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EPIGRAPH

A wave is never found alone, but is mingled with as many other waves
as there are uneven places in the object where said wave is produced.

At one and the same time there will be moving over the greatest wave of
a sea innumerable other waves, proceeding in different directions.

Leonardo da Vinci
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ABSTRACT OF THE DISSERTATION

Momentum and Heat Transport in MHD Turbulence in Presence of Stochastic Magnetic
Fields

by

Changchun Chen

Doctor of Philosophy in Physics

University of California San Diego, 2022

Professor Patrick H. Diamond, Chair

Tangled magnetic fields, often coexisting with an ordered mean field, have a major impact

on turbulence and momentum transport in many plasmas, including those found in the solar

tachocline and magnetic confinement devices. In this dissertation, we present research on the

turbulent transport in presence of a stochastic magnetic field, and the discuss implications on the

formation of astronomical objects and on the turbulence in edge plasma in fusion devices.

The research is divided into three projects. First, we present a novel mean field theory of

potential vorticity mixing in β -plane magnetohydrodynamic (MHD). Our results show that mean

square stochastic fields strongly reduce Reynolds stress coherence. This decoherence of potential

xv



vorticity flux due to stochastic field scattering leads to suppression of momentum transport and

zonal flow formation. We discuss a model of stochastic fields as a resisto-elastic network.

In second project, we shows the breaking of the shear-eddy tilting feedback loop by

stochastic fields is the key underlying physics mechanism. A simple calculation suggests that

the breaking of the shear-eddy tilting feedback loop by stochastic fields is the key underlying

physics mechanism. A dimensionless parameter that quantifies the increment in power threshold

is identified and used to assess the impact of stochastic field on the L-H transition in fusion

devices.

Finally, we study the turbulent transport of parallel momentum and ion heat by the

interaction of stochastic magnetic fields and turbulence in third project. Attention is focused on

determining the kinetic stress and the compressive energy flux. A critical parameter is identified

as the ratio of the turbulent scattering rate to the rate of parallel acoustic dispersion. For the

parameter large, the kinetic stress takes the form of a viscous stress. For the parameter small, the

quasilinear residual stress is recovered. In practice, the viscous stress is the relevant form, and

the quasilinear limit is not observable. This is the principal prediction of this project.

xvi



Chapter 1

Introduction

1.1 Turbulence and Stochastic Fields in β -plane MHD and
in Fusion Devices

Turbulent momentum transport plays a key role in the dynamics of astrophysical and

geophysical fluids, in the formation of astrophysical objects, and in the formation of shear

flows and transport barriers in fusion physics. And tangled magnetic fields, often coexisting

with an ordered mean field, have a major impact on turbulence momentum transport in these

plasma. In space, examples can be found in the generation of differential rotation in the sun and

stars, magnetic dynamos, and atmospheric phenomena in the solar system and exoplanets. The

dynamics of the turbulence in several cases is effectively two-dimensional (2D)—usually due to

rapid rotation, strong stratification (i.e. low effective Rossby number or large Richardson number),

or strong mean field. Hence, a classic β -plane or quasi-geostrophic magnetohydrodynamic

(MHD) model is useful to describe these systems.

The solar tachocline is one such quasi-2D astrophysical object—a weakly magnetized

system where turbulent transport is critical for its very existence. Specifically, the tachocline may

be thought to form by ‘burrowing’ driven by large meridional cells. These, in turn, are driven

by baroclinic torque (i.e. ∇p×∇ρ). Moreover, in this application, turbulence will co-exist

with a stochastic field—the disordered magnetic field pumped by the convective overshoot from

the convective zone which leads to large magnetic Reynolds number (Rm)[15]. We can expect

1



the intensity of root-mean-square (rms) magnetic field surpasses that of mean field B0 in the

tachocline from Zel’dovich relation for 2D MHD [29, 32, 16]. As a result, even though the

tachocline is surely magnetized, its field is neither smooth nor uniform. And this stochasticity

of magnetic fields thickens the plot. Hence, the physics of transport in a state of coexisting

turbulence and stochastic magnetic field is aa topic of intense interest in astrophysics. There are

two main models explains the existence and stability of the tachocline. In one leading model—

that of Spiegel & Zahn (1992) [91]—burrowing is opposed by turbulent viscous diffusion of

momentum in latitude, but the true nature of 2D tachocline dynamics is ignored. In another

model—proposed by Gough & McIntyre (1998) [31]—burrowing is opposed by PV mixing and

by a hypothetical fossil magnetic field in the solar radiation zone, but the effects of magnetic

fields in turbulent momentum transport and the implication for Alfvén’s theorem are ignored.

And neither of these studies tackle the strong stochasticity of the ambient tachocline field. In

this vein, Chen & Diamond et al. [9] aims to build an analytical model beyond quasi-linear

(QL) theory and study the momentum transport in highly disordered magnetic fields. Details are

discussed later in Chapter 2.

Another application is to tokamaks, where the heat transport, momentum transport, and

the formation of shear flows in presence of a stochastic field has long been recognized as a

fascinating, though complex, problem. Here, we consider that the stochasticity of magnetic fields

is induced by Resonant magnetic perturbations (RMPs) generated by the external RMP coils.

RMPs are applied to the edge of tokamak plasma to mitigate Edge Localized Modes (ELMs)

[26, 25], which produce unacceptably high transient heat loads on plasma-facing components,

and can damage wall components of a fusion device. As a result, stochastic field effects on

turbulent transport is a ‘paradigm problem’ in magnetic fusion physics and has stimulated the

writing of many well-known papers, most notably Rosenbluth et al. [82] and Rechester and

Rosenbluth [77]. The synergetic effect of stochastic fields on heat/momentum transport and

the turbulence is especially true for L-mode plasmas, with resonant magnetic perturbations

RMP (before the L-H transition), where the predominantly electrostatic turbulence is strongest

2



just before transition. Experiments and simulations shows that the RMPs rais the transition

threshold [54, 30, 46, 84, 64, 85, 86] and that the Reynolds stress burst in pre-L-H transition

drops significantly when RMPs are applied to the edge of DIII-D [50]. But no analytical

model has shed light on this stochastic-fields-induced mechanism for Reynolds stress. Hence,

studies on stochastic-field-induced effects analytically in the presence of strong turbulence are of

importance in fusion plasma. Chen et al (2021) [10] aims to calculate the poloidal momentum

transport and derive a critical parameter for the power threshold increment in L-H transition in

presence of stochastic fields induced by RMPs (see Chapter 3 ).

