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Abstract 
Phase change material based thermal energy storage has many current and potential applications 
in the heating and cooling of buildings, battery and electronics thermal management, thermal 
textiles, and dry cooling of power plants. However, connecting lab scale thermal data obtained 
with differential scanning calorimetry (DSC) to the performance of large-scale practical systems 
has been a major challenge primarily due to the dependence of supercooling on the size and 
temperature gradient of the system. In this work we show how a phase change material’s 
supercooling behavior can be characterized experimentally using common lab scale thermal 
analysis techniques. We then develop a statistics based theoretical model that uses the lab-scale 
data on small samples to quantitatively predict the supercooling performance for a general thermal 
energy storage application of any size, including also allowing for the possibility of temperature 
gradients. Finally, we validate the modeling methodology by comparing to experimental results 
for solid-solid phase change in neopentyl glycol, which shows how the model successfully predicts 
the changes in supercooling temperature across a large range of cooling rates (2 orders of 
magnitude) and volumes (3 orders of magnitude). By accounting for thermal gradients, the model 
avoids ~2x error incurred by lumped approximations.  

 
 
Keywords: Phase change materials, PCM, thermal energy storage, subcooling, supercooling, 
crystallization, melting 
 
Introduction 
 
Roughly 90% of the world’s primary energy generation results in thermal energy [1,2]. The global 
thermal energy storage (TES) market is projected to deploy 13 GW in 2024, corresponding to a 
total value of $55 billion  [3]. In many applications, TES has an inherent advantage over 
electrochemical and mechanical energy storage because its raw materials are cheap, making TES 
much more cost competitive in applications ranging from buildings and residential heating, to 
power electronics and agriculture [4]. Latent heat storage, which uses phase change materials 
(PCMs) to absorb and release thermal energy, comprises a significant portion of thermal energy 
storage research and applications  [5]. Phase change materials are being woven into thermal 
textiles to provide localized and personalized cooling/heating to reduce thermal load in 
buildings [6], and recently PCMs have also found applications in dry cooling of power plants to 
conserve water by utilizing the diurnal swing of ambient temperature  [7]. In addition, PCM is also 
being actively researched for thermal management of batteries  [8]. Although cost competitive, 
PCM implementation is lagging relative to the abundance of thermal energy, application and 
opportunity.   
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The lag is in part due to economics, but in larger part is caused by technological barriers, which 
are widely identified  [4,9,10] as (1) low PCM thermal conductivity and (2) excessive 
supercooling, i.e. the undesirable difference between a material’s thermodynamic equilibrium 
phase change temperature 𝑇!	and the actual value seen in a cooling process with non-zero cooling 
rate. Low thermal conductivity has been addressed recently by many novel and promising 
techniques such as the addition of nanoparticles and the impregnation of PCM into graphite 
matrices [10]. However, the approaches to reduce supercooling by using either nucleating or 
thickening agents have met with limited success. 
 
In a broader context, fundamental understanding of supercooling – or metastability – remains a 
grand challenge in the sciences. Phenomenological models, such as classical nucleation 
theory  [11] and its various extensions, provide excellent physical insight into the nucleation 
process. Although physically successful, the inputs to such models (e.g surface energies, surface 
shape, free energy barriers) are difficult to know a-priori. For this reason, classical nucleation 
theory has traditionally been limited to applications requiring experimental fitting, as opposed to 
experimental prediction  [12]. 
 
Supercooling changes with just about every material and system parameter: geometry, volume, 
material, microstructure, purity, discharge rate, etc. Due to the fickle nature of nucleation, 
predicting the performance of any large-scale practical system based on lab scale data from small 
scale samples is a difficult task.  Phase change is stochastic in nature, and there often exist 
numerous nucleation pathways that yield the same outcome  [13]. As a result, when researchers 
report a supercooling temperature from lab-scale experiments, that temperature means little 
beyond that specific experimental system, size, material, and environment. This hamstrings 
system-level modeling of PCMs in applications. Given such uncertainty, most numerical models 
neglect the effect of supercooling entirely  [14–16], which results in overly-optimistic predictions 
of system performance [17]. Thus, from a practical point of view for successful implementation of 
large- scale PCM systems, there is a pressing need to develop techniques to accurately predict their 
supercooling temperatures.   
 
For applications with narrow temperature ranges (i.e buildings, refrigeration, medicine), 
supercooling can be even more limiting. As an example, consider a PCM with a transition 
temperature of 20 °C used in building applications. If the lowest temperature the building can reach 
is 15 °C, then the PCM cannot supercool more than 5 degrees. If it does, the PCM will never 
crystallize and the material will be rendered inert, so that the only thermal energy storage comes 
from sensible – as opposed to latent – heat. Lacking predictive power, industry often cannot rely 
on lab-scale supercooling data reported in the literature, and instead find it necessary to perform 
their own time-consuming and expensive large-scale testing before installations.  The inability to 
use lab-scale data to predict supercooling behavior for larger systems is the key bottleneck in 
translating research into application.  
 
To overcome the bottleneck, this paper explores how nucleation theory is inherently coupled to 
system size and thermal transport phenomena. We first establish a method to characterize the 
nucleation rate in PCMs using common lab-scale thermal analysis instrumentation (DSC, DTA, 
T-History). Using the nucleation rate from lab-scale, we show how to predict the supercooling 
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temperature as a function of volume and cooling rate for isothermal (slow) cooling. We then 
generalize that analysis to calculate the supercooling temperature for an arbitrary geometry, 
volume, and thermal boundary conditions which result in transient temperature gradients in the 
system.  This enables more accurate supercooling predictions for any system given lab-scale data. 
The analysis can in principle be used in conjunction with existing numerical methods to accurately 
incorporate supercooling into phase change models, thus combining material modeling with 
system modeling. Finally, we validate the methodology outlined by comparing to experimental 
results in neopentyl glycol (NPG), which shows how the model successfully predicts the changes 
in subcooling temperature across a large range of cooling rates (2 orders of magnitude) and 
volumes (3 orders of magnitude).  
 
