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A detailed comparison of the tectonic features of Central Asian Orogenic belt (CAOB) and Tethyan
Tectonic domain (TTD) is of great significance to our understanding of the origin of global orogenic sys-
tems. Currently, there are many uncertainties in the general framework to fully define the tectonic prop-
erties of the CAOB and TTD. The Pb isotope data from Paleo-Asian Ocean (PAO) ophiolites in the CAOB and
Tethyan ophiolites in the TTD allow us to conduct a detailed comparative study between these two global
orogenic systems. Results of the study show the presence of an isotopic boundary between the different
mantle domains and tectonic properties of the CAOB and TTD, with the Xinjiang region in the former rep-
resenting the transition between the two systems. The distinctive 208Pb/204Pb isotope compositions of the
PAO and Tethyan mantles suggest the existence of a long time-integrated lower Th/U reservoir beneath
the CAOB compared to that beneath the TTD throughout the Paleozoic. Results thus suggest the distinct
Pb isotope compositions of the PAO and Tethyan mantles are intimately related to the different magma–
tectonic processes that formed the CAOB and TTD. Based on plate tectonic reconstruction, the
Neoproterozoic to Paleozoic evolution of the accretionary margins of the CAOB mimics the modern
circum-Pacific Ocean rim. In this scenario, the PAO had a low Th/U mantle isotopic signature and the sub-
duction of PAO crust gave rise to the circum-Pacific type accretionary orogen. On the other hand, the
Tethys oceans produced the high Th/U mantle isotopic signatures in an evolving collisional orogen.
Significantly, the generally radiogenic and juvenile Hf isotopic signature of the CAOB is consistent with
an accretionary orogenic setting for PAO whereas the relatively more unradiogenic Hf isotopic signature
of TTD is consistent with a collisional orogenic setting for Tethys oceans. Thus, our study sheds some light
on the PAO evolution as well as the plate tectonic reconstruction of Central Asian and Tethyan orogens.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Investigations of supercontinent cycles (Cawood and Buchan,
2007; Condie, 1998, 2000; Li et al., 2008) have shown that the for-
mations and dispersals of super-continents caused openings and
closings of world oceans and these were accompanied by plate tec-
tonic convergence, collision and accretion processes that produced
the global orogenic systems. This general knowledge about
orogenesis has been known for quite some time, but is based
mainly on surface tectonic features such as suture zones, tectonic
domains and mountain belts. However, very few studies have
focused on the underlying mantle mechanism(s) and/or pro-
cess(es) that may have formed these tectonic features. Collins
and co-workers (Collins, 2003; Collins et al., 2011) have quite
recently suggested that the two long-lived global-scale mantle
convection systems are related to the different styles of orogenic
processes in the Phanerozoic: accretionary and collisional. The
composition, history and evolution of the underlying mantle and
their relationships to surface tectonic features will lead to a better
understanding of the coupling between crust and mantle pro-
cesses. Specifically, surface tectonic processes coupled with mantle
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convection systems could be the reason for the globally different
Hf isotope evolution between accretionary and collisional orogens
(Collins et al., 2011). Ophiolites, pieces of ocean floor that are occa-
sionally preserved in on-land (e.g., Dilek, 2003; Hawkins, 2003;
Moores, 1970, 2003; Wakabayashi et al., 2010), are interesting to
study in this context since their modes of emplacement provide
important keys to understand the major tectonic features of an
orogenic belt as well as their chemical and isotopic characteristics
generally reflect those of the composition and evolution of under-
lying mantle (e.g., Dewey and Bird, 1971; Dilek, 2003; Mahoney,
1998; Moores and Jackson, 1974; Moores and Vine, 1971;
Shervais, 2001; Shervais et al., 2005; Pfänder et al., 2002;
Wakabayashi et al., 2010; Wakabayashi and Dilek, 2000; Xu and
Castillo, 2004; Xu et al., 2002; Zhang et al., 2005).