In addition to mean poloidal flow, the evolution of mean parallel flow and ion pressure

will also be affected by the co-existing backgrounds of turbulence and stochastic magnetic fields.

This can be realized by observing the radial balance equation 〈Er〉= ∇〈pi〉
ne −〈u〉×〈B〉. Motivated

by studies of rotation damping due to ergodic magnetic limiter operation on the TEXT [102],

Finn et al. [28] (hereafter referred to as FGC) addressed the ‘stochastic field only’ limit of the

problem. The FGC analysis start with the equation of mean parallel and pressure

∂

∂ t
〈u‖〉+

∂

∂ r
〈ũrũ‖〉=−

1
ρ

∂

∂ r
〈b̃r p̃〉 (1.1)

∂

∂ t
〈p〉+ ∂

∂ r
+

∂

∂ r
〈ũr p̃‖〉=−ρc2

s
∂

∂ r
∂

∂ r
〈b̃rũ‖〉, (1.2)

where b̃ ≡
√
〈B̃2〉/B2

0 is a root-mean-square (rms) of normalized disordered fields, B0 is the

mean toroidal field, and the bracket average is an ensemble average over symmetry direction, i.e.

〈〉 ≡ 1
2πr
∫

rdθ
1

L‖

∫
dL‖. Here, cs ≡

√
γ p/ρ is the sound speed, γ is the adiabatic index, and ρ is

the mass density. And hereafter we define the RHS term as derivative of kinetic stress (K) and

compressive energy flux (H)

K ≡ 〈b̃r p̃〉
ρ

(1.3)

H ≡ ρc2
s 〈b̃rũ‖〉. (1.4)
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In FGC’s study [28], the familiar advective fluxes of the parallel flow and pressure are ignored.

We note in passing that the kinetic stress has been linked directly to plasma rotation by studies on

the Madison Symmetric Torus reverse field pinch. By a combination of probes and polarimetry,

Ding et al. (2013) demonstrated a clear correlation between the divergence of the measured

kinetic stress and the profile of mean parallel flow (see figure 2 of Ding et al [22]). This result

shows a compelling insight into the connection among fluctuation measurements, parallel flow

dynamics, and momentum transport. FGC, however, didn’t address this relation between the

microscopic and macroscopic facets of the momentum transport problem. Our work [8] aims to

calculate the relation between the kinetic stress and the compressive energy flux explicitly. A

hybrid diffusivity is also derived—this depicts how stochastic fields and turbulent flows interact

together and hence induce the energy and parallel momentum transport. Details are discussed

later in and 4.

1.2 Potential Vorticity

Given the effective 2D structure of the tachocline and the fusion devices (due to strong

mean toroidal magnetic field), it is natural to treat its dynamics using classical shallow water

theory and formulate its description in terms of potential vorticity (PV) evolution and transport.

In such systems, Reynolds forces are equivalent to vorticity fluxes via the Taylor identity [93] .

For this and other reasons—the most fundamental being the freezing-in law for fluid vorticity

[72]——it is natural to describe such systems in terms of PV. Generally, PV ≡ ζ = ζa ·∇ψ/ρ ,

where ζa is the absolute vorticity, ψ is a conserved scalar field, and ρ is the fluid density.

The advantage of a PV description of the dynamics is that ζ is conserved along fluid particle

trajectories, up to dissipation, much like phase space density is conserved in the Vlasov plasma.

Another advantage to consider PV is because it can be expressed as a ‘charge density element’,

i.e. ζ ≡ ρPV , floating in the fluid threaded by stretched magnetic fields. And the PV phase-space
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conservation will lead to the charge density continuity, i.e.

∂

∂ t
ρPV +∇ ·JPV = 0. (1.5)

Figure 1.1 shows a cartoon of how the PV charge density is related to ‘plucking’ magnetic

lines. In β -plane MHD, zonal flows are produced by inhomogeneous PV mixing (i.e. an

inhomogeneous flux of PV ‘charge density’) and by the inhomogeneous tilting of magnetic field

lines (weighted by current density). In simple words, there are two ways to redistribute the

charge density (in this case, the absolute vorticity) — one is through advection, and the other is

by bending the magnetic field lines, along which current flows. These two processes together

determine the net change in local PV charge density.

Figure 1.1. Evolution of PV threaded by magnetic field lines in a frame moving with the flow.
Aside from the advection of flow, the distribution of PV charge density also changed under the
influence of inhomogeneous magnetic fields. (a) PV uniformly distributed in the moving frame.
(b) PV distribution is changed by the tilted magnetic field lines. Dashed circles are undisturbed
vortices. Solid circles are new locations of PV charge density.

Examples of conserved PV are:

• Pure fluid: PV ≡ ∇×u, where u is the flow velocity.

• On β -plane: PV = ζ = βy−∇2ψ . β is the Rossby parameter given by β = d f/dy|φ0 =

2Ωcos(φ0)/a, where f is angular frequency at latitude φ0 on β -plane (see figure 1.2).
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• Hasegawa-Mima system [34]: PV = (1−ρ2
s ∇2)|e|φ/T + lnn0, where φ is electric poten-

tial and n0 is a background mass density.

In these system, momentum transport and flow formation are determined by inhomogeneous

PV mixing [55, 101] (see figure 1.3 and 1.4 ). The mechanism for the PV mixing is closely

related to the coherence and cross phase of the vorticity flux. Mechanisms include viscous

dissipation, wave-flow resonance, nonlinear mode interaction, and beat wave-flow interaction,

akin to nonlinear Landau damping [1].

Figure 1.2. Geometry and computational domain for the local Cartesian model. The x- and
y-axes are local longitudinal and latitudinal directions, respectively. The z-axis represents the
depth of the β -plane. The mean magnetic field B0 is zonal direction (x-axis)

This points to the topic of PV transport in a tangled field—the main study in this

dissertation [9, 10, 8]—as being crucial to understanding momentum transport in the tachocline

and fusion devices. Previous studies of flow dynamics for β -plane MHD have focused on PV

transport and jet (zonal flow) formation [16, 17, 55]. Computational studies have noted that even

weak mean magnetic fields can inhibit the expected negative viscosity phenomena such as jet

formation [61, 62, 95, 33]. Results indicate that for fixed forcing and dissipation, jets form for

B2
0/η < (B2

0/η)crit , but are inhibited for B2
0/η > (B2

0/η)crit . These findings are interpreted in

terms of the idea that the mean field, B0, tends to ‘Alfvénize’ the turbulence , i.e. converts Rossby

wave turbulence to Alfvén wave turbulence. For Alfvénic turbulence, fluid and magnetic stresses

tend to compete, thus restricting PV mixing and inhibiting zonal flow formation [16]. When
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the freezing-in law is not violated (Poincare 1893), the strong field-fluid coupling prevents PV

mixing, and loosely put, the 2D inverse energy cascade [49, 40, 5]. When the resistive diffusion

is sufficiently large to break freezing-in, PV mixing occurs.