 

1. Determining the Nucleation Rate of a lumped PCM 
 
Nucleation is a stochastic process and as such can be described with an appropriate statistical 
distribution. As mentioned, phenomenological models exist (e.g. Classical Nucleation 
theory  [11]) to describe that distribution but are difficult to apply in practice for experimental 
characterization given that multiple input parameters are unknown for the systems of current 
interest. It is instead more convenient to describe nucleation as a non-homogeneous Poisson 
process  [12,18–22]. A Poisson process is a purely statistical model for a series of discrete events 
where the average time between events is known, but the exact timing of events is random and 
memoryless. These assumptions are consonant with nucleation theory, where the average time 
between nucleation events is given by the reciprocal of the average nucleation rate, but the process 
is stochastic so that the exact timing of nucleation events is random. The Poisson process further 
assumes that the nucleation events are independent and cannot occur at the same time. Nucleation 
is said to be a “non-homogeneous” Poisson process because the rate parameter, which in this case 
is the nucleation rate, may not be constant over time (e.g. when the temperature changes with 
time).  Note that this use of “non-homogenous” is completely different from the nucleation itself 
being homogeneous or heterogeneous.   
 
The non-homogeneous Poisson distribution has been used in fundamental nucleation studies of 
metals  [12,22], and in solution-crystallization processes  [23,24], but not previously for 
characterizing PCMs. Here we tailor the application of the non-homogeneous Poisson distribution 
for the workflow of PCM characterization. 
 
We begin by introducing the properties of the distribution of subcooling temperatures. The 
cumulative distribution function is described by 𝐶𝐷𝐹(𝑡) = 1 − 𝑒"∫ $%&!'	)&!"

# , and the survivor 
function is 𝜒(𝑡) = 1 − 𝐶𝐷𝐹(𝑡), where 𝜆(𝑡) is the Poisson rate parameter which corresponds to 
the system-wide nucleation events per second, at time t.  In general,  𝜆(𝑡) depends on the number 
of nucleation sites at the surface and within the volume. Thus,  𝜆(𝑡) is the sum of two contributions 
so that 𝜆(𝑡) = 𝑉𝐽*(𝑡) + 𝐴𝐽+(𝑡) where V is the system volume, A is the system surface area, and 
𝐽*(𝑡) and 𝐽+(𝑡) are the volume-specific and area-specific nucleation rates, respectively.  In a given 
system, normally either 𝐽*(𝑡) or 𝐽+(𝑡) will dominate so the nucleation rate can be normalized by 
only the surface area or the volume.  Thus for a sufficiently large system, 𝐽(𝑡) = $(&)

*
, while for a 

sufficiently small system, 𝐽(𝑡) = $(&)
+

.   We further note that 𝐽*(𝑡) has contributions from both 
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heterogeneous and homogeneous nucleation sites within the volume of the system, whereas 𝐽+(𝑡) 
has contributions only from heterogeneous nucleation sites at the surface of the system. For the 
rest of this paper we will assume the system is large enough so that 𝑉𝐽*(𝑡) ≫ 𝐴𝐽+(𝑡), such that 
the system’s nucleation physics scales only with the system volume.  We also note that in principle, 
most modeling results obtained below could be easily translated to a system with surface area-
dominated nucleation physics (𝐴𝐽+(𝑡) ≫ 𝑉𝐽*(𝑡)) by suitable exchanges 𝐽*(𝑡) ↔ 𝐽+(𝑡) and  𝑉 ↔
𝐴.  
 
To further clarify the scope of the analysis below, we note that in addition to the aforementioned 
restriction 𝑉𝐽* ≫ 𝐴𝐽+, the framework holds only when the system size is much larger than the 
size of a typical crystal nucleus (~10 nm) for the statistical approach to be valid. We emphasize 
this restriction because in a typical material there are numerous nucleation pathways that lead to 
phase transitions, so when the material is characterized at the lab-scale (~mm), the statistical 
framework draws upon the average of all possible nucleation pathways. If the system size were 
then reduced such that the original nucleation pathways are suppressed, the determined statistical 
distribution would no longer be representative of the true population of nucleation sites and the 
framework would no longer hold.  
 
In PCM characterization, the independent variable of interest is the temperature rather than the 
time.  Moreover, our goal is to couple nucleation with thermal transport, so we make a change of 
variables from t to T as the independent variable, such that 𝑇(𝑡) = 𝑇 and ).

)&
= �̇�.  We also assume 

that the entire system is initially at the equilibrium phase transition temperature, 𝑇!, so that the 
initial condition becomes 𝑇(𝑡 = 0) = 𝑇!. In DSC, the most popular PCM characterization 
technique, the cooling rate is typically constant and the system is “thermally lumped,” such that 
there are no spatial gradients in temperature. We can then simplify by assuming �̇� = −𝛽, where 𝛽 
is the constant cooling rate in degrees Celsius per second, defined to be a positive quantity. If b is 
not constant, �̇� = 	 �̇�(𝑡) in the integration. Applying this change of variables to the survivor 
function yields:  
 

𝜒(𝑇) = 	 𝑒"
*
/ ∫ 0%.!').!$

$%  
 

(1) 

The goal is to compute the volume-specific nucleation rate, 𝐽*(𝑇), from experimental data, so we 
invert the survivor function, 𝜒(𝑇)  [19] : 
 