The Paleo-Asia and Tethys oceans are two extinct ancient
oceans. The Paleo-Asia Ocean (PAO) was formed during the break
up of the Rodinia Supercontinent between 900 and 700 Ma
(Dobretsov et al., 1995, 2003; Li et al., 2008). The Tethys can be fur-
ther subdivided into Paleo-Tethys Ocean (PTO) and Neo-Tethys
Ocean (NTO). The Tethys most probably was formed from
Cambrian to Cretaceous, roughly between �550 and �90 Ma based
on ophiolite ages, corresponding to the separation and northward
migration of the various continental terranes from Gondwana
(Metcalfe, 2013; Stampfii et al., 2002; Stampfli, 2000). The
Central Asian Orogenic Belt (CAOB; Jahn, 2004) and Tethyan
Tectonic domain (TTD) are the two largest global complex tectonic
domains associated with the evolution and closure of PAO and
Tethys oceans, respectively. Many studies have also recognized
that CAOB and TTD represent typical global accretionary and colli-
sional orogens, respectively (Collins, 2003; Collins et al., 2011;
Cawood and Buchan, 2007; Cawood et al., 2009; Sengör and
Natal’in, 1996; Sengör et al., 1993; Windley et al., 2007; Xiao
et al., 2008, 2010, 2009a, 2003, 2009b). Relict fragments of PAO
and Tethys crusts are preserved as ‘ophiolites’ along the CAOB
and TTD suture zones. Although the term ophiolite has different
meanings as applied by different authors (Dilek, 2003;
Wakabayashi et al., 2010), we use it in this paper simply to define
a sequence of rocks comprising a generic oceanic crust. Moreover,
we primarily focus on the mafic and ultramafic igneous members
of the PAO and Tethys crusts as their geochemistry offers a natural
window to constrain the properties of PAO and Tethyan mantles
that, in turn, can be related to the surface tectonic features of
CAOB and TTD.

In this paper, we compare the Pb isotopic compositions of mafic
rocks (basalts and gabbros) collected from typical PAO (Liu et
al., 2014, 2015; Wang, 2009) and Tethyan ophiolites (Hou et al.,
2006a, 2006b; Mahoney, 1998; Xu and Castillo, 2004; Xu et al.,
2002; Zhang et al., 2005) representing the sub-PAO and Tethyan
mantle, respectively. Based on the comparison of Pb isotopic data,
we found a distinct isotopic difference between the sub-PAO and
Tethyan mantles. Finally, we present the geodynamic significance
of these mantle domains by comparing the orogenic histories and
characteristics with the modern boundary between the CAOB and
TTD domains.
2. Geologic background

The history and evolution of the now extinct PAO (Dobretsov
et al., 1995, 2003) and Tethys (Metcalfe, 2013; Stampfii et al.,
2002; Stampfli, 2000) resulted into the formation of two major tec-
tonic zones, the CAOB and TTD, respectively. The TTD lies at the
boundary between the Indian and Tarim–North China cratons
(Fig. 1) and represents the subduction of the Paleo- and
Neo-Tethys oceans during the Paleozoic and Mesozoic, respec-
tively, although they partly overlapped in time (Metcalfe, 2013;
Sengör, 1987; Sengör and Yilmaz, 1981; Stampfii et al., 2002;
Stampfli, 2000). Neo-Tethyan ophiolites occur mainly along the
Yar-lung-Zangbo and Bangong Lake–Nujiang suture zones in
Tibet whereas Paleo–Tethyan ophiolites mainly occur in northern
Tibet, Sanjiang area of southwest China and central China (Xu
and Castillo, 2004; Xu et al., 2002; Zhang et al., 2008a) (Fig. 1).

