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ABSTRACT
We present a counterexample-guided inductive synthesis ap-
proach to controller synthesis for cyber-physical systems sub-
ject to signal temporal logic (STL) specifications, operating
in potentially adversarial nondeterministic environments. We
encode STL specifications as mixed integer-linear constraints
on the variables of a discrete-time model of the system and
environment dynamics, and solve a series of optimization
problems to yield a satisfying control sequence. We demon-
strate how the scheme can be used in a receding horizon
fashion to fulfill properties over unbounded horizons, and
present experimental results for reactive controller synthesis
for case studies in building climate control and autonomous
driving.

1. INTRODUCTION
We are concerned with controlling hybrid systems to satisfy
desired properties despite a potentially adversarial environ-
ment; the provided solution must be robust to environment
actions with regards to which we are uncertain. Recently,
temporal logics have proven a valuable tool for controller
synthesis, because they provide a compact mathematical for-
malism for specifying desired behaviors of a system. There
is a rich body of literature containing algorithms for verifi-
cation and synthesis of systems obeying temporal logic spec-
ifications. Approaches can be broadly categorized based on
whether they utilize a discrete abstraction of the system, and
whether the environment is assumed to be deterministic.

Approaches that utilize a discrete abstraction enable con-
struction of discrete supervisory controllers, which have suc-
cessfully been used to construct hybrid controllers for do-
mains including robotics and aircraft power system design;

these include approaches that deal with deterministic [17,
23] as well as adversarial environments [10, 27]. In contrast,
approaches that eschew discrete abstractions include those
based on sampling-based methods [15], and mixed-integer
linear programming encodings of temporal logic specifica-
tions[16, 14, 18, 26, 24]. The latter have thus far been con-
fined to the realm of deterministic operating environments,
and it is this gap that we close with the current work.

We adopt a counterexample-guided inductive synthesis [25]
approach to synthesize a controller satisfying reactive spec-
ifications. Inductive synthesis refers to the automated gen-
eration of a system from input-output examples, using each
new example to iteratively refine the hypothesis about the
system until convergence. In Counterexample-Guided In-
ductive Synthesis (CEGIS), the examples are mostly coun-
terexamples discovered while trying to verify correctness of
the current guess. CEGIS thus relies primarily on a valida-
tion engine to validate candidates produced at intermediate
iterations, which can produce counterexamples for use in
the next iteration. Automated synthesis of systems using
CEGIS and the closely related Counterexample-Guided Ab-
straction Refinement (CEGAR) paradigm has been widely
studied in various contexts [6, 2, 13].

The specification language adopted here is Signal Temporal
Logic (STL) [21], which allows the specification of temporal
properties of real-valued signals, and has been applied to
the analysis of hybrid dynamical systems from various ap-
plication domains such as analog and mixed signal circuits,
systems biology or Cyber-Physical Systems (CPS). STL has
the advantage of naturally admitting a quantitative seman-
tics which, in addition to the binary answer to the question
of satisfaction, provides a real number indicating the quality
of the satisfaction or violation. Such quantitative semantics
have been defined for timed logics e.g. Metric Temporal
Logic (MTL) [11] and STL [8] to assess the robustness of
the systems to parameter or timing variations. We exploit
this ability to compute the robustness of satisfaction in the
validation engine for our CEGIS approach to reactive syn-
thesis.

A key advantage of temporal logic over, e.g., domain-specific



languages based on propositional logic, is that it allows the
expression of properties of infinite traces. We would there-
fore like to synthesize controllers that can run indefinitely,
and satisfy infinite-horizon properties. Receding Horizon
Control (RHC) [22] is based on iterative, finite horizon, dis-
crete time optimization of a model of the plant: at time
t, the current plant state is observed, and an optimal con-
trol strategy is computed for a finite time horizon in the
future, [t, t + H]. The first step of the computed strategy
is implemented, the plant state is then sampled again, and
new calculations performed on a horizon of size H starting
from the new current state. This not only reduces computa-
tional complexity, but improves robustness with respect to
exogenous disturbances and modeling uncertainties by al-
lowing new information to be incorporated as it becomes
available [22].

We have already made the connection between Receding
Horizon Control (RHC) and control synthesis from STL
specifications in previous work[24], where we specify de-
sired properties of the system using a STL formula, and
synthesize control such that the system satisfies that speci-
fication, while using a receding horizon approach. We pre-
sented automatically-generated Mixed Integer Linear Pro-
gram (MILP) encodings for STL specifications, extending
the Bounded Model Checking (BMC) paradigm for finite
discrete systems [5] to STL. These encodings can be used
not only to generate open-loop control signals that satisfy
finite and infinite horizon STL properties, but also to gener-
ate signals that maximize quantitative (robust) satisfaction.
In this paper, we show how the robustness-based encoding
can be used to produce a validation engine that synthesizes
counterexamples to guide a CEGIS approach to reactive syn-
thesis.