𝐽*(𝑇) = 	−
1
𝑉

𝛽
𝜒(𝑇)

𝑑χ(𝑇)
𝑑𝑇  (2) 

 
The distribution of supercooling temperatures, 𝜒(𝑇), can be determined for a given PCM sample 
from cooling experiments, and thus from Eq. (2) the nucleation rate can be calculated for the 
material given the sample volume and the experimental cooling rate.  It is crucial that the sample 
volume be cooled uniformly during supercooling experiments, such that the Biot Number (𝐵𝑖 =
12
3

 )  is less than 0.1, where L is the length scale of the sample which can be estimated as 𝐿 = *
+
 , h 

is the convection coefficient, and k is the thermal conductivity. An example of this 𝐽*(𝑇) extraction 
procedure is discussed in Section 6. We emphasize that this procedure is also valid for surface-



 5 

dominated nucleation, in which case Eq. 2 would be normalized by the surface area instead of the 
volume and the result is 𝐽+(𝑇) rather than 𝐽*(𝑇).  To determine whether volume-based or surface-
based nucleation dominates, the nucleation rate can be measured for multiple, different sized 
samples in a DSC pan and should be normalized by both the volume and the surface area. The 
volume-normalized (𝐽/𝑉) and surface-area-normalized (𝐽/𝐴) measured nucleation rates can then 
be plotted against supercooling temperature, and whichever normalization collapses on a single 
line with zero intercept is the dominant nucleation mechanism.  
 
Equation 2 can be evaluated numerically, but in Sections 2-5 it will prove useful to have an 
analytical form of the nucleation rate. To that end, it is convenient to define a fitting function to 
the normalized nucleation rate [25]: 
 

𝐽*(𝑇) = 𝛾Δ𝑇4 (3) 
 
where Δ𝑇 is the difference between the thermodynamic equilibrium phase change temperature 𝑇! 
and the actual temperature at any instant in time, i.e., the supercooling. Equation 3 captures the 
nucleation behavior of a material with just two empirical parameters, 𝛾 and 𝑛.  We argue that it is 
important that researchers report 𝛾 and 𝑛, or some other description of the function 𝐽*(𝑇), when 
characterizing new PCMs, rather than simply a single number declared to be “the” supercooling 
temperature. As will be shown, once 𝛾 and 𝑛 are known, the supercooling behavior of the material 
in an arbitrary thermal and geometric system can be predicted.  
 
 

2. Predicting supercooling for arbitrary thermal and geometric systems – General 
theory  

 
Using the nucleation rate determined in Section 1, the goal is to determine the average time it will 
take for a PCM to nucleate given the system geometry, volume, material properties, and thermal 
boundary conditions.  
 
In Section 1 we established that the volumetric nucleation rate can be described by just two 
parameters and the subcooling temperature,  𝐽*(𝑇) = 𝛾Δ𝑇4, characterized at the lab scale (e.g. 
DSC). At this scale (𝑉 ≈ 10	𝜇𝐿), we can ensure that the temperature distribution within the PCM 
is approximately uniform by controlling the sample thickness (𝐿	 < 	1	𝑚𝑚) and the cooling rate 
(𝛽 ≈ 10 °6

789
). By doing this, the nucleation probability, 𝐽*(𝑇), also becomes approximately 

uniform in space, ensuring accurate volumetric nucleation rates. In a general system at larger scale, 
however, the temperature of the material varies considerably with both position and time, and 
consequently, so does the nucleation probability. The system’s nucleation probability is therefore 
inherently coupled to thermal transport phenomena.  
 
Qualitatively, this indicates that the subcooling probability in each material element i within the 
PCM is governed by its own statistical distribution, dependent only on the local subcooling history 
at that point, T(xi,t), where the vector xi represents the location of material element i. Each 
distribution is characterized by its Poisson rate parameter, 𝜆: and resides over volume element 𝑑𝑉:. 
To determine the global nucleation probability of the material, the distributions must be combined 
into one.  It is known that the combined probability distribution of the sum of independent random 
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variables is equal to the convolution of their individual distributions. Fortunately, for a non-
homogeneous Poisson process, the convolution is simply the sum of the individual rate 
parameters  [26]: 
 

F𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆:) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 JF𝜆:

;

:

K
;

:

 (4) 

 
where N is the total number of independent distributions; here, N is the number of discrete material 
elements considered.  We can then define a global, or an effective, rate parameter, 𝜆<==(𝑡) =
	∑ 𝜆:(𝑥, 𝑦, 𝑧, 𝑡);

:>? , or 𝜆<==(𝑡) = 	∑ 𝐽:(𝑥, 𝑦, 𝑧, 𝑡)𝑉:(𝑥, 𝑦, 𝑧);
:>? .  Passing into the limit of 

infinitesimally small volume elements, so that summation becomes integration, the effective rate 
parameter of the system at a given time can be rewritten as: 
 
𝜆<==(𝑡, 𝛾, 𝑛) = ∫ ∫ ∫ 𝐽(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑥𝑑𝑦𝑑𝑧 = 	∫ ∫ ∫ 𝛾(𝑇(𝑥, 𝑦, 𝑧, 𝑡) − 𝑇!)4𝑑𝑥𝑑𝑦𝑑𝑧 (5) 

 
and the CDF becomes 

𝐶𝐷𝐹(𝑡, 𝛾, 𝑛) = 1 − 𝑒"∫ $&''
"
# %&!')&! . (6) 

 

The probability density function (PDF) is obtained directly from Eq.  6 as 𝑃𝐷𝐹(𝑡) = )6@A(&)
)&