The PAO probably opened in Mid- to Neo-Proterozoic (ca.
900 Ma, Dobretsov et al., 1995, 2003) and closed in �Permian
(ca. 280–250 Ma, Xiao et al., 2008, 2009a; Zhang et al., 2008b).
The CAOB, also known as the Altaid tectonic collage (Sengör and
Natal’in, 1996; Sengör et al., 1993), was a collage of multiple for-
mer subduction–accretionary complexes associated with the evo-
lution and closure of the PAO (Windley et al., 2007; Xiao et al.,
2009a). It is currently located at the boundary between the
Siberian and Tarim–North China cratons (Fig. 1). The PAO ophio-
lites occurring in the suture zones in northern Xinjiang and Inner
Mongolia are in the southern portion of CAOB.

2.1. Paleo-Asian ophiolite

The eight PAO ophiolite exposures investigated in this study
include three from North Xinjiang (Bindaban and Bayan Gol ophi-
olites of Tianshan, Dalabute and Karamaili ophiolites of Junggar)
and four from Inner Mongolia (Hegenshan, Chaokeshan, Ondor
Sum and Ulan Valley ophiolites). The Bindaban and Bayan Gol
ophiolite are exposed in the North Tianshan suture zone section
of the North Tianshan fault (Fig. 1). The slices of Bindaban ophiolite
mainly consist of gabbro, diabase and basalt (Dong et al., 2007) and
were formed in Ordovician based on the chert interlayered with
the ophiolite mélange that conformably underlies the lower
Silurian Mishigou Formation containing late Cambrian –
Ordovician Radiolaria fossils and Conodont fossils (Che et al.,
1994). The Bayan Gol ophiolite consists of fault-bounded slices of
pillowed and massive lavas, diabase, gabbro, and ultramafic rocks
(Xia et al., 2005). A plagiogranite from this ophiolite has a
SHRIMP zircon age of 324.8 ± 7.1 Ma (Xu et al., 2005) whereas a
gabbro has a LA–ICP–MS zircon age of 344.0 ± 3.4 Ma (Xu et al.,
2006b).

The Karamaili and Dalabute ophiolite belts are the two largest
exposures of Devonian ophiolites in the Junggar Basin in northern
Xinjiang. They have almost all the igneous components of a classic
ophiolite, e.g. mantle peridotites, cumulate ultramafics, gabbros,
and volcanics (Liu et al., 2014, 2009a, 2007). The age of Karamaili
ophiolite has been determined by U–Pb zircon dating that includes
336 Ma and 342 Ma for the gabbros (Jian et al., 2005), 403 Ma (Jian
et al., 2005) and 373 Ma (Tang et al., 2007) for the plagiogranites
and 371 Ma for the tonalities (Liu et al., 2009a). These dates are
consistent with the Devonian and Early Carboniferous age of the
radiolarian chert (Cai, 1986; He et al., 2000; Shu and Wang,
2003). The age of Dalabute ophiolite has been constrained by a
Sm–Nd isochron age of 395 Ma (Zhang and Huang, 1992) and
U–Pb zircon ages of 391 Ma (Gu et al., 2009), 332 Ma (Xu et al.,
2006a), and 302 Ma for its gabbro units (Liu et al., 2009b).
Although quite variable, these igneous ages of the ophiolite com-
bined with the Devonian age of the radiolarian chert (Xiao et al.,
1992) give a conclusive Devonian to early Carboniferous age
(391–332 Ma) for the Dalabute ophiolite.

The other four ophiolites exposures investigated occur in two of
the four major ophiolite belts in Inner Mongolia that include, from
north to south, Eren Hot–Hegenshan, Jiaoqier–Xilin Hot, Solon
Obo–Linxi, and Ondor Sum–Xar Moron (Fig. 1; Miao et al., 2008;
Xiao et al., 2003; Zhang et al., 2008b). Hegenshan and Chaokeshan
ophiolites are located within the early Paleozoic Eren Hot–
Hegenshan ophiolite belt. The ophiolite pieces consist chiefly of
mantle peridotites and cumulate gabbros as well as sparse basaltic
lavas and dikes (Miao et al., 2008; Zhang et al., 2008b). SHRIMP



