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A Symbolic-Connectionist Model of Relation Discovery 
 

Leonidas A. A. Doumas (adoumas@psych.ucla.edu) 
John E. Hummel (jhummel@psych.ucla.edu) 

Department of Psychology, University of California, Los Angeles 
405 Hilgard Ave. 

Los Angeles, CA 90095-1563 
 

Abstract 
 

Relational reasoning is central in human cognition.  
Numerous computational models address the component 
processes of relational reasoning, however these models 
require the modeler to hand-code the vocabulary of relations 
on which the model operates.  The acquisition of relational 
concepts remains poorly understood.  We present a theory of 
relation discovery instantiated in a symbolic-connectionist 
model, which learns structured representations of attributes 
and relations from unstructured distributed representations of 
objects by a process of comparison, and subsequently refines 
these representations through a process of mapping-based 
schema induction.   

 
Keywords:  relations, learning, neural network, symbolic 
processing, structured representations 
 

Relational Reasoning 
Virtually every conscious thought you have expresses a 

relation.  From the mundane, like “I’m late for work”, to the 
sublime, like Cantor’s proof that the cardinal number of the 
real numbers is greater than that of the integers, we are 
constantly representing and reasoning with relations.  
Relational thinking is so commonplace it is easy to take for 
granted, but the ability to form and manipulate relational 
representations appears late in human development (Gentner 
& Rattermann, 1991; Smith, 1989), and is a late 
evolutionary development that appears to distinguish human 
cognition from that of other animals (Holyoak & Thagard, 
1995; Thompson & Oden, 2000).   

An important theme that has emerged from the study of 
relational thinking – both empirical and theoretical – is that 
the kinds of problems a person (or model) can solve depend 
critically on what the person (or model) can and does 
represent.  However, little empirical work, and almost no 
theoretical work, has addressed the problem of how we 
acquire relational concepts.  Models based on relational 
representations (e.g., Falkenhainer, Forbus, & Gentner, 
1989; Hummel & Holyoak, 1997, 2003) have made 
important strides elucidating the nature of relational thought.  
However, these models are all granted a vocabulary of 
relational representations by the modeler; they do not learn 
the relations they need for themselves.  Although they 
address our capacity to manipulate relational representations, 
they do not address the question of where these 
representations come from in the first place.   
 

Relations are Hard to Learn 
Learning relational concepts is difficult for two reasons.  

The first begins with the very definition of a relation: A 
relation is a property that holds over a collection of 
arguments; it is never observable in a single object, so 
learning relations is vastly underconstrained by the 
examples from which we learn them.  Take, for example, 
the relation same-shape (x, y).  When universally quantified 
it takes any shape as input, and therefore its truth-value (i.e., 
whether x and y are the same shape) is completely 
uncorrelated with the specific visual features of any shapes 
(or any pair of shapes for that matter).  As a result, it cannot 
be learned from the simple covariation of visual features.   

The second difficulty stems from the properties of 
relational representations.  Relational representations are 
structure sensitive and semantically rich (Hummel & 
Holyoak, 1997).  In a relational expression the meaning of 
the individual relational roles and their fillers is invariant 
with their arrangement in the expression (i.e., they are 
independent), but the meaning of the expression as a whole 
is a function of both the elements that compose the 
expression and their arrangement (i.e., the bindings of fillers 
to relational roles). Consider the statements chase (Bill, Joe) 
and chase (Joe, Bill).  We can appreciate that they mean 
different things (even though they are composed of the same 
elements) because we can appreciate that the bindings of 
objects to relational roles is reversed in the two statements.  
We can also appreciate that the individual elements chase, 
Joe, and Bill, mean the same things in both statements 
(despite the fact that they are in different compositions).  
Additionally, we can cast these elements in novel 
configurations, for example generalizing the chase relation 
to novel arguments (e.g. chase (spoon, sprocket)).  Thus, a 
relational concept must be represented independently of the 
examples from which it is learned, must be able to take 
arguments from both within and outside the set on which it 
was learned (i.e., we must be able to extrapolate the relation 
to novel values), and must specify the bindings of its 
arguments to its relational roles explicitly.   

