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ABSTRACT OF THE DISSERTATION

Network Attacks and Defenses for IoT Environments

by

Fatemah Mordhi Alharbi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2020
Professor Nael Abu-Ghazaleh, Chairperson

Security of resource-constrained edge devices, such as Internet of Thing (IoT)

devices, is one of the primary challenges facing the successful deployment of this potentially

transformative technology. Due to their resource limitations, often developers have to make

a choice between security and functionality/performance, leaving many devices partially or

completely unprotected. To illustrate the implications of this situation, I consider a scenario

where IoTs (or generally, edge computing devices) are being connected to the Internet

and participate in Internet scale protocols such as the Domain Naming System (DNS),

Transport Layer Security (TLS), and others. Security solutions for these protocols rely on

expensive cryptographic operations that challenge the capabilities of the resource-limited

IoT devices. In such a scenario, we are faced with one of three options: (1) Extend security

to the edge/IoT devices, therefore sacrificing performance and energy; (2) Sacrifice security,

leaving the last link to reach the edge devices insecure; or (3) develop new specialized

security protocols, which unfortunately is limited by development type and the need for

compatibility with these existing protocols, placing large burdens on developers.
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Against this backdrop, I demonstrate a new attack on DNS targeting the last hop,

demonstrating that leaving last hop devices poorly protected can lead to their compromise.

In the second direction, I propose a new lightweight cryptographic based defense that can

promote end-to-end security for IoT and edge computing environments. In the third di-

rection, to understand the nature of operation of IoT devices, I analyze the cryptographic

overhead occur on resource-constrained devices when conventional cryptographic algorithms

are used: I study the performance of on Arduino MKR WiFi 1010—a single-board micro-

controller and compare the results with my lightweight cryptographic algorithm. Lastly,

in a different direction, the last contribution is a systematic longitudinal study on Inter-

net filtering in the Kingdom of Saudi Arabia, a traditionally conservative country that has

embarked on economic and societal changes in many aspects of its daily operations and

public policies with the stated objectives of modernization and openness. These directions

are described next.

In the first direction, I identify and characterize a new class of attack targets the

DNS service. Specifically, unlike previously reported attacks where the main target is the

DNS resolver, the attack targets the client-side DNS cache. The attack allows an off-path

attacker to collaborate with a piece of an unprivileged malware to poison the OS-wide DNS

cache on a client machine. IoT environments are best fit for this attack since typically

network communications between the two last hops (i.e., the default gateway and IoT

devices) are un-encrypted. The results demonstrate the effectiveness of the attack on three

different platforms: Microsoft Windows, Apple macOS, and Linux Ubuntu. The results

show that we can reliably inject malicious DNS mappings within short times that vary
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with the specifics of the Operating System implementation. In addition, I present a new

analytical model of the attack and compare its prediction with the empirical measurements.

The results show that the model correlates with the observed experimental results. I also

propose an ad hoc defense which requires only changes to the client DNS cache software,

making it practical to deploy immediately through an OS patch. The results show that the

defense completely closes this class of attack. For instance, after running the attack for 24

hours, the defense mitigates attacks with no observed successes for the full period. On the

other hand, we recorded 1705, 152, and 18 successful attacks on Windows, Ubuntu Linux,

and Mac OS, respectively, when the defense is not deployed.

In the second contribution of the dissertation, I propose a more principled ap-

proach that can be generalized to provide backward-compatible, low-complexity, end-to-end

security for different applications and services enabling the extension of security coverage

to resource-constrained environments. More precisely, I introduce a new cryptographic

primitive which is called ciphertext and signature propagation (CSProp) in order to deliver

security to the weak end-devices. I further provide the instantiation of CSProp based on

the RSA cryptosystem and the proof of security. I demonstrate CSProp by using it for DNS

SECurity (DNSSEC) validation and TLS. The results demonstrate that CSProp provides

efficient security support at low additional complexity for IoT environments. I show that

the propagated signature verification in DNSSEC (vs. traditional DNSSEC validation) re-

duces latency by 91x and energy consumption by 53x on the Raspberry Pi Zero W. For

TLS handshake, the advantage to latency and energy by an average of 8x and 8x, respec-

tively. For completeness, CSProp is compared with Elliptic Curve Cryptography (ECC)
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cipher suite and found that CSProp outperforms ECC by 2.7x. On an Arduino MKR WiFi

1010, CSProp achieves significant reduction in latency and power consumption comparing

to conventional cryptographic primitives.

The third contribution of the dissertation demonstrates that the first option (i.e.,

sacrifice performance to retain security using traditional cryptographic algorithms) is not

desirable in resource-constrained environments. Specifically, I present a measurement based

study to characterize IoT devices with two components: (1) profiling existing devices to

understand the cryptographic demands on IoTs; and (2) evaluating their performance on the

new proposed primitive, CSProp, and compare the results with a widely used conventional

cryptographic primitive which is RSA. For (1), I analyze the cryptographic overhead that

occur when an IoT device is used in a home-based environment: the IoT device is a Wyze

Cam V2 IoT camera. The results show that the camera uses cryptographic operations

intensively. For (2), I conduct a study on a well-known IoT device called Arduino MKR WiFi

1010 which is a single-board microcontroller. I also implement a prototype of the proposed

lightweight scheme, CSProp. The results confirm the findings in research direction three

that CSProp always outperforms traditional RSA public-key operations in both latency and

power consumption. For instance, the execution time for CSProp-encryption and CSProp-

verification is 57 and 61 times faster, respectively, compared to traditional RSA encryption

for all key sizes. For energy consumption, CSProp provides efficient reductions by 36x and

42x for encryption and verification, respectively.

The last contribution of the dissertation is a systematic, comprehensive and lon-

gitudinal study on the Internet filtering in the Kingdom of Saudi Arabia. Specifically, I
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investigate the impact of the Saudi Vision 2030 (announced in April 2016) on the Internet

over a period of three years. The investigation shows evidences that Saudi Arabia is cau-

tiously yet decisively opening its digital borders. For instance, I conduct measurements to

evaluate Internet behavior by probing Alexa’s top 500 websites in 18 different categories

and find that the web is becoming more open and accessible. In addition, we find evidence

that the emphasis on modernization is leading to relaxing regulations on filtering (67% and

93% of the blocked mobile apps over the period 2013-2017 were accessible in 2018 and 2019,

respectively, and all tested apps were accessible in 2020, except WeChat which is still de-

batable). The investigation also studies the impact of geopolitical events on the filtering in

Saudi Arabia. The results show that the filtering policies are reflected in this context. For

instance, the results show that ISIS-friendly website are blocked, as ISIS supports terrorism

and destabilization to the region. We also find that some news sites from the countries of

Qatar, Iran, and Turkey got blocked, amid rising diplomatic tensions between the kingdom

and these countries.

For future work, I hope that the lessons learned from these directions help me to

build (or at least critically understand) the best framework for IoT and edge computing

devices. More precisely, I need to understand the required security primitives that overcome

all the three aforementioned challenges.

xi



Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation and Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Contribution I: Client-Side DNS Attack . . . . . . . . . . . . . . . . 5
1.2.2 Contribution II: CSProp, a Lightweight Cryptographic Primitive for

Securing IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Contribution III: Analysing Cryptographic Overhead on IoT Devices 8
1.2.4 Contribution IV: Characterizing Internet Filtering in Saudi Arabia . 9

2 Background and Related Work 11
2.1 DNS Cache Poisoning Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 DNS Cache Poisoning Defenses . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Lightweight Cryptographic Defenses for IoT Environments . . . . . . . . . . 15
2.4 Internet Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Collaborative Client-Side OS-Wide DNS Cache Poisoning Attack 24
3.1 Attack Fundamentals and Threat Model . . . . . . . . . . . . . . . . . . . . 29

3.1.1 OS-Wide DNS Caches . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Attack Construction and Analysis . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Attack Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Challenges and Detailed Attack Procedure . . . . . . . . . . . . . . . 36

3.3 Tailored Attack Strategies and Analysis . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Basic Attack Scenarios (Without NAT) . . . . . . . . . . . . . . . . 40
3.3.2 Client behind NAT Attacks . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Results of attacks without considering NAT . . . . . . . . . . . . . . 50

xii



3.4.2 Client behind NAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Analytical Model and Validation . . . . . . . . . . . . . . . . . . . . 55
3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Ad Hoc System-Level Defense 61
4.1 Attack Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Attack Mitigation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Empirical Defense Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Other Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 CSProp: Ciphertext and Signature Propagation 66
5.1 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 The RSA Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.2 Low Public Exponent RSA . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.3 Special Case Attacks on RSA with Low Public Exponents . . . . . . 74

5.2 Ciphertext and Signature Propagation . . . . . . . . . . . . . . . . . . . . . 76
5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Propagating RSA Signatures . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Security Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Applications of CSProp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 CSProp over DNSSEC . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.2 Optimizing TLS handshakes with CSProp . . . . . . . . . . . . . . . 89

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.1 CSProp over DNSSEC . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 CSProp over TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.3 Comparison with Elliptic Curve Cryptography (ECC) Cipher Suites 98

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Analysing Cryptographic Overhead on IoT Devices 103
6.1 Understanding Cryptographic Demands on IoTs . . . . . . . . . . . . . . . 104

6.1.1 Overhead of Conventional Cryptography . . . . . . . . . . . . . . . . 104
6.1.2 Limitations of Existing Defenses . . . . . . . . . . . . . . . . . . . . 105

6.2 An Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 Comparison Between CSProp and Conventional Cryptography: Arduino

Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Internet Filtering in the Kingdom of Saudi Arabia: A Longitudinal Study114
7.1 History and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2 Overview of Internet Filtering Mechanisms . . . . . . . . . . . . . . . . . . 124

7.2.1 DNS-level Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2 IP Address Based Blocking . . . . . . . . . . . . . . . . . . . . . . . 126

xiii



7.2.3 HTTP Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.4 TLS Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.2.5 Other Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.3.1 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.3.2 Measurement Methodology . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.3 Tool Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.4 Filtering at the Mobile App Level . . . . . . . . . . . . . . . . . . . 134
7.3.5 Measurement Vantage Points . . . . . . . . . . . . . . . . . . . . . . 135

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4.1 DNS Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4.2 IP Address Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4.3 HTTP Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.4.4 TLS Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.5 Mobile Application Filtering . . . . . . . . . . . . . . . . . . . . . . 146
7.4.6 Relation Between Geopolitical Events and Internet Filtering . . . . . 150

7.5 Internet Filtering Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8 Future Work and Concluding Remarks 156

Bibliography 158

xiv



List of Figures

1.1 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 High Level Attack Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Design of client-side DNS cache poisoning attack . . . . . . . . . . . . . . . 38
3.3 Attack Network Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Median time to an attack success without NAT . . . . . . . . . . . . . . . . 49
3.5 Success Time Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Median time to success on Mac OS without NAT . . . . . . . . . . . . . . . 52
3.7 Median time to success when client is behind NAT . . . . . . . . . . . . . . 53

4.1 Defense Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 High Level Overview of CSProp . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 DNSSEC Chain of Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 CSProp over DNSSEC — Design . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 CSProp over TLS — Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 CSProp over DNSSEC — Latency . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 CSProp over DNSSEC — Energy Consumption . . . . . . . . . . . . . . . . 96
5.7 CSProp over TLS — Latency . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.8 CSProp over TLS — Energy Consumption . . . . . . . . . . . . . . . . . . . 98

6.1 Testbed Architecture Configurations . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Overview of the key questions, contributions, and findings of my work . . . 117
7.2 Overview of the extent of filtering over time per category. We observe a

significant relaxing of the filtering rules for both Internet and mobile apps.
Note that I did not measure the period 2013-2017, but rely instead on per-
sonal experience and public sources. The bars for mobile apps represent the
percentage of the apps that were tested at that time period. For instance, in
2018 I tested 16 apps while in 2019 and 2020 I tested 18 apps. . . . . . . . . 118

7.3 General filtering warning page . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 Filtering warning page by the Ministry of Culture and Information . . . . . 123
7.5 Hierarchy of DNS name servers . . . . . . . . . . . . . . . . . . . . . . . . . 125

xv



7.6 DNS-Level Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.7 IP Address Based Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.8 HTTP Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.9 TLS Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.10 Geolocation of the vantage points . . . . . . . . . . . . . . . . . . . . . . . . 135
7.11 The scope of Internet filtering in Saudi Arabia . . . . . . . . . . . . . . . . 137
7.12 Wireshark trace of HTTP-URL-Keyward filtering . . . . . . . . . . . . . . . 141
7.13 Wireshark trace showing the company in charge of filtering in Saudi Arabia:

WireFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.14 HTTP filtering results by returned status code. The HTTP 200 OK success

status response code indicates that the request has succeeded. The 301

and 302 Found status codes are used to indicate that the URL has been
permanently and temporally, respectively, moved/redirected to a new URL.
Code 403 indicates that access to the requested URL is forbidden due to
client-related issues; in my case the reason is filtering. . . . . . . . . . . . . 144

7.15 Wireshark trace of TLS filtering . . . . . . . . . . . . . . . . . . . . . . . . 145
7.16 TLS/HTTPS connection cannot be established for a blocked site . . . . . . 145
7.17 WeChat Security Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.18 Output of tracert between a machine in Saudi Arabia and a machine in UK 152
7.19 The infrastructure of the filtering system in Saudi Arabia . . . . . . . . . . 152

xvi



List of Tables

3.1 TTL for Alexa top 10 global websites . . . . . . . . . . . . . . . . . . . . . . 42
3.2 The average RTT (in milliseconds) for Alexa top 500 global websites from

different vantage points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Defense Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 DNSSEC Algorithm Use Statistics . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Experimental Setup: The following platforms are used in the experiments. . 92
5.4 Comparing CSProp with Elliptic Curve Cryptography (ECC) cipher suites

for TLS handshake latency (in Micro Seconds) . . . . . . . . . . . . . . . . 99

6.1 Profile of the Data Exchanged Between an Iot Device and a Client in a
Wireless Home Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 This table shows a Comparison of CSProp Vs. two typical implementations of
traditional RSA public-key operations. The performance is measured based
on latency (in ms), memory footprints (in bytes), and energy consumption
(in mJ)). Note that the memory usages for SRAM and ROM are added to
represent the total memory footprint. . . . . . . . . . . . . . . . . . . . . . 112

7.1 Measurement Vantage Points . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2 Breakdown of Internet filtering results against Alexa top 500 websites in 18

categories. Numbers in blue, green, and red denote results in 2018, 2019, and
2020, respectively. The HTTP and TLS/HTTPS results are for status code
403. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xvii



7.3 Breakdown of Internet filtering results against popular messaging mobile
applications. I tested the text, audio and video communication services.
Symbols show if a communication service is supported (3), blocked (7), not
applicable (NA) (e.g. service not available at the time), or not tested (NT).
Note that the results displayed for the period 2013-2017 are based on personal
experience and not extensive measurements. Also note that the release date
of all apps except HouseParty (released in 2019) is either before or within this
period. For instance, Line, Telegram, and Google Duo were initially released
in 2011, 2013, and 2016, respectively. . . . . . . . . . . . . . . . . . . . . . . 147

xviii



Chapter 1

Introduction

The Internet of Things (IoTs) has become a ubiquitous term that describes devices

that have sensing or actuation capabilities (such as wearable watches, smart home appli-

ances, medical device, and even automobiles). When it first appeared, IoT devices were

simply new interconnection of existing technology. However, it has been gaining increas-

ing traction due to its simplicity and efficiency of streamlining the tasks and integrating

computing with the real-world. It is projected that there would be more than 75 billion

IoT connected devices installed worldwide by the year of 2025 [111]. Given the increasing

market penetration of these devices, security considerations in their design are also gaining

increasing importance. In particular, the compromise of these devices can introduce not

only cybersecurity threats but also threats to safety as IoT devices can be integrated with

safety critical systems such as automobiles or medical devices.

According to a data threat report by Thales [259], IoT has become a prime target of

cyber-criminals. Nearly 32.7 million IoT-centric attacks have been detected by SonicWall
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in 2018 with 217.5% increase comparing to 2017 [138]. The fact that IoT attacks are

accelerating at an unprecedented rate is due to manufacturers who in a rush to market do

not implement proper security controls. These shortcomings allow cyber-criminals to launch

attacks that can be large scale in terms of the number of devices they affect. For instance,

in 2016, the world experienced one of the most sophisticated botnet attacks on the Domain

Name System (DNS) service, known as Mirai botnet [113, 41]. Mirai exploited over 300,000

IoT devices [195] in 164 countries [112]. Technically, the attack was based on a script to send

malicious Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) traffic

over port 53. The attack was massive and caused a Distributed Denial of Service (DDoS) on

the DNS infrastructure of DNS provider Dyn [158], OVH [187], and Krebs on Security [196].

The attack was feasible because of two vulnerabilities: (1) The software versions of the Linux

kernel were outdated. The attackers took advantage of this vulnerability since there were

not enough storage space on the IoTs to install the new updated versions of the kernel;

and (2) Users did not pay attention to change the default (and weak) usernames/passwords

on their devices. A year later, Verizon released a report about another DDoS attack on

DNS. The attack was launched by college students [266] and affected more than 5,000 IoT

devices. This botnet attack used a brute force approach to break through weak passwords

on the IoTs1. In Chapter §2, I will describe other attacks and additional related research

to the work presented in this dissertation.

1I refer interested readers to excellent surveys on IoT attacks for more details [193, 110, 221].
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Figure 1.1: Dissertation Overview

1.1 Motivation and Scope of Work

My work considers a common scenario in networked IoT systems where IoT devices

(or generally, edge computing devices) are being connected to the Internet and participate

in Internet scale protocols such as the Domain Naming System (DNS) [218, 219], Transport

Layer Security (TLS) [240], Hypertext Transfer Protocol Secure (HTTPS) [239], and others.

Traditionally, security solutions for these protocols rely on cryptographic algorithms which

require computationally expensive operations that can be far too complex for such low-

power and inexpensive devices. In such a scenario, one of three options will occur: (1)

Retain security and extend it to the edge/IoT devices — in this case performance and

energy will suffer; (2) Sacrifice security, avoiding the resource overhead, but leaving the last

link to be insecure; or (3) Rewrite the entire system or even develop new security protocols
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specifically to incorporate these lightweight devices. The third option is undesirable since

it does not support backward compatibility and places large burdens on developers and

operators.

In the light of this context, my research pursues three main directions in addition

to a side direction to recommend further research (Figure 1.1 shows an overview of the

chapters that compose this dissertation):

1. The first contribution demonstrates that manufacturers should mandate security in

developing their edge/IoT systems. Specifically, I demonstrate a new attack on the

DNS infrastructure targeting the last hop. I present the attack component of this

contribution in Chapter §3, and also introduce an ad hoc defense specifically for this

vulnerability in Chapter §4.

2. Motivated by the aforementioned research direction, in the second direction, I pro-

pose a novel cryptographic function that allows full participation in cryptographic

operations but at a low computational cost, allowing the integration of security, per-

formance, and development without sacrificing one to save the other. More details

about this research direction is presented in Chapter §5.

3. In a third direction, I explore general usage of cryptography in resource-constrained

environments using a measurement study. Specifically, I analyze and measure the

cryptographic overhead of conventional cryptographic primitives that has been used

extensively in various applications. I present performance results related to latency

and energy consumption confirm with the measurement results in the third research

direction. I present this contribution in Chapter §6.
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4. The last contribution explores a different research direction–Internet Filtering in Saudi

Arabia. Specifically, I present a systematic longitudinal study on Internet filtering in

the Kingdom of Saudi Arabia, a country that has embarked on economic and societal

changes in many aspects of its daily operations and public policy decisions, with the

stated objectives of modernization towards building a more tolerant Islamic country.

This contribution is detailed in Chapter §7.

An overview of these contributions are presented in more detail in the remainder of this

Chapter.

1.2 Contributions of the Dissertation

The research in this dissertation focuses on showing that the integration of three

criterias which are security, performance, and development can help to provide efficient

end-to-end security. Such an integration adds lightweight security support for resource-

constrained devices such as IoTs and edge computing devices. Therefore, in this section, I

describe my contributions towards solving the problems described in the previous section

(Section §1.1); network attacks and defenses for IoT environments. Finally, I overview the

contributions in regards to Internet Filtering in the Kingdom of Saudi Arabia.

1.2.1 Contribution I: Client-Side DNS Attack

The first contribution of this dissertation demonstrates a new and dangerous DNS

cache poisoning attack targeting edge devices. Generally, DNS poisoning attacks inject

malicious entries into the DNS resolution system, allowing an attacker to redirect clients
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to malicious servers. These attacks typically target a DNS resolver allowing attackers

to poison a DNS entry for all machines that use the compromised resolver. However,

recent defenses can effectively protect resolvers rendering classical DNS poisoning attacks

ineffective. I contribute and present a new class of DNS poisoning attacks targeting the

client-side DNS cache. The attack initiates DNS poisoning on the client cache, which is used

in all main stream operating systems to improve DNS performance, circumventing defenses

targeting resolvers. The attack allows an off-path attacker to collaborate with a piece of an

unprivileged malware to poison the OS-wide DNS cache on a client machine. I developed

the attack on Windows, Mac OS, and Ubuntu Linux. Interestingly, the behaviors of the

three operating systems are distinct and the vulnerabilities require different strategies to

exploit. The attack is also generalized to work even when the client is behind a Network

Address Translation (NAT) router. The results show that we can reliably inject malicious

DNS mappings, with on average, an order of tens of seconds. The attack is described in

more details in Chapter §3.

I also introduce an ad hoc System-Level Defense that targets this specific vul-

nerability (presented in Chapter §4.) The defense hardens the clients against DNS cache

poisoning attacks by first detecting an attack, and then deploying both operating system

and networking defenses against it. It requires only changes to the client software; thus,

it can be deployed immediately through an OS patch. The results show that the defense

successfully defeats all attacks with 0% attack success probability.
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1.2.2 Contribution II: CSProp, a Lightweight Cryptographic Primitive

for Securing IoT

The defense introduced earlier is both ad hoc, and also specifically targeted at the

attack I discovered. To provide a more systematic option to enable protection of IoT devices

across many protocol settings, I propose CSProp– a new cryptographic primitive providing

full security but with an overhead acceptable for resource-constrained devices. More pre-

cisely, in networked and distributed systems, cryptographic operations are used to ensure

the privacy and authenticity of information as it travels through multiple intermediaries.

These operations can be computationally expensive, and typically must be repeated every

time information changes hands. This poses a security challenge when lightweight, resource-

constrained devices (such as those common in IoT systems) are connected to a network of

more capable machines. As discussed earlier, one of three sub-optimal outcomes will occur

if cryptography is applied naively: (1) performance will suffer (e.g., if resource constraints of

the lightweight devices are ignored); (2) security will suffer (e.g., if cryptography is removed

from all interactions involving the lightweight devices); or (3) developers will suffer (e.g.,

if the entire system is rewritten specifically to incorporate these lightweight devices). The

third might not even be a possibility due to the system’s security requirements or due to

the need to preserve legacy systems. Motivated by these concerns, I introduce a new cryp-

tographic primitive which is called ciphertext and signature propagation (CSProp) in order

to deliver security to the weak end-devices. The core of this contribution is a propagation

algorithm whereby a capable machine sitting upstream of a lightweight device can modify

an authenticated message so it can be efficiently verified by a lesser machine. Crucially,
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verification of the modified signature is less computationally intensive than verification of

the original (thus avoiding pitfall 1 above). Nevertheless, security guarantees that the only

way to produce a lightweight signature is by modifying an original (thus avoiding 2). Best

of all, the proposed propagation algorithm works for RSA signatures and so is compatible

with a large fraction of internet traffic (avoiding 3). A similar propagation technique is

given for RSA ciphertexts which allows a weak device to use an efficient encryption proce-

dure to produce a ciphertext that can then be propagated forward by a capable machine

into a standard RSA ciphertext of the same message. CSProp is demonstrated by using it

for the extended version of DNS known as DNSSECurity (DNSSEC) validation and TLS.

The propagated signature verification in DNSSEC (vs. full DNSSEC validation) reduces

latency by 91x and energy consumption by 53x on the Raspberry Pi Zero W. For TLS

handshake, the advantage to latency and energy by an average of 8x and 8x, respectively. I

also compare CSProp with Elliptic Curve Cryptography (ECC) cipher suite and found that

CSProp beats up ECC by 2.7 times. CSProp is presented in more details in Chapter §5.

1.2.3 Contribution III: Analysing Cryptographic Overhead on IoT De-

vices

The third contribution of this dissertation is a measurement based study to char-

acterize IoT devices with two components: (1) profiling existing devices to understand the

cryptographic demands on IoTs; and (2) evaluating their performance on the new proposed

primitive, CSProp, and compare the results with a widely used conventional cryptographic

primitive which is RSA. For (1), I analyze the cryptographic overhead that occur when

an IoT device is used in a home-based environment: the IoT device is a Wyze Cam V2
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IoT camera. The results show that the camera uses cryptographic operations intensively.

For (2), a study is presented to measure the performance of Arduino MKR WiFi 1010—

a single-board microcontroller representative of IoT devices, when it participates in IoT

operations. The performance is analyzed in terms of cryptographic overhead on latency

and energy consumption. Based on the obtained results, we can confirm the finding in

the third reasrch direction that CSProp is suitable for resource-limited environments. This

measurement study is detailed in Chapter §6.

1.2.4 Contribution IV: Characterizing Internet Filtering in Saudi Arabia

The last contribution in this dissertation considers is in a different research space,

considering another aspect of Internet operation. Internet filtering is predominantly used

by countries or organizations to restrict access to websites or other resources on the Internet

that are perceived to hold inappropriate, offensive, or otherwise harmful content with respect

to their governing laws, values, or policies. In this research direction, I study Internet

filtering in the Kingdom of Saudi Arabia: a traditionally conservative country that has

embarked on economic and societal changes in many aspects of its daily operations and

public policies with the stated objectives of modernization and openness.

