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Abstract 

Advanced energy algorithms running at big-data scale will be necessary to identify, realize, and 

verify energy savings to meet government and utility goals of building energy efficiency. Any 

algorithm must be well characterized and validated before it is trusted to run at these scales. 

Smart meter data from real buildings will ultimately be required for the development, testing, and 

validation of these energy algorithms and processes. However, for initial development and testing, 

smart meter data are difficult to work with due to privacy restrictions, noise from unknown sources, 

data accessibility, and other concerns which can complicate algorithm development and 

validation. This study describes a new methodology to generate synthetic smart meter data of 

electricity use in buildings using detailed building energy modeling, which aims to capture the 

variability and stochastics of real energy use in buildings. The methodology can create datasets 

tailored to represent specific scenarios with known truth and controllable amounts of synthetic 

noise. Knowledge of ground truth also allows the development and validation of enhanced 

processes which leverage building metadata, such as building type or size (floor area), in addition 

to smart meter data. The methodology described in this paper includes the key influencing factors 

of real-world building energy use including weather data, occupant-driven loads, building 

operation and maintenance practices, and special events. Data formats to support workflows 

leveraging both synthetic meter data and associated metadata are proposed and discussed. 

Finally, example use cases of the synthetic meter data are described to illustrate potential 

applications.  

 

Keywords: synthetic data; smart meter data; EnergyPlus; data representation; building energy 

modeling; occupant modeling 
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1 Introduction  

Utility demand-side management and energy-efficiency pay-for-performance programs rely on 

predicted energy savings of retrofit packages as well as analysis of real meter data once the 

retrofits have been completed. Energy algorithm development is a crucial step in enabling these 

programs and maximizing their impact. These calculations leverage the expanding smart meter 

infrastructure to calculate realized energy savings for energy conservation measures (ECMs) at 

scale rather than relying on costly controlled experiments or other methods.  Automated 

measurement and verification algorithms (aka M&V 2.0), which use smart meter data to estimate 

gross energy savings of energy efficiency projects, have the potential to greatly reduce the cost 

of estimating energy savings realization. Detailed building energy model calibration algorithms 

that use smart meter and audit data enable reliable prediction of energy savings for specific ECMs 

and buildings. 

  

Although applying energy algorithms to real-world data is the end goal, adequate real datasets 

are often difficult to obtain and sometimes unavailable to the algorithm developers. Additionally, 

algorithm validation is made difficult when using real-world data because the ground truth is not 

known. For example, accurately calculating an algorithm’s non-routine event detection rate is not 

possible when the non-routine event’s occurrence in the data is not known. Another example is 

inadequately-trained learning algorithms, either due to having no metered data available (i.e., new 

constructions) or for buildings with constantly changing operation over the training period. 

  

Synthetic data have been used to overcome these challenges in many other fields (Dahmen & 

Cook, 2019; Knight, 2016; Marr, 2018; Nikolaev, Dvoryaninov, Lensky, & Drozdovsky, 2018; 

Sarkar, 2018; Shrivastava et al., 2017; Tian, Li, Wang, & Wang, 2018; Toole, 2019).  Large 

amounts of synthetic data, such as time series hourly or sub-hourly whole-building and end-use 

electricity and gas simulation output data, as well as accompanying ground truth information, such 

as ECM labels, can be generated using OpenStudio (Guglielmetti, Macumber, & Long, n.d.).  

OpenStudio is a cross-platform (Windows, Mac, and Linux) collection of software tools that 

supports whole-building energy modeling using EnergyPlus and advanced daylight analysis using 

Radiance. OpenStudio is an open-source project including graphical interfaces along with a 

Software Development Kit (SDK). These synthetic smart-meter data can then be used as inputs 

to algorithms for algorithm development and validation purposes.   

  

In addition to the synthetic data, high-level building characteristics (also referred to as synthetic 

metadata) about the models used to generate the time series data can be made available to 

downstream algorithms. These high-level building characteristics may include information about 

building type, gross floor area, primary HVAC type, etc. This type of information is often available 

in real-world datasets such as assessor records but is not widely used in current M&V 2.0 

algorithms. Data fusion of high-level building parameters with meter data has the potential to 

enhance algorithm accuracy and other performance metrics in real-world applications.  A 

combination of synthetic data and synthetic metadata can be used to develop enhanced data 

fusion algorithms, to identify which pieces of metadata are most useful, and to characterize 

improvements in algorithm performance. Figure 1 illustrates the current workflow for M&V 2.0 



algorithms using synthetic data as well as the proposed enhanced workflow using both synthetic 

data and synthetic metadata. 

 

Figure 1 M&V 2.0 workflows using synthetic data 

 

We describe the methodology for developing OpenStudio models to generate synthetic data (e.g., 

time series metered energy use) and its accompanying metadata (e.g., building type, building 

area, and climate zone). The synthetic data are expected to capture the dynamics and diversity 

of real energy use in buildings considering major influencing factors such as weather, occupant 

behavior, building operation and maintenance, as well as some special events like extreme 

weather, changes in building operation, or demand response. We also discuss possible 

representations and formats of the synthetic data and metadata to facilitate data exchange as 

well as the storage and usage of the data. A follow-up paper will present methodology and results 

of validating the synthetic smart meter data against real smart meter data. 

 

2 Methodology 

Building energy use is strongly influenced by six factors identified in IEA EBC Annex 53 (Yoshino, 

Hong, & Nord, 2017): (1) weather, (2) building envelope, (3) building services and energy 

systems, (4) building operation and maintenance, (5) occupant activities and behavior, and (6) 

indoor environmental quality provided. Current simulation practices simplify these factors with 

static and homogeneous settings or schedules (e.g., the U.S. DOE reference building models), 

which can not represent the real dynamics and stochastics of energy use in buildings (Yan et al. 

