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Abstract

Background: Variation in CYP2A6 activity influences tobacco smoking behaviors and smoking-

related health outcomes. Plasma Nicotine Metabolite Ratio (NMR) is a robust phenotypic 

biomarker of CYP2A6 activity and nicotine clearance. In urine, the NMR has been calculated as a 

ratio of free trans-3’-hydroxycotinine to free cotinine (NMRF/F), total trans-3’-hydroxycotinine to 
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free cotinine (NMRT/F), or total trans-3’-hydroxycotinine to total cotinine (NMRT/T). We 

evaluated these three urinary NMR versions relative to plasma NMR and nicotine clearance and 

elucidated mechanisms of discrepancies among them.

Methods: Baseline plasma and urine biomarker data were available from two smoking cessation 

clinical trials and one nicotine pharmacokinetic study (total N=768). NMRs were compared using 

Pearson correlations, linear regressions and ANOVA analyses. UGT2B10 and UGT2B17 were 

genotyped.

Results: Urinary NMRT/F was the most highly related to plasma NMR (R2=0.70, P<2.2e-16) 

followed by NMRF/F (R2=0.68, P<2.2e-16), while NMRT/T was less strongly related (R2=0.60, 

P<2.2e-16); consistent across study, ethnicity, sex, heaviness of smoking, and analyte analysis. 

Controlling for cotinine glucuronidation, as a phenotype or UGT2B10 genotype, corrected the 

NMRT/T discordance with plasma NMR (Panova<0.001). Similar findings were obtained for 

relationships of nicotine clearance with plasma NMR > urinary NMRT/F > NMRF/F > NMRT/T 

(R2=0.41>0.37>0.35>0.25 respectively).

Conclusion: Urinary NMRT/F followed by NMRF/F are the best urinary alternatives to plasma 

NMR or nicotine clearance. NMRT/T has the least utility as it is influenced substantially by 

variation in cotinine glucuronidation.

Impact: This work highlighted the variation in urinary NMRs, and identified mechanisms for 

disparities among them, which facilitates their use in predicting smoking-related outcomes.

Keywords

Nicotine Metabolite Ratio/NMR; glucuronidation; cotinine; nicotine clearance; Total Nicotine 
Equivalents

1. INTRODUCTION

CYP2A6 is a genetically polymorphic enzyme that inactivates nicotine (the major 

psychoactive compound in cigarettes) and metabolically activates tobacco-specific 

carcinogens(Nakajima et al., 1996a; Nakajima et al., 1996b). Individual variation in 

CYP2A6 activity influences numerous smoking behaviors, including heaviness of smoking 

and smoking cessation(Lerman et al., 2015; Lerman et al., 2006; Schnoll et al., 2009). Faster 

CYP2A6 metabolizers, determined by genetics or by a phenotypic marker, the nicotine 

metabolite ratio (NMR), have a greater risk for tobacco-related diseases (e.g. lung cancer 

and chronic obstructive pulmonary disease)(Dempsey et al., 2004; Lerman et al., 2006; 

Tanner et al., 2018). The NMR, which can be measured in a number of biological matrices, 

is a ratio between nicotine’s main metabolites cotinine (COT) and trans-3’-hydroxycotinine 

(3HC)(Helen et al., 2012). The plasma NMR (3HC/COT) is a biomarker of CYP2A6 activity 

as CYP2A6 exclusively metabolizes COT to 3HC, and is a surrogate for nicotine clearance 

due to the major role of CYP2A6 in metabolic nicotine clearance(Dempsey et al., 2004). 