I present a comprehensive longitudinal study of Internet filtering in Saudi Arabia

over the period of three years. Specifically, I conduct measurements to evaluate filtering

behavior by probing Alexa’s top 500 websites in 18 different categories from viewpoints

covering the three largest telecommunications companies in Saudi Arabia. I observe that

the filtering is most common for sites in the Adult, Shopping, Games, and Global categories.

I also conduct measurements to test mobile application accessibility by examining the status
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of 18 of the most popular mobile social network applications worldwide and in the middle

east such as WhatsApp, Facetime, WeChat, and Skype. Our results show that Saudi Arabia

is cautiously yet decisively opening its digital borders. For example, we find evidence that

the emphasis on modernization is leading to relaxing regulations on filtering (67% and

93% of the blocked mobile apps over the period 2013-2017 were accessible in 2018 and

2019, respectively, and all tested apps were accessible in 2020, except WeChat which is still

debatable).

The availability of multiple measurements over time enables us to study changes in

the filtering policy and view these changes in the wider geopolitical context experienced by

the kingdom and the region. For instance, we find that ISIS-friendly sites are blocked, as

ISIS supports terrorism and destabilization to the region. Interestingly, news sites from

the countries of Qatar, Iran, and Turkey got blocked, amid rising diplomatic tensions

between the kingdom and these countries. I also investigate and characterize the technical

mechanisms and the network topology used in the implementation of the filtering. This

direction is presented in detail in Chapter §7.

Finally, Chapter §8 concludes before highlighting potential future work.
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Chapter 2

Background and Related Work

In this chapter, I present the related work on this dissertation. The organization

of this chapter is as follows. Relevant to the first contribution, in Section §2.1, I present the

related work of DNS cache poisoning attack and in Section §2.2, I provide the state of the art

defenses to mitigate the attack. With respect to the second contribution, in Section §2.3,

I describe lightweight cryptographic solutions in favor of adding security support in IoT

environments. To conclude this chapter, I present related work on the third contribution

on Internet filtering in Section §2.4.

2.1 DNS Cache Poisoning Attacks

DNS cache poisoning is a dangerous class of attacks that has been the focus of

studies in the past [60, 268, 189, 250]. It is accomplished when an attacker injects a malicious

mapping into a DNS cache to redirect communication to an adversarial server enabling the

attacker to intercept packets content. In 2007, Amit Klein introduced sophisticated cache
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poisoning attacks against BIND 9 DNS resolvers [188] and Windows DNS servers [190]. At

that time, the attack’s entropy was totally based on the TXID, and the implementation

of the randomized algorithm facilitated the attacks. In 2008, Dan Kaminsky presented

another significant attack [180] against DNS resolvers which also depends on TXIDs for

authentication. The attack assumes both the UDP source and destination ports are fixed

as 53. Indeed, Paul Vixie already reported this vulnerability in 1995 [268], and in response,

Bernstein proposed a challenge-response defense to substantially use ephemeral ports ran-

domization in order to expand the entropy of the correct response packet [61, 62]. However,

this solution was not practically supported until Kaminsky’s attack [167, 198, 197].

More recently (starting in 2011), several new cache poisoning attacks against re-

solvers were proposed which have varying degrees of assumptions of the attack requirements

and the network [156, 143, 155, 157, 254, 191]. For example, some attacks [156, 254] assume

an attacker collaborates with a malicious script (e.g., Javascript in a browser) to poison

the DNS cache of a resolver. Herzberg and Shulman [156] propose an attack that exploits

packet fragmentation of UDP packets of long DNS responses to spoof the second fragment

of a DNS response (only the first fragment includes the TXID). The same authors [157]

propose a poisoning attack that exploits delegation of DNS resolution where intermediary

network devices perform recursive lookups on behalf of the resolvers. In contrast, they also

show attack principles (but do not demonstrate the attack) [155, 143] that can poison the

cache of a DNS resolver located behind a NAT. These attacks can be prevented by full

installation of DNSSEC. They do not target the client caches as my attack does. Recently,

the attack in [191] does not focus on the challenge-response authentication parameters, such
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as the UDP source port and the TXID, and assumes they are known to the attacker (which

we doubt it is a very strong assumption). However, none of them is a general attack that

can work universally (as the Kaminsky’s attack [180]).

2.2 DNS Cache Poisoning Defenses

Because attacks that undermine DNS resolution are extremely powerful, several

defenses were proposed to address DNS cache poisoning attacks. The preponderance of these

defenses targets improving DNS resolver security and therefore are not effective against my

attack. The defenses can be classified into three categories: challenge-response defenses,

cryptographic defenses, and using alternative architectures. Challenge-response defenses

rely on the idea of increasing the entropy of DNS request/response, such as UDP source

port randomization [180, 9], 0x20 encoding [104], random selection of authoritative name

servers [197, 167], and adding random prefixes to domain names [229]. All these defenses

attempt to make the space of packets from which a correct response must be selected larger,

substantially increasing the attacker’s difficulty in generating a valid response. Challenge-

response defenses are vulnerable to MitM adversaries who can intercept the DNS com-

munication. To protect against this type of eavesdropping attack, cryptographic defenses

were proposed which include primarily DNSSEC [272] that is based on digital signatures

for authentication; this solution in principle closes all cache poisoning attacks since the

validity of the response is no longer only a function of the contents of the packet. Despite

the fact that DNSSEC is effective, the deployment is very slow. For example, the Internet

Society organization reported that roughly 10% of a sample of size more than 735 million

13



resolvers use DNSSEC validation [8]. Moreover, a recent study [7] discovered that 0.67%,

0.91%, and 0.91% of .com, .net, and .org Top Level Domains (TLDs) are signed. Recently,

Klien et al. did an Internet-scale measurement study on the vulnerability of DNS resolvers

and discovered that 92% of resolvers are vulnerable to at least one type of poisoning at-

tack [191]. All these studies conclude that complete adoption of DNSSEC would prevent

these vulnerabilities, but a combination of partial deployment and permissive policies (e.g.,

accepting responses even if the DNSSEC signature does not match) lead to the current

resolver vulnerabilities. Unless DNSSEC is extended to cover end clients, which introduces

a substantial key distribution problem and is likely to infringe on usability, it does not

prevent my attack.

A third defense alternative considers rethinking DNS implementation radically,

resulting in different security properties. For example, Schomp et al. [249] propose a radical

change to the DNS ecosystem by eliminating shared resolvers entirely to have clients perform

the recursive resolutions directly. However, since my attack targets the endpoints, it should

still be effective against this architecture.

Currently, the security of patched operating systems relies mostly on the ran-

domness of source ports. In my attack model, I expose vulnerabilities in the source port

allocation algorithms used by three operating systems: Microsoft Windows, Mac OS, and

Linux Ubuntu.
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2.3 Lightweight Cryptographic Defenses for IoT Environ-

ments

Lightweight cryptography is a term that refers to low overhead cryptographic al-

gorithms designed for energy- or computationally-constrained machines, specially in IoT

environments. This is an active area of research in both academia and industry [116, 129,

75, 65, 182, 77, 54, 67, 253, 242]. The main goal of such algorithms is to achieve effi-

cient security suitable for such resource-constrained devices. However, due to the limited

resources (such as processing power, battery, and storage capacity) of these devices, it is

a challenge to fulfill this goal. As a result, designing lightweight cryptographic schemes

for resource-constrained devices is a topic that has attracted broad interest from the re-

search community [182, 203, 237, 124, 175, 278, 236, 281]. Since Public Key Cryptography

(PKC)/asymmetric cryptography requires substantially higher resources for computation

than symmetric cryptography, most lightweight cryptographic algorithms have been devel-

oped for symmetric cryptosystems.

Symmetric Lightweight Cryptography. In mCrypton [203], Lim et al. follow the

architecture of Crypton [202] to design a lightweight protocol for resource-constrained de-

vices such as Radio Frequency Identification Systems (RFIDs) [270]. More precisely, the

authors propose 64-bit block cipher with three key sizes ranging from 64 to 128 bits to

optimize resource usage and power consumption. Nonetheless, the smaller key sizes would

led to a weak security. Whereas the proposed scheme, CSProp (see Chapter §5 for more

details), utilizes a sufficient key size to form a secure and scalable connection. Similarly, the

Scalable Security with Symmetric Keys (S3K) scheme [236], which is a key management
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architecture, was proposed to provide a scalable energy efficient mechanism to establish

trust relationships among entities in IoT environments. The architecture consists of two

phases: (1) establishing a new pre-shared key within the Datagram Transport Layer Secu-

rity (DLTS) handshake; and (2) applying lightweight public key cryptography. Basically,

they depend on shared keys which might increase the risk to key disclosure and endanger

the security services. This sets S3K scheme apart from CSProp, where the latter does not

require any pre-shared key and thus maintain the security for both ends. Another proposal

is Hummingbird [124] which uses a hybrid structure of block and stream ciphers with 16-bit

block size and 256-bit key length; an improved version of this work has been developed by

Engels et al. [125]. Specifically, the algorithm increases the internal state to 128-bit and

enhances the state of the mixing function of the algorithm. It is tested against most of the

well-known attacks and it appears to be resilient against them. However, Zhang et al. [279]

show that the key can be easily recovered. Unlike CSProp is based on unbreakable and

scalable RSA signature algorithm. Jan et al. [175] propose a different approach for IoT de-

vice identification. Specifically, the scheme observes resources of IoTs that are based on the

Constrained Application Protocol (CoAP) to provide mutual authentication by validating

the identities of the participating devices before engaging them in communication. Even

though the scheme seems to close vulnerabilities that may lead to eavesdropping and key

fabrication attacks, it does not provide protection from several powerful attacks such as

the well-known Sybil attack [118] in which a device can illegitimately impersonate multiple

identities. In CSProp, major attacks are discussed in §5.1.1 that CSProp can efficiently

defeat.
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Asymmetric Lightweight Cryptography. Other efforts aim to propose a lightweight

cryptographic algorithm based on asymmetric ciphers. For instance, Lithe [237] is proposed

to provide integration of security between the DLTS protocol at the transport layer and

the CoAP protocol at the application layer. Lithe compresses the datagrams of DLTS to

increase efficiency and applicability of DTLS and CoAP for constrained devices. On the

other hand, the system involves expensive cryptographic processing for both the record and

the handshake protocols. Comparing with CSProp, it does not require any preprocessing

expensive computation that increases the overall overhead time. Zhang et al. [281] propose

a scheme to provide resilience against a large number of sensor node compromises. The au-

thors propose a message authentication scheme by adopting perturbation polynomials. The

scheme incurs lower overhead and higher adaptability than existing techniques that utilize

traditional asymmetric algorithms. However, Albrecht et al. [32] show an attack that fun-

damentally undermines the viability of using perturbation polynomials for designing secure

cryptographic schemes. Whereas CSProp utilizes an efficient and secure cryptographic algo-

rithm based on RSA signature (See §5.2 for more details). There also exist approaches that

utilize custom authentication protocols that rely on Public Key Infrastructure (PKI) and

TLS protocols [39]. However, PKI and TLS protocols require resource-consuming cryp-

tographic operations making them inappropriate for IoT and other constrained devices.

CSProp does not utilities PKI platform since is not suitable for most types of constrained

devices.

Private-Key Lightweight Cryptography. Most work on lightweight cryptography tar-

gets private-key cryptography (symmetric cryptography algorithms such as block/stream
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ciphers and hash functions [203, 206, 160]), with ongoing efforts to standardize some pro-

posals [173].1 Progress on lightweight (PKC) has been slower: PKC is much more com-

putationally demanding, and protocols attempt to minimize their use for encryption and

decryption (by using PKC to negotiate session keys for private key algorithms). However,

PKC remains critical for authentication and verification as well as to bootstrap the use of

private key cryptography. Elliptic Curve Cryptography (ECC) can reduce the overhead of

some PKC cryptographic operations relative to RSA [75, 264]. Primarily, the lower overhead

occurs because ECC can provide equivalent security to RSA with much smaller keys, mak-

ing key generation as well as operations that use private keys substantially faster. However,

because RSA can use low public exponents (effectively much smaller public keys) operations

using public keys are considerably faster in RSA. These operations include authentication

and signature verification (my first application), which has been measured to be 6.6x, and

3.4x faster in 1024-bit RSA and 2048-bit RSA, respectively, than ECC [84, 265]. Consid-

ering DNSSEC, this is a serious issue because overloading DNS resolvers could potentially

slow down name resolution with wide impact on many applications. CSProp improves the

performance of RSA, which should result in the fastest known PKC signature verification

with security equivalent to RSA, and with backward compatibility.

Proxy Assisted Cryptography. The proposed lightweight cryptographic scheme,

CSProp, bears similarity, with prior work on proxy-based re-signature schemes, first

introduced by Blaze et al. [66] and later revisited by Ateniese and Hohenberge [52]. A

significant difference from these works is that CSProp provides security by construction

1The desired properties of lightweight cryptography have already been discussed in the
International Organization for Standardization ISO/IEC 29192 in ISO/IEC JTC 1/SC 27:
https://www.iso.org/committee/45306.html
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and therefore does not require a trusted proxy to propagate signatures. In contrast, these

prior works require a trusted proxy to take a signature as input and generate a new

signature as output using the public keys of both parties (the signer and the verifier). It is

worth noting that this setting is also vulnerable to a known attack on RSA [68, 255, 256].

Joye et al. [178] propose a solution to overcome hardware restrictions enforced

by vendors such as Intel Software Guard Extensions (SGX). Although it uses a proxy, the

application is different: for CSProp, Patty is helping a weak Alice verify a signature from

a more powerful Bob. On the other hand, in this work, Patty is helping a weak Bob sign

a message and transmit the signature to a powerful Alice, which is not a common scenario

for IoT settings. Critically, Patty needs to know Bob’s private key, whereas for us, Patty

does not. For this reason, the warning in [178] that e′|e is problematic does not apply in

my setting. This is because e′ in [178] is generated using knowledge of Bob’s private key,

whereas for us e′ is computed publicly. Another major difference between this work and

CSProp is the model of security they consider: in addition to the proxy being trusted in this

scheme, both public keys must be kept secret, which is incompatible with my requirements

and assumptions.

Ding et al. [114] attempt to carry out proxy assisted cryptography, making the

scheme similar to CSProp at a high level. They propose a solution to speed up public key

signature generation for resource-constrained devices using Server-Aided Signatures (SAS).

This scheme requires that an original signer should have a PKI certificate, then compute a

hash chain of one-time secret keys generated from a root key associated with the certificate,

and store the chain locally. The original signer needs to collaborate with a trusted proxy
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which is trusted and has a PKI certificate. It uses its own private key to fully sign the

message along with one of the one-time secret keys. These keys are used to authenticate

the original signer and can be used only once for each individual signature. Under heavy

network traffic, this introduces a performance bottleneck for the original signer unless she

has enough storage to store the hash chain– a limitation in resource-constrained devices. In

contrast, CSProp does not require additional PKI certificates, and the propagator can be

any entity since it is not required to be trusted.

Several studies have been conducted presenting the computational and energy

costs of cryptographic protocols on embedded IoT processors [55, 213, 232, 148, 166]. For

instance, Potlapally et al. [232] shows how fast the battery gets drained (more than twice)

in the presence of encryption comparing to no encryption. They also show energy analysis

of common cryptographic algorithms (such as RSA [241], DSA [224], and ECDSA [176])

on a client device running Compaq iPAQ H3670 whose processor is clocked at 206MHz.

In addition, a good body of work analyzes the performance of specific applications used in

resource-constrained environments [213, 142, 123]. For instance, Miranda et al. [213] ana-

lyzes the energy consumption of the Transport Layer Security (TLS) protocol transactions

on a mobile device and found that more than 60% of total energy is consumed by TLS

overhead.

2.4 Internet Filtering

As the Internet has grown to be an essential service for accessing information,

sharing opinions, coordinating activist organization, many countries have sought to regulate
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this open access through Internet filtering. As a result, many studies have been conducted

to examine the filtering practices and mechanics in different countries around the world. In

this section, I briefly survey a number of these studies and explain their relationship to my

work where appropriate.

Country-Specific Internet Filtering studies. For some countries, the underlying mo-

tivation to effect filtering believed to be political. For instance, Nabi [220] used a publicly

available dataset of websites to check their accessibility in Pakistan. He found that the

government performs filtering at DNS and HTTP levels. Aryan et al. [51] showed evidence

that all Internet traffic in Iran is directed to a centralized equipment which is apparently

controlled by the government. In 2011, during the political events in Libya and Egypt,

Dainotti et al. [105] analyzed country-wide government-ordered Internet outages using a

variety of publicly available datasets. Furthermore, Chaabane et al. [79] presented results

of measurements analysis of a sophisticated Internet filtering system enforced by the Syrian

government. They discovered that Instant Messaging is heavily censored. Many studies

have explored the Internet filtering infrastructure of the Great Firewall of China (GFW)

over the years [276, 201, 83]. In the UK [82] a system filters pedophile advocacy websites

that promote sexual exploitation of children. In Germany, all Nazi promoting websites are

blocked by the government [117]. Internet filtering can also be imposed by Internet users on

themselves. For instance, Gebhart et al. [139] presented an adequate and a comprehensive

study on Internet filtering in Thailand. They distributed a survey on 160 respondents and

found that nearly 70% of them enable filtering settings on their connections. At the eco-

nomic level there is evidence of some companies or organizations using Internet filtering to
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force customers to use specific products [85]. We expect such economically driven filtering

to increase if net neutrality repeal efforts go into law in the USA.

Studies on Internet Filtering in Saudi Arabia. Most related to my study, Zittrain and

Edelman conducted the first study on Internet filtering in Saudi Arabia [282]. In 2002, they

used proxy servers to prop a list of random distinct websites (approximately 64,557) from 6

different categories. They performed a lightweight measurement study and concluded that

nearly 3.15% of the websites were blocked based on different categories. Likewise, in 2004,

the OpenNet Initiative (ONI) organization published a similar report [170] and confirmed

the findings in [282]. Most recently, in 2012, Verkamp and Gupta [267] studied the filtering

mechanics used in 11 countries, including Saudi Arabia. They claimed that Internet filtering

in Saudi Arabia is based on destination IP address filtering and directs users to an HTTP

response with a status code of 200. My study is similar in spirit, but substantially larger

in scale, covering systematically classes of websites and mobile applications. The study

is also repeated over multiple years at a time where Saudi Arabia is experiencing a shift

to modernize. I also explore the technical mechanisms underlying the observed behavior

in detail. In fact, the results show substantial differences from these earlier studies; for

example, we found that filtering is applied at the HTTP and TLS levels instead of IP. The

analysis was repeated multiple times and observe trends in filtering over time.

Filtering Measurement Tools. Several research efforts developed tools to measure and

study Internet filtering. For instance, CensMon [252] was developed as a tool to monitor

and detect filtering characteristics globally. UBICA [29] was designed to aggressively collect

filtering-related data from different vantage points by running the tool on home gateways
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and personal computers. OONI [134] and ICLab [169] are two other platforms that are

designed to detect filtering using embedded devices such as Raspberry Pis [230]. Iris [228]

is also developed as a scalable, accurate, and ethical method focusing on the problem of

measuring manipulations on the DNS protocol. In addition, Nabi used a test script, dubbed

Samizdat [220], that inspired my filtering tool. Samizdat first downloads a list of websites

and prepares it for testing. For each website, the tool performs a DNS lookup to check for

DNS level filtering. It then tries to establish a TCP connection. Next, the tool checks for

HTTP-URL-keyword filtering. In the last step, the tool checks for HTTP-FQDN filtering.

For each test, the results are recorded in a log file locally consistent with recommended

ethical practices (i.e., not in a remote server as in [252]). The tool which is developed for

this study provides significant new functionality. For example, some of the modifications

include a different website input and preparation process: the websites are distinct per

category since they are crawled directly from Alexa and do not need cleaning to remove

redundancy.

Data Resources. The are also some efforts in terms of data resources. For instance,

ONI [226] makes global Internet filtering data more accessible to researchers and journalists.

However, their data is outdated with the last release being in September 2013 while for

Saudi Arabia the latest release was in 2009. The University of Michigan, on the other hand,

established a project called Censored Planet [78] to frequently update the filtering data.

The project contains a publicly accessible database at global scale.
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Chapter 3

Collaborative Client-Side OS-Wide

DNS Cache Poisoning Attack

The Domain Name System (DNS) protocol provides an integral service underlying

the Internet: It is an essential component that provides resolution primarily of Fully Qual-

ified Domain Names (FQDNs) (i.e., human-readable domain names such as foobar.com)

to their corresponding Internet Protocol (IP) addresses [218, 219]. DNS resolution infor-

mation is maintained by a hierarchical and distributed set of name servers in order to

support scalability and to enable distributed management at each individual organization.

This hierarchy consists of 13 trusted root servers (denoted by .) which are geographically

widespread across the world, top-level domains (TLDs) (e.g., .com, .edu, and .gov), and

authoritative name servers (e.g., foobar.com, ucr.edu), and usa.gov. DNS queries from

clients are serviced using a set of resolvers that can walk the DNS hierarchy to reach an

authoritative name server that provides the answer to the DNS query. To improve perfor-
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mance, resolvers and end hosts heavily use caching, exploiting locality to avoid unnecessary

and slow queries that consist of several round-trips as a resolver walks the DNS hierarchy.

DNS has gradually evolved since its first specifications [215, 216, 217, 218, 219].

It is widely used in verity of applications and Internet services and architectures which rely

on the integrity and availability of the DNS infrastructure.

The security of DNS is critical to the security of the Internet: if an attacker can

manipulate the mapping, she can redirect connections to cause users to access a malicious

server, to facilitate Man-in-the-Middle (MitM) attacks, or to cause denial of service (DoS).

One of the most serious attack classes against DNS is the cache poisoning attack,

where an attacker attempts to inject malicious DNS mappings to the cache of a DNS

resolver [53, 180, 174, 188].

DNS is vulnerable to this type of attack because, in the process of resolving a

domain name, requests are sent to authoritative name servers which can be far away, leaving

an open window of time for an attacker to inject a false response. More precisely, an attacker

can poison the cache by impersonating authoritative name servers of a target domain [180,

143, 189]. For example, an attacker who wants to target the domain name www.bank.com

first needs to have a server capable of spoofing the IP address of the bank.com’s authoritative

name server. When the victim resolver sends a DNS query to resolve www.bank.com, the

attacker impersonates the legitimate DNS server by spoofing a response with a malicious

IP. The malicious mapping provided by the attacker is cached by the resolver and all future

queries for www.bank.com will return the malicious IP address redirecting victims to the

IP address chosen by the attacker, allowing several dangerous exploitation classes. For
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example, users may be fooled to enter their credentials on a malicious website identical

to the website they were trying to access. To protect against cache poisoning attacks on

DNS resolver caches, Source UDP Port Randomization (SPR) [180, 9] was introduced and is

currently widely deployed. In this defense, a DNS query from a resolver uses a random source

UDP port when forwarding a DNS query. An off-path attacker must guess this random

port number in order to successfully spoof a reply to the same port (otherwise, the reply

will not be accepted), in the time window before the true response is received. Although

it does not close the vulnerability completely, SPR substantially reduces the chances of

effective cache poisoning attacks. Even though fundamentally secure DNS protocols such

as DNSSEC [272] have been proposed, it has been difficult to get traction with respect to

real-world deployment, and most websites continue to run insecure versions of DNS.

In this work, I introduce a new and dangerous DNS poisoning attack targeting the

end user devices. Most operating systems on client devices use DNS caches that retain DNS

responses and share them across applications including browsers. The results show that

these caches can be compromised via a DNS cache poisoning attack oftentimes in a couple

of seconds for Windows and a few minutes for Ubuntu Linux and Mac OS. Specifically, the

attack is initiated by an unprivileged malicious program (e.g., a malware or a malicious

JavaScript) who simply asks for DNS resolution for a domain it is attempting to poison.

The malicious program coordinates with an off-path attacker (i.e., an attacker anywhere

on the Internet) that responds to the DNS request attempting to poison the cache entry

and succeeding with high probability. To succeed in the attack, a malicious response with

a matching TXID has to arrive before the real response. This is challenging task as there
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is really only an attack window equivalent of a round-trip time between the client and

resolver. To make matters worse, once the authentic DNS response is cached, one may

need to wait for the entry to timeout before being able to launch the next round of attack

on the same domain. However, I discover that specific OS implementations and real-world

TTL/network latency make the proposed attack highly feasible. Through analysis of NAT

implementation on commercial routers, reliable strategies are presented to launch the attack

even through a NAT router.

Client devices are typically not considered to be part of the DNS hierarchy and

therefore have not been considered by defenses against DNS cache poisoning. Thus, defenses

against resolver cache poisoning attacks including SPR [180, 9] and 0x20 [104] do not

protect against this new attack. Even new proposals such as DNSSEC which rely on

cryptography to completely close cache poisoning [46] operate at the resolver level but leave

the network behind the resolver unprotected. As a result, the attack represents a new and

dangerous vulnerability that threatens most computing devices. The attack also expands

my understanding of the threat surface of DNS cache poisoning attacks when designing

mitigations within DNS.

Additionally, I try to fulfill my understanding on the attack behavior. I add theo-

retical analysis and compare it with the measured results. Specifically, more measurements

are added to help understand the impact of number of attack trials on attack success.

This research direction makes the following contributions.

1. I describe a new and dangerous DNS cache poisoning attack against client caches,

which overcomes the challenges of source UDP port randomization. The techniques
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can defeat the challenge-response defenses that are mostly based on randomizing

TXIDs and port numbers.

2. I explore the attack when the victim is behind a NAT. The results show that many

NAT boxes are fixed-port and/or port-preserving, enabling the attack to work with-

out modification. Although I did not have access to a random-port NAT router, I

conceptually describe approaches to extend the attack to work with such routers.

3. The attack is demonstrated on three different operating systems: Microsoft Windows,

Mac OS, and Linux Ubuntu machines. Each implementation introduces challenges,

but I show that they are all addressable, enabling the attack to work with reliably. The

attack’s effectiveness is measured under various settings, and the results show that

the attacks are potent under realistic conditions. For instance, the attack typically

succeeds in a few seconds on Windows.

