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ABSTRACT OF THE DISSERTATION 
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Professor Christopher S. Lynch, Co-Chair 

 

Ferroelectric materials like BaTiO3 and PZT are known for their ability to strongly couple 

electrical and mechanical energy, which makes them widely used as transducers, sensors, or 

actuators. There is an ongoing search for better performing materials to optimize device 

performance. Single crystal relaxor ferroelectrics like PMN-PT and PIN-PMN-PT near the 

morphotropic phase boundary (MPB) have garnered attention for their large electromechanical 

properties relative to PZT. A better understanding of the underlying physics will help in the search 

for next generation materials and optimizing device design. This dissertation focuses on modeling: 

1) phase transformations in ferroelectrics materials and 2) novel piezoelectric synthetic jet 

actuators (SJAs). Ferroelectric material models are known to significantly overpredict the coercive 

field. This is attributed to a combination of domain wall motion and the presence of metastable 

wells in the Landau-Devonshire energy function. These metastable wells also prevent current 

models from capturing important phase transition behavior. An improved energy function for 
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rhombohedral PIN-PMN-PT near the MPB with better thermodynamic stability was developed 

and used to investigate the effect energy fluctuations have on phase transformations. Results 

showed that accounting for fluctuations produced closer predictions to experimental observations, 

including the lower coercive field for switching and the forward and reverse phase transformations 

during loading and unloading. Two methods to implement these fluctuations in phase field models 

were assessed. Static local fields were preferred over time-varying noise due to convergence and 

reproducibility concerns with the latter. For SJAs, current models are unable to efficiently and 

accurately model novel SJAs that deviate significantly from an ideal Helmholtz resonator. A hybrid 

finite-element and lumped-element modeling approach was developed to provide more flexibility 

to explore novel material and geometric designs. This hybrid model reduced reliance on fitting 

parameters through FEM and a formula to estimate the loss coefficient was proposed. Predicted 

performance of thin cavity SJAs using the hybrid approach was shown to be in much better 

agreement with experiments than the prior models. This work provides a deeper understanding of 

modeling ferroelectric materials and SJAs, and the developed models can be used to help guide 

material and device design. 
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thermodynamics, ORNL: fluid dynamics, and CAMMS-UCLA: electromechanics). Instead of full 

multiphysics models that were computationally cost prohibitive, the idea was to split the physics 

into separate models except as inputs/outputs such as displacements and pressure between models 

that would then be used to iteratively to converge on the coupled solution. As the project reached 

completion, I realized that these models would be of limited use to companies like Actasys if they 

do not have access to the supercomputers ORNL used for the fluid dynamics simulations. This 

motivated me to develop an alternative modeling approach which is shared in this dissertation. 

Chapter 5 is a reworked version of my submitted manuscript to AIAA Journal with the permission 

of the American Institute of Aeronautics and Astronautics, Inc.: 
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Research Center for Translational Applications of Multiferroic Nanoscale Systems (TAMNS) and 
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Sheng, M. T., Keller, S. M., & Lynch, C. S. Improved Landau energy function for PIN-
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Chapter 1: Introduction 

Piezoelectric and ferroelectric materials have found use in a wide range of applications 

including sensors, transducers, and actuators. There has been a constant hunt over the past century 

for better properties to improve the performance of these devices. A better understanding of the 

underlying physics can help in the search for the next generation of ferroelectric materials. Phase-

field models based on Landau theory are a powerful tool for investigating the effects of 

microstructural phenomena at the mesoscale. However, there have been various observations 

reported in literature that either are not able to be accurately modeled (e.g., phase transitions) or 

show unexpected behavior (e.g., nonuniform strain). This work seeks to answer the following 

research questions with regards to modeling ferroelectric material and piezoelectrically-driven 

synthetic jet actuators. 

For ferroelectric material modeling, the main questions concern the:  

• Discrepancy between predicted and measured coercive fields. 

• Difficulty/inability of models of capturing certain phase transformation behavior. 

For synthetic jet actuators devices, the main questions concern the: 

• Discrepancy between modeled and measured device performance for thin SJAs. 

• Predictive ability of the models (due to reliance on fitting parameters to experiments). 

This chapter overview of the dissertation is provided to help guide readers. Chapter 2 

provides a brief background and history of piezoelectric and ferroelectric materials. Chapters 3, 4 

and 5 each include a brief and focused literature review. Chapters 3 and 4 cover developing a new 

energy function for PIN-PMN-PT with improved thermodynamic stability and using it to 
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investigate the effect of energy fluctuations and barriers on phase transformations. Chapter 4 

specifically deals with the implementation of energy fluctuations in a phase field model. Chapter 

5 moves away from material modeling on the mesoscale and into device modeling using bulk 

ferroelectric properties. This chapter covers developing a reduced-order synthetic jet actuators 

model for novel diaphragm and cavity designs. Chapter 6 concludes by summarizing the 

dissertation work and highlighting its key contributions. 
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Chapter 2: Background 

I. History and Definitions 

A brief overview of the history and terminology of piezoelectricity and ferroelectricity is 

provided in this chapter. For more information regarding the early history and development of 

ferroelectrics in the 20th century, readers are referred to Haertlings’s article Ferroelectric Ceramics: 

History and Technology [1] or Lines and Glass’ book Principles and Applications of Ferroelectric 

and Related Materials [2]. 

A. Early History 

The direct piezoelectric effect (change in polarization in response to applied stress) was 

first discovered by Paul-Jacques and Pierre Curie in 1880 in various crystals—such as tourmaline, 

quartz, and Rochelle salt. The converse piezoelectric effect (mechanical deformation in response 

to an applied electric field) was theorized by Gabriel Lippman from fundamental thermodynamic 

principles and immediately confirmed by the Curies in 1881. 

Piezoelectricity was mainly an academic curiosity until its first major application in sonar 

in 1917 during World War I. Its use and success in sonar generated new interest in piezoelectric 

based devices. In 1921, Valasek discovered what is now known as ferroelectricity in Rochelle salt. 

Rochelle salt, chemically sodium potassium tartate tetrahydrate, had a measurable remanent 

polarization which could be reversed with the application of an external field. This material had 

an extremely large dielectric and piezoelectric response in and near the ferroelectric region. (Lines 

and Glass). Various theories for the origin of ferroelectricity emerged based on water and hydrogen 

dipoles. Still, the physics behind ferroelectricity remained relatively obscured until the discovery 

of ferroelectricity in perovskite-structured barium titanate in 1944. The simplicity of barium 
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titanate’s structure and stability of its ferroelectric phase relative to previously known ferroelectrics 

made it ideal for investigation. This led to rapid progress in understanding the physics behind 

ferroelectricity and the development of well-known perovskite type ferroelectrics including the 

solid solution lead zirconium titanate (PZT) system reported in 1952. 

B. Piezoelectricity  

The etymology for piezoelectricity comes from the combination from Ancient Greek piezo 

meaning “to press or squeeze” and electricity. Piezoelectricity specifically refers to the linear and 

reversible electromechanical coupling as an electrical or pressure load is applied. The electrical 

and mechanical coupling of the piezoelectric effect can be described in strain-charge form: 

𝜺 = 𝒔𝑬𝝈 + 𝒅𝑻𝑬 (2-1) 

𝑫 = 𝒅𝝈 + 𝒌𝑬 (2-2) 

where 𝜀  is the strain, s is the compliance, 𝜎  is the stress, d  (and dT) are the (transposed) 

piezoelectric coupling coefficients, E is electric field, D is the electric displacement, and k 

permittivity.  

The stress-charge form rearranges the strain-charge form and uses: 

𝝈 = 𝒄𝑬𝜺 − 𝒆𝑻𝑬 (2-3) 

𝑫 = 𝒆𝜺 + 𝒌𝑬 (2-4) 

where c is the stiffness (inverse of compliance), and e is another form of the piezoelectric coupling 

coefficient. 

Note that in some works and disciplines including the IEEE standard on piezoelectricity, 

an alternate notation is used. For example, the strain and stress are often respectively denoted by 

a capital S and capital T. 

For dielectric materials, the electric displacement consists of two contributions: 
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𝑫 ≡ 𝑘0𝑬 + 𝑷 (2-5) 

where first term is the contribution due to an electric field and the second term is a contribution 

from the polarization. Polarization is a measure of the density of electric dipole moment p in a 

dielectric material. The polarization can be thought of as an average of the dipole moments in a 

given volume V. 

𝑷 =
Σ𝐩

V
(2-6) 

The dipole moment between two point charges of opposite charge is 

𝐩 = q𝐝𝒒 (2-7) 

where q is the charge and dq is the displacement vector pointing from the negative to the positive 

charges. 

C. Ferroelectricity 

A subset of piezoelectric materials are also ferroelectric. Whereas piezoelectricity 

specifically refers to electromechanical behavior in the linear regime, ferroelectric materials also 

exhibits nonlinear behavior and has irreversible losses outside the linear regime. Even without an 

external field, ferroelectric materials have a spontaneous and reversible polarization. 

Ferroelectricity is not directly named after iron (ferro-), but rather parallels ferromagnetism which 

has similar behaviors. For example, both ferroelectrics and ferromagnets display hysteresis 

behavior. Figure 2-1 shows a simple schematic of a P-E hysteresis loop. There is a spontaneous or 

remanent polarization Ps even after the external field is removed. This polarization direction can 

be reversed if the external field reaches the coercive field Ec in the opposing direction. 
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Figure 2-1: Example of P-E hysteresis plot showing spontaneous and reversible polarization. 

II. Crystallography 

A. Perovskite 

Many well-known ferroelectrics like the oxide BaTiO3 and solid solution PZT have a 

Perovskite crystal structure. Perovskite-type crystals have the form ABO3 and are named after the 

mineral Perovskite. In the unit cell shown in Figure 2-2, the A lattice sites correspond to the unit 

cells’ corners, the B lattice site corresponds to the body center, and the O sites correspond to the 

face centers. Solid solutions like PZT are mixtures of simpler oxides, so for PZT the B site is 

occupied by either a Zr4+ or Ti4+
 cation.  
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Figure 2-2: Schematic of ABO3 Perovskite-type structure. 

Figure 2-3 shows cases of how polarization arises through some offset of one or more ions 

from the center. If the crystal is centrosymmetric like in Figure 2-3a, there will be no polarization. 

However, if some of the ions are offset like in Figure 2-3b and Figure 2-3c, the offset charges will 

create local electric dipole moments and give the material an overall polarization. Often the more 

the ions are displaced from the center (or neutral) state, the stronger the overall polarization will 

be. This type of ferroelectric is considered displacive, meaning the polarization comes from ion 

displacements. Note that this involves shifts in the positions of all of the ions within each unit cell. 

Other types of ferroelectricity exist, such as order-disorder and electronic (spin-based or charge-

based), but are not within the scope of this dissertation.  
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Figure 2-3: Polarization in the cases of a) no offset, b) offset of B site, and c) offset of both B and 

O sites. 

B. Piezoelectricity, Pyroelectricity, and Ferroelectricity in Crystals 

Crystals are classified into 32 symmetry point groups. Only a subset of these groups can 

display piezoelectric behavior, and a smaller subset of those groups is ferroelectric. For a material 

to exhibit piezoelectricity, the crystal must be non-centrosymmetric. There are 21 non-

centrosymmetric and 11 centrosymmetric point groups. Of these 21 groups, 20 are piezoelectric 

(meaning it can be polarized through stress). Of these 20, 10 are pyroelectric (meaning it can be 

spontaneously polarized). A subgroup of these pyroelectric crystals is ferroelectric (meaning the 

polarization direction can be reversed). These relationships are summarized by the flow chart in 

Figure 2-4. 
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Figure 2-4: Piezoelectricity, pyroelectricity, and ferroelectricity flow chart relationship. 

A single material may be able to express itself in different point groups depending on the 

environmental conditions. For example, single crystal BaTiO3 is cubic and non-ferroelectric at 

high temperatures above its Curie temperature. As the material is cooled, the crystal transitions 

phases through ferroelectric tetragonal, ferroelectric orthorhombic, and ferroelectric rhombohedral.  

III. Properties and Example Applications 

Due to the strong electromechanical coupling of some piezoelectric and ferroelectric 

materials, they may be strong candidates as transducers, actuators, or sensors needed in many 

applications. There are many parameters to consider for deciding which ferroelectric materials are 

appropriate for a given application. In addition to logistical considerations such as cost, material 

properties such as the permittivity, stiffness, piezoelectric coupling, coercive field, loss tangent, 

and phase transition temperatures will determine which materials can satisfy the desired design 

goals. 

The coercive field is one important factor. Ferroelectrics like PZT can be broadly classified 

as hard or soft depending on the coercive field. Hard piezoelectrics have higher coercivity, whereas 

soft piezoelectrics have lower coercivity. Hard piezoelectrics tend to be more stable under high 
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mechanical and electrical loads with lower losses, whereas soft piezoelectrics tend to have higher 

piezoelectric coefficients.  

A. Example Applications 

Two example applications are described below: 

1. Piezoelectric Unimorph 

The piezoelectric coefficient dij is a measure of how much the material will strain (j=1-6, 

using Voigt notation) due to an electric field along i (i=1,2, or 3). For example, a 3-3 mode means 

that strain component being used is parallel to the electric field, and a 3-1 mode means that the 

strain component being used is perpendicular to the electric field.  

Other forms of deformation can be achieved depending on boundary conditions. For example, 

Figure 2-5 shows a schematic of a piezoelectric unimorph. If an electric field is applied across the 

piezoelectric layer, there will be an elastic mismatch between the substrate and piezoelectric layers 

causing the beam to bend. 

 

Figure 2-5: Schematic of bound piezoelectric and substrate layers forming a piezoelectric 

unimorph.  
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2. Multiferroic Composite 

Another application is to form a multiferroic composite. Most materials have low 

magnetoelectric coupling, however, it was demonstrated that strong magnetoelectric coupling can 

be achieved with multiferroic composites [3]. Figure 2-6 shows an example schematic of a 

multiferroic magnetostrictive-ferroelectric composite. The ferroelectric layer provides electrical 

and mechanical coupling, and the magnetostrictive layer provides mechanical and magnetic 

coupling. When the two layers are combined, the composite material can result in high 

magnetoelectric coupling.  

 

Figure 2-6: Schematic of multiferroic composite coupling magnetostrictive and ferroelectric 

material. 

B. Developments 

There has been an ongoing search for better-performing materials. Single crystal relaxor 

ferroelectrics like PMN-PT and PIN-PMN-PT have garnered attention for their large 

electromechanical properties relative to polycrystalline ferroelectrics like PZT. There has also 

been renewed interest in finding high performing Pb-free alternatives due to concerns of lead 

toxicity to the environment [4–6]. In either case, a better understanding of the underlying 

mechanisms can help guide material development. 
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Models have been developed to describe piezoelectricity and ferroelectricity at multiple 

length scales, from using bulk properties all the way down to atoms of a crystal lattice. 

Polycrystalline ceramics contain numerous grains separated by grain boundaries. Within each 

grain the crystal lattice is continuous. A crystal consists of atoms forming a repeating structure and 

can either be single domain or multidomain. 

Bulk property models are used for the macroscale, while microscale models can 

incorporate grain, defects, and grain boundary effects. At the atomic scale models include density 

functional theory (DFT) and molecular dynamics (MD). For the mesoscale (between atomic and 

microscopic scales), phase field models based on Landau theory are used to model domains and 

domain walls. This dissertation work used models at the mesoscale (to investigate phase 

transformations) and the macroscale (using bulk properties for SJA devices). 
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Chapter 3: Improved energy function for PIN-PMN-PT and the 

effect of fluctuations on phase transformations 

I.  Introduction 

Ferroelectrics are widely used as transducers, sensors, and actuators due to their strong 

electromechanical coupling. In recent decades, PbTiO3-based relaxor ferroelectric crystals, such 

as PMN-PT and PIN-PMN-PT, have garnered great interest due to their ultrahigh 

electromechanical properties, particularly those located near a morphotropic phase boundary. 

Relaxor ferroelectrics are typically characterized by a broad dielectric permittivity peak that is 

both temperature- and frequency-dependent. Furthermore, while the susceptibility follows the 

Curie-Weiss law at high temperatures, the deviation increases at lower temperatures [1]. However, 

the low coercive field Ec, low Curie point, and/or low rhombohedral-tetragonal phase transition 

temperature of PZN-PT and PMN-PT limit their operating temperature and electric fields. To 

overcome these limitations, the ternary x PbIn1/2Nb1/2O – (1−x−y) PbMg1/3Nb2/3O3 – y PbTiO3 has 

been developed, which exhibits increased phase transition temperatures and coercive fields while 

retaining excellent piezoelectric properties. These advancements have positioned the ternary 

material at the forefront of electroacoustic technologies [2,3]. 

Landau-Devonshire energy functions have been successfully developed to describe various 

ferroelectric materials and their properties. These energy functions have been used in phase field 

models to investigate the microstructure behavior of perovskite-based ferroelectrics as well as for 

domain engineering [3]. Domain engineering involves cutting and poling the crystal into domain 

structures such that the performance is optimized for a particular mode. This has been applied to 

various ferroelectric materials including BaTiO3, PZN-PT, and PMN-PT [4–6]. Devonshire was 
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the first to apply Landau's theory on phase transformations to ferroelectric BaTiO3 crystals and 

developed a 6th-order polynomial energy function to describe the structural free energy of the 

crystal as a function of polarization. Bell and Cross [7] modified this energy function to model 

field-driven phase changes. Later, Amin et al. [8] developed a 6th-order energy function capable 

of modeling various compositions of PZT, while Haun et al. [9] developed a 6th-order energy 

function for single-domain PbTiO3. 

After the discovery of the monoclinic ferroelectric phase in PZT by Noheda [10], 

Vanderbilt and Cohen [11]  showed that higher-ordered energy functions were necessary to 

account for additional phases. An 8th-order energy function is the minimum to describe three 

phases, while the triclinic phase required going up to the 12th order. Li et al. [12]  developed an 

8th-order energy function for BaTiO3 that reproduced the R-O-T-C transition temperatures and 

was also applicable for a thin film under compressive biaxial strains. Wang et al. [13] added 

additional temperature-dependent terms to provide a better description of dielectric properties at 

temperatures around the Curie temperature. Heitman and Rosetti [14] developed methods to 

reproduce morphotropic phase boundary effects for PZT. 

Zhang [15] developed a 6th order energy function based on PMN-PT to investigate the 

coexistence of tetragonal and rhombohedral phases. As a 6th order polynomial, this energy function 

cannot simultaneously describe the tetragonal, orthorhombic, and rhombohedral phases. Lv et al. 

[16] developed a 10th order energy function for a relaxor ferroelectric that describes the dielectric, 

piezoelectric, and ferroelectric properties of a PIN-PMN-PT composition near the morphotropic 

phase boundary that undergoes cubic to tetragonal to orthorhombic to rhombohedral phase 

transformations while cooling. However, this energy function is thermodynamically unstable at 

high polarization values. While the instability did not present an issue for Lv’s investigation of 
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domain formation and domain wall evolution [17,18], it results in unrealistic behavior under 

certain electric and/or mechanical loads. 

The development of higher order energy functions has enabled phase field modeling of 

many microstructural interactions, but there are still challenges in accurately modeling phase 

transitions and switching. Phase-field models have been implemented using various computational 

methods including the semi-implicit Fourier spectral method [19], finite difference method, and 

finite element method (FEM) [20,21]. Phenomena such as domain formation [22,23] and switching 

[24,25] have been simulated and also used to study the effects such as mechanical strain, defects, 

grains, and domain walls [21,26–28].  

There are discrepancies between the measured and predicted coercive fields from the 

energy functions. Discrepancies between modeled and observed coercive fields exist and are 

attributed to metastable wells in the energy function and thermal fluctuations in real materials. 

While this is commonly assumed, the effects of energy fluctuations and metastable states are often 

neglected in phase-field modeling [29]. Kingsland et al. [30] used atomistic first principle 

simulations and found that the nearly an order magnitude difference between theoretical 

predictions and observed measurements may be due to strong residual depolarizing fields based 

on defects in the crystal lattice. Indergand et al. [28] found the addition of stochastic noise to the 

phase field model provided a more accurate prediction of the coercive field for bulk polycrystalline 

PZT promoted the formation of needle-like domains in regions of high heterogeneity or stress 

concentration. 

 This chapter presents an improved 10th order energy function for a composition of PIN-

PMN-PT near the MPB by following Lv’s method of coefficient determination. Instead of using a 

single fitting parameter to adjust for changes in the dielectric permittivities for a composition 
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closer to the MPB, each permittivity had its own fitting parameter. The energy function using this 

proposed set of coefficients is more thermodynamically stable than that of Lv. Analysis and 

discussion follow on the effect metastability and energy fluctuations have on phase 

transformations. 

II.  Energy Function 

A. Landau-Devonshire Energy 

Landau theory assumes that the free energy 𝐹 − 𝐹0  of a system can be described 

analytically. For example, if a system’s symmetry is broken at some critical temperature, then the 

Landau free energy can be described by a series expansion about some order parameter 𝜂, which 

characterizes the asymmetry. A plot of the free energy above and below the critical point is shown 

in Figure 3-1. Above 𝑇𝑐, the energy is minimized when the order parameter is zero. Below 𝑇𝑐, new 

energy minima appear giving a spontaneous and non-zero 𝜂𝑠. 

 

Figure 3-1: Example of the free energy 𝐹 − 𝐹0 as a function of the order parameter 𝜂 described by 

Landau theory at temperatures above and below some critical temperature 𝑇𝑐. 
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For ferroelectrics, the order parameter is polarization, and the critical temperature is also 

known as the Curie temperature. The crystal is cubic above the Curie temperature and there is no 

spontaneous polarization. The free energy, the Landau-Devonshire energy, has the following form 

in index notation: 

𝑓𝐿𝐷 = 𝛼𝑖𝑗𝑃𝑖𝑃𝑗 + 𝛼𝑖𝑗𝑘𝑙𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙 + ⋯+ 𝛼𝑖… 𝑟𝑃𝑖 …𝑃𝑟 (3-1) 

where 𝛼𝑖𝑗 are the Landau coefficients and 𝑃𝑖 is the polarization.  

For thermodynamic stability, the highest order coefficients should all be: 

𝛼𝑖… 𝑟 > 0 (3-2) 

Using material symmetries, the indices of the coefficients are often rewritten with reduced 

indices: 

𝑓𝐿𝐷 = 𝛼𝑖𝑃𝑖
2 + 𝛼𝑖𝑗𝑃𝑖

2𝑃𝑗
2 + ⋯ (3-3) 

This energy describes the structural free energy of the crystal lattice as a function of the 

polarization, with the unpolarized cubic phase under zero stress as the reference energy state. 

Typically, higher order coefficients can allow for more material characteristics to be modeled or 

expand its applicability. Higher order terms are necessary to accommodate additional phases 

within a single energy function. 

The following 10th order energy function was fitted to experimental data from literature 

and used to model the spontaneous tetragonal, orthorhombic, and rhombohedral phases with a 

single function [16]: 
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𝑓𝐿𝐷(𝑃1, 𝑃2, 𝑃3) = 𝛼1(𝑃1
2 + 𝑃2

2 + 𝑃3
2) + 𝛼11(𝑃1

4 + 𝑃2
4 + 𝑃3

4) + 𝛼12(𝑃1
2𝑃2

2 + 𝑃1
2𝑃3

2 + 𝑃2
2𝑃3

2)

+ 𝑎111(𝑃16 + 𝑃26 + 𝑃36) + 𝛼112(𝑃1
2(𝑃2

4 + 𝑃3
4) + 𝑃2

2(𝑃1
4 + 𝑃3

4) + 𝑃3
2(𝑃1

4 + 𝑃2
4))

+ 𝛼123(𝑃1
2𝑃2

2𝑃3
2) + 𝛼1111(𝑃1

8 + 𝑃2
8 + 𝑃3

8)

+ 𝛼1112(𝑃1
6(𝑃2

2 + 𝑃3
2) + 𝑃2

6(𝑃1
2 + 𝑃3

2) + 𝑃3
6(𝑃1

2 + 𝑃2
2))

+ 𝛼1122(𝑃1
4𝑃2

4 + 𝑃1
4𝑃3

4 + 𝑃2
4𝑃3

4) + 𝛼1123(𝑃1
2𝑃2

2𝑃3
4 + 𝑃1

2𝑃2
4𝑃3

2 + 𝑃1
4𝑃2

2𝑃3
2)

+ 𝛼11111(𝑃1
10 + 𝑃2

10 + 𝑃3
10)

+ 𝛼11112(𝑃1
8(𝑃2

2 + 𝑃3
2) + 𝑃2

8(𝑃1
2 + 𝑃3

2) + 𝑃3
8(𝑃1

2 + 𝑃2
2))

+ 𝛼11122(𝑃1
6(𝑃2

4 + 𝑃3
4) + 𝑃2

6(𝑃1
4 + 𝑃3

4) + 𝑃3
6(𝑃1

4 + 𝑃2
4))

+ 𝛼11223(𝑃1
4𝑃2

4𝑃3
2 + 𝑃1

4𝑃2
2𝑃3

4 + 𝑃1
2𝑃2

4𝑃3
4)

+ 𝛼11123(𝑃1
2𝑃2

2𝑃3
6 + 𝑃1

2𝑃2
6𝑃3

2 + 𝑃1
6𝑃2

2𝑃3
2) 

(3-4) 

where 𝛼𝑖  through 𝛼𝑖𝑗𝑘𝑙𝑚 are the fifteen Landau coefficients and 𝑃𝑖 are the orthogonal components 

of polarization using the pseudo-cubic unit cell as the reference coordinate system. The energy of 

the unpolarized and unstrained crystal is used as the reference energy, so the elastic energy is not 

included in the function above.  

Figure 3-2 is a plot of the energy density of polarizations in the (11̅0) diagonal plane using 

Lv’s set of coefficients. This plane was chosen since it can describe the tetragonal, orthorhombic 

and rhombohedral phases. The plot uses polarizations 𝑃12 = (𝑃1 + 𝑃2)/√2 and 𝑃3 as the axes. The 

energy function is thermodynamically unstable at higher polarizations as shown in Figure 3-2. 

