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Abstract

The coupled-oscillator model, previously used to describe linear optical

activity, is extended to the study of nonlinear optical activity of dimer-like

chiral molecules. The result shows good agreement between theory and exper-

iment for optically active sum-frequency generation from 1, 1′-bi-2-naphthol

solution. It is seen that linear and nonlinear optical activities generally probe

different aspects of the chiral structure of the molecules.

Recently nonlinear optical techniques such as second harmonic generation (SHG) and

sum-frequency generation (SFG) have been demonstrated to be potentially useful for prob-

ing molecular chirality in various circumstances [1–4]. Contrary to the conventional optical

techniques such as linear optical birefringence, circular dichroism, and Raman optical ac-

tivity, SHG and SFG are electric-dipole allowed in a chiral medium so that they have the

sensitivity to detect chiral response even from a surface monolayer. This opens many research

possibilities in various disciplines of chemistry and biology.



To establish SHG and SFG as useful tools for studying molecular chirality, we need to

relate the chiral nonlinear optical response from molecules to the chiral molecular structure.

We would also like to see whether the structural information thus deduced is different from

that obtained by other optical techniques. For this purpose, we must search for a microscopic

understanding of chirality at molecular level. Theoretical works on nonlinear optical activity

of chiral molecules are rare [6–8] and most of them are limited to ab initio calculations. They

fail to provide a clear physical picture relating the results to the molecular chiral structure.

It would be helpful if one could find simple models to describe chiral responses of molecules

even though they may be less accurate. Such models do exist for interpretation of linear

optical activity of selected types of molecules [9]. We believe that the same models can also

be used to describe their nonlinear optical activity. In a recent article, Hache et al discussed

two classical models to describe molecular chiral response in SHG, but the work was only

meant to be illustrative.

In this paper, we consider the quantum coupled-oscillator model that is applicable to

chiral molecules composed of two coupled monomers in a twisted geometry (with a C2

symmetry) [10]. We use 1, 1′-bi-2-naphthol (BN) molecules as an example, with which the

calculation can be compared with experiment. We focus on SFG in transmission near elec-

tronic resonances of BN in a solution. The model predictions are in good agreement with

the experimental results [4,5].

SFG from a medium results from a nonlinear polarization:

�P (2)(ω = ω1 + ω2) = ε0χ
↔(2)(ω = ω1 + ω2) : �E1(ω1) �E2(ω2) (1)

induced in the medium by input fields �E1 and �E2 at frequencies ω1 and ω2, respectively [11].

SHG is a special case of SFG with ω1 = ω2. The nonlinear susceptibility χ↔(2) is related to

the nonlinear polarizability α↔(2) of the molecules in the medium by the expression:

χ↔(2) =
1

ε0
NL(ω)L(ω1)L(ω2) < α↔(2) > (2)

where N is the molecular density, L(ωi) is the Lorentz local-field correction factor with ε(ωi)
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being the dielectric constant at ωi, and the angular brackets denote an average over the

molecular orientations.

The quantum-mechanical expression for α↔(2) takes the form [12]:

α
(2)
ijk =

1

h̄2

∑
n,n′

(µi)gn(µj)nn′(µk)n′g

(ω − ωng + iΓng)(ω2 − ωn′g + iΓn′g)
+

(µi)gn(µj)n′g(µk)nn′

(ω − ωng + iΓng)(ω1 − ωn′g + iΓn′g)
+

+
(µi)ng(µj)n′n(µk)gn′

(ω + ωng + iΓng)(ω2 + ωn′g + iΓn′g)
+

(µi)ng(µj)gn′(µk)n′n

(ω + ωng + iΓng)(ω1 + ωn′g + iΓn′g)
−

−(µi)n′n(µj)ng(µk)gn′

(ω − ωnn′ + iΓnn′)
·
(

1

ω2 + ωn′g + iΓn′g
+

1

ω1 − ωng + iΓng

)
−

−(µi)n′n(µj)gn′(µk)ng

(ω − ωnn′ + iΓnn′)
·
(

1

ω2 − ωng + iΓng

+
1

ω1 + ωn′g + iΓn′g

)

(3)

where î, ĵ, k̂ refer to the molecular coordinates, n and n′ denote the eigenstates, ωab and

Γab are the transition frequency and the damping factor for the transition from state |a >

to state |b > and we assume that all molecules are initially in ground state |g >.