4. I present a new analytical model of the attack and compare its prediction with the

empirical results. Specifically, I extend the analytical model of the attack to estimate

the number of rounds before an attacker successfully poisons the cache. Although the

model does not capture network effects such as congestion and packet drops in the

receiver buffers, I show that it correlates with the observed experimental results.

Disclosure. I reported the attack to Apple, Microsoft, and Ubuntu. In response, Apple

released a security update1 fixing the mDNSResponder daemon, also known as Bonjour, that

is used by the DNS Service Discovery API in Mac OS X (version 10.2 and later) and iOS

1https://support.apple.com/en-us/HT209446
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operating systems. Ubuntu confirmed the vulnerability2. I understand that Microsoft is

considering mitigations.

The remainder of the chapter is organized as follows. Section §3.1 provides the

background and describes the threat model. The attack is introduced in Section §3.2.

Tailored attack strategies and analysis are presented in Section §3.3. The attack is evaluated

in Section §3.4.

Readers are encouraged to watch a video demo illustrating the proposed attack on

Windows:

https://www.youtube.com/watch?v=ulaccbjA6ZU

3.1 Attack Fundamentals and Threat Model

In this section, I set the table for the client-side DNS cache poisoning attack. First,

the behavior of the OS-wide DNS cache of operating systems is described and then I discuss

the threat model.

3.1.1 OS-Wide DNS Caches

Modern OSes have built-in DNS caches. These caches are shared OS-wide, mean-

ing that if an application populates an entry in the cache, this entry will be used by any

other application that requires resolution for the same name. Similar to records cached

at the DNS resolvers, an OS-wide DNS cache record is stored along with a Time-To-Live

(TTL) value which is set by the domain authoritative nameserver to determine the lifetime

2https://bugs.launchpad.net/ubuntu/+source/systemd/+bug/ 1782225
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of the record in the cache. The purpose of having such a cache is to improve the performance

of DNS resolution as it is on the critical path of accessing Internet resources, especially for

applications that have many short-lived connections. Unlike previous work where the focus

was on resolver’s caches, I study the behavior of OS-wide DNS caches of operating systems.

When a client machine issues a DNS request, the request reaches the authoritative

name server having the answer after traversing a chain of DNS servers/resolvers and different

layers of caches. Some operating systems, e.g. Linux Ubuntu 16.04.6 LTS and earlier, are

configured to use an external DNS server as their first resolver and uses its cache for future

queries. Another alternative is to implement a client-side DNS cache internally. In this

case, the OS first accesses the OS-wide cache and checks if the DNS record corresponding

to the client’s request is cached; if it is not cached, the OS forwards the request to the first

external resolver in the Internet cloud; e.g. carrier’s resolver. The latter implementation is

vulnerable to client-side cache poisoning attacks. The attack differs from other DNS cache

poisoning attacks in that it targets the client-side cache, and therefore bypasses all known

defenses that protect the resolvers.

I surveyed a number of modern operating systems, including macOS Sierra version

10.12, several versions of Microsoft Windows (Microsoft Windows 7 Professional Edition,

Microsoft Windows 8.1, and Microsoft Windows 10), as well as several Linux distributions.

By default, the OS-wide cache is enabled in all versions of Windows, Mac OS, and in Ubuntu

17.04 and later. It is checked by DNS APIs. I also verified that all applications first consult

this cache before issuing an external DNS request. Specifically, the OS-wide DNS cache is

implemented by introducing a DNS system service, running in a separate process isolated
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from applications, that manages all the mappings. such as getaddrinfo(): only if the

record is not found in the cache, does the DNS cache service perform a DNS request on

behalf of the application. Thus, this client-side cache acts as the de facto first level of

resolution. Recently, Ubuntu started using the OS-wide DNS cache by default, but earlier

distributions including Ubuntu 16.04 LTS have implementations that have to be optionally

installed and enabled by users.

The OS-wide DNS cache is stored in memory. I measured the size of the cache

starting with an empty cache, warming the cache with a number of domain names (say

x), and then resolving these names again while timing to see if the entry is being resolved

from the cache. I keep increasing x until I start observing misses, which identifies the size

of the cache. The results show that the cache size to be 2050, 5076, and 4094 entries in

Windows, Mac OS, and Ubuntu Linux respectively. Furthermore, we find that the OS-

wide DNS cache in all operating systems stores all types of records (A, AAAA, CNAME,

PTR, RRSEG ...etc.) from only the answer section of DNS responses. Thus, Kaminsky’s

attack [180] relying on malicious records from the additional section does not apply to

OS-wide DNS caches.

3.1.2 Threat Model

In this section, I describe the thread model of the attack. In such a model, I

consider four entities below:

1. The victim client machine and its OS-wide DNS cache.

2. A legitimate resolver which acts as a DNS server for the client machine. The client
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may connect to this resolver via a NAT device which has its own DNS cache.

3. The on-device malware, which is unprivileged and cannot tamper with other applica-

tions directly (I will instantiate this later in §3.2). This malware could be a malicious

JavaScript running in the browser after an attacker browses a malicious/compromised

website, or a malicious application downloaded to the user’s phone.

4. The off-path attacker, who is capable of spoofing the IP address of the legitimate

resolver. The malware and off-path attacker collaborate to poison the OS-wide DNS

cache with a malicious mapping for a target domain name.

Note that the IP spoofing capability of the off-path attacker is commonly available

in networks unless ingress filtering [183] is implemented [63]. A significant number of

Internet Service Providers (ISPs) and networks do not implement ingress filtering and

therefore an attacker connected to such a network can directly spoof IP addresses [64,

214, 122]. Also, an attacker on the same network does not have to pass through the ingress

filter. Another scenario where the attack is possible is one where two machines are located

in the same network (e.g., enterprise or university network). It is common that a machine

can spoof the IP address of the other since a packet does not pass through the ingress filter

if it stays in the same network (I confirmed, after obtaining permission, this behavior in

one enterprise and several university campuses).This threat model matches the threat model

used in recent papers (e.g., off-path TCP injection attacks [234, 235]). In a sense, the attack

can be considered a special type of local privilege escalation [108], where an unprivileged

piece of a program can overwrite the OS-level DNS cache without authorization (with the

help of an off-path attacker).
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Figure 3.1: High Level Attack Overview

I also note another scenario where the attack applies: machines that have multiple

users. One user can log into the machine, execute the attack causing the OS-wide DNS cache

to be poisoned. When this user logs off, any subsequent user will be using the poisoned

entries. I confirmed this attack scenario on several networks (with permission).

Another interesting threat model that is not considered exploits the browser level

caches: since some browsers (e.g., Firefox and Chrome) have their own DNS caches which

are shared among different tabs/windows, the attack can also be applied using a malicious

JavaScript piece of code assuming the success time is relatively small due to page visit time.

In this scenario, the poisoning affects both the OS-wide and the browser-level DNS caches.
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3.2 Attack Construction and Analysis

I first overview the attack at a high level and introduce possible attack scenarios.

I then explain how to overcome a number of challenges needed to implement the attack,

leading to a complete end-to-end attack under realistic conditions.

3.2.1 Attack Overview

The basic attack is overviewed in Figure 3.1. A malicious user-level program

requests a DNS resolution for the target DNS domain (in this example, www.bank.com).

The goal of the attacker is to poison the cached DNS entry such that it resolves to the IP

address of an attacker server redirecting user connections targeting www.bank.com to go to

the attacker’s web server. Once the DNS request is sent, the attacker attempts to respond

with fake responses. As it will be discussed later in Section §3.3, this is possible as the

off-path attacker can start flooding spoofed responses even before the client initiates a DNS

request. Alternatively, the malicious program on the victim can coordinate with the off-

path attacker such that the responses are sent right after the query is issued. DNS resolvers

accept the first correct response: a response with both a matching port number so that it

is received correctly, and a matching TXID field; if a correct response from the attacker

is received before the response from the DNS authoritative name server, the client simply

accepts this response and caches it in its OS-wide DNS cache. The attacker’s response uses

a large TTL to ensure that the poisoned value remains in the cache. Any future connections

from this machine to www.bank.com will redirect to the attacker’s server.
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3.2.2 Attack Scenarios

The attack requires a malicious user level program to execute on the victim ma-

chine. I consider two main scenarios for launching the attack.

• Public/shared machines. Such machines are commonly found in many places including

universities, libraries, hotels, and stores. Any user who can log in to the machine can

run a malicious program and collaborate with an off-path attacker to conduct the attack,

poisoning the DNS cache, and leaving the machine to be used by victims. For all tested

operating systems, the results show that the OS-wide DNS cache is in fact shared across

multiple users. This means that a malicious user (e.g., guest) capable of poisoning the

OS-wide DNS cache can cause a different user (admin or guest) to also use the poisoned

cache. Furthermore, for Windows, any user (including guest) can clear the cache directly

without requiring admin privilege, so that the malware can clear legitimate entries to make

room for poisoned entries. However, without admin privileges, the attacker may wait for

TTL to expire, or evict the cache by requesting a large number of DNS resolutions to

get older entries removed from the cache. I confirmed, after obtaining permission from the

system administrators to conduct an experiment then clearing the cache, that shared public

machines in four large universities are vulnerable to the attack.

• Malware. Applications downloaded from an App store, or malicious JavaScript on a

website that is malicious or compromised, can also be used to launch the attack. In the

public machine scenario, the attacker may need physical access to the machine. In this

attack scenario, the victim unknowingly downloads a malicious application that launches

the attack, without requiring physical access to the machine. On a smartphone, typically
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the malware does not have access to remove entries from the DNS cache and must find a

different way to clear already cached values before poisoning them.

As it will be shown later in Section §3.3, it is possible to launch attacks in both

scenarios above.

3.2.3 Challenges and Detailed Attack Procedure

Source Port Reservation. In order to send spoofed responses, the off-path attacker must

first obtain the DNS request’s source IP address, source UDP port, destination IP address,

and destination UDP port. DNS primarily use UDP protocol to transmit packets. TCP

is used in cases where the data size of requests and responses exceeds 512 bytes; see RFC

1035 [219], but there is an extension to the DNS protocol that allows increasing payload size

in UDP datagram; see RFC 6891 [106]. TCP also used in transferring Zone data because

it is reliable. In the attack, I assume that all DNS traffic between victim, the source, and

resolver, the destination, is over UDP. This is a valid assumption because DNS packets size

is usually smaller than 512 bytes. IP addresses of the victim and resolver can be obtained

easily using the unprivileged malware on the victim through standard OS interfaces, and the

well-known destination UDP port for DNS requests is 53. The final challenge is to identify

the source UDP port. As stated in RFC 6056 [198], the 16-bit dynamic port range of UDP

is 49152 through 65536 which is typically used in Windows and Mac OS operating systems.

However, we find that in Ubuntu Linux, the ephemeral port range is 32768 through 60999.

There exist many port selection algorithms, including Simple Port Randomization,

Simple Hash-Based Port Selection (which is implemented by Linux), Double-Hash Port

Selection, and Random-Increment Port Selection algorithms [198]. Many are proposed
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specifically to defeat port predictions which means the port allocated each time for a new

socket will appear to be random; however, the work in [155, 254] show that these algorithms

are not efficient. Without documentation, it is unclear which algorithm is used in Windows

or Mac OS. Nevertheless, after testing the source UDP port number selection of the DNS

services in Windows and Mac OS, we find that they appear to be unpredictable. The old

editions of Windows (e.g., Windows 2000 and Windows XP) assign ports to connections

sequentially; however, the ports are completely random in all editions of Windows that I

use in this work. Using my technique, the attacker can exactly specify which port can be

used in the DNS connection.

A basic building block of the attack is the ability to predict or infer the source

UDP port of a DNS request. Based on the measurements, I discover that surprisingly all

operating systems I tested are permissive in terms of the number of simultaneously open

sockets they allow to any program. This allows an application (e.g., malware) to reserve all

local port numbers but one so that the system DNS service will be forced to pick the one

and only available port. Specifically, in Windows, any unprivileged application by default

can open as many UDP sockets as desired and bind to a selected ephemeral port number. In

Mac OS, there is a limit of the system resources consumption (which is 10240 file descriptors

by default) but can be raised to a higher number (e.g., 100,000) without root privileges [6].

Likewise, Ubuntu Linux has a default limit of 4096 file descriptors for each process which

also can be raised to meet the attack requirements [2]. Even without raising the per-process

limit, we can simply create a single application to fork multiple child processes (e.g., 2 and

6 processes in Mac OS and Ubuntu Linux respectively) to be able to reserve the required
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Figure 3.2: Design of client-side DNS cache poisoning attack

number of ports. I have verified that Android have similar behaviors to Mac OS and Ubuntu

Linux.

Cache Poisoning. After the port reservation is done, the cache poisoning attack is started.

The unprivileged malware on the client machine contacts the off-path attacker machine to

coordinate the attack. I assume there is only one unoccupied UDP port (e.g., port 49152)

and the target domain name is www.bank.com.

The steps of the attack are illustrated in Figure 3.2. First, the malware on the

client machine, at address 1.1.1.1, reserves all UDP ports except 49152. Second, the malware

triggers a DNS query, denoted by CtoR, for the target domain name www.bank.com to the

legitimate DNS resolver at address 2.2.2.2 with the source UDP port of 49152. The client

OS randomly selects a TXID (say 1000). Third, the attacker repeatedly sends spoofed
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responses, denoted by AtoC1, AtoC2, ..., AtoC65536, each with a different TXID field. If

one of these responses contains the correct TXID (which is AtoC1000), the cache can be

poisoned to store a malicious IP address for www.bank.com.

Since TXID is a 16-bit field, a brute-force attack is possible even though the

number of guesses seems large, especially given the attack may need to repeat over many

trials (i.e., by simply issuing getaddrinfo() calls). Finally, the resolver responds to the

DNS query issued by the malware and sends an authentic response, denoted by RtoC.

However, the response is ignored by the DNS system service since there is no longer a

pending query. Otherwise, the authentic IP address will be cached and the attacker will

repeat the attack starting from the second step. The steps are the same as if the client is

behind NAT except that the attacker tries to poison the response of the NAT instead of

the resolver.
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3.3 Tailored Attack Strategies and Analysis

In this section, I consider OS-specific attack strategies depending on whether the

client is behind a NAT router and based on the different operating systems. I organize

the discussion into first attacks without considering NAT, and then the situation where the

client is behind a NAT router.

3.3.1 Basic Attack Scenarios (Without NAT)

In this scenario, I assume the attacks are against networks without a NAT device

on the route between the off-path attacker and the victim client (Figure 3.3-a). In other

words, the communications between the client, resolver, and attacker are direct and not

translated. This setting is common; many networks do not use NAT. Moreover, the attacker

can be a legitimate user on the same organizational network with the victim (i.e., on the

same private network) or on a public WiFi wireless network in the same organization, or

the attacker may control a compromised host (e.g., using a malware) on the same LAN.

If the attacker and victim are in the same wired or wireless LAN, then a NAT will not be

traversed.

To succeed in the attack, a malicious response with a matching TXID has to arrive

before the real response. On paper, this may be a challenging task as there is really only an

attack window equivalent of a round-trip time between the client and resolver. Even with

a high bandwidth, the attack has a fairly low probability of success. Assuming an RTT of

5msec (client and resolver are close), and an attack bandwidth of 10,000 spoofed responses

per second, only 50 packets will be received before the authentic response, leading to a
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success probability of 50
65536 = 0.076%. To make matters worse, once the authentic DNS

response is cached, one may need to wait for the entry to timeout before being able to

launch the next round of attack on the same domain. However, the measurements show

that specific OS implementations and real-world TTL/network latency make the proposed

attack highly feasible. I next detail three OSes: Windows, Mac OS, and Ubuntu Linux.

Windows

I observed an interesting behavior when testing the attack on Windows. In par-

ticular, we find that the DNS system service (e.g., getaddrinfo()) retransmits the re-

quest as soon as it receives a (spoofed) response with an incorrect TXID, and it simply

aborts after five failed retransmissions. I reverse engineered the DNS system service binary

(dnsapi.dll) and found that it indeed has a simple loop with select() for up to five times.

Thus, if the legitimate response is preceded by five spoofed responses, it will not be accepted

(since the request resets, and the new request has a different TXID). Although this also

means that the attacker only gets five chances to guess the TXIDs before each invocation

of getaddrinfo(), this has a smaller effect since the attacker is guessing the TXID, and

the chance of guessing it correctly does not depend on the actual TXID; the strategy works

across multiple invocations as the attacker keeps invoking getaddrinfo(). This makes the

attack much easier as the authentic response can hardly be cached when attack traffic is

present. Meanwhile, although the attacker only gets five chances to guess the TXIDs before

each invocation of getaddrinfo(), the attacker can always call getaddrinfo() multiple

times until the attack succeeds.
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Table 3.1: TTL for Alexa top 10 global websites

Rank Website TTL (seconds) Rank Website TTL (seconds)

1 Google.com 60 6 Reddit.com 30

2 Youtube.com 60 7 Yahoo.com 60

3 Facebook.com 60 8 Google.co.in 60

4 Baidu.com 300 9 Qq.com 20

5 Wikipedia.org 600 10 Taobao.com 180

Mac OS

For Mac OS, unlike Window’s 5 response limit behavior, Mac’s DNS system service

continues to accept DNS responses until receiving a response with a matching TXID. If none

is found before the timeout, it will simply retransmit and continue to wait for the correct

response to arrive. This means that the attack window is only a single round-trip time before

the legitimate response is received. This makes the attack window somewhat limited: if we

can send 10K spoofed messages per second, and RTT = 5msec, then the number of chances

is 50. Also, if the current attempt fails, we have to wait for the cached authentic response to

timeout before we can retry (recall that this is not the case for Windows whose cache can be

cleared even by a non-administrator user, e.g., guest). While this slows down the attack, the

results show that the TTL values are typically short. Table 3.1 shows the TTLs of the top 10

global websites based on Alexa [17]. We find that 58%, 27%, and 19% of the Alexa top 500

global websites have a TTL value less than or equal to 60sec, 30sec, and 20sec, respectively.

Importantly, since at the start of every attempt, the value has expired in all the caches, this
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Table 3.2: The average RTT (in milliseconds) for Alexa top 500 global websites from

different vantage points

DNS Server VP1 VP2 VP3 VP4 Google Cloud EC2

Google DNS 61 141 62 57 36 50

Quad9 104 191 109 103 77 70

OpenDNS 70 156 68 57 60 55

Norton 34 121 38 65 293 35

Comodo 164 185 130 80 82 94

Level3 58 136 77 71 58 58

gives us an RTT window of the full resolution through the DNS system, traversing several

resolvers, which can be in the tens if not hundreds of msecs. Thus, the attacker gets a larger

number of guesses before the authentic response is received. To confirm the larger RTT

time, I tested the RTTs from 6 different vantage points (VPs) including EC2 and Google

cloud servers and 4 large universities to 6 public DNS servers. The dataset is the top 500

global websites based on Alexa [17]. I used nslookup to forcibly send a DNS query to open

DNS servers (e.g., 8.8.8.8 for Google public DNS server) regardless of its caching status.

As shown in Table 3.2, the RTTs are indeed relatively high.

Ubuntu Linux

The first release of Ubuntu Linux that supports OS-wide DNS caching is Ubuntu

17.04 that uses systemd-resolved as the default system DNS service [186]. The results
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show that the behavior is almost identical to Mac OS. The main difference appears to be

that when all UDP ports are reserved on Ubuntu Linux, DNS queries can still be sent to the

resolver using random source TCP ports. To overcome this problem, I use the same port

reservation technique in Section §3.2.3 to reserve all TCP ports and force the DNS service

to use the one and only available UDP port for all outgoing queries. Ubuntu Linux kernel

does not quite follow the rules standardized in RFC 6056 [198] regarding the ephemeral

port range for both UDP and TCP as already discussed in §3.1.3. In addition, when all

UDP ports are reserved, we find that DNS queries can still be sent to the resolver using

random source TCP ports. To overcome this problem, the same port reservation technique

in §3.2.3 can be used to reserve all TCP ports and force the DNS service to use the one

and only available UDP port for all outgoing queries. For completeness, I also measured

the behavior of dnsmasq, a popular DNS/DHCP software [15], for other Linux distributions

which behave very much the same way as Mac OS and Ubuntu. In other words, the attack

is also effective on any Linux-based system running this DNS API.

To further improve the attack time for MacOS and Linux, we can try to accelerate

flushing of the DNS entry from the cache, for example, by filling the cache with new requests.

In addition, I developed a strategy to interfere with the resolver’s ability to respond to the

DNS requests, which provides a larger time window for the attacker to operate. Specifically,

the attacker can launch a DoS attack that floods the external resolver with spoofed DNS

requests for domain names different than the one the attacker targets (e.g., www.bank1.com,

www.bank2.com, ... etc) to fill its socket buffer. The idea is that since we can predict the

source UDP port of the DNS request, all spoofed DNS requests will target the same exact
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socket buffer to which the real DNS request will also go. If the legitimate DNS request

is received while the socket buffer is full, it is dropped and no response is sent back. For

example, I configured my own DNS server which runs Ubuntu Linux 14.04 LTS, and I

measured the per-socket buffer for the OS and found that the default per-socket buffer size

is 17KB which can hold only ' 300 DNS packets.

3.3.2 Client behind NAT Attacks

As shown in Figure 3.3-b, a NAT allows clients on a private network to connect

to the Internet by remapping their private addresses to its own IP address and using port

numbers to keep track of the mapping of internal connections to external ones [257]. In

more detail, the benefits of NAT include: (1) allowing administrators to assign private

IP addresses to machines without having globally assigned addresses; and (2) hiding the

internal structure of a private network from the outside. Specifically, the NAT router’s

external facing IP is a valid static IP address. Since the machines behind the NAT do not

have a globally resolvable address, the NAT translates their internal address on packets

they send to the Internet to its external address [257]. To be able to resolve incoming

packets (which all use the IP address of the NAT router) to the correct internal machine,

NAT uses ports to keep track of connections belonging to different machines. In particular,

the router also assigns an external source port which could be different than the source

port selected by the operating system of the client who initiated the connection and keeps

the mapping between the ports in a mapping table. When an incoming packet comes to a

particular port, the NAT router replaces the destination IP and port number with the IP

address and port number of the internal port. With respect to the attack, since the attacker
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does not generally know the external port assigned to the DNS query, NAT increases the

entropy. Fortunately, we find that under several popular settings, we can derive the external

port allowing the attack to proceed. I tested three NAT devices (Linksys WRT3200ACM,

Netgear WNDR4500 v3, and Netgear WGR614 v9). The measurements show that the

NAT’s port translation behaviors for DNS sessions depends on how DNS is configured on

the client and on the NAT:

1. Both Client and NAT Use DHCP. By default, DHCP configures both the client

and NAT to use the local DNS server. In this scenario, to use the default settings of

the client’s ISP, we find that the NAT translates the source UDP port of the client to

a random port each time the client contacts the local DNS server.

2. Client Manually Configures DNS. When a client changes the DNS settings to

an alternative DNS server (e.g., 8.8.8.8 for Google public DNS), the NAT preserves

the source port of UDP sessions to that DNS server. Using an open resolver is

becoming increasingly common: a recent study shows that 12.70% of a sample of

size ' 735 million machines around the world use Google Public DNS server [8].

Moreover, there are other Open DNS servers that are popular (e.g., Quad9 (9.9.9.9),

OpenDNS (208.67.222.222), Norton (199.85.126.10), Comodo (8.26.56.26), and Level3

(209.244.0.3)).

3. NAT Manually Configures DNS. If the client uses DHCP but NAT uses a man-

ually configured DNS server, the NAT assigns a fixed source port to all DNS sessions

to that DNS server.
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4. Both Client and NAT Manually Configure DNS. In this case, similar to Case

2, the NAT preserves the client’s source UDP port.

The attack can be easily carried out in all above scenarios except Case 1: in Cases

2, 3, and 4, the external source UDP port is known to the attacker, and the attack can

be easily modified to attack a client behind NAT. For Case 1, I can bootstrap the attack

by using principles proposed by Herzberg et al. [155, 143] to reserve the source port. In

particular, this attack creates a large number of connections to attempt to reserve all the

external source UDP ports of the NAT router. If only one port is left, the NAT router is

forced to use it and the attacker no longer has to guess the port number.

3.4 Evaluation

In this section, I conduct measurements on real systems to assess the effectiveness

of the end to end attack in realistic settings for all the attack scenarios. The attack is

successful within reasonable time against all these operating systems confirming that this

is an extremely dangerous vulnerability.

Client Platform. I conduct the experiments on client machines running Microsoft Win-

dows 7, 8.1, and 10, MacOS Sierra, and Ubuntu 17.04 which all support an OS-wide DNS

cache. I note that most other Linux distributions, including Ubuntu versions prior to 17.04

do not enable an OS-wide cache by default, although DNS cache implementations could be

installed for example by enabling dnsmasq [15]. In addition, the malware runs in user space;

however, since some browsers (e.g., Firefox and Chrome) have their own DNS caches which

are shared among different tabs/windows, the attack can also be applied using JavaScript
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assuming the success time is relatively small due to page visit time. In this scenario, the

poisoning affects both the OS-wide and the browser-level DNS caches.

Network Configuration. Two different network topologies are used mirroring those

shown in Figure 3.3-a (without NAT) and Figure 3.3-b (with NAT). For the NAT-based

attacks, I configure an internal DNS resolver, using the BIND name server software (BIND9)

on Ubuntu 14.04 LTS; (which I denote by U14). The NAT acts as port-preserving, attempt-

ing to allocate the same outside port as the inside port, (case 2 as described in §3.3). I also

verified the attack on fixed-port NATs (case 3). In fact, this attack is easier since there

is no need to reserve the ports on the client machine to force a particular port to be used

since the NAT assigns a fixed-port for each client.

