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California: A Retrospective Cohort Study of 2006–2015 Births
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1School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, California, USA
2Department of Environmental Science, Policy and Management University of California, Berkeley, California, USA
3Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
4Department of Health Education, San Francisco State University, San Francisco, California, USA

BACKGROUND: Studies suggest associations between oil and gas development (OGD) and adverse birth outcomes, but few epidemiological studies of
oil wells or inactive wells exist, and none in California.

OBJECTIVE: Our study aimed to investigate the relationship between residential proximity to OGD and birth outcomes in California.
METHODS: We conducted a retrospective cohort study of 2,918,089 births to mothers living within 10 km of at least one production well between
January 1, 2006 and December 31, 2015. We estimated exposure during pregnancy to inactive wells count (no inactive wells, 1 well, 2–5 wells, 6+
wells) and production volume from active wells in barrels of oil equivalent (BOE) (no BOE, 1–100 BOE/day, >100BOE=day). We used generalized
estimating equations to examine associations between overall and trimester-specific OGD exposures and term birth weight (tBW), low birth weight
(LBW), preterm birth (PTB), and small for gestational age birth (SGA). We assessed effect modification by urban/rural community type.

RESULTS: Adjusted models showed exposure to active OGD was associated with adverse birth outcomes in rural areas; effect estimates in urban areas
were close to null. In rural areas, increasing production volume was associated with stronger adverse effect estimates. High (>100BOE=day) vs. no
production throughout pregnancy was associated with increased odds of LBW [odds ratio ðORÞ=1:40, 95% confidence interval (CI): 1.14, 1.71] and
SGA (OR=1:22, 95% CI: 1.02, 1.45), and decreased tBW (mean difference = −36 grams, 95% CI: −54, −17), but not with PTB (OR=1:03, 95%
CI: 0.91, 1.18).

CONCLUSION: Proximity to higher production OGD in California was associated with adverse birth outcomes among mothers residing in rural areas.
Future studies are needed to confirm our findings in other populations and improve exposure assessment measures. https://doi.org/10.1289/EHP5842

Introduction
Oil and gas development (OGD) by the U.S. petroleum industry
spans decades in many states but concern about its potential
health and equity impacts did not gain traction among researchers
until the recent rapid increase in hydraulic fracturing (HF)
(Finkel and Law 2011; Kovats et al. 2014; Mitka 2012). As of
2017, California (CA) was one of the top five producers of crude
oil in the country (U.S. EIA 2018a, 2018b). Four of the 10 largest
U.S. oil fields are in CA’s San Joaquin and Los Angeles Basins
(Long et al. 2015a), and unlike newer shale gas plays, most of
CA’s natural gas is extracted from reservoirs also producing oil
(Long et al. 2015b). Given the long history of OGD in CA, stimu-
lation techniques, such as water and steam injection and HF, are
primarily used at established sites rather than newly drilled wells.
Oil recovered via water flooding and steam injection (conven-
tional enhanced oil recovery methods) accounted for 76% of the
state’s oil production in 2009 (Long et al. 2015b), whereas HF,
an unconventional stimulation technique, accounted for 20% of
CA’s oil production in the last decade. Due to types of geological
formations, HF practices in CA differ from other states, poten-
tially resulting in differing environmental hazards (Long et al.
2015b). OGD production in CA also occurs in both rural and

urban settings in comparison with other states, such as rural
Pennsylvania and Colorado, where many epidemiological studies
have been conducted (Casey et al. 2015; Currie et al. 2017; Hill
2018; McKenzie et al. 2014; Rasmussen SG et al. 2016; Tustin
et al. 2017). Therefore, an epidemiological study of the relation-
ship between adverse birth outcomes and OGD in CA, a state
with a diverse population and the most annual births of any U.S.
state, can provide insights about the potential health impacts of
OGD exposure in both rural and urban areas.

Characterizing exposures related to OGD poses significant
measurement challenges because multiple environmental hazards
are associated with different stages of extraction and production.
OGD involves the development of oil and gas sites and wells (pro-
duction and injection for enhanced recovery), transport of materi-
als to and from well sites, drilling, operation of equipment to
recover oil and gas, and collection and disposal of chemicals and
waste separated from the raw oil and gas (Long et al. 2015a). These
activities are associated with diverse environmental hazards,
including air and water pollutants, noise, odors, excessive and
inappropriate lighting, and undesired land use changes (Adgate
et al. 2014; Long et al. 2015a). The application of unconventional
techniques presumably enhances the environmental burdens
because the additional toxic chemicals that are used can potentially
be released into air, water, and soil (Adgate et al. 2014; Long et al.
2015a;Macey et al. 2014; Roy et al. 2014; Vengosh et al. 2014).

Air pollutants associated with OGD include particulate matter
(PM) with an aerodynamic diameter of <2:5 lm (PM2:5), diesel
PM, nitrogen oxides (NOx), secondary ozone formation, mercury,
and volatile organic compounds (VOCs) like benzene, toluene, eth-
ylbenzene and xylene (BTEX) from truck traffic, drilling, hydraulic
fracturing, production, and flaring (Allshouse et al. 2019; Brantley
et al. 2015; Colborn et al. 2014; Eapi et al. 2014; Esswein et al.
2014; Franklin et al. 2019; Goetz et al. 2015; Koss et al. 2017; Lan
et al. 2015; Macey et al. 2014; Marrero et al. 2016; Maskrey et al.
2016; Mellqvist et al. 2017; Roy et al. 2014; Warneke et al. 2014).
Additionally, fugitive toxic air contaminants can escape at the well-
head (Garcia-Gonzales et al. 2019; Warneke et al. 2014) that might
affect health near the points of release. Water contaminants
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associated with OGD include gas-phase hydrocarbons, chemicals
mixed in drillingfluids, and naturally occurring salts, metals, and ra-
dioactive elements within shale that surface with wastewater along
with recovered oil and gas and that can contaminate potable water
via leaks and spills or evaporate (Adgate et al. 2014; Hildenbrand
et al. 2015; Long et al. 2015a; Vengosh et al. 2014). Noise pollution
is associated with well pad construction, truck traffic, drilling,
pumps, flaring of gases, and other processes (Allshouse et al. 2019;
Blair et al. 2018; Ebisu and Bell 2012; U.S. BLM 2006). Drilling
and production activities occur both during the daytime and night-
time, and light pollution has been previously reported as a nuisance
in communities undergoing unconventional OGD (Long et al.
2015a), suggesting OGD may affect the health of nearby commun-
ities via increased psychosocial stress.