2017). Our methodology covers all these six factors and aims to capture their influences on the 

variability of real energy use in buildings:  

(1) we use various types of weather data in the building energy simulation to generate the 

synthetic meter data, including the TMY3 and recent years’ historical AMYs. 

(2) we use the DOE reference models at various vintages which comply with the minimum 

requirements of ASHRAE standard 90.1 to represent various efficiency levels and configurations 

of building envelope and energy systems. 



(3) we define three scenarios (good, average, poor) of building operation and maintenance 

practices. 

(4) we model occupant behavior, including occupant interactions with building systems and 

occupant thermal comfort preferences, in detail to capture its complexity using a suite of existing 

occupant behavior modeling tools. 

 

This section describes the baseline building energy models (i.e., the original DOE reference 

models) as well as the data and assumptions used to refine the aforementioned influencing 

factors in said models in order to generate the synthetic meter data. 

 

2.1 Description of the baseline building models 

We choose to use the 16 DOE commercial reference buildings (Table 1) in 16 U.S. climates 

(Table 2) and at five vintages. The baseline scenario is directly from the Commercial Reference 

Buildings developed by the U.S. Department of Energy (DOE). DOE has provided a complete 

description of the whole building information for simulation purposes for those reference buildings 

(Deru et al., 2011). 16 building types are specified, which represent approximately 70% of the 

commercial buildings in the U.S. Table 1 lists the major information of the 16 building types. 

 

Table 1. 16 building types specified in the DOE commercial reference buildings 

Building Type Floor Area (m2) Number of 
Floors 

Model View 

Large Office 46,320 12 

 

Medium Office 4,982 3 

 

Small Office 511 1 

 

Warehouse 4,835 1 

 

Stand-alone Retail 2,319 1 

 



Strip Mall 2,090 1 

 

Primary School 6,871 1 

 

Secondary School 19,592 2 

 

Quick Service 
Restaurant 

232 1 

 

Full Service 
Restaurant 

511 1 

 

Hospital 22,422 5 

 

Outpatient Health 
Care 

3,804 3 

 

Small Hotel 4,013 4 

 

Large Hotel 11,345 6 

 

 

Table 2 U.S. climate zones and representative cities 

Climate Zone Representative City 

1A Miami, Florida 

2A Houston, Texas 



2B Phoenix, Arizona 

3A Atlanta, Georgia 

3B-Coast Los Angeles, California 

3B Las Vegas, Nevada 

3C San Francisco, California 

4A Baltimore, Maryland 

4B Albuquerque, New Mexico 

4C Seattle, Washington 

5A Chicago, Illinois 

5B Boulder, Colorado 

6A Minneapolis, Minnesota 

6B Helena, Montana 

7 Duluth, Minnesota 

8 Fairbanks, Alaska 

 

The five building vintages correspond to the major editions of the national building energy 

standard ASHRAE 90.1 for 2004, 2007, 2010, 2013, and 2016. 

 

These baseline building models are generated with OpenStudio Measures (Roth, Goldwasser, & 

Parker, 2016) and OpenStudio-Standards Gem (Haves, Parker, Jegi, Garg, & Ravache, 2017),  

which is a Ruby library that extends the OpenStudio SDK to implement rules defined in ASHRAE 

Standards 90.1, 55 and 62.1. The created baseline models are modified through a suite of 

OpenStudio Measures to implement the detailed models of the aforementioned influencing 

factors, which are then used to generate the synthetic meter data capturing the variability in real 

buildings. 

 

2.2 Representation of influencing factors 

2.2.1 Building Geometry 

Building geometry (i.e., floor area, number of stories, floor height, orientation, and aspect ratio) is 

the basis of creating a building energy model. Building geometry significantly influences heating, 

cooling, and lighting energy demands, and further affects the type and capacity of the building 

systems. It is usually the first step to create a geometry model before adding other modeling 

assumptions such as energy systems, occupancy and operation schedules. Traditionally, DOE 

commercial reference models (shown in Table 1) are widely used to generate interval load profiles 

(Field, Deru, & Studer, 2010). However, those reference models do not represent the geometry 

variations in real buildings, which are needed to create a set of synthetic data for an entire building 



stock (e.g., a district or a city). Therefore, adding variations in building geometry is an important 

step in the workflow of creating synthetic data. We use OpenStudio-BuildingSync-Gem to create 

different building geometries starting from the baseline models. 

 

 

2.2.2 Weather  

Weather data (e.g., outdoor air temperature, humidity, pressure, wind speed, solar radiation) is 

one of the most important inputs for building energy simulation and strongly influences the building 

energy use (Hong, Chang, & Lin, 2013) since it serves as the boundary condition for thermal 

modeling. In traditional building energy modeling, the input weather data is typically represented 

as a typical meteorological year (TMY) weather file. The TMY data set is developed by looking at 

the weather data over a long period in history, typically 30 years. The currently used TMY data 

set is the third collection of TMY (TMY3), which was based on weather data for 1020 locations in 

the USA, derived from a 1976-2005 period of record where available, and a 1991-2005 period of 

record for all other locations (Wilcox & Marion, 2008).  

 

The TMY data set represents the weather condition for a typical year, although it might not 

necessarily represent the actual weather condition or variations across years. To reflect the yearly 

weather variation impact on building energy use, we use the Actual Meteorological Year (AMY) 

weather data. AMY is created from actual hourly data measured by the available ground station 

for a particular calendar year or for a couple of years (Hong et al., 2013). The AMY weather data 

can be obtained from several sources, including White Box Technologies, Weather Bank, National 

Climatic Data Center (NCDC), Weather Source, Weather Analytics, and Meteonorm. 

