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Semianalytical Solutions of Radioactive or Reactive
Transport in Variably-Fractured
Layered Media: 1. Solutes

Abstract. In this paper, semianalytical solutions are developed for the problem of

transport of radioactive or reactive solute tracers through a layered system of heterogeneous

fractured media with misaligned fractures. The tracer transport equations in the non-

flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the

mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical,

or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order

chemical reactions. The tracer-transport equations in the fractures account for the same

processes, inadditiontoadvectionandhydrodynamicdispersion. Anynumberofradioactive

decay daughter products (or products of a linear, first-order reaction chain) can be tracked.

The solutions, which are analytical in the Laplace space, are numerically inverted to provide

the solution in time and can accommodate any number of fractured and/or porous layers.

The solutions are verified using analytical solutions for limiting cases of solute and colloid

transport through fractured and porous media. The effect of important parameters on the

transport of 3H, 237Np and 239Pu (and its daughters) is investigated in several test problems

involving layered geological systems of varying complexity.

1. Introduction

The study of radioactive and/or reactive contaminant transport in complex fractured

geologic systems has become increasingly important in recent years because of the need

to predict the migration and fate of the contaminants. Currently, there are some very
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large contaminated sites (such as Hanford, Washington; Nevada Test Site (NTS), Nevada;

Idaho National Engineering and Environmental Laboratory (INEEL), Idaho) where severe

pollution by radioactive materials extends over large areas within the subsurface rocks.

At Yucca Mountain (YM), Nevada, the site of the potential repository for high-level

nuclear waste, the transport of radioactive contaminants must be predicted for tens to

hundreds of thousands of years. Performing reliable radionuclide transport calculations for

this temporal and spatial scale is obviously very difficult, and furthermore it is impossible

to verify the results. In addition, the complex geology of the site and the unsaturated nature

of a significant portion of the flow path add to the difficulty in making such predictions.

The potential site is located in southern Nevada about 120 km northwest of Las Vegas,

and is characterized by a thick unsaturated zone (600–700 m) and the presence of rocks onto

which important radionuclides in the wastes tend to sorb strongly. The YM stratigraphy

consists of layers of welded and nonwelded tuffs (with vastly different hydraulic, transport,

and geochemical properties), with the former generally being extensively fractured and the

latter behaving similarly to a porous medium [Montazer and Wilson, 1984; Liu et al., 1998;

Bandurraga and Bodvarsson, 1999].

The varied geological and hydrological characteristics of the different tuff layers at

Yucca Mountain make the modeling of flow and transport a challenging task. A single

representation for all of the hydrogeologic units is inappropriate, and several different

approaches and algorithms must be employed for obtaining reliable modeling results.

Analytical and semianalytical models of transport that can account for the site heterogeneity

are important because they allow the validation of complex multidimensional numerical

models, are computationally efficient, and can provide bounding estimates of the possible

solutions of the expected transport at the site.

Previous analyticalsolutions ofsolutetransport infractured mediainvolvedexclusively

single semi-infinite domains (layers). Tanget al. [1981] developed a quasi two-dimensional

solution for the transport of solutes in a single saturated fracture (i.e., with a semi-infinite
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matrix) that assumed a constant concentration boundary and accounted for (a) advection

and dispersion in the fractures, (b) diffusion in the matrix, the fractures, and across their

interface, (c) sorption onto the matrix and the fractures, and (d) radioactive decay. The

analytical solution of Sudicky andFrind [1982] accounted forthe sameprocesses inasystem

of parallel fractures (i.e., with a finite matrix block size). The solution of Robinson et al.

[1998] is an extension of the Sudicky and Frind [1982] solution and accounts for the effect

of fracture skin on transport in a system of parallel fractures. By neglecting hydrodynamic

dispersion inthe fracturesand assuming aninstantaneous (Dirac-type) deposition of a parent

radionuclide at the boundary, Sudicky and Frind [1984] obtained analytical solutions to the

problem of transport of a two-member radioactive chain in a single fracture.

In this paper, semianalytical solutions are developed for the problem of transport of

radioactive or reactive solute tracers (i.e., at concentrations that do not affect the fluid prop-

erties) through a layered system of heterogeneous fractured media with misaligned fractures

(such as the unsaturated zone at YM). The solutions allow any number and combination of

fractured and/or porous layers that can vary in hydraulic and transport properties, fracture

frequency, water saturation, fracture flow, and fracture-matrix interaction. The tracer trans-

port equations in the non-flowing matrix account for (a) molecular diffusion, (b) surface

diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear

kinetic or equilibrium physical, chemical or combined solute sorption, and (e) radioactive

decay or first-order chemical reactions. The solute transport equations in the fractures ac-

count for the same processes, in addition to advection and hydrodynamic dispersion. Any

number of daughter products of radioactive decay (or of a linear, first-order reaction chain)

can be tracked, and several boundary conditions can be accommodated.

2. Solute Transport Equations

2.1. The PDE of Solute Transport

The one-dimensional (1-D) Partial Differential Equation (PDE) of transport of a
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radioactiveorreactivesolutetracersthroughavariablysaturatedporous orfracturedmedium

(PM or FM) is described by the equation

Dm
∂2C

∂x2 + Di
∂2Ci

∂x2 + DF
∂2F

∂x2 − U
∂C

∂x

= φ (S − Sr)
(

∂C

∂t
+ δr

∂R
∂t

)
+ φ Sr

(
∂Ci

∂t
+ δr

∂Ri

∂t

)
+ (1 − φ) ρ

∂F

∂t

+ λ δλ [φ (S − Sr)C + φ Sr Ci + (1 − φ) ρF ] ,

(1)

where

C dissolved species concentration in the mobile pore water [ML−3];

Dm intrinsic diffusion coefficient for the mobile pore water [L2T−1];

Ci dissolved species concentration in the immobile pore water [ML−3];

Di intrinsic diffusion coefficient in the immobile pore water [L2T−1];

F = Fp + Fc ;

Fp relative concentration of the physically adsorbed species [(ML−3)/(ML−3)];

Fc relative concentration of the chemically sorbed species [(ML−3)/(ML−3)];

R reacted species mass per unit volume in the mobile fraction [ML−3];

Ri reacted species mass per unit volume in the immobile fraction [ML−3];

DF apparent surface diffusion coefficient [ML−1T −1];

U = V φ (S − Sr), Darcy velocity [LT−1];

V pore flow velocity [LT −1];

S water saturation [L3/L3];

Sr irreducible water saturation [L3/L3];

ρ PM grain density [ML−3];

φ total PM porosity [L3/L3];

λ = ln2/T1/2, radioactive decay constant [T−1];

T1/2 half-life of radioactive species [T ].

The parameters δs and δλ are defined as

δr =

{ 1 for reactive transport

0 for radionuclide transport
and δλ =

{ 0 for reactive transport

1 for radionuclide transport
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The first three terms on the left-hand side of (1) describe diffusion in the mobile pore

water [Skagius and Neretnieks, 1988] through the immobile thin film in the immediate

vicinity of the PM grains [de Marsily, 1986], and surface diffusion [Jahnke and Radke,

1987; Skagius and Neretnieks, 1988; Cook, 1989; Berry and Bond, 1992], respectively. The

fourth term on the left-hand side (1) describes advective transport. The terms on the right-

hand side of equation (1) describe the dissolved species accumulation and radioactive decay

in the pore water, in the immobile fraction, and on the PM grains due to sorption. Chemical

reactions in the water phase are also accounted for [Cho, 1971]. A detailed discussion of

these terms can be found in Moridis [1999], from where

Dm = φ (S − Sr) (τp D0 + αL V ) and Di = τi φ Sr D0 (2)

where D0 is the molecular diffusion coefficient of the dissolved species in water [L2T −1],

αL is the longitudinal dispersivity [L], τp is the tortuosity factor of the pore paths

[dimensionless], and τi is the tortuosity factor in the diffusion paths through the immobile

fraction [dimensionless]. If surface diffusion cannot beneglected [Jensen and Radke, 1988],

DF is given by [Jahnke, 1986; Jahnke and Radke, 1987]

DF = τs (1 − φ) ρDs, (3)

where τs is the tortuosity coefficient of the surface path [dimensionless], and Ds is the

surface diffusion coefficient [L2T−1]. For homogeneous PM systems there is theoretical

justification [Cook, 1989] for the relationship τs = 2
3 τp.