. The 
average time that it takes for the first nucleation event to occur can be calculated as the first 
moment of the PDF, and the standard deviation as the second: 
 

𝑡BCD(𝛾, 𝑛) = S 𝑡	𝑃𝐷𝐹(𝑡)𝑑𝑡
E

F
 (7) 

 
 

𝜎&(𝛾, 𝑛) = S 𝑡G	𝑃𝐷𝐹(𝑡)𝑑𝑡
E

F
 (8) 

 
Thus, if  𝑇(𝑥, 𝑦, 𝑧, 𝑡) is known, by applying Eqs. 5-8 the average time until the first nucleation 
event of the system, as well as the standard deviation of the distribution of these nucleation-onset 
times, can be calculated from only the two nucleation parameters determined in Section 1.  We 
note that the parameterization of 𝐽C from Eq. 3 is not unique, and the same procedure (equations 
5-8) can be followed with an arbitrary parametrization of 𝐽C.  
 
Analytical solutions for 𝑇(𝑥, 𝑦, 𝑧, 𝑡) are available only for the simplest geometries and boundary 
conditions, so in general this procedure must be carried out numerically. Equations 5-8 are 
naturally discretized in space (index i) and time, and can be easily incorporated into existing 
numerical schemes for PCMs such as finite element methods, the enthalpy method  [15], effective 
heat capacity method  [27], and the heat source method  [28]. Using any of these methods, T(x,y,z) 
can be determined at each time step, and the integral of the nucleation rate as a function of T(x,y,z) 
over the volume in Eq. 5 can be calculated to determine the effective global nucleation rate at time 
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t.  Then stepping through time, 𝜆<==(𝑡) can be calculated, and finally from 𝜆<==(𝑡) , the CDF, 
PDF, and then average time to nucleation can be determined.  
 
This output can then be used to identify when to trigger nucleation in subsequent simulations with 
single-phase initial conditions, thus providing high resolution and high-fidelity initial conditions 
for crystallization studies, or nucleation triggers for cyclic performance simulations of PCMs. 
Conversely, the probability of nucleation at each discrete element and time step can be calculated 
from equations 5-7, which makes this analysis suitable for Monte Carlo based nucleation 
simulations.  Incorporating either workflow into numerical models will take into account the 
hysteresis inherent in PCM cycling caused by supercooling and enable more realistic calculations 
of PCM charge/discharge times, both of which are critical in predicting PCM performance in real-
world applications.  
 
 
 

3. Approximate Solution – Uniform Temperature Distribution 
 
Analytical solutions to Eqs. 5-8 are intractable for most boundary conditions. However, for a 
spatially uniform i.e. lumped, temperature distribution such that 𝑇(𝑥, 𝑦, 𝑧, 𝑡) = 𝑇(𝑡), and a 
constant cooling rate 𝛽, equation 5 is greatly simplified and the CDF can be evaluated analytically:  

𝐶𝐷𝐹(𝑇) = 1 −	𝑒"
*
/ ∫ 0(.)	).$

$% = 1 −	𝑒"
*
/	
H(.".%)()*

?I4  
 

(9) 

Using this CDF, equations 6-8 can be evaluated (with dependent variable T instead of t), and it has 
been shown  [25,29,30] that the temperature at which nucleation will occur on average, i.e. the 
average supercooling temperature, as a function of volume and cooling rate can be expressed as: 

Δ𝑇BCD(𝑉, 𝛽) = 	𝛽
?

4I? U
𝑛 + 1
𝛾𝑉 V

?
4I?

Γ U
𝑛 + 2
𝑛 + 1V		 

(10a) 

 
where Γ is the gamma function. The average time until nucleation is triggered is then 
𝑡BCD(𝑉, 𝛽) = 	

?
/
Y𝑇! − 𝑇BCD(𝑉, 𝛽)Z: 

 

𝑡BCD[𝑠] =
?
/
]𝛽

(
*)( Y4I?

H*
Z

(
*)( Γ Y4IG

4I?
Z		^. (10b) 

Equations (10a) and (10b) highlight how even for a single material (fixed n and g), as either V or 
b changes, so too will 𝑡BCD and the subcooling Δ𝑇BCD.  Note that when b has its traditional units of 
[°C/min], this expression for 𝑡BCD will be in units of [min].  It also is important that the same units 
are used for V in both Eq. (10b) and the definition of 𝐽* used in evaluating g from Eq. (3), whether 
[L] and [L], [m3] and [m3], etc.    
 
We emphasize that for PCMs in large-scale applications, a lumped temperature distribution is 
generally a bad approximation. It is valid when  12

3
< 0.1. For natural convection a typical value 

of ℎ ≈ 10	 J
!+K

 and for PCMs 𝑘 ≈ 0.1 − 0.5 J
!∗K

, so the thickness of the PCM must be less than 
~1 - 5 mm to justify the lumped approximation, which is not generally useful for large-scale 
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applications. For small-scale applications such as micro-encapsulation, 𝐿 ≈ 1	𝜇𝑚 so equation 10 
is generally valid if volumetric nucleation dominates. Furthermore, our statistical approach 
assumes that the system volume is much larger than the critical nucleus dimension (~10nm), so 
for composites with nanoscale confinement, further studies should be done to investigate the 
minimum critical system dimension for the statistical approach to be valid. We can use equation 
10 then to interpret the well-known phenomenon that micro-encapsulated PCMs typically exhibit 
much larger supercooling than a macroscopic-volume sample. We see from equation 10a that 

