal elements of the bead

model calculated diffusion tensors are used. And in terms of the diffusional association

simulations, the diffusion tensors are often pre-calculated for isolated biomolecules
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instead of calculated on-the-fly for the whole simulation system involving multiple

biomolecules. This is mainly due to the challenge of quickly inverting and decomposing

the diffusion tensors for large simulation systems. Both the conventional matrix inversion

operation in the bead model calculations and the matrix decomposition operation in the

Brownian dynamics simulations scale as O(N3), where N is the number of frictional

elements in the system. Significant computational power is required to improve the bead

model accuracy. Faster matrix operation methods exist32 and should be applied in the

Brownian dynamics simulations with the bead models for practical reasons.

2.7 Conclusions

In general, our bead models produce very accurate two-sphere diffusion tensors

when the bead shells do not overlap and a reasonable number of beads are used (more

than around 20 beads for each sphere). Through this work, we gained confidence in

the accuracy of the bead model calculated diffusion tensors for two bodies with simple

geometry. Tests with realistic globular biomolecules should be performed as the next

investigation on the capability of the bead models. Continuous efforts are being made

in developing faster matrix operation algorithms for diffusion tensors, as well as more

accurate ways to calculate diffusion tensors from the bead models. We believe that,

with these efforts, we can eventually use the bead models to calculate realistic diffusion

tensors in the Brownian dynamics simulations of biomolecules.
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Chapter 3

Poisson-Boltzmann vs. Size-modified

Poisson-Boltzmann Electrostatics

Applied to Lipid Bilayers

3.1 Abstract

Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often

used to calculate the electrostatic properties of molecular systems. In the past two

decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation

(SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic

molecular systems, namely, lipid bilayers, under eight different sets of input parameters.

The SMPBE appears to reproduce the molecular dynamics simulation results better than

the PBE only under specific parameter sets but in general, it performs no better than

the Stern layer correction of the PBE. These results emphasize the need for careful

discussions of the accuracy of mean-field calculations on realistic systems with respect

to the choice of parameters and call for reconsideration of the cost-efficiency and the

51
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significance of the current SMPBE formulation.

3.2 Introduction

Mean-field methods provide a way to coarse grain the electrostatic interactions

between the solvent and the biomolecules of interest.1 They are commonly used to

generate the electrostatic potentials needed for biomolecular diffusion simulations2,3,4,5

and are used in calculations of the solvation free energies of biomolecules.6,7

The hundred-year-old Poisson-Boltzmann equation (PBE) is currently the flagship

of the mean-field methods.8,9,10 Despite the success of the PBE,11,12 it is built upon

several approximations; for example, the ions in the PBE are considered infinitesimally

small. This approximation runs into trouble near highly-charged biomolecular surfaces,

such as those of typical enzyme active sites.13 The reason is that, under the strong

electrostatic attractions near highly-charged surfaces, the concentration of the counterion

can exceed its maximally allowed value without the restriction from steric hindrance;

this will then lead to an overestimation of electrostatic screening and an underestimation

of the electrostatic potential exerted by the biomolecule.14,15 To remedy the lack of ion

steric hindrance, or ion-size effects, in the PBE, a Stern layer, or ion-exclusion layer,

outside of the molecular surface has been used, within which no ion is allowed.16

To improve the PBE, the size-modified Poisson-Boltzmann equation (SMPBE),

which incorporates the finite ion sizes through a more physical lattice gas formulation, was

developed and has been applied to biomolecular systems.14,17,18,19,20 The computational

cost of the SMPBE is comparable to that of the PBE when there are only two ion sizes.18

However, in its generalized form that can handle an arbitrary number of different ion

sizes, the SMPBE takes much longer to solve.19,21

It is known that mean-field methods are parameter-dependent and that there is
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no standard way of choosing input parameters that guarantee the optimum accuracy of

prediction.22,23,24,25 The SMPBE is reported to reproduce experimental18 and molecular

dynamics simulation20 results better than the PBE, but there still lacks a comprehensive

comparison between these two mean-field methods using a variety of input parameters to

determine whether the SMPBE generally outperforms the PBE.

This paper discusses the accuracy of prediction and the cost-efficiency of the

SMPBE with respect to the PBE using several different parameter sets. Given that the

mean-field methods are parameter-dependent, this work also discusses the existence of a

single parameter set with which the mean-field methods give consistent high accuracy of

prediction across different ionic strengths and surface charge densities. Specifically, the

equilibrium ion distributions outside of neutral and charged lipid bilayers are calculated

by the PBE and the SMPBE using eight different parameter sets and are compared to

the MD simulation resultsq. The long-term goal of this work is to identify appropriate

tools for modeling diffusion dynamics of molecules that are of biological or medical

interest.26,27 In these diffusion processes, the system evolves from a nonequilibrium state

to the equilibrium state and this work is an initial step to test the ability of the SMPBE in

predicting ion distributions in the equilibrium state. Lipid bilayers are considered here due

to their profound importance in the activity of membrane proteins and cross-membrane

signaling pathways.28,29

3.3 Methods

3.3.1 The SMPBE Implementation

The SMPBE formulation used here is capable of calculating the electrostatic

potential and the ion distributions for molecular systems containing an arbitrary number

of ion species with different ion sizes.19,21 A brief description of the formulation is
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included in Section 3.8.1. This formulation is an extension of the earlier foundational

SMPBE theory by Borukhov et al,14 which, in its original form, can only handle one

same-size cation-anion pair.

This SMPBE formulation is implemented in the Adaptive Poisson-Boltzmann

Solver (APBS),30 and is freely available upon request. A brief explanation of the SMPBE

routine in APBS is included in Section 3.8.2.

3.3.2 Numerical Calculations

Molecular dynamics (MD) simulations can generate the equilibrium ion distri-

butions in a molecular system at higher accuracy and resolution than the mean-field

methods, but also at significantly greater computational expense.1 In this work, the

MD simulation results are used as a standard to assess the accuracy of the PBE and the

SMPBE predictions.

Molecular Dynamics Simulations

The dimensions of the lipid bilayer systems used in the MD simulations and the

mean-field calculations are illustrated in Section 3.8.5 Figure 3.4. In this work, eight

lipid bilayer MD systems are simulated (Table 3.1).

1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) is a partially charged, but

overall neutral, lipid molecule and each 1-palmitoyl-2-oleoyl phosphatidylserine (POPS)

lipid molecule carries one negative charge. All of the systems in Table 3.1 are built by

the online application CHARMM-GUI Membrane Builder.31 The MD simulations are

performed by NAMD2.9 software package32 with CHARMM3633 lipid force field34

using mostly the default system settings offered by the CHARMM-GUI Membrane

Builder (see Section 3.8.3). Each system in Table 3.1 is simulated for 100 to 150ns.