Both COT and 3HC can be further metabolized via glucuronidation(Kuehl and Murphy, 

2003). Although CYP2A6 activity and nicotine clearance are best approximated by the 

NMR measured in plasma(Helen et al., 2012; Tanner et al., 2015), urine samples have also 

been used for NMR determination(Kandel et al., 2007). In urine, CYP2A6 enzyme activity 
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is predicted to be most accurately phenotyped by an NMR with the substrate in the 

denominator (i.e. free COT) and total product, 3HC and its consequent metabolites (i.e. total 

3HC: 3HC + 3HC-glucuronide), in the numerator. In addition to the enzymatically logical 

ratio (i.e. total 3HC to free COT (NMRT/F)), urinary NMR has been also calculated as two 

analytically pragmatic versions: free 3HC to free COT (NMRF/F), and total 3HC to total 

COT (NMRT/T)(Arger et al., 2019; Benowitz et al., 2003; Derby et al., 2008; Jain; Taghavi 

et al., 2018). Total values represent the sum of the free (unconjugated) and glucuronide 

(conjugated) form(Derby et al., 2008; Swan et al., 2009). Compared to plasma NMR, 

urinary NMR measurements show greater variability, due to individual variation in renal 

clearance of COT and 3HC. Moreover, the different versions of the urinary NMR have 

potentially different relationships with plasma NMR, CYP2A6 activity and nicotine 

clearance(Helen et al., 2012; Tanner et al., 2015). Together the interchangeable use of these 

different urinary NMRs has led to some confusion in the literature about their relation to 

plasma NMR and their relevance for use in associating with smoking behaviours(Jain). The 

aims of the current study were to identify differences in the relationship between the three 

urinary NMRs and plasma NMR, to examine potential influences on these relationships (e.g. 

heaviness of smoking), to identify potential mechanisms contributing to discordances, and to 

assess the relative performance of these urinary NMRs in predicting nicotine clearance. We 

also assessed urinary NMRs following acute bolus nicotine administration(Benowitz et al., 

2009a; Dempsey et al., 2002; Dempsey et al., 2004; Rubinstein et al., 2013a; Rubinstein et 

al., 2013b).

2. Materials and methods

2.1 Participants and Studies

2.1.1 Study 1 (Kick It at Swope III)—The first study (see Table 1) included African 

American light smokers (≤10 cigarettes/day) (trial described elsewhere (NCT00666978))

(Cox et al., 2011; Cox et al., 2012) (see Table 1). Baseline plasma and urinary samples 

(N=429) were collected when participants were smoking ad libitum. Three individuals were 

missing plasma NMR and seven had plasma COT levels below <10 ng/ml indicative of 

NMRs which were considered unstable (not regular smokers)(Benowitz, 1983; Scheidweiler 

et al., 2011). One individual was missing 5 out of 10 urinary analytes. Thus, the final sample 

size with urinary and plasma data available for analysis was N=418. For the genetic sub-

study, UGT2B10 and UGT2B17 genotype data were available for N=377 and N=328 

participants, respectively.

2.1.2 Study 2 (Pharmacogenetics of Nicotine Addiction Treatment-2)—The 

second study (see Table 1) included primarily European ancestry heavy smokers (≥10 

cigarettes/day) (trial described elsewhere (NCT01314001))(Chenoweth et al., 2014; Lerman 

et al., 2015). Baseline plasma and urinary samples (N=139 subset from the CAMH 

recruitment site) were collected when participants were smoking ad libitum. Three 

individuals were missing plasma NMR data. Thus, the final sample size with urinary and 

plasma data available for analysis was N=136. For the genetic sub-study, UGT2B10 and 

UGT2B17 genotype data were available for N=79 and N=99 participants, respectively.
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2.1.3 Study 3 (Pharmacokinetics of Nicotine and Cotinine)—The third study 

included smokers and non-smokers; study procedures are described elsewhere(Dempsey et 

al., 2004). Smokers: Plasma (N=94) and urinary (N=101) samples were collected at baseline 

during ad libitum smoking as well as following the administration of an acute oral solution 

of deuterium-labeled nicotine. Smokers with no blood samples drawn (N=2), missing 

plasma NMR data at steady-state (i.e. unlabeled analytes) (N=3), missing nicotine clearance 

data (N=5), or plasma COT level <10 ng/ml (N=10) were excluded. The final sample size of 

smokers with urinary and plasma data available from ad libitum smoking was N=79. Non-
smokers: Plasma (N=133) and urinary (N=143) samples from non-smokers were collected 

following the acute administration of an oral solution of labeled nicotine. The full dataset 

with labeled acute oral nicotine data (available for N=89 smokers and for N=125 non-

smokers) was used for additional assessments of metabolic profile (N=214).