Abbas et al. [1] exploit the quantitative semantics of Metric
Temporal Logic (MTL) to design a framework for specification-
guided testing of stochastic cyber-physical systems. Lever-
aging results from stochastic optimization, they frame the
verification of properties on such systems as a global opti-
mization problem of minimizing the expected robustness of
satisfaction. While we deal with nondeterministic systems
rather than stochastic systems, our CEGIS scheme uses a
similar idea when finding an adversarial environment input
that minimizes the robustness of satisfaction. Bartocci et
al. [3] also apply the definition of robustness to a stochas-
tic model and formulate an optimization problem over sys-
tem parameters in order to maximize the average robust-
ness of satisfying a temporal logic formula. Their work can
be viewed as synthesis based on robustness for system pa-
rameters, but involves approximating the distribution of the
robustness score for the stochastic system being considered.

Receding horizon control that satisfies temporal logic spec-
ifications in adversarial settings has been considered before
in the context of Linear Temporal Logic (LTL) [27], where
the authors propose a scheme that makes use of discrete ab-
stractions to synthesize supervisory controllers for specifica-
tions in the GR(1) subset of LTL. In that work, feasibility
of the global specification is determined via symbolic checks
on a series of pre-defined smaller problems, and strategies
extracted as needed. In contrast, we do not require an a pri-
ori defined finite set of sub-problems. Our approach also ex-

tends synthesis capabilities to a wider class of temporal logic
specifications and environments than [12, 4], and avoids po-
tentially expensive computations of a finite state abstraction
of the system as in [7] and [27].

Contributions: The key novel contribution of this paper is
a CEGIS approach to controller synthesis for cyber-physical
systems subject to signal temporal logic (STL) specifica-
tions, operating in potentially adversarial nondeterministic
environments. Specific features of our approach include:

• We leverage our previously-proposed encoding of STL
specifications as mixed integer-linear constraints on
the variables of a discrete-time model of the system
and environment dynamics [24], and solve a counterexample-
guided series of optimization problems to yield a sat-
isfying control sequence.

• Our scheme can be used in a receding horizon fashion
to fulfill properties over unbounded horizons.

• We present experimental results using a case study of
controller synthesis on a model of a Heating Ventila-
tion and Air Conditioning (HVAC) system with non-
deterministic elements in the environment, and an au-
tonomous driving scenario in the presence of adver-
sarial agents; simulation results in these two domains
illustrate the effectiveness of our methodology.

Our method is a fundamentally novel approach to reactive
synthesis for hybrid systems, different from most current
methods, which often rely on model transformations (e.g.,
abstraction and discretization).

2. PRELIMINARIES
We consider a continuous-time system Σ of the form

ẋ = f(x, u, w)

where x ∈ X ⊆ (Rnc × {0, 1}nl) are the continuous and
binary/logical states, u ∈ U ⊆ (Rmc × {0, 1}ml) are the
(continuous and logical) control inputs, w ∈ W ⊆ (Rec ×
{0, 1}el) are the (possibly adversarial) external inputs or
disturbances, and x0 ∈ X is the initial state. We will refer
to w as the environment input.

Given a sampling time ∆t > 0, we assume that Σ admits a
discrete-time approximation Σd of the form

x(tk+1) = fd(x(tk), u(tk), w(tk)) (1)

where for all k > 0, tk+1 − tk = ∆t. A run

ξ = (x0u0w0)(x1u1w1)(x2u2w2)...

of Σd is a sequence where xk = x(tk) ∈ X is the state of
the system at index k, and for each k ∈ N, uk = u(tk) ∈ U ,
wk = w(tk) ∈W and xk+1 = fd(xk, uk, wk). Given x0 ∈ X,
u ∈ Uω and w ∈ Wω, denote by ξ(x0,u,w) the run gen-
erated following equation (1). The corresponding sequence
of states, which we also call the discrete-time signal, or sim-
ply signal, is denoted by x = x0x1 . . .. We assume that
given an initial state x0 ∈ X, a control input sequence
uN = u0u1u2 . . . uN−1 ∈ UN and a sequence of environ-
ment inputs wN = w0w1w2 . . . wN−1 ∈ WN , the resulting



horizon-N run of a system modeled by equation (1), which
we denote by

ξ(x0,u
N ,wN ) = (x0u0w0)(x1u1w1)(x2u2w2)...(xNuNwN ),

is unique. In addition, we introduce a generic cost function
J(ξ(x0,u,w)) that maps (infinite and finite) runs to R.

2.1 Signal Temporal Logic
We consider STL formulas defined recursively according to
the grammar

ϕ ::= πµ | ¬πµ | ϕ ∧ ψ | ϕ ∨ ψ | 2[a,b] ψ | ϕ U[a,b] ψ

where πµ is an atomic predicate Rn → B whose truth value
is determined by the sign of a function µ : Rn → R and ψ is
an STL formula.

The validity of a formula ϕ with respect to the discrete-time
signal x at time tk, noted (x, tk) |= ϕ is defined inductively
as follows:

(x, tk) |= πµ ⇔ µ(xk) > 0
(x, tk) |= ¬πµ ⇔ ¬((x, tk) |= πµ)
(x, tk) |= ϕ ∧ ψ ⇔ (x, tk) |= ϕ ∧ (x, tk) |= ψ
(x, tk) |= ϕ ∨ ψ ⇔ (x, tk) |= ϕ ∨ (x, tk) |= ψ
(x, tk) |= 2[a,b] ϕ ⇔ ∀tk′ ∈ [tk+a, tk+b], (x, tk′) |= ϕ
(x, tk) |= ϕ U[a,b] ψ ⇔ ∃tk′ ∈ [tk+a, tk+b] s.t. (x, tk′) |= ψ

∧∀tk′′ ∈ [tk, tk′ ], (x, tk′′) |= ϕ.