Figure 1.3. A cartoon for PV mixing on β -plane. (a) The PV intensity along a longitudinal line.
(b) The velocity intensity along a longitudinal line. The inhomogeneous PV mixing occurs in
the yellow shaded region. The pink line indicate the new PV and velocity intensity after the PV
mixing.

1.3 A model Beyond Quasilinear Theory

Recent progress on the β -plane MHD has exploited theoretical approaches based on

quasi-linear (QL) theory or wave turbulence theory [13]. These are unable to take into account

of the stochasticity of the ambient field; i.e. the fact that |B̃2|/B2
0� 1 in the tachocline, where

fields are strongly tangled.

Since the system we are interested in is highly nonlinear—it consists turbulence and a
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Figure 1.4. Jupiter’s asymmetric zonal velocity field. (a) The cloud-level zonal flows (thick
black line) as a function of latitude, as measured during Juno’s third perijove pass on 11
December 2016. The image of Jupiter was taken by the Hubble Wide Field Camera in 2014
(https://en.wikipedia.org/wiki/Jupiter). Grid latitudes are as in b and the longitudinal spread is
45◦. Grid latitudes are as in b and the longitudinal spread is 45°. Zonal flow scale is the same
as the longitudinal grid on the sphere. b, The asymmetric component of the flow, taken as the
difference between the northern and southern hemisphere cloud-level flows. Reprint from [45].

stochastic magnetic field—a key to check the ‘non-linearity’, or validity for for the QL closure,

is Kubo number (i.e. Ku [52]), is introduced. The fluid Kubo number, which quantifies the

effective memory of the flow and the field, is defined as

Ku f luid ≡
δl

∆⊥
∼ ũτac

∆⊥
∼ τac

τeddy
, (1.6)

where δl is the characteristic scattering length, τac is the velocity autocorrelation time, and τeddy

is the eddy turn-over time. The eddy turn-over time is τeddy = ∆⊥/ũ, where ∆⊥ is the eddy

size (see Figure 1.5). In practice, the validity of QL theory requires small fluid Kubo number
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Figure 1.5. Eddy size ∆⊥. In this figure, the shear flow is in the left-right direction. The eddy
size is measured perpendicular to the flow.

Ku f luid � 1. As a particle traverses an eddy length, it experiences several random kicks by

the flow perturbations, as in a diffusion process. In this limit, trajectories of particles don’t

deviate significantly from unperturbed trajectories. Note that in the case of wave turbulence, the

autocorrelation time (τac) is sensitive to dispersion. The autocorrelation time can be expressed

as:
1

τac
= ∆ω =

dω

dk
·∆k. (1.7)

However, when the turbulence is strong, we have δl � ∆⊥. Here, particles deviate strongly

from the original trajectories in an autocorrelation time, indicating a failure of QL theory (i.e.

Ku f luid > 1). However, it is clear that β -plane MHD is not a purely fluid system; hence the

validity of QL theory depends not only on the fluid Kubo number but also on the magnetic

Kubo number. This can be written as:

Kumag ≡ δl

∆⊥
(1.8)

δl ∼
lac|B̃|

B0
, (1.9)

where δl is the deviation of a field line, lac is the magnetic autocorrelation length, and |B̃| is

the magnetic field intensity of the wave turbulence. If a particle travels a coherence length ∆⊥

and experiences several random kicks in weak magnetic perturbations, it undergoes a process

of magnetic diffusion, which can be treated using QL theory [78]. In contrast, when magnetic

perturbations are strong, particle trajectories are sharply deflected by strong B̃-induced scattering
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within an autocorrelation length.

One indication [95, 9] of the deficiency in the conventional wisdom is the observation

from theory and computation that values of B2
0 well below that for Alfvénization are sufficient to

result in a the reduction in Reynold stress and thus PV mixing (see Figure 1.6). This suggests

that tangled magnetic fields act to reduce the phase correlation between ũx and ũy in the turbulent

Reynolds stress 〈ũyũx〉. Note that, as we will show here, this effect is one of dephasing, not

suppression, and not due to a reduction of turbulence intensity. It resembles the well-known

effect of quenching of turbulent resistivity in 2D MHD, which occurs for weak B2
0 but large

〈B̃2〉 (i.e. large Rm), at fixed drive and dissipation. Thus, it appears that Alfvénization — in the

usual sense of the ρ0〈ṽ2〉= 〈B̃2〉/µ0 balance intrinsic to linear Alfvén waves—and the associated

stress cancelation are not responsible for the inhibition of PV mixing in β -plane MHD at high

magnetic Reynolds number. This observation reinforces the need to revisit the problem with a

fresh approach.
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Figure 1.6. Average Reynolds stresses (orange line) and Maxwell stresses (blue line) for β = 5,
η = 10−4 from [9]. Full Alfvénization happens when B0 intensity is larger than B0 = 10−1 and
B0 = 6×10−2, respectively. The yellow-shaded area is where zonal flows cease to grow. This is
where the random-field suppression on the growth of zonal flow becomes noticeable.

In Chen & Diamond (2020) [9], we present a theory of PV mixing in β -plane MHD. A
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mean field theory is developed for the weak perturbation regime, and a novel model is derived

for the case of a strong tangled field (〈B̃2〉> B2
0). The latter is rendered tractable by considering

the fluid dynamics to occur in a prescribed static, stochastic field. For 〈B̃2〉 < B2
0, the quasi-

linear calculation reveals that PV mixing evolves by both advection and by inhomogeneous

tilting of field lines correlated with fluctuations. The presence of B0 converts Rossby waves

to Rossby-Alfvén waves so the system exhibits a stronger Alfvénic character for larger B0.