When the examining energy landscape for values of 𝑃12 and 𝑃3 between -0.5 and +0.5 C/m2, there 

are no instabilities. However, when the bounds are extended to -1.0 and +1.0 C/m2, the plot 
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becomes unstable after 0.6-0.7 C/m2 and goes to negative infinity due to the negative higher order 

terms. 

 

 

Figure 3-2: Lv’s Energy function landscape at room temperature with polarizations 𝑃12 and 𝑃3 

bounded between top left: [-0.5,0.5] and top right: [-1,1]. Top right image shows that the energy 

function is unstable at higher polarizations. The polarizations that describe this energy landscape 

is contained in the plane shown in the bottom image. 

The energy function can be rewritten in a phase structures’ local coordinate system as 

defined by Table 3-1. The local coordinate system is defined such that the 𝑥3 and poling direction 

are the same. For the single domain phases (labeled 1T, 1O and 1R), this would also be the 

spontaneous direction of the polarization. 
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Table 3-1: Phase structure, variants, and their corresponding poling direction and local 

coordinate system. 

Structure Poling Direction 
Local Coordinate System 

𝑥1 - 𝑥2 - 𝑥3 
Variants 

1T [001] [100] - [010] - [001] [001] 

1O [110] [1̅10] - [001] - [110] [110] 

1R [111] [11̅0] - [112̅] - [111] [111] 

2R [110] [1̅10] - [001] - [110] [111], [111̅] 

4R [001] [100] - [010] - [001] [111], [11̅1], [1̅11], [1̅1̅1] 

 

The transformed polarization vector 𝑷𝐴  written for a local coordinate system that 

corresponds to a phase (A: T, O, or R) can be found by applying a rotation to the polarization in 

the 𝑷 vector: 

𝑷𝐴 = [

𝑃1
𝐴

𝑃2
𝐴

𝑃3
𝐴

] = 𝑅𝐴 [

𝑃1

𝑃2

𝑃3

] = 𝑅𝐴𝑷 (3-5) 

where 𝑅𝐴  is the rotation matrix between the global pseudo-cubic coordinate system and the 

corresponding local coordinate system where 𝑥3 aligns with the poling direction of each phase. 

The rotation matrices for the tetragonal, orthorhombic, and rhombohedral phases are: 

𝑅𝑇 = [
1 0 0
0 1 0
0 0 1

] (3-6) 

𝑅𝑂 =

[
 
 
 
 −

√2

2

√2

2
0

0 0 1

√2

2

√2

2
0]
 
 
 
 

(3-7) 
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𝑅𝑅 =

[
 
 
 
 
 
 √2

2
−

√2

2
0

√6

6

√6

6

√6

3

√3

3

√3

3

√3

3 ]
 
 
 
 
 
 

(3-8) 

In the corresponding local coordinate system, the energy function for the spontaneous 

tetragonal, orthorhombic, and rhombohedral phases are: 

𝑓𝐿𝐷
𝑇 (𝑃𝑆

𝑇(𝑇)) =  𝛼1𝑃𝑆
𝑇2

+  𝛼11𝑃𝑆
𝑇4

 +  𝛼111𝑃𝑆
𝑇6

 + 𝛼1111𝑃𝑆
𝑇8

+ 𝛼11111𝑃𝑆
𝑇10

 

(3-9) 

𝑓𝐿𝐷
𝑂 (𝑃𝑆

𝑂(𝑇)) = 𝑃𝑆
𝑂2

𝛼1 +
1

2
𝛼11𝑃𝑆

𝑂4
+

1

4
𝛼12𝑃𝑆

𝑂4
+

1

4
𝛼111𝑃𝑆

𝑂6
+

1

4
𝛼112𝑃𝑆

𝑂6
+

1

8
𝛼1111𝑃𝑆

𝑂8

+
1

8
𝛼1112𝑃𝑆

𝑂8
+

1

16
𝛼1122𝑃𝑆

𝑂8
+

1

16
𝛼11111𝑃𝑆

𝑂10
+

1

16
𝛼11112𝑃𝑆

𝑂10

+
1

16
𝛼11122𝑃𝑆

𝑂10
 

(3-10) 

𝑓𝐿𝐷
𝑅 (𝑃𝑆

𝑅(𝑇)) = 𝑃𝑆
𝑅2

𝛼1 +
1

3
𝛼11𝑃𝑆

𝑅4
+

1

3
𝛼12𝑃𝑆

𝑅4
+

1

9
𝛼111𝑃𝑆

𝑅6
+ 

2

9
𝛼112𝑃𝑆

𝑅6
+

1

27
𝛼123𝑃𝑆

𝑅6

+
1

27
𝛼1111𝑃𝑆

𝑅8
+ 

2

27
𝛼1112𝑃𝑆

𝑅8
+

1

27
𝛼1122𝑃𝑆

𝑅8
+

1

27
𝛼1123𝑃𝑆

𝑅8
+

1

81
𝛼11111𝑃𝑆

𝑅10

+ 
2

81
𝛼11112𝑃𝑆

𝑅10
+ 

2

81
𝛼11122𝑃𝑆

𝑅10
+

1

81
𝛼11123𝑃𝑆

𝑅10
+

1

81
𝛼11223𝑃𝑆

𝑅10
  

  (3-11) 

B. Material Properties 

This work uses the same base data used in [16] to determine coefficients of the energy 

function for a composition of PIN-PMN-PT near the MPB that is rhombohedral at room 

temperature (typically 32%-33% PT content). This data is listed in Table 3-2. Several assumptions 
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were made to obtain the data used to characterize a composition near the MPB that is rhombohedral 

at room temperature. As the temperature is increased, the composition near the MPB transitions 

from the rhombohedral phase to orthorhombic phase to tetragonal phase to cubic phase. Data for 

a single composition is needed but not available, so a qualitative composition and temperature 

equivalence was used fill in gaps in the available data in literature. As the PT% content is increased, 

the spontaneous phase at room temperature will change from rhombohedral to orthorhombic or 

tetragonal. Approximations of unavailable properties were based on single domain data from other 

PIN-PMN-PT compositions at room temperature. For example, while the composition of interest 

is rhombohedral at room temperature, the “spontaneous” tetragonal and orthorhombic phases’ 

properties are assumed to be similar to compositions with higher or lower PT content that naturally 

occur as tetragonal or orthorhombic at room temperature. Similarly, the tetragonal and 

orthorhombic properties at elevated temperatures are also assumed to be on a similar order of 

magnitude. 

The transition temperatures 𝑇𝑅𝑂 = 93°𝐶  and 𝑇𝑂𝑇 = 118°𝐶  were based on PIN-PMN-

0.32PT with PIN content between 0.25 and 0.35 [2]. The tetragonal phase’s spontaneous 

polarization 𝑃𝑠
𝑇 and dielectric permittivities 𝑒33

𝑇  and 𝑒11
𝑇  were based on PIN-PMN-PT with PT% 

content on the order of 38-42% [31]. The (psuedo)-orthorhombic phase’s dielectric permittivities 

𝑒33
𝑂  , 𝑒11

𝑂  , and 𝑒22
𝑂   were based on composition around 0.27PIN-0.40PMN-0.33PT [32]. The 

rhombohedral dielectric permittivities were based on 0.24PIN-0.49PMN-0.27PT [33]. Other 

parameters such as the Curie constant 𝐶 , Curie-Weiss temperature 𝑇0 , orthorhombic phase’s 

spontaneous polarization 𝑃𝑠
𝑂 , and rhombohedral phase’s spontaneous polarization 𝑃𝑠

𝑂  were 

estimated according to [16]. 
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Instead of using a single fitting parameter to account for the change in the dielectric 

permittivity of a different composition and temperature. Separate fitting parameters for each 

permittivity were needed to obtain an energy function that was thermodynamically stable with the 

additional constraints. 

Table 3-2: Material Properties for Coefficient Determination 

Quantities - - Quantities - - 

𝐶 1.48 × 106 °𝐶 𝑇2
∗ 25 °𝐶 

𝑇0 182 °𝐶 𝑃𝑠
𝑂(𝑇2

∗) 0.455 C/m^2  

𝑇𝐶 192 °𝐶 𝑒33
𝑂 (𝑇2

∗) 1500 × 𝐾3
𝑂 - 

𝑇1
∗ 25 °𝐶 𝑒11

𝑂 (𝑇2
∗) 8070 × 𝐾1

𝑂 - 

𝑃𝑠
𝑇(𝑇1

∗) 0.43 𝐶/𝑚2 𝑒22
𝑂 (𝑇2

∗) 30000 × 𝐾2
𝑂 - 

𝑒33
𝑇 (𝑇1

∗) 1090 × 𝐾3
𝑇 - 𝑇3

∗ 25 °𝐶 

𝑒11
𝑇 (𝑇1

∗) 15000 × 𝐾1
𝑇 - 𝑃𝑆

𝑅(𝑇3) 0.47 C/m^2  

𝑇𝑂𝑇 118 °𝐶 𝑒33
𝑅 (𝑇3

∗) 650 × 𝐾3
𝑅 - 

𝑇𝑅𝑂 93 °𝐶 𝑒11
𝑅 (𝑇3

∗) 5800 × 𝐾1
𝑅 - 

 

C. Coefficient Determination 

There are 15 coefficients for a 10th order Landau-Devonshire energy function. Coefficients 

are assumed to be temperature independent except for 𝛼1. Though relaxor behavior deviates from 

the Curie-Weiss Law, the first coefficient is still approximated by: 

𝛼1 =
𝑇 − 𝑇0

2𝑒0𝐶
(3-12) 

where 𝑇 is the temperature, 𝑇0 is the Curie-Weiss temperature, 𝑒0is the permittivity of free space, 

and C is the Curie constant. 𝑇0 is typically slightly lower than 𝑇𝐶. 

Coefficients were determined numerically by solving three systems of equations 

sequentially. Determined coefficients were used in subsequent sets to reduce the number of 

unknowns solved for at one time. Two coefficients, 𝛼11111 and 𝛼11122, were not necessary to fit 



25 

 

the energy function to the properties listed in Table 3-2 and were set to zero for convenience. 

Additionally, all the other highest-order coefficients followed an additional constraint: 

𝛼𝑖𝑗𝑘𝑙𝑚 > 0 (3-13) 

to ensure the energy function is thermodynamically stable. Since 𝛼11111 was set to zero, 𝛼1111 

must also be positive for stability. 

The systems of equations were constructed using three types of relationships: 

1. Energy Equivalence 

The spontaneous energies of two phases A and B are assumed to be equivalent during their 

phase transition at temperature 𝑇𝐴𝐵: 

𝑓𝐿𝐷
𝐴 (0,0, 𝑃𝑆

𝐴(𝑇𝐴𝐵)) = 𝑓𝐿𝐷
𝐵 (0,0, 𝑃𝑆

𝐵(𝑇𝐴𝐵)) (3-14)  

For example, 𝑓𝐿𝐷
𝑅 (0,0, 𝑃𝑆

𝑅(𝑇𝑅𝑂)) = 𝑓𝐿𝐷
𝑂 (0,0, 𝑃𝑆

𝑂(𝑇𝑅𝑂))  at the rhombohedral-orthorhombic 

transition temperature 𝑇𝑅𝑂. 

2. Local Minima 

A spontaneous phase occurs at a local energy minimum. As a local minimum, the first 

derivative satisfies:  

𝜕𝑓𝐿𝐷
𝐴

𝜕𝑃3
𝐴 (0,0, 𝑃𝑆

𝐴) = 0 (3-15) 

3. Dielectric Coefficient 

The dielectric coefficient 𝑒𝑖𝑗
𝐴 is related to the second derivative of the energy function by: 

1

𝑒𝑖𝑗
𝐴𝑒0

=
𝜕2𝑓𝐿𝐷

𝐴 (0,0, 𝑃𝑆
𝐴)

𝜕𝑃𝑖
𝐴𝜕𝑃𝑗

𝐴  (3-16) 
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The coefficients 𝛼11, 𝛼111, and 𝛼1111were determined by a set of equations based on the 

tetragonal phase. Coefficients 𝛼12 , 𝛼112 , 𝛼1112 , 𝛼1122 , and 𝛼11112  were determined by a set of 

equations based on the tetragonal and orthorhombic phases. The remaining coefficients 𝛼123 , 

𝛼1123, 𝛼11223, and 𝛼11123 were determined by a set of equations based on the orthorhombic and 

rhombohedral phases. See the Appendix of this chapter for more information. 

III. Proposed Energy Function 

A. Fitting Parameters and Resulting Landau Coefficients 

Table 3-3 lists the values of the fitting parameters 𝐾𝑖
𝐴 , corresponding the dielectric 

permittivity 𝜀𝑖𝑖
𝐴, that result in a stable energy function with two specified phase transitions between 

room temperature and the Curie point. Since the value of dielectric permittivity used is based on a 

different PIN-PMN-PT composition, the fitting parameter accounts for the variation due to 

compositional differences. Most multipliers indicate an increase in the permittivity closer to the 

MPB aside for 𝜀22
𝑂 . The resulting Landau coefficients are listed in Table 3-4  

Table 3-3: Dielectric permittivity adjustments for composition closer to MPB. 

Parameter Value 

𝐾3
𝑇 1.5 

𝐾1
𝑇 1.5 

𝐾3
𝑂 1.4 

𝐾1
𝑂 1.6 

𝐾2
𝑂 0.7 

𝐾3
𝑅 2.15 

𝐾1
𝑅 1.5 
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Table 3-4: Landau Coefficients of 10th order energy function. T is temperature in °𝐶. 

 Coefficient Units  Coefficient Units 

𝛼1 3.816 × 104 (𝑇 − 182) 𝐶−2 𝑚2 𝑁 𝛼1122 −1.534 × 109 𝐶−8 𝑚14 𝑁 

𝛼11 −1.212 × 107  𝐶−4 𝑚6 𝑁 𝛼1123 −2.234 × 1010 𝐶−8 𝑚14 𝑁 

𝛼12 −2.641 × 107 𝐶−4 𝑚6 𝑁 𝛼11112 8.571 × 108 𝐶−10 𝑚18 𝑁 

𝛼111 9.428 × 107 𝐶−6 𝑚10 𝑁 𝛼11223 6.518 × 1010 𝐶−10 𝑚18 𝑁 

𝛼112 3.881 × 108 𝐶−6 𝑚10 𝑁 𝛼11123 7.496 × 1010 𝐶−10 𝑚18 𝑁 

𝛼123 2.916 × 109 𝐶−6 𝑚10 𝑁 𝛼11111 0 𝐶−10 𝑚18 𝑁 

𝛼1111 3.180 × 107 𝐶−8 𝑚14 𝑁 𝛼11112 0 𝐶−10 𝑚18 𝑁 

𝛼1112 −3.388 × 108 𝐶−8 𝑚14 𝑁    

 

Nine of the thirteen non-zero Landau coefficients are different from Lv’s coefficients. More 

importantly, the highest order coefficients 𝛼𝑖𝑗𝑘𝑙𝑚 (as well as 𝛼1111 since 𝛼11111 = 0) are all non-

negative. This results in a thermodynamically stable energy function. In this case, the energy goes 

to positive infinity for large polarization values. 

B. Simulated Properties 

Figure 3-3 shows the energy density for polarizations in the (11̅0) diagonal plane plotted 

as a function of 𝑃12 = (𝑃1 + 𝑃2)/√2 and 𝑃3 at room temperature using the set of coefficients listed 

in  

 

Table 3-4. In contrast to figure 2, the energy landscape does not result in singularities at 

higher polarizations. There are 8 local minima depicted, corresponding to the variants of the 

tetragonal, orthorhombic, and rhombohedral phases contained in the (11̅0)  diagonal plane. At 

room temperature, the rhombohedral phase is the most energy favorable, while the tetragonal and 

orthorhombic phases are considered metastable states. Phases are separated by some energy barrier, 

typically determined by the closest saddle point.  
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Figure 3-3: Energy landscape of the proposed energy function from this work at room temperature. 

Energy density is plotted against polarizations 𝑃12 and 𝑃3 bounded between left: [-0.5,0.5] and 

right: [-1,1]. 

Figure 3-4 shows the energy density of the three ferroelectric phases plotted as a function 

of temperature. The rhombohedral phase depicted by the solid red line is the lowest energy state 

until transition temperature 𝑇𝑅𝑂 = 93°, after which it becomes the orthorhombic phase depicted 

by the dashed green line. The tetragonal phase depicted by the dotted blue line becomes the most 

energy favorable after 𝑇𝑂𝑇 = 118°  until it becomes the (paraelectric) cubic phase at Curie 

temperature 𝑇𝐶 = 192°. 
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Figure 3-4: Energy density of the orthorhombic, tetragonal, and rhombohedral phases as a function 

of temperature. The R-O and O-T phase transitions are designated by the black dash-dotted line. 

(O: dashed green, T: dotted blue, and R: solid red.) 

Figure 3-5 shows the polarizations corresponding to the three phases as a function of 

temperature from room temperature to 200°C. Vertical lines correspond to temperatures 𝑇𝑅𝑂, 𝑇𝑂𝑇, 

and 𝑇𝐶 . The sharp drop to zero polarization corresponds to the complete disappearance of a 

particular phase’s well from the energy landscape. For this energy function, the rhombohedral well 

disappears at 191° C, the orthorhombic well disappears at 195° C, and the tetragonal well 

disappears at 196°C. 
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Figure 3-5: Polarizations corresponding to the rhombohedral, orthorhombic, and tetragonal phases 

plotted as a function of temperature. 

 Figure 3-6 plots the dielectric permittivities 𝑒𝑖𝑖
𝐴, where A refers to the phase and 𝑖 refers to 

the 𝑥𝑖  direction defined by the phase’s local coordinate system. For both the tetragonal and 

rhombohedral phases, the dielectric permittivity in the two transverse directions 𝑒11 and 𝑒22 are 

identical in the phases’ local coordinate systems. The dielectric properties associated with the 

present energy function show similar trends with Lv’s energy function and are on the same order 

of magnitude. The vertical grey lines correspond to temperatures 𝑇𝑅𝑂, 𝑇𝑂𝑇, and 𝑇𝐶 from left to 

right respectively. 
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Figure 3-6: Relative permittivities 𝑒𝑖𝑖
𝐴  (𝑖 = 1, 2, 3 and A: T, O, or R) plotted as a function of 

temperature.  

IV. Switching and Phase Transitions  

The energy barrier for domain switching or phase transition is the difference in energy 

between a the bottom of a variant’s energy well and a neighboring saddle point. The application of 

an electrical and/or mechanical load will tilt the energy landscape. Energy wells will either deepen 

or diminish depending on the applied load(s). Domain switching or phase transitions will occur at 

some critical load. If random fluctuations are not considered, this will occur when a well disappears 

and the variant becomes unstable. At this point, the material will transition to a more energy 

favorable state. 

A. Total Energy During Loading 

The total energy is the sum of the Landau-Devonshire energy 𝑓𝐿𝐷, gradient energy 𝑓𝑔𝑟𝑎𝑑, 

electrical energy 𝑓𝑒𝑙𝑎𝑠, and elastic energy 𝑓𝑒𝑙𝑎𝑠: 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝐿𝐷 + 𝑓𝑔𝑟𝑎𝑑 + 𝑓𝑒𝑙𝑒𝑐 + 𝑓𝑒𝑙𝑎𝑠 (3-17) 
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This analysis will be focused on single domain crystals, so the gradient energy is assumed to be 

zero. 

The electric energy due to an electric field 𝑬 = (𝐸1, 𝐸2, 𝐸3) is 

𝑓𝑒𝑙𝑒𝑐 = −𝑃𝑖𝐸𝑖 −
1

2
𝑒0𝐸𝑖𝑖

2 (3-18) 

The first term is the change in potential energy due to the electric field acting on the material. The 

second term is from the free space occupied by the material. Since the second term is not dependent 

on the polarization and affects the whole energy landscape equally, this term is dropped from the 

following analysis. 

The elastic energy is: 

𝑓𝑒𝑙𝑎𝑠 =
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

𝑒𝑙𝜀𝑘𝑙
𝑒𝑙 (3-19) 

where 𝐶𝑖𝑗𝑘𝑙 are components of the stiffness tensor, and 𝜀𝑖𝑗
𝑒𝑙 are components of the elastic strain. 

Here, the elastic strain is the total strain minus the spontaneous strain due to polarization: 

𝜀𝑖𝑗
𝑒𝑙 = 𝜀𝑖𝑗

𝑡𝑜𝑡 − 𝜀𝑖𝑗
0 = 𝜀𝑖𝑗

𝑡𝑜𝑡 − 𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙 (3-20) 

where 𝜀𝑖𝑗
𝑡𝑜𝑡 is the total strain and 𝑄𝑖𝑗𝑘𝑙 are components of the electrostrictive tensor. 

1. Loading Cases 

The energies of four loading cases are considered below: 1) Applied electric field, 2) applied strain, 

3) applied stress, and 4) applied stress and electric field.  

1. Applied Electric Field: 

Under applied electric field 𝑬 = (𝐸1, 𝐸2, 𝐸3) with stress-free conditions, the energy of the 

system is described by the Helmholtz Energy: 

𝑓𝑡𝑜𝑡𝑎𝑙(𝑃𝑖, 𝐸𝑖
𝑎𝑝𝑝) = 𝑓𝐿𝐷(𝑃𝑖) − 𝑃𝑖𝐸𝑖

𝑎𝑝𝑝 (3-21) 
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2. Applied Strain 

The free energy of the system under applied strain and applied stress will have different 

slightly different forms. 

Under an applied total strain 𝜀𝑖𝑗
𝑡𝑜𝑡, the work done is 𝜎𝑖𝑗𝜀𝑖𝑗

𝑡𝑜𝑡 and the energy of the system is: 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝐿𝐷(𝑃𝑖) +
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

𝑒𝑙𝜀𝑘𝑙
𝑒𝑙 − 𝜎𝑖𝑗𝜀𝑖𝑗

𝑡𝑜𝑡 (3-22) 

where 𝐶𝑖𝑗𝑘𝑙 are components of the stiffness tensor and 𝜎𝑖𝑗 are components of the stress tensor. 

Substitute the elastic strain and distribute: 

𝑓𝑒𝑙𝑎𝑠 =
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

𝑒𝑙𝜀𝑘𝑙
𝑒𝑙 =

1

2
𝐶𝑖𝑗𝑘𝑙(𝜀𝑖𝑗

𝑡𝑜𝑡 − 𝑄𝑖𝑗𝑚𝑛𝑃𝑚𝑃𝑛)(𝜀𝑘𝑙
𝑡𝑜𝑡 − 𝑄𝑘𝑙𝑜𝑝𝑃𝑜𝑃𝑝) (3-23) 

𝑓𝑒𝑙𝑎𝑠 =
1

2
𝐶𝑖𝑗𝑘𝑙(𝜀𝑖𝑗

𝑡𝑜𝑡𝜀𝑘𝑙
𝑡𝑜𝑡 + 𝑄𝑖𝑗𝑚𝑛𝑃𝑚𝑃𝑛𝑄𝑘𝑙𝑜𝑝𝑃𝑜𝑃𝑝 − 𝜀𝑘𝑙

𝑡𝑜𝑡𝑄𝑖𝑗𝑚𝑛𝑃𝑚𝑃𝑛 − 𝜀𝑖𝑗
𝑡𝑜𝑡𝑄𝑘𝑙𝑜𝑝𝑃𝑜𝑃𝑝) (3-24) 

 

The last two terms are equivalent due to the symmetry of 𝐶𝑖𝑗𝑘𝑙 and can be combined. 

𝑓𝑒𝑙𝑎𝑠 =
1

2
𝐶𝑖𝑗𝑘𝑙(𝜀𝑖𝑗

𝑡𝑜𝑡𝜀𝑘𝑙
𝑡𝑜𝑡 + 𝑄𝑖𝑗𝑚𝑛𝑃𝑚𝑃𝑛𝑄𝑘𝑙𝑜𝑝𝑃𝑜𝑃𝑝 − 2𝜀𝑘𝑙

𝑡𝑜𝑡𝑄𝑖𝑗𝑚𝑛𝑃𝑚𝑃𝑛) (3-25) 

 

=
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

𝑡𝑜𝑡𝜀𝑘𝑙
𝑡𝑜𝑡 +

1

2
𝐶𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑚𝑛𝑄𝑘𝑙𝑜𝑝𝑃𝑚𝑃𝑛𝑃𝑜𝑃𝑝 − 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

𝑡𝑜𝑡𝑄𝑖𝑗𝑚𝑛𝑃𝑚𝑃𝑛 (3-26) 

 

Thus the energy of the system with work 𝜎𝑖𝑗𝜀𝑖𝑗
𝑡𝑜𝑡 can be described by 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝐿𝐷(𝑃𝑖) +
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

𝑡𝑜𝑡𝜀𝑘𝑙
𝑡𝑜𝑡 +

1

2
𝐶𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑚𝑛𝑄𝑘𝑙𝑜𝑝𝑃𝑚𝑃𝑛𝑃𝑜𝑃𝑝 − 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

𝑡𝑜𝑡𝑄𝑖𝑗𝑚𝑛𝑃𝑚𝑃𝑛 − 𝜎𝑖𝑗𝜀𝑖𝑗
𝑡𝑜𝑡 

(3-27) 
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The stress 𝜎𝑖𝑗 is found in terms the total strain and polarization by minimizing the energy with 

respect to the total strain: 

𝜕𝑓(𝑃𝑖 , 𝜀𝑖𝑗
𝑡𝑜𝑡)

𝜕𝜀𝑖𝑗
𝑡𝑜𝑡 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

𝑡𝑜𝑡 − 𝐶𝑖𝑗𝑘𝑙𝑄𝑘𝑙𝑚𝑛𝑃𝑚𝑃𝑛 − 𝜎𝑖𝑗 = 0 (3-28) 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙
𝑡𝑜𝑡 − 𝑄𝑘𝑙𝑚𝑛𝑃𝑚𝑃𝑛) (3-29) 

Using this, 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝐿𝐷(𝑃𝑖) +
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

𝑡𝑜𝑡𝜀𝑘𝑙
𝑡𝑜𝑡 +

1

2
𝐶𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑚𝑛𝑄𝑘𝑙𝑜𝑝𝑃𝑚𝑃𝑛𝑃𝑜𝑃𝑝 − 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

𝑡𝑜𝑡𝑄𝑖𝑗𝑚𝑛𝑃𝑚𝑃𝑛

− 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙
𝑡𝑜𝑡 − 𝑄𝑘𝑙𝑚𝑛𝑃𝑚𝑃𝑛)𝜀𝑖𝑗

𝑡𝑜𝑡 

(3-30) 

𝑓𝑡𝑜𝑡𝑎𝑙(𝑃𝑖 , 𝜀𝑖𝑗
𝑡𝑜𝑡) = 𝑓𝐿𝐷(𝑃𝑖) −

1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

𝑡𝑜𝑡𝜀𝑘𝑙
𝑡𝑜𝑡 +

1

2
𝐶𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑚𝑛𝑄𝑘𝑙𝑜𝑝𝑃𝑚𝑃𝑛𝑃𝑜𝑃𝑝 (3-31) 

The total energy of the system due to a prescribed strain can now described by as a function of 𝑃𝑖 

and 𝜀𝑖𝑗
𝑡𝑜𝑡. 