Several OGD-related environmental exposures have been
linked to reduced birth weight and gestational age: air pollution,
e.g., PM2:5, NOx, SOx (Basu et al. 2014; Dadvand et al. 2013,
2014; Ebisu andBell 2012; Long et al. 2015a;Morello-Frosch et al.
2010; Ponce et al. 2005; Ritz et al. 2007); noise pollution (Arroyo
et al. 2016; Gehring et al. 2014); some of the chemical compounds
found in OGD wastewater (Long et al. 2015a; Valero de Bernabé
et al. 2004); and psychosocial distress (Dominguez et al. 2008;
Goldenberg et al. 2008; Rondó et al. 2003; Valero de Bernabé
et al. 2004). Previous studies examining the relationship between
unconventional OGD and birth outcomes provide suggestive evi-
dence of adverse effects. Although study designs vary, most have
characterized OGD exposure based on the density and distance of
HF shale gas wells near the maternal residence in urban and rural
Colorado (McKenzie et al. 2014, 2019), Pennsylvania (Casey et al.
2015; Currie et al. 2017; Hill 2018; Ma 2016; Stacy et al. 2015),
Oklahoma (Janitz et al. 2019), and urban Texas (Walker
Whitworth et al. 2018, 2017). Among the 10 studies, 8 evaluated
our outcomes of interest. Some studies found greater exposure to
OGD was associated with reductions in term birth weight (tBW)
(Hill 2018; Stacy et al. 2015) and increased odds or incidence of
low birth weight (LBW) (Currie et al. 2017; Hill 2018), preterm
birth (PTB) (Casey et al. 2015; Walker Whitworth et al. 2018,
2017), and small for gestational age births (SGA) (Hill 2018; Stacy
et al. 2015). However, those studies also reported statistically in-
significant (Casey et al. 2015; Whitworth et al. 2017) or inverse
associations (McKenzie et al. 2014; Stacy et al. 2015) for some
birth outcomes.

Building on this research, our study focused on OGD in CA.
We conducted our analysis in regions where OGD is concen-
trated: the Sacramento Valley, San Joaquin Valley, South Central
Coast, and South Coast air basins. To our knowledge, our retro-
spective cohort study with births from 2006–2015 is the first to
evaluate prenatal OGD exposure from oil as well as gas wells,
inactive as well as active wells, and non-HF and HF wells in rural
and urban settings of CA.

Methods

Study Population
Birth records for 1 January 2006 to 31 December 2015 were obtained
from the California Department of Public Health (CDPH). CDPH
collects statewide birth records that include mother’s residential
address at the time of birth, which we geocoded to assign exposure to
OGD exposure and area-level covariates using ArcGIS (ESRI).
Birthswithmissing street-level addresses or that could not be success-
fully geocoded after a manual cleaning of the address fields for spell-
ing and punctuation errors were excluded (5%). We selected the
Sacramento Valley, San Joaquin Valley, South Central Coast, and
South Coast air basins because they had the highest well densities in
CA between 2005 and 2015 (Figure S1). We illustrate the

construction of the study population in Figure 1. Exclusion criteria
included missing last menstrual period (LMP) date, which was
approximated as the date of conception and used to estimate gesta-
tional age (3%); congenital anomalies or abnormal birth conditions
such as cleft lip andDown’s syndrome (4%); plural births, e.g., twins,
triplets (4%); implausible birth weights of less than 500 g or greater
than 5,500 g (4%) (Alexander et al. 1996; Padula et al. 2014; Ponce
et al. 2005; Talge et al. 2014); and implausible gestational ages of less
than 22 or greater than 44wk (4%) (Alexander et al. 1996; Talge et al.
2014). To limit unmeasured confounding and enhance comparability
of exposed and unexposed populations, we also excluded births to
mothers who did not live within 10 km of at least one oil/gas produc-
tion well (3%). Finally, we excluded observations with any missing
covariates or outcomes (2%) to arrive at a final study population of
2,918,089 births (N =2,718,629 term births). All study protocols
were approved by the Institutional Review Board of the CA
Department of Public Health (#13-05-z) and the University of
California, Berkeley (# 2013-10-5,693).

Birth Outcomes
We assessed the relationship between OGD and four outcomes: a)
continuous birthweight (grams) among tBW(≥37 completedweeks);
b) LBW (<2,500 g); c) PTB (<37 wk); and d) SGA (birth weight
less than the U.S. sex-specific 10th percentile of weight for each week
of gestation (Talge et al. 2014). Gestational age was estimated by sub-
tracting theLMPdate from the date of birth.

Exposure Assessment
Active and inactive oil and gas well records including monthly pro-
duction data were downloaded from theCADivision ofOil, Gas and

Figure 1. Flow diagram of study population development and exclusion cri-
teria applied.
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Geothermal Resources website (CA DOGGR) in December 2015
(the division has been renamed to the CA Geologic Energy
Management Division, CalGEM, as of January 2020). We assessed
exposure to inactive wells because previous studies have found fugi-
tive methane emissions from abandoned production wells that have
not been plugged or were improperly plugged (Boothroyd et al.
2016; U.S. EPA 2018; Kang et al. 2016). VOCs, such as BTEX and
toxic air contaminants, are likely coemitted with methane (LACDPH
2018; SCAQMD 2019), and exposure to VOCs, including
BTEX and formaldehyde, are associated with adverse birth out-
comes (Bolden et al. 2015; Chang et al. 2017; Maroziene and
Grazuleviciene 2002). Some of the 224,695 wells in the data set
began producing as far back as 1900. The DOGGR data included
well latitude/longitude and monthly production volume (barrels
of oil and/or cubic meters of natural gas). We defined a produc-
tion well as active if it produced at least one unit of oil or gas in a
given month; production wells could transition between active
and inactive status across the study period. We combined these
well data with mothers’ residential addresses at the time of

delivery, date of conception (defined as LMP), and date of deliv-
ery to assign prenatal exposure to oil and gas wells.