The species concentration in the mobile and immobile water fractions are related

through the linear equilibrium relationship [de Marsily, 1986],

Ci = Ki C, Ri = Ki R, (4)

where Ki is a dimensionless mass transfer coefficient. Equation (1) then becomes

DT
∂2C

∂x2 + DF
∂2F

∂x2 − U
∂C

∂x

= φ h

(
∂C

∂t
+ δλ λ C

)
+ (1 − φ) ρ

(
∂F

∂t
+ δλ λ F

)
+ δr φ h

∂R
∂t

,

(5)
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where

DT = φ {D0 [τp (S − Sr) + τi Sr Ki] + (S − Sr) αL V } (6)

and

h = (S − Sr) + Sr Ki . (7)

2.2. The Equations of Solute Sorption and

First-Order Chemical Reaction

Consideringthat sorption occurs as thedissolvedspecies diffusesthrough the immobile

water fraction, and assuming linear equilibrium (LE) sorption, the following relationship

applies:

Fp = Kd Ki C , (8)

where Kd is the distribution coefficient [M−1L3].

Linear kinetic physical (LKP) and linear irreversible physical (LIP) sorption are

described by the equation [Moridis, 1999]

∂Fp

∂t
+ λ Fp = kp (Kd Ki C − δp Fp) , (9)

where kp is the kinetic constant of linear adsorption [T−1], and

δp =

{ 1 for LKP sorption;

0 for linear LIP sorption.
(10)

In the case of LIP sorption, Kd does not represent the distribution coefficient of LE sorption,

but is rather a proportionality factor.

Thefirst-order reversiblechemicalsorptionisrepresentedbythelinearkineticchemical

(LKC) model
∂Fc

∂t
+ λ Fc = k+

c Ki C − k−
c Fc , (11)

where k+
c [M−1L3T−1] and k−

c [T−1] are the forward and backward kinetic constants,

respectively. Note that equation (11) can be used in conjunction with the physical sorption
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equations to describe combined sorption [Cameron and Klute, 1977], e.g., physical and

chemical sorption. Combined sorption accounts for the different rates at which a species

is sorbed onto different PM constituents. Thus, sorption onto organic components may be

instantaneous(LE),whilesorptionontomineralsurfacesmaybemuchslowerandkinetically

controlled [Cameron and Klute, 1977].

The equations of a series of Nc first-order chemical reaction are given by [Cho, 1971]

∂R1

∂t
= K1 C1 ,

∂R2

∂t
= K2 C2 − K1 C1 ,

...
...

∂RNc

∂t
= KNc CNc − KNc−1 CNc−1 ,

(12)

where Kj (j = 1, . . . ,Nc) is the chemical reaction rate constant [T −1], and Nc is the

number of chemical reactions in the series.

2.3. The Solute Transport ODE in the Laplace Space

2.3.1. Parent or Stable Species. After incorporating the sorption terms, the Laplace

transform (LT)of the solute transport equation (5) yields the following Ordinary Differential

Equation (ODE)

D
d2Ĉ

dx2 − U
dĈ

dx
− E Ĉ = 0 , (13)

where Ĉ = L{C}, L{} denotes the LT of the quantity in the brackets,

E = φ [(s + δλ λ) R + δr h K] , (14)

R =





h + w ψ for LE sorption;

h + uψ for LKP or LIP sorption,

h + v ψ for LKC sorption,

h + (w + u)ψ for combined LE and LKP/LIP sorption,

h + (w + v) ψ for combined LE and LKC sorption,

h + (u + v)ψ for combined LKP/LIP and LKC sorption,

(15)
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D =





DT + φ τs w ψ Ds for LE sorption;

DT + φ τs u ψ Ds for LKP or LIP sorption,

DT + φ τs v ψ Ds for LKC sorption,

DT + φ τs (w + u) ψ Ds for combined LE and LKP/LIP sorption,

DT + φ τs (w + v)ψ Ds for combined LE and LKC sorption,

DT + φ τs (u + v) ψ Ds for combined LKP/LIP and LKC sorption,

(16)

w = Kd Ki, u =
kp Kd Ki

s + λ + δp kp
, v =

k+
c Ki

s + λ + k−
c

, ψ =
(1 − φ)

φ
ρ , (17)

and s is the Laplace space parameter. The term R is an expanded retardation factor, which

can account for kinetic behavior [Moridis, 1999]. Its development involves the LT of the

sorption from equations (8) through (11). It is straightforward to show that [Moridis, 1998]

F̂ = p Ĉ (18)

where F̂ = L{F} and

p =





w for LE sorption;

u for LKP or LIP sorption,

v for LKC sorption,

w + u for combined LE and LKP/LIP sorption,

w + v for combined LE and LKC sorption,

u + v for combined LKP/LIP and LKC sorption.

(19)

Equation (13), subject to equations (14) through (19), is the Laplace space equation

of solute transport in its most general form. Implicit in (13) are the assumptions that (a)

C(x, t = 0) = 0, (b) F (x, t = 0) = 0, (c) R(x, t = 0) = 0, and (d) in combined sorption,

different sites are involved in each of the constituent types of sorption.

2.3.2. Daughter Species of Radioactive Decay. If the species is radioactive, the

right-hand side of equation (5) is augmented by the term

−λν−1 mr [φh Cν−1 + (1 − φ) ρ Fν−1] , where mr =
Mν

Mν−1
,
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Mν is the molecular weight of the ν-th daughter (1 < ν ≤ Nd, Nd being the total number

of radioactive decay or reaction products), and ν−1 refers to the decaying parent. Then, the

Laplace space transport equation for any daughter product ν of the decay chain following a

LE isotherm is given by

Dν
d2Ĉν

dx2 − U
dĈν

dx
− Eν Ĉν = −Gν Ĉν−1 , (20)

where

Gν = φmr λν−1 Rν−1 (21)

If the daughter sorption is kinetically controlled, equations (9) and (11) need to account

for the generation of daughter mass due to the decay of the sorbed parent, and become

∂Fν

∂t
+ λν Fν − λν−1 mr ζν Fν−1 = kα Cν − kβ Fν , (22)

where Fν−1 is the sorbed mass of the parent,

kα =





kp Kd Ki for LKP/LIP sorption,

k+
c Ki for LKC sorption,

kβ =





kp δp for LKP/LIP sorption,

k−
c for LKC sorption,

and ζν is the fraction of the mass of the decayed sorbed parent that remains sorbed as

a daughter (0 ≤ ζν ≤ 1). The term ζν is introduced to account for the possibility that

daughters can be ejected from grain surfaces due to recoil, e.g., the ejection of 234Th from

grain surfaces during the alpha decay of 238U [Faure, 1977]. The LT of (22) returns

F̂ν = p Ĉν + mr pr Ĉν−1 , (23)

where p is obtained from equation (19), and

pr =





λν−1 ζν u

s + λν + kp δp
for (a) LKP/LIP or (b) combined LE-LKP/LIP sorption

λν−1 ζν v

s + λν + k−
c

for (a) LKC sorption or (b) combined LE-LKC sorption
(24)

For combined LKC and LKP/LIP sorption, pr is the sum of the two components in (24).

Using (23) and (24), it is easy to show that equation (20) applies, but with

Gν = φ mr [λν−1 Rν−1 − (s + λν) pr] . (25)
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All other terms in (20) remain unchanged. Equations (20) through (25) are valid in any

layer n. For a complete daughter ejection [Faure, 1977], ζν = 0, pr = 0, and (21) and (25)

become identical.

2.3.3. Products of Chemical Reactions. If the species is a product of the ν-th first-

order chemical reaction in the reaction chain (12), the right-hand side of equation (5) is

augmented by the term −φh Kν−1 Cν−1. Then, equation (20) applies unchanged, but with

Gν−1 = φh Kν−1 . (26)

3. Transport in Layered Fractured Media

The development of the equations for transport in a layered fractured media expands

on the analysis of Tang et al. [1981] and Sudicky and Frind [1982]. A schematic of the

fracture-matrix system is shown in Figure 1, in which the N layers have different properties.

3.1. Transport in the Matrix

3.1.1. The ODE of Parent or Stable Species Transport in the Matrix. Advection

in the matrix is neglected, that is Um
n = 0. Then the Laplace space ODE of the species

transport in the matrix layer n is given by

Dm
n

d2Ĉm
n

dx2
n

− Em
n Ĉm

n = 0 , (27)

where the superscript m denotes the matrix. The diffusive flux across the fracture-matrix

interface is given by

qn = −rn Dm
n

∂Cm
n

∂xn

∣∣∣∣∣
xn = 0

(28)

and differs from the analogous expression of Tang et al. [1981] in the inclusion of the active

interface area reduction factor rn. The term rn (1 ≥ rn > 0) is defined as the ratio of the

average interface area between mobile water in a fracture and its surrounding matrix to the

average interface area between a fracture and the surrounding matrix. A detailed discussion

on the subject can be found in Liu et al. [1998]. For a fully saturated fracture, rn = 1.
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3.1.2. The ODE of Daughter Transport in the Matrix. From equation (20), the

Laplace space ODE of transport of the daughter ν in the matrix of layer n is given by

Dm
n,ν

d2Ĉm
n,ν

dx2
n

− Em
n,ν Ĉm

n,ν = −Gm
ν Ĉm

n,ν−1 , (29)

where the term Gm
ν is computed from (21) to (26). The diffusive flux of the daughter ν

across the fracture-matrix interface is given by equation (28).