Fig. 1. Simplified tectonic map of central Asia and Tibetan plateau showing distributions of ophiolite belts (modified after Jahn, 2004; Zhang et al., 2008a). The Central Asian
Orogenic Belt (CAOB) is located between Siberian craton to the north and Tarim–North China craton to the south. The Tethyan tectonic zone is located between the Indian and
Tarim–North China cratons.
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U–Pb zircon ages acquired for the Hegengshan ophiolite include
354 ± 7 Ma for a microgabbro (Jian et al., 2012), 333 ± 4 Ma for a
plagiogranite (Jian et al., 2012), 298 ± 9 Ma for a basaltic dike
(Miao et al., 2008), 295 ± 15 Ma for a gabbro (Miao et al., 2008),
and a whole-rock 40Ar/30Ar age of 293 ± 1 Ma that was interpreted
as the time of eruption of the basaltic lavas.

The Ondor Sum and Ulan Valley ophiolites are located in the
early Paleozoic Ondor Sum–Xar Moron ophiolite belt (Fig. 1). The
Ondor Sum ophiolite consists chiefly of basalt and gabbro with
minor diorite locally intruded by diabase dikes (Zhang et al.,
2008a). Pillow basalts in Ondor Sum ophiolite give a Rb–Sr isochron
age of 624 Ma (Zhang and Wu, 1998) whereas adakitic diorites give
a SHRIMP U–Pb zircon age of 467 Ma (Liu et al., 2003). The best sec-
tion of Ondor Sum ophiolite is in the Ulan Valley and consists
mainly of pillow lavas, massive basalts, gabbros and ultramafic
slices; some of the basalts experienced high-pressure metamor-
phism and had been transformed to blueschists (de Jong et al.,
2006; Miao et al., 2008). The Sm–Nd and Rb–Sr isochron ages of
basalts from Ulan Valley ophiolite are 961 Ma and 624 Ma, respec-
tively (Zhang and Wu, 1998). Although the previously reported ages
of Ondor Sum ophiolite are variable, from 425 to 961 Ma, the ocean
basin represented by Ondor Sum ophiolite most likely formed in
early Paleozoic (Miao et al., 2008; Zhang and Wu, 1998).
2.2. Tethyan ophiolites

For comparison with those from the PAO ophiolites, lead iso-
topic data were compiled from the PTO and NTO ophiolites that
include Shuanggou, Jingshajian and Ailaoshan ophiolites from
southwest China, Mian Lue and Qilian ophiolites from central
China and Yar-lung-Zangbo and Bangong Lake–Nujiang ophiolites
from Tibet (Fig. 1). They are the best preserved ophiolites in the
region and contain all the igneous components of a classic ophio-
lite, e.g. mantle peridotites, cumulate ultramafics, gabbros, dia-
bases, and basalts; the age of these ophiolites range from 550 to
90 Ma (Hou et al., 2006a, b; Xu and Castillo, 2004; Zhang et al.,
2008a, 2005).
3. Results and discussion

3.1. Distinctive Pb isotope compositions between sub-PAO and Tethyan
mantles

The Pb isotope compositions of mafic samples from different
PAO and Tethyan ophiolites are shown graphically in Fig. 2. One
should note that all samples were corrected to their respective
crystallization ages using measured and published Th, U and Pb
concentrations. There is a clear difference in the Pb isotopic com-
positions between PAO and Tethyan ophiolites in 208Pb/204Pb(t) ver-
sus 206Pb/204Pb(t) plots. Although the Pb isotopic ratios of the three
late Paleozoic ophiolites (Bayan Gol, Dalabute and Karamail ophio-
lites) from Xinjiang plot within the Tethyan field (Fig. 2b), all other
ophiolites from Inner Mongolia and the early Paleozoic Bindaban
ophiolite (also in Xinjiang) are distinct compared to those of the
Tethyan ophiolites. In detail, the PAO ophiolites plot below or on
the NHRL (Hart, 1984), or have lower 208Pb/204Pb(t) for given
206Pb/204Pb ratios than the Tethyan ophiolites (Hou et al., 2006a,
b; Mahoney, 1998; Xu and Castillo, 2004; Xu et al., 2002; Zhang
et al., 2005). This suggests lower 208Pb/206Pb that, in turn, suggests
a systematically long time-integrated lower (parent) Th/U ratio of
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the sub-PAO mantle relative to that of the sub-Tethyan mantle
throughout the Phanerozoic.