Study participants lived within 10 km of at least one active or
inactive well at the time of delivery. We classified women who
had at least one active or inactive well within 1 km of their resi-
dential address as exposed (Figure 2); prior literature suggests
highest exposure to OGD-related hazards within this radius
(Boyle et al. 2017; McKenzie et al. 2012; Meng 2015; Walker
Whitworth et al. 2018, 2017). We selected the 1-km buffer pre-
suming that localized air pollution is likely the greatest contribu-
tor to OGD-related exposure in CA. We used the short distance
to minimize the impact of dispersion and the contribution of ex-
posure from other sources of air pollution. We calculated expo-
sure across the entire pregnancy and by trimester to examine
potential critical windows of prenatal exposure.

Exposure to active wells was characterized by oil and gas pro-
duction volume during pregnancy and exposure to inactive wells
bywell count. Total production volume exposure from activewells
within 1 km was derived by summing monthly barrels of oil and

A

B

Figure 2. Schematic of definition of exposure and reference groups for inactive well count (A) and active well production volume (B). For each exposure met-
ric, exposure was based on the presence of inactive or active wells within the 1 km buffer. Observations without the specific well type for each metric were
assigned into the reference category.
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barrels of oil equivalent (BOE) of natural gas. Production volume
from oil and gas wells were summed because 95% of gas wells also
produced oil (i.e., wet gas) and gas-only wells did not produce sig-
nificant amounts of gas. Production volume was summed as shown
in Equation 1:

Total production volumej =
Xn

i=1

Xl

k= k

ProdðoilÞik

+
Xn

i=1

Xl

k= k

ProdðgasÞik=6,

where ProdðoilÞik was the production volume of oil (in barrels),
and ProdðgasÞik was the production volume of gas (in thousand
cubic feet, mcf) at well i during month and year k of mother j’s
entire pregnancy or trimester. K is the month and year of concep-
tion or beginning of a trimester, and l is the month and year of
delivery or end of a trimester. K has a minimum value of 1 equal
to January 2005, and l has a maximum of 124 or December 2015.
Gas production volume was converted from the original units to
BOE by dividing by 6 because 6,000 cubic feet ðmcfÞ=1BOE
(Bonavista Energy Corporation 2018; Schmoker and Klett 2005).
The total production volume for the first and last month of the
entire pregnancy or trimester was also weighted by the proportion
of the month the mother was pregnant.

We calculated the number of inactive wells within 1 km of a
mother’s residence during her pregnancy by subtracting the number
of activewells from the total number ofwells within 1 km. For anal-
ysis, we first normalized production volume by the number of days
of the entire pregnancy or within each trimester by dividing produc-
tion volume by the total number of days and then categorized expo-
sure to production volume of active wells based on the exposure
distribution as: a) no active wells, b) 1–100 BOE/d (moderate), and
c) more than 100 BOE/d (high). We similarly categorized exposure
to inactive wells as: a) no inactive wells, b) 1 inactive well, c) 2–5
inactive wells, and d) 6 or more inactive wells. The production vol-
ume was normalized to prevent bias from neonates born later
because their exposure period was longer. Given a lack of a priori
knowledge about the production volume or inactive well count that
might constitute a harmful exposure, we selected these categories
based on the distribution of each exposure metric across cases and
noncases to ensure sufficient overall sample size and number of
cases in each exposure group. The exposure variableswere notmod-
eled as continuous because the distribution was right skewed (Table
S2). Both active and inactive well exposure variables were included
in all regression models. The exposure variables were generated in
R version 3.3.1 (RDevelopment Core Team).

Covariates
Individual-level covariates that were identified a priori as significant
predictors of our outcomes and potential confounders based on prior
studies were derived from the CDPH birth records. Infant covariates
included sex, month (categorical) of birth, and year of birth (categori-
cal) to control for seasonal and secular trends. Maternal covariates
included age in years (<20, 20–24, 25–29, 30–34, 35+), race/ethnic-
ity (non-Hispanic white, black, American Indian, Asian-Pacific
Islander, unknown or other, and Hispanic), educational attainment
(<high school, high school graduate/GED, some college, college+),
Kotelchuk index of prenatal care (inadequate, intermediate, adequate,
adequate+) (Alexander and Kotelchuck 1996; Kotelchuck 1994),
and parity (nulliparous vs. multiparous). For maternal race/ethnicity,
American Indian, unknown, and other were combined into one cate-
gory due to the small number of women in each group. We included

mean-centered and mean-centered squared variables for gestational
age in the tBWmodel to allow for nonlinearity.

We also integrated area-level variables, including indicators for
air basin and census tract-based urban/rural status, modeled nitrogen
dioxide (NO2) concentrations, and a measure of income concentra-
tion. These covariates accounted for neighborhood and regional dif-
ferences in air quality, economic activity, and emission sources
(Arruti et al. 2011; Finkelstein et al. 2003; O’Neill et al. 2003;
Wunderli andGehrig 1990; Zhao et al. 2009).We used 2014 air basin
boundaries designated by theCaliforniaAir ResourcesBoard (CARB
2014), which coincide with county boundaries and roughly delineate
areas with similar air quality, meteorology, and geography. We used
U.S. Census urban areas [defined as a densely developed territory
consisting of urbanized areas of 50,000 or more and urbanized clus-
ters with between 2,500 and 50,000 people (U.S. Census Bureau
2010)] to designate census tracts as urban or rural. Using 2010 boun-
daries, we categorized census tracts as urban if 60% or more of the
tract overlapped with an urban area. We assigned, based on LMP
year, tract-level annual ambient NO2 concentration as a proxy for
traffic-related air pollution (Kim et al. 2018). Last, we used the Index
of Concentration at the Extremes (ICE) for income as a measure of
neighborhood relative deprivation or affluence based on household
income by census tract (Massey 1996). ICE provides information
about concentration of privilege and deprivation of communities and
has previously been associated with infant mortality (Krieger et al.
2016). ICE ranges from −1 to 1, where negative values indicate a
concentration of household incomes in the lower 20th percentile of
area median household income, whereas positive values indicate a
concentration of household incomes in the higher 80th percentile.We
calculated ICE using 2006–2010 ACS and 2011–2015 ACS metro-
politan area median household income to establish percentile cutoff
values that account for regional differences in the cost of living. These
valueswere then used in combinationwith census tractmedian house-
hold income from the ACS data of the vintage of the birth year to
assign a tract-level ICE value to each birth. For tracts that were not
within metropolitan areas, county-level household income cutoffs
were used. ICE was categorized by quartile and this categorical vari-
ablewas included in adjustedmodels.