3.2. Transport in the Fractures

3.2.1. Adjustments to Concepts and Equations. In fracture transport, the Darcy

velocity Un in any layer n is computed from the basic mass balance equation as

Un =
Qw

Mn bn
,

where Qw is the water influx rate per unit fracture thickness (in the y direction, not shown

in Figure 1) at the z1 = 0 boundary [L2T −1], and 2bn is the fracture aperture [L]. The

parameter Mn [L/L] is the relative fracture density, and is determined from the number of

fractures in an arbitrary length Lx (see Figure 1). The term Lx is related to the matrix block

half-width Xn [L] and bn (see Figures 2a and 2b) through the relationship

Mn =
Lx

2 (Xn + bn)
, n = 1, . . . ,N .

There are two different ways to treat the fractures. If the fractures are open, we

have surface-based rather than volume-based sorption in the fractures of any layer n

(n = 1, . . . , N). The following changes are then made:

(a) F is now the mass of solute adsorbed per unit surface of the fracture [ML−2].

(b) From the mass balance equations, the term (1−φ) ρ in (17) is replaced by 1/bn, where

bn is the fracture half-width or half-aperture [L] in layer n.

(c) The distribution coefficient of the fracture Kf
d is now defined as the mass of solute

adsorbed per unit area of surface divided by the concentration of solute in solution

[Tang et al., 1981], with units [L].
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(d) The kinetic constants k+
c of chemical sorption in (11) have units [LT −1]; k−

c in (11)

have units [ML−2T−1].

If the fractures are filled (a rather common occurrence), they are treated as a porous

medium. Then, there is no need for the conceptual or mathematical adjustments in (1)

through(4). Inbothopenandfilledfractures, theright-handsideofequation(5)isaugmented

by the term

Qn = fq
n qn, where fq

n =

{ 1/bn for open fractures

1 for filled fractures,
(30)

and qn is described by (28).

3.2.2. The ODE of Parent or Stable Species Transport in the Fractures. The

Laplacespaceequation forfracture transport alongthe z-coordinate(Figure 1)then becomes

Df
n

d2Ĉf
n

dz2
n

− Un
dĈf

n

dzn
− Ef

n Ĉf
n = Q̂n , (31)

where the f superscript denotes the fracture, the n subscripts denotes the layer, and

Q̂n = L{Qn}. Equation (31) is written in terms of the local coordinate zn in each layer n.

3.2.3. The ODE of Daughter Transport in the Fractures. The Laplace space ODE

of transport for the daughter ν in the matrix of layer n is given by

Df
n,ν

d2Ĉf
n,ν

dz2
n

− Un

dĈf
n,ν

dzn
− Ef

n,ν Ĉf
n,ν = Q̂n − Gf

n Ĉf
n,ν−1 . (32)

All the terms in (32) are as previously defined.

3.3. Initial and Boundary Conditions

The initial and boundary conditions corresponding to the fracture equation are

Cf
n(zn, t = 0) = 0,

Cf
1 (z1 = 0, t) = Cz0(t),

Cf
n(zn = Zn, t) = Cf

n+1(zn+1 = 0, t), n = 1, . . . ,N − 1,

Cf
N (zN → ∞, t) = 0,

(33)
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where Zn denotes the thickness of the n-th segment (layer). The time dependence of Cz0

allows investigation of systems with time-variable upper boundaries. Some of the more

common forms of Cz0(t) are

Cz0(t) =





C0 constant concentration

C0 exp[−λ (t + td)] decaying radionuclide concentration

N∗∑

i=1

C∗
i [U(t − t∗i−1) − U(t − t∗

i )] variable pulse concentration

(34)

where C0 is a constant, td is the release delay (the time between radionuclide generation or

storage, and the beginning of release), U(t − t∗) denotes the unit step function at time t∗,

and N∗ is the number of the different pulses with concentration C∗
i . Note that t∗0 = 0 and

that, for N∗ = 1, we obtain the unit pulse of duration t∗1.

The initial and boundary conditions corresponding to the matrix equation are

Cm
n (x, t = 0) = 0,

Cm
n (x = 0, t) = Cf

n(zn, t),




∂Cm
n

∂x
(x = X, t) = 0 for Case 1 (Figure 2a),

Cm
n (x → ∞, t) = 0 for Case 2 (Figure 2b),

(35)

where X is the half-width of the matrix block (Figure 2). Case 1 in Figure 2a describes a

finite system with a Neuman-type boundary at x = X. If dry fractures (i.e., fractures in

which the water phase is discontinuous) occur in the rock matrix of Case 1, the half-width

X is replaced by X∗ = 2X/(nd +1), where nd is the number of dry fractures evenly spaced

along x inthe matrix block(Figure 2b). Case 2 in Figure 2b describes asemi-infinitesystem.

The Laplace transforms of equations (33) through (35) are trivial.
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4. The Laplace Space Equations

4.1. General Matrix Solutions in Each Layer

4.1.1. Parent or Stable Species. Omitting for simplicity the n subscript, and

expanding on Tang et al. [1981] and Sudicky and Frind [1982], the solutions to (27) are

Ĉm =





Hc cosh[θ (X − x)] for Case 1

He exp(−θ x) for Case 2
(36)

respectively, where Hc and He are parameters to be determined, and

θ = θ(s) =

√
Em

Dm
. (37)

From (36) and the Laplace transform of (35),

Ĉm(x = 0) =





Hc cosh(θ X) = Ĉf ⇒ Hc =
Ĉf

cosh(θ X)
for Case 1

He = Ĉf for Case 2

(38)

from which

Ĉm = Ĉm(x, s) =





cosh[θ (X − x)]
cosh(θ X)

Ĉf for Case 1

exp(−θ x) Ĉf for Case 2

(39)

The equations in (39) are applicable in any layer n (n = 1, . . . ,N ).

4.1.2. Daughter or Reaction Products. Following the same approach, it is

straightforward to show that the Laplace space solution of the ODE in (32) for any daughter

or reaction product ν is given by

Ĉm
ν =





Hc
ν cosh[θν(X − x)] +

1∑

κ=ν−1

(
κ∏

i=ν

Am
iκ

)
Hc

κ cosh[θκ(X − x)] for Case 1

He
ν exp(−θν x) +

1∑

κ=ν−1

(
κ∏

i=ν

Am
iκ

)
He

κ exp(−θκ x) for Case 2

(40)

where

Am
iκ = − Gm

i

Dm
i θ2

κ − Em
i

. (41)
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The coefficients Hν are given by the general expression

Hν =
ν∑

κ=1

Tν,κ Ĉf
κ , (42)

where Tν,κ are appropriate coefficients. Expressions for Hν and Tν,κ (the derivation of

which is tedious but straightforward) are provided in Appendix A. Equation (40) shows that

the solution of the matrix transport equation of the daughter or reaction product ν requires

knowledge of the fracture solutions of all previous members of the decay or reaction chain.

4.2. General Fracture Solutions in Each Layer

4.2.1. Parent or Stable Species. From the Laplace transform of the diffusive flux in

(30), and omitting for simplicity the subscript n,

Q̂ = γ fq Ĉf , (43)

where

γ =

{
r Dm θ tanh(θ X) for Case 1

r Dm θ for Case 2
(44)

Substituting in (31) and collecting terms,

Df d2Ĉf

dz2 − U
dĈf

dz
− E∗ Ĉf = 0 , (45)

where E∗ = Ef + γ f q. The general solution to (45) is given by

Ĉf = Ĉf (x, s) = α exp(η+ z) + β exp(η− z) , (46)

where α and β are parameters to be determined, and

η± =
U ±

√
U2 + 4Df E∗

2 Df
. (47)

Equations (43)–(47) apply in any layer n.

4.2.2. Daughter or Reaction Products. From equations (30)–(32) and (40)–(42), for

a daughter ν

Q̂ν = f q r Dm
ν Wν = fq

ν∑

κ=1

γν,κ Ĉf
κ . (48)
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Equation (48) is general and applies to both Case 1 and Case 2. Expressions for Wν and

γν,κ are provided in Appendix B.

Substituting in (32) and collecting terms,

Df
ν

d2Ĉf
ν

dz2 − U
dĈf

ν

dz
− E∗

ν Ĉf
ν = −Gν Ĉf

ν−1 + fq
ν−1∑

κ=1

γν,κ Ĉf
κ , (49)

where E∗
ν = Ef

ν + γν,ν f q.

Following the same approach, it is straightforward to show that the Laplace space

solution of any daughter or reaction product ν is given by

Ĉf
ν = αν exp(η+

ν z) + βν exp(η−
ν z) + Yν , (50)

where

Yν =
1∑

κ=ν−1

A+
ν,κ ακ exp(η+

κ z) +
1∑

κ=ν−1

A−
ν,κ βκ exp(η−

κ z) , (51)

and

A±
ν,κ =

B±
ν,κ

Df
ν (η±

κ )2 − U η±
κ − E∗

ν

. (52)

Expressions for B±
ν,κ and for ν ≤ 5 are given in Appendix C. Equations (50) and (51) show

that the solution of the fracture transport equation of the daughter or reaction product ν

requires knowledge of all previous αν and βν , i.e., the solutions of all previous members of

the chain.