All of the POPC simulations are 150ns long and reach convergence after 20ns. All
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Table 3.1: The composition of the molecular dynamics systems. POPC: 1-palmitoyl-
2-oleoyl phosphatidylcholine; POPS: 1-palmitoyl-2-oleoyl phosphatidylserine. The
bulk salt concentration is the averaged salt (NaCl, KCl) concentration at |z|=60Å (z, the
perpendicular distance to the bilayer center, is defined in Section 3.8.5 Figure 3.4) over
the converged portion of the MD trajectories.

System Lipid Cation Anion Bulk salt concentration
1 48 POPC 10 Na+ 10 Cl− 0.060 M
2 48 POPC 20 Na+ 20 Cl− 0.126 M
3 48 POPC 40 Na+ 40 Cl− 0.268 M
4 48 POPC 10 K+ 10 Cl− 0.060 M
5 48 POPC 20 K+ 20 Cl− 0.134 M
6 48 POPC 40 K+ 40 Cl− 0.275 M
7 48 POPS 68 Na+ 20 Cl− 0.170 M
8 48 POPS 68 K+ 20 Cl− 0.169 M

of the POPS simulations are 100ns long and converge after 30ns. The converged MD

trajectories are utilized for all of the data analysis (see Seciton 3.8.3 for the convergence

criteria).

Mean-field Calculations

To test the accuracy of a mean-field method in predicting the ion distributions in a

MD system listed in Table 3.1, three MD frames are evenly sampled from the converged

MD trajectory and a mean-field calculation is performed for each frame; the final mean-

field results are averaged over all three calculations. Note that APBS has no periodic

boundary conditions in its finite difference routine. To avoid boundary effects, the lipid

bilayer structures obtained from the MD simulations are manually extended 0.25 times

along the positive and negative x,y-axis, while the mean-field results are only collected

above and below the original size of the lipid bilayer as in the MD simulations, see Section

3.8.5 Figure 3.4. A 161(x) by 161(y) by 193(z) finite difference grid is used for all of the

mean-field calculations following the APBS electrostatic focusing scheme30 and the grid

spacing is 0.43Å(x) by 0.43Å(y) by 0.47Å(z), a reasonable resolution for calculating ion
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distributions. The lipid atomic charges and radii are taken from CHARMM36 charges

and CHARMM36 van der Waals radii. Both the PBE and the SMPBE are solved in their

nonlinear form. The majority of the input parameters for the mean-field methods follow

the default settings of the APBS input preparation program PDB2PQR35 except for the

ones mentioned in the next section. See Section 3.8.4 for an example of the APBS input

file. Data analysis in this work utilizes GROMACS4.5.5,36 VMD1.9.137 and customized

scripts.

3.4 Explanations on the Eight Mean-Field Parameter

Sets

The use of different mean-field method input parameters is key to the discussion

of the accuracy of predictions of the SMPBE with respect to those of the PBE. Among

all of the mean-field calculation input parameters or settings, two are selected for the

discussion. First, the ion size is chosen mainly because it is a particularly important input

parameter for the SMPBE and it is also used to define the size of the Stern layer. Second,

the definition of molecular surface is chosen for its direct relationship to ion-accessibility,

thus the ion distributions. Specifically, four definitions of molecular surface, Figure 3.1,

and two sets of ion sizes, Table 3.2, are tested, yielding a permutation of eight different

sets of input parameters.

Table 3.2: The two sets of ion radii. The van der Waals (VDW) radii are taken from
the CHARMM36 ion VDW radii. The radial distribution function (RDF) radii are the
first-peak positions of the ion-lipid carbonyl oxygen RDFs from the MD simulations.

VDW radius RDF radius
Na+ 1.4Å 2.3Å
K+ 1.8Å 2.6Å
Cl+ 2.3Å 4.0Å
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VDWS FPS
SAS

WaterDielectric
boundary

IAS

Figure 3.1: The definitions of molecular surface. VDWS: the van der Waals surface,
drawn around the lipid atom centers with the CHARMM36 VDW radii, i.e. the Lennard-
Jones rmin/2 values. FPS: the "first-peak" surface, drawn according to the MD cation-
lipid carbonyl oxygen radial distribution function (RDF) first-peak positions. SAS: the
solvent-accessible surface, drawn by the center of the water probe of radius 1.4Å38

rolling across VDWS. IAS: the ion-accessible surface, drawn in the same way as the
SAS, only that the probe radius is that of the counterion. The dielectric boundaries in
all of the mean-field calculations are the same and are defined by the solid blue line (or
equivalently the solvent-exclusion surface).

Three key points need to be clarified. First, despite the multiple definitions of the

"molecular surface" in Figure 3.1, only the van der Waals surface (VDWS) is commonly

recognized as the molecular surface. Second, the reason for the flexible use of the term

"molecular surface" in this work is as follows. Supposedly, the SMPBE, without the help

of the Stern layer, is able to predict solvation properties comparably accurately or more

accurately than the PBE with a Stern layer. However, as it is shown later in the Results

section, unexpectedly, using the SMPBE outside of the VDWS without a Stern layer leads

to large ion concentration overestimation. To carry out further investigations, several

alternative "molecular surfaces" that are further away from the lipid molecules than the
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VDWS are tested. Finally, the seemingly peculiar use of the FPS is inspired by the fact

that the MD RDF first-peak positions are often smaller than the sum of the VDW radii of

the cation and its association partner, the lipid carbonyl oxygen.39 FPS is generated by

uniformly expanding the VDWS until the minimum FPS-lipid carbonyl oxygen center

distance is equal to the counterion-lipid carbonyl oxygen MD radial distribution function

(RDF) first-peak position. The VDWS is expanded by 0.6Å for the Na+ FPS and 0.9Å

for the K+ FPS. Using the FPS in the mean-field methods could theoretically reproduce

the MD results better. However, this turns out not to be the case as shown in the Results

section. The RDF radius is chosen because it was used in a previous work20 and an

alternative set of ion radii is needed to show how the PBE and the SMPBE results change

with respect to the change of ion sizes.

3.5 Results and Discussion

3.5.1 The PBE vs. the SMPBE

Figure 3.2 shows an array of calculations on the number of Na+ ions bound per

POPC molecule. The corresponding results for the K+ ion are shown in Section 3.8.5

Figure 3.5. The "number of ions bound" is calculated by integrating the concentration of

ions within 25Å to the lipid bilayer center. An example of the detailed position-dependent

ion concentration is shown in Section 3.8.5 Figure 3.6.