In detail, the Inner Mongolia ophiolites have a different Pb iso-
topic trend from that of the Tethyan ophiolites (Fig. 2a), but the
isotopic ratios of the Xinjiang ophiolites exhibit two trends: the
early Paleozoic Bindaban ophiolite (�460 Ma) is isotopically differ-
ent from that of Tethyan ophiolites, whereas the late Paleozoic
Bayan Gol (334 Ma), Dalabute (�395 Ma) and Karamaili
(�373 Ma) ophiolites are isotopically similar to Tethyan ophiolites
(Fig. 2b). This observation raises the possibility that Pb isotope dif-
ferences exist between early and late Paleozoic PAO ophiolites in
Xinjiang. In other words, the PAO most likely occupied portions
of the Tethyan mantle as well during late Paleozoic (Liu et al.,
2014). Unfortunately, Pb isotope data are currently not available
for other early Paleozoic ophiolite(s). Therefore, further sampling
and analysis are needed to trace the mantle property of the PAO
ophiolites in the Xinjiang Province.

3.2. Geodynamic implications

The global orogenic systems were basically developed through
accretionary and collisional orogenic processes (Collins et al.,
2011; Cawood and Buchan, 2007; Cawood et al., 2009). The CAOB
is one of the typical accretionary orogens (Jahn, 2004; Windley
et al., 2007; Xiao et al., 2008, 2010, 2009a, b) and is associated with
PAO evolution whereas the TTD is a collisional orogen associated
with Tethys evolution (Xu and Castillo, 2004; Xu et al., 2002).
Based on our results, we propose that the distinct Pb isotopic com-
positions of the PAO and Tethyan mantles are intimately related to
the different magma–tectonic processes that formed the CAOB and
TTD that, in turn, were associated with long-lived mantle convec-
tion (Bahlburg, 2011). In this scheme, the markedly different Pb
isotopic signatures of the PAO and Tethyan mantles are reminis-
cent of the Hf isotope evolution of global accretionary and colli-
sional orogenic systems (Fig. 3), which shows fundamentally
different Hf isotopic signatures. Note that the mixed radiogenic
and unradiogenic Hf isotopic ratios of TTD are part the original data
set used by Collins et al. (2011) to define the collisional orogen
array. On the other hand, the radiogenic Hf isotopic ratios of
CAOB, which are not part of the said data set, plot with the accre-
tionary orogen array.
It is also important to note that the production of two distinc-
tive isotopic mantle domains beneath the PAO and Tethys raises
a major question: what mechanism(s) elevated the Th/U ratio in
the mantle beneath the Tethyan relative to that beneath the PAO
realm. Our data suggest that the different Pb isotope compositions
of the PAO and Tethyan mantles most likely were affected by dif-
ferent tectonic events that produced two different isotope signa-
tures. Specifically, contamination of high Th/U continental
material occurred during the opening of the Tethys oceans
(Chung et al., 2001; Hanan et al., 2004; Mahoney, 1998), subse-
quent subduction around Tethys (Kempton et al., 2002;
Rehkämper and Hofmann, 1997), or during tectonic processes that
produced the Tethyan domain.

