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Current health policy calls for greater use of evidence-based care delivery ser-
vices to improve patient quality and safety outcomes. Care delivery is complex,
with interacting and interdependent components that challenge traditional
statistical analytic techniques, in particular, when modeling a time series of out-
comes data that might be “interrupted” by a change in a particular method of
health care delivery. Interrupted time series (ITS) is a robust quasi-experimental
design with the ability to infer the effectiveness of an intervention that accounts
for data dependency. Current standardized methods for analyzing ITS data
do not model changes in variation and correlation following the intervention.
This is a key limitation since it is plausible for data variability and depen-
dency to change because of the intervention. Moreover, present methodology
either assumes a prespecified interruption time point with an instantaneous
effect or removes data for which the effect of intervention is not fully real-
ized. In this paper, we describe and develop a novel robust interrupted time
series (robust-ITS) model that overcomes these omissions and limitations. The
robust-ITS model formally performs inference on (1) identifying the change
point; (2) differences in preintervention and postintervention correlation; (3)
differences in the outcome variance preintervention and postintervention; and
(4) differences in the mean preintervention and postintervention. We illustrate
the proposed method by analyzing patient satisfaction data from a hospital that
implemented and evaluated a new nursing care delivery model as the interven-
tion of interest. The robust-ITS model is implemented in an R Shiny toolbox,
which is freely available to the community.

KEYWORDS

complex interventions, health care outcomes, intervention analysis, segmented regression, time
series

1 INTRODUCTION

Current health policy calls for greater use of evidence-based practice (EBP) in delivering health care services to improve
patient outcomes.1 In this paper, we develop a robust time series model for estimating the impact of an intervention on
health outcomes. The complexity of health care is becoming increasingly recognized: Patients, providers, resources, and
contexts of care interact in dynamic ways to produce health outcomes that many times do not align with expectations.2

This complexity and interdependency makes it difficult to assess the true impact of interventions designed to improve
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patient health care outcomes in terms of research design and statistical analysis.3 Methodologies capable of managing
data interdependency are being developed yet are still considered less robust than traditional methods, which assume that
intervention causal factors can be analyzed without consideration of their participant samples and contexts.4 Interrupted
time series (ITS) design has emerged as a quasi-experimental methodology with the strongest power to infer causality
without stripping contextual and temporal factors from the analysis.5

Segmented regression is the most popular statistical method for analyzing time series data of health care interventions.6,7

While powerful, there are limitations to this approach, namely, that it restricts the interruption to a predetermined time
point in the series or removes the set of time points for which the intervention effects may not be realized and neglects
the plausible differences in autocorrelation and variability present in the data.

In this paper, we develop the robust interrupted time series (robust-ITS) model, which is a novel model for ITS. One
advantage of the robust-ITS model compared to previous methods is its ability to estimate, rather than assume a priori,
the time when the effect of intervention initiates (the change point). In practice, the change point may occur either before
or after the official intervention time. For instance, an intervention intended to improve care quality requiring a training
over several months or weeks may already produce a change in the outcome even before the formal intervention time
(before the official start of intervention) if the trainees execute their training as they learn.

We propose a method that regards the change point as variable, appropriate for situations where the data warrants such
treatment. Robust-ITS allows us to test when the effect of the intervention initiates in situations when pin pointing the
change is of interest. Nonetheless, if the aim is to make causal inference, it may be better to prespecify the change point
or remove the set of possible change points (or the set of points for which the intervention has not fully been realized)
from the analysis, as in traditional segmented regression for ITS designs.

The main contributions of robust-ITS are the formal tests for differences in the correlation structure and variability
between the pre– and post–change point.

The data used for the model development come from a study aimed to determine the influence of redesigning a nurs-
ing care delivery system on nationally endorsed quality and safety metrics.8 Many nationally endorsed metrics must be
publically reported and tracked on a monthly basis via aggregate rates, counts, or ratios. The specific data used for this
modeling procedure were patient satisfaction survey scores. Patient satisfaction is an important health outcome, provid-
ing a valid measure of quality of care received and has previously been used for ITS analysis of nursing care delivery
interventions.9 It is also a metric that is currently being used to calculate health systems reimbursement for care services,
via the Center for Medicaid and Medicare Services (CMS) Value Based Purchasing Program, making it a significant focus
for improvement.10 A time series plot of patient satisfaction scores from January 2008 to December 2012 at a number of
units in a health care system is given in Figure 1.

FIGURE 1 The time series of observed average patient satisfaction for each unit, the estimated change point, estimated means, and formal
intervention time. The estimated means and change point are obtained from modeling the time series with robust-ITS [Colour figure can be
viewed at wileyonlinelibrary.com]
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CRUZ ET AL. 3

The unit of analysis in the study is the care delivery microsystem, or hospital “unit.” Patient satisfaction scores are
reported as aggregate scores per month, per unit. Patient satisfaction indicators include “nurse communication,” “skill
of the nurse,” and “pain management.” Patients respond to items by selecting 1 of 4 responses: never, sometimes, usually,
or always.

For modeling, we chose one outcome, the average patient satisfaction over 7 patient satisfaction indicators, for 4 hospital
units of the study setting. We refer to the average patient satisfaction score simply as patient satisfaction throughout the
remainder of the paper. The intervention program, titled Clinical Nurse Leader (CNL) integrated care delivery, was the
introduction of novel nursing care delivery policies and procedures into the hospital and its units.11 Importantly, CNL
students conducted their Masters level microsystem change project, prior to the formal intervention implementation
time, in the same unit they would be working on as part of the care delivery redesign intervention. This may or may not
have influenced the change point of the intervention effect and was therefore considered a good test case for modeling
purposes.

The remainder of this paper is organized as follows. First, we present a background of studies on interrupted time series
in health care. Current statistical methods and their limitations will be discussed. Then our proposed robust-ITS model is
described. Details on the estimation and inference procedure are provided. Followed by an analysis of the impact of Clin-
ical Nurse Leader on patient satisfaction with nurse communication. Parameter estimates are presented and compared
to results obtained via traditional ITS methodologies. Lastly, a summary of the robust-ITS model and a brief description
of future work is provided.