 

The TMY and AMY weather data are all generated from the weather data recorded in the past. 

Due to climate change, they are not able to reflect weather dynamics in future. To address this 

issue, some researchers proposed different approaches to generate future weather data based 

on different scenarios (Dickinson, 2016), which are also used in this workflow.   

 

2.2.3 Occupant behavior 

Occupant behavior (Yan et al., 2017) has strong influences on occupant-driven loads, including 

HVAC, lighting, and appliances. Energy-related occupant behavior is a key factor influencing 

building performance (D’Oca, Hong, & Langevin, 2018; Hong, Yan, D’Oca, & Chen, 2017). 

Depending on the building type, climate, and degree of automation in operation and controls, 

occupants may increase or decrease energy use by a factor of up to three for residential buildings 

(Andersen, 2012), and increase by up to 80% or reduce by up to 50% for single-occupancy offices 

(Hong & Lin, 2013). Occupant behavior in buildings refers to (1) occupant presence in spaces 

and movement between spaces, (2) occupant interactions with building systems, and (3) 

occupant adaptations (e.g., changing clothing, having hot/cold drinks). Occupant actions such as 

adjusting a thermostat for comfort, switching lights on/off, using appliances, opening/closing 

windows, pulling window blinds up/down, and moving between spaces can have a significant 

impact on energy use and occupant comfort in buildings. 

 



Unlike the predetermined and fixed occupancy schedules, the real occupant count at space/room 

level varies randomly, but the distribution of occupancy variations is known. We first develop and 

implement a more realistic occupant schedule to simulate this behavior. Additionally, the lighting 

and Miscellaneous Electric Loads (MELs) schedules are related to occupant schedules,for 

instance office workers might turn off their lights and monitors when they leave their offices. The 

dependence of lighting and MELs schedules on occupancy is implemented as well. A more 

accurate simulation of occupancy, lighting and MELs would not only directly influence the end use 

load shapes but also enable a more accurate input of internal heat gains, which improves the 

accuracy of HVAC energy consumption simulation. Additionally, we also consider the occupants’ 

diversified thermal comfort needs and their impact on HVAC energy consumption.  

 

Occupants have more freedom to interact with building equipment and systems in residential and 

office buildings. Separately, the authors have developed detailed occupant behavior models 

(Deme Belafi, Hong, & Reith, 2019) which can be applied to small, medium, and large office 

models.  These occupant models, or others, can be used in this methodology.  

 

2.2.3.1 Occupant schedules  

An agent-based stochastic occupancy model (Chen, Hong, & Luo, 2018) will be utilized to 

simulate occupants’ presence and movement in buildings, which generates occupant schedules 

at the room level and the whole building level. The model is able to capture the spatial and 

temporal occupancy diversity and stochasticity (Luo, Lam, Chen, & Hong, 2017). Each occupant 

and each space in the building are explicitly simulated as an agent with their profiles of stochastic 

behaviors. The occupancy states are simulated with three types of models: (1) the status 

transition events (e.g., first arrival in office) simulated with probability distribution models, (2) the 

random moving events (e.g., from one office to another) simulated with a homogeneous Markov 

chain model, and (3) the meeting events simulated with a stochastic model. The Occupancy 

Simulator generates a different set of occupant schedules for a building in each simulation using 

a random seed. To produce a repeatable set of schedules, Occupancy Simulator can use a fixed 

seed.   

 

2.2.3.2 Occupants’ thermal comfort preference 

It has been realized that individuals have different thermal comfort needs and varying preferred 

temperature (Z. Wang et al., 2018). Therefore, in buildings where the temperature setpoint is 

individually adjustable, the temperature setpoint might vary by office-space since inhabitants have 

varying thermal comfort needs. To take the different thermal demands into consideration, we 

apply a stochastic temperature setpoint model by assuming that the temperature setpoint follows 

the normal distribution in the large population (Z. Wang & Hong, 2020). To infer the parameters 

of the normal distribution, we utilized the ASHRAE Global Thermal Comfort Database I (De Dear, 

1998) and Database II (Földváry Ličina et al., 2018), which in total contain 103,846 observations. 

Focusing on the context of U.S. office buildings, we selected 11,600 data points from the original 

database. These data were collected in nine U.S.  cities: Berkeley, San Francisco, Alameda, 

Philadelphia, San Ramon, Palo Alto, Walnut Creek, Grand Rapids, Auburn, and the State of 

Texas (no specific cities were mentioned). To infer the parameters of the normal distribution, 

Bayesian Inference was utilized. The distribution of occupants’ preferred air or operative 



temperature is calculated, as shown in Table 3, where we also compared the recommended 

temperature setpoint from the data-driven approach with the DOE Reference Building models. 