5. The Solution Approach

5.1. Determination of the α and β Parameters

Equation (46) defines a total of 2N unknowns, i.e., the α and β parameters in each of the

N subdomains. These are obtained from the solution of the following equations.

5.1.1. Boundary Equations. These apply to the z1 = 0 point in the first layer (n = 1).

From (46) and the Laplace transform of (33), for a known boundary concentration we have

α1 + β1 = Ĉz0, (53)
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while for known flux boundary conditions

α1(U1 − Df
1 η+) + β1(U1 − Df

1 η−) = U1 Ĉz0 (54)

where Ĉz0 = L{Cz0}. For the common boundary conditions in (34),

Ĉz0 =





C0

s
constant concentration

C0 exp(−λ td)
s + λ

decaying radionuclide concentration

N∗∑

i=1

C∗
i

s
[exp(−st∗i−1) − exp(−st∗i )] piecewise constant concentration.

(55)

For the limiting case of a system consisting of a single semi-infinite layer (i.e., N = 1)

with an open fracture and a constant concentration at z1 = 0, α1 = 0, β1 = C0/s, and

equation (46) is reduced to the Laplace space solutions obtained by Tanget al. [1981] (Case

2) and Sudicky and Frind [1982] (Case 1).

5.1.2. Concentration Equations. At the layer interfaces we have the equations

αn−1 exp(η+
n−1 Zn−1) + βn−1 exp(η−

n−1 Zn−1) − αn − βn = 0 , (56)

for n = 2, . . . ,N . An additional equation is provided by the requirement that Ĉf
n be finite

for ZN → ∞, which dictates that αN = 0.

5.1.3. Flux Equations. The remaining N − 1 equations are provided by the equality

of fluxes across the layer boundaries in the fractures, which dictates that

Mn−1 bn−1

[
Un−1 Cf

n−1 − Df
n−1

dCf
n−1

dzn−1

]

Zn−1

= Mn bn

[
Un Cf

n − Df
n

dCf
n

dzn

]

0
, (57)

in which the quantity in the brackets is computed at the value of the local z coordinate

indicated by the bracket subscript. From (46) and (57) we obtain

αn−1

[
Mn−1 bn−1(Un−1 − Df

n−1 η+
n−1)

]
exp(η+

n−1 Zn−1)

+ βn−1

[
Mn−1 bn−1(Un−1 − Df

n−1 η−
n−1)

]
exp(η−

n−1 Zn−1)

− αn

[
Mn bn(Un − Df

n η+
n )

]
− βn

[
Mn bn(Un − Df

n η−
n )

]
= 0

(58)
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where n = 1, . . . ,N − 1.

5.1.4. Equations for Daughters. For a daughter product ν of radioactive decay or

reaction, the following changes are made to equations (53) through (58):

(a) In the right-hand side of equations (53) and (54), the term Ĉz0 is replaced by Ĉν,z0,

where Ĉν,z0 = L{Cν,z0}, and Cν,z0 is the concentration of daughter ν at z1 = 0. For a

constant Cν,z0, Ĉν,z0 can be obtained from equation (55). For a z1 = 0 boundary with

a decaying radionuclide concentration, Ĉν,z0 is computed from the Laplace transform

of the mass balance equation
∂Cν,z0

∂t
= λνCν,z0 − λν−1Cν−1,z0 as

Ĉν,z0 =
Cν,z0

s + λν
exp(−λ td) + mr

λν−1

s + λν
exp(−λ td) Ĉν−1,z0 . (59)

For a reaction chain, equation (59) indicates a recursive reaction.

(b) The zero on the right-hand side of the layer interface equation (56) is replaced by

Yν,n(zn = 0) − Yν,n−1(zn−1 = Zn) for n = 2, . . . ,N .

(c) Equation (57) applies unchanged. The zero on the right-hand side of equation (58) is

replaced by the known quantity

Mn bn

[
Un Yν,n − Df

ν,n

dYν,n

dzn

]

0

− Mn−1 bn−1

[
Un−1 Yν,n−1 − Df

ν,n−1
dYν,n−1

dzn−1

]

Zn−1

5.2. The Laplace Space Solutions

The generality and complexity of these equations preclude the development of closed-

form solutions for αi, βi (i = 1, . . . ,N ). Consequently, it is not possible to analytically

invert equations (46) or (50), and to obtain a closed-form equation for concentration in

time. The problem is alleviated by numerically inverting the Laplace space solutions. The

algebraic equations discussed in Section 5.1 may be written in a general matrix form as:

M ~X = ~B , (60)
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where M is the coefficient matrix, ~X is the vector of the unknowns, and ~B is the composite

vector of knowns. Solution of (71) returns the vector

~X =




~X1
~X2
...

~XN


 , where ~Xi =

(
αi

βi

)
, i = 1, . . . , N. (61)

The solution of the matrix equation (60) necessitates arithmetic values for the s

parameter of the Laplace space. These are provided by the numerical inversion scheme

of DeHoog et al. [1982] that uses complex values for s. The quantities M, ~X and ~B assume

the complex type of s. A detailed discussion of the application of this method and its

performance can be found in Sudicky [1990] and Moridis [1998].

The αi and βi computed from the matrix equation (60) are then used to obtain all

the Ĉf
n solutions (i = 1, . . . ,N ). The corresponding Ĉm

n solutions are obtained from Ĉf
n

and equations (39) or (40)–(42). Note that the solutions for daughters or reaction products

require knowledge of the solutions of all the previous members in the chain.

5.3. Numerical Inversions of the Laplace Space Solutions

The various time-variable concentrations can be determined by numerically inverting

the Laplace space solutions, i.e.,

Cf
n(x, t) = L−1{Ĉf

n(x, s)}, Cm
n (x, t) = L−1{Ĉm

n (x, s)}, (62)

where L−1{} denotes the inverse Laplace transform of the quantity in the brackets. Details

on the inversion will not be discussed here; they can be found in DeHoog et al. [1982].

6. Treatment of Special Conditions

6.1. Misaligned Fractures

The analysis presented thus far assumes that the effect of fracture offset on transport is

negligible. This may not be the case for large fracture spacing or at short observation times.
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The process that accounts for fracture misalignment is described in Figure 3. The

increased travel path of the transporting water caused by the offset fractures is indicated

by the horizontal pathway at the confluence of the n and n + 1 layers in Figure 3a, and its

effect is described by the addition of an “interlayer”, i.e., a pseudo-layer (Figure 3b) with

the following characteristics:

(a) A thickness ZI = max{Xn, Xn+1} if Mn > Mn=1, or ZI = min{Xn,Xn+1} if

Mn < Mn+1.

(b) A relative frequency MI = Mn.

(c) An open or filled fracture of half-width bI , through which water flows between the n

and n + 1 layers. The properties of the fracture in the interlayer are independent of

those in the layers above and below.

(d) A complex matrix, composed of the matrices of both the n and n+1 layers. In Figure

3b, the matrices of the n and n + 1 layers are positioned on the left and right sides

of the fracture, respectively. The two components of the matrix are assumed to be

semi-infinite, as illustrated by their rotation by 90o (with respect to the original layer

orientation) in Figure 3b. Then, the flux into the composite matrix of the interlayer is

computed from equation (43), but with γ ≡ γI , where

γI =
1
2

(γn + γn+1) , (63)

and γn, γn+1 are computed from equation (44).

Thus, considerationof misaligned fracturestransformsasystem of N layerstoasystem

of N + NI layers, where NI is the number of interlayers. The solution of the augmented

system does not pose any particular challenges and proceeds in the manner discussed in

Section 5. Note that this approximation involves the longest possible travel path and the

largest possible amount of tracer diffusion. This is because diffusion into the matrix of the

interlayer (see Figure 3b) is larger than that into the n and n + 1 layers (along the layer

interface) owing to steeper gradients and their semi-infinite nature. Thus, the assumption of

fracture alignment provides the most conservativesolution, while the assumption of fracture
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misalignment (as described by the concept of interlayers) reflects the least conservative

scenario. These two solutions provide the limits that bracket the true solution.

6.2. Occasional Unfractured Layers

If the layered system includes unfractured (porous) layers (e.g., Layer 3 in Figure

1), these are treated as a combination of a pseudo-matrix (representing the nonflowing

portion of the layer) and a pseudo-fracture representing the flowing portion of the layer. In

essence, unfractured layers are treated as filled-fracture systems, and all the equations apply

unchanged. The properties of the unfractured medium are assigned to both the pseudo-

matrix and the pseudo-fracture. The relative sizes of b and X can describe the flowing and

non-flowing portions of the porous medium. If water flows uniformly through the porous

medium, X = 0. This approach maintains water mass and flux balance.