When turbulence Alfvénizes, PV mixing is quenched by the competition between fluid and

magnetic stresses. However, the issue is more subtle, since numerical calculations reported here

indicate that magnetic fields affect the Reynolds stress well below the intensity of B0 for which

Alfvénization occur. This suggests that magnetic fluctuations affect the phase correlation of

velocity fluctuation in the stress, in addition to producing the competing magnetic stress. By

the Zel’dovich theorem, however, we expect that |B̃2| � B2
0, so QL theory formally fails, for

magnetic Kubo number can be large, i.e. Kumag ∝ |B̃2|/B2
0� 1. To address the |B̃2| � B2

0 limit,

we go beyond QL theory and consider an effective medium theory, which allows calculation of

PV mixing in a resisto-elastic fluid, where the elasticity is due to 〈B̃2〉. The resisto-elasticity of

the system acts to reduce the phase correlation in the Reynolds stress. Physically, fluid energy is

coupled to damped waves, propagating through a disordered magnetic network. The dissipative

nature of the wave-field coupling induces a drag on the mesoscale flows. We show that PV

mixing is quenched at large Rm, for even a weak B0. The implications for momentum transport

in the solar tachocline and related problems are discussed in Chapter 2.

Note that for the drift-wave turbulence at the edge of a fusion device, the magnetic

perturbation caused by RMPs are much smaller than the toroidal mean field by a factor 10−7. So,

the magnetic Kubo number there is small, i.e. Kumag� 1.
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1.4 Drift-wave turbulence and Zonal Flow

As discussed in previous sections, one can notice that zonal flow has tight relation with

turbulence when analyzing the turbulent momentum transport. In this section, we explain the

underlying physics for the production of turbulence, of the zonal flow, and also their interaction.

The production of turbulence is driven the inhomogeneity—for the β -plane MHD tur-

bulence, the inhomogeneity is rotation (or Rossby parameter β ) and buoyancy frequency B

(i.e. Rossby number Ro and Richardson number Ri); while for drift-wave turbulence in fusion

devices, the free energy comes from density or temperature gradient (i.e. ∇n and ∇T ). Detailed

comparison between β -plane MHD turbulence and drift-wave turbulence can be found in Table

2.1. Interactions among turbulent wave modes, in turn, form the zonal modes (hereafter referred

to as zonal flows).

In real space perpective, the Taylor Identity [93] an useful tool to understand this mecha-

nism:

∂

∂ t
〈ux〉︸ ︷︷ ︸

large scale

= 〈ũyζ̃ 〉=− ∂

∂y
〈ũyũx〉︸ ︷︷ ︸
small-scale
coupling

, (1.10)

where the 〈ux〉 is the zonal flow. This equation shows that the cross-flow flux of potential velocity

underpins the Reynolds stress and that the gradient of the Reynolds stress (a shear force) then

drives the large-scale zonal flow. From the Taylor Identity, the link between inhomogeneous,

cross-flow PV transport (i.e., local PV mixing) and mean flow generation is established. Also,

a non-local (in wavenumber space), non-linear interaction from wave-wave interactions (i.e.

three-wave/triad interaction) drives zonal flows. The three-wave interaction mechanism is shown

in Figure 1.7. As a result, strongly nonlinear processes like PV mixing and wave breaking yield

turbulent PV flux, and form a large-scale zonal flow.

Then, how do the zonal flow and turbulence interact in model perspective? Given that

the kinetic energy is deposit from turbulence to the zonal flow, it is useful to view turbulence
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k′ ′ 

k′ kk k′ 

k′ ′ 

(a) (b)

Figure 1.7. Three-wave (triad) interaction where k+k′ +k” = 0. (a) Local transport. The
wave-numbers of the three waves are similar. (b) Non-local transport. The resultant wave (zonal
flow mode) has wavenumber much smaller than that of the other two waves.

and zonal flows as predators and preys in predator-prey model. Here, the turbulences is the prey,

growing from the free energy source (i.e. the environmental nutrients). And the zonal flow (i.e.

the predator) ‘feeds’ upon turbulence (see Figure 1.8).

PV mixing

Instabilities/Turbulence

Zonal Flow

Taylor 
Identity

Inhomogeneity 
(Free energy source)

Zonal Flow

Turbulence

Predator-Prey Model

Figure 1.8. Reprint from [88].

Recall the theme of this dissertation is understanding the momentum transport in presence

of a stochastic field; consequently, one can expect the predator-prey story becomes complicated

when stochastic fields thicken the plot. First, the stochastic effect suppresses the production of
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zonal flow. This can be observed by considering the extented Taylor Identity:

〈B̃y∇
2Ã〉= ∂

∂y
〈B̃yB̃x〉, (1.11)

and therefore the evolution of zonal flow becomes

∂

∂ t
〈ux〉=−

∂

∂y

[
〈ũyũx〉−

〈B̃yB̃x〉
µ0ρ

]
, (1.12)

This equation states that the mean PV transport is determined by the difference between the

Reynolds and Maxwell stresses, in which the stochastic-field enters. Moreover, the Reynolds

stress itself is determined by the cross-phase (i.e. 〈kykx〉), which will be decorrelated by

stochastic fields—the effect of this Alfvénic coupling (due to the stochastic fields) induces the

decoherence of the Reynolds stress (or vorticity flux), thus reducing momentum transport and

flow generation. I proposed [10] that physical insight into this decoherence can be obtained by

considering the effect of a stochastic magnetic field on the “shear-eddy tilting feedback loop.” To

see this, we observe Snell’s law:

d
dt

kx =−
∂ (ω0 +uyky)

∂x
' 0− ∂ (kyuy)

∂x
, (1.13)

and obtain the Reynolds stress

〈ũxũy〉=−∑
k

|φ̃ |2
B2

0
〈k̃xk̃y〉, (1.14)

where, and hereafter in fusion device geometry, x-, y-, and z-direction is defined in radial,

poloidal, and toroidal direction (see Figure 1.9). By considering this feedback loop in presence

of a stochastic field, I show [10] explicitly that sufficiently strong coupling of drift waves to a

stochastic magnetic field can break the “shear-eddy tilting feedback loop”. This underpins flow

generation by modulational instability. Note that the interaction of Alfvén waves with a tangled
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magnetic field differs from that of Alfvén waves with an ordered field. Here, the effect is to

strongly couple the flow perturbations to an effective elastic medium threaded by the chaotic

field. More details are discussed in Chapter 3.