A signal x = x0x1x2... satisfies ϕ, denoted by x |= ϕ, if
(x, t0) |= ϕ. Informally, x |= 2[a,b] ϕ if ϕ holds at every
time step between a and b, and x |= ϕ U[a,b] ψ if ϕ holds at
every time step before ψ holds, and ψ holds at some time
step between a and b. Additionally, we define 2[a,b] ϕ =

> U[a,b] ϕ, so that x |= 2[a,b] ϕ if ϕ holds at some time step
between a and b.

An STL formula ϕ is bounded-time if it contains no un-
bounded operators; the bound of ϕ is the maximum over
the sums of all nested upper bounds on the temporal op-
erators, and provides a conservative maximum trajectory
length required to decide its satisfiability. For example, for
2[0,10] 2[1,6] ϕ, a trajectory of length N ≥ 10+6 = 16 is suf-
ficient to determine whether the formula is satisfiable. This
bound can be computed in time linear in the length of the
formula.

2.2 Robust Satisfaction of STL formulas
Quantitative or robust semantics define a real-valued func-
tion ρϕ of signal x and t such that (x, t) |= ϕ ≡ ρϕ(x, t) > 0.
In this work, we utilize a quantitative semantic for space-
robustness, which is defined as follows:

ρπ
µ

(x, tk) = µ(xk)

ρ¬π
µ

(x, tk) = −µ(xk)
ρϕ∧ψ(x, tk) = min(ρϕ(x, tk), ρψ(x, tk))
ρϕ∨ψ(x, tk) = max(ρϕ(x, tk), ρψ(x, tk))
ρ2[a,b] ϕ(x, tk) = mintk′∈[t+a,t+b] ρ

ϕ(x, tk′)

ρϕ U[a,b] ψ(x, tk) = maxtk′∈[t+a,t+b](min(ρψ(x, tk′),
mintk′′∈[tk,tk′ ] ρ

ϕ(x, tk′′))

To simplify notation, we denote ρπ
µ

by ρµ for the remain-
der of this paper. The robustness of satisfaction for an arbi-
trary STL formula is computed recursively from the above
semantics in a straightforward manner, by propagating the
values of the functions associated with each operand using
min and max operators corresponding to the various STL
operators. For example, the robust satisfaction of πµ1 where
µ1(x) = x−3 > 0 at time 0 is ρµ1(x, 0) = x0−3. The robust
satisfaction of µ1∧µ2 is the minimum of ρµ1 and ρµ2 . Tem-
poral operators are treated as conjunctions and disjunctions
along the time axis: since we deal with discrete time, the
robustness of satisfaction of ϕ = 2[0,2] µ1 is

ρϕ(x, t) = min
tk∈[0,2]

ρµ1(x, tk) = min{x0−3, x1−3, . . . , xK−3}

where 0 ≤ t0 < t1 < . . . < tK ≤ 2 < tK+1.

note that for continuous time, the min and max operations
would be replaced by inf and sup, respectively.

The robustness score ρϕ(x, t) should be interpreted as how
much model x satisfies ϕ. Its absolute value can be viewed
as the distance of x from the set of trajectories satisfying or
violating ϕ, in the space of projections with respect to the
functions µ that define the predicates of ϕ.

Remark 1. We have introduced and defined a Boolean
and a quantitative semantics for STL over discrete-time sig-
nals, which can be seen as roughly equivalent to Bounded
Linear Temporal Logic (BLTL). There are several advan-
tages of using STL over BLTL. First, STL allows us to ex-
plicitly use real time in our specifications instead of integer
indices, which we find more elegant. Second, although in the
rest of this paper we will focus on the control of the discrete-
time system Σd, our goal is to use the resulting controller
for the control of the continuous system Σ. Hence the spec-
ifications should be independent from the sampling time ∆t.
Finally, note that the relationship between the continuous-
time and discrete-time semantics of STL depending on dis-
cretization error and sampling time is beyond the scope of
this paper. The interested reader can refer to [9] for further
discussion on this topic.

2.3 MILP Encoding for Controller Synthesis
In order to synthesize a run that satisfies a STL formula ϕ,
we add STL constraints to a MILP formulation of the control
synthesis problem as in [24]. We first represent the system
trajectory as a finite sequence of states satisfying the model
dynamics in equation (1). Then, we encode the formula ϕ
with a set of MILP constraints; our encoding produces a
MILP as long as the functions µ that define the predicates
πµ in ϕ are linear or affine.

2.3.1 Constraints on system evolution
The system constraints encode valid finite (horizon-N) tra-
jectories for a system of the form (1) – these constraints
hold if and only if the trajectory ξ(x0,uN ,wN ) satisfies (1).
A typical situation is when fd is linear. In that case, the
constraints on system evolution are of the form



x1 = Ax0 +Buu0 +Bww0

x2 = Ax1 +Buu1 +Bww1

. . .

xN = AxN−1 +BuuN−1 +BwwN−1

2.3.2 STL constraints
The robustness of satisfaction of the STL specification, as
defined in Section 2.2, provides a natural objective for the
MILP defined in Section 2.3, either in the absence of, or as
a complement to domain-specific objectives on turns of the
system.