Δ𝑇BCD scales inversely with volume, specifically Δ𝑇BCD ∝ 	𝑉
"M (

()*N , so for a smaller volume the 
supercooling increases, which has crippled many micro-encapsulation efforts  [4,31].  This scaling 
occurs because a reduction in volume implies a reduction in the number of nucleation sites, and 
the probability of nucleation decreases with the decrease in the number of nucleation sites. 
Equation 10 can be used as a guide, therefore, in determining promising candidates for micro-
encapsulation applications.  It is important to note, however, that the volume dominated nucleation 
may be eclipsed by surface nucleation sites as the length scale decreases. In fact, this has been 
used to combat supercooling problems in microencapsulated PCMs. To do this, researchers choose 
micro-encapsulation materials that have lower surface energies with the PCM, promoting surface 
nucleation  [32,33].  Equation 10a can then be seen as a worst-case scenario supercooling 
temperature for micro-encapsulation. If the nucleation does not become surface dominated by 
whatever means, then the degree of supercooling predicted by equation 10a is the largest average 
supercooling temperature expected. Any surface effects would serve to decrease the extent of 
supercooling.  
 
 
 
 
 
 
 
 

4. A Standardized Definition for the Supercooling Temperature 
 
The supercooling temperature is fundamentally different than the phase transition temperature 𝑇!. 
The  phase transition temperature is determined by information embedded in the atomic details of 
the system and is well-described by deterministic equilibrium thermodynamics.  The supercooling 
temperature, on the other hand, is not a fundamental property of the material because it depends 
on the kinetics. Phenomenologically, the kinetics are dictated by the distribution of nucleation sites 
and the energy barriers associated with those sites relative to the thermal energy scale kB T,  where 
kB is the Boltzmann constant. The number of nucleation sites scales with the volume and/or surface 
area of the material, and the rate at which those nucleation sites gain access to the available thermal 
energy from the environment is strongly material and problem dependent. The volume/surface-
area scaling, coupled to a strong material-transport dependence, makes defining a meaningful 
supercooling temperature for a given material challenging. To date, many researchers report 
supercooling values observed in DSC/DTA, but this value provides only a single point in a 
complex space defined by equations 6-8. For this reason, researchers testing the same material 
under different experimental conditions often observe and report different supercooling 
temperatures.  
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To make more meaningful comparisons, it would be helpful for the thermal energy storage 
community to agree upon a standardized reference system for which a supercooling temperature 
can be defined. Here we choose a reference system that has a volume of 1L with cooling rate β =
1 °6
!:4

 as a demonstration.  Treating the system as lumped, we use the solution for a uniform 
temperature distribution (equation 10a), to obtain an expression for the supercooling temperature 
of this reference system: 
 

Δ𝑇OPQ<RSTTU:4D,W&) =	U
1
60 e

°𝐶
𝑠 fV

?
4I?

U
𝑛 + 1

𝛾 ⋅ 10"X[𝑚X]V
?

4I?
Γ U
𝑛 + 2
𝑛 + 1V		 

(11) 

 
To be clear, this definition says that a 1L volume of PCM cooled uniformly at 1 °6

!:4
 will nucleate 

at 𝛥𝑇OPQ<RSTTU:4D,W&).  With this standardization of b and V, this definition of 𝛥𝑇OPQ<RSTTU:4D,W&) 
depends only on g and 𝑛.  Researchers testing the same material under different experimental 
conditions will still observe different supercooling temperatures, but by determining the nucleation 
parameters 𝑛 and 𝛾 they can now agree on the supercooling temperature of this reference system. 
The supercooling performance of a PCM can then be compared by comparing the supercooling 
behavior of each PCM in this reference system.  To summarize, we recommend that researchers 
report Δ𝑇OPQ<RSTTU:4D,W&) as well as 𝑛 and 𝛾 (or some other parameterization of the 𝐽*(𝑇) function), 
when studying a new material. 
 
We note that the nomenclature surrounding supercooling phenomena is not standardized. For 
instance, supercooling temperature, degree of supercooling, subcooling, metastable zone width, 
degree of metastability, crystallization temperature, hysteresis width, induction time, etc. are often 
used interchangeably in the literature. Induction time is used when the independent variable is 
time, so it’s less appropriate for this framework. Metastable zone width and degree of metastability 
are more common in solution crystallization studies, and crystallization temperature is typically 
limited to solid-liquid phase change phenomena. For these reasons, we opt for “supercooling 
temperature” because we believe it is appropriately broad to describe general first-order phase 
transition systems (solid-liquid, solid-solid, liquid-liquid), and common enough such that its 
meaning is readily understood by the thermal energy storage community.  
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5. NPG Supercooling Characterization 
 

5.1 Experimental Characterization of NPG 
 
To validate the methodology outlined in Sections 1-4, we characterize the nucleation rate of 

neopentyl glycol’s (NPG) solid-solid phase change using DSC and then perform larger-scale 
cooling experiments to test the predictions of Sections 3 and 4. We choose NPG because its 
transition from one crystal phase to the other crystal phase is sharp, near room temperature (𝑇! =
40.8	°𝐶), and it doesn’t interact with the aluminum DSC pans so volumetric nucleation dominates. 
We note that NPG transition is polymorphic, transitioning between two crystalline phases NPG 
was acquired from Sigma Aldrich at 99% purity, and TA Instrument’s DSC 2500 with indium 
temperature calibration was used. 10 mg of NPG was cycled 150 times from 25°𝐶 to 50°𝐶 in DSC 
at a heating and cooling rate of 10 °6

!:4
	. The cooling curves from all 150 runs are shown in Fig. 1a. 

The supercooling temperatures were determined as the first deviation from the linear baseline heat 
flow signal (J

D
) that exceeded the minimum accuracy of heat flow on the DSC (first detectable 

deviation). For the DSC 2500, the minimum deviation is 20	𝜇𝑊. There was no sign of aging (see 
Supplementary Information Section 1).  