Statistical Analyses
Statistical analyses were conducted in SAS 9.4 (SAS Institute Inc.).
All models were adjusted for individual-level and community-level
covariates selected a priori: neonate sex, gestational age (tBW
model only), month and year of birth, maternal age, race/ethnicity,
educational attainment, Kotelchuck index, urban indicator, air ba-
sin, NO2, and ICE for income. Generalized estimating equations
were used to account for clustering of mothers within census tracts
(Hubbard et al. 2010). Observations with any missing covariate
were removed from analyses.

Initial analyses assessed exposure across the entire pregnancy and
then during each trimester for the entire study population across the
four air basins. Statistical significance was assessed at a=0:05.
Effect modification (EM) of exposure to active wells by urban/rural
status (primary), maternal race/ethnicity, and air basin (both second-
ary) was evaluated via stratification. We report the strata-specific
effect estimates and confidence intervals derived from this methodol-
ogy. To test the heterogeneity between strata-specific estimates, we
modeled interaction terms to derive Bonferroni adjusted p-values for
two-sample z-tests using model-estimated beta coefficients and var-
iances (Buckley et al. 2017; UCLA: Statistical Consulting Group).
These EM p-values indicate whether the strata-specific associations
are statistically significantly different from each other or the referent
group. Non-Hispanic whites were used as the referent in heterogene-
ity tests for the other racial/ethnic groups because higher rates of
adverse birth outcomes have been observed among people of color in
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Table 1. Neonate, maternal, and area-level characteristics of births by oil and gas well production volume category, California 2006–2015. Prepregnancy BMI
and smoking during pregnancy were available for 2007–2015 births (2006 births excluded from the missing category).

Variable n (%)

Production volume

p-Valuea
No BOE 1–100 BOE/day GT 100 BOE/day

(n=2,866,735) (n=70,615) (n=50,079)

Neonate characteristics
Mean birth weight [g (mean ± SD)] 2,987,429 (100) 3,327± 528 3,318± 527 3,316± 527 <0:0001
Mean gestational age [weeks (mean ± SD)] 2,987,429 (100) 39± 2 39± 2 39± 2 <0:0001
Sex
Female 1,456,548 (49) 49 48 49 0.2879
Male 1,530,866 (51) 51 52 51 —
Missingb 15 (<1) 100 0 0 —

Birth month
January 244,433 (8) 8 8 8 0.3261
February 224,691 (8) 8 8 8 —
March 245,683 (8) 8 8 8 —
April 233,297 (8) 8 8 8 —
May 242,652 (8) 8 8 8 —
June 241,962 (8) 8 8 8 —
July 260,028 (9) 9 9 9 —
August 269,714 (9) 9 9 9 —
September 266,586 (9) 9 9 9 —
October 261,399 (9) 9 9 9 —
November 245,566 (8) 8 8 8 —
December 251,418 (8) 8 8 8 —

Birth year
2006 320,330 (11) 11 10 12 <0:0001
2007 320,698 (11) 11 11 12 —
2008 312,732 (10) 10 10 11 —
2009 300,201 (10) 10 10 10 —
2010 290,469 (10) 10 10 10 —
2011 288,006 (10) 9 10 9 —
2012 288,855 (9) 10 10 9 —
2013 287,425 (10) 10 10 9 —
2014 293,637 (10) 10 10 9 —
2015 285,076 (10) 9 9 9 —

Maternal Characteristics (%)
Education
<High school 764,090 (26) 26 31 21 <0:0001
High school diploma/GED 764,206 (26) 26 23 21 —
Some college 724,574 (25) 25 22 23 —
College+ 665,993 (23) 23 24 35 —
Missingb 68,566 (2) 95 3 2 —

Age at delivery
<20 252,857 (8) 9 9 6 <0:0001
20–24 651,062 (22) 22 21 18 —
25–29 809,072 (27) 27 27 25 —
30–34 754,714 (25) 25 26 29 —
35+ 519,700 (17) 17 17 22 —
Missingb 24 (<1) 92 8 0 —

Race/ethnicity
Asian/Pacific Islander 356,603 (12) 12 11 13 <0:0001
Black 154,047 (5) 5 6 9 —
Hispanic 1,673,517 (56) 56 59 47 —
Other 84,384 (3) 3 2 4 —
White 718,878 (24) 24 22 27 —

Kotelchuck index
Inadequate 351,729 (12) 12 13 12 <0:0001
Intermediate 349,946 (12) 12 12 9 —
Adequate+ 905,545 (30) 30 29 34 —
Adequate 1,380,209 (46) 46 46 45 —

Parity <0:0001
Nulliparous 1,154,875 (39) 39 40 44 —
Multiparous 1,831,556 (61) 61 60 56 —
Missingb 998 (<1) 93 4 3 —

Mean pre-pregnancy BMIc (SD) 2,472,066 (93) 26± 6 26± 6 25± 6 <0:0001
Missingb 195,033 (7) 94 4 2 —

Smoking during pregnancyc <0:0001
Smoked 49,461 (2) 2 1 1 —
Did not smoke 257,7903 (97) 98 99 99 —
Missingb 39,735 (1) 92 5 3 —

TRI facility: 1+within 1 km 48,189 (2) 2 4 3 <0:0001
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comparison with whites (Bryant et al. 2010; Teitler et al. 2007).
SacramentoValleywas the referent in heterogeneity tests for the other
air basins because exposures to activewellswere limited to rural areas
of that basin,where therewere also fewer births. For the effectmodifi-
cation analyseswith race/ethnicity and air basin, only exposure across
the entire pregnancy was evaluated because trimester-specific esti-
mateswere similar to those for the entire pregnancy.