All nodes are connected to the network using Ethernet cables. The network

bandwidth between all nodes is 1Gbps. In a real attack environment, there may not be

such a high bandwidth and therefore intentionally we can limit the attacker’s throughput

using the Linux Traffic Control utility tc [76]. TC allows us to configure the Linux packet

scheduler to simulate lower bandwidth connections and also control the effective RTT to

the attacker. Note that I will use the number of spoofed packets the attacker can send per

second to represent the bandwidth. For example, giving a packet size of 97Bytes, we say the

bandwidth is 5K/s instead of using 3.88Mbps. In addition, since the off-path attacker knows

which source UDP port the DNS request will use, she can start flooding the client/NAT

with spoofed responses even before the client initiates the DNS request. With this strategy

implemented, the attacker has a full round-trip time window to try and guess the correct

TXID.
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(a) Windows (b) Ubuntu Linux

Figure 3.4: Median time to an attack success without NAT

Experimental Details. I show the measurement results of the attack against all operating

systems. Each data point is generated by 50 repeated experiments. Given the large

dispersion in the time to succeed (due to the geometric distribution of the number of tries

until success of the attack), it is estimated that bounding the confidence interval of the

mean requires many thousand experiments in several of the scenarios. This is not feasible

since some experiments take on the order of hours. Thus, instead of using the mean, the

median is used of 50 experiments for each point since the median is more robust to outliers.

I also calculate the 95% confidence intervals of the medians and show those on the figures.

Note that confidence intervals for medians are not symmetric around the median. The

formula in [40] is used to calculate the rank order of the upper and lower bounds instead

of their actual values. For one representative case, the histogram of the time to succeed

for individual experiments is shown to provide insight into the distribution of the time to

success of the attack for the different operating systems.
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Figure 3.5: Success Time Statistics

3.4.1 Results of attacks without considering NAT

In this section, I analyze and report the evaluation results of the attack when the

client is not behind a NAT. The experiments are conducted on all three operating systems.

Windows

Figure 3.4-a shows the measurement results of the attack against Windows. The

time to succeed is small, one the order of 10s of seconds, in most configurations as shown in

Figure 3.5, even though the number of trials to succeed is typically in the tens of thousands.

The fast success time is possible because getaddrinfo() can be invoked extremely quickly—

most of the time getaddrinfo() returns in less than 2 milliseconds after 5 spoofed responses

are received. As I mentioned in Section §3.3.1, in theory, the two metrics should not be

dependent on RTT and bandwidth so long as at least 5 spoofed responses always arrive
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before the authentic response. In practice, however, it is observed that rarely (< 0.1%

of the trials) the authentic response arrives within the first 5 responses due to network

jitter, especially as RTT gets larger. In addition, I observe that in some cases the authentic

responses are sent in bursts (because of the DNS query gets retransmitted quickly under

attack, forcing the resolver to respond with authentic responses quickly as well). Such

authentic responses in a burst can sometimes take up the 5 spots of the next invocation of

getaddrinfo(), thereby reducing the attacker’s chances. For example, the getaddrinfo()

may receive two authentic responses from the previous invocation (both with the same

TXID), and it will only process the next three spoofed responses. Furthermore, the results

show that the likelihood of a successful attack depends significantly on the two factors (RTT

and bandwidth): the more resources the attacker has the faster the attack can succeed.

Ubuntu Linux

Figure 3.4-b shows the attack against Ubuntu Since the malware does not have

access to flush the DNS cache (as in the Windows attacks), I consider an attack on a

website with a TTL of 30 seconds (which is in the common range experimentally measured

in Section §3.3.1). Thus, for each failed trial, the attacker waits for 30 seconds before the

next trial. As shown in the figure, the attack time-to-success also depends on RTT and

bandwidth.

Note that in this scenario (as well as MacOS), every trial waits until the TTL

expires before it is initiated. Thus, the response to the query will miss the caches and likely

go through the full resolution step, or hit a cache upstream, resulting in a large delay until

the authentic response is received. This delay is measured to be on average 92msec (See
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(a) Mac OS (without DoS) (b) Mac OS (with DoS)

Figure 3.6: Median time to success on Mac OS without NAT

Table 3.2). Thus, for the attack on Ubuntu and Mac OS, I start with RTT of 10msec (which

is still quite conservative). The cases where bandwidth = 1K/sec and RTT = 5msecs are

excluded because it is extremely challenging to a get a successful attack. For instance, I ran

an experiment for 1 day using bandwidth = 15K/sec and RTT = 5msecs and I could never

succeed. Furthermore, in an experiment where bandwidth = 1K/sec and RTT = 30msecs,

I got a successful attack after 15Hrs. Likewise, I excluded the same settings on Mac OS

since this behavior is encountered while conducting the experiments.

Mac OS

Figure 3.6-a shows the results of the attack against Mac OS. Similar to the Linux

attacks, I assume a TTL of 30secs for the resource record in the OS-wide DNS cache. As

we can see, overall time to success improves with increased bandwidth or RTT.
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(a) Windows (b) Ubuntu Linux

Figure 3.7: Median time to success when client is behind NAT

Although the time to success is not prohibitive, the attack is slow. Thus, as I

discussed earlier, I consider a case where the attacker also performs a DoS attack against

the resolver with 15K packets per second (could be from the same attack machine or an

external one). For ethical reasons, I set up my own resolver for this experiment so that

I do not carry out a DoS attack on part of the DNS infrastructure. The time to success

improves dramatically, to a few minutes or lower under most configurations, as shown in

Figure 3.6-b. The results show that more than 60% of the attacks succeeded in less than

a minute for the configuration shown in Figure 3.5). With the DoS attack, the average

number of trials to succeed drops dramatically to less than 5, since most of the real DNS

requests are dropped by the resolver, providing a larger window to spoof responses.
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3.4.2 Client behind NAT

Having established how the attack can bypass a NAT, the remaining experiments

focus only on the scenario without NAT. In this section, I show the evaluation results of

the attack against two operating systems: Windows and Ubuntu Linux (MacOS behaved

similar to Linux). To avoid redundancy, I omit the experiments results for Mac OS since

the systems characteristics are highly similar to those in Ubuntu Linux.

Figure 3.7-a and Figure 3.7-b show the attack results against Windows and Ubuntu

Linux when the client is behind a NAT (Mac OS behaved similar to Linux), respectively.

As shown in the figures, in addition to RTT and bandwidth, the success time is also affected

when I add NAT to the network topology.

As stated earlier, network congestion is the main cause of packet loss which makes

the attacks more challenging. The main factor affecting the packet loss rate are packet

buffers within the network software stack. Specifically, when the socket receive queue of the

NAT receives packets at a rate that exceeds the router’s renaming and forwarding capacity,

the NAT starts dropping packets. In my case, since the attacker sends malicious response

packets aggressively, the results show that a fraction of these packets is not delivered to the

client machine. Moreover, on the client side, before a response packet gets processed by

the DNS API getaddrinfo(), it is transmitted through different layers of network queues

until it reaches the OS-wide UDP socket receive queue. Since the IP stack that is filling

the queue and the network driver that is draining the queue run asynchronously, there is a

high probability that the packet might be dropped before it is even processed by the DNS

API which can cause starvation. This problem is also apparent in Mac attack results as
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shown in Figure 3.6-a since the queue size is small (only 9216 Bytes) compared to its size

in Ubuntu Linux (212992 bytes).

3.4.3 Analytical Model and Validation

To provide deeper understanding on the attack behavior, I model the probability

of success as a geometric process with the constraints imposed by each Operating System

(e.g., the 5 response limit in Windows). These results are compared to measurement

results regarding the number of rounds before a successful attack. The analytical model

is approximate because it does not capture network effects or other effects such as the

legitimate responses competing with the attack responses particularly in Windows.

Analytical Model: For a single spoofed reply, the probability of making a correct guess

for the TXID is 1 out of 216 = 65, 536 (216 is the TXID field range). The probability of

failure of the attack in response to a single invocation of DNS API (e.g., getaddrinfo())

is determined as follows: P (failure) = 216−z
216

, where z is the number of guesses up to a

maximum of 216. We find that the value of z differs based on the DNS API getaddrinfo()

of the different operating systems. For Windows, z is 5 since the getaddrinfo() fails after

5 tries, leading to a success rate of 0.0076% for each try. The overall success of the attack

over x invocations of getaddrinfo() is determined by the cumulative distribution function

of the geometric distribution and is: P (X ≤ x) = 1− P (failure)x.

The average number of rounds before a success is determined by the geometric distribution

and is 1
1−P (failure) . For Windows, this comes out to be a little over 13000 tries. Since

Windows does not rate limit getaddrinfo(), each attempt takes as short as 2msec, which

means that the average time to succeed will be as short as 2msec ∗ 13K = 26 seconds.
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For Mac and Linux, z is determined by the bandwidth of the off-path attacker

to the client and the RTT of the DNS resolution (which determines when the legitimate

response is received). For example, pessimistically assuming a low RTT of 5msec, and

an attacker bandwidth of 10K spoofed messages per second, z is 50 packets, leading to a

success rate of approximately 0.076% (about 10 times that of Windows), leading to the

average number of rounds before the success of just over 1300. However, since each retry

has to wait for the value to expire from the DNS cache (e.g., 30 seconds), the time until

success can be long (close to 11 hours for this example). Note that this is highly pessimistic

since the uncached RTT is much higher than 5msec. For instance, using the average value

in Table 3.2 which is 92msec, z is 920 packets, leading to a success rate of approximately

1.4% and an average number of rounds before the success of 70. In this case, the time until

success is dropped to 35 minutes. The analysis does not take into account network effects

(e.g., dropped packets due to overrunning buffers) which is found to have significant (even

dominating) effects in some scenarios.

Model Validation: To validate the analytical model, I conducted a measurement study

of the attack on Windows and Ubuntu Operating Systems. For each Operating System, I

show measurement results for different cases (i.e., when bandwidth from attacker to client

is 5K and 10K and when RTT between DNS resolver and client is 20msec and 30msec); I

use these parameters in the analytical model. For each experiment, 200 successful attacks

are conducted to provide the measurement data. A histogram of the number of rounds to

succeed for individual experiments is shown to provide and compare that to the predicted

percentage of successful attacks at each point.
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(a) Windows

(b) Ubuntu

Figure 3.8: Experimental and Analytical Results (# of Rounds)
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Fig. 3.8-a and Fig. 3.8-b show that the results of the analytical model conform

with the experimental data. For Windows, as shown in Fig. 3.8-a, we find that we need

tens of thousands of rounds to obtain a probability of success higher than 50%. The

analytical model underestimates the number of required rounds due to network effects such

as congestion when the attack traffic is present, which especially affect Windows due to the

5 packet response limit for each request. For Ubuntu, as shown in Fig. 3.8-b, we see that

the number of rounds in the measurements follow the analytical model closely. The model

follows the analytical model more closely because the rate of retries is slower (because we

have to wait for the DNS cache value to expire after the legitimate response is received),

leading to less congestion.

3.4.4 Discussion

I have shown that the client side attack is practical against a range of operating

systems: Micrososft Windows, Apple macOS, and Linux Ubuntu. The results also show

that the attack can succeed with/without the presence of NAT. This dangerous attack is

not mitigated by proposed solutions against traditional DNS poisoning attacks. The attack

also shows that protecting the core DNS system alone (the name servers and resolvers)

does not prevent DNS poisoning attacks that occur at the clients. Left unprotected, these

caches can completely subvert DNS security. Indeed, in the measurement and analysis, it

is clear that a system is only as secure as its weakest link — even though the DNS traffic

between the resolver to authentic name servers can be secure, I show that the weak link

can be between the client and the resolver. In this case, the attack target has changed from

the DNS resolver to clients, the assumption has changed.
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Existing defenses fail to protect against this vulnerability for two reasons: (1) the

clients are not part of the core DNS systems; and (2) the threat model, with a malware

executing on the client system, provides the malware information that is assumed to be

unknown in traditional threat models. Specifically, the port randomization is no longer

effective as they can be “derandomized” by the unprivileged malware. In addition, other

defenses such as 0x20 [104] and even DNSSEC [46] currently are applied to only the resolvers

instead of clients. Recent defenses such as DNS over HTTPS [163], DNS over TLS [165],

and DNScrypt [109], have been proposed primarily to preserve the privacy of DNS traffic.

These proposals can also have the side effect of hardening DNS traffic against injection

attacks. Although there are standardization efforts behind these proposals, they are not

yet widely deployed. It is also unclear if they will be used only by browsers, and whether

their implementations will be secure.

3.5 Concluding Remarks

This research direction identifies and evaluates a new client-side OS-wide DNS

cache poisoning attack against Windows, Mac OS, and Linux operating systems. The attack

targets the OS level DNS cache, a client-side cache supported by most modern operating

systems. I tailor the attacks to work against each OS individually taking into account the

specifics of each implementation. The attack succeeds in as little as tens of seconds under

realistic conditions. I also build an analytical model of the expected number of rounds for

the attack to succeed for both Windows and Ubuntu and validate the model against the

experimental observations. In the next chapter, I propose a defense that requires only a
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patch of the OS of the client device and show that it can mitigate the attack. I hope that

the lessons learned can help improve the future design and implementation of DNS and

even other OS-wide caching systems.
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Chapter 4

Ad Hoc System-Level Defense

The research in this dissertation also contributes a lightweight client-side defense

strategy to mitigate this vulnerability. I detail the defense proposal against this type of

poisoning attack and show that the attack can be fully mitigated using different strategies

which can be deployed immediately through an OS patch. In particular, although the

attack discussed in Chapter §3 significantly reduces the entropy by removing the uncertainty

regarding the source UDP port number, it still relies on guessing the transaction ID (TXID)

field, which has a range of 216. The attack is successful because today’s DNS clients simply

discard illegal DNS responses that do not match the port and TXID of a pending request.

Here I focus on client side defenses since they require only changes to the client software,

and can therefore be deployed immediately through an OS patch. The defense first detects

an attack using its unique signature (multiple DNS replies with wrong TXID), and then

takes corresponding measures for mitigation.
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Figure 4.1: Defense Model

4.1 Attack Detection

An overview of the proposed defense is presented in Figure 4.1. The detection

module is implemented as a proxy server for flexibility of evaluation against different Op-

erating Systems; in a real deployment it can be integrated directly with the DNS service.

The module sniffs on UDP port 53 for all DNS traffic. After a DNS query is sent in (1),

an attack is detected in step (2) when observing responses with incorrect TXID. Once an

attack is detected, we send a signal to the OS in step 3 on the figure, triggering mitigations.

We can optionally implement a local sanity check on the system to see if there is suspicious

behavior; for example, we check if there are processes reserving a suspiciously large number

of ports and clean those up. This step is optional because it may lead to collateral damage

if a legitimate process uses a large number of ports.
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At the DNS service level (step 4), different reaction strategies are possible (shown

under the defense module in the figure). A paranoid strategy that simply drops all responses

can lead to Denial of Service as the attacker prevents legitimate responses; thus, it is

important to find reaction strategies that can protect the system, but also allow to continue

to function. We describe the strategies in the remainder of this section.

4.2 Attack Mitigation Strategies

The proposed mitigation strategies leverage the optional step of releasing the port

reservations of the suspected malicious processes. They are three fold:

1. Repeat query: The first mitigation strategy is to resend the same DNS query.

Specifically, the defense module uses a DNS API (e.g., getaddrinfo()) to send a new

DNS request for the same domain name to the same DNS resolver (the OS uses a random

UDP port). If the ports are released, there is no way that the attacker can learn the

source UDP port. Without releasing the ports, its unlikely for this defense to be effective

(essentially this becomes similar to the Windows implementation where the request resets

after 5 erroneous replies).

2. Verify Response to reverse lookup: The module verifies the IP address in the

response DNS packet by sending a Pointer (PTR) DNS query. This query type is used to

resolve an IP address to a FQDN. If the FQDN and the query name of the pending query

do not match, then we can be more confident that an on-going attack is present (we notice

that the PTR reply itself can also be spoofed though, but the probability of success on

both the reply to both the A and PTR queries is very small). We probed Alexa top 500
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global websites by sending PTR DNS requests, and found that PTR queries have moderate

support on today’s Internet. We found that nearly 52% of the sites have PTR records

and only 24% return an FQDN that contains the domain name in the query. Thus, this

defense will work only opportunistically, or with support from websites and public servers

to maintain accurate PTR resolutions.

3. Switch DNS server: The last class of defense we explore is to choose an alterna-

tive DNS server, accomplishing the resolution before the malware can inform the off-path

attacker of the change of server.

On top of these mechanisms, we suggest a less intrusive action (but potentially

risky action) of accepting the returned DNS response with the correct TXID but not cache

it until/unless it is verified. By not caching the DNS response, at least we limit the damage

by making sure that the DNS cache is not poisoned, allowing the cache to be used only

when no foul play is suspected. In our scenario with the malware, the malware receives the

spoofed response, but is unable to poison the entry for any other applications.

4.3 Empirical Defense Evaluation

We tested the above defense on a number of operating systems including: Microsoft

Windows 10, MacOS Sierra, and Ubuntu 17.04 without a NAT box. However, we also tested

the defense on Linksys WRT3200ACM router running DD-WRT firmware and confirmed

that the defense works efficiently. The attacker’s machine runs Ubuntu Linux 16.04 LTS. We

used RTT = 20msec and the attacker’s throughput is 10K/s (i.e., 7.4Mbps when malicious

packet size is 97Bytes).
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Table 4.1: Defense Experiments

Operating System # of Attacks (without defense) # of Attacks (with defense)

Windows 1705 0

Ubuntu Linux 152 0

Mac OS 18 0

We ran the attack continuously over a twenty-four hour period collecting results

for the cases with and without the defense. As shown in Table 4.1, the defense mitigates

attacks (i.e., the success probability of the attack is 0%). On the other hand, we recorded

1705, 152, and 18 successful attacks on Windows, Ubuntu Linux, and Mac OS, respectively,

when the defense is not deployed.

4.4 Other Recommendations

Additional mechanisms to hinder the attack include having the OS restrict the

total number of open sockets to avoid the port reservation attack. Even though ulimit is

supposed to limit the file descriptors of each user to 1024 or 4096, it does not seem to be

enforced correctly on Mac or Linux at the moment.

A second recommendation is to have the OS provide isolation among users of the

same machine with each user having its own dedicated DNS cache. Isolation prevents a

malicious user from poisoning the cache for other users as in the attack scenario with a

public machine.

65



Chapter 5

CSProp: Ciphertext and Signature

Propagation

Critical infrastructure on the Internet relies on the distribution of roles and re-

sponsibilities over several nodes. The interaction between nodes often occurs over secure

channels to provide the required level and type of security (i.e., confidentiality, integrity,

availability − the CIA triad). Operating securely in constrained environments is one of

the primary challenges facing the wide-scale deployment of Internet of Things (IoT) and

other embedded systems on the edge of the Internet. The problem is that the crypto-

graphic algorithms used to secure interactions between well-provisioned desktop and server

environments are computationally prohibitive for resource-poor, battery operated devices.

This could be a major issue since the number of interconnected IoT devices is increasing

dramatically. By the year 2025, it is estimated that the number of IoT devices will be over

75 billion[111]; thus, it is essential to develop security solutions for them.
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Stateless and Untrusted Propagator

(Patty)

End Device

(Alice)
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(Bob)

Propagated Signature

σ', vk, vklow

Propagated Ciphertext

C', pk, pklow

Original Signature

σ, vk

Full Ciphertext

C, pk

Figure 5.1: High Level Overview of CSProp

Consider a security problem which arises when resource-constrained devices are

added to a secure network of more capable machines. If the security subroutines used by the

network are too computationally intensive for the small device, then either (1) performance

will suffer; (2) security will suffer; or (3) security for the network must be overhauled so the

new device can participate. In standardized large-scale networks, (3) is likely not an option

and so (2) will be chosen to avoid a performance hit.

This research contributes a new cryptographic primitive: Ciphertext and Signa-

ture Propagation (CSProp). When used for signature propagation, CSProp allows a capable

machine (even one that is stateless and untrusted (e.g., a certificate is not required to au-

thenticate it) sitting upstream of a lightweight device to modify and forward (propagate) an

authenticated message so it can be efficiently verified by a lesser machine. In Figure 5.1, the

capable machine is Patty—which can be untrusted and stateless—who wants to propagate

Bob’s signature to the lightweight device Alice. The trivial solution where Patty simply
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Table 5.1: Glossary

Acronym Definition Acronym Definition

sk Secret key pk Public key

pklow Low public key vk Verification key

vklow Low verification key N Public modulus

e Public exponent elow Low public exponent

d Private exponent M Plaintext message

C Ciphertext C′ Partial decrypted ciphertext

h Message digest σ Digital signature

σ′ Partial verified digital signature K Pre-master key

H Hash function A Adversary

C Challenger P Computational problem

φ Totient function A Address record

DS Delegation signer record DNSKEY DNS Key record

RRset A set of DNS records of same type RRSIG DNSSEC signature

KSK Zone’s key signing key ZSK Zone’s zone signing key

RRsetA RRset of A record(s) type RRsetDS RRset of DS record(s) type

RRsetDNSKEY RRset of DNSKEY records type

forwards Bob’s (data, signature) pair directly to Alice puts unacceptable strain on Alice’s

resources. Another trivial solution where Patty simply verifies Bob’s signature herself and

forwards only the data to Alice is undesirable from a security point of view as it requires

Alice to be trusted, and also opens the door for an attacker who targets the link between

Alice and Patty.
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CSProp offers a third solution, illustrated in Figure 5.1 (see Table 5.1 for the

terms). Using CSProp , Patty can modify Bob’s (message, signature) pair, and produce a

propagated signature whose verification requires a computation of lower complexity than the

original. CSProp construction provides security guarantees that there is no way for Patty to

produce a valid lightweight propagated signature, except by propagating an original valid

signature from Bob. Thus, CSProp securely implements a lightweight channel between

Alice and Bob, without requiring any modifications to the protocol at Bob (i.e., providing

backward compatibility at the server). If, for example, Alice is a low-powered wearable

device who wants to connect to Bob (e.g., a large web server), the propagation role of

Patty might be played by a DNS resolver (or default gateway, or fog/edge server) which has

capability to perform cryptographic operations, too expensive for Alice. CSProp can also

be used for ciphertext propagation: a similar technique for RSA is provided which allows

a weak device to use an efficient encryption procedure to produce a ciphertext with low

overhead, that can then be propagated forward by Patty into a standard RSA ciphertext

of the same message. I provide related background and preliminaries in Section §5.1 and

present a formal definition of the new primitive, as well as an instantiation based on RSA

in Section §5.2.

The design of CSProp considers public-key operations (i.e., ciphertext encryption

and signature verification). Such operations are typically executed at the client’s end spe-

cially when using Internet protocols such as the Domain Name System SECurity extension

(DNSSEC) and the Transport Layer Security (TLS) protocols. Public-key operations are

known to be computationally expensive, and if executed more frequently, more burden is
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added to the resource-constrained devices (e.g., IoT and edge computing); see Chapter §6.

Thus, developing innovative lightweight cryptosystems in such environments is important.

The National Institute of Standards and Technology (NIST) initiated an effort to stan-

dardize lightweight cryptographic algorithms for small electronics [22]. However, most of

this work focuses on symmetric cryptography, whereas my work focuses on Public Key

Cryptography (PKC). There are also other lightweight cryptography proposals that usually

require expensive computations [237, 39] or reported to be vulnerable to different types

of attacks [279, 118, 32]. Introducing new protocols also challenges deployment within an

Internet scale system such as those I consider. Also related to my work is a small body

of work considering exploiting a proxy to reduce the complexity of cryptography [147, 71].

Unlike these efforts, CSProp does not require a trusted proxy, and I show experimentally

that it outperforms this class of approaches.

The efficiency of CSProp relies on using a small public exponent for one of the

public key factors. This approach bears some similarities to the use of small public exponents

in RSA, but with some important differences due to the fact that CSProp uses a small factor

rather than the full key. Readers might wonder why not use a full public exponent that is

low (e.g., e = 3) for the RSA cryptosystem, which is an idea that has been considered to

accelerate RSA operations in the past. My rationale is two-fold: (1) Security: RSA with

low public exponent has been demonstarted to be vulnerable to some types of attacks

that could break RSA encryption and verification [152, 96, 69], although they can be

prevented by avoiding implementation pitfalls that enable them. In contrast, CSProp is

immune against these attacks since only a small factor is used, not the full exponent: I
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elaborate on this security advantage against some known attacks on low public exponents

in Section §5.1; and (2) Compatibility: in light of the known attacks on low public exponents,

RFC recommendations [99] and vendor practice favor using larger public exponents, which

presents a substantial barrier to using low public exponents throughout the system. Despite

realization of the potential of using RSA with small public exponents [178] (assuming a

secure padding scheme such as RSAES-OAEP [57] and RSASSA-PSS [59] is used), vendors

and organizations continue to choose to restrict support to larger exponents [99]. In contrast,

CSProp supports backward compatibility by choosing larger exponents, but requires that

only a factor of the public exponent is low and with propagation allows us to speed up the

RSA encryption and verification processes specifically for resource-constrained devices.

I further discuss various opportunities for realizing energy-efficient implementa-

tions of security protocols. Specifically, in Section §5.3, CSProp is applied to two important

Internet protocols: DNSSEC and TLS. They are the core protocols in Internet communi-

cations. They rely on the use of public-key operations to safeguard connections between

servers and clients. Typically such operations are offloaded to a third server (e.g., a DNS

resolver or a default gateway), thus shielding the end devices from overhead of encryption

and verification. However, the last hop is left unprotected: for example, a recent attack[36]

has shown that DNS cache poisoning can be performed between the end device and the

resolver to directly poison the OS-wide DNS cache of the victim’s system. CSProp can be

used to secure the end devices by having the resolver propagate the signatures forward for

efficient verification. Similarly, in case of TLS, instead of using the default gateway (which

need to be trusted) to perform all the cryptographic operations, CSProp can instead allow
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the default gateway to propagate the cryptographic material to and from the end device for

efficient validation/encryption in order to maintain end-to-end security.