It is obvious that, for unfractured media, Lx = 2(bn + Xn), i.e., Mn = 1. Note that

water saturations S must be obtained from the solution of the steady-state flow equation

because the derivation of the transport equations is based on time-invariant flow conditions

and cannot compute changes in S.

6.3. Transport in Layered Unfractured Media

This is a limiting case of the scenario discussed in Section 6.2. Setting the non-flowing

portion of the matrix Xn = 0 (n = 1, . . . , N) transforms the problem into that of 1-D

solute transport in a layered porous (unfractured) system. Then, all the solutions derived

here apply unchanged.

7. Verification

A FORTRAN program was written to obtain the semianalytical (SA) solutions

developed in Sections 4 through 6 by first solving (60), and then performing the numerical

inversion indicated in (62). This code, named FRACL, accounts for all the processes,
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phenomena and conditions discussed in Sections 2 through 6. It can obtain solutions for

a system involving an arbitrary number of layers N of any combination of porous and/or

fractured media, and up to 4 daughters. It is computationally very efficient, and required

less than 10 seconds for any of the problems discussed in Sections 7 or 8.

FRACL is verified through comparisons to analytical solutions of radioactive solute

and colloid transport in 1-D porous (unfractured) media and quasi-2-D fractured media. In

all cases, FRACL solutions are first obtained in a system consisting of a single semi-infinite

layer (i.e., N = 1). The domain is then subdivided into three layers in the z direction, and

FRACL solutions for this multilayered system (N = 3) are obtained. Coincidence of the

analytical solutions to the FRACL solutions for N = 1 and for N = 3 verifies FRACL.

7.1. Tests FS1 and FS2: Radioactive Solute Transport in Fractures

Tests FS1 and FS2 describe transport with LE sorption in the fracture-matrix system of

Case 1 (parallel fractures, Figures 2a) and Case 2 (single fracture, Figure 2b), respectively.

The corresponding analytical solutions were developed by Sudicky and Frind [1982] and

Tang et al. [1981]. The values of the parameters used for the computation of the analytical

and the SAsolutions areas in Sudickyand Frind [1982], and are listed in Table 1. A constant

concentration (CC) condition is applied at z1 = 0.

Figure 4 shows the distribution of the relative concentration CR (defined as CR =

Cf
n/Cz0) in the fractures along the z axis at (a) t = 1, 000 days in Test FS1 and (b)

t = 10, 000days in Test FS2. In both tests, the analytical solution and the two FRACL

solutions (for N = 1 and N = 3) are identical in the first 5 significant digits.

7.2. Tests PS1 to PS4: Radioactive Solute Transport in

Unfractured Porous Media

Tests PS1 to PS4 are designed to confirm the ability of the SA solutions to describe

transport in unfractured media without any modification. The solution to this problem is

provided by Bear [1979], and accounts for LE sorption and radioactive decay.
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The values of the parameters used for the computation of the analytical and the SA

solutions of Tests PS1 to PS4 are listed in Table 2. In all four tests, a constant concentration

condition is applied at z1 = 0. The solute is a nondecaying isotope in Tests PS1 and PS2,

and a decaying radionuclide in Tests PS3 and PS4. LE sorption is considered in Tests PS2

and PS3, but is ignored in Tests PS1 and PS4.

Figure 5 shows the distribution of the relative concentration CR along the z axis at

t = 200 days. The SA predictions of CR distributions for both N = 1 and N = 3 are

identical with the analytical solutions of Bear [1979].

7.3. Test PS5: Transport of a Three-Member Radioactive

Solute Chain in Unfractured Porous Media

This test is designed to verify the ability of the SA solutions to describe the transport of

reactive chains in unfractured media without any modification. An analytical solution to this

problem was developed by Harada et al. [1980], and accounts for LE sorption, radioactive

decay, and time-variable boundary conditions.

TestPS5 describes the transport of the radioactive chain 234U→230Th→226Ra through

a sorbing porous medium. The concentration of 234U (i.e., the parent radionuclide) at the

z1 = 0 is not constant over time, but subject to radioactive decay. The initial concentrations

of the 230Th and 226Ra daughter radionuclides at the z1 = 0 boundary are zero, but increase

over time because of the decay of their parents.

The values of the parameters used for the computation of the analytical and the SA

solutions of TestPS5 are as in Harada et al. [1980], and are listed in Table 3. Figure 6shows

that the analytical solutions at t = 10, 000 years coincide with the SA predictions (for both

N = 1 and N = 3) of the CR distributions of the three radioactive chain members.

8. Analysis and Test Problems

In this section the transport of various radionuclides is studied in layered systems
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(involving both fractured and porous layers) of different characteristics and properties. The

D0 and λ of the radionuclides discussed here appear in Table 4.

8.1. Problem 1: Importance of Fracture Misalignment

This problem studies the importance of fracture misalignment on transport, as quanti-

fied by the concept of interlayers (discussed in Section 6.1). The following analysis focuses

on the effects of the presence of such interlayers, in conjunction with other parameters of

the hydrogeologic layers and of the species. The flow velocity in all cases of Problem 1

was U = 0.1 m/day, the system was saturated (S = 1), and the z = 0 boundary was kept

at a constant concentration (CR = 1).

8.1.1. Case 1-a: Effect of fracture offset (interlayers). This case involves the

transport of the nonsorbing solute species 3H in a layered fractured system with fracture

offsets and various interlayer characteristics. Case 1-a involves three sub-cases: 1-a1, 1-a2

and 1-a3. The geometry of the reference Case 1-a1 of the layered fractured system is

described in Table 5, while the hydraulic properties of the fractured layers are shown in

Table 6. The three main layers (identified as Layers # 1,3 and 5 in Table 6) were fractured

media (FM), while the interlayers (identified as Layers # 2 and 4) were considered to be

fracture interlayers (FI, i.e., horizontal open fractures connecting the vertical fractures in

the layers above and below).

The characteristics of Cases 1-a2 and 1-a3 are explained in Table 7, which shows only

the differences from the base Case 1-a1. Thus, Cases 1-a2 and 1-a3 differ from Case 1-a1

in that the interlayers are porous interlayers (PI), i.e., the horizontal features connecting the

fractured layers are either fractures filled with porous media or unfractured porous media.

Flow and transport occurs through a porous medium with different transport behavior than

in the FIsof Case 1-a1. The hydraulic properties of the porous media in the PIsin Cases 1-a2

and 1-a3 are the same as those of the porous matrix in the overlaying and underlying layers.

The connecting PI in Cases 1-a2 and 1-a3 have a b = 0.025 m and 0.1 m, respectively. Note

that in PI and PM layers there are no fractures and b represents the half-width of the flowing
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portion of the matrix.

The results of the three subcases of Case 1-a are shown in Figure 7, which shows the

fracture CR. The presence of the interlayers in Figure 7 is marked by the vertical steps in the

CR profiles (caused by the fact that Figure 7 indicates the vertical coordinate z and not the

length of the travel path. For the nonsorbing 3H and at early times, the retardation caused

by the presence of the FI is measurable, as compared to the case with aligned fractures (no

interlayer, denoted by NI in Figure 7–included for comparison). This was expected because

of the longer travel path in the case of FIs, which increase the amount of 3H diffusing into

the porous matrix and result in lower fracture concentrations. At the same early times, the

retardation caused by the PIs can be substantial and increases with the half-width b of the

PI. These results also conform with expectations because of the slower flow velocities in

the porous media of the PI (as compared to those in the fractures of the FIs), which increase

the residence time and diffusion into the porous matrix.

Figure 7 also shows that the effect of the interlayers keeps decreasing with time. This

was expected in Case 1-a because the travel path increase caused by the interlayers is small

(as the layer half-width X is only 0.25 m) and 3H is nonsorbing (leaving diffusion into

the matrix as the only mechanism removing the radionuclide from the flowing water). At

t = 104 days, the presence of interlayers of any kind (FI vs. PI) has no effect on the

concentration profile in the fractures.

8.1.2. Case 1-b: Combined effect of interlayers and matrix width of the fractured

layers. This case involves three subcases: 1-b1, 1-b2 and 1-b3 (see Table 7). Cases 1-b1,

1-b2 and 1-b3 differed from Cases 1-a1, 1-a2 and 1-a3 in that X = 2.5 m instead of 0.25

m, thus substantially increasing the travel path and residence time of 3H in the interlayers.

This is expected to increase retardation, especially at early times.

Figure 8 confirms this expectation. At t = 102 days, the presence of the relatively fast

flowing FI is sufficient to reduce CR in the fracture by about four orders of magnitude. The

effect is more pronounced in Case 1-b3 (PI with b = 0.1 m). The same pattern is observed
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at t = 103 days, at which time the retardation in Case 1-b3 remains very substantial. This

is caused by the reduction of the advective and dispersive components of transport (because

velocity decreases as b increases) in addition to the reduction of the molecular diffusion

component (due to the smaller φ and τ values in the filled fracture, see equation (2)).