As described in Section 2.2, the robustness of a STL spec-
ification ϕ can be computed recursively on the structure
of the formula. Moreover, since max and min operations
can be expressed in a MILP formulation using additional
binary variables, this does not add complexity to the encod-
ing (although the additional variables make it more compu-
tationally expensive in practice). For a given formula ϕ, we
introduce a variable rϕk , and an associated set of MILP con-
straints such that rϕk > 0 if and only if ϕ holds at time tk.
Given ϕ, we recursively generate MILP constraints for every
subformula or ϕ, such that rϕ0 determines whether ϕ holds in
the initial state. For example, additionally, we enforce that
the value of rϕk = ρϕ(x, tk). The reader is referred to [24] for
details of this encoding. The advantage of this robustness-
based encoding is that it allows us to maximize or minimize
the value of rϕ0 , obtaining a trajectory that maximizes or
minimizes the robustness of satisfaction.

The union of the STL constraints and system constraints
yields a MILP, enabling us to check feasibility and find a
solution when possible using a MILP solver; for further de-
tails and examples see [24]. Given an objective function on
runs of the system, we can also find an optimal trajectory
that satisfies the STL specification. The robustness provides
a natural objective for this MILP, either in the absence of,
or as a complement to domain-specific objectives on runs of
the system.

Mixed integer-linear programs are NP-hard, and hence im-
practical when the dimensions of the problem grow. We
present the computational costs of the above encoding in
terms of the number of variables and constraints in the re-
sulting MILP. If P is the set of predicates used in the formula
and |ϕ| is the length (i.e. the number of operators), then
O(N · |P |) + O(N · |ϕ|) continuous variables are introduced.
In addition, O(N) binary variables are introduced for ev-
ery instance of a Boolean operator, i.e., O(N · |ϕ|) Boolean
variables.

The dimensionality of the discrete-time system 1 affects the
size of the constructed MILP linearly via the constraints en-
coding system evolution (more precisely, through the size
of the set of predicates P ). However, given the efficiency
of modern MILP solvers, there is no evidence that a linear
increase in the problem size would in practice lead to more
than a linear increase in computational time for a solution.
Methods based on abstraction or discretization of the state
space, on the other hand, are much more likely to have ex-
ponential complexity with respect to system dimensionality.

We note, however, that our approach is more sensitive to the
size of the specifications, and in particular to the nesting de-
gree of temporal operators. We report on the scalability of
our approach in Section 6.

3. PROBLEM STATEMENT
We address the problem of synthesizing control inputs for a
system operating in the presence of potentially adversarial,
a priori uncertain external inputs or disturbances. The con-
trollers we produce will provide guarantees for specifications
of the form ϕ

.
= ϕe ⇒ ϕs, where ϕe places assumptions on

the external environment, and ϕs specifies desired guaran-
tees on the plant behavior. In this work, ϕe refers exclu-
sively to properties of signals w ∈Wω, whereas ϕs refers to
properties of x ∈ Xω and u ∈ Uω.

We now formally state the synthesis problem for reactive
controllers subject to STL specifications of the form above,
and its receding horizon formulation.

Problem 1 (STL Reactive Synthesis). Given a sys-
tem of the form in equation (1), initial state x0, trajectory
length N , STL formula ϕ and cost function J , compute:

argmin
uN

max
wN∈{w∈WN |w|=ϕe}

J(ξ(x0,u
N ,wN ))

s.t. ∀wN ∈WN , ξ(x0,u
N ,wN ) |= ϕ

Problem 2 (Receding Horizon Reactive Synthesis).
Given a system of the form in equation (1), initial state x0,
STL formula ϕ and cost function J , at each time step k,
compute:

argmin
uH,k

max
wH,k∈{w∈WH |w|=ϕe}

J(ξ(xk,u
H,k,wH,k))

s.t. ∀w ∈Wω, ξ(x0,u,w) |= ϕ,

where H is a finite horizon provided as a user input or se-
lected in some other fashion, uH,k is the horizon-H control
input computed at each time step and u = uH,00 uH,10 uH,20 ....

In Sections 4 and 5, we present both a finite-trajectory so-
lution to Problem 1, and a solution to Problem 2 for a large
class of STL formulas. A key component of our solution is
to use our previously presented encoding of STL specifica-
tions as MILP constraints [24] in combination with MILP
constraints representing the system dynamics to efficiently
solve the resulting constrained optimization problem.

4. COUNTEREXAMPLE-GUIDED FINITE
HORIZON SYNTHESIS

We propose a solution to Problem 1 using a counterexam-
ple guided inductive synthesis (CEGIS) procedure. We first
consider bounded STL properties ϕ, bounded by N ∈ N.
Once we have this scheme for synthesizing control for finite
trajectories satisfying bounded specifications, we will use a
receding horizon scheme for infinite trajectories.