All three studies were approved by institutional review boards at the respective study sites 

and at the University of Toronto.

2.2. Analytical Chemistry

Liquid chromatography-tandem mass spectrometry was used to determine plasma and 

urinary analyte concentrations(Benowitz et al., 1994; Dempsey et al., 2004). The ratio of 

plasma concentrations of free 3HC over free COT was used to determine plasma 

NMR(Dempsey et al., 2004; Helen et al., 2012; Tanner et al., 2015). The limit of 

quantification (LOQ) for plasma samples was 1 ng/mL. Urinary NMR was calculated using 

three different published approaches: a ratio of free 3HC to free COT (NMRF/F), total 3HC 

to free COT (NMRT/F), or total 3HC to total COT (NMRT/T)(Arger et al., 2019; Benowitz et 

al., 2003; Derby et al., 2008; Taghavi et al., 2018). In studies 1 and 3, urinary glucuronides 

were determined indirectly, as the difference between free concentrations before and after 

enzymatic de-conjugation(Dempsey et al., 2004; Taghavi et al., 2018). Urinary LOQs for the 

indirect method were 10 ng/mL for COT, 3HC, nicotine, and nicotine-N-oxide (NNO), and 1 

ng/mL for cotinine-N-oxide (CNO), norcotinine (NCOT), and nornicotine (NNIC). In COT-

verified smokers (i.e. with plasma COT >10 ng/mL), analytes with resulting negative 

glucuronide values, or those below the LOQ, were imputed as LOQ/sqrt(2) (i.e. 7.07 ng/mL) 

as per convention(Chenoweth et al., 2016). Negative glucuronides generated from labeled 

acute oral nicotine data were dummied in as zeroes. In Study 2, a direct method was used to 

measure glucuronide metabolite levels in urine with LOQs of 5 ng/mL(Taghavi et al., 2018).

For studies 1 and 2, total nicotine equivalents (TNE) was determined as the molar sum of 

urinary concentrations of nicotine and nine of its metabolites (i.e. TNE-10): COT, cotinine 

glucuronide (COT-gluc), 3HC, 3HC glucuronide (3HC-gluc), nicotine glucuronide (nicotine-

gluc), NNO, CNO, NCOT, and NNIC. In study 3, nicotine and six of its metabolites (COT, 

COT-gluc, 3HC, 3HC-gluc, nicotine-gluc, and NNO) were available (i.e. TNE-7). TNE-10 

and TNE-7 account for about 90% and 80% of nicotine dose, respectively(Dempsey et al., 

2004). Study 3 also included measures of nicotine clearance(Dempsey et al., 2004).
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2.3 Genotyping

The UGT2B10*2 (rs61750900) and UGT2B17*2 deletion allele were genotyped using a 

TaqMan genotyping (custom order) and gene expression (HS00854486_sH) assay(Helen et 

al., 2012; Zhu et al., 2013), respectively, and an ABI Viia 7 real-time PCR machine 

according to the manufacturer’s protocol (Applied Biosystems, Foster City, CA). The 

UGT2B10 splice variant (rs2942857) was imputed following genome-wide SNP genotyping, 

as described(Chenoweth et al., 2018). All genotype frequencies were in Hardy Weinberg 

equilibrium.

A recently derived UGT2B10 genetic risk score (GRS) comprised of rs61750900 and 

rs2942857(Murphy et al., 2014) was used to assess the impact of UGT2B10 activity on the 

relationship between urinary NMR and plasma NMR. A score of 0 was given to those 

homozygous for the reference allele for both variants (i.e. G/G and A/A, respectively), a 

score of 1 was given to those with a heterozygous genotype for one of the variants (i.e. G/T 

or A/C, respectively) and a score of 2 was given to those homozygous for either of the 

variant alleles, or heterozygous for both variants (i.e. rs61750900 T/T or rs2942857 C/C, or 

G/T and A/C, respectively).