Significantly, based on recent plate reconstructions (Fig. 4;
Scotese, 2001), the PAO and Tethys had dramatic different evolu-
tionary and tectonic histories. The PAO was formed by
Neoproterozoic rifting of Rodinia (Cawood, 2005; Dobretsov
et al., 1995, 2003; Li et al., 2008) and most likely was a branch of
the Paleo-Pacific Ocean that had a remarkable permanency, at least
throughout the Phanerozoic (Fig. 4; Coney, 1992; Dobretsov et al.,
1995, 2003). The subduction system around and of PAO was on
average relatively stable and the subducting plate mainly consisted
of oceanic lithosphere, similar to the present-day circum Pacific
margin subduction system (Xiao et al., 2010, 2009b). Thus, no
extensive continental crust and sub-continental lithospheric man-
tle (SCLM) were involved during subduction-related magmatism
within this accretionary orogenic system. As a typical
subdution-accretionary orogenic system, the CAOB had evolved
around PAO margins although the Gondwanaland microcontinents
(e.g. Tarim or Kazakhstan, He et al., 2014; Liu et al., 2011) crossed
the PAO and finally collided the Siberian and East European conti-
nents in late Paleozoic (Dobretsov et al., 2003). Thus, a large part of
CAOB growth may have been produced dominatedly by the addi-
tion of juvenile materials (e.g., oceanic fragments and island arcs)
that were extracted from the underlying mantle wedge relatively
free of continental material contamination (Sengör et al., 1993;
Xiao et al., 2008, 2010, 2009b). Such an evolution is apparently
explained by the more radiogenic Hf isotope compositions of zir-
con minerals from the CAOB (Fig. 3; Ao et al., 2010; Cai et al.,
2014, 2011; Geng et al., 2009; Kröner et al., 2014; Li et al., 2013;
Sun et al., 2008; Yang et al., 2011).
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margin of Gondwanaland and Siberia across and beyond the North Polar regions. In general, the Paleo-Pacific Ocean had a permanent and stable subduction system where
only oceanic crust comprises the subducting plate; an intra-oceanic arc (Kipchak arc of Sengör et al., 1993) extended from Siberia to the south of Baltica. During this period,
the separation and northward migration of the various continental terranes from Gondwanaland initially opened the Paleo-Tethys Ocean (PTO). (b) Carboniferous. The PAO
gradually closed from west to east, corresponding to the collision of Africa (west Gondwanaland) with Pangea. The PTO continued extending northward, successively
transferring Gondwanaland microcontinents across the ocean; subduction zones evolved around the Paleo–Tethyan margin. (c) Early Permian. The PAO shrinked into limited
ocean basin(s) between North China and Siberia. During this period the PTO opening was at a maximum and continental break-up of mid-Gondwanaland formed the Neo-
Tethys Ocean (NTO). (d) Late Permian to Early Triassic. The PAO completely closed and Gondwanaland derived micro-continents crossed the PTO and NTO and subducted
along a long-term, N-dipping subduction; finally, North China collided with Eastern Europe.
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Fig. 5. Schematic map of the boundary between the CAOB and Tethyan Tectonic domains (modified after Jahn, 2004; Xiao et al., 2009a; Zhang et al., 2008a). The solid and
dashed sections of the red bold line denote the exact and approximate locations of the boundary, respectively, along the Tianshan–Solonker suture zone. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In contrast, the Tethys realms, including the PTO, NTO and
Indian Ocean, experienced repeated openings and closures, succes-
sive transfers of continental fragments across ocean areas and,
finally, evolution through collisional orogeny around the Tethys
margins (Fig. 4; Collins et al., 2011; Coney, 1992). In detail, conti-
nental break-up of the Gondwana landmasses formed the Paleo–
Tethyan, then Neo_Tethyan, and Indian mid-ocean systems
(Stampfii et al., 2002; Stampfli, 2000). Detachment and dispersal
of continental lower crust and SCLM into the shallow mantle dur-
ing rifting and breakup of Gondwana may adequately account for
high the Th/U Tethyan mantle (Chung et al., 2001; Hanan et al.,
2004; Mahoney, 1998). These processes may also explain the
mixed radiogenic and unradiogenic Hf isotope signal (Fig. 3)
through episodic mixing between young oceanic and old continen-
tal lithosphere in the upper mantle during repeated cycles of ocean
basin evolution (Collins et al., 2011).