2 BACKGROUND

The traditional “gold standard” for evidence generation of health care interventions is the randomized clinical trial (RCT).
The theory behind this methodology is that potential biases related to patient heterogeneity and confounding covari-
ates are evenly dispersed across study groups and thus do not dissimilarly influence treatment effect.12 In statistical
terms, the RCT design tests for the difference in outcomes between 2 groups—those exposed to the treatment and those
not—completely ignoring underlying variability. However, RCTs have a narrow scope in the care delivery community
since it is not feasible, and sometimes not ethical, to randomly assign the intervention. By design, explanatory RCTs do not
and cannot take into account the range of dimensions of patient demographics, variations in health, and overall health
care complexity.13

Interrupted time series offers a rigorous methodology to determine the effectiveness of complex health care interven-
tions on outcomes in real-world settings that account for secular changes as part of the analytic process.6,14 When RCTs
are not feasible or not applicable, ITS is considered the strongest research design in the health policy evaluation literature7

and are considered rigorous enough for inclusion into Cochrane meta analyses.15

The metrics adopted by the health policy evaluation literature to assess the effect size of an intervention via ITS are level
change and trend change (change in slopes). A change in outcomes is referred to as a level change and is analogous to the
difference in mean scores before and after the intervention, with independent data values. The level change is interpreted
as the jump between the projected mean based on the pre–change point phase and the estimated mean post–change
point. Our definition of level change is graphically depicted in Figure 2. While the level change identifies the size of an
intervention's effect, the change in trend quantifies the impact of the intervention on the overall mean. It is necessary to
report both level change and change in trend to interpret the results of an ITS study accurately.16

2.1 Limitations of segmented regression approaches
We first note that Ramsay et al “demonstrated that ITS designs are often analyzed inappropriately, underpowered, and
poorly reported in implementation research.”17 We believe, along with many authors in this field, that segmented regres-
sion is most effective in analyzing ITS data. Segmented regression may be used via standard statistical packages—such
as ITSA in Stata, ETS in SAS, and segmentedR in R—however, as we demonstrate in this paper, there are limitations to
these current statistical packages. Segmented time series regression, or regression-discontinuity analysis, was first intro-
duced by Quandt closely followed by Thistlethwaite and Campbell.18,19 Since then, regression-discontinuity analysis has
been used in many forms, with many different parameterizations, in health services research (as already described) and
other fields, such as economics and education.
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FIGURE 2 An example of a segmented regression model fit on patient satisfaction for Unit 1. The plot depicts (1) the segmented
regression lines fit to the pre– and post–change point phase, (2) the projection of the mean value at the change point based on the pre–change
point regression, and (3) the change in level as defined here. The plot contains data from December 2009 to October 2010, instead of the
entire observational period, to clearly illustrate the level change [Colour figure can be viewed at wileyonlinelibrary.com]

We discuss the potential limitations of the current regression modeling approaches; some of which are described in
a recent review by Kontopantelis et al.14 In particular, regression modeling approaches assume that the preintervention
mean is linear and that the characteristics of the population remain unchanged throughout the study period. Segmented
time series regression also assumes that there is a distinct separation between the preintervention and postintervention
phases—by either assuming the time point at which the effect of the intervention initiates (ie, the change point) is known
or removing the set of possible change points—and that there are 2 regressions present, but one overall variance and
autocorrelation. These assumptions, if violated, could lead to incorrect inference and interpretation of results.

The specification of the change point as the time of intervention in segmented regression does not represent the reality
that complex interventions may have varied effects and take time to manifest change and can therefore lead to incorrect
measures of the intervention's effect on the system. Current statistical programs often assume an instantaneous inter-
vention effect—a change point set to intervention time—because change point estimation involves optimization over
all possible configurations, which challenges computational feasibility. Recall that the change point is the time point at
which the effect of the intervention initiates. Prevalent approaches to overcoming this limitation are to remove, or cen-
sor, a specific set of time points from the analysis.6,7 This censoring not only omits data but it also potentially biases the
parameter estimates, as the study team decides which time points to remove.

The assumption of a constant correlation structure (variance and autocorrelation) is not necessarily representative of
complex interventions, where the system seldom reacts in an isolated way to change, and the intervention is expected
to reduce variability in the system. In fact, with complex interventions, often the goal is to enhance care processes so
that elements become more dependent and consistent over time; theoretically, the correlation structure should differ
based on changes,20 such as an intervention. An increase in data dependency and consistency implies a difference in
autocorrelation and variability. Thus, detection of differences in autocorrelation and variances between preintervention
and postintervention are critical in evaluating the effectiveness of an intervention. Table 1 highlights a few popular ITS
packages, some articles that describe the use of the packages for analysis of ITS data, and the limitations of each method,
as already described.

3 THE ROBUST-ITS MODEL

3.1 Preliminary analysis
Before any formal statistical modeling, the outcome should be plotted against time to illuminate the type of longitudinal
mean (linear, quadratic, etc), seasonality, and the set of plausible change points. The set of possible change points should
not be limited to time points solely after the intervention, for aforementioned reasons. If the longitudinal mean is not
linear, an adequate transformation may be applied to obtain a linear pattern, or a different segmented regression model
appropriate for the pattern present needs to be applied within the ITS design. Seasonality should be accounted for, within
the mean, via traditional statistical methods concisely described in Bhaskaran et al.29 If needed, one should apply variance
stabilizing transforms to the outcome variable. For the purposes of illustrating robust-ITS, the relationship between the
outcome and time is assumed linear with no seasonality.

http://wileyonlinelibrary.com
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TABLE 1 The limitations and advantages of ITS packages that focus on segmented regression and gives a few papers in which the
packages have either been proposed or used

Package Papers Advantages/Description Limitations

SAS PROC AUTOREG21 Penfold & Zhang7

Shardell et al22

Parienti et al23

• Estimation and prediction of lin-
ear regression models with autore-
gressive errors.

• No intervention analysis.

• Estimation and testing of general
heteroscedasticity (change in vari-
ance).

SAS PROC ARIMA21 Shardell et al22 • Analyzes and forecasts time
series, transfer functions, and inter-
vention data using ARIMA and
ARMA models.

• Assumes intervention time is fixed with
an immediate effect.
• Assumes one overall correlation struc-
ture.

SAS ETS21 Cable,24

Mahamat et al,25

and Aboagye-Sarfo et al26

• Same as the above 2 entries;
SAS PROC ARIMA and SAS PROC
AUTOREG are part of SAS ETS.