Remarkably, stronger retardation is observed in Case 1-b1 (FI) than in case 1-b2 (PI with

b = 0.025 m). This is attributed to the larger solute mass in the PI, which is less affected

by diffusion into the matrix (about the same in both cases). As in Case 1-a, the effect of the

fracture offset (presence of interlayers) decreases with time.

The conclusion reached from these results is that the effect of fracture offsets

(interlayers) increases with the matrix block size of the fractured layers. This is consistent

with expectations because the travel path increases substantially in fractured system with

large X, with a corresponding increase in residence time and diffusion into the matrix.

8.1.4. Case 1-c: Combined effect of interlayers and water saturation S of the

fractured layers. This case involved two subcases: 1-c1 and 1-c2 (see Table 7). Cases

1-c1 differed from Case 1-a1 in that Sm = 0.8 and Sf = 0.5 instead of Sm = Sf = 1.

Cases 1-c2 differed from Case 1-a3 in that Sm = Sf = 0.8 instead of Sm = Sf = 1. The

effect of S is exhibited through its impact on the water velocity: a higher pore velocity V is

needed to maintain the same U if S decreases. Thus, faster transport was expected in this

case, with a corresponding decrease in the importance of the increased travel path caused

by the fracture offset.

The results in Figure 9 confirm these expectations. Transport is faster than in Cases

1-a and 1-b, while the importance of the fracture offset (presence of interlayers) decreases

in systems with the same water mass flow rate but with decreasing Sw.

8.2. Problem 2: Radioactive Solute Transport

in a Complex Multi-Layered System

The complex geological system in Problem 2 is comprised of 14 layers and interlayers

of fractured and porous media. The geometry and configuration of the system are described
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in Table 8, and the rock properties and conditions are listed in Table 9. Linear equilibrium

sorptionis assumed, and thesorption coefficientsof thevariousradionuclides inthefractures

and in the matrix of the various layers (Kf
d and Km

d , respectively) are listed in Table 10.

The water velocity U at z = 0 as in Problem 1.

8.2.1. 3H Transport. The fracture CR profiles of the nonsorbing 3H for both constant

concentration (CC) and decaying (radioactively) concentration (DC) at the z = 0 boundary

are shown in Figure 10, which includes observations at the following times: t1 = 104 days,

t2 = 5 × 104 days, t3 = 105 days, t4 = 2.5 × 105 days and t5 = 5 × 105 days.

The various layers can be generally identified by a change in the CR slope, while

the interlayers are indicated by vertical sections of the CR curves (as the abscissa is the z

coordinate rather than the travel path). For a CC boundary, the CR distribution reaches a

steady state for t ≥ t4. As expected, the effect of the DC boundary is a CR profile that

is progressively lower than the one for a CC boundary, never reaches steady state, and is

outside the CR range (< 10−9) for t ≥ t4.

8.2.2. 99Tc Transport. 99Tc (in its pertechnate TcO−
4 speciation) is a non-sorbing

radionuclide with a longer half life than 3H (see Table 4). Two boundary conditions were

considered in this case: a CC boundary and a piece-wise continuous (step) concentration

(PC) boundary, i.e.,

CR(z = 0) =





1 for t ≤ 5 × 104 days

0 for t > 5 × 104 days

The CR profiles in the fractures of the layered geologic system (at the same times as

in the case of 3H in Section 8.2.1) are shown in Figure 11. The effect of the longer half

life is evident in the CR profile for CC boundary, which indicates that 99Tc advances much

further in the formation than 3H at the same times (the difference is due to radioactive

decay), and does not appear to have reached steady state at t = t5. The change in the

boundary concentration over time in the PC boundary case results in CR profiles that show

aprogressivelylarger(withtime) 99Tc-freezoneneartheboundary, whilethe CR further into
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the formation keeps decreasing and deviating from that for constant boundary concentration

(with which it coincides fully or in part for t ≤ t4).

As indicated in the case of 3H, the various layers and interlayers can be generally

identified from changes in the CR slope. Transport in fast flowing fractures (e.g., in the case

of narrow fractures with large matrix blocks under a layer of wider fractures and narrow

matrix blocks) can also be identified by a near-horizontal portion of the CR profile.

8.2.3. 237Np Transport. The CR profile of the moderately sorbing 237Np for a CC

boundary is shown in Figure 12. The observation times are: t1 = 5 × 104 days, t2 = 105

days, t3 = 5 × 105 days, t4 = 106 days, t5 = 2.5 × 106 days and t6 = 5 × 106 days.

The slower transport of 237Np (compared to that of 99Tc) is caused by sorption and,

to a far lesser extent, by increased diffusion into the matrix. Despite its longer half-life, the

transport of 237Np appears to be about an order of magnitude slower than that of 99Tc, and

does not appear to have reached steady state at t = t6.

The CR profiles along the x axis in the matrices of the various layers at t = t6 are

shown in Figure 13. The different shape of the curves is a function of their location (with

respect to the z = 0 boundary and to the solute front) and of the transport properties of the

matrix in the various layers.

8.3. Problem 3: Solute Transport of a Three-Member Radioactive

Decay Chain in a Complex Multi-Layered System

Problem 3 describes the transport of the radioactive chain 239Pu→ 235U→ 231Pa

through the complex multilayered system described in Problem 2 (Tables 8 and 9). The

sorption coefficients Kf
d and Km

d of the 239Pu parent in the various layers are listed in

Table 10. The sorption coefficients of 235U and 231Pa in the fractures and in the matrix

were assumed to be 5% and 50% of those for 239Pu, respectively. CR profiles of the three

radionuclides were obtained at the following observation times: t1 = 105 days, t2 = 106

days, t3 = 107 days, t4 = 108 days, t5 = 109 days, and t6 = 1010 days. Two boundary

conditions were considered: a CC and a DC boundary.
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8.3.1. 239Pu Transport. Figure 14 shows the CR profiles of 239Pu in the fractures

for constant boundary concentration and a decaying boundary concentration. There is no

or little deviation of the two curves until t = t3. The fracture CR in DC case at t = t4

is substantially lower than that of the CC case, and the CR for a DC boundary is less than

10−9 for t ≥ t5 .

An interesting observation is that, for a CC boundary, the 239Pu front does not advance

deep into the formation despite observation times orders of magnitude larger than those for

the 237Np transport. This is due to the very strong sorption of 239Pu onto the matrix and

fractures of the layers and, to a lesser extent, the shorter half life of 239Pu (compared to that

of 237Np. Note that the CR profile appears to have reached steady state at t ≥ t5.

In addition to the transport of the members of the chain, the transport of 239Pu was

studied separately, assuming a CC boundary and a r ≤ 1 (see Equation (38) and the

corresponding discussion). This describes a situation in which not all the contact area

between fracture and matrix contributes to transport (e.g., because of a partially dry fracture

which constitutes a discontinuity in the water phase). In this case, r = Sf
w in the fractured

layers and interlayers (FM or FI), and r = 1 elsewhere.

The effect of r ≤ 1 in Figure 15 appears to have a substantial impact on transport,

and results in a 239Pu front that reaches much further (i.e., about three times deeper) in

the geologic profile than that for r = 1. This is a direct consequence of a reduced area

for 239Pu diffusion from the fractures into the matrix, which leaves a larger amount of

239Pu in the fractures where advection is fast and sorption relatively small (compared to the

matrix). Thus, the transport of strongly sorbing radionuclides in fractured systems may be

substantially influenced (enhanced) by partially dry fractures.

8.3.2. 235U Transport. The fracture CR profiles of 235U for CC and DC boundaries

and for t ≤ t4 are shown in Figure 16. The CR of the DC solution always exceeding that

from the CC solution, and significantly so (as imposed) in the vicinity of z = 0. A very

significant observation is that, in either case, CR ' 1 for t ≥ t4 in the top 120 m of the
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domain. This is even more the case in Figure 17, which shows the CR of 235U for t ≥ 4

and gives a more detailed picture of the CR distribution near the value of 1. The results in

Figures 16 and 17, in conjunction with the observations from Figure 14, indicate that for

t ≥ t4, practically all of the radionuclide that advances deep into the formation is the 235U

daughter. The transport of 235U is faster, the front reaches deeper, and CR ' 1 because

235U is generally weaker sorbing than 239Pu and it has an extremely long half life. The

obvious implication is that studies of 239Pu transport cannot neglect the transport of the

235U daughter, which is the dominant radionuclide at longer times.