Relational representations also explicitly specify the 
semantic content of objects and relational roles (e.g., the 
lover and beloved roles of love (x, y) or the liker and liked 
roles of like (x, y)): We know what it means to be a lover, 
and that knowledge is part of our representation of the 
relation itself.  Consequently, it is easy to appreciate that the 
patient (i.e., killed) role of murder (x, y) is like the patient 
manslaughter (x, y), even though the agent roles differ (i.e., 
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the act is intentional in the former case but not the latter); 
and the agent role of murder (x, y) is similar to the agent 
role of attempted-murder (x, y), even though the patient 
roles differ.   

A solution to the problem of learning representations of 
relations that have all these properties has proven elusive.  
Gasser and Colunga (2001) have made important strides 
toward modeling the learning of relational concepts.  
However the representations this model forms do not 
maintain independence of relations and arguments while 
explicitly specify the bindings of specific roles to specific 
fillers.  Bindings are carried by connections between units, 
and connections only implicitly represent bindings (von der 
Malsburg, 1981/1994).  Moreover, the model learns 
relations by learning correlations of specific feature values 
with relational labels.  As noted above, one of the 
difficulties of learning truly relational representations is that 
they can be extrapolated to novel arguments and are, 
therefore, not learnable as covariations among features. 
 
Constraints on Discovering Relations 

Given these considerations, what kinds of cognitive 
operations can lead to the discovery of new relational 
concepts?  One step toward constraining this otherwise 
deeply underconstrained problem is to choose an 
appropriate form of knowledge representation. One such 
representation is a role-filler binding scheme, in which 
relational roles and their arguments are represented 
explicitly and bound together to form role-filler sets (much 
like collections of single-place predicates).  Collections of 
role-filler sets are linked together to form whole relational 
structures. For example, the representation of loves (John, 
Mary) consists of the representation of the lover role bound 
to John (lover(John)) and the beloved role bound to Mary 
(beloved(Mary)) linked together to form the structure 
(lover(John)+beloved(Mary)) (see e.g., Doumas & Hummel, 
in press).   

Role-filler binding systems provide a natural constraint on 
the problem of relation discovery by reducing relational 
roles to single place predicates.  As a result, the problem of 
learning relations reduces, at least in principle, to the 
problem of learning single-place predicates (i.e., object 
properties) and then linking those predicates to form 
complete relational structures. 

Given this, how might we learn single-place predicates 
(i.e., object properties)?  An important theme that has 
emerged in the literature on relational reasoning is that 
comparison plays a central role in all forms of relational 
reasoning (see Gentner, 1983, 2003; Holyoak & Thagard, 
1995).  A primary hypothesis motivating the present 
research is that comparison may also play a central role in 
the discovery and predication of new relations.  The reason 
is that comparison, by putting objects into direct contrast, 
might serve to highlight shared properties.  By revealing 
shared attributes of otherwise different-seeming systems, 
comparison may bootstrap the discovery and explicit 
representation of object properties and subsequently link 

sets of shared properties together to form whole relational 
structures.   

For example, consider what happens when a child learns 
the property “red” by comparing an apple to a toy fire 
engine.  Assume that when the apple and fire engine are 
compared, any features they share will be highlighted (i.e., 
get more input than unshared features).  As apples and fire-
engines are both red, perhaps the feature “red” gets most 
active.  If the child can predicate the highlighted feature (i.e., 
attach a predicate to the feature “red”), she will have formed 
an explicit representation the property “red”.  If she can then 
bind that property to the apple (or fire engine) she will have 
explicitly predicated the property of “red” about the apple 
(or fire engine).  Consistent with this idea, several previous 
studies have demonstrated that structure mapping bootstraps 
the induction of abstract relational schemas (e.g., Gick & 
Holyoak, 1983; Ratterman & Gentner, 1998), and that 
comparison helps people appreciate what lower-order 
relations might be relevant to a specific task (Kotovsky & 
Gentner, 1996; Namy & Gentner, 2002; Sandhofer & Smith, 
2001; Yamauchi & Markman, 1998). 