 

Table 3 Inferred thermal neutral air and operative temperatures 

 Mean Standard 

deviation 

5% estimate 

(Recommended 

lower boundary) 

95% estimate 

(Recommended 

upper boundary) 

Air temperature 
(°C) 

Whole period 23.11 1.72 20.37 25.95 

Cooling 23.72 1.19 21.83 25.61 

Heating 22.81 1.87 19.84 25.78 

Operative 
temperature (°C) 

Whole period 23.15 1.38 20.96 25.34 

Cooling 23.62 1.09 21.89 25.35 

Heating 22.69 1.36 20.53 24.85 

DOE reference 

building set-point 

temperature (°C) 

Cooling 21.00 / / / 

Heating 24.00 / / / 

 

2.2.4 Lighting  

The key assumption for the lighting model is that lighting will be turned off with a 15-min delay 

once a space is unoccupied. According to the 2012 CBECS, 45% of U.S. commercial buildings 

have adopted occupancy-detection lighting control. With more and more buildings taking 

measures to curtail lighting energy consumption, occupancy-based lighting control is expected to 

be increasingly popular. The occupancy-detection lighting control is always deployed with a time 

delay to avoid frequent lighting on-off switches. Different buildings might adopt different time 

delays, varying from 5 to 30 minutes (de Bakker, Aries, Kort, & Rosemann, 2017; Fernandes, 

Lee, DiBartolomeo, & McNeil, 2014; Guo, Tiller, Henze, & Waters, 2010) with a typical time delay 

of 15 minutes (de Bakker et al., 2017). Even for those buildings without occupancy-based lighting 

control, turning off the light when leaving the space still might happen manually. 

 

2.2.5 MELS (aka plug-loads) 

Existing literature, shown in Table 4, has revealed that plug-loads have a strong linear correlation 

with occupant count. Additionally, field measurement results shown in Figure 2 confirmed the 

linear relation between MELs and occupant count.  

 

Table 4 Existing literature on linear relation between MELs and occupant count 



Research Buildings Regression 

Literature Method Location  Primary 

usage 

Floor Area 

(m2) 

Relation 

(kW) 

R2 

 

(Kim, 

Heidarineja

d, 

Dahlhause

n, & 

Srebric, 

2017; Kim 

& Srebric, 

2017) 

Field 

measurem

ent 

Philadelphi

a, PA 

Office 6140 22 + 

0.2occ 

0.74 

(Mahdavi, 

Tahmasebi

, & Kayalar, 

2016) 

Field 

measurem

ent 

Vienna, 

Austria 

1 open 

plan office 

+ 3 private 

office 

113 Plug load 

fraction = 

10% + occ 

fraction*0.5

2 (private 

devices 

only) 

0.70 

(Martani, 

Lee, 

Robinson, 

Britter, & 

Ratti, 2012) 

Field 

measurem

ent 

Cambridge

, MA 

Office 

classroom 

combinatio

n 

  9.3+0.22Wi

Fi1 

0.69 

(Gunay, 

O’Brien, 

Beausoleil-

Morrison, & 

Gilani, 

2016) 

Field 

measurem

ent 

Ottawa, 

Canada 

10 office 

buildings 

15 m2 for 

each office 

Occupied: 

0.03-

0.27*occ 

During 

night: 

0.9 

Weekends: 

0.5 

 

(Masoso & 

Grobler, 

2010) 

Field 

measurem

ent 

South 

Africa 

5 office 

buildings 

  Occupied: 

36 W/m2; 

Off-hour: 

 

                                                
1 WiFi connection count can be considered as a proxy variable of occupant count 



18 W/m2 

(Dunn & 

Knight, 

2005) 

Survey (30 

offices) 

Cardiff, UK Office   0.16occ 

(0.12 - 

0.23) 

 

 

  
       (a) an office building in California                                (b) an office building in Philadelphia  

   

  an office building in California 

(CA) 

an office building in 

Pennsylvania (PA) 

Base load (W/m2) 5.1  6.9 

Slope (W/occ) 133.1  210.2 

R-squared 0.58 0.75 

(c) regression results 

Figure 2 Results from field measurements of real buildings 

 

Based on the literature review and the field measurements, we applied Equation (1) to model 

the MELs. Variable “a” denotes the base MELs load, referring to those devices that are not 

turned off during non-working hours (for example, the WiFi routers and desktops that are not 

shut off). Variable “b” denotes the additional MELs load that is controlled and associated with 

the occupant count. 

 

MELs = a + b*occ                Equation (1) 

 

Combining the existing literature and the data collected from real office buildings, we found: 

● The base load of MELs (“a” in Equation 1) is in the range of 50 – 150 W per peak 

occupant count; 

● The slope of MELs (“b” in Equation 1) is in the range of 110 – 220 W per occupant 

count; and 



● The base MELs load accounts for around 30% of the peak MELs load.  

 

Finally, we chose a value of 60 for “a” and 140 for “b” for use in the OpenStudio-occupant-

variability GEM to ensure the generated peak MELs load in the models is consistent with the 

values recommended by the ASHRAE Standard 90.1 or used in the DOE Reference Building 

models. 

 

2.2.6 Ventilation air  

Demand Control Ventilation (DCV) refers to the ventilation method that supplies fresh air 

volume based on the indoor occupant count. As a substantial amount of energy is used to heat 

or cool the fresh air, DCV is an efficient method of reducing building energy consumption (Chao 

& Hu, 2004). According to CBECS 2012, 9.9% of large offices, 6.6% of medium offices and 

1.9% of small offices have adopted DCV, as shown in Table 5. For those buildings that have not 

installed DCV, DCV can still be performed manually rather than automatically. Additionally, due 

to the energy-saving potential of DCV, it is expected that it will be more widely utilized in the 

future. 

 

Table 5 Office buildings with DCV according to CBECS 2012 

Office type # buildings (thousand) # buildings with DCV 

 (thousand) 

Proportion of 

buildings with DCV 

Large 5.7 0.6 9.9% 

Medium 95.6 6.3 6.6% 

Small 911.0 17.0 1.9% 

 

2.2.7 Operation and Maintenance Practice 

Building Operation & Maintenance (O&M) is another influential factor to be considered in this 

study. (Mathew et al., 2018) defined good, normal and poor practices of building O&M in terms 

of lighting control, plug load control, plug load intensity, HVAC schedules, and economizer 

controls. They found that O&M practice has huge impacts on building energy use . Based on 

their study, we selected the following assumptions to define two levels (good and poor) of O&M 

practices, as shown in Table 6. 