By a crude observation, the PBE and the SMPBE reproduce MD results the best

in Figure 3.2(g), while the PBES (the PBE with Stern layer; the size of the Stern layer is

always set to be the radius of the cation) performs the best in Figure 3.2(a). However, it

is important to note that the PBES calculation in Figure 3.2(a) is actually the same as the

PBE calculation in Figure 3.2(g). This is because that the ion-accessible surface (IAS)

used in Figure 3.2(g) exactly overlaps with the outer surface of the Stern layer in Figure
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Figure 3.2: The number of Na+ bound per POPC molecule at three NaCl bulk con-
centrations (systems 1 to 3 in Table 3.1). MD: molecular dynamics; PBE: nonlin-
ear Poisson-Boltzmann equation (without Stern layer); PBES: PBE with Stern layer;
SMPBE: size-modified Poisson-Boltzmann equation (without Stern layer). Subfigures
(a) to (h) use eight different parameter sets; each is a combination of a molecular surface
(VDWS, FPS, SAS, IAS, see Figure 3.1) and an ion radius set (VDW radius, RDF
radius, see Table 3.2). (g) turns out to be identical to (e) because the Na+ VDW radius
happens to be the same as the radius of water, 1.4Å , and so the SAS in (e) is the exactly
same as the IAS in (g).
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3.2(a). Also, it should be reemphasized that the VDWS is the physical molecular surface

and it is only fair to compare the SMPBE results without the use of a Stern layer to the

PBE results with the use of a Stern layer. With this said, it can be concluded from Figure

3.2(a) and (b) that when the SMPBE is used outside of the physical molecular surface

without a Stern layer, it significantly overestimates the MD ion concentrations compared

to the PBE calculation with the aid of a Stern layer - the size-modified correction of the

PBE does not seem to be as effective as the "Stern-layer-modified" correction. This is a

surprising result considering the fact that the POPC bilayer has zero net surface charge

and yet the capability of the SMPBE is not enough to limit the ion concentrations to the

correct range. Furthermore, caution should be taken to distinguish the real source of the

corrections or errors. Given the poor performance of the SMPBE in Figure 3.2(a), it is

clear that the reproduction of the MD results by the SMPBE in Figure 3.2(g) mainly owes

to the introduction of an effective Stern layer through the use of the IAS instead of the

SMPBE formulation itself. And the reason for the underestimation of the MD results by

the PBES in Figure 3.2(g) is the redundant use of a second Stern layer on top of the IAS.

Fortunately, as expected, at least the use of the SMPBE consistently alleviates

the overestimation of ion concentrations by the PBE. The strength of SMPBE correction

increases as the molecular surface shrinks (IAS to VDWS), which causes ions to experi-

ence a stronger electrostatic potential, and as the ion radii increase (VDW radius to RDF

radius), which results in more steric exclusion between ions in the SMPBE formulation.

However, in general, the SMPBE gives similar results to the PBE (Figure 3.2(a), (c), (e),

(f), (g) and (h)). A previous study has shown that the electrostatic free energies predicted

by the PBE and the SMPBE can be quite different,40 but in this work, the PBE and the

SMPBE electrostatic potentials are shown to also be very similar with most parameter

sets, Section 3.8.5 Figure 3.7. As mentioned in the introduction, the SMPBE has a

comparable computational cost to the PBE when two ion sizes are used,18 but the cost
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significantly increases when the SMPBE is generalized to handle an arbitrary number

of different ion sizes because the SMPBE can no longer be expressed analytically.19,21

If the simple Newton’s method is used to solve the generalized SMPBE, the SMPBE

is up to hundreds of times slower than the PBE. Without developing a more efficient

SMPBE solver, only in the two-ion-size case is SMPBE a cost-efficient choice for its

degree of correction on the PBE. However, even with a faster SMPBE solver, the Stern

layer remains a more effective correction than the current SMPBE formulation at no

extra computational cost.

3.5.2 The Existence of the Best Parameter Set

From Figure 3.2, it can be said that the VDWS combined with a Stern layer of

the size of the VDW radius of the cation is the parameter set that gives the best PBE

prediction of ion distributions. However, Figure 3.3 shows that this does not hold true for

a different lipid bilayer surface charge density (the corresponding figure for the K+ ion is

the Section 3.8.5 Figure 3.8).

The surface charge density of the simulated POPS bilayer is about 0.28C/m2 or

1.73e/nm2 (for reference, the surface charge density of DNA is about 1e/nm2), a fairly

high value. The gray shade positions in Figure 3.3(a) and (b) show that the thickness of

the Stern layer for the POPS bilayer needs to be smaller than what is used for the POPC

bilayer (the VDW radius of Na+) for the PBE to reproduce the MD ion concentrations.

Figure 3.3 reveals that the same parameter set does not give consistent accuracy of

prediction when the surface charge density changes. This is also true, although not as

significantly, when the bulk ionic strength, or the bulk ion concentration, varies. When

looked at closely, the slopes of the PBE, the PBES and the SMPBE plots in Figure 3.2

are always equal to or smaller than that of the MD, leading to inconsistent performances

of a parameter set across different ionic strengths. Additionally, the same parameter set
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Figure 3.3: The number of Na+ bound per lipid as a function of the "effective Stern
layer thickness", the minimum distance between the VDWS and the "molecular surface"
used for each calculation. (a) NaCl of bulk concentration 0.13M outside of the POPC
bilayer, system 2 in Table 3.1. (b) NaCl of bulk concentration 0.17M outside of the
POPS bilayer, system 7 in Table 3.1; VDW R and RDF R are shorthand for VDW radius
and RDF radius. Gray shades mark where the mean-field calculations using the VDW
radius agree with MD.

does not give the same performance for different ions. For example, for K+, the IAS

with VDW radius does not perform as well as it does for Na+, i.e. the gray shade in

Figure 3.8 is not exactly overlapping with the IAS + VDW radius data point like it does

in Figure 3.3. The inconsistency of the performance of a parameter set is partly due to

the fact that mean-field methods are much more simplified than the MD simulations and

do not describe a number of ionic effects such as ion-ion correlations and fluctuations;7
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they also ignore the ion-lipid specific interactions modeled in the MD force fields.41,42

The parameter inconsistency can be circumvented if empirical guidelines are

available on how to choose parameters based on the characteristics of a system. For

example, one can summarize a relationship between the surface charge density and the

effective Stern layer thickness. Two data points in this relationship are generated here: at

zero surface charge density, the VDW radius can be used as the size of the Stern layer;

and at surface charge density 1.73e/nm2, roughly 0.8Å for Na+ and 0.6Å for K+ should

be used as the size of the Stern layer. More data points need to be generated for a more

complete knowledge of this relationship and the lipid-type specific ion absorption effects

should be considered.