In order for a system to perform comparison-based 
predication, its representation of roles and fillers must share 
a common basis (i.e., role and filler representations should 
share the same pool of features).  To illustrate, consider our 
example from above.  Initially “red” is an implicit feature of 
both the apple and the fire engine.  When they are compared, 
the feature “red” is abstracted to a new representation (i.e., a 
new unit learns a connection to this feature), but the same 
feature codes “red” in both cases.  If the representation of a 
property in an explicit form (i.e., as a predicate that takes an 
object as an argument) was coded by a different set of 
features than the representation of that property in a holistic 
form (i.e., as a feature of an object), then the system could 
not learn explicit representations by abstracting features out 
of holistic representations: The representation of a property 
as an implicit feature of an object would have nothing in 
common with the explicit representation of that property.   

We now present a theory of relation discovery based on 
these constraining assumptions embodied in a computer 
simulation called DORA (Discovery Of Relations by 
Analogy). 
 

The DORA Model 
Representational Structure 
 Representations in DORA are an extension of those in 
Hummel and Holyoak’s (1997, 2003) LISA.  Like LISA, 
DORA represents propositions in a hierarchy of distributed 
and localist codes (see Figure 1).  At the bottom of the 
hierarchy, semantic units code for the features of relational 
roles and their fillers in a distributed fashion. At the next 
level are localist token units that code for specific relational 
roles and objects.  For example, the proposition “Bill chases 
Larry”, would be represented (in part) by units for the 
relational roles chaser and chased and the objects Bill and 
Larry (see Figure 1).  Bill would be connected to a set of 
semantic units denoting his features (e.g., “adult”, “male”, 
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“police-officer”) and Larry to a set of semantic units 
denoting his features (e.g., “adult”, “male”, “criminal”).  
Similarly, the chaser and chased roles would be connected 
to the semantic units denoting their features.  Semantically 
related objects and relational roles (e.g., chaser and pursuer) 
share many semantic units, making their semantic similarity 
explicit.  Above the role and object units role-binding (RB) 
units encode the bindings of specific roles to specific fillers.  
Continuing our example, one RB unit would code for the 
binding of Bill to the chaser role and another would code 
for the binding of Larry to the chased role.  At the top of the 
hierarchy proposition (P) units bind sets of role-filler 
bindings into complete relational structures. 
 
Role-Filler Binding 
 The hierarchy in Figure 1 represents a proposition in 
DORA’s long-term-memory (LTM).  When a proposition 
becomes active (i.e., enters working memory; WM) DORA 
uses a form of asynchronous binding (see Love, 1999) to 
bind roles to their fillers: Bound role-filler pairs fire in 
direct sequence, which serves to dynamically bind roles to 
fillers in WM, and also keeps the representations of roles 
and fillers distinct for the purposed of processing.  To 
illustrate, in order to bind Bill to the chaser role and Larry 
to the chased role (and so represent chase (Bill, Larry)), the 
units corresponding to the chaser role fire directly followed 
by the units corresponding to Bill (see Figure 2a and b), 
then the units for the chased role fire directly followed by 
the units for Larry (Figure 2c and d).  A system that is 
sensitive to couplets (or pairs) of activation can use this 
information to represent the bindings of Bill to the chaser 
role and Larry to the chased role.   
 
Comparison Based Predication 
 Because DORA uses a common pool of semantic units to 
code the features of both roles and objects, it can learn 
predicates by comparing objects.  Propositions in DORA are 
divided into two sets, a driver and a recipient set (see 
Hummel & Holyoak, 1997).  Token units in the driver 
become active and pass activation to their semantics.  
Through the shared semantic pool, units in the recipient 
propositions become active and respond to these patterns of 
activation.  Using a mapping algorithm adapted from LISA, 
token units of the same kind (e.g., role/filler, RB) that are 
active at the same time in both the driver and recipient 
develop excitatory mapping connections to one-another.  
These connections represent existing mappings and 
constrain the discovery of future mappings.   
 In DORA comparison is accomplished via this mapping 
process.  When propositions are compared corresponding 
units develop excitatory mapping connections.  Consider the 
example of our child learning the property “red”.  Because 
the apple and the fire engine were compared they are 
mapped.  Thus, an excitatory connection develops between 
them and one tends to activate the other (Figure 3a).  Both 
units also activate their semantic features. Shared semantics 
receive twice as much input and therefore become twice as  

 
 

Figure 1.  Illustration of a proposition in DORA.  Triangles 
are used to denote roles and circles to denote objects for 
clarity.  In DORA, the same types of units code both roles 
and fillers. 
 