• Fixed intervention time with immediate
effect.
• One overall correlation structure

Stata ITSA Linden27 • Single and multiple group com-
parisons.

• Fixed change point.

• Estimates treatment effects for
multiple treatment periods.

• One overarching correlation structure.

segmentedR Muggeo28 • Adjust for overall autocorrelation.
• Estimates piecewise regression
models with a fixed number of dis-
continuities, or interruptions.

• No modeling of correlation structure.
• Assumes data are independent.

Abbreviations: ITS, interrupted time series.

3.2 Description of the robust-ITS model
One prominent feature of our approach in the robust-ITS model is the clear distinction between the time of intervention
and the change point. In Penfold and Zhang,7 Garey et al,30 Ansari et al,31 and many more, the impact of the intervention
is assumed to be instantaneous—that is, the change point is assumed to be the intervention time.7,30,31 Robust-ITS allows
us to estimate the time point at which the effect of an intervention initiates.

The paramount contribution of robust-ITS is the modeling of the stochastic component separately between the pre–
and post–change point phases. The separate modeling allows for 2 completely different data dependency and variability
structures to exist prior to the intervention and postintervention.

Denote t* as the time point at which the intervention is introduced and 𝜏 as the time point at which the effect of the
intervention initiates (the change point). Sometimes, it may indeed be true that t* = 𝜏, but not necessarily. Often it is
entirely possible that the time of effect of the intervention differs from the time of intervention introduction (ie, either
𝜏 > t* or 𝜏 < t*). Here, we develop a data adaptive procedure for estimating 𝜏. There are many change-point detection
methods in time series, but they often deal only with changes in the mean and variance (not the autocorrelation structure
itself) and may not work well in shorter time series.32,33

Define Yt as the outcome of interest at time t; for example, Yt may be patient satisfaction at a particular hospital unit
during time t. The general regression is defined as

Yt = 𝜇t + 𝜖t,

where 𝜇t is the mean and 𝜖t is the stochastic process. The mean component, 𝜇t, characterizes the mean of the outcome
for the preintervention and postintervention phases. The stochastic process, 𝜖t, accounts for the outcome variability and
correlation. In the following discussion, we define the mean and stochastic components for the robust-ITS model. A note
on the length of the time series needed to perform the robust-ITS analysis is provided in Appendix A.

3.2.1 The preintervention and postintervention mean
At the first stage of modeling, the emphasis is on the mean,



6 CRUZ ET AL.

𝜇t =
{

𝛽0 + 𝛽1 t, t < 𝜏
(𝛽0 + 𝛿) + (𝛽1 + Δ)t, t ⩾ 𝜏,

(1)

where the parameters are estimated using ordinary least squares. The parameters in 𝜇t are as follows: (1) 𝛽0, the intercept
of the mean prior to the change point; (2) 𝛽1, the slope of the outcome prior to the change point; (3) 𝛽0 + 𝛿, the intercept
of the postintervention phase; and (4) 𝛽1 + Δ, the slope of the postintervention phase.

Remark 1. (1) The difference between the pre–change point and post–change point intercept is 𝛿; (2) the difference
between the pre– and post–change point slopes is Δ; and (3) the difference in the mean level (preintervention minus
postintervention) is −𝛿 − Δ𝜏, the level change.

Recall that difference in mean level (or level change) is 1 of the 2 metrics in health policy evaluation literature used to
measure the effect size of an intervention. Formally, the level change is defined as the difference at the change point time 𝜏
between the extrapolated preintervention mean level and the observed intervention mean level, as is depicted in Figure 2.

Rather than impose or assume the actual onset of the change, the robust-ITS model actually estimates the change point 𝜏
in a data-driven manner using the likelihood approach. From a set of candidate change points (set by the researcher), the
procedure estimates the parameters via ordinary least squares for each possible 𝜏, and selects the 𝜏, and its corresponding
parameters that maximize the likelihood.

Denote the length of the time series as T and let 𝜃 = [𝛽0, 𝛽1, 𝛿,Δ, 𝜎2
1 , 𝜎

2
2 ]

′, with 𝜎2
1 and 𝜎2

2 defined as the variances
prior to and post change point, respectively. As described in Section 2, one goal of interventions is to decrease variability,
which leads to creating a more consistent outcome. We therefore include separate variance parameters for the pre– and
post–change point phases, to allow for a change in data variability.

Let q be a candidate change point in the set of possible change points Q, where Q = {t∗−m, … , t∗, … t∗+k} for positive
integer values of m and k set by the researcher. For each candidate change-point q we derive the likelihood function:

L(𝜃|q) = ⎛⎜⎜⎜⎝
1√

2𝜋𝜎2
1

⎞⎟⎟⎟⎠
q−1

exp

(
− 1

2𝜎2
1

q−1∑
t=1

[
Yt − (𝛽0 + 𝛽1t)

]2
)

×

⎛⎜⎜⎜⎝
1√

2𝜋𝜎2
2

⎞⎟⎟⎟⎠
T−(q−1)

exp

(
− 1

2𝜎2
2

T∑
t=q

[
Yt − ({𝛽0 + 𝛿} + {𝛽1 + Δ}t)

]2
)
.

Define Lmax(q) = max𝜃L(𝜃, |q), then the estimated change point is 𝜏 = arg maxq∈Q Lmax(q).
The estimates of the intercept and slope for each phase are obtained as in segmented regression; equivalent to estimating

the slope and intercept separately for the pre– and post–change point phases as in simple linear regression. The ordinary
least squares (OLS) estimates for the parameters in 𝜃 are provided in Appendix A. The estimates for 𝜎2

1 and 𝜎2
2 depend on

the stochastic process and are given for an AR(1) process also in Appendix A.
The presence of 𝜏 does not restrict the model to a fixed interruption with an instantaneous effect and allows the design

matrix and estimates to transform based on the information the data provides. This flexibility of the model can be helpful
in minimizing misleading results from an assumed change point.

3.2.2 Stochastic properties pre– and post–change point
The stochastic component, 𝜖t, captures the correlation structure of the outcome variable across time and may change
as a result of the intervention. Here, we shall develop a formal test for the difference in the correlation structure for
preintervention and postintervention phases.