In fusion device, several studies [20, 47, 57, 23] suggest that the L-H transition is

triggered by edge shear flows, implying that the transition dynamics are modified by the effects

of stochastic fields on poloidal zonal flow (E × B mean flow) evolution. Indeed, analyses

suggests that RMPs may “randomize” the edge layer. Stochasticity results from k ·B = 0

resonance overlap, and the field line separation increases exponentially. Hence, a central question

is one of phase—i.e., the effect of the stochastic field on the coherence of fluctuating velocities,

which enters the Reynolds stress and PV. In physical terms, the disordered field tends to couple

energy from fluid motion to Alfvénic and acoustic waves, which radiate energy away and disperse

wave packets.

Figure 1.9. Coordinate in fusion device. We define x-, y-, and z-direction is defined in radial,
poloidal, and toroidal direction.

Also, by noting the ion radial force balance equation at the edge of fusion device

〈Er〉=
∇〈pi〉

ne
−〈u〉×〈B〉, (1.15)

one should notice that mean parallel (toroidal) flow and ion pressure are also under the influence
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of stochastic fields decorelation effect. Hence, in addition to the effect of stochastic on the

mean shear flow, I revisited [8] the mean toroidal (i.e. in the direction parallel to the mean

field B0) flow in the context of co-existing grounds of turbulence and stochastic magnetic fields.

Given the clear resemblance of this problem to aspects of gas dynamics, a natural approach

is to cast the analysis in terms of the familiar Riemann variables u‖± p [53]. A quasilinear

analysis then gives an estimate of the relaxation rate for excitation on a perpendicular scale

length l⊥ as csDM/l2
⊥, here DM is conventional magnetic diffusivity. This rate may be thought

of as characteristic of acoustic pulse decorrelation due to propagation along stochastic field

lines. However, it should be said that the dynamics here are fundamentally non-diffusive. In

particular, the kinetic stress actually is residual stress driven by ∇〈p〉, i.e. K = −csDM∂r〈p〉.

Likewise, the compressive energy flux is a non-diffusive contribution to the energy flux driven

by ∇〈u‖〉, i.e. H =−csDM∂r〈u‖〉. These relations are not addressed in FGC. Moreover, the FGC

analysis was quasilinear. But to address the strong turbulence regime together with stochastic

field, the response of pressure and parallel flow must be computed in the presence of a scattering

field of electrostatic fluctuations, which were present as a spectrum of fluctuating velocities

〈ũ ũ〉k,ω . This requires for a significant and qualitative departure from the quasilinear analysis. I

calculated [8] the explicit form of the stochastic-field-induced transports (i.e. from kinetic stress

and the compressive energy flux), and obtained different transports mechanisms in strong and

weak electrostatic turbulence regimes. Moreover, we are interested in how the synergetic effect

of stochastic and turbulence influence the particle transport. FGC refers to the density evolution

in this problem as ‘sound wave transport’, yet it is clear that no sound wave dynamics is involved.

To clarify this question, we consider electron particle transport in a stochastic magnetic field.

Here, we consider the stochastic field as co-existing with plasma current perturbations which

generate it, so that Ampère’s law is satisfied. I obtain an additional term, 〈b̃xũz〉, for the electron

particle flux. This is an effect due to ion flow along tilted lines and shows stochastic lines and

parallel ion flow gradient drive a net electron particle flux. Calculations for the mechanism that

mean parallel flow and mean pressure are driven via the hybrid diffusivity that involves effect
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Table 1.1. Comparison MHD Turbulence of the solar tachocline and fusion devices.

β -plane MHD Turbulence
(Solar tachocline)

Drift Wave Turbulence
(tokamak)

Linear Wave Rossby-Alfvén waves Drift waves

Conserved PV PV =−∇2ψ +βy PV =−∇2φ +n

Inhomogeneity
(free energy source)

Rossby Parameter β and
flow buoyancy B

B0, ∇n, and ∇T

Rossby number
(Ro) Ro = 0.1∼ 1 Ro = u

LΩi
� 1

Reynolds number
(Re) Re = 1016 ∼ 1017 Re = 101 ∼ 102

(Landau Damping)

Magnetic Reynolds
number (Rm) Rm = 105 ∼ 106 Rm = LvA

η
= 105 ∼ 107

(Lundquest number)

Zonal flow
Jets, zonal

bands (toroidal)
E×B shear flow

(poloidal)

of stochastic field and turbulent scattering, and the stochastic-field-induced effect on electron

particle flux are shown in Chapter 4.

1.5 Overview of Chapters

In this dissertation, we focus on three main topics: the stochastic magnetic fields effect on

momentum transport in β -plane MHD turbulence, the mechanism of the breaking of shear-eddy

tilting feedback loop due to the RMPs at the edge of a tokamak, and the turbulent transport of

parallel momentum and ion heat by the interaction of stochastic magnetic fields and turbulence.

These topics are discussed in Chapter 2, 3, and 4 respectively. A summary and future work are

discussed in Chapter 5.

Chapter 2 addresses a mean field theory for a tangled “in-plane” field in b-plane magne-

tohydrodynamic (MHD), which is used to compute the Reynolds force and magnetic drag in this

weak mean field (B0) system. The validity of QL theory of β -plane MHD and the Kubo numbers
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are calculated. The mean square stochastic magnetic field B2
st was shown to be the dominant

element, controlling the coherence in the PV flux and Reynolds force. Of particular interest is

the finding that the Reynolds stress degrades for weak B0, at a level well below that required

for Alfvénization. The effective medium theory of PV mixing in a tangled magnetic field is

also detailed. The phase correlation in the Reynolds stress and the onset of magnetic drag are

calculated. Finally, a physical model of the effective resisto-elastic medium is discussed—the

small-scale field defines an effective Young’s modulus for elastic waves, rather than a turbulent

dissipation.

Chapter 3 presents the study of Reynolds stress decoherence in tokamak edge turbulence

due to the RMPs coils. Notice that the stochastic fields here is 3D. It offers insights of how drift-

Alfvén wave propagation along stochastic fields induces an ensemble averaged frequency shift

that breaks the “shear-eddy tilting feedback loop.” It also shows that Reynolds stress decoherence

occurs for a modest level of stochasticity. The ratio of the stochastic broadening effect to the

natural linewidth defines a critical parameter that determines the concomitant L-H transition

power threshold increment. With intrinsic toroidal rotation in mind, the decoherence of the

parallel Reynolds stress is explored. This mechanism is demonstrated to be weaker than for

the poloidal momentum transport case since the propagation speed which enters parallel flow

dynamics is acoustic in stead of Alfvénic. The intertwined mechanisms of symmetry breaking,

stochasticity, and residual stress are discussed.