2.4 Statistical analyses

Demographic characteristics were compared using Chi-Square or Mann-Whitney U tests for 

categorical and continuous variables respectively. Relationships between log-transformed 

plasma NMR and the three urinary NMRs were assessed by Pearson r correlations, then 

compared using Steiger’s equation on the Fisher r-to-z transformed values (using the 

“cocor” package v1.1–3 in R)(Diedenhofen and Musch, 2015; Steiger, 1980). Linear 

regression models were used to fit a line between NMRs before and after glucuronidation 

correction and to identify outliers with the poorest fit (i.e. highest residuals). To determine 

whether the change in fit was deemed significant, two conditions needed to be satisfied: 1) 

the change in the regression estimates of the urinary NMRs had to be greater than 10%, and 

2) the adjusted R-squared value of the model after correction showed a statistically 

significant increase at a 0.05 significance level determined by ANOVA chi-squares tests for 

nested models. UGT2B10 and UGT2B17 analyses were restricted to African Americans in 

Study 1 and European Americans in Study 2 to reduce potential confounding effects of 

population stratification. All statistical analyses were performed in R version 3.6.0 or 

RStudio version 1.1.456. Plot 1 was generated in R using “ggplot2” library(Wickham, 

2009).

3. Results

3.1 Nicotine Metabolite Ratio (NMR) characteristics in urine compared to plasma: Study 1

Participant demographics and baseline characteristics are shown in Table 1 and Online 

supplementary Table S1. The strongest positive Pearson correlation between log-

transformed plasma and urinary NMR was observed for urinary NMRT/F (R2=0.70, 

P<2.2e-16), followed by urinary NMRF/F (R2=0.68, P<2.2e-16) and urinary NMRT/T 

(R2=0.60, P<2.2e-16) (Figure 1). The difference in the plasma-to-urinary correlation 

observed for urinary NMRT/F and NMRF/F was significant (z=−2.51, P=0.012), as was that 
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for urinary NMRT/T compared to NMRT/F and NMRF/F (NMRT/F z=3.74, P<0.001; NMRF/F 

z=3.41, P<0.001). Consistent with the strength of the correlation, the linear regression line 

fit was best between plasma NMR and urinary NMRT/F, where the fewest poorly predicted 

outlying points were observed (6.7% of values had absolute residuals >0.3). In comparison, 

the NMRT/T regression line fit displayed the most predicted outlying points (10.5% of values 

had absolute residuals >0.3).

Because females have higher CYP2A6 activity resulting in faster nicotine and COT 

metabolism and NMR(Cox et al., 2011), we examined relationships between plasma and 

urinary NMRs stratified by sex. The observed rank order of plasma to urinary NMR 

relationships remained the same (i.e. NMRT/F > NMRF/F > NMRT/T) in females and males 

when analyzed separately (Online supplementary Figure S1).

3.2 Replication and extension of the NMR characteristics: Study 2

Study 2 included heavier smoking participants that were predominantly males of European 

ancestry (Table 1) with a urinary metabolic profile that differed from Study 1 (Figure 2A–

B), whose participants were predominantly African American. Our data were consistent with 

the slower N-glucuronidation among African Americans(Murphy et al., 2014), resulting in 

metabolic profile differences in the portion of nicotine excreted as products of N-

glucuronidation, with COT-gluc at 15.3% and 4.6%, and nicotine-gluc at 6.3% and 1.2%, for 

Study 2 and Study 1, respectively (Figure 2A–B). Despite these differences in N-

glucuronidation and resulting urinary metabolic profiles, and despite additional differences 

in levels of smoking (P<1e-5), method of analysis, and other characteristics (i.e. sex 

(P<1e-5), age (P=0.004), and BMI (P<1e-5)), the rank order of plasma to urinary NMR 

relationships (i.e. NMRT/F (R2=0.54, P<2.2e-16) > NMRF/F (R2=0.53, P<2.2e-16) > 

NMRT/T (R2=0.37, P=1.7e-15)) were replicated in Study 2 (Online supplementary Figure 

S2, Online supplementary Table S2). Similar to Study 1, there was also a significant 

difference in the plasma-to-urinary correlation observed for urinary NMRT/T compared to 

NMRT/F and to NMRF/F (NMRT/F z=2.55, P=0.01; NMRF/F z=2.30, P=0.02) in Study 2. 