3. Applied Stress 

For the case of applied stress 𝜎𝑖𝑗
𝑎𝑝𝑝

,  

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝐿𝐷 + 𝑓𝑒𝑙𝑎𝑠 − 𝜎𝑖𝑗
𝑎𝑝𝑝𝜀𝑖𝑗

𝑡𝑜𝑡 = 𝑓𝐿𝐷(𝑃𝑖) +
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

𝑒𝑙𝜀𝑘𝑙
𝑒𝑙 − 𝜎𝑖𝑗

𝑎𝑝𝑝𝜀𝑖𝑗
𝑡𝑜𝑡 (3-32) 

where 𝜎𝑖𝑗𝜀𝑖𝑗
𝑡𝑜𝑡 is the work done on the system by a fixed stress when the strain changes. 

Substituting the elastic strain as before: 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝐿𝐷 +
1

2
𝐶𝑖𝑗𝑘𝑙(𝜀𝑖𝑗

𝑡𝑜𝑡 − 𝜀𝑖𝑗
0 )(𝜀𝑘𝑙

𝑡𝑜𝑡 − 𝜀𝑘𝑙
0 ) − 𝜎𝑖𝑗

𝑎𝑝𝑝𝜀𝑖𝑗
𝑡𝑜𝑡 (3-33) 

Minimize the energy with respect to strain and solve for 𝜀𝑖𝑗
𝑡𝑜𝑡 in terms of 𝜎𝑖𝑗

𝑎𝑝𝑝
 and 𝑃𝑖 
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𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝜀𝑖𝑗
𝑡𝑜𝑡 =

1

2
𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙

𝑡𝑜𝑡 − 𝜀𝑘𝑙
0 ) +

1

2
𝐶𝑖𝑗𝑘𝑙(𝜀𝑖𝑗

𝑡𝑜𝑡 − 𝜀𝑖𝑗
0 ) − 𝜎𝑖𝑗

𝑎𝑝𝑝 = 0 (3-34) 

𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙
𝑡𝑜𝑡 − 𝜀𝑘𝑙

0 ) = 𝜎𝑖𝑗
𝑎𝑝𝑝 (3-35) 

Convert 𝐶𝑖𝑗𝑘𝑙, 𝜎𝑖𝑗 and 𝜀𝑖𝑗 to Voigt notation: 

𝐶𝑖𝑗(𝜀𝑗
𝑡𝑜𝑡 − 𝜀𝑗

0) = 𝜎𝑖
𝑎𝑝𝑝 (3-36) 

Multiply by the compliance 

𝑆𝑘𝑖𝐶𝑖𝑗(𝜀𝑗
𝑡𝑜𝑡 − 𝜀𝑗

0) = 𝑆𝑘𝑖𝜎𝑖
𝑎𝑝𝑝 (3-37) 

𝛿𝑘𝑗(𝜀𝑗
𝑡𝑜𝑡 − 𝜀𝑗

0) = 𝑆𝑘𝑖𝜎𝑖
𝑎𝑝𝑝 (3-38) 

(𝜀𝑘
𝑡𝑜𝑡 − 𝜀𝑘

0) = 𝑆𝑘𝑖𝜎𝑖
𝑎𝑝𝑝 (3-39) 

𝜀𝑘
𝑡𝑜𝑡 = 𝑆𝑘𝑖𝜎𝑖

𝑎𝑝𝑝 + 𝜀𝑘
0 (3-40) 

Converting back from Voigt notation 

𝜀𝑘𝑙
𝑡𝑜𝑡 = 𝑆𝑘𝑙𝑖𝑗𝜎𝑖𝑗

𝑎𝑝𝑝 + 𝜀𝑘𝑙
0 (3-41) 

𝜀𝑘𝑙
𝑡𝑜𝑡 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑖𝑗

𝑎𝑝𝑝 + 𝑄𝑖𝑗𝑘𝑙𝑃𝑖𝑃𝑗 (3-42) 

where 𝑆𝑖𝑗𝑘𝑙 are components of the compliance tensor. 

Substitute this back into Equation 3-33: 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝐿𝐷(𝑃𝑖) +
1

2
𝜎𝑘𝑙(𝑆𝑖𝑗𝑘𝑙𝜎𝑖𝑗 + 𝑄𝑖𝑗𝑘𝑙𝑃𝑖𝑃𝑗 − 𝑄𝑖𝑗𝑘𝑙𝑃𝑖𝑃𝑗) − 𝜎𝑖𝑗

𝑎𝑝𝑝(𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙
𝑎𝑝𝑝 + 𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙) 

(3-43) 

Combining like terms: 

𝑓𝑡𝑜𝑡𝑎𝑙(𝑃𝑖 , 𝜎𝑖𝑗
𝑎𝑝𝑝) = 𝑓𝐿𝐷(𝑃𝑖) −

1

2
𝑆𝑖𝑗𝑘𝑙𝜎𝑖𝑗

𝑎𝑝𝑝𝜎𝑘𝑙
𝑎𝑝𝑝 − 𝜎𝑖𝑗

𝑎𝑝𝑝𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙 (3-44) 

4. Applied Stress and Electric Field 
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The energy of the system that describes both applied stress and electric field can be 

obtained by combining the results from Equations 3-21 and 3-44 together: 

𝑓(𝑃𝑖 , 𝐸𝑖 , 𝜎𝑖𝑗
𝑎𝑝𝑝) = 𝑓𝐿𝐷(𝑃𝑖) −

1

2
𝑆𝑖𝑗𝑘𝑙𝜎𝑖𝑗

𝑎𝑝𝑝𝜎𝑘𝑙
𝑎𝑝𝑝 − 𝜎𝑖𝑗

𝑎𝑝𝑝𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙 − 𝑃𝑖𝐸𝑖
𝑎𝑝𝑝 (3-45) 

2. Example: Loading in <001> without Electric Field 

Consider uniaxial loading along the <001> direction without an electric field.  

𝜎11
𝑎𝑝𝑝 = 𝜎22

𝑎𝑝𝑝 = 𝜎12
𝑎𝑝𝑝 = 𝜎23

𝑎𝑝𝑝 = 𝜎13
𝑎𝑝𝑝 = 0, 𝜎33

𝑎𝑝𝑝 ≠ 0 (3-46) 

Equation 3-45 becomes: 

𝑓(𝑃𝑖 , 𝜎𝑖𝑗
𝑎𝑝𝑝) = 𝑓𝐿𝐷(𝑃𝑖) −

1

2
𝑆3333𝜎33

𝑎𝑝𝑝𝜎33
𝑎𝑝𝑝 − 𝜎33

𝑎𝑝𝑝𝑄33𝑘𝑙𝑃𝑘𝑃𝑙  

𝑓(𝑃𝑖 , 𝜎𝑖𝑗
𝑎𝑝𝑝) = 𝑓𝐿𝐷(𝑃𝑖) −

1

2
𝑆3333𝜎33

𝑎𝑝𝑝𝜎33
𝑎𝑝𝑝

− 𝜎33
𝑎𝑝𝑝(𝑄3311𝑃1

2 + 𝑄3322𝑃2
2 + 𝑄3333𝑃3

2 + 2𝑄3312𝑃1𝑃2 + 2𝑄3313𝑃1𝑃3

+ 2𝑄3323𝑃2𝑃3)  

(3-47) 

This can be rewritten as: 

𝑓(𝑃𝑖 , 𝜎𝑖𝑗
𝑎𝑝𝑝) = 𝑓𝐿𝐷(𝑃𝑖) −

1

2
𝑆3333𝜎33

𝑎𝑝𝑝𝜎33
𝑎𝑝𝑝

− 𝜎33
𝑎𝑝𝑝(𝑄11(𝑃1

2 + 𝑃2
2 + 𝑃3

2) + 2𝑄12(𝑃1𝑃2 + 𝑃1𝑃3 + 𝑃2𝑃3))  

(3-48) 

Rewriting the energy specifically in the (110) plane where 𝑃1 = 𝑃2 = 𝑃12/√2: 

𝑓(𝑃𝑖 , 𝜎𝑖𝑗
𝑎𝑝𝑝) = 𝑓𝐿𝐷(𝑃𝑖) −

1

2
𝑆3333𝜎33

𝑎𝑝𝑝𝜎33
𝑎𝑝𝑝

− 𝜎33
𝑎𝑝𝑝 (𝑄11(𝑃1

2 + 𝑃2
2 + 𝑃3

2) + 𝑄12(𝑃12
2 + 2√2𝑃12𝑃3)) 

(3-49) 



37 

 

B. Energy Barrier and Stability 

Each energy well corresponds to a phase/variant and has some energy barrier separating it 

from a neighboring well. For one phase or variant to transition to another, it needs to overcome 

said energy barrier. 

1. Minima Identification and Energy Barrier Calculation 

To determine the height of an energy barrier systematically, the critical points of the free 

energy function 𝑓𝑡𝑜𝑡𝑎𝑙 must be identified. 

Critical points can be identified by setting the energy stationary: 

[
𝜕𝑓

𝜕𝑃𝑖
] = 0 (3-50) 

Generally, critical points can be classified as a local minima, maxima, and saddle points by 

examining the Hessian matrix: 

𝐻(𝑃𝑘) = [
𝜕2𝑓(𝑃𝑘)

𝜕𝑃𝑖𝜕𝑃𝑗
] (3-51) 

If the Hessian is positive definite (all eigenvalues are positive), then critical point is a local 

minimum. If the Hessian is negative definite (all eigenvalues negative), then the critical point is a 

local maximum. If the Hessian has both positive and negative eigenvalues, then the critical point 

is a saddle point. Otherwise, the test is inconclusive.  

If the energy is written as a function of two variables 𝑃12 and 𝑃3, then the critical points 

satisfy: 

[
 
 
 
 

𝜕𝑓

𝜕𝑃12

𝜕𝑓

𝜕𝑃3 ]
 
 
 
 

= 0 (3-52) 
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The second derivative test to classify critical point of two variables (𝑃12, 𝑃3): 

1. If det𝐻(𝑃12, 𝑃3) =
𝜕2𝑓

𝜕𝑃12
2

𝜕2𝑓

𝜕𝑃3
2 − (

𝜕2𝑓

𝜕𝑃12𝜕𝑃3
)
2

> 0  and 
𝜕2𝑓

𝜕𝑃12
2 > 0 , then (𝑃12, 𝑃3)  is a local 

minimum. 

2. If det𝐻(𝑃12, 𝑃3) > 0 and 
𝜕2𝑓

𝜕𝑃12
2 < 0, then (𝑃12, 𝑃3) is a local maximum. 

3. If det𝐻(𝑃12, 𝑃3) < 0, then (𝑃12, 𝑃3) is a saddle point. 

4. If det𝐻(𝑃12, 𝑃3) = 0, then the test is inconclusive. 

The height of an energy barrier between A and B is the difference between the energy of at the 

phase’s local minimum and the energy at a neighboring maximum or saddle point 𝑓𝑠𝑎𝑑𝑑𝑙𝑒/𝑚𝑎𝑥
𝐴𝐵 : 

𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟
𝐴→𝐵 = 𝑓𝑠𝑎𝑑𝑑𝑙𝑒/𝑚𝑎𝑥

𝐴𝐵 − 𝑓min
𝐴 (3-53) 

Similarly, the energy barrier between 

𝑓𝑏𝑎𝑟
𝐵→𝐴 = 𝑓𝑠𝑎𝑑𝑑𝑙𝑒/𝑚𝑎𝑥

𝐴𝐵 − 𝑓min
𝐵 (3-54)  

Note that the energy barrier from A to B is not the same as the energy barrier from B to A. 

Figure 3-7 shows the energy landscape from Figure 3-3 with the critical points represented by red 

points. A depiction of the energy barriers from the rhombohedral phase to the neighboring 

tetragonal 𝑓𝑏𝑎𝑟
𝑅→𝑇 and orthorhombic phases 𝑓𝑏𝑎𝑟

𝑅→𝑂 is shown by the blue double arrows. 
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Figure 3-7: The critical points of the energy function are represented by red points on the energy 

landscape. The energy barriers of the rhombohedral phase to the neighboring tetragonal and 

orthorhombic phases are depicted by the blue double arrows. 

Energy fluctuations or biases allow the material to overcome the energy barrier necessary 

for phase transformation. The effect of energy fluctuations was investigated by assuming a level 

of fluctuation energy 𝑓𝑓𝑙𝑢𝑐. For each well, the height of the energy barrier 𝑓𝑏𝑎𝑟𝑟𝑖𝑒𝑟
𝐴→𝐵  is compared to 

𝑓𝑓𝑙𝑢𝑐. If the energy barrier is greater than the fluctuation energy, then there is insufficient energy 

to transition from A to B. If the energy barrier is less than or equal to the fluctuation energy, then 

there is sufficient energy to transition from A to B. For the purposes of the following analysis, a 

well is considered “stable” if the fluctuation energy is less than the lowest energy barrier to exit 

that well.  

C. Simulations of Applied Electric Field 

The hysteresis behavior while loading is simulated for selected loading cases with and 

without fluctuations/biases. In the following plots, the points each correspond to what the model 

describes as stable phases. These points outline the hysteresis behavior of the material. Green 
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represents the orthorhombic phase, red represents the rhombohedral phase, and blue represents the 

tetragonal phase. Because there may be multiple stable wells and phases, the path of the hysteresis 

loop depends not only on the applied loads but the history as well. 

1. E12 Along [110] Direction for Stress-free Crystal 

The hysteresis behavior of the crystal while applying an electric field in the [110] direction 

is simulated following Equation 3-21. Here, 𝐸3 = 0. 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝐿𝐷(𝑃12, 𝑃3) − 𝑃12𝐸12 (3-55) 

𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑃12
=

𝜕𝑓𝐿𝐷

𝜕𝑃12
− 𝐸12 = 0 (3-56) 

𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑃3
=

𝜕𝑓𝐿𝐷

𝜕𝑃3
= 0 (3-57) 

Figure 3-8 plots the polarization P12 of the rhombohedral, orthorhombic, and tetragonal 

phases as an electric field is applied in the E12 [110] direction. Energy fluctuations that may cause 

the material to escape from a metastable well are not accounted for in this plot. Points correspond 

to stable phases between -3 and +3 MV/m, evaluated at 0.1 MV/m increments. The figure shows 

this energy function has a coercive field for switching between rhombohedral variants around +/- 

1 MV/m. The coercive field for phase transition from the rhombohedral to orthorhombic phase 

occurs around +/- 1.8 MV/m. The transition to return from the orthorhombic phase to the 

rhombohedral phase is around -/+ 1.6MV/m. The tetragonal phase becomes unstable after the field 

exceeds +/- 0. 2 MV/m.  

In this case, if the crystal starts in the rhombohedral phase, it can switch and revert between 

the rhombohedral variants as an electric field is cycled. However, if a sufficiently high electric 

field is applied and the rhombohedral phase transitions to the orthorhombic phase. The crystal will 

not revert to the original rhombohedral variant even after the applied field is completely released 
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and entirely skips the original rhombohedral variant because the metastable orthorhombic well 

remains stable. This is despite the rhombohedral phase being more energy favorable. This presents 

an issue for modeling devices that require the model to return to the original phase when releasing 

the applied load.  

 

Figure 3-8: The P12 component of stable polarization plotted as a function the electric field applied 

in the E12 [110] direction ignoring energy fluctuations. 

Figure 3-9 similarly plots the polarization P12 of the three phases, but also considers the 

effect of energy fluctuations on the order of 10-40 kJ/m3. As the magnitude of the fluctuations 

increases, the number of stable wells decrease. This causes switching and phase transformations 

to occur earlier in the hysteresis loop. The tetragonal phase can be completely unstable depending 

on the fluctuation energy. The coercive field for switching between two R variants occurs at a 

lower magnitude, from around +/- 1MV/m to +/- 0.5-0.8 MV/m depending on the magnitude of 

the energy fluctuations. The field required to switch from rhombohedral to orthorhombic also 

decreases from around +/- 1.8 MV/m to less than +/- 1 MV/m. The orthorhombic to rhombohedral 

transition is no longer completely skipped and may return to the original phase when the load is 

released. With higher fluctuations, there is a band of electric fields where the fluctuations exceed 
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the energy barriers of all the phases. This may correspond with the region of phase coexistence 

observed in some ferroelectrics experimentally [34]. 

 

 

Figure 3-9: The P12 component of stable polarization plotted as a function the electric field applied 

in the E12 [110] direction considering energy fluctuations for 10-40 kJ/m3. 

2. E3 Along [001] Direction for Stress-free Crystal 

The hysteresis behavior of the crystal while applying an electric field in the [001] direction 

is simulated. Figure 3-10 plots the polarization P3 of the rhombohedral, orthorhombic, and 

tetragonal phases as an electric field E3 is applied in the [001] direction without considering energy 

fluctuations. The figure shows this energy function has a coercive field for switching between 

rhombohedral variants around +/- 0.61 MV/m. The coercive field for phase transition from the 
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rhombohedral to tetragonal phase occurs around +/- 1.9 MV/m. The transition to return from the 

tetragonal phase to the rhombohedral phase is around -/+ 0.9 MV/m. The orthorhombic phase 

becomes unstable after the field exceeds around +/- 0. 2 MV/m.  

 

Figure 3-10: The P3 component of stable polarization plotted as a function the electric field applied 

in the E3 [001] direction ignoring energy fluctuations. 

Figure 3-11 plots the polarization P3 of the three phases considering the effect of energy 

fluctuations between 10-40 kJ/m3. After accounting for fluctuation/bias, the coercive field for 

switching between two R variants occurs at a lower magnitude, from around +/- 0.6 MV/m to +/- 

0.1-0.5 MV/m depending on the magnitude of the energy fluctuations. The field required to switch 

from rhombohedral to tetragonal also decreases from around +/- 1.9 MV/m to +/- 0.9 MV/m. The 

tetragonal to rhombohedral transition changes from -/+ 0.9 MV/m to +/- 0.3 MV/m. 
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Figure 3-11: The P3 component of stable polarization plotted as a function the electric field applied 

in the E3 [001] direction considering energy fluctuations between 10-40 kJ/m3. 

V. Conclusion 

The effects of energy fluctuations were shown to have a significant effect on the modeling 

of ferroelectric switching and phase transformations using a Landau-Devonshire energy function 

developed for single domain PIN-PMN-PT. 

For this analysis, a new energy function with improved stability was required for the higher 

loading conditions needed to induce phase transformations. A proposed set of Landau coefficients 

was found through extensive fitting to experimental data following a similar process as Lv. 

Constraints on the highest order coefficients were introduced along with additional fitting 
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parameters for each dielectric permittivity. These fitting parameters were necessary to account for 

the composition differences between the composition of interest (rhombohedral near the MPB) 

and the reference data.  

There are several challenges for accurately modeling switching and phase transformation. 

Models are known to get trapped in metastable states and overpredict the coercive field needed for 

switching compared to experiments due to the energy barrier between two phases. Real materials 

are assumed to be able to escape these wells due to thermal fluctuations or defects, but these 

fluctuation effects are often neglected in models. Since models without fluctuations can still 

capture switching behavior, this overprediction is often deemed acceptable. 

However, certain phase transitions that are observed experimentally may be completely bypassed 

by the model due to a metastable well. This work showed that the bypassed phase transitions can 

be recovered by accounting for the energy fluctuations or biases, and that energy fluctuations or 

local biases can be used to tune the hysteresis loop to match measured behaviors previously unable 

to be modeled. 
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VI. Appendix 

A. Process for Coefficient Determination 

Rewrite the Landau energy function 𝑓𝐿𝐷 into the local coordinate system for each phase 

(1T, 1O, 1R):  

𝑓𝐿𝐷(𝑃1, 𝑃2, 𝑃3) = 𝑓𝐿𝐷
𝑇 (𝑃1

𝑇 , 𝑃2
𝑇 , 𝑃3

𝑇) (3-A-1) 

𝑓𝐿𝐷(𝑃1, 𝑃2, 𝑃3) → 𝑓𝐿𝐷
𝑂 (𝑃1

𝑂, 𝑃2
𝑂 , 𝑃3

𝑂) (3-A-2) 

𝑓𝐿𝐷(𝑃1, 𝑃2, 𝑃3) → 𝑓𝐿𝐷
𝑅 (𝑃1

𝑅 , 𝑃2
𝑅 , 𝑃3

𝑅) (3-A-3) 

The local coordinate system is defined such that the spontaneous polarization should be aligned 

with in the local x3-direction. For relationships applicable for all three phases, a general superscript 

will be used. For example, in 𝑓𝐿𝐷
𝐴 , A refers to any of the T, O, or R phases. 

There are 15 coefficients for a 10th order Landau-Devonshire energy function. It is 

numerically inefficient to solve for all coefficients at the same time, so the coefficients were 

determined by numerically solve solving three systems of equations sequentially. Determined 

coefficients were used in subsequent sets to reduce the number of unknowns solved for at one time. 

Two coefficients, 𝛼11111 and 𝛼11122, were not necessary to fit the energy function to the properties 

listed in Table 3-2 and were set to zero for convenience. Additionally, all the highest-order 

coefficients followed an additional constraint: 

𝛼𝑖𝑗𝑘𝑙𝑚 ≥ 0 (3-A-4) 

to ensure the energy function is thermodynamically stable. 

The following systems of equations were constructed using three types of relationships: 

1. Energy Equivalence 
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The spontaneous energies of two phases A and B are assumed to be equivalent during their 

phase transition at temperature 𝑇𝐴𝐵: 

𝑓𝐿𝐷
𝐴 (0,0, 𝑃𝑆

𝐴(𝑇𝐴𝐵)) = 𝑓𝐿𝐷
𝐵 (0,0, 𝑃𝑆

𝐵(𝑇𝐴𝐵)) (3-A-5)  

For example, 𝑓𝐿𝐷
𝑅 (0,0, 𝑃𝑆

𝑅(𝑇𝑅𝑂)) = 𝑓𝐿𝐷
𝑂 (0,0, 𝑃𝑆

𝑂(𝑇𝑅𝑂))  at the rhombohedral-orthorhombic 

transition temperature 𝑇𝑅𝑂. 

2. Local Minima 

A spontaneous phase occurs at a local energy minimum. As a local minimum, the first 

derivative satisfies:  

𝜕𝑓𝐿𝐷
𝐴

𝜕𝑃3
𝐴 (0,0, 𝑃𝑆

𝐴) = 0 (3-A-6) 

3. Dielectric Coefficient 

The dielectric coefficient 𝑒𝑖𝑗
𝐴 is related to the second derivative of the energy function by: 

1

𝑒𝑖𝑗
𝐴𝑒0

=
𝜕2𝑓𝐿𝐷

𝐴 (0,0, 𝑃𝑆
𝐴)

𝜕𝑃𝑖
𝐴𝜕𝑃𝑗

𝐴  (3-A-7) 

A multiplier 𝑘𝑖𝑗
𝐴  was used to get each 𝑒𝑖𝑗

𝐴 to account for increased permittivity for compositions 

closer to the MPB. This multiplier also functioned as a fitting parameter to adjust the resulting 

energy function to match the expected phase transformations.  

It is possible for a set of coefficients to have multiple solutions. In this case, the 

spontaneous polarization is used to determine which set coefficients to use in later steps. The 

polarization chosen should result in a smooth and gradual decrease in polarization as temperature 

is increased. Choosing an incorrect solution may result in later systems of equations to have no 

solution.  
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Coefficients are assumed to be temperature independent except for 𝛼1. This first coefficient 

is approximated by the Curie-Weiss Law: 

𝛼1 =
𝑇 − 𝑇0

2𝑒0𝐶
(3-A-8) 

where 𝑇 is the temperature, 𝑇0 is the Curie-Weiss temperature, 𝑒0is the permittivity of free space, 

and C is the Curie constant. 𝑇0 is typically slightly lower than 𝑇𝐶. 

The coefficients 𝛼11 , 𝛼111 , and 𝛼1111 are determined by the following set of equations 

based on the tetragonal phase: 

𝜕𝑓𝐿𝐷
𝑇

𝜕𝑃3
𝑇 (0,0, 𝑃𝑆

𝑇(𝑇1)) = 0 (3-A-9) 

1

𝑒33
𝑇 (𝑇1)𝑒0

=
𝜕2𝑓𝐿𝐷

𝑇

𝜕(𝑃3
𝑇)2

(0,0, 𝑃𝑆
𝑇(𝑇1)) (3-A-10) 

𝑓𝐿𝐷
𝑇 (0,0, 𝑃𝑆

𝑇(𝑇𝐶)) = 0 (3-A-11) 

𝜕𝑓𝐿𝐷
𝑇

𝜕𝑃3
𝑇 (0,0, 𝑃𝑆

𝑇(𝑇𝐶)) = 0 (3-A-12) 

The first two equations respectively correspond to the energy minima and longitudinal dielectric 

coefficient 𝑒33
𝑇   for a spontaneous tetragonal phase at temperature 𝑇1 . The third equation 

corresponds to the energy equivalence of the tetragonal and the reference cubic phases at the Curie 

temperature 𝑇𝐶, while the final equation corresponds to the energy minima of the cubic/tetragonal 

phase at 𝑇𝐶. There are now four equations and four unknowns. The unknowns 𝛼11, 𝛼111, 𝛼1111, 

and 𝑃𝑆
𝑇(𝑇𝐶) are solved for numerically. 