Note from Figure 17 that, for t = t4 and a DC boundary, CR > 1, i.e., the 235U

concentration in the fractures exceeds the initial concentration of the 239Pu parent at the

z = 0 boundary. This is possible because the boundary (which introduces a radionuclide

mixture composed of all the members of the 239Pu decay chain) is now contributing a stream

ofalmost 100% 235U, whichis addedtothe 235Uproduced fromthe(almost complete)decay

of 239Pu already in the fractures and matrix of the system. As expected, the CR from the

CC solution at t = t4 is lower than that from the DC solution (Figure 16). For t > t4,

the CC solutions exceed the DC solutions because the decay of the 235U at the boundary is

beginning to have an effect on the fracture distribution of CR. This is particularly evident

at t = t6. Note that steady state is not reached (in either the CC or the DC boundary cases)

even after t6 = 1010 days because of the extremely long half life of 235U.

8.3.3. 231Pa Transport. The fracture CR profiles of 231Pa for CC and DC boundaries

are shown in Figure 18. The CR levels of 231Pa are quite low because of the very long

half life of its 235U parent, its own shorter half life, and its stronger tendency to sorb. The

CR increases with time for both DC and CC boundaries. The CC profile has always lower

concentrations because there are all derived solely from the decay of 235U (the boundary

doesnotsupplyanyadditional 231PainaCCregime). Note thatineither case,concentrations

reach a steady state at about t = t4.
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9. Summary

In this paper, semianalytical solutions are developed for the problem of transport of

radioactive or reactive solute tracers through a layered system of heterogeneous fractured

media with misaligned fractures. The solutions allow any number and combination of

fractured and/or porous layers that can vary in hydraulic and transport properties, fracture

frequency, water saturation, fracture flow, and fracture-matrix interaction.

The tracer transport equations in the matrix account for (a) diffusion, (b) solute surface

diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear

kinetic or equilibrium physical, chemical or combined solute sorption or colloid filtration,

and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay

daughter products (or products of a linear, first-order reaction chain) can be tracked. The

tracer transport equations in the fractures account for the same processes, as well as for

advection and hydrodynamic dispersion. A wide array of boundary conditions (constant or

time-variable, concentration or flux) can be accommodated.

Analytical solutions describing transport in the fracture and the matrix of each layer

are first obtained in the Laplace space. These are impossible to invert analytically, and

are numerically inverted by the method of DeHoog et al. [1982] to yield the solutions in

time. These SA solutions are verified against analytical solutions of limiting cases of solute

transport in fractured media. Additional verification is provided by comparisons against

analytical solutions of transport in porous (unfractured) media.

The SA solutions are then tested in a series of hypothetical problems of increasing

complexity. The effectof important parameters on the transport of 3H, 237Np and 239Pu (and

its daughters) is investigated in several test problems involving layered fractured geological

systems. Fracture misalignment appears to significantly affect transport if water flow (and,

consequently, transport) between the fractures of the overlaying and the underlying layers

occurs through a porous connecting pathway.

The semianalytical solutions are computationally very efficient, requiring less than 10
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seconds of execution time for the examples studied in this paper. The results of the test

problems indicate that the semianalytical solutions can easily solve the problem of transport

of parent and daughter radioactive species in multilayered heterogeneous systems under

a variety of boundary conditions. Thus, they can provide a simple and effective tool to

predict radionuclide transport in subsurface environments involving saturated/unsaturated

flow through variably fractured media (such as transport from the potential repository

through the fractured rock layers in the UZ of Yucca Mountain to the water table). While

such predictions are quasi 2-D and do not account for spatial variability and flow effects in

the 3-D continuum of the subsurface (such as perched water bodies, flow diversion and flow

focusing), they can provide bounding estimates that bracket the true solution.
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Appendix A: The Hν and Tν,κ Coefficients

For Case 2 (X → ∞), the Hν ≡ He
ν of the first five members of a radioactive or

reactive chain (ν = 1, . . . , 5) are

He
1 = Ĉf

1

He
2 = Ĉf

2 − A21 Ĉf
1

He
3 = Ĉf

3 − A32 Ĉf
2 + A21(A32 − A31) Ĉf

1
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He
4 = Ĉf

4 − A43 Ĉf
3 + A32(A43 − A42) Ĉf

2

− A21 [A32(A43 − A42) − A31(A43 − A41)] Ĉf
1

He
5 = Ĉf

5 − A54 Ĉf
4 + A43(A54 − A53) Ĉf

3

− A32[A43(A54 − A53) − A42(A54 − A52)] Ĉ
f
2

+ A21
{
A32[A43(A54 − A53) − A42(A54 − A52)]

− A31[A43(A54 − A53) − A41(A54 − A51)]
}

Ĉf
1

in which the m superscript of the A factors (equation (52)) are omitted for simplicity. The

terms Tν,κ inequation (53)can beeasilyidentified byinspection. Byfollowing theemerging

pattern, the development of the expressions for Hν for ν > 5 is tedious but straightforward.

The Hν ≡ Hc
ν expressions (corresponding to Case 1) are entirely analogous, and are

derived by dividing He
ν by cosh(θν X). For example, for ν = 2,

Hc
2 =

Ĉf
2

cosh(θ2 X)
−

A21 Ĉf
1

cosh(θ2 X)
.

Appendix B: The Wν and γν,κ Coefficients

For Case 2 (X → ∞), the Wν ≡ W e
ν of the first 5 members of a radioactive or reactive

chain (ν = 1, . . . , 5) are

W e
1 = θ1 Cf

1

W e
2 = θ2 Cf

2 + A21 (θ1 − θ2) Ĉf
1

W e
3 = θ3 Cf

3 + A32 (θ2 − θ3) Ĉf
2 + A21[A31 θ1 − A32 θ2 + (A32 − A31) θ3] Ĉ

f
1

W e
4 = θ4 Cf

4 + A43 (θ3 − θ4) Ĉf
3 + A32[A42 θ2 − A43 θ3 + (A43 − A42) θ4] Ĉ

f
2

+ A21
{
A31 A41 θ1 − A32 A42 θ2 + A43(A32 − A31) θ3

− [A32 (A43 − A42) − A31(A43 − A41)] θ4
}

Ĉf
1
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W e
5 = θ5 Cf

5 + A54 (θ4 − θ5) Ĉf
4 + A43[A53 θ3 − A54 θ4 + (A54 − A53) θ5] Ĉ

f
3

+ A32
{
A42 A52 θ2 − A43 A53 θ3 + A54(A43 − A42) θ4

− [A43 (A54 − A53) − A42(A54 − A52)] θ5
}

Ĉf
2

+ A21

{
A31 A41 A51 θ1 − A32 A42 A52 θ2 + A43 A53(A32 − A31) θ3

− A54[A32 (A43 − A42) − A31(A43 − A41)] θ4

+
[
A32[A43(A54 − A53) − A42(A54 − A52)]

− A31[A43(A54 − A53) − A41(A54 − A51)]
]
θ5

}
Ĉf

1 ,

in which the m superscript of the A factors (equation (52)) are omitted for simplicity.

We obtain W c
ν for Case 1 by replacing θν by θν tanh(θνX) in W e

ν . Thus, for ν = 2

and Case 1,

W c
2 = θ2 tanh(θ2X) Cf

2 + A21 [θ1 tanh(θ1X) − θ2 tanh(θ2X)] Ĉf
1

The terms γν,κ are easy to obtain from (59) and the W c
ν , W e

ν expressions by inspection.

Extension for ν > 5 follows the same pattern.

Appendix C: The B±
ν,κ Coefficients

The B±
ν,κ coefficients of up to the first 5 members of a radioactive or reactive chain

(ν = 1, . . . , 5, κ = 1, . . . , ν − 1) are given by the following general expressions:

B±
ν,ν−1 = γν,ν−1 fq − Gf

ν

B±
ν,ν−2 = (γν,ν−1 f q − Gf

ν )A±
ν−1,ν−2 + γν,ν−2 f q

B±
ν,ν−3 = (γν,ν−1 f q − Gf

ν )A±
ν−1,ν−3 + (γν,ν−2 A±

ν−2,ν−3 + γν,ν−3) f q

B±
ν,ν−4 = (γν,ν−1 f q−Gf

ν )A±
ν−1,ν−4+(γν,ν−2 A±

ν−2,ν−4+γν,ν−3 A±
ν−3,ν−4+γν,ν−4) f q

The coefficients A± needed for the computation of B± are obtained from equation (63). All

other terms are as discussed in Section 5.2. Extension for ν > 5 follows the same pattern.
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Table 1. Input parameters in Test FS1

Parameters Values

Water saturation S 1

PM grain density ρ 2600 kg/m3

D0 1.6×10−9 m2/s

Fracture aperture 2b 10−4 m

Fracture S 1

Fracture φ 1

Fracture τ 1

Fracture Kd 0 m

Longitudinal dispersivity αL in the fracture 0.1 m

Fracture flow velocity V 0.1 m/day

Matrix block width 2X 0.5 m

Matrix S 1

Matrix φ 0.01

Matrix τ 0.1

Matrix Kd 0 m3/kg

Radionuclide T1/2 12.35 years (tritium)