We now consider a dimer molecule consisting of two identical monomers. The BN

molecule, shown in Fig. 1a, is an example. In the coupled-oscillator model, the ground

electronic state of the dimer is given by:

|g >= |0 > |0′ > (4)

where |0 > and |0′ > refer to the ground electronic states of the monomers. The excited

electronic states are taken as the symmetrized and antisymmetrized functions of the products

of the individual states of the two monomers. For example, the first set of excited states of

the dimer has the expressions:

|e1± >=
1√
2
(|0 > |1′ > ±|1 > |0′ >) (5)

with |1 > and |1′ > denoting the first excited states of the two individual monomers. The

degeneracy of |e1± > is lifted by coupling between the two monomers. The splitting, known

as the Davydov exciton splitting, depends on the coupling strength so that:

Ee1+
− Ee1− = 2 < 1| < 0′|V |0 > |1′ > (6)
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where Ee1+
and Ee1− are the energies of states |e1+ > and |e1− >, and V is the in-

teraction Hamiltonian that describes the dipole-dipole interaction of the monomers. If

< 1| < 0′|V |0 > |1′ > is positive, |e1+ > lies higher than |e1− >.

The electric-dipole operator for a dimer in Eq. (3) can be approximated as the sum of

the electric-dipole operators of the monomers:

�µD = �µ + �µ′ (7)

We can then substitute the approximate dimer states of Eqs. (4) and (5) into Eq. (3) to find

α↔(2). For later comparison with experiment, we consider the case where the sum frequency

ω is near resonance with the lowest electronic transitions ωe1±g while ω1 and ω2 are off

resonance. Keeping only the near resonant terms in Eq. (3) we find:

α
(2)
ijk =

1

h̄2

[ < g|(µi + µ′
i)|e1+ >

(ω − ωe1+g + iΓe1+g)
· ∑

n±

(< e1+ |(µj + µ′
j)|en± >< en±|(µk + µ′

k)|g >

(ω2 − ωen±g + iΓen±g)
+

+
< e1+ |(µk + µ′

k)|en± >< en±|(µj + µ′
j)|g >

(ω1 − ωen±g + iΓen±g)

)
− (8)

− < g|(µi + µ′
i)|e1− >

(ω − ωe1−g + iΓe1−g)
· ∑

n±

(< e1− |(µj + µ′
j)|en± >< en±|(µk + µ′

k)|g >

(ω2 − ωen±g + iΓen±g)
+

+
< e1−|(µk + µ′

k)|en± >< en±|(µj + µ′
j)|g >

(ω1 − ωen±g + iΓen±g)

)]

where the summation is over excited states |en± > defined by:

|en± >=
1√
2
(|0 > |n′ > ±|n > |0′ >) (9)

Note that other excited states of the forms |i > |i′ > and 1√
2
(|i > |j′ > ±|j > |i′ >) with

i �= j �= 0 do not come in because they cannot be connected to the ground state |g > by

�µD. The above expression for α↔(2) depends on dipole moments of the monomers and their

relative orientation in a molecule. The chiral elements of α↔(2) can be nonvanishing because

the monomers are chiral, but if the dimer is composed of two achiral monomers, then it is

the relative orientation of the two that makes the dimer molecule chiral.

Inserting Eq. (8) into Eq. (2) and adopting a proper orientational distribution, one can

obtain χ↔(2) for a surface or bulk with known structure. Here, we focus on χ↔(2) for bulk liquids
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in which the molecules are isotropically oriented. Under the electric-dipole approximation,

χ↔(2) �= 0 only if the liquid is chiral and the only nonvanishing elements of χ↔(2) are χ
(2)
ijk with

i �= j �= k [13]. From isotropic symmetry, we have, following Eq. (2):

χchiral =
1

ε0
NL(ω)L(ω1)L(ω2)αchiral (10)

αchiral ≡ < α
(2)
ξηζ (̂i · ξ̂)(ĵ · η̂)(k̂ · ζ̂) >=

1

6
(α

(2)
ξηζ · eξηζ)