 
 

Figure 2.  Role-filler binding by asynchrony of firing in 
DORA.  The chaser role fires (a), followed by Bill, the 
object bound to that role (b).  Then, the chased role fires (c), 
followed by Larry, the object bound to that role (d). 
 

 
 
Figure 3.  Comparison based predication. (a) An apple and a 
fire-engine are compared.  (b) Semantics shared by both 
objects become more active than unshared semantics.  (c) A 
new unit is recruited and learns connections to the active 
semantics in proportion to their activation.  (d) The new unit 
is bound to the apple and to the fire-engine via RB units.  
Solid lines = stronger connections, dashed lines = weaker 
connections.  Gray = more active units.   
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active as unshared semantics (Figure 3b).  When a pair of 
mapped roles or fillers fires, DORA recruits a unit to learn 
connections to the active semantics, where the learned 
weights are proportional to the semantic units’ activations 
(Figure 3c).  The new unit can then be bound to the 
role/filler units that were compared to create it via an RB 
unit (Figure 3d).  Thus the shared properties of the apple 
and the fire-engine (here the properties “red” and “shiny”) 
are explicitly predicated about these objects. 
 We use the example of learning the predicate red only 
because it is easy to explain.  Applied to more complex 
arrangements of objects, the very same operations permit 
DORA to learn more complex relational roles (e.g., has-size 
(x), more-high-than-something (x), beside-something (x)) 
that can be used to construct complex relational 
representations (e.g., higher (x, y), beside (x, y); see From 
Predicated Object Attributes to Whole Relations and 
Simulations sections, and Doumas et al., in prep.).   

 
Representation Refinement via Schema Induction 
 Consistent with numerous findings in the developmental 
literature (for a review see Smith, 1989), new predicates are 
initially very context dependent.  Most compared objects 
share a number of extraneous features (e.g., the apple and 
the fire engine were both “shiny” and “red”).  To refine 
predicate representations DORA uses its systematic 
asynchronous binding routine coupled with an adaptation of 
LISA’s schema induction routine.   

When propositions are compared corresponding elements 
are mapped.  If, for example, our child compares two 
representations of explicitly red objects the red predicates 
will map, as will their fillers (Figure 4a).  Because roles fire 
in direct sequence with their fillers, the mapped predicate 
representations fire out of synchrony with their fillers. 
Semantics shared by the two red predicates will become 
twice as active as unshared semantics.  Using a simple self-
supervised learning algorithm (Hummel & Holyoak, 2003) 
token units are recruited to match active mapped pairs in the 
driver and recipient propositions.  So, a role/filler unit will 
be recruited to learn connections to the active semantics 
(encoding the overlap of the two red predicates; Figure 4b).  
When the mapped objects fire, a second role/filler unit will 
be recruited to learn connections their shared semantics.  In 
addition, an RB unit will be recruited to encode the binding 
of the two new role/filler units (Figure 4c).  Thus, a refined 
and schematized representation of the property red is 
formed.   
 
From Predicated Object Attributes to Whole 
Relations 
 DORA provides a number of ways to learn whole 
relational representations (Doumas et al., in prep.).  One of 
the most fundamental involves learning relations by 
mapping sets of co-occurring role-filler sets.  If multiple 
role-filler sets enter DORA’s WM together, it can map them, 
as a set, onto other co-occuring role-filler sets it has 

experienced.  For example, if DORA had previously 
experienced that a car was big, and a matchbook small, and 
then it noticed a train was big and a mouse was small, it 
could map big(train) to big(car) and small(mouse) to 
small(matchbook).  This processes leads to a distinct pattern 
of firing over the units composing each set of propositions 
(namely, the RB units of big(train) fire out of synchrony 
with those of small(mouse) while the RB units of big(car) 
fire out of synchrony with those of small(matchbook)).  This 
pulsing activation over sets of units acts as a signal to link 
oscillating RB units with a P unit.  This process results in a 
rudimentary (and context dependent) representation of a 
relation (here bigger-than (train, mouse)).  Subsequently, 
the same schema induction routine that serves to refine 
predicate representations serves to refine whole relation 
representations, producing context independent 
representations of whole relations.     
 