In Section §5.4, I evaluate the impact of CSProp by describing experiments on

three generations of Raspberry PIs. Substantial savings are achieved in consumed energy

and latency. More precisely, on Raspberry Pi Zero, the propagated signature verification

in DNSSEC (vs. traditional DNSSEC validation) reduces latency by a factor of 78x and

energy consumption by 47x. For TLS handshake, the advantage to latency and energy

by an average of 8x and 8x, respectively (considering the full TLS handshake, which has

substantial message delays that are unaffected by CSProp). I also compare CSProp with

Elliptic Curve Cryptography (ECC) cipher suite and found that CSProp beats up ECC by

2.7 times.

This research direction makes the following main contributions:

1. I introduce a new cryptographic primitive which is named Ciphertext and Signature

Propagation (CSProp) that can enable embedded and IoT devices to participate in

Public Key Cryptography (PKC) at a much lower overhead than traditional imple-

mentations. A formal definition of the new primitive is presented, as well as an

instantiation based on RSA. I further present its security proof under the RSA-based

instantation (see Section §5.2).

2. I show the effectiveness of CSProp on two commonly used applications: DNSSEC and

TLS (see Section §5.3). Accordingly, I evaluate the impact of CSProp by describing

experiments on three generations of RaspberryPIs. The experiments show substantial

performance and energy gains from using CSProp (see Section §5.4).
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I discusses these and other related work in Chapter §2. I summarize the conclusions

and discuss future work in Section §7.6.

5.1 Background and Preliminaries

In this section, I present some cryptographic preliminaries to provide the necessary

background for describing CSProp. Specifically, I introduce the RSA problem and explain

low public exponent RSA. Next, some special case attacks on RSA with low public exponents

are discussed. I refer interested readers to [68] for an excellent survey of the subject.

5.1.1 The RSA Problem

All cryptographic primitives in this work have security based on the RSA problem,

which is the following mathematical problem:

Given integers (N, e) where N = p · q is the product of two secret primes, find d such that

e · d = 1 (mod φ(N)), where φ(N) = (p− 1)(q − 1) is Euler’s totient function.

If e ·d = 1 (mod φ(N)) then xe·d = x (mod N) and so the modular exponentiation functions

x 7→ xe (mod N) and x 7→ xd (mod N) are inverses of one another. In cryptography, the

stronger assumption is often made that given (N, e) and a random x (mod N), it is hard

to compute xd (mod N). In cryptographic terminology, this ammounts to saying that

x 7→ xe (mod N) is a trapdoor permutation. Moving forward, when speaking about the

RSA problem, this is the variant to which I am referring.
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5.1.2 Low Public Exponent RSA

The computation time of RSA encryption and digital signature verification are

dominated by the time required to compute the e−th power of the message and signature.

To reduce computation time, e can be chosen to be a small number. The lowest possible

exponent recommended is e = 3 [68], but e = 5, e = 17, and e = 216 + 1 = 65, 537 are also

common. For example, RFC3110 [121] recommends choosing e = 3 in order to optimize

signature verification in DNSSEC, and Ferguson and Schneier [131] suggest using e = 3 for

signatures and e = 5 for encryption.

The RSA problem when e is set to a public fixed small value (as supposed to

e being chosen randomly in normal RSA) is known as the low public exponent variant of

RSA1.

5.1.3 Special Case Attacks on RSA with Low Public Exponents

The hardness of the RSA problem and its efficient cousin, RSA with low public

exponent, is the subject of an extensive body of work. This is appropriate as the assumption

that these problems are hard is used to justify the security of a large portion of today’s

internet traffic. CSProp is different from traditional low public exponent RSA in that only

one of the public exponents is small (i.e., not the full public exponent e), with important

implications that make it not vulnerable for the attacks on low public exponents (please refer

to Section §5.2.3 for the proof of security). CSProp’s resilience to these attacks results from

two factors: (1) CSProp uses a small public exponent, rather than a small public key, making

its security properties equivalent to RSA before propagation; and (2) Low public exponent

1Choosing a low private exponent d is insecure and can completely break the cryptosystem[273, 159]
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problems are primarily due to incorrect usage: since the propagation scheme is automated

and not typically directly accessible to users, it does not have implementation issues. In

fact, Section §5.2 shows that CSProp’s security depends on the security of traditional RSA.

Partial Key/Message Exposure Attacks. Coppersmith [96] showed an attack on RSA

with low public exponents when the attacker knows two-thirds of the bits of the message.

While “message guessing” attacks can easily be avoided if proper padding is used, Boneh,

Durfee and Frankel [69] extended Coppersmith’s technique to give an attack on RSA with

low public exponents when the adversary knows at least a quarter of the bits of the secret

key. Other works [56, 135, 248] demonstrate that in some circumstances it is possible to

recover bits of the key via side-channel attacks.

Broadcast Attacks. H̊astad [152] described a factorization algorithm (thus breaking

RSA) if the adversary gets access to 3 ciphertexts which encrypt the same message under 3

different low public exponent public keys (N1, 3), (N2, 3), (N3, 3). His technique generalizes

to larger values of elow and requires roughly elow different encryptions. Other works [42, 97]

generalize this method to attack RSA when related (as supposed to the exact same) messages

are encrypted multiple times under different low exponent public keys.

Bad Implementation Attacks. Boneh et al. [70] addressed another class of low public

exponent attacks which focuses on the implementation of RSA rather that the RSA function.

The attack succeeds if a fraction of the bits of the private key d is exposed; consequently,

an adversary would be able to construct d. Indeed, this attack in not only applicable when

elow = 3, taking into consideration the computation overhead when e > 3. Interestingly,

some other attacks are even more practical with large public exponents [258].
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5.2 Ciphertext and Signature Propagation

In this section, I formally introduce CSProp. I further provide the instantiation

of CSProp based on the RSA cryptosystem and the proof of security.

5.2.1 Definitions

Notation. Throughout this section, n denotes a security parameter, and P and P ′ are

computational problems representing the cryptographic problems facing the adversary in

the original and propagated signature domains respectively.

Definition (Signature Propagation). A P−to−P ′ signature propagation scheme of rate

R is a set of efficient algorithms:

(
KeyGen, Sign,Verify,Prop,VerifyProp)

satisfying the following syntax, efficiency, correctness, and security requirements.

- • Syntax:

- KeyGen(1n) outputs (vk, vk′, sk).

- Sign(M, sk, vk) outputs σ.

- Verify(M, vk, σ) outputs a bit.

- Prop(M, vk, vk′, σ) outputs σ′.

- VerifyProp(M, vk, vk′, σ′) outputs a bit.

• Efficiency: I have R · T ′ = O(T ) where T and T ′ denote the running times of Verify and

VerifyProp, respectively.
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• Correctness: Fix a message M arbitrarily. Consider the random procedure:

1) draw (vk, vk′, sk)← KeyGen(1n);

2) draw σ ← Sign(M, sk, vk);

3) draw σ′ ← Prop(M, vk, vk′, σ).

Then,

Verify(M, vk, σ) = VerifyProp(M, vk, vk′, σ′) = 1

holds with probability 1.

• Security:

There are efficient reductions from an adversary who wins the standard existential

unforgeability game for (KeyGen,Sign,Verify) (resp. G, below) to an adversary who solves

P (resp. P ′). The game G is between a challenger C and adversary A and works as follows:

The Signature Propagations Game G:

1. C draws (vk, vk′, sk)← KeyGen(1n) and sends (vk, vk′) to A.

2. For i = 1, . . . , poly(n): A sends query messages, Mi, to C; C computes

σi ← Sign(Mi, sk, vk) and sends σi back to A.

3. Finally, A sends a pair (M∗, σ∗) and wins if:

VerifyProp(M∗, vk, vk′, σ∗) = 1 and M∗ 6= Mi ∀ i.

Remark. So in a P−to−P ′ signature propagation scheme, (KeyGen,Sign,Verify) is a

standard signature scheme assuming the hardness of the problem P; and (KeyGen,Prop ◦

Sign,VerifyProp) is a signature scheme assuming hardness of P ′; moreover, VerifyProp is

R−times faster than Verify. Thus, signature propagation gives a way to improve verification
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efficiency while still maintaining security assuming hardness of P ′ (a possibly stronger

assumption, which I will demonstrate for RSA).

Propagation for ciphertexts is defined similarly.

Definition (Ciphertext Propagation). A P−to−P ′ ciphertext propagation scheme of

rate R is a set of efficient algorithms:

(
KeyGen,Enc,Dec,Prop,DecProp)

satisfying the following syntax, efficiency, correctness, and security requirements.

• Syntax:

- KeyGen(1n) outputs (pk, pk′, sk).

- Enc(M, pk) outputs C.

- Dec(C, sk) outputs a message M′.

- Prop(C, pk, pk′) outputs C′.

- DecProp(C′, sk) outputs a message M′.

• Efficiency: I have R · T = O(T ′) where T and T ′ denote the running times of Enc and

Prop, respectively.

• Correctness and Security: (KeyGen,Enc,Dec) is a standard encryption scheme assum-

ing the hardness of P ′; (KeyGen,Prop◦Enc,DecProp) is an encryption scheme assuming the

hardness of P; correctness and security are inherited.
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5.2.2 Propagating RSA Signatures

In this section I instantiate a P−to−P ′ signature propagation scheme where P is

standard RSA and P ′ is RSA with low public exponent, specifically with exponent elow.

The construction uses a hash function H, modeled as a random oracle.

• KeyGen(1n) generates an RSA modulus N = p · q for secret primes p and q and draws

a random e such that elow|e; find d such that e · d = 1 (mod φ(N)). Output:

(vk, vk′, sk) =
(
(N, e), (N, elow), (N, d)

)
.

• Sign(M, sk, vk) computes h = H(M, vk), and outputs σ = hd (mod N).

• Verify(M, vk, σ) computes h = H(M, vk) and outputs 1 if σe = h (mod N), 0 otherwise.

• Prop(M, vk, vk′, σ) outputs σ′ = σe/elow (mod N).

• VerifyProp(M, vk, vk′, σ′) computes h = H(M, vk) and outputs 1 if (σ′)elow = h (mod

N), 0 otherwise.

Theorem. Let R = |e|/|elow|, where |e| and |elow| are the bit-lengths of e and elow,

respectively. Then,

(KeyGen,Sign,Verify,Prop,VerifyProp)

is a P−to−P ′ signature propagation scheme with rate R, in the random oracle model [58].

The random oracle is a standard strong assumption on perfectly random hash functions

supporting the collision resistance property, which I inherit from the use of RSA. Such hash

functions require that for every unique input the function generates a unique output chosen

with equal probability from the output domain.
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5.2.3 Security Proof

In this section, I present the security proof of the P−to−P ′ signature propagation

scheme under the RSA-based instantation. I first prove that the existential unforgeability

property of (KeyGen,Sign,Verify) holds, which implies security with respect to signatures. I

also discuss the security of the scheme relative to attacks on low public exponents. Finally,

using cryptographic game theory, I show that the security of the signature propagation game

depends on the security of the standard RSA game only (i.e., CSProp is secure if RSA is

secure). Note that the proof is also applied to the instantiation of P−to−P ′ ciphertext

propagation scheme using RSA.

Proof. Correctness follows from verifying the equation:

(
(hd)e/elow

)elow = (hd·(e/elow)·elow = hd·e = h (mod N)

using d · e = 1 (mod φ(N)). The subroutines Verify and VerifyProp are dominated by

computing e−th and elow−th powers mod N , which require executing the “square mod N”

function O(|e|) and O(|elow|) times, respectively; thus, the efficiency property holds. Note

that (KeyGen,Sign,Verify) is the standard RSA signature scheme, except that the exponent

e is chosen randomly subject to the condition that elow|e. This event naturally occurs with

probability roughly 1/elow in the plain RSA scheme, and so existential unforgeability of

(KeyGen,Sign,Verify) holds since the standard RSA problem is hard [68].

Similarly, attacks on RSA with low public exponent do not apply to the propaga-

tion scheme. In particular, because the strength of VerifyProp(M, vk, vk′, σ′) holds depending

on the hardness of the standard RSA signature verification procedure: Verify(M, vk, σ) the

attacks do not apply to CSProp. In other words, the original signature σ is verified using
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both exponents e/elow and elow, and so VerifyProp(M, vk, vk′, σ′) holds iff σ′ is generated us-

ing the propagation procedure: Prop(M, vk, vk′, σ). Technically, this means that a malicious

proxy that attempts to forge a propagated signature fails by the construction of VerifyProp

(Section 3.2) assuming the standard RSA problem to solve subroutine Verify is hard. Note

that the proof of security also applies to the RSA ciphertext propagation scheme. Thus,

a malicious proxy can cause denial of service but cannot forge a signature on falsified or

incorrect data. I elaborate on this case to show how to use an adversary who wins the

signature propagation game to solve the RSA problem with public exponent elow, implying

the impossibility of this attack provided RSA is secure. The security proof is as follows:

So suppose A is an efficient adversary who wins the signature propagation game

with probability ε > 0. I design another adversary A′ which, given (N, elow) and a random

h∗ (mod N), outputs (h∗)dlow (mod N) also with probability ε, where dlow is such that

dlow · elow = 1 (mod φ(N)). A′ works as follows:

• Upon receiving (N, elow, h
∗), A′ chooses a large random integer e′ and sends (N, e, elow)

to A where e = elow · e′.

• Instantiate Q, a set of queries of A to Q = { }. Each time A′ queries for a signature

of a message M do the following:

– check if M has already been asked by A; if so return σ to A′ where (M, σ) is the

pair appearing in Q;

– otherwise, choose a random number σ (mod N) and return σ to A′;

– add (M, σ) to Q;

81



– set h = σe (mod N) and program the input/output pair
(
(M, N, e), h

)
into H, so

that if H(M, N, e) is computed again at any point in the experiment, h will be

returned.

• Finally, when A is ready to return its forgery of the message M∗, A′ works as follows:

– if M∗ appears as the first coordinate of some pair in Q, A′ aborts giving no

output;

– otherwise, when A queries H on the input (M∗, N, e), A′ returns h∗;

– finally when A sends (M∗, σ∗), A′ outputs σ∗ and halts.

Notice that A′ answers the queries of A correctly because σe = H(M, N, e) holds for them

all. Furthermore, if h∗ is a random number (mod N) then the response to A’s hash

query H(M∗, N, e) is uniformly distributed. These two observations mean that A′ properly

simulates the signature propagation game for A, and so by assumption, A wins this game

with probability ε. Finally, note that whenever A wins the signature propagation game,

(σ∗)elow = h∗ (mod N) holds, which implies σ∗ = (h∗)dlow (mod N), and so A′ breaks low

public exponent RSA.

5.3 Applications of CSProp

I illustrate the use and advantages of CSProp on two important Internet protocols:

DNSSEC and TLS, which are core protocols with respect to securely connecting end devices

to the Internet. Both DNSSEC and TLS are used to provide integrity, confidentiality,

and/or authentication for critical data. Often real-world configurations force end devices
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to rely on third parties (e.g., DNS resolver and default gateway) to perform cryptographic

functionality such as decryption or verification on their behalf. Although such a setup

reduces the requirement on the energy-constrained end devices, it compromises security: if

the third party is compromised or spoofed, the end devices are completely compromised.

Moreover, the last hop between the third party and the end devices becomes vulnerable to

attacks (e.g., a recent client-side attack on DNS bypasses DNSSEC [36]). In this section, I

show how we can use CSProp to extend DNSSEC and TLS verification to the end devices,

providing security with acceptable overhead.

5.3.1 CSProp over DNSSEC

The Domain Name System (DNS) is an essential networking protocol. It is re-

sponsible for mapping Fully Qualified Domain Names (FQDNs) to their corresponding IP

addresses. To defeat certain DNS attacks (e.g., cache poisoning[181] and amplification[13]

attacks), DNS SECurity Extension (DNSSEC)[47] is proposed as a form of cryptographic

defense to authenticate DNS responses with digital signatures. DNSSEC is standardized

by the Internet Engineering Task Force (IETF). Without DNSSEC, DNS becomes vulner-

able to different classes of attacks where an attacker attempts to provide false responses

to queries [181]. DNSSEC operates by adding cryptographic signatures to existing DNS

records to prove that they are legitimate responses from trusted servers. Specifically, these

signatures provide DNS clients origin authentication and integrity of data (but not con-

fidentiality). Typically, verification of the signatures is implemented by resolvers, rather

than the end devices themselves, to reduce the overhead on the end devices. When an end

device performs a DNS query, it sends the query to its resolver. If the data is not present in
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Figure 5.2: DNSSEC Chain of Trust

the resolver’s DNS cache, the resolver starts the resolution process by traversing the DNS

hierarchy from the root server and down to the corresponding authoritative name server.

Unfortunately, to shield the end devices from these expensive operations, this

design leaves opportunities for attackers on the last hop between the resolver and the end

device. For example, a resolver that is compromised can arbitrarily falsify information.

Moreover, an attacker can spoof the resolver or otherwise inject responses to attack the end

devices [36].

Without end-to-end authentication, DNS security cannot be guaranteed. A trivial

solution is to ask the end devices to carry out the authentication, but this requires multiple

expensive cryptographic operations as discussed in the next section. To secure DNS against

attacks [36], CSProp is used to provide low overhead end-to-end DNSSEC validation.
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DNSSEC Chain of Trust

Each DNS query traverses a hierarchy of DNS servers, starting from the root

server, to the TLD server, and so on through the chain of the authoritative DNS servers.

The validity of the resolution depends on trusting the full sequence of DNS resolution,

forming a chain of trust that is to be validated by the resolver (or in my case, the end

devices). DNSSEC has been proposed to establish secure DNS resolution using a chain of

trust [47] that follows the hierarchical structure of DNS. DNSSEC establishes the trust by

validating signatures from an authoritative name server up to the root in a child-parent

manner. For example, as illustrated in Figure 5.2 (see Table 5.1 for definitions), when a

DNS resolver receives RRsets of types other than DNSKEY (e.g., the record of type A)

returned by the example authoritative name server, the example helps verify these records.

The .com name server helps verify RRsets of type DNSKEY returned by example., and

the root server helps verify .com. The trust anchor of the chain is the KSK of the root

server, and all data published by the root is vetted by a thorough security procedure called

the Root Signing Ceremony2. In the ceremony, several individuals from around the world

collaborate to sign the root DNSKEY RRset in a very public and highly audited way.

DNSSEC Signing Algorithm

There has been no standardization of a specific zone signing algorithm. The usable

algorithms usually appear in DNSKEY, RRSIG, and DS RRsets [243, 162, 271, 48]. In

practice, root servers always use Algorithm 8 (which is RSA/SHA256) [243]. However,

2Root Signing Ceremony is explained in more detail at the following resource: https://www.cloudflare.
com/dns/dnssec/root-signing-ceremony/
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Table 5.2: DNSSEC Algorithm Use Statistics

Algorithm # of DS records Signed

Code Name TLDs Alexa

3 DSA/SHA1 0 7

5 RSA/SHA-1 163 1305

7 RSASHA1-NSEC3-SHA1 539 5669

8 RSA/SHA-256 2157 10962

10 RSA/SHA-512 37 758

12 ECC-GOST 0 3

13 ECDSAP256SHA256 5 6017

14 ECDSAP384SHA384 0 202

to the best of my knowledge, there is no documentation of the algorithm used to sign the

zones of TLDs and authoritative name servers. For that, I conducted a measurement study

to analyze the DS records of the TLDs by examining the root DNS zone3. Similarly, the

measurement study is conducted on the top 1 million sites based on Alexa Traffic Rank4.

As shown in Table 5.2, the findings are confirmed in [243] that Algorithm 8 is indeed the

3The dataset is available online at: https://www.internic.net/domain/root.zone and managed by the
Internet Corporation for Assigned Names and Numbers (ICANN)

4Alexa Top Sites (ATS) web service: https://aws.amazon.com/alexa-top-sites/
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Figure 5.3: CSProp over DNSSEC — Design

most widely used algorithm in DNSSEC. The CSProp protocol supports this algorithm,

making it straightforward to deply within the current ecosystem.

Design of DNSSEC with CSProp

DNSSEC using CSProp provides efficient end-to-end authentication from the origin server

to the end device. CSProp provides signature validation over the entire chain of trust of

DNSSEC. The design is illustrated in Figure 5.3. The components in red represent additions

for CSProp. Moreover, in this figure, the end device takes charge of the authentication,

whereas in a conventional implementation, the verification traffic is initiated by the resolver.

I assume the records are not present at the resolver’s cache. I explain the steps in detail as

follows:

After the DNS resolution process is completed and before the legitimate response

of the requested query (e.g., A record of www.example.com) is forwarded to the end device,

87



in step 1 the DNS resolver receives an RRset of type A along with the corresponding

RRSIG record from the authoritative name server (Auth). To compute the partial validated

signature (RRSIG′) of the above RRsetDNSKEY, the resolver needs the DNSKEY record of

AuthZSK and sends a query to Auth as shown in 2 . In step 3 , Auth responds back and

sends both RRsetDNSKEYAuth and the corresponding RRSIGRRsetAAuth
. In step 4 , the re-

solver computes (RRSIGRRsetAAuth
)′ using vk and vk′ of AuthZSK and (RRSIGRRsetDNSKEYAuth

)′

using vk and vk′ of AuthKSK and forwards them to the end device along with RRsetA and

RRsetDNSKEYAuth. The end device completes the validation process of (RRSIGRRsetAAuth
)′

and (RRSIGRRsetDNSKEYAuth
)′ using vk′ of AuthZSK and AuthKSK, respectively. Then, the end

device needs to verify the RRSIG of the DNSKEY record of AuthKSK. As shown in step 5 ,

it sends a query to the resolver and requests RRsetDSAuth. In step 6 , the resolver forwards

the query to the .com TLD server which responds with RRsetDSAuth and RRSIGRRsetDSAuth

as shown in step 7 . To partially verify RRSIGRRsetDSAuth
, the resolver in step 8 sends

a query to the .com TLD server for the TLD’s DNSKEY records. Then, the TLD server

responds in step 9 with RRsetDNSKEYTLD and RRSIGRRsetDNSKEYTLD
.

As in step 3 , the resolver computes in step 10 (RRSIGRRsetDSAuth
)′ using vk and

vk′ of TLDZSK and (RRSIGRRsetDNSKEYTLD
)′ using vk and vk′ of TLDKSK and forwards the

partial verified RRSIGs to the end device along with RRsetDSAuth and RRsetDNSKEYTLD.

Steps 11 - 16 are similar to steps 5 - 10 to verify RRsetDSTLD and RRsetDNSKEYRoot.

Finally, the end device compares the DNSKEYRootKSK record with the publicly available

version, and this completes the DNSSEC validation process.

The ability to establish trust between child and parent zones is an integral part of DNSSEC.
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We cannot trust any of the DNS records if part of the chain is broken. CSProp over

DNSSEC provides complete end-to-end protection and secures DNS records from being

altered by MitM attackers. Furthermore, the steps of the protocol, and the number of

packets exchanged between the parties is the same as in regular DNSSEC with changes

isolated to the last hop between the DNS resolver and the end device (in addition to the

choice of the public key). These properties make it practical to deploy the design.

5.3.2 Optimizing TLS handshakes with CSProp

In the second application, I consider using CSProp to optimize the operation of

TLS. The underlying security of TLS protocol relies on the implementation of the cryp-

tographic algorithms during the handshake phase. The cryptographic algorithms provide

authentication and integrity between the communicating entities (i.e., in my case, the web

server and the end device). To offer these security services, the end device has to handle

complex cryptographic operations for validation which are computationally expensive. By

using CSProp, we can substantially reduce the computational cost incurred by the hand-

shake phase without compromising security.

TLS Handshake

TLS is a core security protocol on the Internet and has undergone several revisions

over the years to address security and performance flaws specifically in the handshake pro-

tocol [240]. CSProp is designed to work with TLS 1.3, which is the latest version improving

both the performance and security of TLS 1.2. Authenticating the communicating parties

to each other is typically done by validating their PKI certificates. The most commonly
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Figure 5.4: CSProp over TLS — Design

used certificate is X.509 which is based on the RSA cryptosystem [38]. In common cases,

only the web server needs to be authenticated by the client (unless client authentication is

required by the server).

Design

CSProp can help reduce the computation cost needed for TLS on the end device

by securely offloading a considerable part of the encryption and validation processes to the

default gateway. Initially, the communication is between the web server and the end device;

however, the default gateway is present in typical scenarios of constrained environments

(e.g., IoT environment) as shown in Figure 5.4. The protocol is described in detail as

follows:

In step 1 , the end device commences the handshake and sends the ”Client Hello”

message followed by the cipher suite, key agreement and key share messages to the default
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gateway in which the latter forwards the messages to the designated web server. In reply,

the web server sends in step 2 the “Server Hello” message comprised of the chosen key

agreement, server’s X.509 certificate and its associated signature σ, and the server’s key

share associated with the “Server Finished” message. Then in step 3 , the default gateway

forwards all messages received in step 2 to the end device — with one significant change. It

substitutes σ with σ′ which is the partial verified signature of the server’s certificate and σ′

is computed using vk and vk′. Now, the end device partially verifies σ′ using vk′ as shown

in step 4 . In step 5 , the end device generates the pre-master secret key K using the web

server’s key share. K is encrypted using pk′ to generate the partial ciphertext C′. The end

device sends C′, the cipher suite change (if it is applicable) along with the “Client Finished”

message to the default gateway. Finally in step 6 , the default gateway completely encrypts

K using pk and pk′ and forwards messages received in step 5 to the web server along with

the full ciphertext C. Upon receiving the messages, the web server using its secret key sk

decrypts C to retrieve K, and this concludes the handshake. From here on, all the messages

are securely exchanged between the entities.

Similar to CSProp over DNSSEC, CSProp over TLS does not require any addi-

tional messages to be exchanged between the three parties that are involved in the handshake

phase. This ensures a zero-round trip handshake as in TLS 1.3.

5.4 Evaluation

In this section, I experimentally assess the effectiveness of CSProp over DNSSEC

and TLS. The protocols are compared under realistic settings and with respect to a number
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Table 5.3: Experimental Setup: The following platforms are used in the experiments.