We conducted two sensitivity analyses with exposure variables
across the entire pregnancy only. Mothers’ smoking status during
pregnancy and prepregnancy body mass index (BMI) were not col-
lected by CDPH in 2006, so we conducted sensitivity analyses with
both of these variables in one model for 2007–2015. Only 2% of
mothers smoked during pregnancy among our study population
within our study period (prevalence of smoking during pregnancy in
CA was 2.5% in 2015) (CDPH 2015). Additionally, we considered
potential confounding from other industrial sources of air pollution
and included a binary variable for exposure to air pollution from other
facilities (e.g., refineries, power plants, metal mining facilities) moni-
tored for emissions, including air toxics by the CARB (CARB 2017)
within 1 km (referred to as TRI facilities). Only ∼ 2% of mothers
residedwithin proximity to TRI facilities during our study period.

We tested for multicollinearity between all model variables
by calculating the variance inflation factors (Schreiber-Gregory
2012), none of which were high (i.e., >10). To assess residual
spatial dependence, we generated semivariograms of regression
residuals plotted against distance between mothers’ residential
addresses (Le Rest et al. 2013; SAS) (Figure S3). The residuals
appeared randomly distributed, suggesting spatial autocorrelation
was likely controlled for by the study design and inclusion of spa-
tial covariates (e.g., NO2) in regression models.

Results
Our study included 2,918,089 births in CA between January 2006 and
December 2015 located in four air basins: the SacramentoValley, San
Joaquin Valley, South Central Coast, and South Coast. The overall
mean birth weight was 3,327 g [standard deviation ðSDÞ=528]
(Table 1). Five percent (n=148,100) of births were LBW, 7%
(n=199,460) preterm, and 12% SGA (n=337,943). A maximum

of 1,189 inactive wells and 441 active wells were located within
1 km of mothers’ residences during pregnancy. On average, moth-
ers exposed to moderate production volume (1–100BOE=d) had 89
inactive and 4 active wells within 1 km of their home during preg-
nancy, whereas mothers exposed to high production volume
(>100BOE=d) had an average of 160 inactive wells and 32 active
wells within a 1-km buffer. The average moderate total production
volume from active wells producing oil and gas during pregnancy
was 26BOE=d, and the average high total production volume
was 599BOE=d. Temporal trends of mean annual production
volume and annual rates of the binary birth outcomes showed no
distinct patterns in either rural or urban areas (Figure S4A,B).
Plots of temporal trends in mean annual production volume and
mean annual tBW also did not reveal consistent patterns in either
rural or urban areas (Figure S4C,D). The reference (no BOE) and
exposed populations were relatively similar in terms of demo-
graphic and socioeconomic factors (Table 1). Compared to the
reference and moderate production volume groups, mothers in
the high production volume category were slightly more edu-
cated (35% vs. 23.5%, on average, college or more educated),
older (22% vs. 17%, on average, aged 35 or more), more often
non-Hispanic (53% vs. 42.5%, on average, non-Hispanic races),
more likely to have no previous pregnancies (44% vs. 39.5%, on
average, nulliparous), and to reside in urban areas (97% vs. 88%,
on average), in the South Coast air basin (94% vs. 68.5%, on aver-
age) and in areas with greater wealth (31% vs. 26%, on average,
in ICE quartile 4). Finally, babies born to mothers exposed to
high production volume weighed on average 2 and 11 grams less
than those born to mothers exposed to moderate production vol-
ume and reference group, respectively.

Adjusted models generally found no associations between
inactive well count and adverse birth outcomes in both rural and
urban areas (Figure 3, Tables S1–S2). All statistically significant
associations indicated modestly decreased odds of LBW and PTB
(0.96–0.97) (Figure 3A,B; Table S1) or minimally increased birth
weight (4–5 g) (Figure 3D; Table S2) related to increased inactive
OGDwell exposure. Models based on trimester-specific exposures
yielded similar estimates across trimesters for all four birth out-
comes (Table S1–S2).

Table 1. (Continued.)

Variable n (%)

Production volume

p-Valuea
No BOE 1–100 BOE/day GT 100 BOE/day

(n=2,866,735) (n=70,615) (n=50,079)

Area-level characteristics (%)
Mean NO2 [ppb (mean ± SD)] 2,987,408 (99) 16± 7 18± 7 19± 5 <0:0001
Missingb 21 (<1) 95 0 5 —
Urban 2,651,066 (89) 89 87 97 —

Air Basin
Sacramento Valley 296,668 (10) 10 1 0.5 <0:0001
San Joaquin Valley 563,276 (19) 19 21 4 —
South Central Coast 178,647 (6) 6 6 1 —
South Coast 1,948,838 (65) 65 72 94 —

ICE
Quartile 1–poverty 731,431 (25) 25 31 27 <0:0001
Quartile 2 731,403 (25) 25 23 19 —
Quartile 3 730,283 (25) 25 19 23 —
Quartile 4–wealth 724,972 (25) 25 27 31 —
Missingb 217 (<1) 76 9 15 —

Oil/gas wells
Mean inactive well count (mean ± SD) 2,987,429 (100) 0 89± 111 160± 191 <0:0001
Mean active well count 2,987,429 (100) 0 4± 4 32± 27 <0:0001
Mean production volume (BOE)/d (mean ± SD) 2,987,429 (100) 0 26± 26 599± 711 <0:0001

Note: —, No data; BOE, barrels of oil equivalent; ICE, Index of Concentration at the Extremes.
aANOVA or chi-square test.
bDistribution of missingness across categories of production volume rather than percent missing in each production volume category.
cNo covariate data available for 2006 (not included as missing), n=2,667,099 births between 2007 and 2015.
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For exposures to production volume from active wells in unstrati-
fiedmodels, we observed significant associations between production
volume and LBW and SGA (Table S3). When we stratified models
by the urban indicator, we observed significant effect modification
with stronger associations between high production volume and
LBW (p=0:01, Table S4) and tBW (p=0:001, Table S7) in rural
areas (Figure 4). Compared to the reference group, the odds ratio for
LBWwas 1.11 [95% confidence interval (CI): 0.97, 1.27] (Table S4)
and the OR for SGA was 1.07 (95% CI: 0.97, 1.19) (Table S6) with
exposure to moderate production volume across the entire pregnancy
in rural areas vs. ORs of 1.04 (95% CI: 1.00, 1.09) and 1.03 (95% CI:
1.00, 1.07), respectively, in urban areas (Figure 4A,C). Exposure to
high production volume was associated with an OR of 1.40 (95% CI:
1.14, 1.71) for LBW and anOR of 1.22 (95%CI: 1.02, 1.45) for SGA
in rural areas vs. ORs of 0.99 (95% CI: 0.95, 1.04) and 1.04 (95% CI:

1.01, 1.07), respectively, in urban areas (Figure 4A,C; Tables S4, S6).
Exposure to high production volume was also associated with
decreased tBW (mean difference = −36 g; 95% CI: −54, −17)
for the rural stratum in comparison with the urban stratum
(mean difference = 1 g, 95% CI: −5, 8) (Figure 4D; Table S7).
For LBW, SGA, and tBW, the strength of the associations
increased with higher production volume among the rural, but
not the urban, population. In general, exposure to production vol-
ume throughout pregnancy was not associated with PTB within
rural or urban populations (Figure 4B; Table S5). Models based
on trimester-specific exposures yielded similar estimates and
EM p-values for all birth outcomes (Tables S4–S7), except the
third trimester for PTB, where exposure to moderate production
volume was associated with increased odds of PTB (OR=1:06;
95% CI: 1.02, 1.11) and high production volume was associated

Figure 3. Plots of rural vs. urban odds ratios or mean difference in birth weight (grams) and 95% confidence interval (CI) for associations between exposure to low,
moderate, and high counts of inactive wells across the entire pregnancy and low birth weight (A), preterm birth (B), small for gestational age (C), and continuous
term birth weight (D). Logistic regression models adjust for inactive well count, child’s sex, birth month and birth year, and maternal education, age, race/ethnicity,
Kotelchuck prenatal care index, parity, air basin, NO2 and ICE for income. In addition to the covariates adjusted for in the logistic regression models, the linear
regression models also adjusted for gestational age. All y-axes are on the logarithmic scale except for on the term birth weight plot. Numerical values plotted here
can be found alongwith estimates for the three trimesters and p-values for statistical tests for effect modification in Tables S1–S2.
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with decreased odds of PTB in urban areas (OR=0:82; 95% CI:
0.77, 0.88) (Table S5).

Maternal race/ethnicity (Tables S8–S9) and air basin (Tables
S10–S11) did not significantly modify associations between ex-
posure to active well production volume and birth outcomes.
Heterogeneity tests were only conducted on the rural population
because the effect sizes across outcomes were greater than those
of the urban population. Nearly all strata-specific effect estimates
included the null and all EM p-values from heterogeneity tests
were insignificant across all outcomes.

Sensitivity analyses that included: a) prepregnancy BMI and
smoking during pregnancy for 2007–2015 births (Table S12) and
b) exposure to TRI facilities (Table S13) did not change effect
estimates by more than 10%.

Discussion
CA’s OGD primarily uses conventional drilling and enhancement
methods and, to a much lesser degree, HF. To our knowledge, our
study is the first to quantify prenatal exposures to both inactive
wells and cumulative oil and gas production volume from active
wells in proximity to pregnant women and to evaluate differences
in associations by rural vs. urban areas in CA. In rural areas, we
found that exposure to high production volume was significantly
associated with increased odds of LBW and SGA and decreased
tBW in comparison with the nonexposed group. In urban areas, ex-
posure within 1 km of high production volume relative to no expo-
sure was only significantly associated with increased odds of SGA;
effect estimates for exposure to moderate production volume in ru-
ral and urban areas were all insignificant.

Figure 4. Plots of rural vs. urban odds ratios or mean difference in birth weight (grams) and 95% confidence interval (CI) for associations between exposure to
moderate and high production volume across the entire pregnancy and low birth weight (A), preterm birth (B), small for gestational age (C), and continuous
term birth weight (D). Logistic regression models adjust for inactive well count, child’s sex, birth month and birth year, and maternal education, age, race/eth-
nicity, Kotelchuck prenatal care index, parity, air basin, NO2 and ICE for income. In addition to the covariates adjusted for in the logistic regression models,
the linear regression models also adjusted for gestational age. All y-axes are on the logarithmic scale except for on the term birth weight plot. Numerical values
plotted here can be found along with estimates for the three trimesters and p-values for statistical tests for effect modification in Tables S4–S7.
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One prior study, by McKenzie et al. (2019), evaluated urban/
rural residential status as an effect modifier. Although that study
examined birth defects, the authors found significantly increased
odds for four congenital heart defects in the medium and highest
exposure groups (based on an intensity-adjusted inverse-distance
weighted well-count metric) relative to the lowest group in rural
areas (McKenzie et al. 2019); no significant associations were
observed for birth defects in urban areas. These rural vs. urban
differences in effect estimates align with the stronger effect esti-
mates we observed in rural areas in CA for LBW and tBW.
McKenzie et al. (2019) also discovered a potential additive effect
from other sources of air pollution besides OGD in their analysis.
Here, we considered residual confounding from TRI facilities
within 1 km, but inclusion of this covariate did not change the ru-
ral/urban strata-specific effect estimates. Nevertheless, there may
be residual confounding from other sources of air or drinking
water pollution that we could not account for in our analysis. For
example, the ratio of produced water from OGD (which can con-
tain naturally occurring or injected organic/inorganic chemicals,
chemicals that are reaction byproducts, and radioactive materials)
to oil and gas extracted increases with well age (Veil et al. 2004).
Certain chemicals from produced water could evaporate into the
air or percolate into groundwater sources, depending on disposal
methods (Long et al. 2015a). Air and water pollution concentra-
tions could differ regionally based on dispersion and hydrological
transport patterns. Additionally, individual factors that we could
not measure in our study, such as maternal occupation, housing
quality, indoor air quality, dependence on groundwater sources for
drinking water, and underlying population sensitivity to OGD-
related pollutants may have contributed to observed differences in
effect estimates between rural and urban settings. In the air pollu-
tion literature, the exposure–response relationship between cardio-
vascular disease mortality and PM2:5 is relatively steep at low
levels of exposure but flattens out at higher levels (Pope et al.
2009; Smith and Peel 2010). Such exposure–response relationships
could apply to the OGD setting where urban dwellers may be less
affected by OGD-specific pollutants because OGD as an emission
source contributes a relatively small percentage to ambient air pol-
lution levels in urban areas, which tend have higher pollutant con-
centrations overall from diverse mobile and stationary sources.
Indeed, average NO2 levels among urban areas in our study were
double that of rural areas.