With these known coefficients, the spontaneous polarization for the tetragonal phase at the 

orthorhombic-tetragonal phase transition 𝑃𝑆
𝑇(𝑇𝑂𝑇) can be determined via: 

𝜕𝑓𝐿𝐷
𝑇

𝜕𝑃3
𝑇 (0,0, 𝑃𝑆

𝑇(𝑇𝑂𝑇)) = 0 (3-A-13) 
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𝑃𝑆
𝑇(𝑇𝑂𝑇) is used to solve the next set of equations. 

 The coefficients 𝛼12, 𝛼112, 𝛼1112, 𝛼1122, and 𝛼11112 are determined by the following set 

of equations based on the tetragonal and orthorhombic phases: 

1

𝑒11
𝑇 (𝑇1)𝑒0

=
𝜕2𝑓𝐿𝐷

𝑇

𝜕(𝑃1
𝑇)2

(0,0, 𝑃𝑆(𝑇1)) (3-A-14) 

𝜕𝑓𝐿𝐷
𝑂

𝜕𝑃3
𝑂 (0,0, 𝑃𝑆

𝑂(𝑇2)) = 0 (3-A-15) 

1

𝑒33
𝑂 (𝑇2)𝑒0

=
𝜕2𝑓𝐿𝐷

𝑂

𝜕(𝑃3
𝑂)2

(0,0, 𝑃𝑆
𝑂(𝑇2)) (3-A-16) 

1

𝑒11
𝑂 (𝑇2)𝑒0

=
𝜕2𝑓𝐿𝐷

𝑂

𝜕(𝑃1
𝑂)2

(0,0, 𝑃𝑆
𝑂(𝑇2)) (3-A-17) 

𝑓𝐿𝐷
𝑂 (0,0, 𝑃𝑆

𝑂(𝑇𝑂𝑇)) = 𝑓𝐿𝐷
𝑇 (0,0, 𝑃𝑆

𝑇(𝑇𝑂𝑇)) (3-A-18) 

𝜕𝑓𝐿𝐷
𝑂

𝜕𝑃3
𝑂 (0,0, 𝑃𝑆

𝑂(𝑇𝑂𝑇)) = 0 (3-A-19) 

The first equation corresponds to the transverse dielectric coefficient 𝑒11
𝑇  for a spontaneous 

tetragonal phase at temperature 𝑇1. The second equation corresponds to the energy minimum of 

the spontaneous orthorhombic phase at temperature 𝑇2. The third and fourth equations respectively 

correspond to the longitudinal 𝑒33
𝑂   and one of the transverse dielectric coefficients 𝑒11

𝑜   at 

temperature 𝑇2 . The fifth equation corresponds to the energy equivalence of the spontaneous 

orthorhombic and tetragonal phases during phase transition at temperature 𝑇𝑂𝑇 . The final equation 

corresponds to the energy minimum of the spontaneous orthorhombic phase at temperature 𝑇𝑂𝑇. 

With this, there are six equations and six unknowns. The unknowns 𝛼12 , 𝛼112 , 𝛼1112 , 𝛼1122 , 

𝛼11112, and 𝑃𝑆
𝑂(𝑇𝑂𝑇) are solved for numerically. 
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The remaining coefficients 𝛼123 , 𝛼1123 , 𝛼11223 , and 𝛼11123  are determined by the 

following set of equations based on the orthorhombic and rhombohedral phases: 

1

𝑒22
𝑂 (𝑇2)𝑒0

=
𝜕2𝑓𝐿𝐷

𝑂

𝜕(𝑃2
𝑂)2

(0,0, 𝑃𝑆
𝑂(𝑇2)) (3-A-20) 

𝜕𝑓𝐿𝐷
𝑅

𝜕𝑃3
𝑅 (0,0, 𝑃𝑆

𝑅(𝑇3)) = 0 (3-A-21) 

1

𝑒33
𝑅 (𝑇3)𝑒0

=
𝜕2𝑓𝐿𝐷

𝑅

𝜕(𝑃3
𝑅)2

(0,0, 𝑃𝑆
𝑅(𝑇3)) (3-A-22) 

1

𝑒11
𝑅 (𝑇3)𝑒0

=
𝜕2𝑓𝐿𝐷

𝑅

𝜕(𝑃1
𝑅)2

(0,0, 𝑃𝑆
𝑅(𝑇3)) (3-A-23) 

The first equation corresponds to the other transverse dielectric coefficient 𝑒22
𝑂  for the spontaneous 

orthorhombic phase at temperature 𝑇2. The second equation corresponds to the energy minimum 

of the spontaneous rhombohedral phase at temperature 𝑇3 . The third and fourth equations 

respectively correspond to the longitudinal 𝑒33
𝑅  and transverse 𝑒11

𝑅  dielectric coefficients for the 

spontaneous rhombohedral phase at temperature 𝑇3. With this, there are four equations and four 

unknowns. The coefficients 𝛼123, 𝛼1123, 𝛼11223, and 𝛼11123 are solved for numerically. 

The multipliers 𝐾𝑖
𝐴  will affect where the curves of the spontaneous energies of each phase 

intersects.  Depending on the choice of the multipliers, the curves may intersect more than once. 

The parameters were chosen such that there would only be two phase transitions the interested 

temperature range: once at the rhombohedral-orthorhombic phase transformation temperature 𝑇𝑅𝑂 

and once at the orthorhombic-tetragonal phase transformation temperature 𝑇𝑂𝑇.  
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Chapter 4: Relaxor Ferroelectric Phase Field Model 

I. Introduction 

 In the past century, piezoelectric and ferroelectric materials have found use in a wide range 

of devices as sensors, transducers, and actuators. There has been a constant hunt for better 

properties to improve the performance of such devices. Relaxor ferroelectrics (such as PMN-PT 

and PIN-PMN-PT) are known to exhibit excellent electromechanical properties for certain 

compositions near the morphotropic phase boundary (MPB). These compositions are a subject of 

great interest, and a better understanding of the underlying physics can help in the search for the 

next generation of relaxor ferroelectric materials. Thermodynamic energy functions (also called 

Landau or Landau-Devonshire energy functions) based on Landau’s phase theory have been 

developed to describe the structural energy of ferroelectric materials as a function of polarization. 

Mesoscale phase-field models based on these energy functions have provided a powerful tool for 

investigating and understanding microstructural phenomena in ferroelectrics and guide device 

design. 

Devonshire developed a 6th order energy function for BaTiO3 in 1949 that described its 

temperature-dependent phase transformations [1]. Since then, Landau-Devonshire energy 

functions have been developed for various other materials including PZT (Pb[ZrxTi1-x]O3) [2], 

PbTiO3, 0.70PMN-0.30PT (xPb(Mn1/3Nb2/3)O3-(1-x)PbTiO3) [3], and a composition of PIN-PMN-

PT (xPb(In1/2Nb1/2)O3-yPb(Mn1/3Nb2/3)O3-(1-x-y)PbTiO3) near the MPB that is rhombohedral at 

room temperature [4].  

Phase-field models have been implemented using various computational methods 

including the semi-implicit Fourier spectral method [5], finite difference, and finite element 

method (FEM) [6,7]. Phenomena such as domain formation [8,9] and switching [10,11] have been 
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simulated and also used to study the effects such as mechanical strain, defects, grains, and domain 

walls [7,12–14]. 

There are discrepancies between the measured and predicted coercive fields from the 

energy functions. Kingsland et al. [15] used atomistic first principle simulations and found that the 

nearly an order magnitude difference between theoretical predictions and observed measurements 

may be due to strong residual depolarizing fields based on defects in the crystal lattice. Indergand 

et al. [14] found the addition of stochastic noise to the phase field model provided a more accurate 

prediction of the coercive field for bulk PZT.  

Quenched fields have been observed to exist in relaxor ferroelectric materials and their 

relaxor characteristics are attributed to the presence of this short-range order. However, the nature 

of this short-range order has been debated for several decades now [16–18] and its origin is still 

not completely understood. The two main theories to explain the short-range order are: 1) random 

fields (RF) present throughout the material and 2) polar nanoregions (PNRs) within a non-polar 

matrix. Random field theory postulates that strong local fields can exist due to defects or uneven 

distribution of ions occupying the same space within the crystal lattice. Using PMN-PT as an 

example, these ions would be Mg2+ and Nb5+. This has been implemented as static electric fields 

that vary randomly in magnitude and direction point by point in the mesh. In contrast, PNR-based 

models [19,20] randomly populate nanoregions within the model (corresponding to volume 

fraction around 0.3) that follow a different set of material properties. In contrast to both views, 

molecular dynamic simulations by Takenaka et al. [21,22] suggest that there is little to no non-

polar matrix. Instead, there is a coexistence of dynamic and static polar nanodomains similar to 

the coexistence of the liquid and frozen phases in slush water.  
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This chapter presents an FEM-based phase-field model using a 10th energy function based 

on PIN-PMN-PT. The model uses the coefficients presented in Chapter 3 which provides improved 

stability over the previous energy function for PIN-PMN-PT necessary for some of the loading 

conditions considered in this work. The purpose of this work was not to weigh in on the debate of 

relaxor’s origins, but rather on how to more accurately model phase transformations in 

ferroelectrics which are difficult to model due to the metastable states and energy barriers 

described in Chapter 3. Local variations/fluctuations are added through the addition of random and 

static electric fields similar to RF theory for relaxors [23], but are modified to vary region by region 

instead of point-by-point in the mesh. The trends in the behavior of electrically-induced and stress-

induced phase transformations in works by Gallagher et al. [24] and Liu et al. [25] are reproduced. 

Prior phase-field modeling approaches were not able to model these experiments. 

II. Methodology 

This work builds on Lv and Lynch’s phase field work on modeling ferroelectric relaxor 

rhombohedral single crystals [26] and uses the same normalization procedure to improve 

convergence. A more detailed formulation of FEM based phase field models can be found in Su 

and Landis’ work [7].  

A. Energies and Governing Equations 

Landau phase theory assumes that the free energy of a system can be described analytically 

by an order parameter 𝜂𝑖 

𝑓𝐿𝑎𝑛𝑑𝑎𝑢 = 𝛼𝑖𝑗𝜂𝑖𝜂𝑗 + 𝛼𝑖𝑗𝑘𝑙𝜂𝑖𝜂𝑗𝜂𝑘𝜂𝑙 + ⋯+ 𝛼𝑖𝑗⋯𝑞𝑟𝜂𝑖𝜂𝑗 ⋯𝜂𝑞𝜂𝑟 (4-1) 

For ferroelectrics, the Landau energy is also called the Landau-Devonshire energy 𝑓𝐿𝐷 , with 

polarization 𝑃𝑖 as the order parameter. The Landau energy describes the structural free energy of 
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the crystal as a function of polarization, using the cubic phase as the reference state corresponding 

to zero energy. 

The ferroelectric phase-field model needs to account for the gradient energy 𝑓𝑔𝑟𝑎𝑑, elastic 

energy 𝑓𝑒𝑙𝑎𝑠, and electric energy 𝑓𝑒𝑙𝑒𝑐. The total energy density is thus: 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝐿𝐷 + 𝑓𝑔𝑟𝑎𝑑 + 𝑓𝑒𝑙𝑎𝑠 + 𝑓𝑒𝑙𝑒𝑐 (4-2) 

A 10th order energy function was chosen to capture the phase transitions between the 

rhombohedral, orthorhombic, and tetragonal phases. In the following energy function, the indices 

(i=1,2,3) follow a Cartesian coordinate system aligned with the parent cubic phase. 

𝑓𝐿𝐷(𝑃1, 𝑃2, 𝑃3) = 𝛼1(𝑃1
2 + 𝑃2

2 + 𝑃3
2) + 𝛼11(𝑃1

4 + 𝑃2
4 + 𝑃3

4) + 𝛼12(𝑃1
2𝑃2

2 + 𝑃1
2𝑃3

2 + 𝑃2
2𝑃3

2)

+ 𝑎111(𝑃16 + 𝑃26 + 𝑃36) + 𝛼112(𝑃1
2(𝑃2

4 + 𝑃3
4) + 𝑃2

2(𝑃1
4 + 𝑃3

4) + 𝑃3
2(𝑃1

4 + 𝑃2
4))

+ 𝛼123(𝑃1
2𝑃2

2𝑃3
2) + 𝛼1111(𝑃1

8 + 𝑃2
8 + 𝑃3

8)

+ 𝛼1112(𝑃1
6(𝑃2

2 + 𝑃3
2) + 𝑃2

6(𝑃1
2 + 𝑃3

2) + 𝑃3
6(𝑃1

2 + 𝑃2
2))

+ 𝛼1122(𝑃1
4𝑃2

4 + 𝑃1
4𝑃3

4 + 𝑃2
4𝑃3

4) + 𝛼1123(𝑃1
2𝑃2

2𝑃3
4 + 𝑃1

2𝑃2
4𝑃3

2 + 𝑃1
4𝑃2

2𝑃3
2)

+ 𝛼11111(𝑃1
10 + 𝑃2

10 + 𝑃3
10)

+ 𝛼11112(𝑃1
8(𝑃2

2 + 𝑃3
2) + 𝑃2

8(𝑃1
2 + 𝑃3

2) + 𝑃3
8(𝑃1

2 + 𝑃2
2))

+ 𝛼11122(𝑃1
6(𝑃2

4 + 𝑃3
4) + 𝑃2

6(𝑃1
4 + 𝑃3

4) + 𝑃3
6(𝑃1

4 + 𝑃2
4))

+ 𝛼11223(𝑃1
4𝑃2

4𝑃3
2 + 𝑃1

4𝑃2
2𝑃3

4 + 𝑃1
2𝑃2

4𝑃3
4)

+ 𝛼11123(𝑃1
2𝑃2

2𝑃3
6 + 𝑃1

2𝑃2
6𝑃3

2 + 𝑃1
6𝑃2

2𝑃3
2) 

(4-3) 

The coefficients found in Chapter 2 and listed in Table 4-1 below are used for the Landau energy 

used in the phase field model. 



61 

 

Table 4-1: Landau Coefficients of 10th order energy function. T is temperature in °𝐶. 

 Coefficient Units  Coefficient Units 

𝛼1 3.816 × 104 (𝑇 − 182) 𝐶−2 𝑚2 𝑁 𝛼1122 −1.534 × 109 𝐶−8 𝑚14 𝑁 

𝛼11 −1.212 × 107  𝐶−4 𝑚6 𝑁 𝛼1123 −2.234 × 1010 𝐶−8 𝑚14 𝑁 

𝛼12 −2.641 × 107 𝐶−4 𝑚6 𝑁 𝛼11112 8.571 × 108 𝐶−10 𝑚18 𝑁 

𝛼111 9.428 × 107 𝐶−6 𝑚10 𝑁 𝛼11223 6.518 × 1010 𝐶−10 𝑚18 𝑁 

𝛼112 3.881 × 108 𝐶−6 𝑚10 𝑁 𝛼11123 7.496 × 1010 𝐶−10 𝑚18 𝑁 

𝛼123 2.916 × 109 𝐶−6 𝑚10 𝑁 𝛼11111 0 𝐶−10 𝑚18 𝑁 

𝛼1111 3.180 × 107 𝐶−8 𝑚14 𝑁 𝛼11112 0 𝐶−10 𝑚18 𝑁 

𝛼1112 −3.388 × 108 𝐶−8 𝑚14 𝑁    

 

In index notation, the gradient energy (also known as exchange energy) can be written in 

terms of the gradient of the polarization field:  

𝑓𝑔𝑟𝑎𝑑 =
1

2
𝐺𝑖𝑗𝑘𝑙𝑃𝑖,𝑗𝑃𝑘,𝑙 (4-4) 

This energy arises due to neighboring dipoles interacting with one another. The electric field of 

one dipole produces a force on the other. At the continuum level, if the polarization field is uniform, 

the forces will be balanced and the resulting gradient energy is zero. This term also influences the 

domain wall thickness in the model and can be understood as an energy penalty against large 

gradient in the polarization field. Values between 1 and 10 for the normalized gradient coefficient 

were used, corresponding to domain wall thickness between 1 and 10 nm in this model. 

In index notation, the elastic energy is 

𝑓𝑒𝑙𝑎𝑠 =
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

𝑒𝑙𝜀𝑘𝑙
𝑒𝑙 (4-5) 

where 𝐶𝑖𝑗𝑘𝑙 refers to the material’s stiffness and 𝜀𝑖𝑗
𝑒𝑙 refers to the elastic strain. In Voigt notation, 

the associated components of the stiffness matrix used in this study are 𝐶11 = 120 GPa, 𝐶12 =

100 GPa, and 𝐶44 = 60 GPa.  

The elastic strain is the difference between the total strain 𝜀𝑖𝑗 and spontaneous strain 𝜀𝑖𝑗 
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𝜀𝑖𝑗
𝑒𝑙 = 𝜀𝑖𝑗 − 𝜀𝑖𝑗

0 = 𝜀𝑖𝑗 − 𝑄𝑖𝑗𝑘𝑙𝑃𝑘𝑃𝑙  (4-6) 

assuming that the spontaneous strain is due to electrostriction. The electrostriction coefficients 

used in Voigt notation are 𝑄33 = 0.066 𝑚4/𝐶2, 𝑄13 = −0.032 𝑚4/𝐶2, and 𝑄44 = 0.023 𝑚4/𝐶2. 

In index notation, the electrical energy is 

𝑓𝑒𝑙𝑒𝑐 = −𝐸𝑖𝑃𝑖 −
1

2
𝜅0𝐸𝑖𝑖

2 (4-7) 

The first term is the work of the electric field 𝐸𝑖 acting on the polarization/dipole and the second 

term is the energy stored within the free space occupied by the material where 𝜅0 is the permittivity 

of free space.  

Like in [26], the system is assumed to reach mechanical equilibrium instantaneously for a 

given polarization field and uses a quasi-static electromagnetic field approximation. Other 

assumptions include small deformations and rotations, negligible inertia and body force terms, and 

no volume charge density within the body. The resulting phase-field model has three governing 

equations (respectively mechanical equilibrium, Gauss’s Law, and the time-dependent Ginzburg-

Landau equation).  

𝜎𝑖𝑗,𝑗 = 0

𝐷𝑖,𝑖 = 0

𝜕𝑃𝑖

𝜕𝑡
= −𝐿 (

𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑃𝑖
−

𝜕

𝜕𝑥
(
𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑃𝑖,𝑗
))

(4-8)  

where the stress 𝜎𝑖𝑗 and electric displacement 𝐷𝑖  can respectively be defined as the derivatives of 

the total energy with respect to the strain and electric fields: 

𝜎𝑖𝑗 =
𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝜀𝑖𝑗

(4-9) 

𝐷𝑖 = −
𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝐸𝑖

(4-10) 
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L is the mobility coefficient and is the reciprocal of the inverse mobility coefficient 𝛽. Typically, 

values on the order of 1 × 10−3 were used for 𝛽. The order of magnitude was reduced by 1 or 2 

for some simulations to get a sharper switching or phase transition. 

Some models also account for micro-stress 𝜉𝑗𝑖 and potential 𝜂𝑖 [7,27,28] 

𝜉𝑗𝑖 =
𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑃𝑖,𝑗
 (4-11) 

𝜂𝑖 =
𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑃𝑖

(4-12) 

to develop the TDGL equation from a micro-force approach. 

The FEM model solves for three independent variables (displacement 𝑢𝑖, electric potential 

𝜙, and polarization 𝑃𝑖) and requires certain boundary conditions to be satisfied. The boundary 

conditions for independent variables can be found by analyzing the surface integral terms in the 

variational statement found in Su and Landis’ work [7]. The variational statement according to Su 

and Landis reads: 

∫𝛽𝑖𝑗𝑃𝑗̇𝛿𝑃𝑖
𝑉

𝑑𝑉 + ∫𝜌𝑢̈𝑖𝛿𝑢𝑖
𝑉

𝑑𝑉 + ∫(𝜎𝑗𝑖𝛿𝜀𝑖𝑗 − 𝐷𝑖𝛿𝐸𝑖 + 𝜂𝑖𝛿𝑃𝑖 + 𝜉𝑗𝑖𝛿𝑃𝑖,𝑗
𝑉

)𝑑𝑉

= ∫(𝑏𝑖𝛿𝑢𝑖 − 𝑞𝛿𝜙 + 𝛾𝑖𝛿𝑃𝑖)
𝑉

𝑑𝑉 + ∫(𝑡𝑖𝛿𝑢𝑖 − 𝜔𝛿𝜙 + 𝜉𝑗𝑖𝑛𝑗𝛿𝑃𝑖)
𝑆

𝑑𝑆 

(4-13) 

where 𝜔 is the surface charge density, 𝜉𝑗𝑖 is a micro-stress tensor such that 𝜉𝑗𝑖𝑛𝑗𝑃̇𝑖 is the power 

density expended across surfaces by neighboring configurations, and 𝛾𝑖 is the external micro-force 

vector such that 𝛾𝑖𝑃̇𝑖 is the power density expended on the material by external sources. For the 

purposes of determining boundary conditions, 𝑃𝑖,𝑗 is considered as an independent variable in the 
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variational statement of the problem and 𝛿𝜀𝑖𝑗  and 𝛿𝐸𝑖  need to be rewritten in terms of the 

independent variables. 

For displacement, the boundary terms become: 

∫(𝑡𝑖 − 𝜎𝑗𝑖)𝛿𝑢𝑖
Γ

= 0 (4-14) 

which requires the traction 𝑡𝑖 = 𝜎𝑗𝑖𝑛𝑗  or for the displacement 𝑢𝑖 to be specified. 

For electric potential 𝜙: 

∫(𝜔 − 𝐷𝑖𝑛𝑖)𝛿𝜙
Γ

𝑑Γ = 0 (4-15) 

which requires the surface charge density 𝜔 = 𝐷𝑖𝑛𝑖   or for the electric potential 𝜙 to be specified. 

For polarization: 

∫𝜉𝑗𝑖𝑛𝑗𝛿𝑃𝑖
Γ

𝑑Γ = 0 (4-16) 

which requires either the microforces acting normal at a boundary to be zero (𝜉𝑗𝑖𝑛𝑗 = 0) or for the 

polarization 𝑃𝑖 to be specified. 

The natural and essential boundary conditions are summarized in  

Table 4-2 below. 

Table 4-2: Summary of Boundary Conditions 

Variable Natural  Essential  

𝑢𝑖 𝑡𝑖 − 𝜎𝑗𝑖𝑛𝑗 = 0 OR 𝑢𝑖 prescribed 

𝜙 𝜔 − 𝐷𝑖𝑛𝑖 = 0 OR 𝜙 prescribed 

𝑃𝑖 𝜉𝑗𝑖𝑛𝑗 = 0 OR 𝑃𝑖 prescribed 

 

1. Conversion to 2D Coordinate System 

The following phase-field modeling work was conducted in the (11̅0)c plane belonging to 

the {11̅0}c family. Each plane in this family contains variants of the three phases of interest: with 
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two tetragonal (T) variants, two orthorhombic (O) variants, and four rhombohedral (R) variants. 

The variants contained in the (11̅0)c plane are listed in Table 3-3. Figure 4-1 shows how the 

(11̅0)c plane and phase directions fits in the cubic coordinate system. 

Table 4-3: Phases and variants in the (11̅0)c plane 

Phase Variants 

T [001], [001̅] 
O [110], [1̅1̅0] 
R [111], [1̅1̅1̅], [111̅], [1̅1̅1] 

 

 

Figure 4-1: Cubic coordinate system showing the (11̅0)c plane containing the T, O, and R variants. 

Figure 4-2 shows a 2D representation of the (11̅0)c plane and the conversion from 3D 

cubic coordinate system to 2D coordinate system, with x pointing out of plane. For this work, the 

alphabetical indices (𝛼 = 𝑦, 𝑧) refer to the rotated 2D coordinate system. A lower-case 𝑝 was also 

used to distinguish more readily the rotated and unrotated polarizations. 
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Figure 4-2: 2D coordinate system in (11̅0)c  plane and conversion. 

In this plane, the polarizations in the energy and governing equations can be transformed 

to the local coordinate system by relationships by substituting: 

𝑃1 = 𝑃2 =
√2

2
𝑝𝑦 (4-17) 

𝑃3 = 𝑝𝑧 (4-18) 

In the 2D coordinate system, the Landau-Devonshire energy in Equation 4-3 becomes: 

𝑓𝐿𝐷 = 𝛼1(𝑝𝑦
2 + 𝑝𝑧

2) +
1

2
𝛼11(2𝑝𝑦

4 + 𝑝𝑧
4) +

1

4
𝛼111(4𝑝𝑦

6 + 𝑝𝑧
6) +

1

4
𝛼112(4𝑝𝑦

4𝑝𝑧
2 + 𝑝𝑧

6 + 2𝑝𝑦
2𝑝𝑧

4)

+
1

4
𝛼123𝑝𝑦

2𝑝𝑧
4 +

1

8
𝛼1111(8𝑝𝑦

8 + 𝑝𝑧
8) +

1

8
𝛼1112(2𝑝𝑦

2𝑝𝑧
6 + 𝑝𝑧

8 + 8𝑝𝑦
6𝑝𝑧

2)

+
1

16
𝛼1122(8𝑝𝑦

4𝑝𝑧
4 + 𝑝𝑧

8) +
1

4
𝛼1123(𝑝𝑦

4𝑝𝑧
4 + 𝑝𝑦

2𝑝𝑧
6)

+
1

16
𝛼11112(2𝑝𝑦

2𝑝𝑧
8 + 𝑝𝑧

10 + 8𝑝𝑦
8𝑝𝑧

2) +
1

16
𝛼11223(4𝑝𝑦

4𝑝𝑧
6 + 𝑝𝑦

2𝑝𝑧
8)

+
1

8
𝛼11123(2𝑝𝑦

6𝑝𝑧
4 + 𝑝𝑦

2𝑝𝑧
8)  

 (4-19) 
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The gradient energy in Equation 4-4 becomes: 

𝑓𝑔𝑟𝑎𝑑 =
1

2
𝐺(𝑝𝑦,𝑦

2 + 𝑝𝑧,𝑧
2 + 𝑝𝑦,𝑧

2 + 𝑝𝑧,𝑦
2 ) (4-20) 

The elastic energy in Equation 4-5 becomes: 

𝑓𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
1

2
𝐶11

′ (𝜀𝑦𝑦
𝑒𝑙 )

2
+

1

2
𝐶22

′ (𝜀𝑧𝑧
𝑒𝑙)2 + 𝐶23

′ 𝜀𝑦𝑦
𝑒𝑙 𝜀𝑧𝑧

𝑒𝑙 + 2𝐶44
′ (𝜀𝑦𝑧

𝑒𝑙 )
2
 (4-21) 

where 𝐶𝑖𝑗
′  are the rotated stiffness coefficients and 𝜀𝛼𝛽

𝑒𝑙  are the rotated elastic strains 

𝜀𝛼𝛽
𝑒𝑙 =

1

2
(𝑢𝛼,𝛽 + 𝑢𝛽,𝛼) − 𝜀𝛼𝛽

0 (4-22) 

The spontaneous strains 𝜀𝛼𝛽
0  are: 

𝜀𝑦𝑦
0 = 𝑄13𝑝𝑧

2 + 𝑄33𝑝𝑦
2

𝜀𝑧𝑧
0 =

1

2
(𝑄13 + 𝑄33 + 𝑄44)𝑝𝑧

2 + 𝑄13𝑝𝑦
2

𝜀𝑦𝑧
0 = 𝑄44𝑝𝑦𝑝𝑧

(4-23) 

The unrotated stiffness and electrostrictive coefficeints in Voigt notation are listed in Table 

4-4 below. 