We now describe the steps of Algorithm 1 in detail. In Step
2, we choose an initial instance w0 of an environment that



Algorithm 1 CEGIS Algorithm for Problem 1

1: procedure CEGIS(ξ, x0, N, ϕ, J)
2: Let w0 = (w0

1, w
0
2, ...w

0
N−1), s.t. wN |= ϕe

3: Wcand = {w0}
4: while True do
5:

u0 ← argmin
u∈UN

maxw0∈Wcand(J(ξ(x0,u,w
0)))

s.t. ∀w0 ∈Wcand, ξ(x0,u,w
0) |= ϕs,

6: if u0 == null then
7: Return INFEASIBLE

8: end if
9:

w1 ← argminw∈WN ρϕ(ξ(x0,u
0,w), 0)

s.t. w1 |= ϕe

10: if ρϕ(ξ(x0,u
0,w1)) > 0 then

11: Return u0

12: else
13: Wcand ←Wcand ∪ {w1}
14: end if
15: end while
16: end procedure

satisfies the specification ϕe. We do so using the open-loop
synthesis algorithm for bounded-time STL described in [24].
Our initial set of candidate environment inputs is a single-
ton, Wcand = {w0} (Step 3). Then, in Step 5, we com-
pute the optimal control input u0 with respect to this envi-
ronment, such that the system specification ϕs is satisfied;
this step also uses the solution in [24]. If the problem in
Step 5 is infeasible, we know that there is a control input
w0 ∈Wcand against which no control input can satisfy ϕ, so
we can stop and return (Step 7). Otherwise, in Step 9, we
find an environment w1 that satisfies ϕe, but also minimizes
the robustness of satisfaction of ϕ for the control input u0.
Essentially, this step tries to find an environment that falsi-
fies the specification ϕ when the control input u0 is used. If
the minimum robustness ρϕ(ξ(x0,u

0,w1)) thus computed is
positive, this implies ∀w ∈WN ξ(x0,u

0,w) |= ϕ, so we can
return the control input u0 as our result in Step 11. Other-
wise, we have generated a counterexample to u0 being the
desired control input, i.e. an environment w1 that falsifies
ϕ when u0 is used. We use this counterexample to guide
our inductive synthesis in Step 13, by adding it to the set
of environments to be considered in the next iteration. We
then resume execution of the while loop from Step 4.

Theorem 1. If Algorithm 1 returns uN ∈ UN , then ∀wN ∈
WN , ξ(x0,u

N ,wN ) |= ϕ. If Algorithm 1 returns INFEASIBLE,
then Problem 1 is infeasible.

Note that Algorithm 1 does not fully solve Problem 1, be-
cause it does not always ensure cost-optimality of uN with
respect to all disturbances wN ∈WN — the returned uN is
optimal with respect to a specific set of disturbancesWcand ⊆
WN .

Since |Wcand| grows by 1 at every iteration of the while

loop, the MILP in Step 5 grows linearly with the number

of iterations, since we duplicate constraints for each new
counterexample. If W is finite, Wcand will converge, and
Algorithm 1 is sound and complete. Otherwise, we execute
a maximum number of iterations of the while loop before
declaring the problem infeasible.

In practice, solving the problem in Step 5 becomes expen-
sive as Wcand grows, in particular because the objective is
now non-linear. While state-of-the-art MILP solvers e.g.
Gurobi1 handle nonlinear objective functions efficiently, we
can preserve the difficulty of the problem at each iteration
by setting Wcand = {w1} in Step 13 instead of growing the
set of candidates. This breaks completeness even for finite
sets W , since we may oscillate between two disturbances,
but preserves soundness with respect to the satisfaction of
ϕ, while allowing faster solutions at each iteration of the
loop.

In the case studies described in Section 6, we find that a
few number of iterations through the while loop suffices to
either find a satisfying control input or render the problem
infeasible.

5. RECEDING HORIZON SYNTHESIS
In this section, we will describe a solution to Problem 2 by
adding STL constraints to a receding horizon control frame-
work. At each step t of the computation, we will employ
the CEGIS approach in Section 4 to find a finite trajectory
of fixed horizon length H, such that the trajectory accumu-
lated over time satisfies ϕ.

Note that this problem is relatively simple for bounded-time
STL formulas ϕ, as described in [24]. Here the length of the
horizon H is chosen to be at least the bound of formula
ϕ. Then, at time step 0, we synthesize control uH,0 us-
ing the formulation in Section 4, and execute only the first
time step uH,00 ; we then observe wH,00 and x1. Then at the
next step, we solve for uH,1, while constraining the values
of uH,10 = uH,00 , wH,10 = wH,00 in the MILP, and retaining the
STL constraints on the trajectory up to time H. Keeping
track of the history in this manner ensures that the formula
is satisfied over the length-H prefix of the trajectory, while
solving for uH,t at every time step t.

Suppose that we have a specification ψ = 2ϕ, where ϕ is
a bounded-time formula with bound H. In this case, we
can stitch together trajectories of length H using a receding
horizon approach to produce an infinite computation that
satisfies the STL formula. At each step of the receding hori-
zon computation, we search for a finite trajectory of horizon
length 2H, keeping track of the past values and robustness
constraints necessary to determine satisfaction of ψ at every
time step in the trajectory.