 
5.2 Model Characterization of NPG 
 
The set of 150 supercooling temperatures was then used to calculate the survivor function by 

taking the number of non-nucleated (surviving) samples at a given temperature and dividing by 
the total number of samples. For temperatures greater than 29.3°𝐶, zero samples out of the 150 
had nucleated, so the survivor function is equal to 1 (all samples survived) for T>29.3°𝐶, that is 
Δ𝑇 < 11.5°𝐶  Similarly, for temperatures below 27.1°𝐶, all samples have nucleated, so the 
survivor function is equal to zero (no samples survived) for T<27.1°𝐶 (Δ𝑇 > 13.7°𝐶), as shown 
in figure 1b. From the survivor function, the nucleation rate as a function of temperature was 
calculated using equation 2 and fitted to the power law, 𝐽C(𝑇) = 𝛾Δ𝑇4 , resulting in 𝛾 = 4.2 ∗
10"XX ?

K*W!, and 𝑛 = 35.87 as shown in figure 1d. To show the goodness of fit, the survivor 
function (equation 1) is plotted using 𝐽C(𝑇) = 4.2 ∗ 10"XXΔ𝑇XY.[\ in figure 1b. The smooth line 
shows the survivor function given by the fitted analytical nucleation rate. There is good agreement 
between the fit and the data. Using equation 11, the standardized supercooling temperature for the 
reference system defined in Section 5 for NPG is then Δ𝑇OPQ<RSTTU:4D,W&)=8.85°𝐶	 below the 
equilibrium transition temperature of 40.8°𝐶.   It is noteworthy that this Δ𝑇OPQ<RSTTU:4D,W&) is 
smaller than the range of supercoolings observed in Fig. 1b (Δ𝑇 ~ 12.0 - 13.5 °𝐶).  This is because 
the standardized definition of Eq. 11 presumes a larger volume and a slower cooling rate, both of 
which facilitate nucleation and reduced Δ𝑇. 
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Fig. 1: (a) Raw DSC data for 150 cooling cycles of 10 mg of NPG at b=10 °6
!:4

 . Each cooling 
curve exhibits a phenomenon known as recalescence, in which immediately after the onset of 
a phase transition the rate of heat released is temporarily greater than the rate of cooling, so 
the material heats itself up for a short time. From these curves, the distribution of supercooling 
temperatures is recorded. (b) shows the survivor function (magenta) discussed in Section 1, 
which was calculated from the distribution of supercooling temperatures given by the DSC 
data in (a). A 95% confidence interval using the DKW inequality is shown in blue surrounding 
the empirical survivor function. The solid black line shows the fitted CDF from the nucleation 
parameters, 𝛾 and n using equation 9.  (c) The PDF computed from the survivor function, 
𝑃𝐷𝐹(𝑡) = )6@A(&)

)&
.  (d) shows the pointwise nucleation rate (magenta) calculated using a two-

point finite difference form of equation 2, and its fit (black solid line) using equation 3.   Panels 
(b)-(d) are referred to 𝑇! = 40.8	°𝐶. 
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5.3 Experimental Procedure for Validation of Uniform Temperature Distribution Approximation   
 
  
Using the nucleation parameters 
characterized via DSC, we can 
predict how the supercooling 
temperature will change with 
volume and cooling rate from 
equation 10a. To test this prediction, 
we run cooling experiments for NPG 
at different volumes spanning 3 
orders of magnitude (𝑉 = 6.0 ∗
10"], 2.6 ∗ 10"^, 1.3 ∗ 10"Y	𝑚X). 
For these experiments, the 
appropriate volume of NPG was 
melted in an oven and poured into 
aluminum weigh-boats such that the 
thickness L was uniform and less 
than 0.5	𝑚𝑚, ensuring a uniform 
temperature distribution during 
cooling (see SI Section 2). Three 
thermocouples with uncertainty 
±	0.1°𝐶 were taped to the opposite 
sides of each aluminum pan, and the 
samples were cycled 20 times in an 
oven at a cooling rate of b=0.1 °6

!:4
. 

Nucleation temperatures were 
recorded as the average 
supercooling value from each 
thermocouple for a given sample. 
We note that the crystal growth rate 
in NPG appears to be very fast, so 
that all thermocouples record the nucleation event within 5 seconds of each other and thus there is 
close agreement among the measurements.  
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 2: Experimental vs. predicted supercooling temperatures (relative 
to 𝑇-) for NPG at different volumes and cooling rates for the uniform 
temperature distribution approximation. The black dots represent the 
experimental averages and the vertical lines their standard deviations, 
all for an experimental cooling rate of b=0.1 °/

-01
 . The shaded blue 

region and the dashed blue lines represent the average predicted 
supercooling temperatures  from equation 10a for a cooling rate of 0.1 
°/
-01

,  bounded by one predicted standard deviation, using 𝛾 = 4.2 ∗
10233 and 𝑛 = 35.87 determined from Fig. 2, The red point is another 
experiment using a faster cooling rate of 		104 °/

-01
.  
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5.4 Experimental Procedure for validation of General Theory  
 