We use the ARIMA process to model the stochastic component, 𝜖t = Yt − 𝜇t. Since the mean function 𝜇t is not known
(we only have its estimate, 𝜇t), the stochastic component is not directly observed. In place of 𝜖t, we use the residuals,
Rt = Yt − 𝜇t, where 𝜇t is the estimate of 𝜇t obtained as described in stage 1. To use the ARIMA processes, residuals must
exhibit stationary behavior, that is, the mean and variance of the residuals must be relatively constant. If the mean is not
misspecified, then the residuals should be fluctuating around zero without any patterns. Moreover, the residuals should
be stationary within each of the preintervention and postintervention phases.34

Autoregressive conditional heteroscedasticity models may be used when the data are nonstationary; they can model the
stochastic component in each phase and for the entire observational period when the variance and/or data dependency
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is nonconstant. For our patient satisfaction data, it is reasonable to assume stationarity within each phase, and, hence,
we proceed with the assumption of stationarity. See Shumway and Stoffer,34 Granger and Newbold,35 and Bollerslev36 in
for more details on autoregressive conditional heteroscedasticity models.

Because of the impact of the intervention, the stochastic process 𝜖t preintervention might differ from the process postin-
tervention. That is, 𝜖t for t ∈ {1, … , 𝜏 − 1} may be a different stochastic process than 𝜖t for t ∈ {𝜏, … ,T}. Hence, the
autocorrelation and variance might differ pre– and post–change point. Now, the stationarity requirement is satisfied if
the variance, mean, and autocorrelation are constant within each stochastic process, not constant across all time points
as before.

The ARIMA parameters are estimated by maximizing the conditional likelihood and are given for the subsequent
example of an autoregressive model with a lag of one. It is of most importance to understand that the lag used for the
autocorrelation modeling is not an indicator of when the intervention takes effect, but, instead, it models overall data
dependency; 𝜏 dictates when the intervention affects the outcome variable.

Example 1. A special case of a stochastic process is the first order auto-regressive [AR(1)] model:

Rt =
{

𝜙1 Rt−1 + e1
t , 1 < t < 𝜏

𝜙2 Rt−1 + e2
t 𝜏 < t ⩽ T.

(2)

To ensure causality in the time series sense, both𝜙1 and𝜙2 lie in the interval (−1, 1). Note,𝜙1, the auto-regressive coef-
ficient prior to the change point, is directly associated with the correlation between 2 time points; 𝜙1 is the correlation
between time point t and t + 1 where t and t + 1 belong to the pre–change point phase (t, and t + 1 ∈ {1, … , 𝜏 − 1}),
and 𝜙

|h|
1 is the correlation between 2 time points h time periods away (say t and t + h both in the pre–change point

phase, {1, … , 𝜏 − 1}). The auto-regressive coefficient post–change point, 𝜙2, has a similar interpretation. The error
terms of Model 2 are white noise, e j

t
iid∼ N(0, 𝜎2

j ) for j ∈ {1, 2}.
The variance and auto-regressive coefficients in the AR(1) setting can be estimated by maximizing the conditional

likelihood. The estimates are functions of the residuals Rt and the residuals of the residuals Wt and are provided in
Appendix A.

To determine whether the stochastic process differs as a result of the change point, we test the hypothesis that
𝜈 ≡ 𝜙2−𝜙1 equals zero. This can be tested by either estimating 𝜈 directly or by conducting an F test for nested models.
The F test for nested models for this AR(1) scenario is described in Appendix A.

Remark 2. Once the 𝜖t are appropriately modeled, the OLS estimates in Equations A1 to A4 will need to be reesti-
mated to produce the generalized least squares estimates. If an AR(1) is fit to the overall stochastic process (across the
change point), the beta parameters should be reestimated without the first time point; that is, for t in{2, … ,T}. If
different AR(1) processes are fit preintervention and postintervention, then the mean prior to the intervention should
be reestimated using t in{2, … , 𝜏 − 1}, and the mean postintervention reestimated using t in{𝜏 + 1, … ,T}. The
summation limits in Equations A1 to A4 would therefore change.

3.2.3 Preintervention and postintervention variance comparison
For stochastic processes in which both pre– and post–change point phases are adequately modeled by the ARIMA pro-
cesses (residuals not behaving as white noise in either phase), the variances may not be easily, if at all, compared. The
variances in each phase can be estimated but not statistically compared, because of the dependency of the data.

If there is no autocorrelation (or dependence), then the OLS estimates are sufficient. Nevertheless, the variance may
not be the same pre– and post–change point. In situations where there is no statistically significant autocorrelation, the
variances may be compared via an F test. Using 𝜏, we can determine how many observations we have prior to and post
change point, subtracting three (one for each parameter we estimate) from those values gives the degrees of freedom.
For example, suppose that there are 25 and 35 time points before and after the change point, respectively, and that the
estimated variances are s1 and s2, respectively. Then the F statistic is s1

s2
and under the null hypothesis (assuming the

variances are equal) distributed F22,32.
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4 ROBUST-ITS ANALYSIS OF THE INTERVENTION EFFECT ON PATIENT
SATISFACTION

Patient satisfaction is modeled in 4 hospital units labeled as follows: Unit 1, Unit 2, Unit 3, and Unit 4. It is crucial to note
that the outcome is a percentage and so restricted to lie between 0 and 100. The restriction on the outcome has imperative
consequences: the time series must reach a plateau regardless of intervention introduction. The nature of the outcome
must be kept in mind when interpreting the results from the analysis.

The means of the 4 time series were modeled as in Equation 1; the resulting parameter estimates are given in Table 2.
The relationship between the formal intervention implementation time and the change point for the 4 units is illuminated
in Tables 2 and 3, which show that the effect of the intervention is not necessarily instantaneous. In fact, Tables 2 and 3
suggest that the intervention had an anticipatory effect in 3 of the 4 units of interest. The preemptive effect is in con-
cordance with the structure of the CNL integrated care delivery intervention, because of the CNL student inclusion into
their respective units 6 months prior to the formal introduction. In Units 1, 2, and 3, the estimated change points occur,
respectively, in May 2010, January 2010, and February 2010, suggesting that CNL students could have implemented the
new care delivery prior to July 2010. This relationship indicates the time of change in patient satisfaction associated with
the intervention may be at the mercy of CNL student behavior.