First we define a procedure:

CEGIS
∗(ξ, x0, N, ψ = 2ϕ, J,PH ,ukold)

that takes additional inputs P = {P0, P1, ..., PH−1} and
ukold = ukold0u

k
old1

...ukoldk−1
, and is identical to Algorithm

1, except that the optimization problem in Step 5 is solved

1http://www.gurobi.com/



with the added constraints:

ρϕ(ξ(x0,u,w
0), i) > Pi ∀i ∈ [0, H − 1]

∀i < k, ui = ukoldi

Algorithm 1 (CEGIS) solves reactive synthesis for bounded
horizon formulas. We are designing Algorithm 2 to deal with
unbounded formulas, by invoking bounded-horizon synthe-
sis at each time step. To ensure soundness of this infinite-
horizon synthesis algorithm, some history needs to be carried
forth from one horizon to another to ensure consistency be-
tween the newly synthesized inputs and those produced in
previous steps. This is achieved by the two additional argu-
ments of CEGIS∗ and the corresponding added constraints.
The first constraint enforces satisfaction of ϕ at all time
steps i ∈ [0, H − 1]. The second constraint fixes the first k
values of the newly computed input to values computed in
the previous time step.

Given CEGIS∗, we define a receding horizon control proce-
dure as in Algorithm 2. At each time step, we compute
control inputs over a horizon of 2H.

Algorithm 2 RHC Algorithm for Problem 2

1: procedure RHC(ξ, x0, ψ = 2ϕ, J)
2: Let M be a large positive constant.
3: Let H be the bound of ϕ.
4: Set P0 = 0 and Pi = −M ∀0 < i ≤ H.
5: Compute u0 = u0

0u
0
1....u

0
2H−1 as:

u0 ← CEGIS
∗(ξ, x0, 2H,2[0,H] ϕ, J,P

H , ∅)

6: for k = 1; k <= H; k = k + 1 do
7: Set ukold = u0

0u
1
1u

2
2...u

k−1
k−1.

8: Set Pi = 0 for 0 ≤ i ≤ k, Pi = −M ∀k < i ≤ H.
9: Compute uk = uk0u

k
1 ....u

k
2H−1 as:

uk ← CEGIS
∗(ξ, xk, 2H,2[0,H] ϕ, J,P

H ,ukold)

10: end for
11: while True do
12: Set ukold = uk−1

1 uk−1
2 uk−1

3 ...uH−1
H .

13: Set Pi = 0 for 0 ≤ i ≤ H.

uk ← CEGIS
∗(ξ, xk, 2H,2[0,H] ϕ, J,P

H ,ukold)

14: k = k + 1
15: end while
16: end procedure

Algorithm 2 has two phases, a transient phase (Lines 4-
10) and a stationary phase (Lines 11-14). The transient
phase applies until an initial control sequence of length H
has been computed, and the stationary phase follows. In
the transient phase, the number of stored previous inputs
(ukold) as well as the number of time steps at which formula
ϕ is enforced (i.e. time steps for which Pi = 0) grows by
one at each iteration, until they both attain a maximum of
H at iteration H. Every following iteration uses a window
of size H for stored previous inputs, and sets all Pi = 0.
The size-H window of previously-computed inputs advances
forward one step in time at each iteration after step H. In
this manner, we keep a record of the previously computed
inputs required to ensure satisfaction of ϕ up to H time
steps in the past.

Theorem 2. Let u∗ be the infinite sequence of control in-
puts generated by setting u∗k = ukH , where uk = uk0u

k
1 ...u

k
2H−1

is the control input sequence of length 2H generated by Al-
gorithm 2 at time tk. Then ∀w ∈Wω, ξ(x0,u

∗,w) |= ψ.

Proof. Since H is the bound of ϕ, the satisfaction of ϕ
at time k is established by the control inputs u∗k . . . u

∗
k+H−1.

At time k +H,

uk+Hold = uk+H0 uk+H1 uk+H2 ...uk+HH−1

= uk+H−1
1 uk+H−1

2 uk+H−1
3 ...uk+H−1

H−1 uk+H−1
H

= uk+H−2
2 uk+H−2

2 uk+H−2
4 ...uk+H−2

H uk+H−1
H

= · · ·
= ukHu

k+1
H uk+2

H ...uk+H−1
H

and so all the inputs required to determine satisfaction of ϕ
at time t have been fixed. Moreover, if uk+H is successfully
computed, then by the correctness of Algorithm 1, uk+Hold

has the property that ∀wH ∈ WH , ξ(xt,u
k+H
old ,wH) |= ϕ.

Since ukHu
k+1
H uk+2

H ...uk+H−1
H = uk+Hold , we see that ∀wH ∈

WH , ξ(xk, u
∗
k . . . u

∗
k+h,w

H) |= ϕ.

It follows that ∀wω ∈Wω, ξ(x0,u
∗,w) |= ϕ.

We have therefore shown how a control input can be syn-
thesized for infinite sequences satisfying ψ, by repeatedly
synthesizing control for sequences of length 2H. A similar
approach applies for formulas 2ϕ and ϕ U ψ, where ϕ,ψ
are bounded-time.

6. CASE STUDIES
We now validate our approach in simulation, for case studies
in building climate control and autonomous driving.

6.1 Building Climate Control
We consider the problem of controlling building indoor cli-
mate in a commercial building equipped with a HVAC sys-
tem controlled by a receding horizon control scheme. We
adopt the model proposed by Maasoumy et al. [20], and the
receding horizon control formulation proposed by Maasoumy
et al. [19], with the objective of minimizing the total energy
cost (in dollar value).