Consistent with the strength of the correlation, the linear regression line fit was best between 

plasma NMR and urinary NMRT/F, where the fewest poorly predicted outlying points were 

observed (6.6% of values had absolute residuals >0.3) while the NMRT/T regression line fit 

displayed the most predicted outlying points (11.0% of values had absolute residuals >0.3). 

This suggests the robust nature of the strength of the relationship between plasma NMR and 

two of the urinary NMRs, NMRT/F and NMRF/F, relative to that found for NMRT/T.

3.3 Glucuronidation as a possible mechanism explaining the poorer relationship between 
plasma NMR and urinary total 3HC/total COT (i.e. NMRT/T)

There is substantial individual variation in the rate of COT glucuronidation and resulting 

levels of COT-gluc (of note, CYP2A6 cannot further metabolize COT-gluc); this variation 

was first hypothesized by Taghavi and colleagues to be responsible for the poor relationship 

between plasma NMR and urinary NMRT/T(Taghavi et al., 2018). The addition of COT 

glucuronidation ratios (i.e. COT-gluc/TNE-10) to the NMRT/T model significantly improved 

the regression coefficients and the closeness of regression fit with plasma NMR (P<1e-8) 

(Figure 3A–B, Online supplementary Table S2). As expected (as COT-glucuronide is not 
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part of these NMRs), adding COT glucuronidation ratios to NMRF/F and NMRT/F (Online 

supplementary Table S2) did not alter the relationship to plasma NMR. The addition of 3HC 

glucuronidation ratios (i.e. 3HC-gluc/TNE-10) had a negligible and non-reproducible effect 

on the relationship between plasma NMR and urinary NMRT/T (Figure 3C, 3D). Thus, 

urinary NMRT/T appears to be a weaker predictor of plasma NMR, due at least in part to the 

inclusion of the highly variable COT glucuronide in the denominator. To further evaluate the 

role of COT and 3HC glucuronidation, UGT2B10 and UGT2B17 genotypes (the genes 

encoding the enzymes primarily responsible for COT and 3HC glucuronidation, 

respectively) were examined. Initially, we established that the recently published UGT2B10 
GRS(Murphy et al., 2014) explained 38.5% of the variation in the log-transformed 

UGT2B10 phenotype (COT-gluc/TNE-10) in study 1 (Online supplementary Figure S4). 

Consistent with the impact of the addition of COT glucuronidation ratios to the urinary 

NMR T/T model (above), the addition of the UGT2B10 GRS enhanced the regression fit of 

plasma NMR and urinary NMRT/T in both studies 1 and 2 (Online supplementary Figure 

S3), while neither 3HC glucuronidation (above) nor UGT2B17 genotypes did (Online 

supplementary Figure S3).

3.4 NMR prediction of nicotine clearance

Modelling nicotine clearance is important for understanding individual variability in nicotine 

intake, smoking behaviours and consequently risk for smoking-related diseases(Benowitz, 

2008; Tyndale and Sellers, 2001). As one of the clinical applications of the NMR is as a 

proxy for nicotine clearance, we directly assessed how the different NMRs performed in 

predicting nicotine clearance in a small pharmacokinetic study (Study 3, Online 

supplementary Table S1; Demographics, Online supplementary Table S4). As expected, 

despite the relatively small sample size of smokers in the study, plasma NMR predicted 

nicotine clearance in ad libitum smokers, explaining 41.1% of the variance in nicotine 

clearance (P<0.0001). Urinary NMRT/F and NMRF/F explained 37% and 35% of the 

variance in nicotine clearance, respectively (both Ps<1e-08) while urinary NMRT/T 

predicted nicotine clearance to a lesser extent (25% of variation explained; P=1.36e-06). The 

addition of COT glucuronidation ratios to the NMRT/T model increased the proportion of 

variation explained to 33% (Figure 4). Together this indicates that NMRT/T, compared to 

urinary NMRT/F, and NMRF/F, is more poorly related to both plasma NMR and nicotine 

clearance, and that this is likely due to the inclusion of COT-gluc in the denominator of this 

urinary NMRT/T.