Table 4-4: Stiffness and Electrostrictive Coefficients 

Parameter Value Units 

𝐶11 120 𝐺𝑃𝑎 

𝐶12 100 𝐺𝑃𝑎 

𝐶44 60 𝐺𝑃𝑎 

𝑄33 0.066 𝑚4/𝐶2 

𝑄13 -0.032 𝑚4/𝐶2 

𝑄44 0.023 𝑚4/𝐶2 

 

The electric energy in Equation 4-7 becomes: 

𝑓𝑒𝑙𝑒𝑐 = −𝐸𝑦𝑝𝑦 − 𝐸𝑧𝑝𝑧 −
1

2
𝜅0(𝐸𝑦

2 + 𝐸𝑧
2) (4-24) 
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The electric field is related to the electric potential 𝜙 by 

𝐸𝑦 = −𝜙,𝑦 and 𝐸𝑧 = −𝜙,𝑧 (4-25) 

The transformed governing equations from Equations 4-8 become: 

𝜎𝛼𝛽,𝛽 = 0

𝐷𝛼,𝛼 = 0

𝜕𝑝𝛼

𝜕𝑡
= −𝐿 (

𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑝𝛼
−

𝜕

𝜕𝑥𝛽
(
𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑝𝛼,𝛽
))

(4-26) 

B. Boundary Conditions 

Boundary conditions for a few example cases are illustrated below. For the problem to be 

well-defined, each boundary must have BCs to satisfy Equations 4-14, 4-15, and 4-16. Table 4-5 

is the 2D version of  

Table 4-2 with Greek indices 𝛼 = 𝑦, 𝑧 summarizing the natural and essential boundary 

conditions for a well-defined problem.  

Table 4-5: Summary of Boundary Conditions (2D) 

Variable Natural  Essential  

𝑢𝛼 𝑡𝛼 − 𝜎𝛽𝛼𝑛𝛽 = 0 OR 𝑢𝛼 prescribed 

𝜙 𝜔 − 𝐷𝛼𝑛𝛼 = 0 OR 𝜙 prescribed 

𝑃𝛼 𝜉𝛽𝛼𝑛𝛽 = 0 OR 𝑃𝛼 prescribed 

 

1. Example: Periodic Representative Volume Element (RVE)  

Consider a material that is under a compressive traction preload 𝑡0 and an applied electric 

field 𝐸𝑎𝑝𝑝(𝑡) across the top and bottom surfaces. This can be modeled as a RVE with periodic 

boundary conditions. Figure 4-3 shows a schematic of the RVE. The figure also illustrates how 

corresponding points on opposite boundaries of the RVE are coupled.  
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Figure 4-3: Schematic of an example RVE used in this work. Boundary conditions for the 

displacement and electric potential need to be chosen to allow for periodicity without artificially 

pinning the system. The dashed line shows how points on the right and left boundaries correspond 

to each other. 

For polarization, standard periodic conditions are respectively used to map the 

polarizations for each point along the right/top boundaries to corresponding points on the 

left/bottom boundaries: 

𝒑𝑙𝑒𝑓𝑡 = 𝒑𝑟𝑖𝑔ℎ𝑡 (4-27) 

𝒑𝑏𝑜𝑡 = 𝒑𝑡𝑜𝑝 (4-28) 

Similarly, for the electric potential 𝜙, standard periodic conditions are applied on the left 

and right boundaries: 

𝜙 𝑙𝑒𝑓𝑡 = 𝜙𝑟𝑖𝑔ℎ𝑡 (4-29) 
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However, applying this type of periodic condition for the top and bottom boundaries would be 

inconsistent with the applied electric field. Instead, the following relationship is used to prescribe 

the potential difference 𝜙𝑎𝑝𝑝 across the bottom and top boundaries for the applied electric field 

𝐸𝑎𝑝𝑝: 

𝜙𝑡𝑜𝑝 − 𝜙𝑏𝑜𝑡 = 𝜙𝑎𝑝𝑝 = 𝐸𝑎𝑝𝑝 ⋅ ℎ𝑅𝑉𝐸 (4-30) 

where ℎ𝑅𝑉𝐸 is the distance between the bottom and top boundaries of the RVE. 

For displacements, standard periodic conditions result in the zero strain conditions, so 

periodic conditions that allow for nonzero strains based on [29] (Smit et al 1998) are necessary. 

These periodic boundary conditions are applied to the left and right boundaries as:  

𝒖𝑙𝑒𝑓𝑡 − 𝒖𝐿𝐵 = 𝒖𝑟𝑖𝑔ℎ𝑡 − 𝒖𝑅𝐵 (4-31) 

where 𝒖𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 are the displacements that corresponding to the left and right sides, 𝒖𝐿𝐵 is the 

displacement of the left bottom corner, and 𝒖𝑅𝐵is the displacement of the right bottom corner. 

Similar displacement boundary conditions would be used to prescribe displacements for the top 

and bottom boundaries if the tractions are not known: 

𝒖𝑏𝑜𝑡 − 𝒖𝐿𝐵 = 𝒖𝑡𝑜𝑝 − 𝒖𝐿𝑇 (4-32) 

where 𝒖𝐿𝑇 is the displacement of the top/left corner. 

To satisfy the natural boundary condition for displacement, 

𝑡𝛼 = 𝜎𝛽𝛼𝑛𝛽 (4-33) 

In this case, the normal vectors are 𝒏𝑡𝑜𝑝 = [
0
1
]  and 𝒏𝑏𝑜𝑡 = [

0
−1

]. For periodicity, the tractions on 

opposite boundaries of the RVE should have the same magnitude and opposite signs (𝑡𝑧
𝑡𝑜𝑝 = −𝑡0 

and 𝑡𝑧
𝑏𝑜𝑡 = 𝑡0 for compression in z).  
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The following pointwise constraints on the bottom left (LB) and bottom right (RB) corners 

were added to prevent free translation and rotations: 

𝒖𝐿𝐵 = 𝟎 (4-34) 

𝑢𝑦
𝑅𝐵 = 0 (4-35) 

2. Example: Non-RVE at surface. 

Consider a section at the surface of the material under loading in the y ([001]) direction as 

described by Figure 4-4. 

For polarization, the same periodic conditions are used in z to relate the top and bottom 

surfaces. For the right boundary, the polarizations are assumed to be free. For the left boundary, 

the vertical component of polarization is assumed to be free, but the normal component is zero. 

This is to satisfy continuity in the normal component of the electric displacement across boundary.  

For electric potential, all boundaries are assumed to have the same potential since there is 

no electric field applied in either direction. 

For displacements, the bottom left corner is fixed in both directions to prevent translation, 

and the bottom right corner is fixed in z to prevent rotations. The left boundary is fixed in y, but 

free along z. 
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Figure 4-4: Schematic of a material under mechanical loading along y, where Γ𝑙𝑒𝑓𝑡 is the surface 

of the material. 

C. Local Fluctuations, Random Fields, and Biases 

Chapter 3 showed that energy fluctuations or biases may be necessary for models to 

reproduce certain hysteresis phase transition trends. Ferroelectric phase field models often 

introduce small-amplitude noise terms during initialization to help the model escape unstable 

equilibrium states/phases (such as the cubic phase). However, though these small-amplitude noise 

terms may allow models to escape unstable equilibrium states, they are not sufficiently large 

enough for the model to cross the energy barrier necessary to escape metastable states. 

These effects can be implemented in a variety of ways. For example, through a time-

varying thermal noise or localized random fields throughout the material. 
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1. Time-varying Noise (added to TDGL) 

A time-varying noise would more closely simulate the effects of thermal fluctuations. Prior 

works have introduced a noise term to the TDGL (or Allen-Cahn) equation based on thermal lattice 

vibrations following statistical mechanics-based approach [14,30–32]. Stochastic phase field 

models have been used to model the microstructural evolution in magnetic materials [33], effects 

grain boundary motion on material properties in crystalline materials [34], and earlier domain 

nucleation and polarization reversal in polycrystalline PZT [14]. 

The noise term 𝜂𝑛𝑜𝑖𝑠𝑒 is added to the TDGL equation: 

𝜕𝑃𝛼

𝜕𝑡
= −𝐿 (

𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑃𝛼
−

𝜕

𝜕𝑥𝛽
(
𝜕𝑓𝑡𝑜𝑡𝑎𝑙

𝜕𝑃𝛼,𝛽
)) + 𝜂𝛼

𝑛𝑜𝑖𝑠𝑒 (4-36) 

For the noise to be uncorrelated in space and time, the variance of this noise term was 

determined by Indergand to follow [14]: 

|𝜂|2 =
2𝑘𝐵𝑇

𝜇𝑉𝑐ℎ𝑎𝑟Δ𝑡
(4-37) 

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, 𝜇 is the inverse mobility, 𝑉𝑐ℎ𝑎𝑟is the 

characteristic volume of the perovskite’s unit cell, and Δ𝑡 is the time step size.  

2. Static Random Field and Biases 

Relaxor behavior in ferroelectric materials is often attributed to local short-range order 

throughout the material. Quenched electric fields have been theorized and confirmed to exist [35], 

but the exact origins/mechanisms of relaxor ferroelctricity are still under debate. Relaxor phase-

field models typically account for these variations in one of two ways: 1) random field (RF) theory 

and 2) polar nanoregions (PNR). These two cases are illustrated by Figure 4-5. In RF theory, local 

electric fields are assumed to exist throughout the material due to order-disorder of inherent to 
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materials like PMN. Models that use RF theory apply static electric fields locally where each node 

has a random magnitude and direction following a Gaussian distribution. In contrast to this, PNR 

traditionally assumes there are nanodomains fixed within a nonpolar matrix. This has been 

modeled by applying a different set of material parameters for the polar nanoregions. (Molecular 

dynamics simulations by Takenaka et al. [21,22] showed a lack of a major nonpolar matrix, but 

clusters of dynamic polar nanodomains throughout the materials.) This work does not weigh in on 

the debate but adopts an approach that can be adapted to either explanation.  

 

Figure 4-5: Local electric fields for RF (Left) and PNR (Right). 

Similar to Ref. [23], the electric field in Equation 4-25 is modified to include random 

contributions to the electric field 𝐸𝛼
𝑟𝑎𝑛𝑑 or other local biases 𝐸𝛼

𝑏𝑖𝑎𝑠. 

𝐸𝛼 = 𝜙,𝛼 + 𝐸𝛼
𝑟𝑎𝑛𝑑 + 𝐸𝛼

𝑏𝑖𝑎𝑠 (4-38) 

𝐸𝛼
𝑟𝑎𝑛𝑑(𝑦, 𝑧) = 𝐸0(𝑦, 𝑧) ⋅ 𝑅𝑛𝑖(𝑦, 𝑧) (4-39) 

where 𝐸0
2  is the variance of the electric field and 𝑅𝑛𝑖 is a random function with Gaussian 

distribution centered about 0 and standard deviation of 1. A Gaussian distribution can be obtained 

following the Box-Muller formula [36] (Box and Muller 1958) using random values U1 and U2 

with uniform distribution on interval (0,1): 
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𝑅𝑛𝑥 = (−2 loge 𝑈1)
1
2 cos 2𝜋𝑈2 (4-40) 

𝑅𝑛𝑦 = (−2 loge 𝑈1)
1
2 sin 2𝜋𝑈2 (4-41) 

In [23], the field changes at each node, which makes the results mesh-dependent and harder 

to evaluate mesh convergence. Instead, a parameter for region size was introduced to the model 

and the electric field was evaluated for a given region. Figure 4-6 and Figure 4-7  both show an 

example of the local random electric field distribution for a 10 nm x 10 nm RVE for two mesh 

sizes. In Figure 4-6, the random fields are evaluated for each node for mesh sizes of 2.5 and 1.25 

squares. While the finer mesh shares all the fields of the larger mesh at the common nodes, it also 

introduces significantly distinct fields at all the other points. Contrast this with Figure 4-6 which 

evaluates the random field in regions about 2.5 nm in size for mesh sizes of 1.25 and 0.5 nm. 

Though there may be slight differences, the distributions largely remain the same even when 

changing the mesh density. 

 

Figure 4-6: Local random field distribution for case for two mesh sizes evaluated at each node. 
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Figure 4-7: Local random fields distribution for two mesh sizes evaluated by regions. 

For a nonpolar matrix, a multiplier can also be used to zero the electric field depending on volume 

fraction of the polar and non-polar matrices. 

III. Results 

A. Baseline: Hysteresis Without Fluctuation or Local Biases 

Figure 4-8 shows the electric displacement’s Dz hysteresis loop as an electric field Ez is 

applied across the material from without accounting for any biases or fluctuations. This case is 

used as a baseline to compare the effects of including fluctuations or local biases into the phase 

field model. An RVE is used for a stress-free single domain crystal. The model is first initialized 

in the rhombohedral phase and allowed to relax in a prior step before cycling through the electric 

field (in MV/m) from 0 → 10 → −10 → 0 twice. 

The crystal is predicted to transition from R to O around 1.9 MV/m, and then switch from 

one O variant to another at around -3.5 MV/m. Comparing this hysteresis curve to the one 

constructed by analyzing stable/metastable wells in Chapter 3 (Figure 3-8). While the switching 

from R to O occurs around the same electric field (both around 1.8-1.9 MV/m), the predicted 

switching between the two O variants is not close at all (-1.6 MV/m compared to -3.5 MV/m with 
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a discrepancy of 1.9 MV/m). This discrepancy may be due to equilibrium states that are neither 

stable nor metastable. Examples of unstable equilibrium states would be at a local maximum or 

saddle point. Some sort of perturbation would be required. 

 

Figure 4-8: DE hysteresis loop without including local biases or fluctuations. 

B. Time-varying Noise Term to TDGL 

The effect of introducing the noise on the model was assessed using a RVE of a single 

crystal without preload or an applied electric field. The model was first initialized in the 

orthorhombic phase and allowed to relax. Figure 4-9 shows the polarization history of the RVE 

(averaged over RVE). For the simulation, the variance of the polarization noise from Equation was 

scaled down by two orders of magnitude to behave more similarly to a “slush” phase of the 

coexistence of frozen and dynamic domains in Takenaka’s analogy with water phases [22]. 
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Without scaling the fluctuation down, the model would constantly fluctuate between the different 

phases and behave more similarly to H-bonded water which also has fluctuating domain formation 

and changes in size. 

 

Figure 4-9: Polarization history of a single crystal RVE with time-varying noise. 

After the RVE was allowed to relax, an electric field was applied to induce an R to O phase 

transformation and then released for two cycles. In the first cycle, the RVE stayed in the O phase, 

and only returned to the R phase while unloading in the second cycle. 
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Figure 4-10: Electrically induced phase transformation with time-varying noise. The reversion 

from O to R occurs in one cycle but not the other due to the random nature. 

While the implementing fluctuations in this manner can produce phase transition that is 

closer to experiments, the model does not reliably switch or change phases and the simulation time 

is significantly increased. Another implementation of the fluctuation would be necessary for more 

complex simulations. 

C. Local Random Field 

Instead of a time varying noise added to the TDGL equation, a local and static random field 

is used instead. This is simpler for the model in terms of convergence since this field does not vary 

in time. 

1. Uniform Bias Field 

Before showing the effect of a random field distribution, the effect of a uniform bias field 

on the hysteresis is shown. 
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Figure 4-11 shows the hysteresis loop of a single domain stress-free RVE with (dotted blue) 

and without (solid black) a bias field of 1 MV/m along the [111] direction. The RVE is first 

initialized in the rhombohedral phase and then an electric field in the [110] direction is cycled 

twice from 0 MV/m to 10 MV/m to -10 MV/m to 0 MV/m. Without accounting for any sort of 

bias or fluctuation, after the model transitions from the R to O phase at around 2.1 MV/m, the 

model stays and switches in the O phase even after the field is released. The model switches 

between O variants around +/-2.5 MV/m. In contrast to this, the hysteresis loop changes 

significantly if there is a bias in the [111] direction. As expected, the center of the hysteresis loop 

becomes offset, However, the model is now able to return to the R phase from O while the electric 

field is being released. Taking R+ to be the starting variant, the phases cycles from 𝑅+ → 𝑂+ →

𝑅+ → 𝑅− → 𝑂− → 𝑅− → 𝑅+. 

 

Figure 4-11: D-E hysteresis loop with (dotted blue) and without (solid black) a bias field of 1 

MV/m along the [111] direction. 
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Figure 4-12 shows the D-E hysteresis loop for a bias field along [111] with magnitudes 0.1, 1, 

and 10 MV/m. The model is initialized in the R phase The case of Ebias=0.1 MV/m, is the same 

as in Figure 4-11. For the case with Ebias=0.1 MV/m, the model does not return to the original R 

variant as, but does transform to the R variant with opposite sign in z. The phases cycle 𝑅+ →

𝑂+ → 𝑅− → 𝑂− → 𝑅+. For the case with Ebias=10 MV/m, the model did not transition to the O 

phase over the simulated range and cycled from 𝑅 → 𝑇 → 𝑅 instead due to the strong bias field.

 

Figure 4-12: D-E hysteresis loop with bias along [111] for Ebias=0.1,1, and 10 MV/m (solid blue, 

dotted green and dashed red respectively). 

These simulations show that presence of some bias field allows the model to capture 

completely different hysteresis behavior. 
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2. Random Electric Field 

a) Relaxor Behavior 

The strength of the local electric field is varied to show their effects on relaxor behavior. 

A 100x100 RVE is modeled with region size of about 10 nm with the variance varying from 0.01 

to 50 MV/m. Figure 4-13 shows the distribution for variance of 1 MV/m. Figure 4-14 shows the 

D-E and e-E hysteresis loops. The electric displacement is averaged over the RVE, while the strain 

is calculated based on the displacements of the RVE’s corners. At low field strengths, the model 

is unable to escape the metastable wells and largely look similar to the case with no biases present. 

However, when the local fields are on the order of 1 MV/m, new phase transitions (O to R) appear 

in the hysteresis loop, but there is still little to no relaxor characteristics appearing in the D-E and 

e-E loops at this strength. Relaxor characteristics start to appear in the hysteresis loops as the 

strength of the field is increased further as the variance is increased to 5-10 MV/m. At these 

strengths, the local field is strong enough for small phases nucleate (similar to polar nanoregions). 

As an external field is applied, the phase transitions happen locally on the PNR level. In contrast 

to this, the entire ferroelectric transforms phases uniformly when the field strength is weaker. 
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Figure 4-13: Random Field Distribution of 100 nm x100 nm RVE for variance E0=1MV/m. 

 

 

Figure 4-14: D-E and e-E hysteresis loops as the field strength variance is varied from 0.01-5 

MV/m. 

Figure 4-15 shows the D-E hysteresis loop of a 100 nm x 100 nm RVE for region sizes 

between 2-20 nm. For each case, the mesh size is half the region size. The electric field is cycled 

from +6 MV/m to -6 MV/m. Comparing this to Figure 4-14, decreasing the region size seems to 

have a similar effect as decreasing the field strength. Increasing the region size is similar to 
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increasing the field strength up until the local random field is strong enough to cause domain 

pinning or nucleation. Increasing the region size while keeping the same field strength variance 

does not introduce relaxor characteristics into the model as increasing the field strength did when 

the region size was kept the same. This is because as the region size of the random field increases, 

the field will look more uniform across the RVE and cause the RVE to transition simultaneously. 

For relaxor behavior to appear in the model, the phase transitions need to occur locally and 

gradually. This suggests there can be a balance in tuning the region size and field strength 

depending on what hysteresis charactersistics are desired. 

 

Figure 4-15: D-E hysteresis loops for region sizes of 2-20 nm with electric field variance 1 MV/m. 

b) Strain Variation 

Figure 4-16 shows the distributions of change in the strain differential between 𝜀𝑦𝑦 − 𝜀𝑧𝑧  

as an electric field of 0.72 MV/m is applied alon [110] for the cases of with and without random 
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fields. The RVE is 100 nm x 100 nm with region size of 10 nm and local field variance of 1 MV/m. 

In the case of no random fields, the strain distribution is uniform across the RVE. However, if 

random fields are added, there is now local variation across the RVE on the order of 100 

microstrain. This variation is on the same order of magnitude as the strains reported by Lo Conte 

[37].  

 

Figure 4-16: Local strain changes as electric is applied. Without accounting for fluctuations or 

biases, the strain distribution is completely uniform. With a random field, there are local variations 

on the order of about 100 u. 

c) Random Seed Study 

For local electric field distributions with random magnitude and directions, the simulated 

results are dependent on the random seed at initialization. The effect of the random seeds is 

demonstrated using an RVE of size 10 nm x 10 nm and region size of 2 nm. Figure 4-17 and Figure 

4-18 show the electric displacement’s evolution in time as an electric field is applied and released 

initialized with six different random seeds. The phase transformations do not happen 

simultaneously. Additionally, only some of the random seeds returned to the rhombohedral phase 

as the electric field was released. Figure 4-18 shows there can be a large spread in at which the R 
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to O transition happens (from around 1.4 MV/m to 3 MV/m). The boxed R to O transitions show 

three of the six seeds transitioned around 1.2-1.5 MV/m while loading, while the boxed O to R 

transition shows that two of the six seeds transitioned around 0.5-0.8 MV/m while unloading. 

Although the periodic conditions effectively introduce long-range order, these cases can 

still provide some insight. Due to the stochastic nature of these fields, it is assumed that a seed 

configuration describes some local area of the overall material. When some critical field is reached 

across the material, there will be enough local areas with enough energy to transition and overcome 

the “inertia” from the rest of the material. In this scenario, the material would transform 

simultaneously. 

 

Figure 4-17: Dz-t evolution as electric field applied and released for different random initializations. 
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Figure 4-18: ΔD-E Loop with local random fields initialized with different random seeds.  

In addition to strain variation within an RVE, there may be variation throughout the 

material. The difference between the maximum and minimum strains of a 5 nm x 5 nm RVE with 

and without random fields are plotted below in Figure 4-19 for different initial seeds without an 

applied field. In the case without random fields, the difference between seeds is effectively zero. 

In the case with random fields, the plot shows the strain difference within an RVE and between 

seeds are both on the order of 100 microstrains. This also supports the nonuniform strain field 

reported by Lo Conte [37]. 
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Figure 4-19: Difference between maximum and minimum strains within a 5x5 RVE with and 

without random local fields for 10 random seeds. 

 

d) Electrically induced phase transformation with preload 

Figure 4-20 shows the D-E and D-t history of an RVE with preload and an applied electric 

field along z [110] for two seeds. Preload is in y [001] and constant within a simulation. Each cycle 

consists of loading and unloading the electric field from 0 to 3 to 0 MV/m. In general, the hysteresis 

loops shift towards the left with increasing compressive load. This is consistent with the trends 

observed experimentally by [24]. 



89 

 

 

Figure 4-20: D-E phase transition loop with various preloads. Blue and red colors correspond to 

different random seeds. 

3. Stress-induced phase transformation 

Figure 4-21 shows the electric displacement evolution in time for a stress-induced phase 

transformation such as in experiments by Liu et al [25]. The model size is a 200 nm x 200 nm with 

region size of about 20 nm for the local random field and field variance of 2 MV/m. The stress is 

gradually loaded and unloaded from 0 to 70 MPa. The model is first poled under a strong electric 

field in the [110] direction before releasing and allowed to relax. As the load is applied in the [001] 

direction, the R domains are pressed into the O phase and return to the R domains as the load is 

released. The model yields similar results when the region size is decreased from 20 nm to 10 nm 

or from 2 MV/m to 1 MV/m. 
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Figure 4-21: Average electric displacement for stress-induced phase transformation. 

IV. Conclusion 

This chapter investigated the effect of fluctuations and local biases on phase 

transformations in ferroelectrics were investigated using a phase field model. Chapter 2 concluded 

that that to model phase transitions in ferroelectric materials, some sort of perturbation is required 

to escape a metastable or unstable equilibrium. 

The fluctuation or local biases were primarily modeled as static local fields. A time-varying 

noise term to the TDGL equation was also considered and can allow the model to escape a 

metastable state. However, this implementation is not recommended for modeling phase 

transitions because the time-varying nature of the noise prevents the model from reaching 

convergence and makes the transitions inconsistent between cycles. 

The transitions observed in this study can be broadly categorized into two cases depending 

on the strength of the local electric fields. If the local electric fields are relatively weak (i.e. does 

not nucleate into nanodomains), an RVE of a single crystal will transition phases simultaneously. 
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However, if the local fields are strong enough for nanoregions or nanodomains to nucleate, the 

crystal will gradually transition from one phase to another starting from these nucleation zones 

through domain wall motion. This gradual transition corresponds to the material’s relaxor behavior. 