In Chapter 4, the explicit calculation of particle flux and the parallel momentum transport

in a steady stochastic magnetic field is presented. Chapter 4 also analyzes the physics of kinetic

stress (K) and compressive energy flux (H), which play important roles in momentum and density

evolution—these are calculated under the interplay between E×B turbulence and stochastic

magnetic fields. A critical parameter is identified as the ratio of the turbulent scattering rate to the

rate of parallel acoustic dispersion. For the parameter large, the kinetic stress takes the form of a

viscous stress. For the parameter small, the quasilinear residual stress is recovered. In practice,
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the viscous stress is the relevant form, and the quasilinear limit is not in practice observable.

In Chapter 5, the key results of the chapters above are summarized, and possible future

directions of study are discussed.
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Chapter 2

β -Plane MHD Turbulence and the Solar
Tachocline

The β -plane MHD system at high Rm with weak mean field supports a strong disordered

magnetic field. Hence, analyzing this problem is a daunting task, on account of the chaotic

field and strong non-linearity. Zel’dovich [105] suggested the ‘whole’ problem consists of a

random mix of two components: a weak, constant field (B0) and a random ensemble of magnetic

‘cells’ (Bst), for which the lines are closed loops (∇ ·Bst = 0). Assembling these two parts gives

a field configuration which may be thought of as randomly distributed ‘cells’ of various sizes,

threaded by ‘sinews’ of open lines (Fig. 2.1). Hence, the magnetic fields can be decomposed

to B ≡ B0 +Bst, where B0 is modest (i.e. |Bst | > B0). This system with strong, tangled field

cannot be described by linear responses involving B0 only, and so is not amenable to traditional

quasilinear theory. Linear closure theory allows analysis in a diffusive regime, where fluid Kubo

Figure 2.1. The large-scale magnetic field is distorted by the small-scale fields. The system is
the ‘soup’ of cells threaded by sinews of open field lines.
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number [52] Ku f luid < 1 and magnetic Kubo number Kumag < 1. The fluid Kubo number is

defined as

Ku f luid ≡
δl

∆⊥
∼ ũτac

∆⊥
∼ τac

τeddy
, (2.1)

where δl is the characteristic scattering length, τac is the velocity autocorrelation time, and τeddy

is the eddy turn-over time. The eddy turn-over time is τeddy = ∆⊥/ũ, where ∆⊥ is the eddy size

(see Figure 1.5).

In practice, the validity of QL theory requires small fluid Kubo number Ku� 1. To under-

stand this, we compare autocorrelation rate (1/τac ≡ ∆
(
−βkx/k2)= ∣∣−β/k2 +2βk2

x/k4
∣∣∆kx +∣∣2βkxky/k4

∣∣∆ky) with decorrelation rate (1/τeddy = kũ) on β -plane. This gives τac < τeddy (or

equivalently lac < ∆⊥), leading to Ku f luid < 1.

For weak mean field, we have Kumag ≡ lac|Bst/B0|/∆⊥ > 1, rendering standard closure

method inapplicable. Here lac is magnetic auto-correlation length. Hence, we employ the

simplifying assumption of lac→ 0 so Kumag ' lac|Bst/B0|/∆⊥ < 1. This approximation allows

us to peek at the mysteries of the strong perturbation regime by assuming delta-correlated fields.

In a system with strong random fields (Bst ; such that ensemble average of squared stochastic

magnetic field B2
st > B2

0), this approximation comes at the price of replacing the full β -plane

MHD problem with a model problem. Results for this model problem, where |Bst | > B0, are

discussed.

2.1 Model setup

In this Section, we present the β -plane MHD model and discuss its relevance to the solar

tachocline. The physics of PV transport in β -plane MHD is described. Both mixing by fluid

advection and magnetic tilting are accounted for.

The solar tachocline is a thin layer inside the Sun, located at a radius of at most 0.7

R�, with a thickness of . 0.04 R� [12]. Dynamics on this thin shell can be modeled using the

β -plane, following a model proposed by [83], for the thin atmosphere. In this model, β is defined
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Table 2.1. Summary of the properties of fluid and magnetic Kubo numbers. All models in this
paper are set up to make Kubo numbers small to ensure the QLT is valid. This is fulfilled by
assuming flows and fields are delta correlated in time and space, respectively.

Fluid
Kubo number

Magnetic
Kubo number

Operator u ·∇ |B̃/B0| uA ·∇

Ratio δl/∆⊥. 1 B̃/B0� 1

QL Theory
Validity τac→ 0 lac→ 0

Kubo number
in this model Ku f luid . 1 Kumag� 1

as the Rossby Parameter, given by β = d f
dy |φ0 = 2Ωcos(φ0)/a. The angular frequency f is also

known as the Coriolis parameter. Notice that φ0 increases from the equator (see Figure 1.2).

The simplified β -plane MHD model extends the hydrodynamic model to include the

effects of MHD and comprises two basic scalar equations:

(
∂

∂ t
+u ·∇

)
ζ −β

∂ψ

∂x
=−(B ·∇)(∇2A)

µ0ρ
+ν ∇

2
ζ , (2.2)

∂

∂ t
A = (B ·∇)ψ +η∇

2A. (2.3)

These two scalar equations are from the Navier-Stokes equation and the induction equation,

respectively. Here, η , µ0, and ρ are the magnetic diffusivity, the permeability, and the density,

respectively. The scalar ψ is the z-component of the stream function Ψ = (0,0,ψ) for 2D

incompressible flow, so that u = ( ∂

∂yψ,− ∂

∂xψ,0), and A is the scalar potential for the magnetic

field A = (0,0,A). We also define the vorticity ζ ≡−∇2ψ , similar to the relationship between

the current and the potential J ≡ −µ0∇2A. Eq. 2.2 and 2.3 show that the vorticity and the

potential field A are conserved in β -plane, up to the Lorentz force, resistivity, and viscosity.