Table 2 depicts the differences in estimated means prior to and post change point, with the most informative rows of
Table 2 corresponding to the 2 standardized effect sizes: change in level and change in slopes. The level change is positive
and statistically significant (at the 𝛼 = 0.01 level) for Units 1 and 4, indicating that the mean drops at the change point and
that the drop statistically differs from zero. Thus, the CNL integrated care delivery initially is associated with a statistically

TABLE 2 The 95% confidence intervals and estimates of the mean parameters for
average patient satisfaction of Units 1, 2, 3, and 4

Patient Satisfaction
Parameters Unit 1 Unit 2 Unit 3 Unit 4

Intercept pre 64.32** 64.67** 68.31** 77.21**
Change point (61.76, 66.88) (60.07, 69.27) (64.14, 72.49) (74.99, 79.54)
Intercept post 67.21** 71.79** 71.51** 77.42**
Change point (61.86, 72.57) (66.10, 77.49) (64.01, 79.01) (70.24, 84.60)
Change in 2.89 7.12 3.20 0.15
Intercepts, 𝛿 (−2.91, 8.70) (−0.03, 14.28) (−5.22, 11.61) (−7.20, 7.51)
Change in level, 7.00** −2.77 3.50 5.40**
−𝛿 − Δ̂𝜏 (3.75, 10.25) (−7.92, 2.38) (−1.72, 8.72) (2.01, 8.78)
Slope pre 0.56** 0.24 0.35* 0.28**
Change point (0.41, 0.71) (−0.08, 0.56) (0.07, 0.63) (0.15, 0.40)
Slope post 0.22** 0.07 0.09 0.10
Change point (0.10, 0.34) (−0.06, 0.20) (−0.07, 0.26 ) (−0.06, 0.25)
Change in slope, −0.34** −0.17 −0.26 −0.18
Δ̂ (−0.53, -0.15) (−0.51, 0.16) (−0.58, 0.06) (−0.38, 0.02)
Delay in effect of
intervention, −3 −6 −5 0
𝜏 − t∗

Since 𝜏 is discrete, only an estimate is given, no confidence interval. The asterisk, *, denotes
statistical significance at the 𝛼 = .05 level.

TABLE 3 The formal time of intervention implementation and the estimated
time at which the effect of the intervention initiates the change point

Patient Satisfaction
Unit 1 Unit 2 Unit 3 Unit 4

Time of intervention Month 31, Month 31, Month 31, Month 31,
implementation July 2010 July 2010 July 2010 July 2010

Estimated change Month 29, Month 25, Month 26, Month 31,
point, 𝜏 May 2010 January 2010 February 2010 July 2010
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significant drop of patient satisfaction in Units 1 and 4. The estimated trend change or change in slopes is negative for
each unit, although statistically significant (at the 𝛼 = 0.01 level) for Unit 1 only.

The slope decreases after the estimated change point in Unit 1, implying a more flattened out mean post–change point.
Therefore, the CNL implementation may be associated with a flatter mean across time in Unit 1; ie, for every 1-month
increase in time, there is a smaller estimated increase in patient satisfaction in the post–change point phase as compared
to the pre–change point phase. However, this artifact may be present because the maximum value of the outcome variable
is 100. We may be seeing some asymptote effect instead of capturing the effect of the intervention on the trend (slope).

For Units 2, 3, and 4, the estimated slope does not statistically change after the estimated change point; for Units 2 and
3, the estimated level change is also not statistically significant; and the estimated change in intercepts is not statistically
significant for any of the units. Hence, for Units 2 and 3, the intervention does not seem to be associated with a change in
the estimated patient satisfaction. The CNL integrated care delivery is associated with some outcome modification (either
in the intercept, level change, slope change, or a combination) in Units 1 and 4.

The pre– and post–change point regressions of the 4 units are plotted in Figure 1. Figure 1 depicts that the change point
occurs prior to the formal intervention time for Units 1, 2 and 3 but is equivalent to the formal intervention time for Unit 4.
The estimated mean post–change point seems to flatten out in all units, and the change in level appears sizable for Units
1 and 2. Figure 1 illustrates results in concurrence with those of Table 2.

Figure 5 provides the studentized residuals after modeling the mean. The residuals seem well behaved and mostly
contained between the rule of thumb ±2 and completely contained between ±3. The residuals do not exhibit any severe
patterns and thus suggest robust-ITS models the mean patient satisfaction of all units adequately. Moreover, Figure 6
provides the autocorrelation function (ACF) of the residuals. The ACF plots interpreted as Shumway and Stoffer act as
white noise, implying that the data do not exhibit autocorrelation.34

Modeling the mean by Equation 1 in stage 1 is sufficient because the residuals act as white noise. Nevertheless, we
model the residuals pre– and post–change point with an AR(1) process separately, to provide complete information. The
estimates and 95% confidence intervals of the autoregressive parameters and their difference is given in Table 4, along
with the estimated variance prior to and post change point and their comparison. Both 𝜙1 and 𝜙2 do not statistically differ
from zero in any of the 4 units, supporting our claim that the residuals act as white noise. There is no data dependency
apparent in either the pre– and post–change point phases. The difference of the 2 autoregressive parameters, 𝜙2 −𝜙1, also
do not statistically differ from zero in the 4 units.

Because there is no correlation present and the stochastic component is adequately modeled by white noise (indicating
independent data), there is valuable information obtained from 𝜖t via the variance; the variances are compared using
an F test. The estimates of the variances are smaller post–change point for Units 1 and 2 and larger for Units 3 and 4.
Nonetheless, we cannot conclude that the variance differs between the 2 phases for Units 1, 3, and 4. For Unit 2, the
variance post–change point is statistically (at the 𝛼 = 0.05 level) smaller than the variance pre–change point. Therefore,
patient satisfaction in Unit 2 is more predictable after the introduction of CNL integrated care delivery. A more predictable
outcome, less extremely unsatisfied and satisfied patients, signifies a more controlled environment. This is a positive

TABLE 4 The (1) estimates and 95% confidence intervals of the AR(1) coefficients pre– and post–change
point, and of the estimated increase in the AR(1) coefficient post–change point; (2) the estimated variances;
and (3) the F statistic and P value corresponding to the comparison of the pre– and post–change point
variances, for patient satisfaction with effective nurse communication