 

Table 6 Definition of good and poor O&M practices (adapted from Mathew et al. 2018 [38]) 

Factors Good practice Average practice 
(used in DOE 
reference building 
models) 

Poor practice 

Occupant density 400 sf/person 200 sf/person 130 sf/person 

HVAC schedule 2 hrs before 
occupancy schedule 

2 hrs before 
occupancy schedule 

Fixed schedule 
between 6AM and 



to turn on HVAC to turn on HVAC 8PM 

Supply air 
temperature reset 

Reset base on 
warmest zones 

Reset based on a 
stepwise function of 
outdoor air 
temperature 

Constant supply air 
temperature 

VAV box minimum 
flow settings 

15% of the design 
flow rate 

30% of the design 
flow rate 

50% of the design 
flow rate 

Economizer controls Enthalpy based on 
ASHRAE 90.1 

Dry-bulb temperature 
based on ASHRAE 
90.1 

None or broken 

 

2.2.8 Special events 

Building energy use and load shapes can be affected by special (non-routine) events, e.g., 

changes in building operation, demand response, extreme weather, wildfire, hurricane, and 

faulty operations due to failure of sensors, actuators, or equipment. Changes in building 

operation, such as increased operating hours or tenant change over, often occur in tandem with 

building upgrades that implement ECMs and can confound savings estimates. Demand 

response (DR) is a set of time‐ dependent program activities and tariffs that seek to reduce 

electricity use or shift usage to another time period. There are multiple ways for the building 

operator to respond to a DR signal to reduce utility bills. (Motegi, 2007) summarized some 

widely used measures in response to a DR signal based on field tests in 28 non-residential 

buildings, and found that HVAC systems can be a good source for DR savings for three 

reasons. First, HVAC systems consume a substantial proportion of electricity in buildings. 

Second, building thermal storage allows for building thermal load shifting. Third, HVAC systems 

are usually highly automated. In addition to the HVAC systems, lighting, and miscellaneous 

equipment also provide chances for DR responses. In this project, we will consider the following 

DR measures based on the literature review, as listed in Table 7. 

 

Table 7 Demand response measures 

System DR Measures 

HVAC Increase/decrease the indoor air temperature setpoint by 4°F (2.2°C) 

Lighting Continuous dimming at the office area & zone switching at hallway 
(reduce the lighting electricity consumption by 33%) 

Continuous dimming at the office area & zone switching at hallway 
(reduce the lighting electricity consumption by 50%) 

Zone switching at daylit area turn off the artificial lighting if the natural 
daylight can provide enough lighting 

 

Wildfire is another special event to be considered, which has become increasingly frequent and 

severe in recent years. The extreme weather events have caused significant economic 



damages in recent years (Ranson, Tarquinio, & Lew, 2016; Thomas, Butry, Gilbert, Webb, & 

Fung, 2016). In 2018, the wildfires in California led to over 24 billion US dollars of damage 

(Bartz, 2019). According to the Fourth National Climate Assessment, there is an expected 30 

percent increase in the annual area burned from wildfires by 2060 (Wehner, Arnold, Knutson, 

Kunkel, & LeGrande, 2017). Wildfire influences the building operation and end-use electricity 

load shape because it leads to air pollution locally. To respond to the poor outdoor air quality, 

building occupants tend to close the windows and doors and building operators reduce the fresh 

air volume to the minimum or fully close outdoor air dampers. 

 

2.3 Synthetic meter data post-processing 

Smart meter data in real buildings are subject to various factors which can cause poor data 

quality. One of the most common issues is sensor and meter drift. Sensors and meters may 

have biased readings due to poor maintenance or lack of calibration. In addition, equipment 

malfunction, communication failures, and extreme weather conditions may lead to missing 

values. Therefore, the generated synthetic meter data can be further manipulated as needed to 

represent the data quality issues usually seen in real building data such as by adding noise to 

the data and randomly removing some data in some periods.  

 

2.4 Workflow 

Figure 3 illustrates the key steps to generate synthetic meter data and synthetic metadata. The 

workflow starts with the high-level input of building type, climate zone, vintage, and floor area. It 

then splits into a synthetic meter data branch and a synthetic metadata branch.  

 

In the meter data branch, the high-level information is read by the OpenStudio Standards Gem, 

which creates the baseline models following rules defined in ASHRAE Standards 90.1, 55, and 

62.1. Then a series of improved assumptions, including weather, building geometry, occupant 

behaviors, operation and maintenance practices, demand response events, and other special 

events are added to the baseline models to create realistic models. This is achieved with 

OpenStudio Measures, which is included in the OpenStudio-occupant-variability Gem (Li & 

Macumber, 2019). 

 

Next, simulations with the realistic models are conducted to derive the raw synthetic meter data, 

which are then post-processed, if necessary, by adding random noise and dropping certain values 

to emulate the real smart meter data. Finally, the synthetic meter data are saved in a database 

with a common data schema (e.g., Green Button). In the metadata branch, the high-level 

information can be specified or extracted in a standardized way. Other information such as the 

meter type, the meter-building relationship are also added to create the synthetic metadata. 

Similar to the synthetic meter data, the metadata can be saved in the database with a common 

data schema (e.g., Haystack). 

  

 



 
Figure 3 Workflow to generate the synthetic data 

 

3 Representation of the Synthetic Meter Data and Metadata  

To complement the synthetic time series meter data, descriptive or input data of the models used 

to generate said meter data are crucial to maximizing the usefulness of synthetic data in 

developing energy algorithms. We refer to these input data here as metadata. 