Accounting for these physics allowed the model to escape metastable and unstable 

equilibrium states and show more similar hysteresis behavior to experiments. The predicted 

coercive switching fields to be more in line with experimental measurements, and various trends 

and behaviors from experiments reported in literature can now be reproduced using a phase field 

model. This includes electrically-induced and stress-induced phase transformations, as well as the 

shift in the hysteresis loop with increasing compressive preload. 
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Chapter 5: Modeling Novel Synthetic Jet Actuators 

I. Introduction 

 A synthetic jet actuator (SJA) is a device that blows puffs of air through a small orifice into 

the boundary layer of a flow field. This alters the flow and can reduce drag.  SJAs have three main 

components whose functions are coupled through fluid motion: 1) a cavity, 2) an orifice, and 3) 

an oscillating diaphragm. Air is suctioned into and expelled from the cavity through the orifice as 

the diaphragm oscillates. SJAs (also called zero-net mass flux jet actuators) are named for their 

ability to synthesize jet flow using fluid from the surrounding environment, eliminating the need 

to provide a fluid source and the necessary piping to create the jet. SJAs have potential commercial 

applications in both the automotive and aerospace industries if they can achieve high enough jet 

velocities to be effective while meeting constraints on power consumption and geometry. 

Additionally, SJAs have also found applications in areas including active-flow control [1–3], 

mixing [4,5] and heat transfer/cooling [6,7]. As applications are being developed, models that can 

be used to explore wide design spaces are needed to help optimize their design and performance. 

 SJA models do exist, but typically require fitting at least two parameters that directly affect 

the amplitude and shape of the predicted response: 1) the diaphragm’s deformation (through the 

force or electroacoustic transduction of the diaphragm) and 2) the loss coefficient K. Reliance on 

these fitting parameters significantly limits their ability to quickly explore new designs. 

 Furthermore, many SJA models directly use a Helmholtz resonance assumption, which 

casts doubt on their ability to model cavities that deviate from the Helmholtz idealization. Van 

Buren’s experiments [8,9] on flat and thin “pancake-shaped” SJAs showed velocities as high as 

211 𝑚/𝑠 and momentum 0.654 𝑘𝑔 ⋅ 𝑚/𝑠. Because of this, these pancake-shaped cavities are of 

great interest due to the potential of reaching extremely high velocities and momentum relative to 
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previous designs. However, the Helmholtz frequency can overpredict the cavity resonances by 

more than 130% depending on the geometry [10]. Figure 5-22 shows examples of an ideal 

Helmholtz resonator (characterized by a large cavity and small orifice) and the non-Helmholtz 

“pancake”-shaped resonator used as a synthetic jet actuator that is addressed in the dissertation. 

 

Figure 5-22: Example of a) an ideal Helmholtz and b) a non-Helmholtz “pancake”-shaped 

resonator. 

 One of the goals was to develop SJA modeling tools capable of exploring novel geometric 

and material configurations, including “pancake”-shape cavities with large orifices. Lumped-

element models reported in literature largely follow the Helmholtz resonator idealization which 

limits the model to geometries with large cavities and small orifices. Full-ordered models (full 

multiphysics finite element models), while capable of modeling a broad range of designs, can be 

prohibitively computationally expensive. A middle ground between LEMs and full-ordered 

models was needed.  

 This chapter first explores the history of SJAs, traditional SJA LEM models, and the 

current challenges to modeling novel designs. It is followed by a description of three models: an 
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electromechanics FEM diaphragm model, a pressure acoustics FEM cavity model, and a hybrid 

finite-element/lumped-element model that couples the diaphragm model with LEM-based 

equations. The FEM cavity-orifice acoustics model provides a characteristic resonance used in 

place of the Helmholtz resonance for the LEM equations. The use of finite elements to model the 

diaphragm physics reduces the need for the fitting parameters used by some previous models. The 

hybrid model is compared to and validated by experimental measurements conducted by Actasys. 

This is followed by further discussion of the cavity resonance. 

II. History and Background 

Synthetic jets were observed by Ingard & Labate in 1950 using acoustically driven standing 

waves in a cylindrical tube as they studied the acoustical streaming phenomena around the orifice 

[11]. Smith & Glezer [12] later demonstrated the utility of synthetic jets for flow control, leading 

to a substantial body of research into using SJAs to enhance lift and/or reduce drag.  

 Lumped-element models (LEMs) have been developed that fall into two categories: 1) 

circuit-analogy based [13–15] and 2) fluid-dynamics based [16–18]. In the circuit-analogy based, 

an equivalent electrical circuit is found for each component (cavity, orifice, diaphragm) of the SJA, 

while the fluid-dynamics based LEMs directly apply the continuity and Bernoulli equations. One 

of the first LEMs developed for SJAs was McCormick’s [15] electroacoustic model for an 

acoustically driven SJA that was able to relate a voltage input with a velocity output. Expanding 

on this, Gallas et al. [13] developed a model for a piezoelectrically-driven SJA, and borrowed 

Prasad et al.’s [19] LEM work on axisymmetric piezoelectric composite plates. Sharma [16] 

developed an alternative to the circuit-based models to additionally model the cavity pressure 

fluctuations and the phase relationships between the different variables using a fluid-dynamics 

approach. Using Sharma’s work as its basis, de Luca et al. [17] worked to better characterize the 



101 

 

SJA’s frequency response and developed simple relationships to predict deviation of the coupled 

peaks from the component Helmholtz and diaphragm resonances. Works by de Luca and Chiatto 

[20–22] have sought to better understand the effects nonlinear losses have on the resonance. 

 Sharma’s work [16] defined the loss coefficient as the sum of the geometric head losses 

and the inverse contraction ratio between the vena contracta 𝐴𝑣𝑐  and the orifice exit 𝐴𝑜  areas. 

However, this definition of 𝐾 results in a value greater than 1 for all resonators, and close to 1.42 

for ideal Helmholtz resonators. Sharma’s own work suggested loss coefficients ranging between 

0.42 and 1.0, and models reported in literature [13,16,17] have used values ranging between from 

0.78 to 1.14. 

 With proper fitting, these models can obtain good agreement with experimental results, 

however this agreement is still largely limited to ideal Helmholtz resonator geometries. Housley 

et al. [18] developed a model for SJAs with circular piezoelectrical bimorphs and experimented 

with various cavity heights. While Housley’s model was successful at predicting performance for 

SJAs with larger cavity heights, the model was unable to capture the performance for SJAs with 

smaller cavity heights, which Housley attributed to increased acoustic coupling.  

 Van Buren [10] studied the resonant frequencies of pancake-shaped SJAs and found the 

Helmholtz resonance idealization to be a poor predictor of the actual resonance frequency and 

suggested the quarter-wave resonance may be more appropriate for pancake-shaped cavities. Van 

Buren concluded that current LEMs are unable to accurately predict the performance of SJAs with 

that geometry. 

 Predicting the resonance frequency of a SJA is a critical part of the design and determining 

its operating frequency. The Helmholtz resonator idealization identifies the resonance frequency 

from the cavity volume and orifice size. The Helmholtz resonator is often represented by a spring-
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mass system where the mass of air in the orifice oscillates against the stiffness of the cavity. End 

corrections to the orifice length are used to account for the additional mass of air that oscillates 

outside the orifice and depend on whether the pipe is flanged or not [23]. There have been many 

works dedicated to improve characterization of the Helmholtz frequency [10,24–29]. Alster [24] 

developed an extended theory to better account for the air vibrating inside the cavity and linked 

the quarter-wave and Helmholtz resonances to the same the underlying physics. More recently, 

Gil [29] investigated the impact that changing various geometric parameters has on the Helmholtz 

Resonance frequency in an SJA. 

III. Cavity Resonances 

  The cavity-orifice acoustics play a significant role in determining the performance and 

operating range of an SJA. Past models have typically used a Helmholtz idealization, though the 

quarter-wave idealization has also been suggested for certain geometries [10]. Both idealizations 

are summarized and then followed by a description of Alster’s expanded theory to the classical 

Helmholtz frequency formula. 

A. Helmholtz Resonator 

 The Helmholtz frequency appears as the characteristic frequency of a resonator after 

combining the continuity and Bernoulli equations when several key assumptions are made: 1) 

having a large cavity and small orifice, and 2) that all dimensions of the resonator are much smaller 

than the wavelength of the oscillations ( 𝐿𝑎𝑛𝑦 ≪ 𝜆 ). Geometries that deviate from these 

assumptions will have a different characteristic frequency. The FEM pressure-acoustics model of 

the cavity-orifice was used to calculate the characteristic frequency for these geometries. 
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 An ideal Helmholtz resonator consists of a large spherical cavity with a small neck and 

orifice. The system can also be represented using a spring-mass analog where the mass is the air 

oscillating at the orifice and the spring is the resistance/stiffness of the air in the cavity. 

𝜔ℎ = √
𝑘𝑎

𝑚𝑎

(5-1) 

 

 The mass of the air 𝑚𝑎 in the orifice is the product of the density of air 𝜌𝑎 and the orifice 

volume 𝑉𝑜: 

𝑚𝑎 = 𝜌𝑎𝑉𝑜 = 𝜌𝑎𝐴𝑜𝑙𝑒 (5-2) 

where 𝐴𝑜 is the orifice cross-sectional area and 𝑙𝑒 is the effective orifice neck length. 

An end correction Δ𝑙 to the nominal neck length 𝑙𝑛 is commonly used to reconcile 

the difference between the theoretical and observed resonance frequencies for resonators 

including the Helmholtz resonators. This accounts for an additional mass of air oscillating 

outside the orifice. The effective neck length 𝑙𝑒 can be expressed as 

𝑙𝑒 = 𝑙𝑛 + Δ𝑙 (5-3) 

where Δ𝑙 depends on the pipe’s cross-section. 

 For example, the end correction at the open end of an unflanged pipe was 

theoretically calculated by Levine & Schwinger to be 0.6133 of the radius Δ𝑙 = 0.6133. 

For more complex geometries where this correction is not sufficiently accurate, the end 

correction is typically determined through experimentation. 

 The stiffness of the air 𝑘𝑎 in the cavity can be obtained using Hooke’s law: 

𝑘𝑎 = −
𝑑𝐹

𝑑𝑥
= −

𝐴𝑜𝑑𝑃

𝑑𝑥

𝐴𝑜

𝐴𝑜
= −𝐴𝑜

2
𝑑𝑃

𝑑𝑉
(5-4) 

where 𝑑𝐹 is the force acting on the air caused by a pressure differential 𝑑𝑃 across the orifice. 
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 Assuming an isentropic process, 
𝑑𝑃

𝑑𝑉
 can be found by taking the derivative of the following 

relation: 

𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (5-5) 

𝑉𝛾𝑑𝑃 + 𝛾𝑃𝑉𝛾−1𝑑𝑉 = 0 (5-6) 

where 𝑃 is pressure, 𝑉 is volume, and 𝛾 is the specific heat ratio. 

 For small changes in pressure and volume, 

𝑑𝑃

𝑑𝑉
= −

𝛾𝑃

𝑉
≈ −

𝛾𝑃0

𝑉𝑐

(5-7) 

where 𝑃0 is the ambient pressure and 𝑉𝑐 is the cavity volume. 

 Using Equation 5-7, the stiffness in Equation 5-4 becomes 

𝑘𝑎 =
𝛾𝐴𝑜

2𝑃0

𝑉𝑐

(5-8) 

 Combining Equations 5-2  and 5-8  with Equation 5-1 , the formula for the Helmholtz 

resonance frequency becomes: 

𝜔𝐻 = √
𝑘𝑎

𝑚𝑎
= √

𝛾𝐴𝑜
2𝑃0/𝑉𝑐

𝜌𝑎𝐴𝑜𝑙𝑒
= √

𝛾𝑃0

𝜌𝑎

√
𝐴𝑜

𝑙𝑒𝑉𝑐
= 𝑈𝑠√

𝐴𝑜

𝑙𝑒𝑉𝑐
= 2𝜋𝑓𝐻 (5-9) 

where 𝑈𝑠 = √
γP0

ρa
 is the speed of sound in air. 

B. Quarter-wave Resonator 

 A quarter-wave resonator is a pipe which is closed on one end and open on the other. The 

conditions for standing waves in this pipe require there to be a node at the closed end and an anti-
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node (maximum) at the open end. With these constraints, the length of the pipe is a quarter of the 

wavelength at the fundamental frequency. 

𝐿𝑡𝑜𝑡𝑎𝑙 =
1

4
𝜆𝑄𝑊 (5-10) 

The formula for the quarter-wave resonance frequency is: 

𝑓𝑄𝑊 =
𝜈𝑄𝑊

𝜆𝑄𝑊
=

𝑈𝑠

4𝐿𝑡𝑜𝑡𝑎𝑙
 

𝜔𝑄𝑊 = 2𝜋𝑓𝑄𝑊 (5-11) 

where 𝐿𝑡𝑜𝑡𝑎𝑙  is the total length of the quarter-wave resonator accounting for any end 

correction. 

IV. Methodology 

This section will first describe the experimental work conducted by Actasys that will be 

used to develop and validate the model. Then, several models developed as part of this work are 

presented and discussed.  

A. Experimental Work 

 Actasys provided the frequency response for several SJA configurations with flat cavities 

and large orifices. The SJAs consisted of two piezoelectrically-driven diaphragms. The 

diaphragms were bound to the sides of a cavity/orifice plate. Each diaphragm was a bimorph 

consisting of a substrate G10/FR4 glass epoxy composite actuated by two CTS 3195HD PZT-5A 

disks, one centered on each side. A sinusoidal waveform with average voltage 𝑉𝑅𝑀𝑆 = 120 V was 

used such that the two bimorphs would work to expand and contract the cavity in unison. The data 

collected included the flow velocity, at the orifice exit, measured using hotwire anemometry and 

the displacement at the center of the diaphragm measured using a laser vibrometer.  
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Figure 5-23: Exploded view of SJA with parts and geometric parameters labelled. 

 Data was provided for the configurations described by Table 5-1-Table 5-4. See Figure 5-

23 for an exploded view of the SJA with the described parameters and parts labelled. The 

configurations included two cavity diameters: 𝑑𝑐 = 80 mm (described here as Cavity A) and 𝑑𝑐 =

94 mm  (Cavity B). The orifice neck length 𝑙𝑛 = 0.4 mm , piezoelectric disk diameter 𝑑𝑝 =

64 mm, piezoelectric disk thickness 𝑡𝑝 = 0.5 mm, and substrate thickness 𝑡𝑤 = 0.4 mm were not 

varied between configurations. The cavity height ℎ𝐶  and orifice width 𝑤𝑜 were varied. The orifice 

had the same height as the cavity (ℎ𝑜 = ℎ𝑐), and the substrate had the same diameter as the cavity 

𝑑𝑤 = 𝑑𝑐. The nominal geometric parameters for ℎ𝑐 and 𝑤𝑜 are given in Table 5-1 and Table 5-2. 

All dimensions are in mm. Data was collected at 10 Hz increments for frequencies between 100-

1200 Hz for Cavity A and 10-500 Hz for Cavity B.  

Table 5-1: Cavity A.1-A.5 Geometries (dc=80 mm) 

A - Cavity Diameter 80 mm 

Parameter A.1 A.2 A.3 A.4 A.5 

ℎ𝑜, ℎ𝑐 2.37 3.43 2.41 2.4 1.41 

𝑤𝑜 18 18 24 6 18 
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Table 5-2: Cavity B.1-B.5 Geometries 

B - Cavity Diameter 94 mm 

 Parameter B.1 B.2 B.3 B.4 B.5 

ℎ𝑜, ℎ𝑐 2.2 3.2 1.7 3.2 3.2 

𝑤𝑜 18 18 18 24 12 

 

 The nominal material parameters of the piezoelectric disk are summarized in Table 5-3. 

The properties are taken from the material data sheet for CTS 3195HD (PZT-5A). 

Table 5-3: Piezoelectric Disk Material Properties 

Piezoelectric 

𝜌𝑝 7.95 g/cm3 

𝑆11 1.51E-11 1/Pa 

𝑆12 -4.80E-12 1/Pa 

𝑆13 -7.60E-12 1/Pa 

𝑆33 1.51E-11 1/Pa 

𝑆44 4.00E-11 1/Pa 

𝑑31 -1.71E-10 C/N 

𝑑33 3.74E-10 C/N 

𝑑15 5.84E-10 C/N 

𝑘1 1600 - 

𝑘3 1900 - 

tan 𝛿 0.02 - 

 

where 𝜌 is the density, 𝑆𝑖𝑗 are components of the compliance matrix using Voigt notation, 𝑑𝑖𝑗 are 

the piezoelectric coefficients, 𝑘𝑖𝑖 are the relative dielectric permittivity coefficients, and tan 𝛿 is 

the loss tangent. The loss tangent tan 𝛿  is a measure of the energy lost as heat in a dielectric 

material and modifies the permittivity to 𝑘𝑖𝑖
′ = 𝑘𝑖𝑖(1 − 𝑗 tan 𝛿). The compliance matrix [𝑆𝑖𝑗] is the 

inverse of the stiffness matrix [𝐶𝑖𝑗]. The subscripts 1, 2, and 3 indicate principal direction coupling, 

and subscripts 4, 5, and 6 indicate shear direction coupling. Couplings between directions not listed 

are either zero or identical to another parameter above. 
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 The substrate was a weaved G10/FR-4 composite and modeled as an isotropic material 

with the material properties listed in Table 5-4. This model does not account for the effects of the 

epoxy used to bind the substrate and piezoelectric disks together. 

Table 5-4: Substrate Material Properties 

Substrate 

𝜌𝑤 1.97 g/cm3 

𝐸𝑤 20 GPa 

𝜈 0.127 - 

 

where 𝐸𝑤is the elastic modulus, and 𝜈 is Poisson’s ratio. 

B. Uncoupled Models 

The overall SJA frequency response is a combination of the cavity’s acoustic and 

diaphragm’s mechanical frequency responses. If the two resonances are sufficiently far apart, the 

system could be considered uncoupled, and the overall response would closely follow the 

superposition of the two. Otherwise, the system behaves as a coupled oscillators system. The 

overall response is not simply a superposition of the component responses, and the location of the 

peaks in the overall response may also shift due to the coupling. 

While a coupled model would be necessary to accurately predict the amplitude of outputs 

such as the jet velocity, uncoupled models can still be useful to predict the approximate locations 

of the peaks. Assuming an absence of damping effects, de Luca et al. [17] provided a relationship 

to predict the shifted peaks based on the Helmholtz resonance 𝜔𝐻 , diaphragm’s structural 

resonance 𝜔𝑤, and the resonance of the pneumatic spring 𝜔𝑤𝑝 of the diaphragm and assuming a 

closed cavity. 

𝜔1,2
2 =

−(𝜔𝑤
2 + 𝜔𝑤𝑝

2 + 𝜔𝐻
2 ) ± √(𝜔𝑤

2 + 𝜔𝑤𝑝
2 + 𝜔𝐻

2)
2
 − 4𝜔𝑤

2𝜔𝐻
2

2
(5-12)

 

Where 𝜔𝑤𝑝 is a function of the diaphragm area 𝐴𝑤 and mass 𝑚𝑤: 
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𝜔𝑤𝑝 = √
𝑘𝑤𝑝

𝑚𝑤
= √

𝛾𝐴𝑤
2 𝑃0/𝑉𝑐

𝑚𝑤

(5-13) 

Equation 5-13 was modified to account for the two diaphragms.  

𝜔𝑤𝑝 ≈
√

𝛾𝐴𝑤𝑃0

𝑉𝑐
𝑚𝑤

 (5-14)
 

Conveniently, the formula has the same form after accounting that the actual volume deformation 

peaks are closer to 
1

2
𝐴𝑤Δ𝑤𝑎𝑚𝑝  at the resonance peaks instead of the assumption Δ𝑉 ≈ 𝐴𝑤Δ𝑤 , 

where 𝑤 is center displacement of the diaphragm. 

The resulting coupled natural frequencies are based on the imaginary component of 𝜔1,2 

𝑓1,2 =
𝜔1,2

𝑖

2𝜋
(5-15) 

de Luca et al. [17] defined a coupling ratio 𝐶𝑅 based on the ratio of the pneumatic spring and 

diaphragm resonances:  

𝐶𝑅 = (
𝜔𝑤𝑝

𝜔𝑤
)
2

(5-16) 

If 𝐶𝑅 = 0,  the diaphragm and cavity acoustic resonances are completely decoupled, and 𝜔1,2 will 

return 𝜔𝐻 and 𝜔𝑤. Generally, de Luca observed that the coupling ratio increased as the cavity size 

decreased, and that increased coupling caused the peaks to shift further away from the center.  

1. Electromechanical Diaphragm Model 

 The diaphragm’s displacement 𝑤  and overall volume displacement Δ𝑉  are calculated 

through the finite element method (FEM) using COMSOL Multiphysics® simulation software. 

The solid mechanics, electrostatics, and piezoelectric modules in COMSOL were used to model 

the piezoelectric bimorph diaphragm, solving for the displacements and electric potential. The 
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diaphragm consisted of a substrate layer and a piezoelectric disk on each side. The diaphragm was 

modeled as axisymmetric in 2D as shown in Figure 5-24 to reduce the computational costs of the 

model. 2D axisymmetric models yield identical results as a 3D model when the problem is 

axisymmetric. Although there is a section of the circumference that is not bound by the cavity 

plate, this effect on the diaphragm’s overall deformation is assumed to be small. A 3D diaphragm 

model can easily be substituted in place of the 2D axisymmetric model to analyze non-

axisymmetric configurations such as noncircular electrodes or diaphragms, disk offsets, etc. 

 

Figure 5-24: Geometry of the SJA diaphragm in the FEM model. 

 The solid mechanics module solves the equilibrium equation, the linear stress-strain 

constitutive law, and assumes small strain.  

𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 𝜌𝑎𝑖 (5-17) 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙 (5-18) 

𝜖𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 ) (5-19) 

where 𝜎 is stress, 𝑏 is body force, 𝜌 is density, 𝑎 is acceleration, 𝐶 is stiffness, 𝜖 is strain, and 𝑢 is 

displacement. 



111 

 

The electrostatic module solves the differential form of Gauss’s law, a linear electric 

displacement-electric field constitutive law, and the definition of electric field in terms of an 

electric potential.  

𝐷𝑖,𝑖 = 𝜌𝑣 (5-20) 

𝐷𝑖 = 𝜖 = 𝑘0𝑘𝑖𝑗
𝑟 𝐸𝑖 (5-21) 

𝐸𝑖 = −𝜙,𝑖 (5-22) 

where 𝐷  is the electric displacement, 𝑘0  is the permittivity of free space, 𝑘𝑖𝑗
𝑟   is the relative 

permittivity, 𝐸𝑖 is the electric field, and 𝜙 is the electric potential. 

 In the piezoelectric disks, the solid mechanics and electrostatics are coupled through the 

piezoelectric strain-charge constitutive relationship: 

𝝐 = 𝒔𝑬𝝈 + 𝒅𝑻𝑬 (5-23) 

𝑫 = 𝒅𝝈 + 𝑘0𝒌
𝒓𝑬 (5-24) 

where 𝑠𝐸 is the compliance matrix, and 𝑑 is the piezoelectric coupling matrix. This constitutive 

relationship is written in Voigt notation. 

 For boundary conditions: A fixed constraint was applied to the boundary where the 

diaphragm meets the cavity plate. The boundary between the piezoelectric disk and the substrate 

layer was prescribed as the ground, and an electric potential was prescribed on the other side of 

the disk. If known, a boundary load based on the pressure differential between inside and outside 

of the cavity can be applied to one side. This pressure differential can be approximated or used to 

interface with external model or experimental data. The pressure differential and volume change 

described below are used to couple the FEM electromechanical diaphragm model with a LEM. 
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 The change in volume (also called the volume displacement) is calculated from the 

diaphragm displacement: 

Δ𝑉 = ∫𝑤
𝐴

𝑑𝐴 (5-25) 

where 𝑤 is the out of plane displacement of the diaphragm. If the SJA has multiple diaphragms as 

in Figure 5-25, then the summed total of the volume displacements is used instead (Δ𝑉 → 𝑛Δ𝑉 for 

𝑛 identical diaphragms).  

 

Figure 5-25: SJA with one diaphragm (left) and two diaphragm (right).  

Assuming the cavity and diaphragm resonances are uncoupled, a rough approximation of the 

average jet velocity can be obtained from the operating frequency, the total volume displaced 

during the maximum-minimum strokes and the orifice area: 

𝑈̅ ≈
1

𝑓

(𝑉max − 𝑉𝑚𝑖𝑛)

𝐴𝑜
 (5-26) 

2. Cavity-Orifice Acoustics Model 

 The first eigenfrequency predicted using a pressure acoustic FEM model was assumed to 

be the cavity-orifice’s characteristic resonance. The orifice exit was prescribed to have zero 

differential pressure, while all remaining surfaces were modeled as hard walls. 

 In time-domain, the wave equation governs the pressure waves in a lossless medium [30]: 

1

𝜌0𝑐2
𝑝̈ + 𝛻 ⋅ (−

1

𝜌0

(𝛻𝑝 − 𝑞𝑑)) = 𝑄𝑚 (5-27) 
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where 𝜌0is the density of the fluid, 𝑐 is the speed of sound, 𝑞𝑑 is the dipole domain source, and 

𝑄𝑚 is the monopole domain source. Domain sources 𝑞𝑑 and 𝑄𝑚 are assumed not to be present. 

  If the pressure and source terms are assumed to have the same harmonic dependence, the 

wave equation becomes the inhomogeneous Helmholtz equation:  

𝛻 ⋅ (−
1

𝜌0

(𝛻𝑝 − 𝑞𝑑)) −
𝜔2𝑝

𝜌0𝑐
= 𝑄𝑚 (5-28) 

a) Validation of Cavity-Orifice Acoustics FEM Model 

 The acoustic FEM model was validated against an ideal Helmholtz resonator and an ideal 

Quarter-wave resonator. The resonator geometry consisted of two concentric cylinders 

corresponding to the cavity and orifice. The orifice’s diameter 𝑑𝑜was increased to the cavity 

diameter 𝑑𝑐  from 𝛽 =
𝑑𝑜

𝑑𝑐
≈ 0 to 𝛽 = 1, which correspond to the ideal Helmholtz and Quarter-

wave resonators respectively. This was done for cavity heights ℎ𝑐 = 10, 50, 100  mm, while 

keeping the cavity’s diameter 𝑑𝑐 = 160 mm and orifice’s neck height ℎ𝑛 = 5 mm constant. 