Results from our analysis align with prior studies that observed
decreased birth weight associated with maternal exposure to OGD
activities (Currie et al. 2017; Hill 2018; Stacy et al. 2015).
However, associations between exposure to OGD and LBW and
SGA from other studies have been mixed, with increased odds
(Stacy et al. 2015) or incidence probability (Currie et al. 2017; Hill
2018) as well as decreased odds (McKenzie et al. 2014) or no asso-
ciations (Casey et al. 2015; Whitworth et al. 2017). Although the
mechanisms by which OGDmay adversely affect birth weight out-
comes remain uncertain, air pollution and noise may be possible
pathways that affectmaternal health during pregnancy.During pro-
duction, operation of various ancillary equipment (e.g., wellhead
compressors, pneumatic devices, separators, and dehydrators) to
collect and process oil and gas generate air pollutants (Garcia-
Gonzales et al. 2019). Multiple VOCs have been measured at oil
and gaswellheads and off-site, includingBTEX and formaldehyde.
At ambient levels, BTEX and formaldehyde have been linked to
significant decreases in birth weight (Bolden et al. 2015; Chang
et al. 2017; Maroziene and Grazuleviciene 2002). Flaring also
occurs with oil-producing and horizontally drilled wells (Franklin
et al. 2019) and can contribute to spikes in PM2:5, black carbon,
and VOCs during production (Allshouse et al. 2019; Franklin et al.
2019). Relative to other phases of OGD, excessive noise is

minimized during production (Allshouse et al. 2019; Hays et al.
2017). However, noise from compressor stations often exceed the
World Health Organization’s recommended 55 dBA at night
(Hays et al. 2017) and noise above 65 dBA was measured 20% of
the time between 1900 hours and 0700 hours (7:00 P.M. and 7:00
A.M.) in one study (Allshouse et al. 2019). Excessive noise can
lead to annoyance and impaired sleep quality (Hays et al. 2017),
which have been linked to LBW (Abeysena et al. 2010; Owusu
et al. 2013) and PTB (Li et al. 2017).

Unlike previous studies, we found no significant association
between exposure to active wells and PTB except in the third tri-
mester in urban areas where moderate exposure appeared harmful
and high exposure protective. Exposure to OGD was associated
with modestly decreased odds for PTB (Stacy et al. 2015) and
increased odds (Casey et al. 2015) in Pennsylvania and increased
odds in Texas (Walker Whitworth et al. 2018; Whitworth et al.
2017). The two Pennsylvania studies were conducted in different
regions of Pennsylvania and among different populations [general
for Stacy et al. (2015) and patients served by one health-care pro-
vider for Casey et al. (2015)]. The inverse association in the Stacy
et al. (2015) analysis was only observed for the second quartile of
exposure in comparison with the lowest quartile, whereas the asso-
ciation increased with greater exposure (quartiled) in the Casey
et al. (2015) study. In Texas, the association was only significant
with the highest level of exposure within 10 miles (Walker
Whitworth et al. 2018) and the first and second trimesters with ex-
posure within half a mile (Whitworth et al. 2017). Associations for
PTB appear to vary by level of exposure as well as trimester. We
only observed significant associations—increased odds with mod-
erate exposure and decreased odds with high exposure—in urban
areas in the third trimester. Previous studies on air pollution and
birth outcomes have suggested that the first and third trimesters are
critical windows of exposure for LBWand PTB (Ritz andWilhelm
2008; Woodruff et al. 2009). Additionally, the significant inverse
association between high OGD exposure and PTB in urban areas
may reflect residual confounding or live-birth bias. Other socioeco-
nomic status characteristics that were not controlled for in our
models could have led to underlying differences among urban
dwellers or their exposure patterns. Moreover, if more highly
exposed or more vulnerable mothers were less likely to become
pregnant or more likely to experience fetal loss, a so-called “deple-
tion of susceptibles” could have occurred (Raz et al. 2018), and a
seemingly protective effect would then be observed. Although we
could not evaluate fertility patterns or spontaneous abortion in our
analysis, a study in Ecuador observed greater odds of spontaneous
abortion among women who lived within 5 km downstream of an
oil field in comparison with those who lived at least 30 km
upstream of an oil field (San Sebastian et al. 2002).

The inconsistent results across studies may reflect differences in
statistical and exposure assessment methods, study population dem-
ographics, and OGD infrastructure. First, to limit unmeasured con-
founding, our analyses restricted the study population to those
individuals living within 10 km of at least one active or inactive
well at the time of delivery. Similar to Whitworth et al. (2017), we
specified the unexposed group as those pregnancies with some well
activity, but no well activity within 1 km. Besides their exposure,
the control and exposed groups are likely more similar to each other
on other characteristics (e.g., unmeasured socioeconomic factors)
than a control group selected fromgreater distances or other regions.
Second, we applied a 1-km buffer for our exposure metric without
weighting, i.e., without up-weighting wells at a shorter distance
from maternal residences. Previous studies used inverse distance
weighting (McKenzie et al. 2014; Stacy et al. 2015) or inverse dis-
tance squaredweighting (Casey et al. 2015;WalkerWhitworth et al.
2018, 2017) but often included wells beyond our 1-km buffer.
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Inverse distance weighting has been applied in many air pollution
studies (de Mesnard 2013). Although air pollution may be a large
contributor to OGD-related exposure, we did not assume that it is
the only OGD-related hazard, and within such a short distance
(1 km), dispersion patterns of OGD pollutants may be relatively
uniform. Therefore, we weighted all wells equally within the 1-km
buffer. Third, we examined separate effects of inactive wells and
active well production volume, whereas prior studies have not con-
sidered inactive wells separately and often only examined the den-
sity of (McKenzie et al. 2014; Stacy et al. 2015; Whitworth et al.
2017) or total production volume fromunconventional wells (Casey
et al. 2015; Walker Whitworth et al. 2018). Including both inactive
and active wells allowed us to distinguish possible differential
effects by well type. Fourth, our CA study population was more
racially and ethnically diverse than those in other studies conducted
in Colorado and Pennsylvania, which may contribute to differences
in analytical results. Finally, California’s OGD infrastructure is
older than infrastructure in other states and utilizes less HF in com-
parison with OGD in Pennsylvania, Colorado, and other states
where production infrastructure is newly established (Long et al.
2015b). These regional differences inOGD infrastructuremay affect
the type of hazards associated with them and their implications for
maternal health and birth outcomes.