3.3. The boundary between CAOB and TTD

Lead isotope data coupled with Hf isotope evolution of global
accretionary and collisional orogens suggest that surface tectonic
and underlying mantle processes influence each other. The distinc-
tive isotope compositions of the sub-PAO and Tethyan mantles is
also consistent with plate reconstructions (Fig. 4; Scotese, 2001).
The ancient Panthalassan Ocean, most likely the precursor of PAO
or Paleo-Pacific Ocean (Coney, 1992; de Jong et al., 2006;
Dobretsov et al., 1995, 2003), had permanent stable subduction
systems but lacked major continental collisions and, thus,
extensive contamination of the shallow mantle did not occur.
Meanwhile, the circum-Pacific orogenic system evolved along the
subduction zone of outer PAO or Paleo-Pacific Ocean rim, a part
of which was located in front of Kipchak arc system (Sengör
et al., 1993). Thus, the PAO eventually evolved into the accre-
tionary CAOB after its closure in the Permian (Xiao et al., 2008,
2009a). As a result, the PAO ophiolites that formed in Inner
Mongolia have a low 208Pb/206Pb (or Th/U) mantle isotopic signa-
ture that is different from that of the Tethyan mantle. In contrast,
the separation and northward migration of the various continental
terranes from Gondwanaland wherein the Tethyan and then Indian
oceans were formed through repeated openings and closures
(Stampfii et al., 2002; Stampfli, 2000). The closure of the Tethyan
realm formed a long-term, N-dipping subduction system (Fig. 4d;
Collins, 2003; Collins et al., 2011) that represents the collisional
TTD, wherein detached fragments of Gondwana lower crust and
SCLM continuously entered the shallow mantle producing a high
Th/U mantle reservoir of Tethys (Chung et al., 2001; Hanan et al.,
2004; Mahoney, 1998).

In summary, our results show that the Pb isotopic composition
of PAO opholites is distinct from that of Tethyan ophiolities and
this, in turn, reflects a long time-integrated lower Th/U mantle
beneath the PAO, or at least, beneath the southern part of PAO
(e.g., in Inner Mongolia and Tianshan) throughout the Paleozoic.
The different orogenic histories of the CAOB and TTD are consistent
with the different Pb isotopic compositions of these mantle
domains. Based on tectonic features and mantle properties, we
delineate the present-day boundary between the CAOB and TTD
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along the Tianshan–Solonker suture (Fig. 5). The eastern boundary
in Inner Mongolia and western boundary in Tianshan of Xinjiang is
solid (red solid line in Fig. 5), but the western boundary further
from Kudi in Xinjiang cannot be constrained with certainty (repre-
sented by red dashed line in Fig. 5) because the Pb isotope charac-
teristics of late Paleozoic ophiolites from Xinjiang are equivocal as
they also show Tethyan characteristics. This boundary reflects not
only the surface tectonic features but also the mantle composi-
tional distinction between the CAOB and TTD. Therefore, our
results provide testable models for the connection between oro-
genic and mantle processes and the boundary between mantle
geochemical and tectonic features of two orogenic systems.
4. Conclusions

The following are the main conclusions of this study:

(1) The comparison between the isotopic compositions of PAO
and Tethyan ophiolites suggests the existence of a boundary
between the mantle domains and tectonic features of CAOB
and TTD.

(2) The distinctive 208Pb/206Pb isotopic ratios of the PAO and
Tethyan mantle domains are due to differences in their
long-time integrated Th/U ratios.

(3) The Pb isotopic distinction between these two mantle
domains suggests that an intimate relationship exists
between mantle and tectonic evolutions in individual global
orogens. The different magma–tectonic processes that
formed the CAOB and TTD resulted into distinct Pb isotope
compositions of the PAO and Tethyan mantles.
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