Last but not least, even though theoretically the PBE and the SMPBE become

more distinguishable under a stronger electrostatic potential, the strong electrostatic

potential exerted by the higher surface charge density of the POPS bilayer is not yet

enough to significantly separate the PBE and the SMPBE results when the common

VDW ion radii are used, Figure 3.3(b), putting the capability of the SMPBE under further

doubt.

3.6 Conclusions

First, when it comes to studying ion equilibrium distributions, the SMPBE only

offers a slight advantage over the PBE for the systems considered here. It is neither

faster nor more accurate than the simple Stern layer ion-size correction of the PBE. There

may, however, be other physical regimes where the SMPBE has a strong advantage.

Further improvements are needed for the SMPBE to be an impactful correction to the

PBE. Second, no single parameter set gives consistent mean-field method accuracy

of prediction across systems of varying surface charge densities and ionic strengths.
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Empirical rules may be able to be summarized to guide the choice of parameters of the

mean-field calculations.
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3.8 Supporting Information

3.8.1 A Brief Description of the SMPBE Formulation

Assume that the system contains M ion species; their radii are r1, ..., rM and

their "linear sizes" are a1, ..., aM. The volume of ion i is vi = a3
i = 4πr3

i /3. The ion

concentrations at location x, x is a vector, are c1(x), ..., cM(x). Similarly, the size, volume

and concentration of the solvent molecule are denoted as r0, a0, v0 and c0(x). With the

above definitions, we have:

c0(x) = v−1
0

[
λ −

M

∑
i=1

vici(x)

]
(3.1)
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Where λ = 0.64 is the maximum packing fraction for randomly placed uni-sized spheres;

it is used here as a reasonable approximation.

The way the ion sizes are incorporated into the PBE formulation is through the

construction of the phenomenological lattice gas free energy of the system:

F(c1, ...,cM) =
∫ {1

2

M

∑
i=1

qiciψ +
1
2

Qψ

}
dV +

∫ { 1
β

M

∑
i=0

ci[ln(vici)−1]−
M

∑
i=1

µici

}
dV

(3.2)

Where qi is the charge of the ith ion species, ψ = ψ(x) is the local electrostatic potential,

Q = Q(x) is the local fixed-charge density from the biomolecule, β−1 = kBT , kB is the

Boltzmann constant, T is the temperature and µi is the chemical potential for ion species

i. Both integrations are over all space. The first term is the potential energy term and the

second is the entropy term.

At equilibrium, the free energy should be minimized. If cis are considered as

the only independent variables in Equation (3.2), Equation (3.2) can be minimized with

respect to each ci constrained by the Poisson equation. After minimization, the following

equation is obtained:

vi

v0
ln(v0c0)− ln(vici) = β (qiψ−µi) (3.3)

In the bulk phase, Equation (3.3) gives µi = β−1ln[(vicbulk
i )/(v0cbulk

0 )vi/v0], where µi is a

function of the bulk ion concentrations. Plugging µi back into Equation (3.3) for non-bulk

regions gives:

ci(x) =
[

c0(x)
cbulk

0

] vi
v0
[
cbulk

i e−βψ

]
(3.4)

Plugging Equation (3.4) into Equation (3.1) will result in an equation containing c0 as
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the only unknown:

v0c0(x)+
M

∑
i=1

{
vi

[
c0(x)
cbulk

0

] vi
v0
[
cbulk

i e−βψ

]}
−λ = 0 (3.5)

where c0, as the root of the equation, can be solved by numerical methods like the

Newton’s method. Once c0 is obtained, all of the cis can be calculated from Equation

(3.4). Equation (3.4) is called the size-modified Boltzmann distribution as it contains the

Boltzmann distribution term, cbulk
i e−βψ , and a multiplicative correction term modeling the

ion-size effects. The SMPBE is a PBE with the Boltzmann distribution term substituted

by the size-modified Boltzmann distribution term in Equation (3.4).

3.8.2 The SMPBE Routein in APBS

For each SMPBE calculation, a 3-dimentional finite difference grid is created

covering the biomolecule and its surrounding solvent region. The electrostatic poten-

tial ψ(x) and ion concentrations ci(x), where x represents each grid point, are solved

iteratively. The calculation starts with an initial guess of ψ(x), which is uniformly zero.

This initial guess is used in Equation (3.5) as the input to solve for c0(x), which gives the

ci(x)s through Equation (3.4). With the ci(x)s, the potential is updated by solving the

Poisson equation:

∇
2
ψ(x) = Q(x)+

M

∑
i=1

qici(x) (3.6)

This process goes on iteratively until the maximum relative difference between the ψ

obtained from two consecutive iteration steps is below an acceptable error. And the

resulting ψ and ci will be considered as the converged solution.

The SMPBE routine in APBS can be easily used by adding the following key-

words into the APBS input file:
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smpb1 step {step} eps {eps}

{step} is the step size of the Newton’s method, which is used to solve the SMPBE. {step}

is a number between 0 and 1. The smaller the {step}, the more numerically stable, but

slower, the method and vice versa. {esp} is the value that the maximum relative difference

of the electrostatic potentials among all grid points between two consecutive Newton

iteration steps have to go below for the confirmation of convergence. Mathematically,

this convergence criterion is given by max
(∣∣∣ψk(x)−ψk−1(x)

ψk−1(x)

∣∣∣) < {esp}, where ψk(x) is the

electrostatic potential at grid point x in step k. In this work, {step} is set to be 0.01 or

smaller, {esp} is set to be 0.01.

3.8.3 The MD Simulation Settings

The equilibration for the MD simulations use the default steps generated by

CHARMM-GUI Membrane Builder. The production simulation conditions are: NPT

ensemble with constant temperature set at 300K by the Langevin thermostat with damping

coefficient 1/ps and constant pressure set at 1atm by the Nose-Hoover Langevin piston

barostat with oscillation period 50fs and oscillation decay time 25fs. The simulation time

step is 2fs. All the bonds involving hydrogen atoms are fixed, non-bonded interactions are

subjected to cut-off at 12Å. Periodic boundary conditions are applied on all sides of the

simulation box. Particle Mesh Ewald (PME) method is used to calculate the electrostatic

forces in the system.