Z1, Z2, Z3 (for N = 3) 1 m, 9 m, ∞
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Table 2. Input parameters in Tests PS1 to PS4

Parameters Values

ρ 2600 kg/m3

D0 5 × 10−2 m2/day

S 1

φ 0.1

τ 1

V 0.1 m/day

Kd (Tests PS1 and PS4) 0 m3/kg

Kd (Tests PS2 and PS3) 4.2735042×10−5 m3/kg

T1/2 (Tests PS1 and PS2) ∞ (stable isotopes)

T1/2 (Tests PS3 and PS4) 100 days

Z1, Z2, Z3 (for N = 3) 10 m, 10 m, ∞
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Table 3. Input parameters in Test PS5

Parameters Values

ρ 2600 kg/m3

D0 1000 m2/year

S 1

φ 0.3

τ 1

V 100 m/year

Kd for 234U 1.64819 m3/kg

Kd for 230Th 8.24159 m3/kg

Kd for 226Ra 8.22528×10−2 m3/kg

T1/2 of 234U 2.45×105 years

T1/2 of 230Th 7.54×104 years

T1/2 of 226Ra 1.60×103 years

Z1, Z2, Z3 (for N = 3) 50 m, 150 m, ∞
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Table 4. Radionuclide properties used in the transport simulations of Section 8

Radionuclide D0 (m2/s) λ = ln2
T1/2

(1/s)

3H 1.60×10−9 1.778×10−9

99Tc 4.55×10−10 1.031×10−13

237Np 7.12×10−10 1.026×10−14

239Pu 6.08×10−10 9.114×10−13

235U 6.08×10−10 3.1023×10−17

231Pa 6.08×10−10 6.7583×10−13

Table 5. Layer geometry in Case 1-a of Problem 1

Layer # Type Parameter Value

1 FM Z 5 m

X 0.25 m

b 5 × 10−5 m

2 FI b 5 × 10−5 m

3 FM Z 10 m

X 0.25 m

b 5 × 10−5 m

4 FI b 5 × 10−5 m

5 FM Z ∞ m

X 0.25 m

b 5 × 10−5 m
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Table 6. Properties in Case 1-a1 of Problem 1

Layer # Parameters Values

1,3,5 αL 0.1 m

φm 0.01

τm = τm
p = τm

i = τm
s 0.1

φf 1

τf = τf
p = τf

i = τf
s 1

Km
i = Kf

i 1

Sm
w = Sf

w 1

2,4 αL 0.1 m

φm 0.01

τm = τm
p = τm

i = τm
s 0.1

φf 1

τf = τf
p = τf

i = τf
s 1

Km
i = Kf

i 1

Sm = Sf 1
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Table 7. Parameter variations in the various cases of Problem 1

Case # Layer # Type Parameter Value

1-a2 2,4 PI b 0.025 m

1-a3 2,4 PI b 0.10 m

1-b1 1,3,5 FI X 2.5 m

2,4 FI Z 2.5 m

1-b2 1,3,5 FI X 2.5 m

2,4 PI Z 2.5 m

b 0.025 m

1-b3 1,3,5 FI X 2.5 m

2,4 PI Z 2.5 m

b 0.10 m

1-c1 All FM, FI Sm
w 0.8

Sf
w 0.5

1-c2 All FM, PI Sm
w = Sf

w 0.8

2,4 PI b 0.1 m
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Table 8. Layer geometry in Problem 2

Layer # Type Z (m) X (m) b (m)

1 FM 10 0.5 10−4

2 PI 5 × 10−2

3 FM 10 0.25 5 × 10−5

4 PI 2.5 × 10−2

5 FM 10 3 2 × 10−4

6 PM 5

7 FM 15 0.1 2 × 10−4

8 PI 10−1

9 FM 10 4 2 × 10−5

10 FI 2 × 10−5

11 FM 20 1 5 × 10−5

12 PM 5

13 FM 30 6 8 × 10−5

14 PM ∞
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Table 9. Rock properties in Problem 2

Layer # φm τm Sm
w φf τf Sf

w

1 0.15 0.5 0.7 1 1 0.2

2 0.3 0.3 1 0.3 0.3 0.4

3 0.1 0.4 0.6 1 1 0.15

4 0.35 0.3 1 0.35 0.3 0.3

5 0.05 0.5 0.8 1 1 0.1

6 0.35 0.8 0.9 0.35 0.8 0.9

7 0.025 0.2 0.9 1 1 0.1

8 0.2 0.3 0.9 0.2 0.3 0.4

9 0.01 0.2 0.95 1 1 0.05

10 0.01 0.2 0.95 1 1 0.05

11 0.05 0.15 0.95 1 1 0.05

12 0.1 0.1 0.9 0.2 0.1 0.9

13 0.05 0.1 1 1 1 1

14 0.1 0.1 1 0.1 0.1 1
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Table 10. Transfer coefficients in Problem 2

Layer 3H or 99Tc 237Np 239Pu

# Km
d (*) Kf

d (†) Km
d (*) Kf

d (†) Km
d (*) Kf

d (†)

1 0 0 6 × 10−4 3 × 10−8 6 × 10−2 3 × 10−6

2 0 0 8 × 10−4 8 × 10−4 8 × 10−2 8 × 10−2

3 0 0 7 × 10−4 3.5 × 10−8 7 × 10−2 3.5 × 10−6

4 0 0 8 × 10−4 8 × 10−4 8 × 10−2 8 × 10−2

5 0 0 8 × 10−4 4 × 10−8 8 × 10−2 4 × 10−6

6 0 0 10−4 10−4 10−2 10−2

7 0 0 10−3 5 × 10−7 10−1 5 × 10−5

8 0 0 8 × 10−4 8 × 10−4 8 × 10−2 8 × 10−2

9 0 0 5 × 10−4 2.5 × 10−8 5 × 10−2 2.5 × 10−6

10 0 0 5 × 10−4 2.5 × 10−8 5 × 10−2 2.5 × 10−6

11 0 0 9 × 10−4 4.5 × 10−8 9 × 10−2 4.5 × 10−6

12 0 0 10−3 10−3 10−1 10−1

13 0 0 6 × 10−4 3 × 10−8 6 × 10−2 3 × 10−6

14 0 0 7 × 10−4 7 × 10−4 7 × 10−2 7 × 10−2

(*): in m3/kg, (†): in m
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Figure 1. A variably-fractured layered geologic system.
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Figure 2. Fracture-matrix configurations and important parameters in Cases 1 and 2.
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Figure 3. A graphic representation of the concept of interlayer describing the effects of

fracture misalignment. The properties of layers n and n + 1 are denoted by 1 and 2,

respectively.
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Figure 4. Comparison of the semianalytical (SA) solutions from FRACL to the analytical

solution of radioactive solute transport in fractured media in Tests FS1 and FS2.
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Figure 5. Comparison of the SA solutions to the analytical solutions of solute transport in

porous media in Tests PS1 to PS4.
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Figure 6. Comparison of the SA solutions from FRACL to the analytical solutions of solute

transport of the radioactive chain 234U → 230Th → 226Ra in porous media in Test PS5.
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Figure 7. Effect of fracture offset (presence of interlayers) on the transport of 3H through

the layered fractured system of Case 1-a (NI: no interlayer, FI: fracture interlayer, PI(a):

porous interlayer with b = 0.025 m, PI(b): porous interlayer with b = 0.1 m).
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Figure 8. Combined effect of increased X and fracture offset (presence of interlayers) on

the transport of 3H through the layered fractured system of Case 1-b (nomenclature as in

Figure 7).
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Figure 9. Combined effect of water saturation S and fracture offset on the transport of 3H

through the layered fractured system of Case 1-c (nomenclature as in Figure 7).
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Figure 10. Fracture CR profiles of 3H in the complex geological system of Problem 2 (CC:

constant concentration boundary, DC: decaying concentration boundary).
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Figure 11. Fracture CR profiles of 99Tc in the geological system of Problem 2 (PC: pulse

concentration boundary).
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Figure 12. Fracture CR profiles of 237Np in the geological system of Problem 2.
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Figure 13. Matrix CR profiles of 237Np at different elevations in the geological system of

Problem 2.
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Figure 14. Fracture CR profiles of 239Pu in the geological system of Problem 3.
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Figure 15. Effect of r < 1 on the fracture CR profiles of 239Pu in the geological system of

Problem 3.



MORIDIS: SOLUTE TRANSPORT IN FRACTURED LAYERED MEDIA 61

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

120100806040200

z coordinate (m)

 t2 

 t3 

 
235

U  

 t1 

 CC 
 DC

 ≥ t4 

Figure 16. Fracture CR profiles of 235U in the geological system of Problem 3 for t ≤ 108

days.
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Figure 17. Fracture CR profiles of 235U in the geological system of Problem 3 for t ≥ 108

days.
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Figure 18. Fracture CR profiles of 231Pa in the geological system of Problem 3.