Here, local field corrections L(ωi) = [ε(ωi) + 2]/3, ξ, η, ζ refer to the molecular coordinates,

eijk is the Levi-Civita tensor and summation over the repeated indices is implied. Note that

χchiral or αchiral changes sign upon inversion and therefore should vanish for achiral liquids

or racemic mixtures. Then from Eq. (8), we can show:

αchiral =
1

h̄2 · (ω1 − ω2) ·

·
[ < g|(�µ + �µ′)|e1+ >

(ω − ωe1+g + iΓe1+g)
· ∑

n±

< e1+ |(�µ + �µ′)|en± > × < en±|(�µ + �µ′)|g >

(ω2 − ωen±g)(ω1 − ωen±g)
+

+
< g|(�µ + �µ′)|e1− >

(ω − ωe1−g + iΓe1−g)
· ∑

n±

< e1− |(�µ + �µ′)|en± > × < en±|(�µ + �µ′)|g >

(ω2 − ωen±g)(ω1 − ωen±g)

]

≡ A+

(ω − ωe1+g + iΓe1+g)
+

A−
(ω − ωe1−g + iΓe1−g)

(11)

where we have neglected the damping factors in the ”off-resonant” denominators. With |g >

and |en± > given by Eqs. (4) and (9), the quantities A± can be expressed in the form:

A± = ±(ω1 − ω2)

4h̄2

[(�µ01 + �µ′
01) · (∆�µ10 − ∆�µ′

10) × (�µ10 − �µ′
10)

(ω2 − ωe1∓g)(ω1 − ωe1∓g)
+ (12)

+
∑
n≥2

(�µ01 + �µ′
01) ·

((�µ1n + �µ′
1n) × (�µn0 + �µ′

n0)

(ω2 − ωen+g)(ω1 − ωen+g)
+

(�µ1n − �µ′
1n) × (�µn0 − �µ′

n0)

(ω2 − ωen−g)(ω1 − ωen−g)

)]

with �µab and �µ′
ab denoting the transition dipole moments of the two monomers between

states |a > and |b >, ∆�µ10 ≡ �µ11 − �µ00, and ∆�µ′
10 ≡ �µ′

11 − �µ′
00.

If we neglect the difference between ωen+g and ωen−g in the above expression, consider

�µ0n and �µ1n to be real, and realize that �µ1i · (�µi0 × �µ′
10) = �µ′

1i · (�µ′
i0 × �µ10) from the C2

symmetry of the dimer, we can simplify Eq. (12) to:

A± = ±(ω1 − ω2)

4h̄2

[
{ 2∆�µ10 · (�µ10 × �µ′

10)

(ω2 − ωe1g)(ω1 − ωe1g)
+

∑
n≥2

4�µ1n · (�µn0 × �µ′
10)

(ω2 − ωeng)(ω1 − ωeng)
} (13)
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+
∑
n≥2

4�µ1n · (�µn0 × �µ10)

(ω2 − ωeng)(ω1 − ωeng)

]

with ωeng ≡ ωen+g+ωen−g

2
. Note that the last term vanishes if the monomer components of the

dimer molecule are achiral. The terms in the curly brackets, however, can be nonzero even

with achiral monomers as long as the dimer structure is chiral. Thus, for the case of BN, the

nonlinear optical chiral response must come from the terms in the curly brackets. As a further

simplification, we neglect the dispersion of the denominators in the summation in Eq. (13)

and replace the transition frequencies ωeng by a common effective transition frequency ωeff .