Patient Satisfaction
Parameters Unit 1 Unit 2 Unit 3 Unit 4

AR(1) coefficient pre −0.056 −0.191 0.078 −0.271
change point, 𝜙1 (−0.460, 0.348) (−0.624, 0.241) (−0.377, 0.534) (−0.647, 0.105)
AR(1) coefficient post −0.354 0.055 0.088 −0.044
change point, 𝜙2 (−0.713, 0.004) (−0.266, 0.376) (−0.264, 0.440) (−0.401, 0.392)
Difference in AR(1) −0.299 0.246 0.010 0.267
coefficients, 𝜙2 − 𝜙1 (−0.826, 0.229) (−0.278, 0.770) (−0.551, 0.570) (−0.267, 0.801)
Variance pre change point, 𝜎21∶(𝜏−1) 10.259 26.474 23.412 8.127

Variance post change point, 𝜎2
𝜏∶T 7.976 13.511 23.965 12.649

Variance comparison 1.286 1.959 0.977 0.643
F statistic (P value) (.248) (.035) (.516) (.88)



10 CRUZ ET AL.

TABLE 5 Approximate 95% confidence intervals for the level change and trend change of (1) segmented
regression with the phase-in period removed, denoted by +; (2) segmented regression with an assumed change
point, denoted by ++; and (3) robust-ITS, for patient satisfaction

Patient Satisfaction
Change in Level Change in Trend (slope)

-𝛿 − Δ̂𝜏 𝛿

Segmented Segmented Segmented Segmented
Unit Regression+ Regression++ Robust-ITS Regression+ Regression++ Robust-ITS

Unit 1 6.04 5.7 7 −0.41 −0.25 −0.34
(1.14, 10.94) (2.32, 9.07) (3.75, 10.25) (−0.68, −0.15) (−0.45, −0.06) (−0.53, −0.15)
0.02* 0.00** 0.0** 0.00** 0.01* 0.00**

Unit 2 −4.4 −1.8 −2.77 −0.24 −0.23 −0.17
(−11.01, 2.21) (−6.38, 2.79) (−7.92, 2.38) (−0.61, 0.14) (−0.50, 0.04) (−0.51, 0.16)
0.19 0.44 0.29 0.21 0.10 0.30

Unit 3 0.94 0.59 3.50 −0.21 −0.16 −0.26
(−6.64, 8.53) (−4.86, 6.03) (−1.72, 8.72) (−0.60, 0.18) (−0.46, 0.14) (−0.58, 0.06)
0.8 0.83 0.18 0.28 0.28 0.11

Unit 4 5.89 5.40 5.40 −0.28 −0.18 −0.18
(0.64, 11.14) (1.99, 8.80) (2.01, 8.78) (−0.56, −0.01) (−0.38, 0.02) (−0.38, 0.02)
0.03 0.00 0.00 0.05 0.07 0.07

The first row within each unit corresponds to the estimate, the second to the confidence interval, and the third to the P value. Note,
one asterisk, *, denotes significance at the 𝛼 = 0.05 level, and two asterisks, **, denotes significance at the 𝛼 = 0.01 level.

result of the intervention since there will be better quality control on the fluctuations of the patient outcomes and more
consistency as a result of the intervention.

4.1 Comparing robust-ITS to segmented regression
We compare the standardized effect sizes between robust-ITS and segmented regression (both with an assumed change
point and the set of possible change points removed) in Table 5. The aim of Table 5 is to illustrate that the estimates of
level change and trend change differ based on the type of model selected. Indeed, the estimates of level change and trend
change across the 3 models differ for each of the 4 units. Segmented regression—with an assumed change point or the set
of possible change points removed—may provide results that are statistically significant, or not statistically significant, in
cases where the opposite is true when considering anticipatory or delayed intervention effects. Moreover, the 2 segmented
regression methods may also provide opposing results.

It is important to note that there are many model specifications used for segmented regression. Two of the main models
used for segmented regression in the ITS and health care literature are discussed and shown to be equivalent in Appendix
A. The segmented regression models are discussed under the assumption that the change point is assumed. Nonetheless,
the 2 main segmented regression models are also equivalent when the set of possible change points are removed.

The true model comparisons are provided in Table 6, intended to compare the adequacy of robust-ITS and segmented
regression. Mean squared error (MSE)—the estimate of sum of squared errors, which measures the square of the devi-
ations from the estimate mean, divided by the degrees of freedom—is provided in Table 5 for robust-ITS, segmented
regression with an assumed change point, and segmented regression with the set of possible change points removed.
Robust-ITS has the smallest MSE and so provides the best estimate for the mean of patient satisfaction, suggesting that
robust-ITS models the data better than either of the traditional segmented regressions (with an assumed change point, or
the set of possible change points removed).

4.2 Comparing robust-ITS to a quadratic model with no change point
We further compare robust-ITS to a non–change point model with quadratic time as a predictor for completeness. The
model for the mean of patient satisfaction of a given unit with quadratic time as a predictor is

𝜇t = 𝛽0 + 𝛽1 t + 𝛽2 t2 for t ∈ {1, … , 60}. (3)



CRUZ ET AL. 11

TABLE 6 The mean squared error (MSE), with order of magnitude 10−5, of (1)
segmented regression with the phase-in period removed, denoted by +; (2) segmented
regression with an assumed change point, denoted by ++; and (3) robust-ITS, for
patient satisfaction

Mean squared error
Unit Segmented regression+ Segmented regression++ Robust-ITS

Unit 1 192.42 190.99 171.99
Unit 2 428.34 416.50 406.85
Unit 3 471.80 471.93 459.16
Unit 4 181.44 161.11 161.11

Mean squared error is the estimate of sum of squared errors, which measures the square of the
errors or deviations, divided by the degrees of freedom. A lower value of MSE for a model, suggests
a more adequate fit.

FIGURE 3 Plots of patient satisfaction within each of the 4 units, along with the estimated means obtained by robust-ITS and a model
with quadratic time as a predictor [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 7 The mean squared error (MSE), with order of magnitude 10−5, for
robust-ITS and for the non–change point model with quadratic time as a predictor,
for patient satisfaction

Mean squared error
Unit Model with quadratic time and no change point Robust-ITS

Unit 1 224.91 171.99
Unit 2 417.77 406.85
Unit 3 460.36 459.16
Unit 4 184.62 161.11

Mean squared error is the estimate of sum of squared errors, which measures the square of
the errors or deviations, divided by the degrees of freedom. A lower value of MSE for a model
suggests a more adequate fit.