3.5 Urinary NMRs are substantially altered by route of nicotine administration

In study 3, a total of 97 European, 59 African, and 68 Asian American smokers and non-

smokers received labeled oral nicotine acutely (Demographics, Online supplementary Table 

S4). Plasma NMR correlated with nicotine clearance as previously shown(Benowitz et al., 

2009b; Dempsey et al., 2004). However, acute oral nicotine provided substantially different 

8-hr urinary NMRs and composition of TNE components compared to ad libitum smoking 

(i.e. those derived potentially at steady state, using an inhaled (i.e. smoked) delivery), 

particularly for the components of the urinary NMRs (Figure 2C–E). For instance, in the 

total group (N=214), plasma NMR correlated relatively poorly with all the three urinary 

NMRs (NMRT/F R2=0.56; NMRF/F R2=0.56; NMRT/T R2=0.57); this was also observed for 
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the non-smokers (N=125, Online supplementary Table S5). This large difference in urinary 

metabolite composition of the urinary NMRs was further illustrated when examining the 

composition of the TNE derived from smoking vs. acute oral drug delivery within smokers 

(Figure 2C–E); overall, the portion of TNE which is excreted as each metabolite is different 

within the smokers during ad libitum smoking (Fig 2C) compared to acute oral labeled 

nicotine (Figure 2D). Together these findings suggest that all three urinary NMRs derived 

from a non-steady-state acute nicotine dose are poor predictors of plasma NMR and 

CYP2A6 activity.

4. Discussion

The current study is the first to evaluate the three urinary versions of the nicotine 

metabolism ratio (NMR) in different ethnicities, and by sex and heaviness of smoking, 

compared to plasma NMR and to nicotine clearance. In addition, this is the first study to 

provide mechanistic elucidation for the discrepancies between urinary NMRs. Variation in 

CYP2A6 activity, captured phenotypically by the NMR, is an important source of individual 

variation in smoking behaviors, smoking cessation outcomes, and risk for tobacco-related 

diseases. Measurement of the NMR in plasma is not always available. In urinary 

assessments of the NMR, we found that urinary NMRT/F was routinely the most highly 

related to plasma NMR and to nicotine clearance. Urinary NMRT/F is also the most 

enzymatically relevant, as it includes only free COT (i.e. the CYP2A6 substrate) in the 

denominator and the products of CYP2A6-mediated COT metabolism and subsequent 

metabolism (i.e. 3HC and 3HC-glucuronide) in the numerator. Our secondary analyses 

showed that the strength and order of the relationship between the urinary NMRs (i.e. 

NMRT/F > NMRF/F > NMRT/T) and plasma NMR remained consistent regardless of sex, 

ethnicity or heaviness of smoking.

Including COT-gluc in the denominator of the NMR (i.e. urinary NMRT/T) decreased the 

correlation with plasma NMR, resulting in a poorer prediction of the CYP2A6 activity 

phenotype. This poorer prediction was expected given that COT-gluc is not a substrate of 

CYP2A6. TNE is sometimes analyzed only following deconjugation (e.g. not as free and 

deconjugated), to save costs; this provides total analytes only and thus can only be used to 

calculate urinary NMRT/T; as described above, while useful, it is the least related to plasma 

NMR with the greatest possibility of further decline in utility as variation in conjugation 

increases. If using urinary NMRT/T considerable caution should be taken if the study 

investigates populations with known or unknown variation in COT glucuronidation or 

UGT2B10 or compares directly two populations with and without variation in COT 

glucuronidation or UGT2B10 (e.g. pregnant women to non-pregnant). For populations with 

rapid COT glucuronidation, such as pregnant women(Dempsey et al., 2002), it is likely that 

the ability of NMRT/T to accurately predict plasma NMR, CYP2A6 activity and nicotine 

clearance would be even poorer. The extent of COT glucuronidation, which accounts for up 

to 30% of recovered nicotine metabolites in urine(Benowitz et al., 1994; Byrd et al., 1992), 

also varies by ancestry: compared to individuals of European ancestry, African Americans 

have lower COT glucuronidation consistent with their higher frequency of non-functional 

variants in UGT2B10 such as the splice variant rs2942857. In the current study, the impact 

of the UGT2B10 GRS on the NMR relationships was apparent in both ethnicities. In 
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contrast, 3HC glucuronidation variation did not significantly alter the plasma to urinary 

NMR relationships, as expected, and consistent with previous studies(Zhu et al., 2013).