 

The metadata include various types of information, such as: 

● Building characteristics data – non-changing data about the building, such as building 

type, square footage, number of floors, window-to-wall ratio, etc. 

● Hours of operation / occupancy schedules – the hours that a building is typically 

occupied over the days of the week, including special circumstances such as holidays. 

● Weather data – the weather information, either high-level such as climate zone, or 

detailed such as the outdoor air temperature and humidity level, used when generating 

the smart-meter data. Weather data in EnergyPlus format epw is used. 

 Special or non-routine events (NREs) – the ground truth information about special event 

periods that occurred during the synthetic data generation and when they occurred during 

the generation. These are important when validating that algorithms correctly identify non-

routine adjustment periods and atypical operations. An effort by Efficiency Valuation 

Organization (EVO) to create an International Performance Measurement and Verification 

Protocol application guide to address non-routine events and adjustments has recently 

been announced2.  This effort will provide more rigorous descriptions and calculations of 

the effect of NREs, and is worth further investigation in future studies. 

● Smart-meter metadata – information about the smart meters themselves, such as 

frequency of measurement recording, and what end uses (whole building or lighting, 

HVAC, DHW, MELs) are connected to the meter. 

                                                
2https://evo-world.org/en/news-media/evo-news/1137-efficiency-valuation-organization-to-create-an-
ipmvp-application-guide-on-non-routine-events-nre-and-non-routine-adjustments-nra 



● Simulation metadata – information about the simulation engine (e.g., OpenStudio, 

EnergyPlus) and parameters (e.g., number of timesteps per hour, simulation begin and 

end dates). 

 

3.1 Synthetic Meter Data 

The first step towards a representation of synthetic data is to develop a schema that details the 

structure and types of the data so that it can be reliably consumed by various applications. 

Schemas are implemented in one or more formats. Examples of data formats include JSON, XML, 

and CSV. 

  

Time series data such as synthetic smart-meter data can be represented by a list of data columns, 

the first of which is a timestamp. Each row then represents data at a specific timestamp. The 

format for such data is often CSV.   

  

Green Button is a standardized XML schema used by utilities to represent energy usage data. 

Customers can get access to their detailed energy data simply by clicking a literal green button 

on many utility websites. Over 50 utilities have signed agreements to participate in the Green 

Button initiative, including PG&E and Southern California Edison. This format is an alternative to 

the common CSV format and can be used to represent the synthetic smart-meter data. It would 

not, however, be able to accommodate the synthetic metadata. 

  

 

3.2 Synthetic Metadata 

Just as in the case of the synthetic data themselves, a schema must be developed to represent 

the synthetic metadata generated, and a format must be selected to implement the schema. 

  

JSON is a common, lightweight data-exchange option that is easy both for people to understand 

and for computers to digest, and would be a good format for metadata. An example of how 

metadata can be represented in JSON format is shown in Figure 4. 

  



 
Figure 4 Example of metadata in JSON format 

          

The selection of a format to represent synthetic metadata should take into consideration 

currently available formats used in the building space. Standardizing on a format that is similar 

or identical to an existing format would be advantageous; in addition to the benefit of reusing a 

format that people are already familiar with.  

  

Several existing data formats that are being considered to represent synthetic metadata are 

summarized in Table 8 and described below. 

 

Table 8 Summary of data schema in the building smart meter data field 

Schema What is it? Data format Potential Usage in Synthetic 
Data 

BuildingSync 
(“BuildingSyn
c,” n.d.) 

BuildingSync is a schema for 
energy audit data which 
allows data to be more easily 
aggregated, compared, and 
exchanged between different 
databases and software 
tools. 

XML To represent synthetic 
metadata 

Project 
Haystack 
(“Home – 
Project 
Haystack,” 
n.d.) 

Project Haystack is a tagging 
system for describing 
building assets using semi-
structured sets of tags which 
aims to allow semantic 
understanding across the IoT 

JSON or CSV To represent synthetic 
metadata 



industry. 

BRICK 
(“Home - 
BrickSchema,
” n.d.) 

Brick is a data schema which 
standardizes semantic 
descriptions of the physical, 
logical and virtual assets in 
buildings and the 
relationships between them. 

RDF To represent synthetic 
metadata 

BEDES 
(“Building 
Energy Data 
Exchange 
Specification 
(BEDES) | 
BEDES,” n.d.) 

BEDES is a dictionary of 
terms, definitions, and field 
formats for standardization in 
terminology and vernacular 
for quantities including 
building characteristics, 
energy transactions, and 
Internet of Things (IoT). 

Text  To standardize the terms 
defined in the synthetic 
metadata and synthetic meter 
data 

 

BuildingSync 

BuildingSync is a standard XML schema for energy audit data. Its purpose is to standardize 

energy audit data collection to streamline the process and facilitate data exchange between a 

variety of software tools and databases in the energy audit space. Full schema specifications 

and data dictionary can be found at https://buildingsync.net/schema/. 

 

 

Project Haystack 

Project Haystack is an open-source initiative aimed at standardizing the descriptors used to 

describe or “tag” metadata. Standard taxonomies include units, energy metering, and various 

HVAC equipment. Haystack has several data exchange formats, including JSON and CSV. 

Haystack can be used to standardize units and energy meter descriptors. Figure 5 contains a 

diagram of the descriptor relationship between an electric meter and its submeter.  