The 2D hydrodynamic inviscid shallow water equation illustrates physics of the solar

tachocline. The PV Freezing-in Law describes how the PV is frozen into the fluid. In β -plane
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model, the generalized PV that frozen into fluid is the potential vorticity PV ≡ ζ + f , where ζ is

the vorticity as defined, and f is the Coriolis parameter. This freezing-in of the PV is broken by

body forces, such as the Lorentz force, and by the viscosity. To illustrate how the PV freezing-in

law is broken, we first split the parameters into two parts, representing two-scale dependences.

The shorter length is the turbulence wavelength and the longer length is the scale over which we

perform the spatial average. Applying this mean field theory to Eq. 2.2 and 2.3 leads to:

D
Dt
〈ζ 〉= ∂

∂y
〈J̃zB̃y〉

ρ
+ν∇

2〈ζ 〉 6= 0. (2.4)

In this form, we can interpret PV density as a ‘charge density element’ (ζ ≡ ρPV ), floating in the

fluid threaded by stretched magnetic fields (see Figure 1.1).

We first consider the simple case where the large-scale magnetic field B0 is stronger than

the small-scale magnetic fields (i.e. |B̃2|/B2
0� 1). Here, the fluid turbulence is weak (restricted

by B0), and the tilt of the magnetic field lines are small, corresponding to a small magnetic Kubo

number. To construct the QL equations, we linearize Eq. 2.2 and 2.3:

∂

∂ t
ζ̃ + ũy

∂ 〈ζ 〉
∂y

+β ũy =−
B0

µ0ρ

∂ (∇2Ã)
∂x

+ν∇2ζ̃ (2.5)

∂

∂ t
Ã = B0ũy +η∇2Ã, (2.6)

and obtain the linear responses of vorticity and magnetic potential at wavenumber kx in the zonal

direction to be:

ζ̃k =−
(

i

ω + iνk2 +
(−B2

0
µ0ρ

) k2
x

ω+iηk2

)(
ũy

∂

∂y
〈ζ 〉+β ũy

)
,

Ãk =
ζ̃k

k2

( B0kx

−ω− iηk2

)
,

where k ≡ k2
x + k2

y . From these, the dispersion relation for the ideal Rossby-Alfvén wave follows:
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(
ω−ωR + iνk2

)(
ω + iηk2

)
= ω

2
A. (2.7)

Here, ωA is Alfvén frequency (i.e. ωA ≡ B0kx/
√

µ0ρ), and ωR is Rossby frequency (i.e.

ωR ≡−βkx/k2). We also derive the QL evolution equation for mean vorticity:

∂

∂ t
〈ζ 〉=− ∂

∂y

(
〈ũyζ̃ 〉+ 〈B̃y∇2Ã〉

µ0ρ

)
+ν∇

2〈ζ 〉. (2.8)

Using the Taylor identity, the averaged PV flux (〈Γ〉 ≡ 〈ũyζ̃ 〉+ 〈B̃y∇2Ã〉/µ0ρ) can be expressed

with two coefficients, the fluid and magnetic diffusivities (D f luid and Dmag):

∂

∂ t
〈ζ 〉=− ∂

∂y
〈Γ〉 ≡ − ∂

∂y

(
− (D f luid−Dmag)

∂

∂y
〈PV 〉

)
, (2.9)

Note two aspects of Eq. 2.9. One is that the anisotropy and inhomogeniety of vorticity flux (i.e.

∂

∂y〈ζ 〉) leads to the formation of zonal flow. For a not-fully-Alfvénized case (Dmag < D f luid),

zero PV transport occurs when ∂

∂y〈ζ 〉=−β . This states that β provides the symmetry breaking

necessary to define zonal flow orientation. The second aspect is the well-known competition

between Reynolds and Maxwell stresses that determines the total zonal flow production. These

two diffusivities are related to the Reynolds and Maxwell stress by:

D f luid
∂

∂y
PV =

∂

∂y
〈ũxũy〉 (2.10)

Dmag
∂

∂y
PV =

∂

∂y
〈B̃xB̃y〉

µ0ρ
. (2.11)

To calculate the turbulent diffusivities, we express terms ũyζ̃ and B̃y,k∇2Ãk in Eq. 2.8 as
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summations over components in the k space, i.e. ũyζ̃ = ∑k ũ∗y,kζ̃k. Thus, from Eq. 2.7 :

ũ∗y,kζ̃k =

( −i

ω + iνk2 +
−B2

0
µ0ρ

k2
x

ω+iηk2

)
|ũy|2

∂

∂y
PV, (2.12)

B̃∗y,k∇
2Ãk =

( −B2
0k2

x

ω2 +η2k4

)
ũ∗y,kζ̃k. (2.13)

Equation 2.13 links the magnetic and fluid diffusivities such that

Dmag
∂

∂y
PV =

1
µ0ρ

( B2
0k2

x

ω2 +η2k4

)
D f luid

∂

∂y
PV,

leading to

Dmag =
1

µ0ρ

(
B2

0k2
x

ω2 +η2k4

)
D f luid. (2.14)

Hence,

D f luid = ∑
k

Ck, f luid|ũy,k|2

Dmag =
1

µ0ρ
∑
k

Ck,mag|ũy,k|2,

where the phase coherence coefficients Ck are given by

Ck, f luid =
νk2 +

ω2
Aηk2

ω2+η2k4

ω2
(
1− ω2

A
ω2+η2k4

)2
+
(
νk2 +ω2

A
ηk2

ω2+η2k4

)2
, (2.15)

Ck,mag =
ω2

A
(

νk2

ω2+η2k4 +
ω2

Aηk2

(ω2+η2k4)2

)2

ω2
(
1− ω2

A
ω2+η2k4

)2
+
(
νk2 +ω2

A
ηk2

ω2+η2k4

)2
. (2.16)

Note that, in the term νk2 +ω2
Aηk2/(ω2 +η2k4) of Eq. 2.15, which defines the width of the

response function in time, the resistive and viscous damping rates ηk2 and νk2 should be taken as

representing eddy scattering (as for resonance broadening) on small scales. Also, notice that the

mean magnetic field modifies both PV diffusivities, via ω2
A contributions. Comfortingly, on one
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hand, we recover the momentum flux of 2D fluid turbulence on a β -plane when we let the large-

scale mean magnetic field vanish (B0 = 0). On the other hand, when the mean magnetic field

is strong enough (ωA� ωR), the fluctuations are Alfvénic. In this limit ω ∼ ωA� ηk2� νk2

(i.e. magnetic Prandtl number Pm� 1), we have D f luid ' Dmag and the vorticity flux vanishes,

i.e. Γ = 0+O
(
(ηk2−νk2

ωA
)2). This is the well-known ‘Alfvénization’ condition, for which the

Reynolds and the Maxwell stress cancel, indicating that the driving of the zonal flow vanishes

in the Alfvénized state. There, the MHD turbulence plays no role in transporting momentum.