 
 
Figure 4.  Asynchronous schema based refinement.  (a) The 
red+apple role-filler binding maps to the red+book role-
filler binding (semi-dashed lines indicate mapping 
connections).  (b) The red predicates activate their 
semantics (darker gray indicates more activity).  New units 
are recruited to respond to the active predicates and the 
active RB (full lines indicate stronger connections, dashed 
lines weaker connections).  (c) The apple and book objects 
become active, activating their semantics.  A new object 
unit is recruited to respond to the newly active objects. 
 

Simulations  
Smith (1984) tested children’s ability to match items 

based on identicality, shared properties, and shared relations.  
The experimenters each selected two object based on 
identicality (e.g., both selected two identical items), a shared 
property (e.g., both selected two red items of different 
types), or a shared relation (e.g., experimenter 1 chose two 
red items of different size and shape, and experimenter 2 
chose two blue items of different size and shape).  The child 
then had to select two items based on the same rule as that 
used by the experimenters.  They found that two, three, and 
four-year olds could select items based on identicality, but 
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only three and four-year olds could consistently select items 
based on shared properties, and only four-year olds could 
consistently select items based on shared relations. 

DORA predicts this exact trajectory.  Beginning with 
holistic object representations, DORA abstracts out and 
predicates representations of object properties (i.e., single 
place predicates).  It then concatenates sets of single-place 
predicates to form whole relations.  When DORA only 
represents objects, it can match based on over-all featural 
similarity (e.g., it can match two red balls because they 
share many semantic features), like the 2 year-olds in 
Smith’s study.  Once DORA has predicated object 
properties, it can match objects based on their shared 
properties (e.g., it can match the propositions red (x) to red 
(y) based on the similar predicates), like the 3 year-olds in 
Smith’s study.  When DORA learns relations by 
concatenating single-place predicates it can match objects 
based on relational similarity (e.g., it can match the 
propositions same-color (x, y) with same-color (a, b) based 
on the similar relations), like the 4 year-olds in Smith’s 
study.  Importantly, DORA must follow this trajectory.  
DORA learns structured representations of object properties 
from unstructured representations of objects, and uses them 
to form representations of relations. 
 We also used DORA to simulate the findings of Smith, 
Rattermann, & Sera (1988).  In this study children ages 4-5 
were presented with pairs of toy butterflies at three different 
sets of heights:  (1) One butterfly at one foot the other at 
two feet; (2) one at three the other at four feet; (3) one at 
five and the other at six feet.  The child was asked whether 
one of the two butterflies was higher (or lower) and if so 
which one.  On consistent trials both butterflies were high 
(or low) and the child was asked whether one was higher (or 
lower).  On neutral trials both butterflies were in the middle 
(at three and four feet) and the child was asked whether one 
was higher or one was lower.  On the inconsistent trials both 
butterflies were high (or low) and the child was asked 
whether one was lower (or higher).  The 4 year-olds 
performed well on the consistent trials, but progressively 
worse on neutral and inconsistent trials.  The 5 year-olds 
performed well on all trial types (see Table 1). 
 DORA can learn to appreciate variations in the magnitude 
of quantifiable properties (i.e., it learns the relation more (x, 
y); Doumas et al., in prep.), so in this simulation if DORA 
predicated a quantifiable property (e.g., height) about two 
objects it was allowed to apply the more (x, y) relation to the 
role-filler sets (i.e., to represent that one of the two objects 
had more of that property than the other).  We held the 
representation of the problem constant across “age” in the 
driver. For all trial types a proposition expressed that one 
butterfly had more height than the other (more-
height(butterfly1, butterfly2), see below). For the consistent 
and inconsistent trial types two additional propositions 
expressing that butterfly1 and butterfly2 were high or low 
(e.g., high(butterfly1) and high(butterfly2)) were included.  
We varied the proportion of knowledge in LTM by “age”.  
We simulated four year-olds with 30 value-dependent 