Device Model Role Processor (CPU) CPU Clock (GHz) RAM Cores

Dell XPS 8700 Origin Server Intel(R) Core(TM) i7-4790 3.6 16GB 4

Sony VAIO VPCEA390X DNS resolver/Default gateway Intel(R) Core(TM) i5 2.53 8GB 2

Microsoft Surface Pro 6 End device Intel(R) Core(TM) i7-8650U 1.9 16GB 4

Raspberry Pi

Zero W End device (IoT) ARM11 Broadcom 1 512MB 1

3 Model B End device (IoT) Arm Cortex-A53 (ARMv8) 1.2 1GB 4

3 Model B+ End device (IoT) Cortex-A53 (ARMv8) 1.4 1GB 4

of end devices representative of IoT and embedded devices. I also compare CSProp with

ECC cipher suite.

Selected Software. A prototype of CSProp is implemented over DNSSEC and TLS, based

on the security library, dnsjava5, and the Bouncy Castle [200] crossed-platform libraries.

Bouncy Castle is a standard library for cryptography and contains APIs that are supported

for the embedded devices. The dnsjava library is an implementation of DNS in Java and is

used by a number of major android applications, such as Netflix, Skype, Samsung Email,

and Dailyhunt [115].

Selected Hardware. I evaluate the prototype on four popular end devices: (1) Microsoft

Surface Pro 6; (2) Raspberry Pi Zero W; (3) Raspberry Pi 3 Model B; and (4) Raspberry Pi

3 Model B+. As shown in Table 5.3, each device has different system specifications. These

devices provide a range of embedded/mobile platforms typical of those used in constrained

environments such as IoT applications [245]. All three Raspberry Pi devices run Raspbian

operating system, while Surface Pro 6 runs Windows 10 Home edition operating system.

5Available at: http://www.xbill.org/dnsjava/
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Network Connectivity. An Arris router [50] is used as the central communication device.

The PCs and the Raspberry pis, except Raspberry Pi Zero W, are connected using 1Gbps

Ethernet cables Ethernet.

Energy Consumption. To obtain the energy consumption values, the Watts Up? Pro AC

meter [233] is used. This power meter supports several displays, computer software, and

PC interfaces. It can automatically generate data graphing, and its data logger function

records all data into non-volatile memory.

Testbed Setup. I configure the testbed as follows. I use a Dell PC running Ubuntu 16.04.6

LTS operating system as an origin server (i.e., DNS servers in DNSSEC, web servers in

TLS, and default gateway in IoT environments). For reasons of backward compatibility

with middleboxes, I use the recommended key size of 2048-bit and hashing algorithm SHA-

256 [240, 194]. The origin server is responsible for generating the RSA keys needed to

perform all the cryptographic operations. The propagator is a Dell PC running Windows

10 Home edition operating system.

CSProp is compared with traditional implementations of DNSSEC validation, TLS

handshakes, and RSA public-key operations. CSProp is also compared with current real-

world configurations where the public exponent is 216 + 1 = 65537.

5.4.1 CSProp over DNSSEC

In this section, I show measurement results of CSProp over DNSSEC based on

two metrics: (1) Latency; and (2) Energy consumption. A private network (simulating

the topology in Figure 5.1) is configured to represent the DNS hierarchy. More precisely, I
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Figure 5.5: CSProp over DNSSEC — Latency

configure the Root (.), the TLD (.com), and the Auth (example) name servers internally

in the origin server. I use www.example.com as the target domain name in the experiments.

In addition, the DNSKEYRootKSK record (i.e., the trust anchor) is pre-installed at the DNS

resolver and all four end devices used in the prototype. To optimize DNSSEC resolution

process, the DNS resolver supports the caching property.

I collected 10 data points for each experiment to get statistically meaningful results.

I calculated the 95% confidence intervals of the mean and show those on the figures. The

measurements are performed when caching is enabled and disabled at the DNS resolver to

get an insight of the impact of caching on the protocol. Dark colors in Figure 5.5 represent

results when caching is enabled, while the light colors represent disabled-cache results.

Since the measurements are conducted on different devices with different specifications, the

y-axis is scaled to fit the maximum readings. To make figures more expressive and easier

to understand, I use transparent gray boxes to zoom in the details in Figure 5.5 that are

not visible at scale.
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Figure 5.5 shows a break down of the latency incurred by CSProp over DNSSEC.

The latency is broken down into the time consumed by end devices and by the network.

The latter time includes: (1) the network overhead caused by sending and receiving packets

between the communicated parties; and (2) the time required by the DNS resolver to

compute the propagated signature. The results show a significant reduction in latency

compared to traditional DNSSEC validation, with a minor impact on latency when the

cache is disabled at the DNS resolver. Additionally, we see how device specifications affect

performance. For example, in case e = 65463 and cache is disabled, the results show that

CSProp reduces latency by 91x, 21x, 35x, and 10x on Raspberry Pi Zero W, Raspberry Pi 3

Model B, Raspberry Pi 3 Model B+, and Surface Pro 6, respectively, compared to traditional

DNSSEC validation. Note that the reductions are approximately the same when DNS cache

is enabled. CSProp is also compared with current DNSSEC implementations where the

used public exponent is 65537. The results show that CSProp outperforms this setting: for

example, CSProp reduces latency by 78x on Raspberry Pi Zero compared to conventional

DNSSEC when e = 65537. Apparently, the results are to some extent better than those

when e = 65463 in the case of traditional DNSSEC validation. The reason is that 65537

is a Fermat number. Fermat numbers are 2n + 1 primes, and they are recommended [243]

since only the first and last bits of their binary representation are ones (100...001); a feature

expedites computations on computers.

Since there is no tangible difference in results with and without caching, I combine

energy consumption measurements and take the average as shown in Figure 5.6. In general,

the results show a significant reduction in energy consumption when CSProp is used. Indeed,
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Figure 5.6: CSProp over DNSSEC — Energy Consumption

the protocol provides energy reductions by 53x, 10x, 9x, and 4x on Raspberry Pi Zero W,

Raspberry Pi 3 Model B, Raspberry Pi 3 Model B+, and Surface Pro 6, respectively.

5.4.2 CSProp over TLS

Similar to the setup phase of CSProp over DNSSEC, a private network is con-

figured where the origin server is the web server of www.example.com domain name. In

the measurements, I consider the handshake phase and implement it based on TLS 1.3.

Note that my web server does not contain data objects since the CSProp protocol does not

optimize HTTP connections after the TLS handshake is successfully accomplished. The

web server’s certificate is of type X.509 and is signed by a root CA which its certificate is

already pre-installed at the default gateway and end devices. The pre-master secret key (K)

is generated using the Advanced Encryption Standard (AES) algorithm as recommended

in [240] with 128-bit as the key size.
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Figure 5.7: CSProp over TLS — Latency

The latency of the TLS operations are shown in Figure 5.7. I show the latency

incurred by CSProp over TLS but based on the handshake messages: ”Client Hello”, ”Server

Hello”, and ”Client Finished”. This approach is used to clearly understand the advantage

of the protocol over the existing implementations; specifically when e = 65537. CSProp

provides 8x, 4x, 3x, and 2x reductions in latency (vs. traditional TLS handshake) on

Raspberry pi Zero W, Raspberry Pi 3 Model B, Raspberry Pi 3 Model B+, and Surface

Pro 6, respectively. Note that these numbers are the full handshake numbers, including the

network delays (which are not helped by CSProp).

For energy consumption measurements, I measured the rate at which power is

being used at a specific moment in watts (as shown in Figure 5.8). The results show that

CSProp, on average, reduces the consumed energy by a factor of 8x, 3x, 3x, and 2x on

Raspberry Pi Zero W, Raspberry Pi 3 Model B, Raspberry Pi 3 Model B+, and Surface

Pro 6, respectively. Again, these numbers include the energy consumed across the full
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Figure 5.8: CSProp over TLS — Energy Consumption

handshake, with long periods of time taken up for network communication in which the

energy consumed is not affected by CSProp.

It is interesting to note that the less resources the embedded device has, the larger

the advantage from CSProp. I believe that this occurs since deeply embedded devices

are likely not to have sophisticated energy saving features such as Dynamic Voltage and

Frequency Scaling (DVFS) [251], which can help more sophisticated devices adapt their

energy usage, for example, to use less power while waiting for responses from the network.

5.4.3 Comparison with Elliptic Curve Cryptography (ECC) Cipher

Suites

When power and latency are a consideration, Elliptic Curve Cryptography (ECC)

is often considered: it has an approximate equivalent strength to RSA and, in fact, has some
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Table 5.4: Comparing CSProp with Elliptic Curve Cryptography (ECC) cipher suites for

TLS handshake latency (in Micro Seconds)

Raspberry Pi 3 B+ Raspberry Pi B Raspberry Pi Zero W

CSProp e = 65463, elow = 3 1063.24 1066 1093.56

ECDH-ECDSA P-256 2658.18 2984.66 3171.32

advantages relative to using RSA. In particular, key sizes are much shorter: e.g., Elliptic

Curve Digital Signature Algorithm (ECDSA) with curve P-256 has a key size of 256 bits,

whereas RSA commonly uses key sizes of 1024 or 2048 bits. Additionally, ECC signatures

are much shorter than RSA signatures. However, as mentioned by RFC 6605 [164], even

though singing is significantly faster when using ECC than RSA, signatures validation

is significantly faster (' 5 times faster in some implementations) when using RSA. For

DNSSEC, this is apparently the most serious challenge when using ECC due to the latency

of signature validation. Interestingly, Rijswijk-Deij et al. [265] show that even when using

the optimized version of OpenSSL by CloudFlare6 (in which ECDSA and RSA are sped up

by a factor of 8 and 2, respectively), ECDSA is still 6.6 and 3.4 times slower than 1024-bit

RSA and 2048-bit RSA, receptively, in terms of signatures validation. More importantly,

the actual adoption of ECC by DNSSEC operators is very low [168, 264]; raising concerns

in regards to backward compatibility if ECC were to be proposed for IoT devices.

For TLS, Gupta et al. [150] conducted a study to analyze the performance of ECC

and RSA for SSL (Secure Socket Layer) on resource constrained devices. Their experiments

6https://ripe70.ripe.net/presentations/85-Alg-13-support.pdf
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show that TLS handshake using RSA outperform ECC. For completeness, experimental

measurements are conducted to compare ECC with CSProp. In the experiments, I used

ECDHE-ECDSA (Ephemeral Elliptic Curve Diffie-Hellman key agreement with ECDSA

signatures) [223] cipher suite with curve P-256. I run the experiments on three different

IoT devices: Raspberry Pi 3 B+, Raspberry Pi B, and Raspberry Pi Zero W (see Table 5.3

for devices specifications). As shown in Table 5.4, TLS handshake using CSProp is faster

by a factor of ' 2.7x than when using ECC. This will impose an additional burden on end

devices with the increased CPU load, especially if deployment of ECC-based TLS handshake

accelerates. In 2014, Bos et al. [72] surveyed the adoption of ECC and found that only 10%

of hosts supported ECC-based TLS. On a larger-scale study, the International Computer

Science Institute (ICSI) Certificate Notary [171] reported that 11.5% and 2.4% of observed

SSL\TLS connections used ECDHE-ECDSA with curves P-256 and P-384, respectively, in

June/July 2018. We note also that a variety of attacks on ECC cipher exist [263].

5.5 Concluding Remarks

IoT and embedded devices, in general, are resources-constrained forcing designers

to choose either security (e.g., by offloading security to gateway nodes) or performance

(performing the expensive cryptographic operations required for end to end security). This

research direction contributes a new cryptographic primitive, CSProp, that uses a low public

exponent to reduce the computational load required by the end devices. Specifically, CSProp

breaks down a validation operation into two phases. The first phase – which uses the

traditional expensive cryptographic computations – is performed by a proxy servers (or a
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propagator) (e.g., DNS resolver, default gateway, or fog/edge server) that does not have

to be trusted, meaning that the propagator does need need a PKI certificate and could be

even be a role that changes within a peer-to-peer system. The second phase relies on the

propagated low public exponent of RSA that offers a cheaper computational cost carried out

by the constrained devices, while maintaining strong security guarantees. I reason about the

security of CSProp and show that breaking it is of the same order of difficulty as breaking

RSA.

The performance of CSProp is tested on resource-constrained devices to optimize

the operation of two core security protocols on the Internet: DNSSEC, which protects the

DNS system from attacks such as cache poisoning attacks, and TLS which is an essential

protocol used to establish secure connections on the Internet. I show that the complexity

(in terms of latency and energy consumption) of both the DNSSEC validation and the TLS

handshake operations at the end devices is substantially reduced to the level where it is

believed that it is practical to consider carrying them out at the end devices. The results

also show that CSProp has advantages relative to using ECC cipher suite showing that

CSProp outperforms ECC by a factor of 2.7.

Limitation and Future Work. A limitation of CSProp is that it helps only with opera-

tions that use the public key (signature verification, authentication, as well as encryption).

Operations on the private key such as generating signatures and ciphertext encryption can-

not use low exponents without compromising security [68]. Luckily, IoT and edge computing

devices are clients of services requiring operations on public keys most of the time. For fu-

ture work, a good direction would be to consider extending the benefits of CSProp to other
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protocols, and considering alternative solutions that lower the overhead of private key based

operations to make them more suitable for such resource-constrained environments.
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Chapter 6

Analysing Cryptographic Overhead

on IoT Devices

This chapter describes a comprehensive measurement study to characterize IoT de-

vices with two components: (1) profiling existing devices to understand the cryptographic

demands on IoTs; and (2) evaluating their performance on the new proposed primitive,

CSProp (see Chapter §5 for more details), and compare the results with a widely used

conventional cryptographic primitive which is RSA. Specifically, an empirical study is pre-

sented to measure the cryptographic overhead when using IoTs in realistic environments.

I also discusses a potential deployment model for constrained environments. The results

show that with a minimal amount of configuration, CSProp can be considered a natural fit

with the typical communication practices in smart object networking environments.
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6.1 Understanding Cryptographic Demands on IoTs

6.1.1 Overhead of Conventional Cryptography

Several studies have been conducted presenting the computational and energy

costs of conventional cryptographic protocols on embedded IoT processors. For instance,

Potlapally et al. [232] shows how fast the battery gets drained (more than twice) in the

presence of encryption comparing to no encryption. They also show energy analysis of

common cryptographic algorithms (such as RSA, DSA, and ECDSA) on a client device

running Compaq iPAQ H3670 whose processor is clocked at 206MHz. In addition, a good

body of work analyzes the performance of specific applications used in resource-constrained

environments. For instance, Miranda et al. [213] analyzes the energy consumption of the

Transport Layer Security (TLS) protocol transactions on a mobile device and found that

more than 60% of total energy is consumed by TLS overhead. In standardized large-scale

networks, developers often choose to sacrifice security to retain performance. For instance,

in a typical IoT ecosystem, users communicate with IoT devices (e.g., Nest temperature

sensor or smartwatchess) through smartphone applications. Unfortunately, there are signif-

icant amount of efforts that have uncovered different types of vulnerabilities of various IoT

devices due to lack of security [280, 269, 177, 161, 132, 107, 103, 101, 81, 73]. More recently,

Zuo et al. [283] and Junior et al. [179] analyze the channels between several IoT devices

and their corresponding smartphone applications. They found that these channels are often

not encrypted/authenticated (presumably to avoid pitfall(2) above); thus, construction of

exploits to remotely control the devices can easily succeed.
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Table 6.1: Profile of the Data Exchanged Between an Iot Device and a Client in a Wireless

Home Network

IoT Device Operation Total # of Captured Packets DNS RRsets
RSA AES 128-bit

TLS Handshake Encryption Decryption Signing Verifying Encryption Decryption

WYZE CAM V2 (camera)

Setup 897 68 32 168 0 104 90 232 180

Pairing 25 2 3 9 0 0 2 5 7

Live Streaming (2 Hrs) 1460282 108933 29535 30191 0 318 31239 964083 313664

6.1.2 Limitations of Existing Defenses

There are defenses against the emerging security problems in the IoT area. Some

are proposed specifically to enhance the security of particular applications, such as the Blue-

tooth Low Energy (BLE) protocol [179, 130] and IoT apps [261, 133]. Others are classified

as lightweight cryptography proposals which usually involve expensive cryptographic pro-

cessing [237, 39] or proven to be vulnerable to different attack surfaces [279, 118, 32]. There

is also extensive body of work considering proxy-based defenses for IoT environments such

as ALPKA [74], AKAPR [222], proxy-based end-to-end key establishment protocol [231],

and many others [119, 66, 52, 178, 114]. However, all of them are constructed using a trusted

proxy; an assumption that raises many scalability and security issues [277, 36]. To tackle

this problem, the concept of proxy re-encryption was introduced [66], but it still relies on a

semi-trusted proxy to transfer ciphertext from sender to receiver.

6.2 An Empirical Study

To increase the motivation, the cryptographic overhead occured is analyzed when

an IoT device is used in a home-based environment. The testbed consists of Wyze Cam
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V2 (an Amazon choice smart home camera [24]) connected to a wireless home network via

an Arris router [50]. The wireless network uses WPA2-AES-128-bit protocol [199] (know

as WPA2-Personal) for encryption and a Pre Shared Key (e.g., an 8-character password)

for authentication. The client is a Wyze app downloaded to an iPhone X running ios

13.3.1. The results show that the camera uses cryptographic operations intensively. For

instance, as shown in Table 6.1, live-streaming for a period of 2-hours required more than

60K (i.e., ≈ 4.2% of packets exchanges) of RSA public-key operations. Furthermore,

to support end-to-end data protection, the results show that transmitted data packets

between the camera and the app were frequently encrypted and decrypted using the AES

protocol. However, since it is a WPA2-Personal network, this setting secures the network

only against outsiders. In particular, this network is vulnerable to Man-in-the-Middle

(MitM) attacks if an adversary is an insider who already knows the PSK key. Consequently,

she/he would be able to derive the same secret keys —i.e., Paiwise Transient Key (PTK) and

Group Temporal Key (GTK) used to encrypt/decrypt unicast and multicast data packets,

respectively, between clients and their associated access point (AP)—that are shared among

all users and generated during the 4-Way Handshake protocol [146]1. The results show that

≈ 87.5 of data packets are vulnerable to this type of attack. What is worse, in case Domain

Name System SECurity Extension (DNSSEC) [47] validation is enabled, more cryptographic

operations are required; increasing the computational burden on the IoT camera since chains

of DNS RRsets signatures need validation.

1Note that using 802.1X [95] for authentication, which is used in WPA2-Enterprise networks, closes this
vulnerability. This is because each user is assigned a unique PSK key.
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6.3 Comparison Between CSProp and Conventional Cryp-

tography: Arduino Measurements

This section describes a comprehensive measurement study of CSProp to secure a

resource-constrained smart object device. We further experimentally compare CSProp with

conventional cryptography on a special type of IoTs: a microcontroller.

6.3.1 Experimental Setup

Selected Hardware. Due to the resource-constrained nature of popular microcontroller-

based IoT hardware development boards (e.g., LightBlue Bean+ [28] and Arduino Uno [26]),

it is usually challenging to execute the necessary RSA cryptographic operations on the main

processor. For instance, Sethi et al. [49] shows that generating RSA signatures on Arduino

Uno takes 25.08 secs, 3.33 mins, and 26.4594 5mins when RSA key sizes are 512, 1024,

and 2048 bits, respectively. Furthermore, to maintain acceptable throughput and energy

consumption, such devices often require hardware acceleration.

For implementing CSProp, I choose Arduino MKR WiFi 1010 [25] as the test

platform since it meets the throughput and energy consumption requirements of current

cryptographic primitives and schemes including RSA [207]. This Arduino is based on the

SAMD21 microcontroller, a 32-bit low power ARM MCU processor with a clock speed of

48 MHz, 32 KB of SRAM, and 256 KB of flash memory. The hardware acceleration engine

for cryptographic algorithms supports the hashing algorithm SHA-256 which is used in the

prototype since it is recommended by RFC8446 [240] for TLS and by RFC6781 [194] for

DNSSEC. Using an 8-bit platform with sufficient RAM size is also viable to generate good
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performance results without hardware acceleration as has been shown by Gura et al [151].

However, 32-bit microcontrollers are much more easily available, at same lower costs, and;

more importantly, are more power efficient to run RSA cryptographic operations.

Network Connectivity. Arduino MKR WiFi 1010 features Wi-Fi, Bluetooth®, and

Bluetooth Low Energy (BLE) interfaces. The Wi-Fi interface uses the WiFiNINA library

that supports IEEE 801.11 b/g/n modes of operation and WEB, WPA, WPA2 Personal,

and WPA Enterprise encryptions. It provides several buses and communication interfaces

that fit IoT sensor nodes, such as UART, SPI and I2C. In addition, since this Arduino is a

dual processor device, all interfaces can be used at once on the board.

Energy Consumption. To obtain the energy consumption values, the Watts Up? Pro AC

meter [233] is used. This power meter supports several displays, computer software, and

PC interfaces. It can automatically generate data graphing, and its data logger function

records all data into non-volatile memory.

Software. For programming the Arduino MKR WiFi 1010 modules, the Arduino-IDE [45]

release/v1.8.12 is used. The Arduino-IDE is the official development framework for Arduino

devices. It is installed on a Microsoft Windows 10 operating system. For selecting a poten-

tial cryptographic library, I surveyed a set of possible source codes and performed an initial

analysis of how well they fit the Arduino environment. Based on the analysis, I found three

libraries that provide RSA as a PKI algorithm. The first is the AVRCryptoLib [27] library,

and it is written in an assembly language to reduce the size and optimize the performance.

The other two libraries are Relic-toolkit [44] and Cryptographic-Protocols-Arduino-and-

PC [80], and they are written entirely in C. I choose the Cryptographic-Protocols-Arduino-
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Figure 6.1: Testbed Architecture Configurations

and-PC library since it is more flexible to be customized and implemented than the other

two libraries.

Latency. One of the main criterias to measure the performance of a cryptosystem is to

measure the latency (i.e., execution time) of its cryptographic operations. The millis()

function [3] is used which is included in Arduino Language. This function returns the

number of milliseconds passed since the Arduino board began running the current program.

Memory Usage. Arduino MKR WiFi 1010 has two types of memory: a ROM (flash)

memory and an SRAM. The compiler of the Arduino IDE automatically calculates and

displays both the amount of ROM and SRAM memory that a sketch will use after compiling.

However, the memory footprint of the SRAM does not include local variables, but the

compiler does display the amount of SRAM remained for local variables.

Testbed Setup. To evaluate the performance of CSProp on the selected device, the testbed

is configured as follows. I use a Dell PC running Ubuntu 16.04.6 LTS operating system as
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an origin server. This server is responsible for generating the RSA keys needed to perform

all the cryptographic operations. The propagator is a Dell PC running Windows 10 Home

edition operating system.

An Arris router [50] is used as the central communication device. The PCs are

connected using 1Gbps Ethernet cables Ethernet, while the Arduino is connected through

its Wi-Fi interface. For powering up the Arduino, a dedicated 5 V/2 A power source is

used. Since the Arduino has a Li-Po charging circuit, it is possible to run it on a USB port

or batteries. However, in order to provide a stable and constant energy source, a dedicated

power supply is used instead. Figure 6.1 shows the main components of the testbed.

6.3.2 Performance Analysis

For evaluating CSProp, we are particularly interested in two RSA public-key op-

erations: verification for signature propagation and encryption for ciphertext propagation.

The performance measurements for CSProp and traditional RSA public-key operations are

provided. The measurements reflect the performance of three different RSA key lengths:

512, 1024, and 2048 bits. The exponents e = 65463 and elow = 3 are used as the public

exponents for CSProp; the full key e is used between the origin server and the propagator,

and then elow is used after signature propagation. I compare CSProp with traditional imple-

mentations of RSA public-key operations. CSProp is also compared with current real-world

configurations where the public exponent is 216+1 = 65537. As mentioned earlier, SHA-256

is used in the experiments since it the recommended hashing algorithm for different net-

working protocols. The code size is ≈ 8 KB and the message size is 128 Bytes for all the test

cases. It is also worth noting that in the implementation I considered basic mathematical
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operations (e.g., exponentiation and multiplication) without using any optimizations (e.g.,

montgomery multiplication and optimized squaring as described in [192]). All results are

from 50 runs (the values are almost identical) for each scenario, then the average is taken

to represent each data point.

6.3.3 Results

The results are summarized in Table 6.2. For all RSA key sizes, CSProp out-

performs the traditional RSA public-key operations in all scenarios. For instance, the

execution time for CSProp-encryption is more than 57 and 81 times faster than traditional

RSA encryption when e = 65537 and e = 65463, respectively. For CSProp-verification,

the conclusions are very similar. The results show huge differences for the same security

level when comparing CSProp and traditional RSA public-key operations, being CSProp a

better alternative for resource-constrained devices since it presents better energy consump-

tion. For instance, CSProp provides efficient reductions by 36x and 42x for encryption and

verification,respectively, when e = 65537. Comparing the memory results, it is interesting

to note that the modular exponentiation of CSProp requires little memory (a crucial design

decision in designing lightweight cryptosystems) compared to a traditional RSA implemen-

tation as are the cases when e = 65537 and e = 65463 which significantly increase the

memory usage.

More importantly, the results also present interesting findings when different key

sizes of the same algorithm are compared. The most interesting finding is that PKI cryp-

tography is possible on resource-constrained devices.
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Table 6.2: This table shows a Comparison of CSProp Vs. two typical implementations

of traditional RSA public-key operations. The performance is measured based on latency

(in ms), memory footprints (in bytes), and energy consumption (in mJ)). Note that the

memory usages for SRAM and ROM are added to represent the total memory footprint.