This approximation transforms the system into an effective three-level system. We then

have, with the help of the closure relation of eigenstates,

∑
n≥2

4�µ1n · (�µn0 × �µ′
10)

(ω2 − ωeng)(ω1 − ωeng)
≈ −4∆�µ10 · (�µ10 × �µ′

10)

(ω2 − ωeff )(ω1 − ωeff )

∑
n≥2

4�µ1n · (�µn0 × �µ10)

(ω2 − ωeng)(ω1 − ωeng)
≈ 0 (14)

and hence,

A± = ±(ω1 − ω2)

4h̄2 ∆�µ10 · (�µ10 × �µ′
10)

[ 2

(ω2 − ωe1g)(ω1 − ωe1g)
− 4

(ω2 − ωeff )(ω1 − ωeff )

]
(15)

We can now use Eqs. (10), (11) and (15) to calculate χchiral versus ω for BN and com-

pare the result with experiment. The BN molecule (Fig. 1) is a dimer with two connected

naphthalene subunits twisted in orientation by ∼ 100◦ [14]. The |e1+ > state lies above the

|e1− > [14]. From Table 8-3 of Ref. [15], we find |∆�µ10| = 0.5 Debye and from Ref. [14], we

find |�µ10| = 1.4 Debye with �µ10 lying in the monomer plane and making an angle of θ1 = 40◦

with the short axis of the monomer. The direction of ∆�µ10 is not known, but we assume

that it lies along the long axis of the monomer, making an angle of θ0 = 90◦ with the short

axis. The geometry of BN in Fig. 1 shows that:

∆�µ10 · (�µ10 × �µ′
10) = |∆�µ10||�µ10|2 · sin(α) sin(θ1) sin(θ1 − θ0) (16)

Finally, we take h̄ωeff = 6 eV to roughly coincide with the position of the first strong ab-

sorption peak of BN. With h̄ω1 fixed at 1.17 eV and ω2 varied, the calculated SF spectrum of
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|χchiral/N | versus ω is displayed in Fig. 2 in comparison with the experimental spectrum [5].

In the calculation, we used h̄ωe1+g = 3.90 eV , h̄ωe1−g = 3.69 eV , and Γe1±g = 500 cm−1.

The local field factors L(ω), L(ω1), and L(ω2) described in Eq. (10) were found to be 1.39,

1.32, and 1.33, respectively. The agreement between theoretical and experimental spectra is

fairly good except for the larger theoretical values of the peak amplitudes.

The discrepancy in the absolute values of the peak amplitudes between theory and exper-

iment is expected from the assumptions and simplifications used in the model calculation.

Most importantly, we do not know the direction of ∆�µ10. If the angle θ0 is closer to 40◦ than

90◦, the absolute values of A± will be much reduced, as can be seen from Eqs. (15) and (16).

An ab initio calculations on the monomer part of BN should be able to yield the direction

of ∆�µ10 and then allow us to predict better values for A±.

The value of θ0 could be deduced from a doubly resonant SFG experiment with ω1 ≈ ωe1−g

and ω ≈ ωe1+g. In this case, the terms with n ≥ 2 in the expression of χchiral can be neglected,

and the system becomes more truly a three-level system. The value of θ0 can be obtained by

fitting an SFG spectrum near double resonance. More generally, the two-dimensional doubly

resonant SFG spectrum can provide a more rigorous check of the coupled-oscillator model

discussed here.

The twist angle α between the two monomers in BN is obviously responsible for the

molecular chirality of BN. The two enantiomers, S-BN and R-BN, have α = +100◦ and

−100◦, respectively, yielding opposite signs for χchiral. Equation (15) as an approximation

also shows that for nonvanishing χchiral the three vectors ∆�µ10, �µ10 and �µ′
10 must not be in

the same plane: �µ10 and �µ′
10 must not be along the short axis of the monomers and ∆�µ10

must be tilted away from �µ10.

It is interesting to know how linear and nonlinear optical activity measurements provide

similar or different chiral structural information about the chiral molecules. The linear optical

activity arises from the difference of refractive indices, nL and nR, of the chiral medium for

left and right circularly polarized light, respectively, in a chiral medium. For a chiral liquid

we have [9]:
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nR − nL =
2

3
cµ0NL(ω) · 2

h̄

∑
n�=g

ω ·Rng

(ω − ωng + iΓng)(ω + ωng − iΓng)
(17)

where Rng ≡ Im(�µgn · �mng), ω is the light frequency, �µ and �m are electric and magnetic

dipole operators, respectively, and we have assumed that only the ground state is populated.