The convergence of the MD simulations are determined by two criteria, the

convergence of the area per lipid value and the convergence of the number of ions bound

to the lipid bilayer surface. The number of ions bound is calculated by counting the total

number of ions within |z|=25Å (z is defined in Figure 3.4).
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3.8.4 APBS Input File Example

read

mol pqr lipid.pqr

end

elec name lipidBilayer

mg-auto

dime 161 161 193

cglen 100 100 120

fglen 70 70 90

cgcent 0 0 0

fgcent 0 0 0

mol 1

npbe

bcfl mdh

pdie 2.00

sdie 78.54

srfm smol

chgm spl4

sdens 10.00

swin 0.30

temp 300

calcenergy total

write pot dx potentialFile

write conc dx concentrationFile

srad 1.4

smpb1 step 0.01 eps 0.01

ion charge 1 conc 0.13 radius 1.4

ion charge -1 conc 0.13 radius 2.3

end

quit

3.8.5 Other Supporting Figures
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Figure 3.4: The dimensions of the lipid bilayer systems used in the MD simulations
and the mean-field calculations. The x and y dimensions of the lipid bilayers are always
equal.
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Figure 3.5: The number of K+ bound per POPC molecule at three KCl bulk concentra-
tions (systems 4 to 6 in Table 3.1). MD: molecular dynamics; PBE: nonlinear Poisson-
Boltzmann equation (without Stern layer); PBES: PBE with Stern layer; SMPBE:
size-modified Poisson-Boltzmann equation (without Stern layer). Subfigures (a) to (h)
use eight different parameter sets; each is a combination of a molecular surface (VDWS,
FPS, SAS, IAS, see Figure 3.1) and an ion radius set (VDW radius, RDF radius, see
Table 3.2).
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Figure 3.6: The Na+ distribution along the perpendicular direction to a POPC lipid
bilayer surface (system 2 Table 3.1). MD: molecular dynamics; PBE: nonlinear Poisson-
Boltzmann equation (without Stern layer); PBES: PBE with Stern layer; SMPBE:
size-modified Poisson-Boltzmann equation (without Stern layer). Subfigures (a) to (h)
use eight different parameter sets; each is a combination of a molecular surface (VDWS,
FPS, SAS, IAS, see Figure 3.1) and an ion radius set (VDW radius, RDF radius, see
Table 3.2).
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Figure 3.7: The electrostatic potential along the perpendicular direction to a POPC
lipid bilayer surface (system 2 Table 3.1). PBE: nonlinear Poisson-Boltzmann equation
(without Stern layer); PBES: PBE with Stern layer; SMPBE: size-modified Poisson-
Boltzmann equation (without Stern layer). Subfigures (a) to (h) use eight different
parameter sets; each is a combination of a molecular surface (VDWS, FPS, SAS, IAS,
see Figure 3.1) and an ion radius set (VDW radius, RDF radius, see Table 3.2).
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Chapter 4

Substrate Channeling Between the

Human Dihydrofolate Reductase and

Thymidylate Synthase

4.1 Abstract

In vivo, as an advanced catalytic strategy, transient non-covalently bound multi-

enzyme complexes can be formed to facilitate the relay of substrates, i.e. substrate

channeling, between sequential enzymatic reactions and to enhance the throughput of

multi-step enzymatic pathways. The human thymidylate synthase and dihydrofolate

reductase catalyze two consecutive reactions in the folate metabolism pathway, and

experiments have shown that they are very likely to bind in the same multi-enzyme

complex in vivo. While reports on the protozoa thymidylate synthase-dihydrofolate

reductase bifunctional enzyme give substantial evidences of substrate channeling along

a surface "electrostatic highway", attention has not been paid to whether the human

thymidylate synthase and dihydrofolate reductase, if they are in contact with each other

78
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in the multi-enzyme complex, are capable of substrate channeling employing surface

electrostatics. This work utilizes protein-protein docking, electrostatics calculations and

Brownian dynamics to explore the existence and mechanism of the substrate channeling

between the human thymidylate synthase and dihydrofolate reductase. The results show

that the bound human thymidylate synthase and dihydrofolate reductase are capable

of substrate channeling and the formation of the surface "electrostatic highway". The

substrate channeling efficiency between the two can be reasonably high and comparable

to that of the protozoa.

4.2 Introduction

Metabolons, transient non-covalently bound multi-enzyme complexes, are thought

to be important for the organization of enzymes and the regulation of their reactions in

vivo. Metabolons are usually composed of enzymes that catalyze the sequential reactions

in an enzymatic pathway. One of the advantages of metabolon formation is substrate

channeling.1 Substrate channeling is the direct transportation of a reaction intermediate

from one enzyme active site to the next without prior release into the bulk solution. It

can facilitate the enzymatic reactions in several ways. For example, it can reduce the

lag time between two reactions and it can protect labile intermediates from the aqueous

environment.2 While the existence of metabolons has been controversial,3 convincing

evidence has been been established for substrate channeling.2,4,5 Among covalently

bound enzymes, channeling has been observed in the protozoa bifunctional dihydrofolate

reductase-thymidylate synthase enzyme.6

Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are ubiquitous

enzymes across organisms. TS is a homodimer; it catalyzes the reductive methylation of

deoxyuridine monophosphate by H2C·H4folate to deoxythymidine monophosphate and
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H2folate.7 DHFR is a monomer and it catalyzes the reduction of H2folate to H4folate,

replenishing the intra-cellular H4folate pool.8 The production and regulation of DHFR

and TS are closely coupled to the cell cycle because they participate in the sole de novo

synthesis pathway of thymidylate, a building block of DNA.9,10 Insufficient DHFR and

TS activity leads to thymidylate deficiency, halted cell cycle and eventual cell death.11

Because of the crucial role that DHFR and TS play in living organisms, they have

attracted much biological and biomedical interest. For example, they are drug targets

in cancer treatments.12 Species-specific inhibitors of DHFR and TS are also used to

eliminate pathogens in the human body, such as the parasitic protozoa that cause severe

epidemics like malaria.13,14,15,16.

While the protozoa DHFR and TS are known to be able to channel their interme-

diate substrate H2folate,6 such possibility for the human counterparts is unknown. The

protozoa DHFR and TS are fused bifunctional enzymes translated from a single gene.