CSProp (e = 65463, elow = 3)

Encryption Verification

Key Size (bits) Latency (ms) Memory Footprint (bytes) EC (mJ) Latency (ms) Memory Footprint (bytes) EC (mJ)

512 11 42 15 15 49 21

1024 29 69 23 35 82 36

2048 61 125 39 71 134 48

Traditional RSA (e = 216 + 1 = 65537)

Encryption Verification

Key Size (bits) Latency (ms) Memory Footprint (bytes) EC (mJ) Latency (ms) Memory Footprint (bytes) EC (mJ)

512 634 320 540 915 441 882

1024 1665 552 828 2135 738 1512

2048 3502 1006 1404 4331 1206 2016

Traditional RSA (e = 65463)

Encryption Verification

Key Size (bits) Latency (ms) Memory Footprint (bytes) EC (mJ) Latency (ms) Memory Footprint (bytes) EC (mJ)

512 891 504 615 1290 539 1071

1024 2349 828 943 3010 902 1836

2048 4941 1500 1599 6106 1474 2448

112



As it can be observed, the results when e = 65537 are to some extent better than

those when e = 65463 in the case of traditional RSA operations. The reason is that 65537

is a Fermat number. Fermat numbers are 2n + 1 primes, and they are recommended [243]

since only the first and last bits of their binary representation are ones (100...001); a feature

expedites computations on computers.

Comparing the general performance of the ciphers suites tested, it can be con-

luded that for the same security level as proven in Section §5, CSProp always outperforms

traditional RSA public-key operations in both latency and power consumption.
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Chapter 7

Internet Filtering in the Kingdom

of Saudi Arabia: A Longitudinal

Study

Several countries apply local restrictions on access to information on the Internet,

which they deem inappropriate (e.g., pornography). I refer to this type of access restriction

as Internet filtering1. In this study, I focus on answering three questions: (a) what content

is filtered? (b) how is filtering implemented? and (c) how does filtering evolve over time in

response to geopolitical conditions?

The Kingdom of Saudi Arabia is often considered to be one of the most conservative

countries in the world. The government manages the access to the Internet with a filtering

system to restrict content it deems unacceptable or inappropriate. These filtering decisions

1Note: Although some filtering is used for censorship in some cases, I choose to use the term filtering to
keep my focus on the technology.
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are motivated by the government’s desire to protect the values of the Saudi society (which

center around Islam, the official religion of the country), in addition to implementing

national security and public safety policies [91]. The debate over how web content should be

filtered, what constitutes inappropriate material and whether (and how) the public should

be protected from remains controversial. On the one hand, many organizations criticize

the level of Internet filtering in Saudi Arabia. For instance, Freedom House characterizes

Saudi Arabia as ”not free” [21], and it is ranked 172 out of 180 countries by Reporters

Without Borders as one of the top violators of press freedom [20]. The same organization

also published a report in January 2016 which ranks Saudi Arabia as one of the ”15 enemies

of the Internet” since 2005 [12]. On the other hand, we see many domestic organizations

that do support Internet filtering. For instance, the Ministry of Media provides regulations

for digital publishing activity [212, 211] which strictly prohibit any content that violates the

provisions of Islamic law, breaches the national security, incites violence among citizens, or

violates copyrights law. The Ministry of Interior (MOI) launched an electronic service [210]

to help citizens report any type of cyber crimes including production of websites violates

public moral (such as pornographic and gambling sites) or impinges on public order and

religious values as stated in the Anti-Cyber Crime Law [92]. Many individuals and non

government-linked organizations support the filtering service [102, 154, 37]. Internationally,

the Safer Internet Day (SID) [4] is an organization that provides an education and awareness-

raising effort spanning more than 100 countries including Saudi Arabia [93].

In the last years, Saudi Arabia has undergone significant sociopolitical changes,

combined with significant political events in the region, which seem to have brought forward
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a more progressive approach regarding access to information. I provide some highlights of

such events between 2018 and 2020. This period of time coincides with the start of the

execution of Saudi Arabia’s national Vision 2030 and National Transformation 2020 pro-

grams [247] that were announced in April 2016. The two vision documents were nationally

adopted as a roadmap and implementation guidance for economic and developmental in-

vestments and projects across all fields of endeavor in the country, with the stated aim of

creating a tolerant country with Islam as its constitution and moderation as its goal. Inter-

estingly, the two vision documents introduce a series of sweeping social reforms. As evidence

that they are being implemented, on September of 2017, a royal decree lifted the ban on

women driving that was enacted in 1957 [18]. Additionally, according to the Kingdom’s

General Authority for Entertainment (GAE) [141], in 2018, Saudi Arabia has allowed the

operation of movie theaters for the first time in decades. In addition, during the same year,

the Saudi government allowed international artists to perform musical concerts as part of

public life, including the participation of women; both of these (public music performances,

and women participation) are surprising and progressive moves in the context of a Saudi

society that has never experienced either before. At the same time, there have been a

number of geopolitical developments, such as rising tensions with Qatar, Iran, and Turkey.

Given both these significant social changes, and geopolitical events, a natural

question is whether such events translate into changes in the Internet filtering policies.

There are a few studies (that are older, and less comprehensive than my work) focusing on

Saudi Arabia, while there are several studies of Internet filtering in other countries, which

are reviewed in Chapter §2.
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Figure 7.1: Overview of the key questions, contributions, and findings of my work

To the best of my knowledge, this research direction represents the first system-

atic, longitudinal study of Internet filtering in Saudi Arabia. The study spans the period

from March 2018 to April 2020, with three separate measurements, one in each calendar

year. My goal is to answer the three questions mentioned earlier. I pursue a three pronged

strategy summarized in Figure 7.1: (1) Quantification: I measure website network acces-

sibility as well as mobile application accessibility (specifically, those used for voice/video

communication); (2) Understanding: I seek to reverse engineer the filtering infrastructure

and understand the different filtering mechanisms employed; and (3) Interpreting: I explore

whether societal shifts in response to the moderation visions, as well as geopolitical events

influence the filtering policy over time. Each of these directions are discussed in more detail

below.

a. Quantification: What is filtered? I provide a fairly extensive study on the acces-

sibility of both websites and mobile apps from within Saudi Arabia and its evolution over
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Figure 7.2: Overview of the extent of filtering over time per category. We observe a

significant relaxing of the filtering rules for both Internet and mobile apps. Note that I

did not measure the period 2013-2017, but rely instead on personal experience and public

sources. The bars for mobile apps represent the percentage of the apps that were tested at

that time period. For instance, in 2018 I tested 16 apps while in 2019 and 2020 I tested 18

apps.

time.

• Network accessibility: I probe the most popular websites worldwide according to the

Top Sites lists overall and by category published by Alexa [34]. I collected the top

500 websites in 18 different categories [35]. Interestingly, as shown in Figure 7.2,

we find that the most blocked category is Adult in which 85.4%, 82.2%, and 82% of

sites are blocked in 2018, 2019, and 2020, respectively. We also find that the second

most blocked category is Shopping in which most of the sites are either belong to

convenience stores or apparel retailers that do not have a branch inside Saudi Arabia

(e.g., The Home Depot, CarMax, Bloomingdales, and Kohls) or sell products that are

considered illegal (e.g., alcohol and guns).

• Mobile applications accessibility: I conduct systematic experiments on 18 of the most
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popular mobile social network applications worldwide and in the middle east including

Facetime, Tango, Viber, Line, SOMA, and WeChat. The results show that Saudi

Arabia is cautiously yet decisively opening its digital borders. As shown in Figure 7.2,

the results show that 80% of the blocked mobile apps in 2018 have become accessible

in 2019 while all of them turned to be accessible in 2020, except WeChat which is

still debatable. This perhaps reflects that the kingdom is moving towards moderating

regulations on Internet filtering.

b. Understanding: How is filtering implemented? I go below the application layer

and identify the point and mechanisms in the communication interaction, where the filtering

takes place.

• Reverse engineer filtering infrastructure: the general topology of the internet filtering

is discussed in some of the official documents from the Ministry of Information. I

conduct experiments to independently reconstruct the network topology of the filtering

system.

• Understand filtering mechanisms: my results show that Internet filtering in Saudi

Arabia is based on HTTP filtering augmented with TLS filtering for connections

using HTTPS. I believe that this research direction is the first to identify TLS level

filtering [267].

c. Interpreting: How is filtering affected by geopolitical events? I finally go at the

political and policy level and examine the manifestation of real-world events on filtering.

• We find that ISIS-friendly sites are blocked due to the fact that ISIS supports terrorism
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and destabilization to the region. We also find that more news sites got blocked. For

instance, some Qatari, Iranian, and Turkish news sites got blocked in 2017, 2018 and

2020, respectively, amid continued political tensions with these countries.

To increase the confidence in my observations, I performed network measurements

inside Saudi Arabia from four major cities spread across the country (Riyadh, Jeddah,

Makkah, and Al-Khobar) and spanning three major Internet Service Providers (ISPs) in

the country. This methodology differs from prior studies of filtering in other countries,

which overwhelmingly rely on VPNs or PlanetLab nodes [267, 276, 208].

The remainder of this research direction is organized as follows. I present a brief

history of Internet filtering in Saudi Arabia in Section §7.1. I present some background on

Internet filtering in Section §7.2. I present the methodology I employ in the measurement

study in Section §7.3. I present the results of the study in Section §7.4, including some

analysis of the impact of local and regional geopolitical events on the evolution of the

filtering policies. I present my analysis of the filtering infrastructure in Section §7.5, and

I discussed related work in Chapter §2. Finally, I present some concluding remarks in

Section §7.6.

7.1 History and Background

The history of the Internet in the Kingdom begins when King Fahd University of

Petroleum and Minerals (KFUPM) connected to the Internet in 1993. This initial system

used two dedicated Domain Name System (DNS) servers for name resolution [30]. After

being intensively used by the academic sector, the Internet was brought to the public in
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1999 after the Council of Minsters officially issued Resolution No. 163 [184]. It gave King

Abdulaziz City for Science and Technology (KACST), located in Riyadh, the authority to

create the Internet Services Unit (ISU)2 and to carry out oversight over the licensing,

deployment and management of the Internet in the country. Since then, the unit, in

cooperation with the Communications and Information Technology Commission (CITC),

is responsible for providing Internet service in Saudi Arabia. Despite this late adoption,

especially in terms of connectivity, the number of Internet subscribers increased rapidly:

CITC estimates that the number of Internet users has grown from nearly 1 million in 2001

to 3 millions in 2005 [86]. At the end of 2018, the number of users is more than 27 millions

which represents 83.4% of the population in Saudi Arabia [140]. In addition, in April

2016, the Crown Prince Mohammad bin Salman Al-Saud announced the Vision 2030 and

National Transformation 2020 programs [100] that gave high priority to the Communication

Information and Technology (CIT) sector, which has a goal of ultimately providing 90%

broadband coverage across the different regions of the country.

Internet filtering in Saudi Arabia is managed by a central and standardized system

located in KACST. All ISPs direct their web traffic to an ISU proxy server which keeps a log

of user activities. If there is an ISP-level firewall or other network security functionality, it

is legally required not to bypass this proxy. Although there are always ways to circumvent

Internet filtering [267, 252, 83, 136], this type of practise is considered a cyber crime [92].

Website filtering uses two sources of information [90]:

1. Commercial list: The CITC has contracted with an unnamed international company

2A government organization that takes responsibility of organizational and administrative aspects of the
Internet. See https://www.kacst.edu.sa/eng/ScientificServices/ ISU/Pages/landing.aspx

121



Figure 7.3: General filtering warning page

specialized in website ranking to obtain their own list of websites categorized into

more than 90 categories. Those which related to pornography, gambling and drugs

are summarily blocked; an effort to provide a family safe Internet. The list is updated

by the company on a daily basis, and there is a continuous line of communication

with the company to correct errors related to websites classification.

2. Saudi-Arabia-specific list: It is an internal list prepared by CITC. The websites

are blocked based on requests by regular users and specialized authorities [88] after

reviewing them and ensuring that they contain materials inappropriate to the Saudi

society. The CITC reported that 92.80% of these websites are related to pornography

while 2.77% are related to gambling, sorcery, drugs, etc.

Unlike other countries who transparently block web pages without informing users

(e.g., Bangladesh, Russia, India, China, Turkey and Malaysia) [267], Saudi Arabia makes

blocking explicit. While the list of prohibited websites is not publicly available, any re-
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Figure 7.4: Filtering warning page by the Ministry of Culture and Information

quest to a blocked website causes the user to be redirected to a web page owned by ISU.

For instance, Figure 7.3 shows a warning page in response to visiting www.betonline.ag

(a gambling website). Figure 7.4 shows a different warning page in response to visiting

www.aljazeera.com (a news website) which has been blocked due to political tensions with

Qatar where Aljazeera is headquartered. CITC also receives requests to block or unblock

websites from customers. For instance, more than 8 thousand unblock requests were re-

ceived in 2016 [87], with 7% of these ultimately accepted. On the other hand, more than

900 thousand requests to block websites were received with 56% of the requests resulting

in a block. This number increased to more than 1 million by the end of 2017 [89]. Overall,

the CITC has handled over 6 millions blocking requests since 2008.

There are many other countries where Internet filtering is present due to historic

and domestic issues (e.g., Nazi websites in Germany [127], pedophilia in the European

Union [98], violation of copyright law in France [149]). In Saudi Arabia, national security

and cultural beliefs are the origin of the government’s concerns in regards to Internet ac-
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cess [91]. The government has been practicing Internet filtering since 2001 when the Council

of Minsters issued a resolution outlining the basis for content filtering [185]. Accordingly,

the ISU published a ”black-list” of prohibited websites [282]. Here are some examples of

blocked content:

• Two episodes of the ”American Dad!” TV series were blocked for having a scene showing

a negative portrayal of Saudis [244].

• The Ministry of Media blocked ”Pirate Bay” and ”Torrentz.eu” websites for distributing

copyrighted materials [246].

• To promote Islam being a peaceful religion [275], any websites that promotes the so-called

”Islamic State” of Iraq and Sham (ISIS) are called to be banned [31].

• Some social network applications, such as Whatsapp and Skype, were banned in 2013 for

violating regulatory requirements [5].

7.2 Overview of Internet Filtering Mechanisms

In this section, I review some of the most commonly deployed Internet filtering

mechanisms, which can enable filtering at different levels of granularity. Internet filtering

refers to a multitude of technical policies that can be employed to prevent users from

accessing specific content or Internet-connected machines; the policies can vary from filtering

or blocking all connections in a particular country to micro-focused strategies blocking

specific websites, servers, and even words. These policies rely on a number of mechanisms

that interfere with the user’s ability to access these resources. Specifically, given the steps

needed to establish a connection to a website from a browser, filtering can interject to
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Figure 7.5: Hierarchy of DNS name servers

interfere with any of these steps (e.g., TCP connection establishment). Note that it is

possible to use a combination of mechanisms to implement an overall filtering policy.

7.2.1 DNS-level Blocking

Accessing an Internet connected service (e.g., a web site) starts with a Fully Quali-

fied Domain Name (FQDN) address, specified as part of a Universal Record Locator (URL)

in a browser address bar (e.g., http://www.example.com). The FQDN is the portion of

the URL that fully identifies the domain name of the target server (e.g., www.example.com

without the http:// prefix). The Domain Naming Service (DNS) protocol provides a reso-

lution service to map FQDNs to their corresponding Internet Protocol (IP) addresses [46].

DNS is supported by a hierarchical infrastructure which contains a set of distributed name

servers (an example is shown in Figure 7.5). At the top of the hierarchy, there are 13 root

servers that are geographically distributed at a global level. At the next level, there are a

set of Top-Level Domain (TLD) servers which service queries for top level domains (e.g.,

.edu, .com, and .org), and at the bottom there is an embedded hierarchy of authoritative

name servers that hold the translation from the FQDN for the part of the address space

they manage to the corresponding IP addresses.

125



(a) OK (b) Blocked

Figure 7.6: DNS-Level Blocking

DNS queries from clients are processed by resolvers that can walk the hierarchy

until they reach the authoritative name servers responsible for the FQDN being resolved. In

countries where authorities have control over DNS resolvers, they interject in the resolution

process to manipulate translations and redirect users from accessing a filtered site (see Fig-

ure 7.6-a and Figure 7.6-b). In other words, they can prevent the translation of FQDNs to

their corresponding IP addresses, and instead they direct users to another server under their

control, for example, to display a message indicating that the target server is blocked. For

instance, in Iran, when a client sends a DNS query to access a banned site, instead of receiv-

ing the legitimate IP address, the client is directed to a private IP address (10.10.34.34)

that is controlled by the filtering module [51]. Similarly, extensive work show evidence that

China’s Great Firewall (GFW) uses this type of filtering [205, 201, 11, 126].

7.2.2 IP Address Based Blocking

After DNS resolution, the next potential intervention point available for filtering is

at the level of TCP (or UDP) connection establishment, which uses IP addresses to identify
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(a) OK (b) Blocked

Figure 7.7: IP Address Based Blocking

the destination of the connection. Governments (or enterprise) maintain a pre-defined list

of IP addresses belongs to banned sites. This blacklist is usually handed to Internet Service

Providers (ISPs) to execute the filtering [276]. Basically, when a client requests access to

a forbidden site, the ISP will prevent connection establishment (by dropping the SYN or

SYN/ACK packet). For instance, in China, requests to banned sites are intercepted by GFW

servers and then responded to by spoofed TCP-RST packets (see Figure 7.7), forcing clients

to terminate the TCP connection [267]. Filtering based on IP addresses can also be used

to block access to entire subnets. For instance, the Syrian authorities filter IP addresses

belong to specific geographical regions (e.g., Israel) [79]. Blocking using IP addresses has

the advantage of working even when the connection is encrypted, or when the users bypass

the use of DNS.
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(a) OK (b) Blocked

Figure 7.8: HTTP Filtering

7.2.3 HTTP Filtering

DNS-level and IP addresses based blocking interfere with the connection based on

the destination site address or name. One way to circumvent this type of blocking is to

change IP addresses and DNS records of the blocked servers to evade filtering until the lists

are updated again. As a result, another filtering intervention uses HTTP-level filtering.

This mechanism typically uses one of two cases: (1) FQDN and (2) General keyword. The

FQDN filtering checks the URL string (typically in HTTP GET requests) after the http://

prefix, while the general keyword filtering checks the URL string against a list of forbidden

keywords. Note that beyond checking the FQDN, keyword filtering can enable filtering

based on the occurrence of the keyword in the URL.
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(a) OK (b) Blocked

Figure 7.9: TLS Filtering

This intervention is typically applied to HTTP, either during initial GET request

or when responses are received. When requests are filtered, the filtering system can force the

connection to reset or timeout then displays an error to the client. In this scenario, requests

never reach the destination web server. Similarly, when responses are filtered, typically

HTTP filtering is applied forcing the connection to be terminated (see Figure 7.8). Previous

work has shown that Pakistan [220] and China [267] use this type of filtering. Interestingly,

Verkamp and Gupta [267] show evidence that the filtering node in Saudi Arabia responds

back with a warning page upon filtering an HTTP request. I provide a deeper analysis from

vantage points inside the country and found technical details that contradict with their

findings.
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7.2.4 TLS Filtering

Since HTTP filtering requires deep packet inspection to identify the keywords

inside the payload of the packet, if encryption is used (i.e., HTTPS rather than HTTP),

the keyword is not available and HTTP filtering fails. This gives users and websites a

simple way to bypass filtering. To prevent this, additional filtering can be implemented at

the TLS handshake level. After the TCP 3-way handshake succeeds, when a client tries to

establish a TLS connection with a blocked website, the filtering node sends TCP-RST packets

after the Client Hello message forcing the TLS connection to be terminated as shown in

Figure 7.9. If TLS filtering is implemented to complement HTTP filtering, if HTTPS is

used, TLS filtering can prevent the establishment of the encrypted session. We believe that

this work is the first to identify this type of filtering.

7.2.5 Other Strategies

These strategies—DNS tampering, IP blocking, HTTP, and TLS filtering— are

the widely used filtering methods. There are other fine-grained techniques that can be

used. For instance, general deep packet inspection can enable sophisticated filtering based

on packet characteristics and content. Another method commonly used is traffic shaping

in which filtering authorities delay access to blocked websites. Port numbers can also be

blocked, regulating and restricting the use of specific web services (e.g., email servers, or

instant messages). I did not observe such mechanisms in action during my study.
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7.3 Methodology

In this section, I explain the tools, measurement methodology and the data col-

lected in my experiments. I start by presenting some ethical considerations that I contem-

plated as I undertook this study.

7.3.1 Ethical Considerations

While it is out of the scope of this paper to further discuss the debate about

Internet filtering, I acknowledge that this study may be beneficial to entities on either side

of the filtering. Indeed, my analysis helps understand the technical aspects of the actual

filtering ecosystem in Saudi Arabia.

To avoid legal complications, I discussed the scope of this study with a Saudi

high-ranking government official, who is an expert in Saudi Arabian law, and he confirmed

that the study does not violate the Saudi Arabian law. Clearly, Internet filtering is a

sensitive topic, and I had to consider whether the experiments would violate not only

ethical considerations, but also any laws or regulations in Saudi Arabia. Article 6 in the

Anti-Cyber Crime Law of the country [92] states that the production of any artifacts that

would undermine public order is strictly illegal. In the context of my work, I had to verify

that this measurement study does not present mechanisms to bypass the filtering which

would make it illegal under article 6.

I took precautions to ensure that my study would not jeopardize any individual

within or outside Saudi Arabia. I never disclosed the personal information of my anonymous

volunteers, nor did I re-distribute or otherwise share the detailed experimental logs data
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(now or in the future). I only analyze aggregated information that neither exposes details

of the network or any identifiable information with respect to my measurement points.

Additionally, since Internet filtering in Saudi Arabia is evident and explicit (as shown in

Figure 7.3 and Figure 7.4), the act of probing blocked sites is legal.

7.3.2 Measurement Methodology

To identify the scope of Internet filtering inside Saudi Arabia, I tested the reach-

ability of the most popular websites worldwide according to the Top Sites lists overall and

by category published by Alexa [34]. The top 500 websites are collected in 18 different cat-

egories [35]: Adult, Arts, Business, Computers, Games, Shopping, Society, News, Regional,

Reference, Sports, Global, Saudi Arabia, Home, Health, Recreation, Kids & Teens, and Sci-

ence. The experiments were conducted three times, roughly one year apart between March

2018 and April 2020. For each iteration of the measurements, I got the updated lists of the

top 500 websites ending up with three lists for each category corresponding to the three

measurements. We find that the lists remained almost identical (less than 3% of change)

across the three years and the changes were typical at the very bottom of the list.

In addition, I tested the availability of 18 mobile applications, including Line,

Skype, and Facetime, as I discuss later.

7.3.3 Tool Overview

To conduct my experiments, I developed a tool which was inspired by an earlier

filtering tool, Samizdat [220]. Samizdat was used in a study of Internet filtering in Pakistan

in 2013, and this effort is reviewed in Chapter §2. Despite the functionality of the tool, I
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needed to develop significant new capabilities to go to the level of granularity that wanted

in my study.

For each website in my lists, I carry out the following measurements.

1. DNS Filtering: First, the tool performs a DNS lookup using UDP and records the

IP address in the response packet; otherwise, the retrieved error code (e.g., Timeout,

SERVFAIL, REFUSED, NXDOMAIN, etc) is recorded. It then performs the same test using

TCP and records the results.

2. IP Address Filtering: If the website is successfully resolved in the first test, the tool

initiates a TCP connection using a stream socket to the IP address and port 80. If the

connection is established, the test is recorded as successful; otherwise, it is recorded as a

failure.

3. HTTP Filtering: This experiment is divided into two phases. In the first phase,

I check if there is direct HTTP filtering of the FQDN in the GET request. Specifi-

cally, the tool tries to establish an HTTP connection and sends a GET request to the

website. Both the response and returned code are recorded. In the second phase,

using a non-blocked website (e.g., www.google.com.sa), the tool appends the URL

of the website we want to test (e.g., www.aljazeera.com) to Google’s URL (e.g.,

http://www.google.com.sa/www.aljazeera.com). The normal behavior is to see the

well-known Page Not Found HTTP 404 error code. If a different error code (e.g., 403)

is returned, this means HTTP-URL-Keyword filtering is enabled.

4. TLS Filtering: Separately, the tool is extended to establish a TLS connection with the

web server of the site we want to test to check if there is filtering on the HTTPS protocol.
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My methodology and tool include the following steps and measurements in order

to enhance and strengthen the results of my study.

First, I wanted to ensure that network issues (e.g., temporary unreachability,

packet losses and other networking pathologies) do not affect the measured results. For

this reason, I randomly selected and re-probed 10% of sites per category 100 times each

and discovered no errors in the initial measurement for these websites. I also modified the

set of open DNS servers used by Samizdat.

Second, in addition to the default DNS servers used by my vantage points (which

belong to the respective ISP DNS service), I measured the Internet filtering on the follow-

ing public servers: Google (8.8.8.8), Quad9 (9.9.9.9), OpenDNS (208.67.222.222), Norton

(199.85.126.10), Comodo (8.26.56.26), and Level3 (209.244.0.3).

Third, to get more precise results, I performed DNS lookups using both UDP and

TCP protocols. I tested site accessibility over both HTTP and HTTPS protocols since

HTTPS is not amenable to keyword based filtering.

Finally, I also conducted a number of Wireshark measurements to capture and

analyze the detailed network behaviors and to verify the subtleties of the filtering mecha-

nisms.

7.3.4 Filtering at the Mobile App Level

In what is arguably, a relatively novel dimension in filtering, we want to assess if

mobile applications are affected by filtering. For that, I conduct a systematic measurement

study with two smartphones one in USA and one in Saudi Arabia and I compared the

differences in terms of downloading and using apps. The analysis covers the period from
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Figure 7.10: Geolocation of the vantage points

2013 to 2020. I discuss the detailed description and analysis of this study and the results

in Section §7.4.5.