To test the predictions in Section 4 we keep the volume constant at 𝑉 = 2.6 ∗ 10"^	𝑚X but vary 
the aspect ratio, so that the transient cooling is no longer lumped. By varying the geometry, we 
change the local thermal conditions at each nucleation site. To do this, we iteratively melted 2.6 ∗
10"^	𝑚Xof NPG in an oven and cast them into PTFE tubes of varying diameter, ranging from 
0.635 to 1.588 cm. We note 
that the PTFE was chosen 
because the tubes do not 
interact with NPG, and they 
are non-stick for easy 
removal. Once removed from 
the PTFE forms, the NPG 
cylinder (shown in blue in Fig 
3) was bridged between two 
columns of foam (diagonal 
black hatched lines) such that 
its end faces were insulated, 
while its circumferential 
surface was open to the 
environment (i.e convective boundary conditions). Thermocouples were placed behind aluminum 
foil contacting one face of the cylinder, so that the thermocouple tip had no direct contact with the 
NPG. The NPG cylinders were then equilibrated at 𝑇T = 50°𝐶 in an oven for several hours.  Then 
each cylinder was transferred to an environment held at T¥=25°𝐶 to cool by free convection, and 
the time until nucleation was recorded for each aspect ratio and compared against the predictions 
given by equations 6-8. For these predictions, edge effects were important so we used COMSOL 
Multiphysics to calculate 𝑇(𝑥, 𝑦, 𝑧, 𝑡). To make these predictions, we first calibrated for the free 
convection coefficient by placing a thermocouple on the outer surface of an NPG cylinder and 
measuring the temperature vs time curve and fitting numerical solutions for temperature vs time 
curves to that data to determine ℎ (see SI 2). This calibration yielded ℎ = 18 J

!+K
, taken as 

constant, which is a reasonable value for free convection and was used for the predictions in figure 
4. 
 
 
 

6. Results and Discussion 
 
The experimental results for the uniform temperature distribution approximation are plotted 
against the predictions made from the nucleation parameters in Figure 2. Variations of the 
prediction with 𝛽 are shown, and it can be seen that changing 𝛽 simply offsets the curve, but not 
the slope, in this log-log plot. Experimental vs predicted values for constant volume but varying 𝛽 
are shown in figure 2 for 𝛽 = 10"? °6

W
 (the three black points) and 𝛽 = 10? °6

W
	(the red point), and 

the predicted values agree closely with experimental results for the effects of both V and 𝛽. 
 

Insulation Insulation Insulation 

𝑉 = 	2.6	 ∗ 10"^mX	= Constant 

Fig 3. Experimental setup to test the general non-lumped theory of Section 4. NPG 
(blue) was cast into cylinders of varying lengths and diameters, but constant 
volume. The cylinders were suspended between two foam insulation columns such 
that the end faces were insulated.   Heat transfer is in the radial direction (red 
arrows) during these cooling experiments. 



 14 

The predictions of equations 6-8 describing the more general theory are plotted (solid blue line) 
against experimentally determined nucleation times (black dots) in Figure 4. The shaded blue 
region denotes predictions that are one standard deviation above and below the average nucleation 
time. There is excellent agreement between equations 6-8 and experimental values. We include 
two additional curves on the figure to contextualize the importance of including temperature 
gradients and convective boundary conditions, as described next.  
 
Previous related work  [25,29,30] had two key simplifying assumptions: (i) a lumped temperature 
response (that is, 𝑇(𝑡) only); (ii) constant cooling rate, 𝛽. The present work focuses on relaxing 
both of these requirements by considering non-lumped temperature response (that is, (𝑇(𝑥, 𝑦, 𝑧, 𝑡)) 
and convectively coupled cooling which leads to variable cooling rate. To demonstrate the effect 
of relaxing these requirements, we show two additional predictions in Figure 4. First, we compare 
to the lumped constant cooling rate case, where the average nucleation time is given by equation 
10b.  Because the physical system experienced convective cooling and not constant cooling rate, 
we approximated a constant cooling rate, 𝛽, by evaluating the convective cooling rate at 𝑡 = 0 
from Newton’s Law of Cooling. This gives ).

)&
|&>F = −𝛽 = − 1+

!65
(𝑇T − 𝑇E). We used this 𝛽 and 

the system volume, 𝑉 = 2.6 ∗ 10"^𝑚X, as inputs into equation 10b and the results are plotted as 
the gray dotted line in figure 4. It can be seen that using the lumped approximation with constant 
cooling rate gives average nucleation times that are ~1.5x lower than that given by the more 
detailed treatment of the non-lumped (𝑇(𝑥, 𝑦, 𝑧, 𝑡)) with equations 5-8.  
 
Next, we maintained the lumped approximation and relax the constant cooling rate assumption by 

using Newton’s law of cooling 𝑇(𝑡) = 𝑇E + (𝑇T − 𝑇E)𝑒
"_ 67

%85
`&

 to describe the time-dependent 
convective cooling, which was used as the input into equations 6-8. This ensures that the sample 
is convectively-coupled to the surroundings with the same value of ℎ = 18 J

!+K
 used in the more 

detailed simulations.  The predictions for this lumped, convective cooling are shown as the gray 
dashed line in figure 4, and now overpredict the actual cooling time by around a factor of 2. It 
overpredicts because the lumped assumption ignores large temperature gradients which generally 
arise near the material surface. The large temperature gradients lead to much lower temperature 
near the surface, which catalyzes nucleation. Because the lumped assumption ignores these 
temperature gradients, the catalyzed effect on nucleation is missed, leading to over-prediction. We 
show these comparisons to highlight the fact that the lumped assumption can easily cause large 
(~2x) errors. Thus, accounting for the temperature gradients within the sample during cooling is 
very important for an accurate description of a sample’s supercooling behavior.  
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FIG 4: Experimental (points) vs predicted (lines) supercooling times for 
NPG at fixed volume with varying aspect ratio (unitless). See figure 3 
for schematic of the experiment. The black points represent the 
experimental averages and their standard deviations on the vertical. The 
solid blue line represents the predicted supercooling times from 
equations 5-8 using 𝛾 = 4.2 ∗ 10233 and 𝑛 = 35.87. The blue shaded 
zone represents ±	1 standard deviation from equation 8. The gray dashed 
and dotted lines show predictions for lumped convective and lumped 
constant cooling cases, and are included to highlight the importance of 
taking into account temperature gradients (non-lumped) to correctly 
predict the supercooling behavior of a system. 
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Conclusion 
 