For urinary NMRF/F, relative to NMRT/F, the exclusion of 3HC-gluc from the numerator 

may have slightly underestimated total CYP2A6 activity, as 3HC can be further conjugated 

and excreted in urine as a glucuronide. The similarly high correlations between urinary 

NMRT/F and plasma NMR, and between urinary NMRF/F and plasma NMR, reflects the 

relatively small proportion of 3HC further metabolized to 3HC-glucuronide. However, 

caution should be used when utilizing urinary NMRF/F in populations known to have faster 

or more variable rates of 3HC glucuronidation, for example pregnant women(Dempsey et 

al., 2002).

The similarity of the plasma and urinary NMR relationship trends in Study 1 and 2 further 

supports that the observed effects are consistent regardless of ethnicity. The replication in 

Study 2 also provided additional confidence that regardless of how the analytes were 

measured (i.e. direct vs indirect LC/MS method), similar outcomes were observed. 

Moreover, consistent with prior data, glucuronidation ratios (represented here as COT-gluc/

TNE-10 and 3HC-gluc/TNE-10) were not influenced by gender, age, BMI, creatinine, or 

TNE(Wassenaar et al., 2015). Thus, differences in smoking quantity (i.e. TNE or CPD), 

gender, age, or BMI likely do not explain how variation in glucuronidation alters urinary 

NMRs.

We also assessed the ability of urinary NMR to predict plasma NMR via non-smoking, non-

steady-state routes involving acute nicotine administration. We found that all three urinary 

NMRs were relatively poorly related to plasma NMR following acute oral dosing. For the 

NMR to be stable and to reflect CYP2A6 activity, COT needs to be at steady state where 

3HC becomes formation dependent(Helen et al., 2012; Lea et al., 2006). Thus, the observed 

urine-plasma NMR relationship existed only where COT and 3HC were at steady state (i.e. 

during regular smoking) and not following acute oral nicotine(Mooney et al., 2008; St Helen 

et al., 2013; Tanner et al., 2015). This is important to note as acute oral nicotine and COT 

have been used previously to determine NMR(Dempsey et al., 2004). Differences in 

metabolic profiles from the different route of administration of nicotine (i.e. regularly 

inhaled vs. acute oral bolus) contributes to this lack of utility of urinary NMRs following 

acute oral dosing.

In conclusion, our data suggest that urinary NMRT/F is the best alternative to plasma NMR 

and nicotine clearance, followed by NMRF/F which may have reduced the ability to predict 

CYP2A6 activity in instances where the rate of 3HC-glucuronidation is increased (e.g. 

pregnancy). Overall, NMRT/T has the least utility, as it least reflects plasma NMR, CYP2A6 

activity, and nicotine clearance, and is biased substantially by variation in COT 

glucuronidation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Faster (versus slower) nicotine metabolisers differ in their smoking 

behaviours, treatment responses, and smoking-related health problems. 

Nicotine metabolism, mediated by CYP2A6, can be proxied by the nicotine 

metabolite ratio (NMR, 3-hydroxycotinine/cotinine).

• This study evaluated 1) the three widely used versions of the urinary NMRs 

(i.e. using free versus glucuronidated metabolite ratios) compared to plasma 

NMR, and nicotine clearance, among different ethnicities, sexes, and levels of 

smoking, and 2) elucidated the mechanism explaining their differences.

• The urinary NMR version using total cotinine had the least utility; it is 

influenced by variation in cotinine glucuronidation which can differ 

substantially (e.g. by ancestry). Understanding the limitations of the different 

urinary NMRs has important implications for clinical, epidemiological and 

policy research of numerous smoking behaviors and diseases.
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Figure 1. Plasma NMR correlates well with urinary NMRT/F (A) and NMRF/F (B), but not as 
well with NMRT/T (C) in light smoking African Americans of Study 1 (N=418).
Points with the poorest prediction, represented as higher absolute residuals (>0.3), shown in 

solid black circles. ‡ significant difference between Fisher’s transformed Pearson r values 