7.3.5 Measurement Vantage Points

I conducted measurements from six different vantage points distributed across

four major cities in Saudi Arabia using the three major ISPs in the country. The four

cities whose geographical location is shown in Figure 7.10) are: (1) Riyadh, which is the

capital and the largest city of Saudi Arabia (population 6.5 million). Riyadh is centrally

located; (2) Jeddah, which is located on the west coast and is the second largest city in

the country (population 4 million); (3) Makkah, which is the birthplace of Islam and the

spiritual center of the kingdom (population 2 million); and (4) Al-Khobar which is one

of the major cities in the eastern region of the country (population 1 million). I selected
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ID City ISP

N1 Riyadh STC

N2 Jeddah STC

N3 Al-Khobar STC

N4 Makkah STC

N5 Makkah Zain

N6 Makkah Mobily

Table 7.1: Measurement Vantage Points

these cities because of their different nature, roles they play in the kingdom, as well as

for geographical distribution. Table 7.1 shows the details of each network. I chose vantage

points connecting to different Internet Service Providers (ISPs) to understand whether there

is ISP level filtering, or other variation in the experienced filtering based on the ISP. The

machines in N1, N2, and N3 are connected to the Internet through the same ISP which

is the Saudi Telecommunication Company (STC). I conducted these measurements in one

city, Makkah, through 3 different vantage points connecting the same machine to all three

major ISPs: STC, Zain, and Mobily. All machines are connected to their default gateways,

or routers, with a 1GB Ethernet cable. All machines run Windows 10 Professional Edition.

I conducted the measurements multiple times to eliminate the effect of transient

phenomena, such as short lived outages. In addition, to establish a baseline external

reference point, the same measurements are also executed on my lab machine in the United

States (US), which also runs Windows 10 Professional Edition and is connected to the

university network. I used these measurements to better understand the results from my
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Figure 7.11: The scope of Internet filtering in Saudi Arabia

machines in Saudi Arabia. For example, to confirm that an unreachable website is indeed

blocked inside Saudi Arabia, I checked if it is accessible from the US. If the website returned

the same error code (e.g., HTTP codes 503 or 301 indicating that the server is unavailable or

moved permanently, respectively) in both countries, I consider that the lack of accessibility

is not due to filtering.

7.4 Results

Overall, we observe that the filtering rules are significantly relaxed over the time

for both websites and mobile apps; an evidence that Saudi Arabia is cautiously yet decisively

opening its digital borders. I summarize the results of my study in Figure 7.11.

Adult. Unsurprisingly, we see that the most blocked category is Adult where 87.2%, 83.4%,

and 84.4% of the websites are blocked in 2018, 2019, and 2020, respectively. The content

of the sites in this list is usually related to pornography, gambling, drugs, violence, and

similar content inappropriate for young audience. I spot-checked the content of some of the

Adult sites that were not blocked and found that most are related to art work including
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comics and caricatures (I did not find any that are pornographic, gambling, or drug-related

for example).

Shopping. We find that the second most blocked category is Shopping. After deep

inspection, we observe that most of the sites either belong to convenience stores or apparel

retailers that do not have branches inside Saudi Arabia (e.g., The Home Depot, CarMax,

Bloomingdales, and Kohls) or sell products that are considered illegal (e.g., alcohol and

guns).

Games. The third most blocked category is Games in which all blocked sites related to

gambling.

Global. In analyzing the Global category (which represents the most popular websites

worldwide), we see that more than 7% of the these websites are blocked across the three-

year measurements. We found that nearly 60% of these blocked sites also belong to the Adult

category. The remaining 40% of the blocked sites belonged to social network applications

such as WeChat and VK, as well as a few websites from China. Interestingly, in January

2019, students and faculty at the University of California (UC) have been warned not

to use WeChat while visiting China; apparently, this warning is issued to protect their

communications since that application raises security and privacy concerns [145].

A filtering conundrum: most visited and yet blocked. Surprisingly, we see that 24,

23, and 29 of the most visited websites from Saudi Arabia per Alexa are blocked in 2018,

2019, and 2020, respectively. One might wonder how a popular site in the country is visited,

while it is blocked. Alexa determines the popularity of a site based on two metrics: (1)

Unique Visitors which is determined by the number of unique visitors of a web page; and (2)
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Pageviews which corresponds to the number of URL requests (i.e., HTTP GET request)

for a website [33]. My multi-layer analysis of filtering was able to resolve the mystery. The

results show that all blocked sites from this category passed the DNS and IP filtering tests.

This suggests that users received the requested DNS resolution, but were never able to view

the web page, since it is blocked by other mechanisms as I discuss later in the section.

We also find that for a blocked website, the filtering system blocks the whole

domain. For example, I tried to access the accounts of a number of blocked news sites

(e.g., www.aljazeera.com) on other social media applications (e.g., Twitter and Insta-

gram). Since these applications use HTTPS, and hence, HTTP-URL-keyword filtering is

not applied, we find that they can be accessed and viewed from inside the country.

With respect to the operation of the filtering mechanism, we find that Internet

filtering rules applied uniformly across the different vantage points and ISPs I tested: thus,

I suspect that there is no additional ISP-level filtering. After verifying this observation, I

show results only from one of the vantage points in the remainder of the paper (N6).

In regards to mobile apps measurements, my results show that 80% of blocked

apps in 2018 were accessible in 2019. The experiment are repeated in 2020 and we find that

all apps were accessible, except WeChat which is still debatable. This perhaps reflects that

the kingdom is moving towards moderating regulations on Internet filtering.

7.4.1 DNS Filtering

In my experiments, I did not encounter any evidence of DNS filtering. The numbers

shown in the UDP and TCP columns in Table 7.2 related to transient connectivity issues
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Table 7.2: Breakdown of Internet filtering results against Alexa top 500 websites in 18 cate-

gories. Numbers in blue, green, and red denote results in 2018, 2019, and 2020, respectively.

The HTTP and TLS/HTTPS results are for status code 403.

Category
DNS

IP HTTP TLS/HTTPS

UDP TCP

Adult 5 7 3 7 9 5 2 8 8 427 411 410 4 1 1

Arts 2 5 6 5 6 4 9 11 10 12 10 8 10 7 7

Business 3 10 11 3 8 5 6 13 14 30 26 20 38 29 15

Computers 0 0 0 0 0 0 1 0 0 10 9 8 8 6 3

Games 0 0 1 0 0 0 0 0 0 36 31 30 13 11 11

Global 6 7 7 6 7 7 12 12 12 35 31 28 9 8 6

Health 4 3 5 4 3 2 7 6 5 13 9 7 17 8 2

Home 1 2 0 1 2 1 4 5 4 9 8 8 16 10 7

Kids& Teens 2 1 1 2 1 1 3 1 0 7 6 5 12 6 5

News 0 0 0 0 0 1 1 0 0 21 19 19 20 17 13

Recreation 0 0 0 0 0 0 6 2 1 20 18 16 18 15 11

Reference 0 1 1 0 0 0 0 2 1 5 4 4 6 6 6

Regional 1 1 0 1 1 1 1 3 2 26 25 22 21 20 20

Saudi Arabia 12 12 12 11 12 13 18 18 18 24 23 19 15 15 14

Science 3 0 1 3 0 0 3 1 1 5 3 1 6 5 5

Shopping 1 1 0 1 1 1 1 1 1 46 38 35 48 36 33

Society 0 0 0 0 0 0 4 1 2 20 20 19 18 17 17

Sports 0 0 0 0 0 0 1 0 0 8 4 1 11 9 8

such as TIMEOUT and SERVFAIL. A very small portion of DNS lookups, consistently returned

REFUSED, NoAnswer, or NXDOMAIN DNS error codes, but the number is negligible. To ensure

that these websites are actually not blocked, I checked their status using my machines in
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Figure 7.12: Wireshark trace of HTTP-URL-Keyward filtering

the US and verified that these websites return the same errors indicating that they have

likely gone offline.

We further find that there was no difference between DNS lookups performed using

UDP and TCP. This indicates there are no constraints in DNS over TCP deployment in

the country. To be more certain, I repeated the same DNS lookups on 6 open DNS servers.

We find that the final results confirm the findings. There were minor variations between

the behavior of the open resolvers; for example Comodo had the lowest success rate in DNS

lookups (especially in UDP) in all categories. As a result, we conclude that DNS filtering

is unlikely to be in use.

7.4.2 IP Address Filtering

The measurements show a number of websites in which the IP address filtering

failed as shown in Table 7.2. The data suggests that the main cause of this issue is not the

Internet filtering system, but DNS lookup failures since no IP address is retrieved. For all

other websites, the tool was able to connect to their IPs on port 80. This indicates there is

no filtering at the level of TCP (or UDP) connection establishment.
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Figure 7.13: Wireshark trace showing the company in charge of filtering in Saudi Arabia:

WireFilter

7.4.3 HTTP Filtering

As shown in Table 7.2, a large number of websites were filtered based on the

HTTP URL string, (either FQDNs or special keywords): 82.2%, 7.6%, and 6.2% of the

Adult, Shopping, and Games websites were blocked in 2019, respectively. Looking at the

detailed logs, the results show that the TCP 3-way handshake process between one of

my Saudi machines and the forbidden site’s web server establishes successfully. I consider

FQDN and Keyword based filtering separately.

FQDN-Based Filtering. I send the GET request directly to the FQDN I want to test.

The filtering system allows the client to send the GET request; however, instead of receiving

a legitimate HTTP response, the system replies back with an HTTP response with the

status code 403 for accessing forbidden content. This observation contradicts the findings

by Verkamp et al. [267] where the authors report that a spoofed HTTP response with

a status code 200 is returned, perhaps indicating that the filtering implementation has
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changed. The filtering mechanism then directs the user to one of the warning pages shown

in Figure 7.3 and Figure 7.4, based on the site’s category. The warning page is an HTML

<iframe> presenting a warning message both in Arabic and English. Figure 7.12 shows a

Wireshark trace for blocked website www.betonline.ag (a gambling website). The trace

shows that after receiving the 403 HTTP error code, the client receives TCP-RST packets

forcing a termination of the HTTP connection. The error message displayed when a blocked

website is accessed explicitly indicates that this filtering is maintained by a company called

Wire Filter [274] (see the HTML <iframe> in Figure 7.13).

URL-Keyword Filtering. Recall that in this experiment we access an unblocked system,

but have the url include a blocked site as part of the URL (e.g., http://a.com/b.com/,

where a.com is unblocked and b.com is blocked). The results show identical behavior of

filtering as in the case of FQDN-based HTTP filtering, confirming that the filtering uses

URL-keyword filtering. The difference in these two cases occurs when using HTTPS. When

I repeat the keyword-filtering experiments using HTTPS, the filtering does not work and

the client receives the 404 Page Not Found code indicating that URL-keyword filtering

works only at the HTTP-level connection. In this case, the connection (including the TLS

handshake) is being established to the unblocked website (a.com), which returns that the

specific page (the one I created with the blocked domain) is not found – no filtering occurred.

A breakdown of HTTP filtering results is shown in Figure 7.14.
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(a) 2018

(b) 2019

(c) 2020

Figure 7.14: HTTP filtering results by returned status code. The HTTP 200 OK success

status response code indicates that the request has succeeded. The 301 and 302 Found

status codes are used to indicate that the URL has been permanently and temporally, re-

spectively, moved/redirected to a new URL. Code 403 indicates that access to the requested

URL is forbidden due to client-related issues; in my case the reason is filtering.
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Figure 7.15: Wireshark trace of TLS filtering

Figure 7.16: TLS/HTTPS connection cannot be established for a blocked site

7.4.4 TLS Filtering

HTTPS disables keyword based filtering since it is not possible for the filtering

system to access the encrypted contents of the TCP packet holding the GET request. There-

fore, I tested the accessibility of the websites with HTTPS. We discovered that if the website

being contacted is blocked, it remains blocked under HTTPS. When examining the traces,

we discovered that this is due to TLS level filtering. As shown in Figure 7.15 when trying to

access the blocked website www.betonline.ag, the filtering system allows the TCP 3-way
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handshake but sends a TCP-RST packet when the client tries to establish a TLS connection.

On Windows, when I sent the GET request, the Windows socket error code 10054 was re-

turned, indicating that the HTTPS connection was forcibly closed by the server. In this

case, the browser displays a page (as shown in Figure 7.16) indicating that the HTTPS/TLS

connection could not be established.

7.4.5 Mobile Application Filtering

In this section, I report the results in regards to mobile application filtering, and

I start by providing some context regarding the policies of Saudi Arabia.

Historical context regarding mobile app usage. In 2013, CITC blocked the Voice

over Internet Protocol (VoIP) call services on Viber, a popular mobile application that

offers free video/voice calls [262]. VoIP calls on similar applications were slowly being

blocked including FaceTime, Skype, WhatsApp and Snapchat. I believe the main reason

behind blocking is economic, since these applications provide free alternatives to services

that otherwise generate revenue to the ISPs. CITC received requests from service providers

such as Mobily and STC to block the free or low-cost VoIP calls on these applications to

protect their competitiveness and rights [137, 144]. However, in 2017, CITC responded to

citizens demands and announced its intent to lift the ban on all applications that provide

voice and video communications over the Internet that meet the regulatory requirements of

the country [94]. We conjecture that this decision was also driven by the Vision 2030 and

National Transformation 2020 programs published with the aim of modernizing society: one

of the stated goals is to provide transparency and clarity with respect to policies especially

in the telecommunications and technology technology sectors.
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Table 7.3: Breakdown of Internet filtering results against popular messaging mobile ap-

plications. I tested the text, audio and video communication services. Symbols show if a

communication service is supported (3), blocked (7), not applicable (NA) (e.g. service not

available at the time), or not tested (NT). Note that the results displayed for the period

2013-2017 are based on personal experience and not extensive measurements. Also note

that the release date of all apps except HouseParty (released in 2019) is either before or

within this period. For instance, Line, Telegram, and Google Duo were initially released in

2011, 2013, and 2016, respectively.

Application
2013-2017 2018 2019 2020

Text Audio Video Text Audio Video Text Audio Video Text Audio Video

Viber 3 7 7 3 7 7 3 3 3 3 3 3

Tango 3 7 7 3 3 3 3 3 3 3 3 3

FaceTime 3(iMessage) 7 7 3(iMessage) 3 3 3(iMessage) 3 3 3(iMessage) 3 3

YeeCall 3 7 7 3 3 3 3 3 3 3 3 3

Skype 3 7 7 3 3 3 3 3 3 3 3 3

WhatsApp 3 7 7 3 7 7 3 7 7 3 3 3

Line 3 7 7 3 7 7 3 3 3 3 3 3

Telegram 7 7 NA 7 7 NA 3 3 NA 3 3 NA

AllApp 3 7 7 3 3 3 3 3 3 3 3 3

Google Duo 3 7 7 3 3 3 3 3 3 3 3 3

Houseparty NA NA NA NA NA NA 3 3 3 3 3 3

WeChat NT NT NT NT NT NT 7 7 7 7 7 7

SOMA 3 7 7 3 3 3 3 3 3 3 3 3

Snapchat 3 7 7 3 3 3 3 3 3 3 3 3

Google Hongout 3 7 7 3 3 3 3 3 3 3 3 3

Facebook Messenger 3 7 7 3 3 3 3 3 3 3 3 3

imo 3 7 7 3 7 7 3 3 3 3 3 3

JusTalk NT NT NT 3 3 3 3 3 3 3 3 3

Measurements. I conduct three measurements for mobile apps whose results I summarize

in Table 7.3. I consider 16 communication mobile apps including FaceTime, Tango, Line,
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Viber, SOMA, YeeCall, Facebook Messenger, WhatsApp, Snapchat, and imo. I attempt to

install and use them on two iPhones, one in Saudi Arabia and the other in USA. I tested

the text, audio, and video communication services. All of these apps support text, audio

and video communication.

In March 2018, five applications failed to establish at least one of the text, audio,

and video communication services, as shown in Table 7.3. WhatsApp and Viber established

an active connection for 1-2 seconds, but then the calls got disconnected suddenly. I believe

that this experiment indicates that these two applications were indeed blocked in Saudi

Arabia [43]. We also find that VoIP calls on imo are completely blocked in Saudi Arabia.

In October 2019, I repeated the experiment and added two more applications:

Houseparty and WeChat. We find that both audio and video calls are blocked on WhatsApp,

which was corroborated by a CITC statement [23].

The application WeChat exhibits a uniquely interesting behavior. WeChat is one

of the most popular messaging applications owned by the Chinese company Tencent [209,

1, 145]. In Saudi Arabia, the installation of the application comes with a pre-condition: the

user has to show s/he has a friend on WeChat, who needs to meet additional requirements

as shown in Figure. 7.17! These requirements for the friend are that s/he: (a) has been a

WeChat user for at least one month if s/he an international user or for 6 months if s/he is

a China Mainland user; (b) has not completed ”Help Frined Register” check for other new

user in the past month; (c) has not been blocked from using WeChat in the past month; and

(d) if s/he is a China Mainland user, s/he has activated WeChat Pay. By contrast, WeChat

can be installed on an iPhone user in the US without any such requirements. Intrigued, I
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Figure 7.17: WeChat Security Check

repeated the experiment with three more iPhones in Saudi Arabia. The installation failed

on all of them for the same reason. Although the vice president of Tencent announced back

in 2013 that WeChat is available in Saudi Arabia [10], this is not fully accurate. Currently,

I am not sure if the installation failure is caused by Tencent or the Internet filtering system.

All other tested messaging applications are open and supported including Viber

and imo.

Finally, in April 2020, I repeated the experiment and found that nearly all

previously-blocked messaging applications were accessible, including WhatsApp, with the

only exception being WeChat.
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7.4.6 Relation Between Geopolitical Events and Internet Filtering

Over the past years, the Middle East experienced several major political events

that affected societies internally and externally. Consequently, these events affected Saudi

Arabian policies regarding access to information, and my measurements capture the effect

of such events, as I discuss below.

A prominent event is the rise of the so-called “Islamic State” in Iraq and Syria

(known as ISIS) in the last decade, whose effect emerges in my measurements. I tested the

accessibility of a number of ISIS-friendly websites (which I obtained by scouring the web and

following previous practice I do not disclose for ethical reasons) and found that all of them

were blocked. ISIS and its affiliates have exploited social media websites, such as Twitter, to

spread their propaganda and to recruit new members [227]. This type of activity has in turn

been countered by efforts from the Saudi Arabian government by regulating information

access for Saudi citizens. For instance, at the Shura Council, the chairman of the Islamic and

judicial affairs committee called for the blocking of all ISIS websites, since they considered

them to advocate terrorism and destabilization to the region [31], a stance that has been

followed by many other countries and institutions as well [128, 238, 120, 225, 204]. In

addition, many Saudi citizens launched an online campaign on Twitter aiming to lock down

user accounts belonging to or supporting ISIS [153].

Another prominent event is the increased political tension between Qatar and

Saudi Arabia, which was also captured in my measurements. Because of these tensions,

the Saudi authorities blocked some Qatari news web sites [16]. For instance, as shown in

Figure 7.4, a warning page by the Ministry of Culture and Information was displayed when
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I tried to visit www.aljazeera.com; one of the most popular news websites in Qatar. In

addition, in April 2020, I obtained a list of Qatari news sites [16] and found that all of them

were blocked.

Another notable event is the ongoing conflict between Saudi Arabia and Iran.

Following an attack on the Saudi embassy in Tehran in January 2016 [14], Saudi Arabia cut

all diplomatic relations with Iran. Our measurements show evidence that this event had

impact on the Internet filtering. For instance, in 2018, our measurements show that some

Iranian sites (mostly from the News category) got blocked.

Finally, in April 2020, we observed a change in the access for some Turkish sites

compared to the earlier measurements. Upon investigation, we find that Saudi authorities

blocked two prominent Turkish news websites, Anadolu and TRT Arabic platforms, amid

what the Ministry of Media communicated as continued violations of their regulations. I

conjecture that the move was partly driven by a campaign on Twitter by Saudi citizens

calling for the Turkish news platforms to be blocked [260].

7.5 Internet Filtering Infrastructure

In the past, all network traffic in Saudi Arabia was directed to a central network

at the Internet Service Unit (ISU). In 2016, the volume of international Internet traffic

rose by 114% relative to the traffic in 2015 (to 3.185 TB/s [87]). With the increasing

market penetration of Internet connectivity and the accompanying growth in Internet traffic,

the Internet filtering infrastructure has also evolved. All outbound Internet connectivity

is routed through two main Data Service Providers (DSPs): (1) the Integrated Telecom
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Figure 7.18: Output of tracert between a machine in Saudi Arabia and a machine in UK

Figure 7.19: The infrastructure of the filtering system in Saudi Arabia

Company (by Mobily) and (2) Bayanat al-Oula for Network Services (by Mawarid Holding

Group), to provide national and international Internet communications services [19].

To explore the filtering infrastructure, I used the tracert utility to identify the

hops through the communication between machines inside and outside the country. I

conducted my measurements by randomly selecting 10 public IP addresses of machines

outside Saudi Arabia which were verified using the tool [172]. I also confirmed that these

machines are accessible and responding to tracert from my US vantage point.

When an end-user in Saudi Arabia sends a request to an international website,

the request first goes through her ISP’s proxy before it reaches the DSPs’ proxy servers.
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Then, I observed that before connecting to hops outside the country, the packets has to

go through a node with a private address (10.188.x.x) as shown in Figure 7.18, which I

assume is the IP address of the system used for Internet filtering. CITC clearly states that

the Internet filtering servers are located in a centralized access point at KACST, which is

located in Riyadh [91, 90]. The filtering infrastructure is illustrated with in Figure 7.19.

To further validate that 10.188.x.x is the filtering center, I conducted a two-

directional measurement as follows. I conducted the same measurement to tracert from

one of my machines in Saudi Arabia, say A, to my lab machine in the US, say B. I then

compared the path of the routers visited A → B and B → A using tracert. The two

measured paths were similar in terms of router prefixes with the exception of the filtering

node (10.188.x.x), which was not present on the traceroute originating from USA host to

Saudi Arabia.

As a final step to increase my confidence, I repeated the above measurement from

10 hosts within Saudi Arabia and from two cities: Jeddah and Makkah. The tracert

outputs reveal a large amount of nodes that share the same address space as the filtering

node, confirming that all network traffic within the country passes through centralized

servers as well.

7.6 Concluding Remarks

The Internet has such a disruptive effect on many societies, which often forces

institutions and governments to regulate the access to content and services for reasons

both political and cultural. While the debate around regulating the digital and Internet
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access is going on, it is important to develop methods and conduct studies for tracking and

understanding the Internet filtering behavior.

In this paper, I study Internet filtering in the Kingdom of Saudi Arabia: a tradi-

tionally conservative country, which seems to have made significant steps towards modern-

ization in the last five years. This move towards openness is amply supported by my work.

My contributions are twofold. First, I develop a comprehensive methodology and tools to

measure, collect and analyze Internet filtering behavior at a refined level of granularity.

Second, I present a comprehensive longitudinal study of Internet filtering in Saudi Arabia

over the period of three years. Specifically, I conduct measurements to evaluate filtering

behavior by probing Alexa’s top 500 websites in 18 different categories from viewpoints

covering the three largest telecommunications companies in Saudi Arabia and five cities.

As expected, we find that the filtering is most common for sites in the Adult category of

Alexa. I also conduct measurements to test mobile application accessibility by examining

the status of 18 of the most popular mobile social network applications worldwide and in

the middle east such as WhatsApp, Facetime, and Skype, and find that WeChat is still not

freely available in Saudi Arabia.

The three year span of my study enables us to study changes in the filtering policy

and view these changes in the wider geopolitical context experienced by the kingdom and

the region. For example, we find evidence that the emphasis on modernization is leading

to relaxing regulations on filtering (67% and 93% of the blocked mobile apps over the

period 2013-2017 were accessible in 2018 and 2019, respectively, and all tested apps were

accessible in 2020, except WeChat which is still debatable). We find that ISIS-friendly sites
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are blocked. Interestingly, we found that news sites from the countries of Qatar, Iran, and

Turkey got blocked in 2017, 2018 and 2020, respectively, amid rising diplomatic tensions

between the kingdom and these countries.

I see this work as a solid step towards developing a deep understanding of the

various techniques that are used to support filtering.
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Chapter 8

Future Work and Concluding

Remarks

To conclude, in this dissertation I consider a common scenario where IoTs (or

generally, edge computing devices) are being connected to the Internet and participate in

Internet scale protocols such as DNS and TLS, HTTPS, and others. Traditional defenses for

these protocols rely on cryptographic algorithms which require computationally expensive

operations that can be far too complex for low-power and inexpensive devices (e.g., IoTs).

Typically, in such a scenario, one of three options will occur: (1) Retain security and extend

it to the edge/IoT devices — in this case performance and energy will suffer; (2) Sacrifice

security entirely from all interactions, therefore the last link is left insecure; or (3) Rewrite

the entire system or even develop new security protocols specifically to incorporate these

lightweight devices. In real-world implementations, developers and system administrators

choose one or two out of three in order to provide efficient configurations for their clients.
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In the light of this context, my research pursues three main directions in addition

to a side direction to recommend further research. In my first direction, I emphasize on the

importance of retaining security by demonstrating an attack on the DNS infrastructure.

In the second direction, I devise and study the feasibility to integrate all three: security,

performance, and development without sacrificing one to save the other. The contributions

in this direction retains end-to-end security and more importantly can protect the last

link to reach the edge device. In the third direction, I demonstrate that the first option

is not desirable in resource-constrained environments. Basically, I analyze and measure

the cryptographic overhead of conventional cryptographic primitives that has been used

extensively in various applications. The performance results which are related to latency and

energy consumption confirm with the measurement results in the third research direction.

Lastly, I present a slightly different research direction to shed the light on an interesting

topic into the conversation: I present a systematic longitudinal study on Internet filtering

in the Kingdom of Saudi Arabia, a country that has embarked on economic and societal

changes in many aspects of its daily operations and public policy decisions, with the stated

objectives of modernization towards building a more tolerant Islamic country.

For future work, I hope that the lessons learned from these directions help me to

build (or at least critically understand) the best framework for IoT and edge computing

devices. More precisely, I need to understand the required security primitives that overcome

all the three aforementioned challenges. With CSProp, I worked on optimizing public key

operations for resource-constrained devices. In the near future, I will work to see how I can

optimize private key operations as well.
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