Using lab scale experimental data to predict supercooling performance in large scale thermal 
energy storage applications is crucial for the analysis and prediction of phase change material 
performance metrics. This paper has outlined experimental characterization techniques for 
supercooling in thermal energy storage applications and developed a theoretical framework to use 
that characterization for prediction of supercooling in a generalized system, which may be much 
larger than the lab scale and include substantial temperature gradients.  The analysis can be used 
in conjunction with existing numerical methods to accurately incorporate supercooling into phase 
change models, thus combining material modeling with system modeling. This framework has 
been validated by comparing to experimental results in neopentyl glycol, which shows how the 
model successfully predicts the changes in subcooling temperature across a large range of cooling 
rates (2 orders of magnitude) and volumes (3 orders of magnitude). To expand this framework, 
future efforts should explore the characterization of more exotic and complex materials (e.g. 
polymers, mixtures).  
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Symbol Meaning Units 

CDF Cumulative Distribution Function Unitless 

PDF Probability Density Function 
1
𝑠 

𝜒(𝑡) Survivor Function Unitless 

𝜆(𝑇) Total system nucleation rate 
𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛

𝑠  

𝐽*(𝑡) Total system nucleation rate divided by the volume of the system 
𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛
𝑠 ⋅ 𝑚X  

𝐽+(𝑡) Total system nucleation rate divided by the area of the system 
𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛
𝑠 ⋅ 𝑚G  

𝛽 Cooling rate for uniform temperature approximation 
°𝐶
𝑠  

𝐵𝑖 Biot Number Unitless 

𝐿 Length Scale of system m 

h Convective heat transfer coefficient 
𝑊
𝑚G𝐾 

k Thermal conductivity 
𝑊

𝑚 ⋅ 𝐾 

𝛾 
Fitting parameter in 	

𝐽*(𝑇) = 𝛾Δ𝑇4	
 

𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛
𝑠 ⋅ 𝑚X ⋅ 𝐾4  

n 
Fitting parameter in 	

𝐽*(𝑇) = 𝛾Δ𝑇4 
 

Unitless 

V Volume of PCM system 𝑚X 

𝑇! Equilibrium melting point C 

A Surface area of PCM system 𝑚G  

t Time elapsed as system is cooled from equilibrium melting point  S 

i Representative statistical distribution for each material element 
(see equation 4) Unitless 

𝑥:  
Coordinate vector specifying the position at which the statistical 
distribution is evaluated m 
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Table 1: List of Symbols and Variables 
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Supplementary Information 
 

 
1. Experimental Supercooling Data and Quality of Distribution 

 
10mg of NPG was cycled 150 times from 25°𝐶 to 50°𝐶 in a DSC at a heating and cooling rate of 10 °/

-01
	. The 

cooling curves  from each run are shown in figure 1 of the main text. The supercooling temperatures were 
determined as the first deviation from the heat capacity that exceeded the minimum accuracy of heat flow on the 
DSC (first detectable deviation). For the DSC 2500, the minimum deviation is 20	𝜇𝑊. The extracted values are 
plotted below as a function of trial number.  
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To check for signs of material aging, we provide a linear fit (black solid line) to the data, and compare that with the 
average of the distribution (orange solid line). It is seen that the average fit is nearly constant vs trial number, 
indicating little to no aging. In addition, we take the raw data and generate a normal probability plot. This plots the 
CDF of the experimental data vs the CDF of a theoretical normal distribution. If the experimental data is perfectly 
normally distributed about the mean, the plot would show a straight 45° line. As can be seen from the normal 
probability plot below, the experimental data is approximated well by a normal distribution, indicating that there is 
negligible aging or systematic bias.  
 

y = -0.0022x + 13.029

9

10

11

12

13

14

15

0 20 40 60 80 100 120 140 160 180

Su
pe

rc
oo

lin
g 

Re
la

tiv
e 

to
 T

m
  

[C
]

Trial Number

Supercooling vs Trial Number -- NPG



 21 

 
 

 
2. Experimental Setup for Uniform Temperature Distribution Approximation 

 
The figure below depicts the hot and cold conditions used to cycle the NPG samples for the 
uniform temperature distribution approximation experiments. 
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3. Convection Heat Transfer Coefficient Calibration 
 
 
To make the predictions in figure 4, we needed to calibrate for the convection coefficient.  We calibrated by placing 
a thermocouple on the outer surface of a 3

9
" diameter NPG cylinder, equilibrating the NPG at 50°C, and then 

measuring the temperature vs time curve after it was brought to ambient at 24°𝐶. To find the convection heat 
transfer coefficient associated with the experiment, we solved for the temperature vs time of the equivalent physical 
and geometric system in COMSOL Multiphysics, and fitted the numerical solutions to the experimental data to 
determine ℎ. The calibration yielded ℎ = 18 :

-!;
 which is a reasonable value for free convection and was used for 

the predictions in figure 4.  The abrupt spike in temperature around 450 seconds indicates that the lower 
temperature NPG phase has nucleated. Once nucleated, the NPG releases its latent heat. The temperature rises 
abruptly because  the rate of energy release is greater than the rate of cooling (recalescence), so the material will 
self-heat until it reaches its equilibrium melting temperature.  
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