(P< 0.001 in 2-tailed test) of the plasma NMR to NMRT/T compared to other urinary NMRs.
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Figure 2. Nicotine metabolic profiles.
Compared to Study 1 (A), Study 2 (B) smokers had higher proportions of nicotine excreted 

as COT-gluc. Metabolic profile of nicotine differed between varying sources of nicotine in 

Study 3; ad libitum smokers (C), smokers (D) and non-smokers (E) after 2 mg oral dose of 

deuterium-labeled nicotine. Data shown as mean percent of each metabolite from the 

unadjusted total nicotine equivalents of nicotine + 9 metabolites (TNE-10) for Studies 1 (A) 

and 2 (B) while only nicotine + 6 metabolites (TNE-7) were available for Study 3 (C-E). 

Clockwise representation: cotinine (COT), cotinine glucuronide (COT-gluc), trans-3’-

hydroxycotinine (3HC), trans-3’-hydroxycotinine glucuronide (3HC-gluc), Nicotine, 

Nicotine- glucuronide, nicotine N-oxide (NNO), cotinine N-oxide (CNO), norcotinine 

(NCOT), and nornicotine (NNIC).
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Figure 3. Variation in COT glucuronidation contributed to the poorer relationship of plasma 
NMR with urinary NMRT/T.
Regressions of plasma NMR on urinary NMRT/T with and without addition of COT 

glucuronidation ratios in Study 1 (A), and replicated in Study 2 (B). Regressions of plasma 

NMR on urinary NMRT/T with and without addition of 3HC glucuronidation ratios in Study 

1 (C), and Study 2 (D). Difference from base model was tested in ANOVA Chi-Square tests 

for nested models (P<1e-8 ‘****’, <0.001 ‘***’, <0.01 ‘**’, <0.05 ‘*’). # indicates a >10% 

change in regression estimates.
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Figure 4. NMR relationship trends extend to nicotine clearance (ad libitum smokers in study 3).
Plasma NMR is a better predictor of nicotine clearance (A), followed by urinary NMRT/F 

(B), urinary NMRF/F (C), and urinary NMRT/T (D). COT glucuronidation effects 

significantly enhance the predictive ability of urinary NMRT/T for nicotine clearance in 

smokers in study 3 (N=79). Regression models were sequentially compared to base models 

in ANOVA Chi-Square tests for nested models (P<1E-8 ‘****’, <0.001 ‘***’, <0.01 ‘**’, 

<0.05 ‘*’). # indicates a >10% change in regression estimates.
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Table 1.

Demographics and baseline characteristics of smokers of Study 1 and 2 (shown as mean ± SD or n (%))

Characteristic Study 1 (N=418) Study 2 (N=136)

Age in years
a 46.4 ± 11.6 42.8 ± 11.6

Body Mass Index (kg/m2)
a 31.5 ± 7.9 26.9 ± 4.8

Ethnicity
b

 African Ancestry 415 (99.3) 3 (2.2)

 European Ancestry - 108 (79.4)

 Other 3 (0.7) 25 (18.4)

Females
b 281 (67.2) 48 (35.3)

Cigarettes/day (CPD)
a 8.0 ± 2.2 19.3 ± 8.9

Plasma Nicotine Metabolite Ratio (NMR) 0.39 ± 0.26 0.40 ± 0.21

Urine NMR Total3HC/FreeCOT
c 4.57 ± 3.98 5.22 ± 4.19

Urine NMR Free3HC/FreeCOT 3.72 ± 3.07 4.10 ± 3.13

Urine NMR Total3HC/TotalCOT
a 2.76 ± 2.22 1.37 ± 1.13

TNE-10 (nmol/mg creatinine)
a

53.6
d
 ± 52.5

311.3 ± 246.3

SD = Standard Deviation; TNE-10 = Total Nicotine Equivalents of nicotine + 9 metabolites adjusted for creatinine

a
Significant difference between studies (P<0.005) derived from the Mann-Whitney U test.

b
Significant difference between studies (P<0.005) derived from the Chi-Square test.

c
Significant difference between studies (P<0.05) derived from the Mann-Whitney U test.

d
There was 1 sample missin creatinine.
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