The estimated patient satisfaction mean curves for both robust-ITS and Model 3 are plotted in Figure 3 by unit. The
parameter associated with quadratic time 𝛽2 is only statistically significant, at the 𝛼 = 0.05 level, for Unit 1. Including
quadratic time as a predictor is not necessary for Units 2, 3, and 4, since we cannot conclude that 𝛽2 differs from zero.
Adding quadratic time as a predictor is useful in Unit 1 because at the 𝛼 = 0.05 level 𝛽2 differs from zero.

Nevertheless as shown in Table 7, the MSE (estimate of the sum of squared errors divided by the degrees of freedom)
for robust-ITS is smaller than the MSE of Model 3 in all units, indicating robust-ITS fits the data better in all units.

http://wileyonlinelibrary.com
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Additionally, Model 3 assumes a continuous decline after obtaining the maximum. Suggesting Model 3 will produce a
poor patient satisfaction estimate post maximum.

5 CONCLUSION AND FUTURE WORK

There are 2 main stages that compose robust-ITS. The first is modeling the mean and the second is modeling the stochas-
tic component. In both stages robust-ITS tests for a change in the outcome because of the intervention. To the best of
our knowledge, in the ITS literature comparing and testing for a difference in the stochastic component—a change in
autocorrelation and/or variance for the AR(1) case—has not been considered.

In the first stage, a set of plausible change points must be established based on the scientific question at hand. Then,
based on the set of possible change points, robust-ITS estimates the mean parameters via OLS and chooses the change
point whose parameter estimates maximize the likelihood. In the second stage, the residuals obtained by modeling the
mean in the first stage are used to examine and determine the structure of the stochastic process. If the residuals act as
white noise, (1) there is no correlation present, (2) the variances before and after the estimated change point are compared
by an F test, and (3) the outcome of interest is adequately modeled by the mean from stage 1. Otherwise, an ARIMA process
is fit on the residuals pre– and post–change point, separately. From the ARIMA process, estimates of the correlation and
variance are obtained via conditional likelihood methods. The correlation estimates are compared to determine if the
stochastic process differs as a result of the change point, but the variances are not compared.

The patient satisfaction and CNL integrated care delivery analysis elucidated that the assumed change point is not
always assumed adequately. Following the traditional segmented regression analysis, we would have set the change point
at the same value for all units and assumed that it was equal to the formal intervention time. We estimated the change
point corresponding to CNL integrated care delivery prior to the formal intervention time for 3 units and the estimated
change point value varied based on unit.

FIGURE 4 The robust-ITS toolbox in R Shiny (by Cruz, Hu, Ngo, Bender, and Ombao), an interactive toolbox in which the user (1) may
upload their own data in a .csv file; (2) provides basic information of the data—the toolbox requires the user to input the “theoretical
executive time point (TET)” (formal time of intervention), “candidate before TET” (smallest value of the set of possible change points),
“candidate after TET” (largest value of the set of possible change points), “starting month” (the month at which data collection began), and
“starting year” (year at which data collection began); (3) views the output plots (after pressing the button labeled “Analyze Data”) of the fitted
data, the log-likelihood at possible change points, residuals, and acf plots to determine the lag of the stochastic process; and (4) views the
estimates, along with their P values and standard errors, for both the mean and stochastic processes [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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In 2 of the 4 units, the CNL integrated care delivery introduction was associated to a change in the mean patient satisfac-
tion. Even though the change in mean patient satisfaction was not necessarily positive, it depicted a mean that continued
towards 100%. The lack of affirmation for the CNL integrated care delivery may stem from the outcome definition as a per-
centage and an average. The percentage quality of patient satisfaction limits the values the outcome may take on and thus
creates an asymptote effect for units that were already doing well. The averaging across 7 patient satisfaction indicators
may cancel out improvements in some indicators with regressions in others.

The estimates of the autocorrelation coefficients pre– and post–change point, although not statistically significant,
differed by approximately 0.25 for Units 1, 2, and 4. Since the autocorrelation was not statistically significant, the variances
pre– and post–change point were compared. For Unit 2, the variance post–change point was significantly smaller than
the variance pre–change point. This is a positive result of the CNL integrated care delivery, since there will may better
quality control of patient satisfaction fluctuations due to the CNL intervention.

Comparing robust-ITS with traditional ITS modeling illustrates how allowing for a variable change point results in a
better fit with regard to MSE. The ability to easily assess the effect of the intervention on the correlation structure, and
to conduct variance comparisons when correlation is not present, allows for clearer inference on the possible effect of an
intervention.

Our group has developed the robust-ITS toolbox in R Shiny (see Figure 4) that executes the methodology described
here. The toolbox and its manual (in a PDF document) are located respectively at Robust&hyphen;ITS and Manual. It is
crucial to note that the methodology implemented in the toolbox is the methodology proposed here. Hence, any use of
the toolbox should result in the citation of this paper. The robust-ITS toolbox is interactive and provides the user with
graphical displays, estimates, and inference on testing for differences between the preintervention and postintervention
means, correlation, and variance.

The current status of the model is only for continuous-valued outcomes. We are now in the process of expanding this
to include counts and rates data (eg, infection rates and counts of accidental falls). Currently, our focus is on developing a
segmented regression analog of generalized linear models for count and binary outcomes. Our aim is to expand the current
toolbox or produce a new toolbox that will appropriately model count and binary outcomes in a user-friendly manner.
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APPENDIX A: APPENDICES

A.1 A note on the time series length for robust-ITS

The number of time points required pre– and post–change point (or preintervention and postintervention) depends on
many factors. Previously in the ITS literature, it has been suggested that a minimum of three time points is needed in both
phases to adequately estimate the outcome means.16,17

Estimating the intercept and slope of a straight line via regression requires at least three data points, to have sufficient
degrees of freedom to estimate the variance. The constraint of 3 data points therefore makes the assumption that only an

https://doi.org/10.1002/sim.7443
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intercept and slope need to be estimated; not true here, since we also wish to model the correlation structure. Another
data point is needed for each additional parameter estimated. Ignoring the change point, since we are estimating the
intercept, slope, autocorrelation, and variance of each segment, a minimum of 5 time points in each phase is needed to
be able to merely estimate the parameters.

Because we estimate the change point it is necessary to obtain 5 time points in each phase separate from the set of
possible change points to adequately estimate the regression lines. That is, a total of 10 (5 for the pre–change point and 5
for the post–change point phases) plus the length of the set of possible change points is required.