Each monomer of the TS homodimer is covalently attached to one DHFR monomer

(supporting information Figure 4.4). The negatively charged H2folate produced by the

protozoa TS is channeled directly to DHFR through a sequence of positively charged sur-

face residues connecting the two active sites, a so-called "electrostatic highway".17,18,19

The human DHFR and TS are separate enzymes and each has its own gene.20,21 How-

ever, it has been reported that the human DHFR and TS are distributed in the same

cellular compartments22,23 and may even participate in binding in the same metabolic

multi-enzyme complex, e.g. the replitase complex.24,25 Also, an experimental paper

shows that, in vitro, one human TS dimer binds to up to six human DHFR monomers.26

Further more, there exists example of surface electrostatic substrate channeling between

non-covalently bound proteins in mammals, the porcine citrate synthase and malate de-

hydrogenase.27,28,29 Given the evidence above, it is possible that some form of substrate

channeling exists between the bound human DHFR and TS in vivo. In this work, the
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simplest scenario of such possibility is explored computationally, where one human

DHFR monomer binds to one human TS dimer.

Computational work on the protozoa DHFR-TS bifunctional enzyme substrate

channeling has previously been conducted30,31 where the substrate channeling efficiency

under different ionic strengths and charge mutations are calculated by Brownian dynamics

methods.32,33,34 Here, a similar approach is taken, but since the human DHFR and TS

are separate proteins, their possible bound-states are first predicted by protein-protein

docking software.35 The substrate channeling behaviors of these bound-state structures

are then observed by electrostatics and Brownian dynamics calculations. It is found that

there exist human DHFR-TS bound-states that are capable of channeling its substrate

through surface electrostatics, and that their substrate channeling efficiencies can be as

high as that of protozoa.

4.3 Results

4.3.1 Human DHFR-TS Binding Poses

The bound-states of the separated human DHFR and TS proteins are first predicted

by the rigid-body protein-protein docking software ClusPro.36,37 In the ClusPro run, the

top 1000 lowest energy docking poses of DHFR-TS are grouped into 30 clusters and the

lowest energy poses of each cluster form the final 30 docking poses (Figure 4.1). 22 of

the 30 poses are on the top side of TS and 8 are on the bottom side. The "top side" is

defined as the side through which the protozoa DHFR binds to the protozoa TS. Among

the poses on the same side of TS, no two share similar orientations relative to TS.
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Figure 4.1: The 30 ClusPro docking poses. The cyan domain is the human TS dimer
(PDB ID: 1HVY). The overlapping white domains are the ClusPro human DHFR (PDB
ID: 1DHF) docking poses.

4.3.2 The "Electrostatic Highway"

The main substrate channeling mechanism of the protozoa DHFR-TSs is the

so called "electrostatic highway".19 For the discussions in this work, the "electrostatic

highway" is defined as a continuous region of positive electrostatic potential on the

molecular surface that connects the DHFR and TS active sites.

In each human DHFR-TS binding pose, the DHFR active site can take up sub-

strates originated from either of the two TS active sites and so two different "electrostatic

highways" may be formed. 30 ClusPro poses offer 60 DHFR-TS active site pairs. The
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Figure 4.2: The human DHFR-TS "electrostatic highway". In (A1) and (B1), the
cyan domain is the TS dimer; the white domain is DHFR (one monomer in (A1), two
monomers in (B1)); the green spheres mark the location of the enzyme active sites.
(A2) and (B2) display the electrostatics of the corresponding proteins in (A1) and (B1)
with red and blue being the −1kT/e and 1kT/e electrostatic potential iso-surfaces; The
yellow contours highlight the "electrostatic highways". The arrows in all four subfigures
indicate the direction of substrate channeling. All of the proteins are displayed 90
degrees sideways compared to the front view in Figure 4.1. The human DHFR and TS
structures are the same as those used in Figure 4.1; the Leishmania major DHFR-TS
structure is taken from the work by Knighton.19 The docked human DHFR-TS poses
are capable of forming "electrostatic highways" for substrate channeling in a similar
way to the Leishmania major DHFR-TS, which is a well-demonstrated case.
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"electrostatic highway" is observed in 17 out of the 60 pairs. And in 1 of the 30 poses, a

"highway" is formed between the DHFR active site and both of the TS active sites. An

example of the human DHFR-TS "electrostatic highway" is shown in Figure 4.2. It is

compared to the well-studied Leishmania major "electrostatic highway".19,30,31 Both

"highways" not only connect the DHFR and TS active sites, but also cover the whole

region between them completely. More illustrations of the "electrostatic highway" from

the 17 DHFR-TS active site pairs can be found in the supporting information Figure 4.5.

The electrostatic potentials in Figure 4.2 are calculated by software APBS.38

4.3.3 Channeling Efficiency

After observing the "electrostatic highway" in a number of human DHFR-TS

docking poses, the "highways" effects on substrate channeling is studied. Substrate

channeling is quantified through the substrate channeling efficiencies calculated by

Brownian dynamics software BrownDye.34 The substrate channeling efficiency is the

percentage of substrates that started off at a TS active site and reach the DHFR active

site by diffusion before escaping into the bulk solution. In the DHFR-TS system, the

diffusion of the −2e charged substrate is heavily influenced by the electrostatic potential

field exerted by the proteins. The "electrostatic highway", which is a protein surface

region with positive electrostatic potential, guides the diffusion of the substrate by

opposite-charge attractions and achieves the observed substrate channeling.

Figure 4.3(A) shows that the channeling efficiency of the −2e substrate is sta-

tistically significantly higher when there is an "electrostatic highway" connecting the

DHFR and TS active sites. The channeling efficiency can be as large as 60%, comparable

to the roughly 70% channeling efficiency of Leishmania major, which is known for

its strong substrate channeling, calculated by BrownDye in previous work.31 Figure

4.3(B) shows that if the substrate is neutral, the channeling efficiency distribution for the
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Figure 4.3: The influence of the "electrostatic highway" on the channeling of charged
substrates. Among the 60 DHFR-TS active site pairs from the 30 ClusPro poses,
"elec highway" (gray) represents the 17 pairs with observed "highways", and "no elec
highway" (white) represents the other 43 pairs. This plot is a histogram with bin
size of 5% and the first bin is (0%, 5%]. (A) For charged substrates, channeling is
significantly enhanced by an "electrostatic highway". (B) When the substrate is neutral,
the existence of an "electrostatic highway" does not have a noticeable impact on the
substrate channeling efficiency.

DHFR-TS active site pairs connected by "electrostatic highways" (gray) overlaps with

the distribution for the pairs that have no "highway" present (white). The "electrostatic

highway" makes little contribution to the channeling of neutral substrates.
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4.4 Discussion

The human DHFR-TS substrate channeling through "electrostatic highways" is

studied with a simple model of one DHFR bound to one TS. The one-to-one binding

between DHFR and TS is likely not the exact realistic case in vivo. First, multiple

DHFRs may bind to one TS.26 Second, other proteins may bind to DHFR and TS, e.g.

those participating in the DNA synthesis .24,25 Third, the human DHFR and TS are not

guaranteed to bind to each other (although significant channeling may still occur since

the two proteins are colocalized in the same cellular compartment39). This study does not

aim to convince the readers that the electrostatic channeling observed here is the catalytic

strategy that the human DHFR and TS use, but rather that the human DHFR-TS has the

capability of electrostatic substrate channeling if their in vivo binding conformations

allow.