 Figure 5-26 shows the numerically calculated fundamental acoustic mode of a cavity and 

orifice as the ratio between the orifice and cavity increases from 𝛽 =
𝑑𝑜

𝑑𝑐
≈ 0  to 𝛽 = 1 . The 

frequencies are normalized to the quarter-wave frequency calculated using the total length of the 

cavity and orifice. An end correction to the orifice Δ𝑙 = 0.61𝑑𝑜  was used to calculate the 

Helmholtz frequency. For each cavity height, the FEM results matched the resonance frequency 

described by Equation 5-9 for Helmholtz resonators while the orifice cross-section was much 

smaller than the cavity cross-section. As the orifice diameter increases, the resonator deviates from 

the ideal Helmholtz resonator and eventually starts to look more like a quarter-wave resonator. 
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When the orifice’s cross section is the same as the cavity’s cross section, the FEM prediction 

matches the quarter-wave frequency described by Equation 5-11. 

 

 

Figure 5-26: Numerically calculated resonance frequency compared with the quarter-wave and 

Helmholtz frequencies as the diameter of the orifice increases for cavity-orifice with dc=160 mm, 

hc=10,50,100 mm, and hn=5 mm. 

 The acoustics model was also validated against measurements from Van Buren’s study 

[10] on cavities that deviate greatly from an ideal Helmholtz resonator. The FEM model predicted 

the resonances found in the fifth figure within about 3.62%, 0.31% and 0.28% for Apparatus A 

and 3.50%, 6.56% and 5.71% for Apparatus B, validating the acoustics model for geometries with 

flat cavities and wide orifices. 

C. Coupled Model 

 The fluid dynamics approach used in this coupled model closely follows Sharma’s LEM 

[16] which was derived from the unsteady continuity and Bernoulli’s equations. Instead of 

modeling the deformation of the diaphragm as a single degree-of-freedom system, the FEM 

diaphragm model described previously is used to find the diaphragm’s deformation. The cavity is 
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also not assumed to be large relative to the orifice. Occurrences of the Helmholtz frequency are 

replaced with a more general characteristic frequency 𝜔𝑐ℎ. Accounting for these changes, the two 

fluid dynamics-based differential equations are solved simultaneously with the FEM model of the 

diaphragm: 

𝑉𝑐

𝛾𝑃0
𝑝̇𝑖 − Δ𝑉̇ = −𝐴𝑜𝑈 (5-29) 

𝑈̈ +
𝐾

𝑙𝑒
|𝑈|𝑈̇ + 𝜔𝑐ℎ

2 𝑈 =
Δ𝑉̇

𝐴𝑜

𝛾𝐴𝑜𝑃0

𝜌𝑎𝑙𝑒𝑉𝑐
=

Δ𝑉̇

𝐴𝑜
𝜔𝑐ℎ

2 (5-30) 

where 𝑉𝑐 is the nominal cavity volume, 𝛾 is the specific heat ratio, 𝑃0 is the ambient pressure, 𝑝𝑖 

is the pressure difference between the cavity and ambient pressures, Δ𝑉 is the change in volume, 

𝐴𝑜 is the area at orifice exit, 𝑈 is the jet velocity at the orifice exit, 𝐾 is the loss coefficient, 𝑙𝑒 is 

the effective neck length, 𝜔𝑐ℎ is the characteristic resonance frequency of the cavity-orifice, and 

𝜌𝑎  is the density of air. The model assumes that the air undergoes isentropic contractions and 

expansions in the cavity, and that the changes in internal cavity pressure, air density, and cavity 

volume are relatively small. For SJA models assuming a large cavity and small orifice, the 

characteristic frequency is the Helmholtz frequency 𝜔𝐻. Depending on the shape of the cavity and 

orifice, the oscillations cannot always be assumed to be restricted to the neck/orifice of the 

resonator [24]. To account for these cases, the acoustics FEM model described previously is used 

to calculate a numerical characteristic frequency 𝜔𝐹𝐸𝑀 . Like before, the change in volume is 

calculated from the diaphragm’s displacement: 

Δ𝑉 = 𝑛 ∫𝑤
𝐴

𝑑𝐴 (5-31) 

 Assuming harmonic behavior for the pressure and volume displacement, Equations 5-29 

and 5-30 are rewritten in the frequency domain: 
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𝑖𝜔 (
𝑉𝑐

𝛾𝑃0
𝑝𝑖 − Δ𝑉) = −𝐴𝑜𝑈 (5-32) 

−𝜔2𝑈 + 𝑖𝜔
𝐾

𝑙𝑒
|𝑈|𝑈 + 𝜔𝐻

2 𝑈 = 𝑖𝜔
Δ𝑉

𝐴𝑜
𝜔𝐻

2 (5-33) 

1. Estimating the Loss Coefficient K  

 In Sharma’s model, the unsteady Bernoulli’s equation was applied to the region between a 

point sufficiently far inside the cavity (where flow velocity was assumed to be negligible) and the 

vena contracta (where the flow’s cross-section is at a minimum). This would result in a loss 

coefficient defined by: 

𝐾 = 𝐶𝐿 +
1

𝐶𝑐
2
 (5-34) 

where 𝐶𝐿 is the geometric loss due to sudden contraction of the flow between the cavity and orifice, 

while 𝐶𝑐 =
𝐴𝑣𝑐

𝐴𝑜
 is the contraction ratio between the cross-sectional area at the vena contracta and 

the orifice exit. While K is called the loss coefficient in this model, the change in the flow’s kinetic 

energy is also grouped into this term. 

 Since the vena contracta is defined to be at the flow’s smallest cross-section, this definition 

of the loss coefficient always results in a value greater than 1. However, Sharma suggested a loss 

coefficient ranging between 0.42 and 1.0, while models reported in literature [13,16,17] have used 

values ranging between from K= 0.78 to K=1.14.  

 Figure 5-27 shows the frequency response of Cavities A.1 and A.4 for various values of K. 

Typical values of K used or suggested by models in literature would result in predictions that were 

overly damped compared to experimental results. A good estimate for the loss coefficient should 

provide a value close to 𝐾 ≈ 0.2 for Cavity A.1 and 𝐾 ≈ 0.42 for Cavity A.4. Both values are 

much lower than what Sharma’s formula suggests [16] and values of 𝐾 on this order are considered 
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to be mostly non-physical by [20]. The first peak is much more sensitive to 𝐾 at lower values, after 

which the most significant changes are seen with the gradual frequency shift downwards of the 

second peak as the damping coefficient is increased. Similar observations have been noted by 

[13,14,20–22].  

 

Figure 5-27: Effect of the Loss Coefficient K on the peak jet velocity of Cavities A.1 (left) and 

A.4 (right). 

 Sharma’s application of the unsteady Bernoulli’s equation between a point where the flow 

velocity is negligible and the vena contracta does not provide an accurate estimate of the loss 

coefficient even for the SJAs studied by Sharma. To better account for the low values of K 

expected for these actuators, the unsteady Bernoulli’s equation is instead applied to a point inside 

the cavity with flow velocity 𝑈𝑖, and at the orifice exit instead of the vena contracta: 

𝑃𝑖 +
1

2
𝜌𝑈𝑖

2 = 𝜌 ∫
𝜕𝑈

𝜕𝑡

𝑠2

𝑠1

𝑑𝑠 + 𝑃0 +
1

2
𝜌𝑈𝑜

2 + 𝐿𝑜𝑠𝑠𝑒𝑠 (5-35) 

Pressure and velocity terms are grouped together to define the pressure differential 𝑝𝑖, and the 

work to change the streamline’s momentum can be rewritten as 𝜌𝑙𝑒𝑈̇ instead of the integral form: 

𝑃𝑖 − 𝑃0 = 𝜌𝑙𝑒𝑈̇ +
1

2
𝜌𝑈𝑜

2 −
1

2
𝜌𝑈𝑖

2 +
1

2
𝜌∑𝐾𝑔𝑒𝑜𝑈𝑜

2 (5-36) 
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where the head losses are described by 
1

2
𝜌∑𝐾𝑔𝑒𝑜𝑈𝑜

2. 

Multiplying 
1

2
𝜌𝑈𝑖

2 by 𝑈𝑜
2/𝑈𝑜

2 and gathering like terms becomes: 

𝑝𝑖 = 𝜌𝑙𝑒𝑈̇ +
1

2
𝜌𝐾𝑈𝑜

2 (5-37) 

Where the loss coefficient is 

𝐾 = ∑𝐾𝑔𝑒𝑜 + 1 −
𝑈𝑖

2

𝑈𝑜
2
 (5-38) 

This loss coefficient includes both the head losses and kinetic recovery. Equation 5-38 similar 

form to Sharma’s equation, except it allows values of 𝐾 < 1. Although the velocity at the inner 

point is not known, the ratio 𝑈𝑖
2/𝑈𝑜

2 is assumed to be some function of the area/diameter ratio 𝛽 =

√
𝐴𝑜

𝐴𝑖
=

𝑑𝑜

𝑑𝑖
. The center of the cavity (also the maximum cross-section) is used for 𝑑𝑖. With this, the 

loss coefficient becomes: 

𝐾 = ∑𝐾𝑔𝑒𝑜 + 1 − 𝑓(𝛽) (5-39) 

 The function 𝑓(𝛽) = 𝛽2 was chosen for this model. With this definition, 𝑓(𝛽) → 0 for 

geometries where the orifice’s cross-section is much smaller than the cross-section of the cavity. 

This corresponds to the case where the velocity in the cavity is negligible and becomes identical 

to Sharma’s loss coefficient based on an ideal Helmholtz resonator. If the cavity and exit cross-

sections are the same (such as in a quarter-wave resonator), then 𝑓(𝛽) = 1. This corresponds to 

the case where the velocity inside the cavity is the same as the exit velocity (in reality, the velocity 

of the air should decrease the deeper inside the resonator). 

 The sum of geometric losses ∑𝐾𝑔𝑒𝑜 accounts for energy losses due to the geometry of the 

cavity and orifice as the air flows in and out. While the transition between the cavity and orifice in 
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the SJA geometries studied is technically not a sudden/sharp contraction, this study assumes it can 

be approximated as a sudden contraction from the maximum cross-section of the cavity to the 

orifice. The losses due to sudden contraction has been empirically found to follow the following 

equation based [31] form: 

𝐾𝑆𝐶 ≈ {
0.42(1 − 𝛽2)

(1 − 𝛽2)2  𝑓𝑜𝑟 
 𝛽 ≤ 0.76
𝛽 > 0.76

(5-40) 

 Since the cross-sections of the orifice and cavity are not circular, the hydraulic diameter 

𝑑𝐻 is used to calculate 𝛽: 

𝑑𝐻 =
4A

P
 (5-41)  

where A is the area and P is the wetted perimeter of the cross-section. The hydraulic diameter is 

often used for non-circular pipes and has also been used for SJA models [7,32]. Although not part 

of the SJAs studied here, head losses due to friction in long orifices or due to bends can be included 

in ∑𝐾𝑔𝑒𝑜. 

2. Validation of replacing 𝝎𝑯with 𝝎𝑭𝑬𝑴in SJA model 

 Most modeling tools for SJAs use the Helmholtz frequency as the characteristic frequency, 

however, Van Buren noted that the Helmholtz resonance may not always be appropriate such as 

when the assumptions of a large cavity and small orifice are broken. The effects of using the 

Helmholtz  𝜔𝐻 , quarter-wave 𝜔𝑄𝑊, and numerically calculated 𝜔𝐹𝐸𝑀  resonance frequencies in 

place of the characteristic frequency are compared to experiments for Cavities A.1 and A.4. Cavity 

A.4 was chosen due to the shape of its frequency responses being distinct from A.1. 

 In Figure 5-28 and Figure 5-29, Cavity A.1 and A.4’s frequency responses for flow and 

diaphragm displacement are plotted changing only the characteristic resonance frequency 
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( 𝜔𝐻, 𝜔𝑄𝑊, 𝜔𝐹𝐸𝑀 ). The locations of the uncoupled Helmholtz, quarter-wave and numerical 

frequencies are plotted as blue, green, and red vertical dotted lines for 𝑓𝐻 ,  𝑓𝑄𝑊 , and  𝑓𝐹𝐸𝑀 

respectively. The diaphragm resonance 𝑓𝑤  calculated from the uncoupled structural model is 

designated by the black vertical dashed line. In  Figure 5-28a, the frequency shifts between the 

uncoupled and coupled resonances are pointed out by the colored arrows. Each choice was able to 

yield the two peaks seen in the experimental data for Cavity A.1; while for Cavity A.4, only 

𝜔𝐹𝐸𝑀was able to capture the shape of the experimental data for both the velocity and displacement. 

The calculated values of the loss coefficient K for Cavities A and F are 0.20 and 0.65 respectively 

using Equation 5-38. 

 Since the shape of the frequency response is primarily determined by the loss coefficient 

K as shown by Figure 5-27, the suitability of each of the three frequencies will be assessed by the 

frequency of the peaks rather than the magnitude. The peaks are not expected to shift as much 

frequency-wise compared to the amplitude due to the value of 𝐾. This metric was chosen to limit 

bias when assessing the use of 𝜔𝐻, 𝜔𝑄𝑊 and 𝜔𝐹𝐸𝑀 since 𝐾 is a tuning parameter in other models 

and the values of 𝐾 used here were estimated using an equation developed for this work. 

 The structural resonance peaks were predicted within 160-180 Hz (42%-55%) using 𝜔𝐻, 

within 80-100 Hz (24%-27%) using 𝜔𝑄𝑊 , and within 20-50 Hz (7%-14%) using 𝜔𝐹𝐸𝑀 . The 

acoustic resonance peaks were predicted within 50-1000+ Hz (6%-100+%) using 𝜔𝐻, within 10-

150 Hz (2%-15%) using 𝜔𝑄𝑊 , and within 10-60 Hz (2%-8%) using 𝜔𝐹𝐸𝑀 .  In addition to 

predicting the resonance frequencies the best of the three, the relative shapes of the frequency 

responses using 𝜔𝐹𝐸𝑀 were also close to the experimental measurements using the estimated loss 

coefficients. In the case of the displacements for A.4, using the Helmholtz resonance resulted in 

an absent peak despite being present using the other two resonances. 
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Figure 5-28: Effect of the cavity resonance on the frequency response (peak jet velocity) for 

Cavities A.1 (a) and A.4 (b). 

 

Figure 5-29: Effect of the cavity resonance on the frequency response (center displacement) 

for Cavities A.1 (a) and A.4 (b). 

V. Results 

A. Experiment vs. Coupled Model 

 Table 5-5 and Table 5-6 below respectively list the resonance frequencies of Cavities A.1-

A.5 and Cavities B.1-B.5 predicted by the FEM model, the Helmholtz frequency equation, and the 

quarter-wave frequency equation, and the loss coefficient K. Because there is not an established 
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effective length for these geometries, The Helmholtz frequency listed in the table uses the nominal 

orifice length without end correction. There is a shift downwards of about 100-300 Hz for 𝑓𝐻 using 

both the typical definitions and the fitted formula by [29]. In general,  𝑓𝐻 is about two to three 

times the numerical 𝑓𝐹𝐸𝑀, whereas 𝑓𝑄𝑊 did not change based on the orifice cross-section for the 

same cavity diameters. The frequencies in Table 5-5 and Table 5-6 account for the space occupied 

by the piezoelectric disks inside the cavity. 

Table 5-5: Cavity A Acoustic Resonances (Hz) and Loss Coefficient 

Cavity A.1 A.2 A.3 A.4 A.5 

fFEM  805.5 791.7 854.3 636.2 821.1 

fH  1911.8 1811.3 2200.8 1101.2 2210.3 

𝑓𝑄𝑊 1020.8 1020.8 1020.8 1020.8 1020.8 

𝐾 0.20 0.29 0.14 0.65 0.12 

 

Table 5-6: Cavity B Acoustic Resonances (Hz) and Loss Coefficient 

Cavity B.1 B.2 B.3 B.4 B.5 

fFEM  665.6 656.7 672.0 698.1 601.8 

fH  1564.7 1503.2 1630.0 1735.8 1227.4 

𝑓𝑄𝑊 875.0 875.0 875.0 875.0 875.0 

𝐾 0.20 0.28 0.15 0.20 0.44 

 

1. Cavities A.1-A.4 

 Figure 5-30 and Figure 5-31 show the frequency responses of Cavities A.1-A.4 for the jet 

velocity and the center displacement respectively. Results from Cavity A.5 are presented separately 

in a later section. A breakdown of the frequencies and amplitudes are listed in Table 5-7 and Table 

5-8. The model uses the numerically calculated resonance from Table 5-5 and estimates the loss 

coefficient using Equation 5-38 . The model was stepped at 10 Hz increments to construct the 

frequency response from 0 to 1200 Hz. Model predictions are shown with solid lines and measured 

data with points. There are common irregularities in the measured frequency responses at around 
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550 Hz, 830 Hz, 950 Hz and 1100 Hz. These irregularities are attributed to the resonant modes of 

the stand holding the SJAs during experiments. 

  The frequencies of the peak jet velocity were predicted within 10-60 Hz (2%-14%), and 

the peak jet velocity amplitudes within 2-13 m/s (5%-24%). The frequencies of the peak 

displacement were predicted within 10-30 Hz (2-9%), and the displacements amplitudes within 

0.005-0.41 mm (5-41%). A closer look shows that the displacements for the first peak were 

predicted within 0.005-0.022 mm (5-15%). For the second peak, Cavities A.1-A.3 underpredicted 

by about 0.03-0.04 mm (30-40%) and Cavity A.4 underpredicted by 0.015 mm (8.4%). Vibrations 

from the stand around the second peak would be consistent with this discrepancy. Cavity A.4’s 

sharp decline is also likely due to destructive interference from those vibrations. 

Using Cavity A.1 and Equations 5-12 - 5-15  as an example to calculate the shifted 

resonances using the uncoupled models: the diaphragm’s structural resonance is 𝜔𝑤 = 2𝜋 ⋅

560𝐻𝑧  , the cavity’s acoustic resonance 𝜔𝑐ℎ = 2𝜋 ⋅ 805 𝐻𝑧 , and diaphragm-cavity pneumatic 

resonance  𝜔𝑤𝑝 = √
𝛾𝐴𝑤

2 𝑃0/𝑉𝑐 

𝑚𝑤
= √

1.4(5×10−3𝑚2)2(1.01×105𝑃𝑎)/(8.70×10−6 𝑚3)

0.03𝑘𝑔
= 2𝜋 ⋅ 586𝐻𝑧 . The 

resonances 𝜔𝑤 and 𝜔𝐻 were found using the two uncoupled diaphragm and cavity models to the 

nearest 10 Hz. 

𝜔1,2
2 = (2𝜋)2

−(1.31 × 106) ± √(1.31 × 106)2 − 8.13 × 1011

2
𝐻𝑧2 (5-42) 

𝑓1,2 =
𝜔1,2

𝑖

2𝜋
= {

424 𝐻𝑧
1063 𝐻𝑧

(5-43)  

Note that frequencies of the peaks 𝑓1
𝑈

 and 𝑓2
𝑈 (model:430 Hz and 1060 Hz) for Cavity A.1 agrees 

very well with example above and shows that the model handles the coupling between the cavity 

and diaphragm consistently with other models in literature [17]. 



124 

 

 
Figure 5-30: Frequency response for the peak jet velocity of Cavities A.1-A.4. (Solid: Model; 

Points: Experiment) 
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Figure 5-31: Frequency response for the peak center displacement of Cavities A.1-A.4. (Solid: 

Model; Points: Experiment)  
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Table 5-7: Cavity A Resonance (Hz) and Flow Velocity (m/s) 
  A.1 A.2 A.3 A.4 

E
x
p

. 

𝑓1
𝑈(Hz) 380 440 390 - 

𝑈𝑓1(m/s) 53.1 51.2 45.9 - 

𝑓2
𝑈(Hz) 1050 970 1070 810 

𝑈𝑓2(m/s) 69.2 52.8 51.1 89.1 

M
o
d

el
 𝑓1

𝑈 430 470 430 - 

𝑈𝑓1
 45.4 39.7 48.0 - 

𝑓2
𝑈 1060 960 1100 870 

𝑈𝑓2  62.5 47.1 63.2 76.7 
%

 D
if

f.
 𝑓1

𝑈(%) 13.2 6.8 10.3 - 

𝑈𝑓1
 -14.5 -22.5 4.5 - 

𝑓2
𝑈 1.0 -1.0 2.8 7.4 

𝑈𝑓2  -9.8 -10.7 23.6 -13.9 

 

Table 5-8: Cavity A Resonance (Hz) and Center Displacement (mm) 
  A.1 A.2 A.3 A.4 

E
x
p

. 

𝑓1
𝑤(Hz) 330 380 360 - 

𝑤𝑓1(mm) 0.120 0.146 0.139 - 

𝑓2
𝑤

 1010* 970 1070 830 

𝑤𝑓2  0.105 0.102 0.117 0.143 

M
o
d

el
 𝑓1

𝑤 350 390 390 - 

𝑤𝑓1  0.115 0.124 0.147 - 

𝑓2
𝑤 1040 950 1090 860 

𝑤𝑓2  0.073 0.061 0.079 0.131 

%
 D

if
f.

 𝑓1
𝑤(%) 6.1 2.6 8.3 - 

𝑤𝑓1  -4.4 -15.3 6.0 - 

𝑓2
𝑤 3.0 -2.1 1.9 3.6 

𝑤𝑓2  -30.6 -40.1 -32.6 -8.4 

*Averaged between 970 Hz and 1050 Hz. 

 

2. Cavities B.1-B.5 

 The frequency response for Cavities B.1-B.5 were similarly modeled for frequencies 

between 0 to 600 Hz at 10 Hz increments. Table 5-9 lists the frequency and amplitude of the flow 

velocity and displacement at the peaks. The model predicted the resonance frequency within 30 
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Hz (14%) for each of these cavities. The flow velocity was predicted within about 10 m/s (33%), 

The displacements were predicted within about 0.02 mm (15%). 

Table 5-9: Cavity B Resonance (Hz), Flow Velocity (m/s) and Center Displacement (mm) 

  B.1 B.2 B.3 B.4 B.5 

E
x
p

. 

𝑓𝑈(Hz)  210 230 180 230 230 

𝑈 (m/s) 34.1 35.0 33.8 35.0 34.1 

𝑓𝑤(Hz) 160 200 140 220 180 

𝑤 (mm) 0.133 0.146 0.104 0.165 0.117 

M
o
d

el
 𝑓𝑈 190 210 170 210 210 

𝑈 28.0 25.5 29.7 27.7 23.0 

𝑓𝑤 160 180 140 190 150 

𝑤 0.127 0.142 0.119 0.184 0.107 

%
 D

if
f.

 𝑓𝑈(%) -9.5 -8.7 -5.6 -8.7 -8.7 

𝑈 -17.9 -27.1 -12.1 -20.9 -32.6 

𝑓𝑤 0.0 -10.0 0.0 -13.6 -16.7 

𝑤 -4.8 -2.9 14.1 11.4 -8.6 

 

B. Thin Cavities and Model Limitations 

 For the thin SJAs studied in this work, even the space occupied by the piezoelectric disks 

can affect the SJA response. This is mostly due to the small cavity size, which affects both the 

stiffness of the cavity and the mass of oscillating air. The volume 𝑉𝑐 appears in the LEM equations 

directly and through the characteristic resonance. Figure 5-32 and Figure 5-33 respectively show 

the jet velocity and displacement frequency responses for (a) Cavity A.1 and (b) Cavity A.5. The 

solid lines take the nominal cavity volume to be 𝑉𝑐,0 = 𝐴𝑤ℎ𝑐, whereas the dashed lines account 

for the volume occupied by the two piezo disks inside the cavity 𝑉𝑐 = 𝑉𝑐,0 − 2𝑉𝑝𝑖𝑒𝑧𝑜. For Cavity 

A.1, though the predicted responses are quite similar, there is a slight but measurable shift towards 

the experimental curve. The trough between the peaks and the decay after the second peak match 

almost exactly in the velocity frequency response. For Cavity A.5, there is a decrease in the 

predicted jet velocity amplitude after accounting for volume occupied by the piezoelectric disks, 

even though the predicted displacements remain similar.  
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Figure 5-32: Effect of cavity volume on the velocity for a) Cavity A.1 and b) Cavity A.5.  

 

 
Figure 5-33: Effect of cavity volume on the displacement for a) Cavity A.1 and b) Cavity A.5. 

 

 Compared to the other cavities which had good agreement with the model, Cavity A.5 was 

an outlier in terms of model agreement before and after considering the reduced cavity volume. 

This cavity was the thinnest among the cavities studied with a height of 1.41 mm. The jet velocity 

did not increase as expected for a smaller orifice but decreased drastically instead. Even after 

accounting for the volume decrease, the frequencies for the first velocity and displacement peaks 

are still overpredicted by about 80 Hz (30%) and 120 Hz (60%), the flow velocity’s amplitude by 

about 24 m/s (100%), and the displacement by about 0.03 mm (30%). Most importantly, the model 

was able to partially capture the reduced jet velocity of Actuator A.5 as the orifice area shrank. The 
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remaining discrepancy is suspected to be due to violations of the model’s assumption that the 

change in cavity volume is relatively small compared to the original volume as the diaphragm 

oscillates. 

 When modeling novel geometries, checks should be done post-simulation to check if the 

original assumptions are still valid. Also, if there is a significant difference in the model predictions 

before and after accounting for the piezoelectric disk volumes, that is a sign the assumptions of 

small volume changes are no longer valid. 

 The reduced cavity volume of Cavity A.5 is about 3870 mm3 with volume changes of about 

+/- 250 mm3 for each diaphragm. This corresponds to a volume change of about +/-13% from the 

nominal volume while oscillating (or about 25-30% between the minimum to maximum cavity 

volumes after deformation). The next thinnest cavity tested was Cavity B.3 with a cavity height of 

1.7 mm. The reduced cavity volume was still much larger at 8580 mm3 with volume changes about 

+/- 400 mm3 for each diaphragm, corresponding to about +/- 9% (or about 17-20% change from 

minimum to maximum) from nominal. Some other cavities have similar sizes and volume changes 

to Cavity B.3, so the assumption for small cavity changes still seems to be valid for volume 

changes under 9%. While the difference between 9% and 13% seems small, this corresponds about 

a 50% increase in the relative volume displaced. 