  

https://buildingsync.net/schema/


 
Figure 5 Diagram of an electric meter and its submeter 

  

BRICK 

The BRICK schema is an open-source semantic representation of building metadata. It is an 

ontology written in the Resource Description Framework language, a format that represents web 

resources and their metadata by a directed graph of nodes. Since RDF is meant to be 

processed by applications and not humans, the graphs can be written in a text-based syntax 

called Turtle. BRICK can also make use of all the standard RDF tools for storage, querying, and 

visualization. BRICK uses RDF vocabularies of tags to represent building components and 

subsystems. It provides relationships for connecting the components into a directed graph 

representation of a building.  

  

BEDES 

Although not a schema in itself, the Building Energy Data Exchange Specification is a dictionary 

of terms used in the building energy space to provide standardized definitions. Using BEDES-

compliant terms in the synthetic smart-meter metadata schema will facilitate the identification 

and exchange of building characteristics and energy usage information with other BEDES-

compliant applications and formats, such as Green Button, BuildingSync, and SEED. 

3.3 Synthetic Data Storage and Retrieval 

Just like in the case of real data, there is a need to effectively store and query synthetic data 

and metadata. Synthetic data can be stored in time series files (e.g., CSV format), while 

metadata can be stored in a database with links to the associated time series data files. The 



type of database is not so critical in this application, as the amount of data is not extreme. 

However, adopting a database that supports JSON format (such as MongoDB or PostgreSQL) 

can make data transfer easier. 

  

The Standard Energy Efficiency Data (SEED) Platform is a standardized data platform for 

managing building performance data from a variety of sources. The SEED platform can store 

the data and metadata. The SEED platform supports the BuildingSync format, which, if used to 

represent the synthetic metadata, would facilitate storage into the SEED platform. Many cities 

are using SEED to store energy audit data which can then be retrieved in BuildingSync format. 

This would provide a central storage location for both synthetic metadata and real metadata 

obtained from energy audits.  

  

SEED and other applications are in the process of implementing Unique Building Identification 

(UBID) (N. Wang, Vlachokostas, Borkum, Bergmann, & Zaleski, 2019) in their platforms. UBID 

is a standardized framework that facilitates building data matching across different data sources 

into a single location as well as data exchange. The unique building identifier is based on the 

Google Open Location Code (OLC) and is generated from the spatial dimensions of a building. 

The use of this identifier will enable data exchange and collation. 

  

4. Workflow Demonstration 

A simulation case study is conducted to demonstrate the workflow to generate synthetic meter 

data. This section discusses the workflow to generate the synthetic meter data using a baseline 

model and a model considering influencing factors aforementioned.  

 

The baseline model we used is the DOE prototype detailed medium-sized office building model 

created with OpenStudio Standards Gem. The building is a three-story rectangular building with 

a total floor area of 4982 m2 located in U.S. climate zone 4A. The detailed model has the same 

geometry as the original prototype medium-sized model, which can be found in Table 1. 

However, the detailed version of the models have more sophisticated and realistic space and 

thermal zone configurations. Figure 6 shows the comparison of the space types between the 

original and detailed medium-sized office buildings. 

 

  



Figure 6. Space types comparison between the original and detailed DOE prototype medium-

sized office building 

 

In Figure 6, each color represents a unique space type. It can be seen that the original model 

has all of its spaces represented as type “office”, whereas the detailed model has multiple space 

types including office, conference, mechanical rooms, storage, restrooms, corridors, and 

elevator. The heterogeneous space types of the detailed model allow more realistic stochastic 

occupancy simulations since occupants have different movement behaviors and indoor 

environmental preferences in different spaces.  

 

A set of influencing factors including stochastic occupancy schedules, lighting schedules, MELs 

schedules, thermostat setpoint schedules, and demand-controlled ventilation are applied to the 

model using OpenStudio measures which are included in OpenStudio-occupant-variability Gem. 

Figure 7 illustrates the number of people in a big office space with the original fixed occupant 

schedule and the stochastic occupant schedule. It can be seen that the baseline has the same 

occupant schedules for all weekdays, while the updated model introduces variations to people 

count at the timestep level. 

 

 
Figure 7. Number of people in an office space with fixed and stochastic occupancy schedules 

 

Figure 8 and Figure 9 show the heatmap of people count in an office space for the baseline 

model and the updated model, respectively. The updated model introduces dynamics in terms 

of varied arriving time, lunch break time, and leaving time. It can be seen that the peak number 

of people may occur at different times of the day. 



 
Figure 8. Heatmap of people count in an office space with fixed occupancy schedules 

 

 
Figure 9. Heatmap of people count in an office space with stochastic occupancy schedules 

 

In addition to occupancy schedule, variabilities are introduced to the settings of lighting, MELs, 

thermostat setpoints, and mechanical ventilation. As discussed in section 2.2, those variabilities 

are correlated with the occupancy schedule.  

 

With the stochastics in occupancy, lighting, MELs, mechanical ventilation, and zone air 

temperature setpoint introduced, the whole-building energy consumption is expected to vary 

between the baseline model and the updated model. Figure 10 shows the hourly whole-building 

electricity consumption in a whole year span. The electricity consumption trends of the baseline 

model and the updated model are similar - the building consumes more electricity in winter and 

summer months when there are higher heating and cooling demands than in swing seasons. 