Rigid-body protein-protein docking is employed here with the goal of searching

for the possible formation of an "electrostatic highway" in the human DHFR-TS bound-

states. It is only a minor goal of the docking calculations to predict the correct and

stable binding poses between DHFR and TS. Without higher level calculations, such as

molecular dynamics free energy calculations,40 the ranking of the stability of a binding

pose cannot be conclusive. Note that the binding pose for the native protozoa DHFR-TS

(supporting information Figure 4.4(B)) is different from what has been predicted by

docking (Figure 4.1). However, if the human DHFR is aligned to the Leishmania major

binding pose by VMD MultiSeq,41,42 an "electrostatic highway" is observed (supporting

information Figure 4.6). A likely reason why ClusPro does not consider the protozoa

binding pose for the human proteins is a lack of steric complementarity. Leishmania

major DHFR and TS each has about 35 residues on the binding interface while if the

human proteins are docked similarly, there are only about 10 interface residues from each
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protein. This shows the limitation of rigid-body protein-protein docking because induced

conformational changes could happen upon DHFR-TS binding.

The phrase "electrostatic highway" needs some clarification because, instead of

literally speeding up the diffusion of the substrate, the "highway" serves as a "trap" to the

oppositely charged substrate, limiting its escape into the bulk. In the Brownian dynamics

calculations by BrownDye, the bulk extends to infinity and the substrate concentration in

the bulk is zero, the chance of the substrate ever returning to DHFR quickly decreases

to effectively zero as it diffuses away from the protein. Assuming the substrate reacts

with the DHFR active site on contact, an "electrostatic highway" permanently "speeds

up" the reaction by decreasing the number of escaped substrates. On the other hand, in

small closed compartments, the "electrostatic highway" will only decrease the time it

takes for the DHFR reaction to reach its full speed before the equilibrium of the bulk

substrate concentration, and will not have a permanent speed-up of the DHFR reaction.

Also, the "electrostatic highway" in the DHFR-TS system is itself not directional.30 A

directional electrostatic channeling can theoretically be achieved by a monotonically

increasing surface density of the charged amino acids along the path between the two

active sites, but this is not observed for DHFR-TS.

The enzyme specificity constants for the substrates for both of the human DHFR

and TS are between 1 to 10 µM−1s−1.43,44 However, the relative reaction rates of the two

enzymes do not affect the results of the BrownDye simulations, because the BrownDye

simulations here observe the channeling efficiency at the initial time point of the DHFR-

TS reaction system way before it reaches equilibrium. To be more specific, at the initial

moment, the substrates for TS are just added and the first few TS products are just

produced, the concentrations of the products of TS in bulk are effectively zero. On the

other hand, if one wants to simulate the concentration profiles of the DHFR and TS

substrates and products over time, different reaction rates of the two enzymes will lead to
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different behaviors of the system.

The BrownDye Brownian dynamics calculations in this work are set up specifi-

cally to study the effect of electrostatics on substrate channeling; the calculations consider

mainly the electrostatic and the two-body hydrodynamic forces between the protein and

the substrate. The protein and the substrate are also modeled as rigid bodies. Although

electrostatics has been widely considered to be the cause of substrate channeling of the

protozoa DHFR-TS,18,19,30,31 the BrownDye results do not rule out the possibilities of

other channeling mechanisms. In fact, in the protozoa system, experiments have brought

up the possibilities for more complicated electrostatic channeling mechanisms, on top of

the simple "electrostatic highway trapping", or additional non-electrostatic channeling

mechanisms.45,46 Comprehensive mutation experiments on the charged residues along

the electrostatic highway of the human DHFR-TS are needed and it is hoped that the type

of computational study in this work can be used to compare to those experiments to test

whether and how mutations can alter the observed electrostatic restriction of substrate

channeling and diffusion. Tests with molecular dynamics simulations that are capable of

modeling the protein-ligand interactions more accurately and modeling the flexibility of

proteins are also desirable.

In conclusion, with protein-protein docking, it is found that there exist bound-

state conformations of the human DHFR and TS proteins where a continuous positive

surface potential region, an "electrostatic highway", connecting the TS and DHFR active

sites is formed. This "electrostatic highway" is formed in a similar way to what has been

observed in the protozoa DHFR-TS, which are known for substrate channeling through

surface electrostatics. Brownian dynamics simulations have further shown that with the

"electrostatic highway" a significantly greater number of negatively charged substrates

are passed from the TS to the DHFR binding site without escaping into the bulk. The

human DHFR-TS have the capability of electrostatic substrate channeling if their in vivo
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binding conformations allow. However, higher level computations are needed for more

thorough analysis and more convincing evidence on the DHFR-TS electrostatic substrate

channeling hypothesis.

4.5 Materials and Methods

4.5.1 Protein Structures

The human DHFR and TS structures are taken from the Protein Data Bank

(PDB)47 (PDB IDs 1DHF20 and 1HVY21). Because 1DHF is missing ligand NADPH,

the NADPH binding pose in PDB ID 2W3M48 is aligned into the 1DHF structure by the

VMD41 tool MultiSeq.42

The protein PDB structures submitted to the online docking server are prepared by

Maestro Protein Preparation Wizard,49 and the protonation state of histidine residues is

predicted by program PROPKA50 embedded in the Protein Preparation Wizard. Because

the docking pose PDB files output by the protein-protein docking software omit the

hydrogens, program Reduce,51 due to its batch processing capability, is used to add the

hydrogens back into the docking poses before the following electrostatics and Brownian

dynamics calculations.

4.5.2 Protein-Protein Docking

Online rigid protein-protein docking server ClusPro36,37 is used to dock one

human DHFR monomer onto one human TS dimer. ClusPro is chosen because it is the

best-performing protein-protein docking software in CAPRI52 rounds 22 to 27.53,54 All

of the docking jobs are submitted using the web server’s default settings. The 30 ClusPro

poses are scored using their "Balanced" scoring function.
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The validity of ClusPro is tested by manually separating the known protozoa

Leishmania major DHFR-TS structure (obtained from the authors of19) and docking the

DHFR back onto the TS. ClusPro predicts the Leishmania major DHFR and TS native

binding poses correctly. This result is included in the supporting information Figure 4.7.