VI. Further Discussion 

A. Characteristic Frequency 

It was shown in Section IV-C-2 for Cavities A.1 and A.4 that the locations of the predicted 

peaks were better aligned to the experimental measurements when using the numerically 

calculated resonances compared to using the Helmholtz or quarter-wave resonances. Additionally, 

Section IV-B-2a showed that for a cavity and orifice made up of concentric cylinders, the 
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numerically calculated resonance frequency was identical to the Helmholtz and quarter-wave 

frequencies at the extreme cases (𝛽 =
𝑑𝑜

𝑑𝑐
≈ 0 and 𝛽 = 1). Since the Helmholtz resonance naturally 

appeared in the development of the LEM, this implies that another characteristic resonance should 

naturally appear instead of the Helmholtz resonance without those assumptions. This is consistent 

with Alster’s theory that connected the two cases to the same underlying physics. 

Recall the Helmholtz resonance equation. This assumed that the oscillating mass of air is 

largely restricted to orifice and the spring to the cavity. This no longer holds for geometries that 

deviate greatly from the Helmholtz resonator, and it may be helpful to consider Alster’s theory 

which accounted for additional mass inside the resonator instead. 

B. Alster’s Extended Theory for Helmholtz Resonators  

In Alster’s theory, a form factor 𝑙𝑣 was defined based on the cavity geometry: 

𝑙𝑣 = ∫
𝐴𝑜

𝐴(𝑥)

𝑉(𝑥)2

𝑉𝑐
2

𝑑𝑥
𝑥

≈
𝐴𝑜

𝑉𝑐𝑙𝑐
∫

𝑥𝑉(𝑥)

𝐴(𝑥)

𝑙𝑐

0

𝑑𝑥 (5-44) 

where 𝑉(𝑥) is the volume inside the cavity from the origin to position x and 𝐴(𝑥) is the cross-

sectional area at x. This accounts for oscillating air inside the resonator that is typically neglected 

in the end corrections used to correct for the Helmholtz frequency. For the derivation, see this 

chapter’s Appendix. 

Alster provides several formulas for the resonance of various fundamental shapes (e.g. 

sphere, prism, cone) using the approximation 
𝑉(𝑥)

𝑉
≈

𝑥

𝑙𝑐
 for one set of the ratios to simplify the 

integration. These formulas can still be quite complicated, and the simplification also obscures any 

physical meaning that can be gleamed from the formulas. To get a more intuitive understanding 
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what is happening physically, the form factor is calculated for a simple geometry without assuming 

one of the volume ratios 
𝑉(𝑥)

𝑉
 as 

𝑥

𝑙𝑐
. 

Consider a system where the cavity and orifice each have a constant cross-section (such as 

in the case of the cavity and orifice being concentric cylinders). The cavity has a cross-section 𝐴𝑐 

and length 𝑙𝑐, while the orifice has a cross-section 𝐴𝑜 and nominal neck length 𝑙𝑛. 

 

Figure 5-34: Illustration of resonator with cavity length 𝑙𝑐 and neck length 𝑙𝑛. 

 

The form factor needs to be calculated for both the cavity and orifice, so Equation 5-44 becomes: 

𝑙𝑣−𝑛 = ∫
𝐴𝑁

𝐴(𝑥)

𝑉(𝑥)2

(𝑉𝑐 + 𝑉𝑜)2
𝑑𝑥

𝐿=𝑙𝑐+𝑙𝑛

0

(5-45) 

where 

𝐴(𝑥) = {
𝐴𝑐

𝐴𝑜
 

0 ≤ 𝑥 ≤ 𝑙𝑐
𝑙𝑐 ≤ 𝑥 ≤ 𝑙𝑐 + 𝑙𝑛

(5-46) 

and 

𝑉(𝑥) = {
𝐴𝑐𝑥

𝐴𝑐𝑙𝑐 + 𝐴𝑜(𝑥 − ℎ)
 

0 ≤ 𝑥 ≤ 𝑙𝑐
𝑙𝑐 ≤ 𝑥 ≤ 𝑙𝑐 + 𝑙𝑛

(5-47) 

The resulting integrations becomes: 

𝑙𝑣−𝑛 =
𝐴𝑜

𝐴𝑐

𝐴𝑐
2 ⋅

𝑙𝑐
3

3
(𝑉𝑐 + 𝑉𝑜)2

+
𝐴𝑐

2𝑙𝑐
2𝑙𝑛 + 𝐴𝑐𝑙𝑐𝐴𝑜𝑙𝑛

2 +
𝐴𝑜

2𝑙𝑛
3

3
(𝑉𝑐 + 𝑉𝑜)2

 (5-48) 
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𝑙𝑣−𝑛 = 𝛽2

𝑉𝑐
2

3
(𝑉𝑐 + 𝑉𝑜)2

𝑙𝑐 +
𝑉𝑐

2 + 𝑉𝑐𝑉𝑜 + 𝑉𝑜
2 1
3

(𝑉𝑐 + 𝑉𝑜)2
𝑙𝑛 = 𝑙𝑣−𝑛

(1)
+ 𝑙𝑣−𝑛

(2) (5-49) 

where 𝑙𝑣−𝑛
(1)

 and 𝑙𝑣−𝑛
(2)

 can be considered the contributions from the cavity and neck respectively. 

The cavity and orifice neck lengths are modified by area and volume ratios depending on the 

geometry. Contributions from outside the resonator are added separately to form the effective neck 

length but are not considered here. Some test scenarios are described below: 

• The orifice is much smaller than the cavity (𝑉𝑜 ≪ 𝑉𝑐)) and 𝛽 → 0, 𝑙𝑣−𝑛 = 𝑙𝑛 since 𝑙𝑣−𝑛
(1)

→

0 and 𝑙𝑣−𝑛
(2)

→ 𝑙𝑛. This corresponds to the Helmholtz resonator. 

• The orifice volume is small (𝑉𝑜 ≪ 𝑉𝑐) but the area ratio is not (𝛽 ≉ 0), then 𝑙𝑣−𝑛 =

1

3
𝛽2𝑙𝑐 + 𝑙𝑛 since 𝑙𝑣−𝑛

(1)
→

1

3
𝛽2𝑙𝑐 and 𝑙𝑣−𝑛

(2)
→ 𝑙𝑛. 

• The orifice volume is small (𝑉𝑜 ≪ 𝑉𝑐) and 𝛽 = 1, 𝑙𝑣−𝑛 ≈
1

3
𝑙𝑐. This corresponds to the 

quarter-wave resonator. 

The overall form factor is some function of the area ratio, cavity and orifice volumes, and cavity 

and orifice neck lengths. Having a large orifice area means more that the contribution from inside 

the cavity are significant. Notice that the neck’s contribution 𝑙𝑣−𝑛
(2)

 can also be rewritten as: 

𝑙𝑣−𝑛
(2)

=
𝑉𝑐

2 + 2𝑉𝑐𝑉𝑜 + 𝑉𝑜
2 − 𝑉𝑐𝑉𝑜 −

2
3

𝑉𝑜
2

(𝑉𝑐 + 𝑉𝑜)2
𝑙𝑛 = (1 −

𝑉𝑐𝑉𝑜 +
2
3

𝑉𝑜
2

(𝑉𝑐 + 𝑉𝑜)2
) 𝑙𝑛 (5-50) 

In this arrangement, it is easier to see that as the volume of the orifice increases from 𝛽 = 0, the 

ratio will decrease slightly. Unless the orifice neck is long, this decrease is likely to be small for 

most resonator geometries and dominated by the increase from 𝑙𝑣−𝑛
(1)

.  
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VII. Conclusion 

 A reduced-ordered model was developed for a piezoelectrically-driven SJA by combining 

finite-element and lumped-element techniques. LEM models for SJAs typically require fitting 

parameters to the loss coefficient 𝐾 and the diaphragm deformation to achieve good agreement 

with experimental data. The reliance on these parameters limits the predictive capabilities of 

existing LEMs for new configurations without requiring extensive fitting. Fitted parameters 

become less reliable the more the modeled SJA differs from the fitted data’s original configuration.  

LEMs are sensitive to the choice of the characteristic frequency and the loss coefficient, so accurate 

estimates of the two are needed. SJA models are also sensitive to the choice of the characteristic 

frequency which can be significantly different from the Helmholtz frequency for certain 

geometries. 

The experimental results were able to be predicted successfully by replacing the Helmholtz 

resonance frequency in the LEMs with a more generic characteristic frequency and deriving an 

estimate for the loss coefficient. Aside from one cavity, the locations of most peaks were predicted 

within about 17%. The amplitudes of the jet velocities were predicted within 25.4% with most 

predictions being within 5-10 m/s of the measured data. This is a significant improvement from 

using the Helmholtz resonance, which differed as high as 55%-100+% depending on the parameter 

and cavity geometry.  

The presented model was able to capture the shape of the frequency responses as well as the 

relative shifts as parameters were varied. Compared to prior models, this is a huge improvement 

in capturing the behavior of SJAs with small cavities and/or large orifices. This methodology will 

be helpful to predict and optimize performance of the SJAs in unexplored design spaces. The 
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diaphragm FEM model can easily be adapted to other materials, from 2D to 3D, and even to 

different actuation mechanism.  

).  
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VIII. Appendix 

Alster developed a theory to calculate the resonance frequency of resonators for several 

fundamental shapes. The formula was developed for an axially symmetric resonator, but was also 

applied to moderately non-symmetric shapes.  

While classical theory has considered end correction to the neck length to account for mass 

oscillating near the neck/orifice, Alster deviates from the classical theory by assuming there is air 

oscillating throughout the inside of the resonator. For simplicity, the velocity is assumed to be 

constant within a given cross-section. 

Derivation 

Consider a small volume 𝑑𝑉 within the cavity. The mass 𝑑𝑀 for that volume is 

𝑑𝑀 = 𝜌 𝑑𝑉 (5-A-1) 

where 𝜌 is the air’s density.  

Assuming an adiabatic process, the relationship between the change of pressure due to a change 

in volume can be derived from Poisson’s Law: 

𝑝𝑉𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (5-A-2) 

This leads to 

𝑉𝑘𝑑𝑝 + 𝑝𝑘𝑉𝑘−1𝑑𝑉 = 0 (5-A-3) 

𝑑𝑝 = −
𝑝𝑘

𝑉
𝑑𝑉 = −

𝑝𝑘

𝑉
𝐴𝑑𝑥 (5-A-4) 

The mass at any cross section 𝐴(𝑥) also works against the stiffness of the air between it and the 

wall. 

Assuming the same change in pressure in the neck and within in the cavity: 

𝑑𝑝 = −
𝑝𝑘

𝑉
𝐴𝑁𝑑𝑥𝑁 = −

𝑝𝑘

𝑉(𝑥)
𝐴(𝑥)𝑑𝑥 (5-A-5) 
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𝑑𝑥 =
𝐴𝑁

𝐴(𝑥)

𝑉(𝑥)

𝑉
 𝑑𝑥𝑁 (5-A-6) 

Taking the time derivative of  

𝑑

𝑑𝑡
𝑑𝑥 =

𝑑

𝑑𝑡
(

𝐴𝑁

𝐴(𝑥)

𝑉(𝑥)

𝑉
 𝑑𝑥𝑁) =

𝐴𝑁

𝐴(𝑥)

𝑉(𝑥)

𝑉

𝑑

𝑑𝑡
 𝑑𝑥𝑁 + 𝑑𝑥𝑁

𝑑

𝑑𝑡
(

𝐴𝑁

𝐴(𝑥)

𝑉(𝑥)

𝑉
) (5-A-7) 

If the changes in 𝑉(𝑥) and 𝐴(𝑥) are slow, then the time derivative can be approximated as   

𝑢 =
𝐴𝑁

𝐴(𝑥)

𝑉(𝑥)

𝑉
 𝑢𝑁 (5-A-8) 

The kinetic energy at a cross section can be expressed as: 

𝑑𝑊 =
1

2
𝜌𝐴(𝑥)𝑑𝑥𝑢(𝑥)2 (5-A-9) 

This can be written in terms of the exit velocity using the ratio in Equation 5-A-8. 

𝑑𝑊 =
1

2
𝜌𝐴(𝑥)𝑑𝑥 (

𝐴𝑁

𝐴(𝑥)

𝑉(𝑥)

𝑉
 𝑢𝑁)

2

=
1

2
𝜌

𝐴𝑁
2

𝐴(𝑥)

𝑉(𝑥)2

𝑉2
𝑢𝑁

2 𝑑𝑥 (5-A-10) 

The total kinetic energy can be expressed as the integral 

𝑊 = ∫ 𝑑𝑊 = ∫
1

2
𝜌

𝐴𝑁
2

𝐴(𝑥)

𝑉(𝑥)2

𝑉2
𝑢𝑁

2 𝑑𝑥 =
1

2
𝜌𝑢𝑁

2 ∫
𝐴𝑁

2

𝐴(𝑥)

𝑉(𝑥)2

𝑉2
𝑑𝑥

𝑥𝑥

 (5-A-11) 

An equivalent length 𝑙𝑣 Alster calls the form factor can be used to account for the additional mass 

inside the cavity: 

𝑊 =
1

2
𝜌𝑙𝑣𝐴𝑁𝑢𝑁

2 (5-A-12) 

where  

𝑙𝑣 = ∫
𝐴𝑁

𝐴(𝑥)

𝑉(𝑥)2

𝑉2
𝑑𝑥

𝑥

 (5-A-13) 

Alster approximates one of the volume ratios 
𝑉(𝑥)

𝑉
 with 

𝑥

𝐿
  and multiplies the form factor by 

a coefficient to reduce the error introduced by the approximation from Equation 5-A-8 . The 
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formulas for various fundamental resonator shapes were provided in Alster’s paper. However, 

these formulas can still be quite complicated, and the simplification also obscures physical 

meaning that can be gleamed from the formulas. To get a better qualitative understanding of the 

underlying physics, Equation 5-A-13 is applied to a cavity and orifice that can be easily integrated 

without those modifications.  

Application to Simple Geometry without Alster’s Approximation 

Consider a system where the cavity and orifice each have a constant cross-section (such as a 

concentric cylindrical). The cavity has a cross-section 𝐴𝑐 and length 𝑙𝑐 (referred to as height ℎ in 

Alster’s work), while the orifice has a cross-section 𝐴𝑜 and nominal neck length 𝑙𝑛. 

When Equation 5-A-13 is applied to both a cavity and orifice, the equation becomes: 

𝑙𝑣−𝑛 = ∫
𝐴𝑁

𝐴(𝑥)

𝑉(𝑥)2

(𝑉𝑐 + 𝑉𝑜)2
𝑑𝑥

𝐿=𝑙𝑐+𝑙𝑛

0

(5-A-14) 

𝐴(𝑥) = {
𝐴𝑐

𝐴𝑜
 

0 ≤ 𝑥 ≤ 𝑙𝑐
𝑙𝑐 ≤ 𝑥 ≤ 𝑙𝑐 + 𝑙𝑛

(5-A-15) 

and 

𝑉(𝑥) = {
𝐴𝑐𝑥

𝐴𝑐𝑙𝑐 + 𝐴𝑜(𝑥 − ℎ)
 

0 ≤ 𝑥 ≤ 𝑙𝑐
𝑙𝑐 ≤ 𝑥 ≤ 𝑙𝑐 + 𝑙𝑛

(5-A-16) 

Substituting 𝐴(𝑥) and 𝑉(𝑥) 

𝑙𝑣−𝑛 = ∫
𝐴𝑜

𝐴(𝑥)

𝑉(𝑥)2

(𝑉𝑐 + 𝑉𝑜)2
𝑑𝑥 + ∫

𝐴𝑜

𝐴(𝑥)

𝑉(𝑥)2

(𝑉𝑐 + 𝑉𝑜)2
𝑑𝑥

𝑙𝑛

𝑙𝑐

𝑙𝑐

0

(5-A-17) 

𝑙𝑣−𝑛 = ∫
𝐴𝑜

𝐴𝑐

(𝐴𝑐𝑥)2

(𝑉𝑐 + 𝑉𝑜)2
𝑑𝑥 + ∫

𝐴𝑜

𝐴𝑜

(𝐴𝑐𝑙𝑐 + 𝐴𝑜(𝑥 − ℎ))2

(𝑉𝑐 + 𝑉𝑜)2
𝑑𝑥

𝑙𝑐+𝑙𝑛

𝑙𝑐

𝑙𝑐

0

(5-A-18) 

𝑙𝑣−𝑛 =
𝐴𝑜

𝐴𝑐

𝐴𝑐
2 ⋅

𝑙𝑐
3

3
(𝑉𝑐 + 𝑉𝑜)2

+
𝐴𝑐

2𝑙𝑐
2𝑙𝑛 + 𝐴𝑐𝑙𝑐𝐴𝑜𝑙𝑛

2 +
𝐴𝑜

2𝑙𝑛
3

3
(𝑉𝑐 + 𝑉𝑜)2

 (5-A-19) 
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Since 𝑉𝑐 = 𝐴𝑐𝑙𝑐 and 𝑉𝑜 = 𝐴𝑜𝑙𝑛: 

𝑙𝑣−𝑛 =
𝐴𝑜

𝐴𝑐

𝑉𝑐
2

3
(𝑉𝑐 + 𝑉𝑜)2

𝑙𝑐 +
𝑉𝑐

2 + 𝑉𝑐𝑉𝑜 + 𝑉𝑜
2 1
3

(𝑉𝑐 + 𝑉𝑜)2
𝑙𝑛 (5-A-20) 

This form factor is a function of the orifice and cavity cross-sections and volumes. When 𝐴𝑜 ≪ 𝐴𝑐 

and 𝑉𝑜 ≪ 𝑉𝑐, the oscillating mass inside the cavity become negligible and 𝑙𝑣−𝑛 reduces to 𝑙𝑛.  

When 𝐴𝑜 ≪ 𝐴𝑐 no longer holds but 𝑉𝑜 ≪ 𝑉𝑐 is still true, Equation 5-A-20 becomes: 

𝑙𝑣−𝑛 =
𝐴𝑜

𝐴𝑐

𝑙𝑐
3

 + 𝑙𝑛 (5-A-21) 

The quarter-wave resonator corresponds to the case where 𝐴𝑜 → 𝐴𝑐. Ignoring end correction, the 

formula for the quarter-wave frequency equation is: 

𝑓𝑄𝑊 =
1

4

𝑈𝑠

𝑙𝑐
 (5-A-22) 

Calculating the resonance frequency using the form factor: 

𝑓 =
𝑈𝑠

2𝜋
√

𝐴𝑜

𝑉𝑐(𝑙𝑣−𝑛)
=

𝑈𝑠

2𝜋 √
𝐴𝑜

𝐴𝑜𝑙𝑐 (
𝑙𝑐
3)

=
√3

2𝜋

𝑈𝑠

𝑙𝑐
≈ 0.276

𝑈𝑠

𝑙𝑐
 (5-A-23) 

The frequency from this theory overestimates the quarter-wave frequency by about 10%. The 

correction by Alster was used to reconcile this. 

Although the example assumed both the cavity and orifice to each have a constant cross-

section, the formulas for 𝑙𝑣−𝑛
(1)

 and 𝑙𝑣−𝑛
(2)

   

For a cavity with constant cross-section (even if the orifice is not): 

𝑙𝑣−𝑛
(1)

=
𝐴𝑜

𝐴𝑐

𝑉𝑐
2

3
(𝑉𝑐 + 𝑉𝑜)2

𝑙𝑐 (5-A-24) 
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For an orifice with cross-section is constant (even if the cavity is not): 

𝑙𝑣−𝑛
(2)

=
𝑉𝑐

2 + 𝑉𝑐𝑉𝑜 + 𝑉𝑜
2 1
3

(𝑉𝑐 + 𝑉𝑜)2
𝑙𝑛 (5-A-25) 
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Chapter 6: Conclusion 

This chapter summarizes the dissertation’s key research findings and contributions. This 

dissertation addressed key issues for modeling ferroelectric materials and synthetic jet actuators. 

Ferroelectric materials have electromechanical coupling that allows them to function as 

transducers, actuators, and sensors necessary for many devices. Relaxor ferroelectrics like PMN-

PT and PIN-PMN-PT can exhibit especially high dielectric and electromechanical properties that 

make them desirable for applications that require greater output than conventional ferroelectrics 

such as PZT. However, ferroelectric phase field models have been unable to accurately capture 

certain phenomena such as polarization reorientation and phase transitions. This work offers 

potential solutions on how to improve ferroelectric phase field models (both relaxor and non-

relaxor) without becoming computationally cost-prohibitive. 

Chapter 3 of the dissertation analyzed the effect of fluctuations/biases, energy barriers and 

metastability on phase transformations. As part of this work, an improved energy function was 

developed for a composition of rhombohedral PIN-PMN-PT near the MPB that remains 

thermodynamically stable for large values of polarization. Landau coefficients were fitted to 

material data reported in literature for various compositions of room temperature PIN-PMN-PT. 

Multiple fitting parameters were needed to simulate the phase transitions at the desired 

temperatures. Using this new energy function, the hysteresis behavior was constructed by 

analyzing the stable points in the energy landscape under a given load. For the purposes of the 

study, a metastable well was considered stable if the energy barrier between neighboring wells was 

higher than the fluctuation energy. This work showed that by accounting for fluctuations (on the 

order of 1E+4 to 1E+5 J/m3 for PIN-PMN-PT), the simulated hysteresis based on stable wells 

predict behavior similar to what has been observed experimentally. This included the lower 
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coercive field for switching and the forward and reverse phase transformations as a load is applied 

and released that have been reported in literature.  

Chapter 4 applied the findings of Chapter 3 to a finite-element phase-field model and 

sought evaluate various ways to implement fluctuations and/or biases that would allow the model 

to escape metastable wells. A couple models have reported closer agreement with predicted and 

measured switching fields after accounting for defects and thermal noise. Two main methods of 

implementation for the fluctuations/biases were evaluated: 1) as time-varying noise and 2) as static 

random electric fields. Adding fluctuations as a time-varying noise to the TDGL equation did allow 

for the model to escape metastable states but introduced issues with reproducibility and 

significantly increased computational time because the model does not reach convergence even 

for simple cases. For these reasons, this approach is not recommended unless the purpose of a 

study is primarily to investigate time-dependent effects of fluctuations. In contrast, implementing 

fluctuations as static electric fields on the order of 1 MV/m allowed the model to escape the 

metastable and unstable equilibrium states that models typically get trapped in. With this 

implementation, the model was able to reproduce the electric-induced and stress-induced phase 

transformations observed in experiments by adjusting the size and strength of the random fields. 

Relaxor characteristics arise when the local random fields are both strong and small in size relative 

to the RVE. Nanodomains are more likely to nucleate from these areas and there is a more gradual 

phase transition starting from these nucleation points. On the other hand, if the local random fields 

are weak and large relative to the RVE, there will be relatively little relaxor characteristics in the 

mode. The local fields do not overcome the penalty introduced by the gradient energy, and the 

RVE will uniformly transition once a critical external field is reached. Based on this work, it is 

suggested to implement fluctuations as weak random fields with some long range order. The 
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longer-range effects introduced by the fields in an RVE can be compensated during if the bias 

introduced is known or averaged by simulating many random seeds. Implementing fluctuations in 

this manner may help material scientists engineer hysteresis loops for specific applications if the 

density, strength, direction of local fields can be manipulated in the crystal. 

Chapter 5 shifted from modeling ferroelectric materials on the mesoscale level to the 

macroscale (bulk) level in a piezoelectrically-driven synthetic jet actuator device. This work 

identified and addressed key issues in modeling synthetic jet actuators, particularly for SJAs that 

deviate from the ideal Helmholtz resonator. Large discrepancies have been reported between the 

predicted and measured performance of thin piezoelectric SJAs. While LEMs have been shown to 

be capable of good agreement with ideal Helmholtz resonators, these models require fitting 

multiple parameters for the diaphragm and losses to the experimental data and were restricted to 

ideal Helmholtz resonators. Current models lack predictive capabilities for modeling novel 

diaphragm or cavities. This was addressed by combining FEM and LEM techniques. Bulk 

properties are used in the FEM model to predict the piezoelectric diaphragm’s deformation and a 

formula was derived to estimate the loss coefficient. A separate FEM acoustics model was used to 

calculate the cavity’s acoustic resonance that should be used in place of the Helmholtz resonance 

in the lumped equations. This method was shown to provide good agreement with experimental 

results for the SJA geometries tested. Furthermore, it showed that the volume occupied by the 

piezoelectric disks in the cavity has a significant effect on the performance of ultrathin SJAs. This 

combined model provides a way to more accurately and efficiently explore novel diaphragm and 

cavity designs without resorting to full-ordered models that are computationally expensive. 

The models presented in this dissertation provide valuable insights into understanding the 

underlying mechanisms that drive phase transformation in ferroelectric materials and the 
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performance of piezoelectric synthetic jet actuators. Key contributions of this work for 

ferroelectric material modeling include: 

• An improved energy function that can simultaneously the R, O, and T phases. 

• Recommendations to efficiently implement fluctuations in phase-field models. 

The combination of these contributions allows the model to simulate phenomena that previously 

were not successfully captured, particularly the forward and reverse R-O-R phase transformations 

and hysteresis reported in literature. 

Key contributions for synthetic jet actuators modeling: 

• An approach to model novel SJAs by combining finite-element and lump-element 

techniques. 

• Formula to estimate the loss coefficient based on the cavity and orifice geometries. 

While not part of the scope of this dissertation, this work provides a strong foundation to 

investigate the following research questions: 

• Can the energy function for PIN-PMN-PT be modified to account for composition 

changes in PIN, PMN, and/or PT? 

• How do the stiffness and electrostrictive coefficients affect phase stability and 

hysteresis? Can these properties be used to tune the hysteresis and other phenomena 

such as phase coexistence? 

• How do the mobility and gradient coefficients affect domain formation and motion in 

the context of phase transformations?  

• How can the nonuniform strains due to local fields/defects be controlled? Can the 

variations in the phase field model due to random seeds phase field model predict a 

device’s reliability? 
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• The macro- and meso-scale models can be combined to complement one another for 

optimization. For example, mesoscale material models can output bulk properties to 

use in macroscale device models, and vice versa. Macroscale device models can be 

used to provide goals for material developments.  