Using the coupled-oscillator model, we can find for a dimer molecule composed of two

achiral monomers, [9]:

Ren±g = ±1

4
ωng

�R · (�µ′
n0 × �µn0) (18)

where �R is the vector connecting the centers of the monomers. With ω ∼ ωe1±g, we can

write:

nR − nL

N
≈ B+

ω − ωe1+g + iΓe1+g

+
B−

ω − ωe1−g + iΓe1−g

(19)

with

B± = ± 1

3h̄
cµ0

ωωe1g

ω + ωe1g

�R · (�µ′
10 × �µ10) (20)

We can now compare the chiral structural information contained in linear and nonlinear

optical activities as represented by B± in Eq. (20) and A± in Eq. (13), respectively. In

both cases, if the two achiral monomers comprising the molecule are not coupled so that

ωe1+g = ωe1−g, then optical activities must vanish. The chiral response in linear optical

activity comes from the vector product �R · (�µ′
10 × �µ10) (for BN molecules, �R · (�µ′

10 × �µ10) =

|�R|(|�µ10|2 sin(α) sin(θ1)) while that in nonlinear optical activity comes from ∆�µ10 ·(�µ10×�µ′
10)

and �µ1n · (�µn0 × �µ′
10). In the linear case only the transition between monomer states |0 >

and |1 > is involved in B±. The magnitude of B± depends on |�R| and the geometric angle

between �R and �µ′
10 × �µ10. The former means that the strength of optical activity associated

with each resonance actually increases with separation of the two monomers in the molecules.

It originates from the fact that the linear optical activity response is connected to a magnetic

dipole matrix element and therefore is nonlocal. This is not the case for nonlinear optical

activity since A± is independent of �R. Instead, ∆�µ10 plays the role of �R if contributions from
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higher excited states can be neglected. More generally, higher off-resonant excited states also

contribute to the resonant nonlinear optical activity through �µ1n · (�µn0 × �µ′
10), which is a

vector product of three transition dipole moments. The nonlinear optical activity strength

is connected to vector products of electric-dipole moments and therefore is local in response

(independent of �R). Thus clearly linear and nonlinear optical activities provide very different

information about the chiral structure or property of a dimer molecule.

We note that resonant linear optical activity can be used to probe selectively how each

electronic transition contributes to electronic chirality of a chiral dimer through �R·(�µ′
10×�µ10).

On the other hand, while singly resonant SFG is less selective in probing chirality, doubly

resonant SFG can selectively probe the contribution of �µ0n·(�µnn′×�µ′
n′0) to the chiral response.

The idea can be extended to double resonance involving one electronic transition and one

vibrational transition. Then, more chiral structural information about the molecule can be

anticipated from the result.

In summary, we have shown in this paper that a simple coupled-oscillator model can be

used to describe SF nonlinear optical activity of a dimer-like chiral molecule. The result of

calculation for chiral BN solution agrees well with experiment except for uncertainty in the

absolute strength of chirality. The same model should also describe optically active SHG from

a surface monolayer if the orientational distribution of BN is properly taken into account.

Nonlinear optical activity probes different aspects of the chiral structure of the dimer-like

molecule than linear optical activity. We anticipate that doubly resonant SFG can yield

highly selective, hitherto unexplored, information about chirality of such molecules.
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11



Holland, Amsterdam, 1994), p.139.

[12] Y. R Shen, The Principles of Nonlinear Optics (J. Wiley, New York, 1984), Ch. 2.

[13] J. A. Giordmaine, Phys. Rev. 138, A1599 (1965).

[14] I. Hanazaki and H. Akimoto, J. Am. Chem. Soc. 94, 4102 (1972).

[15] N. Mataga and T. Kubota, Molecular Interactions and Electronic Spectra (Marcel

Dekker, New York, 1970).

12



FIGURES

a) b) c)
O

H

|g>

|e >

|e >

|e >
|e >

1

2

1

2

+

+

-

-

�

�

�

�=+100
o

�0

10

�1

�� 10�

FIG. 1. (a) Structure of an S-BN molecule that is composed of a pair of monomers whose

structure is described in (b). The energy level diagram of BN is sketched in (c).
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FIG. 2. Experimental result (dots) and model prediction (solid line) of |χchiral/N | versus ω for

a 0.7 M solution of BN in tetrahydrofuran.
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