Our study is the first to highlight differences in potential health
impacts of exposure to active OGD based on total production vol-
ume from both oil and gas wells and inactive wells. We did not,
however, directly measure OGD environmental impacts via, for
example, air or drinking water monitoring near active or inactive
wells. Several OGD-related hazards—air toxics, water pollutants,
noise, excessive lighting—may elicit a variety of biological
responses, but our exposure measure precluded identification of
specific pathways through which OGD may affect birth outcomes.
Further, the cumulative exposure–response curve of all of the
potential hazards and health outcomes may differ than that for each
individual hazard separately. For example, living in proximity to
oil and gas fields and seeing the active rigs daily might induce
stress, worry, and lack of sleep (Ferrar et al. 2013; Hirsch et al.
2018; Long et al. 2015a; Palagini et al. 2014). However, individu-
als may habituate, leading to biological responses that may peak
and level off (Basner et al. 2011), whereas we might expect a linear
exposure–response related to air pollution exposures.

We observed some modest inverse associations between inac-
tive wells and birth outcomes, primarily in urban areas. Inactive
wells can pose risks in several ways. To date, excessive fugitive
methane emissions have been measured at abandoned (unplugged)
well sites, with higher concentrations detected at sites with com-
promised wells (Boothroyd et al. 2016; Kang et al. 2016). Residual
off-gassing of air contaminants such as BTEX could also occur,
which has prompted the South Coast air district and DOGGR to
begin to collect air toxics and VOCs emissions data (LACDPH
2018; SCAQMD 2019; California AB1328). Of greater concern is
contamination of potable water sources from subsurface leakage
and migration of contaminants through abandoned or idle wells
(Long et al. 2015a). In an assessment of groundwater contamina-
tion from OGD in Ohio and Texas over more than a decade, aban-
doned wells accounted for 22% (Ohio) and 14% (Texas) of
contamination incidents (GroundWater Protection Council 2011).
In CA, idle wells may be repurposed for wastewater disposal or
later revitalized with new technologies (Walker 2011).Wells oper-
ating with old infrastructure pose greater risks of leakages through
the well casing and cement barriers (Ingraffea et al. 2014). HF
could also increase the risk of surface or groundwater contamina-
tion via abandoned wells due to hydrological pressure changes; in
one rare incident, an abandoned well in Pennsylvania produced a
30-foot geyser of brine and gas for more than a week after a nearby

gas well underwent HF (EPA 2016). We may not have observed
any consistent or significant associations between exposure to
inactive wells and adverse birth outcomes because we were not
able to capture these nuanced exposure pathways with well count
alone, leading to potential exposuremisclassification.

Other limitations include our inability to adjust for several
individual-level factors. Due to lack of data linkage, we could not
control for the correlation between siblings (though we do
include parity in all models) or maternal mobility during preg-
nancy. Birth records did not include a linking variable for siblings
and only documented the residential address at time of birth.
Previous studies on impacts of residential mobility during preg-
nancy suggest that ignoring residential mobility may lead to mod-
est bias in associations toward the null or result in nondifferential
exposure misclassification (Chen et al. 2010; Hodgson et al.
2015; Lupo et al. 2010; Pennington et al. 2017). However, expo-
sure estimates based on addresses captured at birth vs. conception
have been highly correlated (Chen et al. 2010; Lupo et al. 2010;
Pennington et al. 2017). Across studies, ≤30% of mothers moved
during pregnancy and moving distances were relatively short and
within the same county (Bell and Belanger 2012; Chen et al.
2010; Hodgson et al. 2015; Lupo et al. 2010; Miller et al. 2010;
Pennington et al. 2017). The extent of misclassification error
depends on the spatial variability in the exposure (Hodgson et al.
2015). Additionally, exposure misclassification may be less
prominent in the third trimester. Across environmental epidemio-
logical studies that evaluated the impact of residential mobility
on effect estimates by trimester, the highest rates of mobility
occurred in the second trimester (Bell et al. 2018; Bell and
Belanger 2012). Lowest residential mobility was observed in the
first trimester among three studies and in the third trimester among
two studies (Bell et al. 2018; Bell and Belanger 2012). Exposure
misclassification due to mobility in the third trimester is less likely
to be an issue, due to its proximity to the time of delivery, when
the maternal residential address is collected and listed on the birth
certificate. In addition to residential mobility, maternal occupa-
tional mobility should also be considered. One study that evaluated
the impact of occupational mobility on air pollution exposure mis-
classification among Parisian women in the two first trimesters
found that mode of transport increased NO2 exposure in the first
trimester (Blanchard et al. 2018). Our study results yielded similar
effect estimates across trimesters, suggesting that any bias resulting
from maternal residential and occupational mobility is likely non-
differential across trimesters.

In summary, this study expands the current literature on the
health implications of OGD. We observed that prenatal exposure
to active oil/gas production from both conventional and unconven-
tional wells in CAwas associated with adverse birth outcomes, and
these associations varied by rural and urban areas.We observed the
strongest associations with exposure to high production volume in
rural areas. Future studies should consider inactive wells and con-
duct exposure assessments that collect environmental samples of
OGD-related hazards. Such data would greatly improve exposure
assignment and advance our understanding of underlying exposure
sources and pathways. Additional evaluations of the relationship
between oil/gas operator size, pollutant emissions, and frequency
and type of violations and health outcomes would also elucidate
which types of wells may be of greatest concern. Such data can
inform regulatory decisions in terms of prioritizing inspection and
pollution monitoring as well as emissions reduction requirements
and community exposure reduction strategies.
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