representations (e.g., higher with semantics of “high” and 
lower with semantics of “low”) and 10 value-independent 
representations of height (e.g., representations of height 
without “high” or “low” semantics).  We simulated five-
year olds with 30 value-dependent and 30 value-
independent representations of height.  At both “ages” we 
also included 30 random propositions about butterflies. 
 This distribution of propositions in LTM was chosen as it 
mirrors DORA’s learning trajectory.  Starting with 
representations of objects with semantics like as “high” and 
“low” and “has-height” it learns single place explicit 
representations of high and low.  Applying the more relation 
to pairs of high and low items produces loaded 
representations of higher and lower (i.e., higher things that 
are “high” and lower things that are “low”).  As DORA 
compares high items to low items it begins to extract less 
value-laden representations of the abstract property of 
height (i.e., has-height (x)).  Applying the more relation to 
pairs of items with the value-independent representation of 
height predicated about them produces value free 
representations of higher and lower (i.e., more-height (x, y)).  
What is important here is that DORA must learn the value-
dependent representations first because it learns value-
independent representations from them. 
 We had DORA retrieve propositions from LTM using a 
retrieval algorithm based on the LISA model (Hummel & 
Holyoak, 1997) and then map retrieved propositions onto 
the propositions in the driver.  The proposition that mapped 
most strongly to a driver proposition was selected as the 
winner and DORA answered the question which butterfly is 
higher/lower using this proposition (e.g., if it mapped a 
representation of higher onto a predicate that took butterfly1 
as an argument it answered butterfly1 in response to the 
question “which is higher” and guessed in response to the 
question “which is lower”).  Our results very closely 
matched the empirical data (see Table 1).  Because DORA 
is a process model, our interest is with qualitative fits of 
data.  Importantly, the qualitative patterns we report are very 
robust with respect parameter values. 
 

Table 1. 
 

        Consistent  Neutral  Inconsistent 
Children age 4   75.1     73.8     57.5 
DORA age 4    67.3     61.4     53.5 
Children age 5   87.6     86.5     81.5 
DORA age 5    88.1     88.9     82.4 
 
 We have also used DORA to simulate a number of other 
empirical findings (Doumas et al., in prep.). 
 

Discussion 
We have presented a theory of predication and relation 

discovery embodied in DORA, a computational model.  
DORA provides a systematic account of how object 
properties and relational concepts can be learned from 
examples.  The primary hypothesis motivating DORA is 
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that the same cognitive operations that exploit relational 
representations (namely, analogical mapping and schema 
induction) are fundamental to their discovery.  Our account 
rests on a set of core theoretical claims.  First, representing 
knowledge in a role-filler binding scheme reduces the 
problem of relational discovery to the problem of 
predicating object properties and linking them to form full 
relational structures.  This makes the problem of relation 
discovery tractable.  Second, comparison coupled with 
intersection discovery can bootstrap the predication of 
object properties.  Comparison-based predication requires 
that roles and objects share a common representational basis, 
and that the mechanism for binding roles to fillers not only 
explicitly represents role-filler bindings, but keeps bound 
roles and fillers distinct for the purposes of processing.   

Starting with holistic representations of objects, DORA 
learns structured representations of object properties (i.e., 
single-place predicates) and relations (i.e., multi-place 
predicates).  In so doing it provides a natural account of 
children’s progression from holistic to more structured 
knowledge representations.  One limitation of DORA is that 
currently it does not speak to the question of where the 
semantic features of objects come from in the first place.  (It 
is worth noting that DORA is not alone in this respect.  All 
computational models are forced to assume some population 
of primitives.)  A complete account of relation discovery 
should address both how structured representations arise 
from holistically represented collections of primitive 
features, as well as the origins of those primitive features.  
DORA provides a solution to the first of these problems, 
and we are currently working to generalize the same 
routines to account for the second. 
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