As shown in Figure 1, we model a building with 4 rooms;
we denote the temperature of room ri by Ti, and that of the
outside by T5. The temperature of a room is governed by
differential equations depending on properties such as the
heat capacity, heat absorption, thermal resistance and area
of the walls between the room and its neighboring rooms, the
radiative heat flux density on external walls, heat capacity
and air mass flow into the room, transmissivity of the glass
of windows, the total area of the windows on walls surround-
ing the room and the internal heat generation in the room.
Further details on this thermal model can be found in [20].

The heat transfer equations for each wall and room yield a
system of the form ẋ = f(x, u, w) where x ∈ Rn is the state
vector representing the temperature of the nodes in the ther-
mal network (including rooms and walls) and u ∈ Rlm is the
input vector representing the air mass flow rate and dis-
charge air temperature of conditioned air into each thermal
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T1 (Room 1 temp.)

T5 (Outside temp.)
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Figure 1: Building layout for HVAC control. We
show results for the temperature in Room 1. Tem-
peratures from the neighboring rooms and outside
are treated as uncertain disturbances around nom-
inal temperatures obtained from existing measur-
ments.

zone (with l being the number of inputs to each thermal
zone, e.g. air mass flow and supply air temperature). The
vector w stores the estimated disturbance values, aggregat-
ing various unmodeled dynamics such as the outside temper-
ature, internal heat generation and radiative heat flux den-
sity, and can be estimated using historical data [20]. In this
work, we only show results for controlling the temperature
of Room 1, and include the temperature of the neighboring
rooms as part of these unmodeled dynamics w.

Assume that the system dynamics are discretized with a
sampling time of ∆t, and let H be the prediction horizon
(in number of time steps). Here we consider ∆t = 0.5
hr and H = 12. At each time tk, the receding horizon
controller solves an optimal control problem to compute
uHk = uk . . . uk+H−1, minimizing the cumulative norm of
uHk :

∑H−1
k=0 ‖uk‖. We assume a known occupancy function

occk, which is equal to 1 when the room is occupied and to
0 otherwise. The purpose of the controller is to maintain a
comfort temperature given by T comf whenever the room is
occupied, while minimizing the cost of heating. The assump-
tion on the environment is that the disturbances w are in
a range bounded by ε around some reference wref, obtained
from historical data. Formally:

xk+1 = fd(xk, uk, wk)
ϕe = 2[0,H](|wk − wref

k | < ε)
ϕs = 2[0,H]((occk > 0)⇒ (Tk > T comf

k )

J(ξ(x0,u
H ,wH)) =

∑H−1
k=0 ‖uk‖

The STL formula ϕ was encoded using the robust MILP en-
coding. Figure 2(b) presents results of executing the reced-
ing horizon controller synthesized using Algorithm 1, while
modeling the disturbance as bounded (more precisely, sat-
isfying ϕe) but non-deterministic; we used ε = 3 (which
corresponds to an uncertain variation of 3◦F in the temper-
ature of the neighboring rooms and outside). Compare this

Figure 3: Two vehicles crossing an intersection si-
multaneously. The red car is the ego vehicle, which
we control. The black car is part of the adversarial
environment.

with Figure 2(a), where the disturbance is modeled as cor-
responding exactly to wref

t (i.e. ε = 0). In both cases, the
actual disturbance (undepicted) was exactly wref.

We observe that the controller designed to operate in an ad-
versarial environment is more conservative, and starts heat-
ing the room earlier (e.g. time step 4 instead of 5) in re-
sponse to the same predicted occupancy signal, to account
for the possibility of a higher disturbance. Additionally,
when the occupancy signal is non-zero, the control input
applied to counter the worst case disturbance results in a
temperature that is higher than in the deterministic case;
the result is that the temperature plot rises further above
the minimum temperature of Tcomf in the nondeterministic
case.

As we previously observed in [24], most of the time is spent
initially creating the MILP, while solving it takes a fraction
of a second for each time step. In practice, the CEGIS loop
of Algorithm 1 was executed fewer than 2 times for most
time steps. As expected, the number of CEGIS iterations
was greater for the case where ε = 3 than ε = 0, reflecting
the greater nondeterminism.

The HVAC model used in this case study is 5-dimensional
[20]; this represents a significant improvement over reactive
synthesis techniques based on discrete abstraction, which
do not typically scale past 2 or 3 continuous variables. We
expect our techniques to scale well to higher dimensions.
The main culprit when it comes to problem size is the length
of the horizon required to ensure satisfiability. This increases
with the nesting of temporal operators.

6.2 Autonomous Driving in Nondeterministic
Environments

We now consider the problem of controlling an autonomous
vehicle operating in the presence of other, potentially adver-
sarial vehicles.

In this example, two moving vehicles approach an intersec-
tion, which they must cross. We let the red car in Figure 3
be the ego vehicle (the vehicle we control), and the black
car be part of the environment. We define the state space
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Figure 2: Receding horizon control of Room 1 temperature under constraints based on occupancy, expressed
in STL. In both plots, the black line in the topmost subplots represent the actual value of Tcomf, and the red
line is the prediction of Tcomf for the current planning horizon. The blue line in the plot of the occupancy
signal represents the actual value, and the red dotted overlay is the prediction for the current horizon. The
green dotted lines in the temperature and air flow plots depict the control input and resulting state trajectory
computed during the current iteration of the receding horizon control computation. The blue lines in the
control and temperature plots represent the portion of the control input that was actually executed and the
resulting temperature T1, respectively.