The number of parameters that must be estimated plus one is a severe lower bound for the number of time points
needed to make inference and should not be used as a rule of thumb.

The discussion of setting a practical lower bound for the time points needed in each phase stems from the desire to
have enough power to make proper inference. However, power not only depends on the length of the time series in each
phase, but additionally on the distribution of the data points pre– and post–change point, variability, effect strength, and
confounding.37 Considering solely the length of the pre– and post–change point phases is not sufficient when calculating
power, many other factors must be taken into account. Little development of power calculations in the ITS setting exist.29

A.2 Mean parameter estimates

The OLS estimates for the mean parameters in 𝜃 of Section 3.2.1 are as follows:

𝛽0 = Ȳ1∶(𝜏−1) − 𝛽1
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where Ȳa∶b =
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t=a

Yt

b−(a−1)
and t̄𝜏∶T =
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t

T−(𝜏−1)
. The estimates of 𝛽0 and 𝛽1 are the same as the OLS estimates obtained by fitting a

linear model to the pre–change point phase alone. The estimates of 𝛿 and Δ may be obtained from fitting a linear model to
the post–change point phase and subtracting the OLS estimates of the first phase from the OLS estimates (of the intercept
and slope) of the second phase. The estimates for 𝜎2

1 and 𝜎2
2 depend on the stochastic process and are given in the following

section for an AR(1) process.

A.3 AR(1) parameter estimates

In the AR(1) setting with a change point at 𝜏 the autocorrelation and variance can be estimated by maximizing the
conditional likelihood. The estimates are functions of the residuals Rt and the residuals of the residuals Wt
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𝜏−1∑
t=2

(Rt − R̄2∶(𝜏−1))2

𝜙2 =

T∑
t=𝜏+1

(Rt − R̄(𝜏+1)∶T)(Rt−1 − R̄𝜏∶(T−1))

T∑
t=𝜏+1

(Rt − R̄(𝜏+1)∶T)2

, (A5)
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𝜎2 =

⎧⎪⎪⎨⎪⎪⎩
𝜎2

1 = 1
𝜏−1

𝜏∑
t=2

[
(Wt − W̄2∶(𝜏−1)) − 𝜙1(Wt−1 − W̄1∶(𝜏−2))

]2

𝜎2
2 = 1

T−𝜏−1

T∑
t=𝜏+2

[
(Wt − W̄(𝜏+1)∶T) − 𝜙2(Wt−1 − W̄(𝜏+1)∶T)

]2
,

(A6)

where R̄a∶b and W̄a∶b are the means of the residuals and of the residuals of the residuals, respectively, for time points a
through b and

Wt =
{

Rt − 𝜙1 Rt−1, 1 < t < 𝜏

Rt − 𝜙2 Rt−1, 𝜏 < t ⩽ T.

A.4 Nested F test for the equality of autocorrelation for an AR(1)

To determine whether the stochastic process differs as a result of the change point, we test the hypothesis that 𝜈 ≡ 𝜙2 −𝜙1
equals zero. If 𝜈 = 0, there is one overarching AR(1) process for all time points and Equation 2 reduces to

Rt = 𝜙1 Rt−1 + et, 1 < t ⩽ T, (A7)

otherwise, Equation 2 holds. We are comparing nested models where Equation 2 is the full model and Equation A7 is the
reduced model, so an F test is appropriate. The degrees of freedom corresponding to the reduced model is (T − 1) − 1, to
account for the lag of the AR process and the parameter in the model, 𝜙1. Similarly, since the full model corresponds to 2
separately fit AR(1) processes and 2 parameters, the degrees of freedom is (T− 2) − 2. Denote the residual sum of squares
for the reduced and full models, respectively, as

RSSR =
T∑

t=2
(Rt − 𝜙1Rt−1)2

RSSF =
𝜏−1∑
t=2

(Rt − 𝜙1Rt−1)2 +
T∑

t=(𝜏+1)
(Rt − 𝜙2Rt−1)2.

Then the F statistics is

F =
RSSR−RSSF

([T−1]−1)−([T−2]−2)
RSSF

(T−1)−1

=
(RSSR − RSSF)∕2
(RSSF)∕(T − 2)

,

and under the null hypothesis (𝜈 = 0) is distributed F2,(T−2).

A.5 Segmented regression models

In the health care intervention literature, there are 2 main types of segmented regression models used to model the trends.
The first is parametrized in the same manner as (1), with 𝜏 set to the time of intervention—an assumed instantaneous
effect—that is, the mean is parametrized as follows:

𝜇1
t =

{
𝛽0 + 𝛽1 t, t < t∗
(𝛽0 + 𝛿) + (𝛽1 + Δ)t, t ⩾ t∗ , (A8)

where t* denotes the intervention time. For the data described in Section 1, t* = 31. The second segmented regression
model is

𝜇2
t =

{
𝛽0 + 𝛽1 t, t < t∗
(𝛽0 + 𝜓) + 𝛽1t + Ψ(t − t∗ + 1), t ⩾ t∗, (A9)

in which the time after intervention implementation is multyplying Φ; as opposed to simply time, as in Equation A8.
Note, the trends prior to the intervention introduction are the exact same for both Equations A8 and A9. Post the

intervention time, the intercept increase is denoted by 𝛿 in Equation A8 and by 𝜓 − (t* − 1)Ψ in Equation (A9), implying
𝛿 = 𝜓−(t*−1)Ψ. The change in slopes is denoted byΔ andΨ in Equations A8 and A9, respectively, and soΔ = Ψ. Although
the parametrization is different, the estimates of the intercepts, slopes, and any function of the slopes and intercepts
(as is the level change) are the same. Thus, the models are equivalent.
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A.6 Supporting figures

FIGURE A1 The studentized residuals of the robust-ITS estimated patient satisfaction means for each unit. The studentized residuals do
not exhibit any clear patterns and seem to be closely centered around zero, indicating appropriate fits. The rule of thumb, 2, is provided in
each plot [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE A2 Autocorrelation function (ACF) plots of the robust-ITS estimated patient satisfaction means for each unit. The ACF plots
suggest that the residuals behave as white noise, since the autocorrelation at lags greater than zero are small and seem to get closer to zero as
the lag increases [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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