 



 
Figure 10. Whole-building electricity consumption time series in a year 

 

However, after zooming into the daily level, the difference between the two models becomes 

obvious. Figure 11 and Figure 12 indicate the whole-building electricity consumption of the 

baseline and updated model during an example winter day and an example summer day, 

respectively. It can be seen that electricity consumption of the baseline model is relatively stable 

during the working hours in both examples, while the electricity consumption of the updated 

model vacillates from time to time, due to the stochastic occupant movements and related 

changes to the schedules of lighting, MELs, and ventilation rate. Another finding is that the 

stochastic occupancy schedule has different levels of impacts on the whole building electricity 

consumption in winter and summer. For example, in Figure 11, there is a late increase (6am) 

and early decrease (6pm) of the electricity consumption in the updated comparing with the 

baseline model, while in Figure 12, the baseline and updated models show similar times of the 

increase and decrease of electricity consumption. The reason behind the seasonal difference is 

that electric lighting and equipment consumption related to occupants account for larger portion 

of the whole-building consumption in winter than in summer.  It should be noted that the 

occupant arrivial and departure time assumptions can be modified when generating stochastic 

occupancy schedules using the workflow developed in this study. 

 

  
Figure 11. Whole-building electricity 

consumption on an example winter day 
Figure 12. Whole-building electricity 

consumption on an example summer day 
  



5. Discussion 

5.1 Use Cases of the Synthetic Data 

The synthetic time series meter data can be used in various applications of utility energy 

efficiency programs as well as in the building life-cycle to improve energy efficiency.  

 

A major use case is energy algorithm testing and validation. Algorithms in the energy space 

predict savings and identify and evaluate opportunities for energy retrofit and operational 

improvements in buildings. The main class of energy algorithms is called Automated 

Measurement and Verification, or M&V 2.0 algorithms. These algorithms calculate energy 

savings based on meter data collected before and after an improvement has been made in a 

building.  An example M&V 2.0 algorithm is the CalTRACK 2.0 methods for computing 

Normalized Metered Energy Consumption (NMEC), which is a standardized calculation that can 

be used to determine site-level energy savings from installed efficiency projects. 

  

While M&V 2.0 algorithms are implemented to be used on real-world data, these algorithms 

should be tested and validated on a clean and complete dataset. Synthetic data can provide 

these clean datasets while also providing the “ground truth” so that the prediction accuracy of 

the algorithm can be calculated and analyzed. Once the algorithms have been tested and 

validated using clean synthetic data, noise can be increasingly added to explore how the 

algorithm’s performance is sensitive to noise.  Because the ground truth is known for synthetic 

data, accuracy can be explored and error metrics developed. This provides some understanding 

of the algorithm’s characteristics and accuracy when using it on real data.   

  

Synthetic data can also be used to test and validate non-routine event detection and outlier 

rejection algorithms. M&V 2.0 algorithms can have challenges in detecting non-routine events—

such as temporary changes in operating hours, special events, or construction—so as to 

exclude them from the algorithms’ training period.  Adding non-routine events to synthetic data 

and having ground truth information for when these events take place can help test and validate 

M&V 2.0 and non-routine event detection algorithms. 

 

Synthetic meter data can be used to test and validate simulation model calibration as well. 

Again, the ground truth of an actual building model is unknown in real-world calibrations.  By 

creating synthetic data and calibrating a model using that data, the input parameters that were 

calibrated (e.g., hours of operation, U-value of the walls, HVAC equipment efficiency) can be 

compared to the synthetic metadata to determine the accuracy of the calibration model or 

algorithm.  This is useful in determining whether the calibrated model is successful in calculating 

accurate outputs using correct calibrated parameters, or whether the outputs are accurate but 

calculated based on incorrect input parameters.  

 

5.2 Future work 

Future areas to explore in synthetic data generation include methods to generate higher 

resolution output that better approximate real data.  Current synthetic data is generated at a 15-

minute interval; this resolution can be increased to represent higher-frequency events in real 



data, such as equipment cycling. Other use cases may need submetering data at the end-use 

level, which can be generated in the future. 

 

Another area to improve in this study is to collect and analyze large-scale occupant activities 

and energy end-uses in real buildings across more building types and climate zones to provide 

better models of occupant-driven loads used in the algorithms to generate synthetic meter data 

dynamics. Stochastic occupant behavior is one major reason behind the gap between simulated 

and real high-temporal-resolution energy consumption data.  

 

Validation of synthetic meter data against real building meter data is also a future activity. 

Traditionally, metrics such as Coefficient of Variation of the Root Mean Square Error (CVRMSE) 

and the Mean Bias Error (MBE) have been used to evaluate how similar two energy 

consumption profiles are. Those metrics are often used in model calibration and M&V 

applications (Deme Belafi et al., 2019; Guideline, 2014; Ruiz & Bandera, 2017). However, those 

metrics are insufficient to evaluate how well the synthetic meter data agree with real meter data 

at a finer granularity (e.g., hourly or sub-hourly interval). This is because we are interested in 

whether the synthetic and real meter data have similar dynamics and variations, rather than 

whether they have exactly same values at same times. Therefore, other existing or new metrics 

and methods that can better compare the dynamics and variations of the synthetic and real load 

profiles will be explored and tested in future validation activities. A follow-up paper will present 

the validation methodology and results. 

 

6. Conclusion 

Synthetic meter data and associated synthetic metadata can be valuable data assets to support 

testing and validation of energy algorithms that target improvements in building energy 

efficiency. In this study, we proposed a framework to generate and represent the synthetic 

smart meter data. For meter data generation, we proposed assumptions on stochastic and 

dynamic occupant behavior models through multiple data sources; implemented those 

assumptions through OpenStudio measures; and then ran batch simulations to demonstrate the 

workflow. For data representation and query, we summarized existing smart meter data and 

metadata schemas and reviewed synthetic data storage and retrieval method. The proposed 

framework and the open-source OpenStudio Gems and measures will be made available at 

GitHub to provide an easy way for users to generate a large amount of synthetic smart meter 

data, supporting their building energy research and projects to reduce energy use and 

greenhouse gases emissions in buildings. 
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