using a simplified 6-dimensional model, with the position of
the two vehicles ((xego, yego), (xadv, yadv)) and the velocity
of the two (vego = ẏego, vadv = ẋadv) in ms−1 as state vari-
ables, and the acceleration (aego = v̇ego) of the ego vehicle
as a single input. The disturbance is the acceleration of the
environment vehicle (aadv = v̇adv), which is allowed to take
values in a bounded range. Thus:

xk =
[
xegok yegok xadvk yadvk vegok vadvk

]>
(2)

u =aegok w = aadvk (3)

We assume each vehicle has the dynamics of a double inte-
grator:

ẋegoẏego

v̇ego

 =

0 0 0
0 0 1
0 0 0

xegoyego

vego

+

0
0
1

u (4)

ẋadvẏadv

v̇adv

 =

0 0 1
0 0 0
0 0 0

xadvyadv

vadv

+

0
0
1

w (5)

Our specification in this example is that there should be no
collisions at the intersection between the two vehicles, and
that the ego vehicle’s speed should be close to 1ms−1. Here
the disturbance w is the acceleration of the adversary, whose

value is assumed to be close to a reference value, wref. We
use the following STL formulas:

ϕe = 2(|w −wref| < 0.1)
ϕs = 2(|yegok − xadvk | < 2) =⇒ 2[0,2](|vegok | < 0.1)

The formula ϕs specifies that whenever yegok is close to xadvk ,
i.e. within the range of 2m, the ego vehicle should come to a
stop (|vegok | < 0.1) for a short period of time (2s). Figure 3,
shows that the two vehicles will be close only when they are
in the vicinity of the intersection. We expect the ego vehicle
to stop at the intersection in order to allow the adversary
to cross. In addition, we optimize the following cost func-
tion, which encourages the ego vehicle’s speed to be close to
1ms−1.

J(ξ(x0,u
H ,wH)) =

H−1∑
l=0

||vegok+l − 1|| (6)

Figure 4 illustrates the result of applying Algorithm 2 to
synthesize control inputs for the ego vehicle. The first plot
shows the position of the two vehicles, xadvk and yegok (in
m). The ego vehicle starts with a negative value on its y-
axis yego0 < 0, and the adversary starts with a positive x-
value xadv0 > 0. Here the origin represents the middle of
the intersection: at any time k if yegok = xadvk = 0, the two
cars have collided. The synthesized control input should
therefore avoid such a collision, and the two vehicles should
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Figure 4: Plot of position, velocity and acceleration
of the ego and adversary vehicles. The second plot
from the top shows the distance (in m) of each vehi-
cle from the intersection. While the adversary vehi-
cle drives straight through the intersection at a con-
stant speed, the ego vehicle stops at t=8s, when it
is around 2.5m from the intersection, then resumes
moving around t=16s, thus avoiding collision.

not be at location 0 or its vicinity (|yegok − xadvk | < 2) at the
same time.

As seen in the first and second subplots in Figure 4, at time
t = 8s, the ego vehicle stops at its current position in or-
der to avoid collision with the adversary car. The vehicle
proceeds after a short stop to let the adversary pass. The
third subplot shows the velocity of the two vehicles, and the
fourth plot represents the acceleration. Notice that the ve-
locity of the ego vehicle stabilizes at 1ms−1 at most times as
long as it avoids any collisions. The accelerations shown in
the fourth plot include the control input synthesized using
Algorithm 2, and the disturbance, i.e., the acceleration of
the adversary.

7. DISCUSSION
The main contribution of this paper is a CEGIS proce-
dure for synthesis of reactive controllers for systems sat-
isfying STL specifications. We showed how our approach
can be used as part of a receding horizon control scheme,
to generate control for systems that must satisfy STL prop-
erties in the presence of adversarial environments, subject
to domain-specific cost functions. We presented experimen-
tal results for controller synthesis on simplified models of a
smart-building HVAC system and an autonomous car, and
showed in simulation that the synthesized controllers satisfy
the specified properties despite nondeterministic and adver-
sarial environments.
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A. Sangiovanni-Vincentelli, and S. A. Seshia. Model
predictive control with signal temporal logic
specifications. In Proc. of the IEEE Conf. on Decision
and Control, 2014.

[25] A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia,
and V. A. Saraswat. Combinatorial sketching for finite
programs. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
404–415. ACM Press, October 2006.

[26] E. M. Wolff, U. Topcu, and R. M. Murray.
Optimization-based trajectory generation with linear
temporal logic specifications. In 2014 IEEE
International Conference on Robotics and Automation,
ICRA 2014, Hong Kong, China, May 31 - June 7,
2014, pages 5319–5325, 2014.

[27] T. Wongpiromsarn, U. Topcu, and R. M. Murray.
Receding horizon temporal logic planning. IEEE
Trans. Automat. Contr., 57(11):2817–2830, 2012.


	Introduction
	Preliminaries
	Signal Temporal Logic
	Robust Satisfaction of STL formulas
	MILP Encoding for Controller Synthesis
	Constraints on system evolution
	STL constraints


	Problem Statement
	Counterexample-Guided Finite Horizon Synthesis
	Receding Horizon Synthesis
	Case Studies
	Building Climate Control
	Autonomous Driving in Nondeterministic Environments

	Discussion
	Acknowledgements
	References