4.5.3 Brownian Dynamics

Software BrownDye34 is used to quantify the substrate channeling efficiency of

the human DHFR-TS binding poses. To calculate the channeling efficiency between

a TS active site and a DHFR active site, BrownDye is set up to run 10,000 Brownian

dynamics32 trajectories of substrate H2folate starting at the TS active site diffusing under

the influence of stochastic forces and the hydrodynamic and electrostatic forces between

the substrate and the protein. The substrate channeling efficiency equals to the number of

trajectories where the substrate reacted with the DHFR active site before escaping into

the bulk over the total number of trajectories, 10,000. A Brownian dynamics trajectory

is terminated on the first occasion of substrate reaction or escape. Substrate reaction is

defined by the substrate diffusing into a spherical region of radius 12.5Å centered around

the DHFR active site (Figure 4.8); Substrate escape is defined by the substrate leaving a

large spherical boundary in the bulk solution centered around the protein (Figure 4.9).

This "escape sphere" is significantly larger than the size of the protein and its radius

is analytically determined.55 More simulation details can be found in the supporting

information Figure 4.8 and Figure 4.9.

4.5.4 Electrostatic Calculations

To calculate the electrostatic forces in BrownDye and to visualize the "elec-

trostatic highway" along the DHFR-TS surface, the electrostatic potential field of the
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DHFR-TS system is needed. The Adaptive Poisson-Boltzmann Solver (APBS) software

is used.38,56 APBS takes in the charges and atomic radii of a protein and outputs the

electrostatic potential field generated by the protein. The protein charge and atomic

radii used in APBS are also taken from the CHARMM27 force field57 and the protein

is solvated in 0.15M NaCl solution. An example of the APBS input file is attached in

Section 4.7.2.
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Figure 4.4: The three dimensional structures of the human and protozoa Leishmania
major DHFR and TS enzymes. DHFR and TS are represented by the white and cyan
cartoons respectively. The substrates are shown in the van der Waals representation
in purple and green. The Leishmania major DHFR-TS,19 (B), is a single covalently
connected bifunctional enzyme; two Leishmania major DHFR-TSs form a homodimer
joined through the TS domains. The human DHFR (PDB ID: 1DHF) and TS (PDB ID:
1HVY), (A) and (C), are individual enzymes; DHFR is a monomer, TS is a homodimer.
The human DHFR and TS have the same overall tertiary structures compared to that of
the protozoa.
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Figure 4.5: Three more examples of the "electrostatic highways" formed in the 30
ClusPro docking poses. All of the coloring and representations are the same as Figure
4.2, only that the yellow contours for the "electrostatic highways" are not drawn. Since
it has not been mentioned, the pose shown in Figure 4.2 is the 9th pose.
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Figure 4.6: The bound human DHFR-TS is capable of forming an "electrostatic high-
way" in the Leishmania major binding conformation. All of the coloring and repre-
sentations are the same as Figure 4.2. The human DHFR and TS are aligned onto the
Leishmania major binding conformation, the resulting structure is shown on the left;
the electrostatic potential of this structure is calculated and shown on the right.

Figure 4.7: The partial proof of validity of ClusPro. The Leishmania major DHFR
domain is manually separated from its TS and re-docked onto the Leishmania major
TS. ClusPro gives 30 poses; the first (yellow) and third (pink) ranked docking poses
correctly predict the two DHFR binding conformations on TS; the protein colored in
white represents the native structure of the Leishmania major DHFR-TS. The RMSDs
between the native and docking pose α-carbon atoms are less than 5Å.
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DHFR active site

(A) (B)

TS active site 1 TS active site 2

Figure 4.8: The BrownDye setup. The protein structure shown is one of the 30 ClusPro
docking poses. (A) The van der Waals representation. (B) The cartoon representation.
Both the substrate and the protein are considered as rigid bodies. The atomic structure
of the protein is used, the charge and radius of the protein atoms are taken from
CHARMM27 force field. Specifically, the atomic radii are the rmin/2 values in the
Lennard-Jones potential in CHARMM27. The substrate H2folate is approximated by a
2Å sphere with -2e charge (solid green spheres). The starting position of the substrate,
the "active site" of a TS monomer, is a point displaced by 2Å from the geometrical
center of the H2folate binding conformation in TS. The displacement is made along the
line passing the geometrical center of that TS monomer and the geometrical center of
H2folate in the direction away from the TS center. The reaction of the substrate with the
DHFR active site is defined as the substrate entering a spherical region of radius 12.5Å
(transparent green sphere) centered around the "active site" of DHFR, which is a point
defined in the same manner as the TS "active site". The escape of the substrate from
the system is defined in Figure 4.9. Most of these settings are taken from the previous
work31 and the channeling efficiency of protozoa Leishmania major calculated using
these settings is 73.6%, in agreement with the previous publication.31 Note that for the
docking poses, the channeling efficiency between each TS active site and the single
DHFR active site is calculated. But for the native Leishmania major structure, due to
symmetry, only one TS active site is chosen, and both of the DHFR active sites (there
are two DHFRs, not one, in the native Leishmania major DHFR-TS) accept substrates.



96

a b

Escape	
  sphere	
  

Figure 4.9: The definition of substrate escape. Figure 4.8(B) shows the path that the
substrate takes in a successful reaction, however, the substrate always has a possibility
to diffuse away from the protein and escape into the bulk solution. a (white) represents
the immediate region around the protein where the electrostatic forces exerted by the
protein on the substrate is dependent on the relative orientation between the two. b
(blue) represents the space away from the protein where the electrostatic forces that the
substrate experiences from the protein can be approximated as orientation-independent.
The "escape sphere" is set in the b region. Once the substrate reaches the escape sphere,
there is a probability that the substrate escapes forever, otherwise the substrate diffuses
back to the a region. The mathematical expression of this probability has previously
been described.55 In our simulations, when the substrate reaches the escape sphere, it
will escape (and the trajectory will be terminated) according to this probability.
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4.7.2 APBS Input File Example

read

mol pqr enzyme.pqr

end

elec

mg-auto

dime 385 385 385

cglen 240 240 240

fglen 190 190 190

cgcent mol 1

fgcent mol 1

mol 1

lpbe

bcfl sdh

pdie 2.00

sdie 78.54

srfm smol

chgm spl2

sdens 10.00

srad 1.40

swin 0.30

temp 298.15

ion charge 1 conc 0.15 radius 1.36

ion charge -1 conc 0.15 radius 2.27

calcenergy total

calcforce no

write pot dx enzyme-pot

end

quit
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