Between these two extremes, we are interested in the case of the solar tachocline, where the

stretching of mean field by Rossby wave turbulence generates B̃ and the large-scale magnetic

field is not strong enough to Alfvénize the system, but remains nonnegligible (i.e. |B̃2|> B2
0 but

B0 6= 0). In this case, the large-scale field lines of the near-constant field will be strongly perturbed

by turbulence. Thus, the magnetic Kubo number is large, for any finite autocorrelation length.

Understanding the physics here requires a model beyond simple QL theory. Here we develop a

new, nonperturbative approach that we term an ‘effective medium’ approach. Zel’dovich [105]

gave a physical picture of the effect of magnetic fields with |B̃2| � B2
0. He interpreted the ‘whole’

strongly perturbed problem as consisting of a random mix of two components: a weak, constant

field and a random ensemble of magnetic cells, for which the lines are closed loops (∇ ·B = 0).

Assembling these two parts gives a field configuration of randomly distributed cells, threaded by

sinews of open lines (see figure 2.1). Wave energy can propagate along the open sinews and will

radiate to a large distance if the open lines form long-range connections. As noted above, this

system with strong stochastic fields cannot be described by the simple linear responses retaining

B0 only, since |B̃2| � B2
0

Thus, a ‘frontal assault’ on calculating PV transport in an ensemble of tangled magnetic

fields is a daunting task. Facing a similar task, Rosenbluth [78] suggested replacing the ‘full’

problem with one where waves, instabilities, and transport are studied in the presence of an

ensemble of prescribed, static, stochastic fields. Inspired by this idea, we replace the full model

with one where PV mixing occurs in an ensemble of stochastic fields that need not be weak
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— i.e. |B̃2|/B2
0 > 1 allowed. This is accomplished by taking the small-scale fields as spatially

uncorrelated (lac→ 0), i.e. with spatial coherence small. In simple terms, we replace the ‘full’

problem with one in which stochastic fields are static and uncorrelated, though possibly strong.

This way, the magnetic Kubo number remains small—Kumag = lac|B̃|/(∆⊥B0)< 1 — even though

|B̃2| � B2
0. By employing this ansatz, calculation of PV transport in the presence of stochasticity

for an ensemble of Rossby waves is accessible to a mean field approach, even in the large

perturbation limit. Based on this idea, we uncover several new effects including the crucial role

of the small-tangled-field (Bst) in the modification of the cross-phase in the PV flux and a novel

drag mechanism that damps flows. Together, these regulate the transport of mean PV [44]. We

stress again that these effects are not apparent from simple QL calculations.

We approach the problem with strongly perturbed magnetic fields (|B̃2| � B2
0) by consid-

ering an environment with stochastic fields (Bst) coexisting with an ordered mean toroidal field

(B0) of variable strength. The mean toroidal field is uniformly distributed on the β -plane, while

the stochastic component is a set of prescribed, small-scale fields taken as static. These small-

scale magnetic fields are randomly distributed, and the amplitudes are distributed statistically.

We order the magnetic fields and currents by spatial scales as:

potential field A = A0 + Ã+Ast

magnetic field B = B0 + B̃+Bst

magnetic current J = 0+ J̃+Jst, (2.17)

where J0 = 0 for B0 is a constant.

The waves are described hydrodynamically by:

stream function ψ = 〈ψ〉+ ψ̃

flow velocity u = 〈u〉+ ũ

vorticity ζ = 〈ζ 〉+ ζ̃ , (2.18)
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where, as before, the 〈 〉 is an average over the zonal scales (1/kzonal) and fast timescales. For

the ordering of wavenumbers of stochastic fields kst , Rossby turbulence kRossby, and zonal flows

kzonal , respectively, we take the scale of spatial average larger than that of Rossby waves. A

length scale cartoon is given in figure 2.2.

Random-field 
averaging regionRandom-field Rossby Wave

Zonal flow

Figure 2.2. Length scale ordering. The smallest length scale is that of the random field (lst). The
random-field averaging region is larger than the length scale of random fields but smaller than
that of the Rossby waves.

k

st�

Rossby wave Stochastic 
field

Zonal flow Stochastic-Field 
Averaging scale

avg�Rossby�zonal� MR�

Magnetic 
Rhines scale

Figure 2.3. Multi-scale Ordering. The Magnetic Rhines scale separates the regimes of large-
and small-length scale. MHD turbulences dominate the system on a smaller length scale and
is comprised of Alfévn waves and eddies. In this regime, wavenumbers k from high to low are
ordered as kst > kavg. On a larger length scale, however, Rossby waves dominate. Here, the scale
ordering from high to low wavenumber is: kRossby > kzonal .

Following the argument above, a model which circumvent the problem of simple quasi-

linear theory for this highly disordered system is presented. This is accomplished by considering
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the scale ordering. In the two-scale average method proposed [9], an average over an area is

performed, with a scale (1/kavg) larger than the scale of the stochastic fields (1/kst) but smaller

than the Magnetic Rhines scale [79] (kMR), and Rossby wavelength (kRossby). This average is

denoted as F ≡ ∫ dR2 ∫ dBst ·P(Bst,x,Bst,y) ·F , where F is arbitrary function, dR2 denotes integration

over the region, and P(Bst,x,Bst,y) is probability distribution function for the random fields. This

random-field average allows us to replace the total field due to MHD turbulence (something

difficult to calculate) by moments of a prescribed probability distribution function (PDF) of the

stochastic magnetic field. The latter can be calculated. Another ensemble average— over zonal

flow scales kzonal , denoted as bracket average 〈〉 ≡ 1
L
∫

dx 1
T
∫

dt—is conducted. Hence the scale

ordering is ultimately kst > kavg & kMR & kRossby > kzonal See figure 2.3 and 2.2, and also Tobias

et al. (2007) [95].

The novelty and utility of the random-field average method is that it allows the replace-

ment of the total field due to MHD turbulence (which is difficult to calculate) by moments of

the distribution of a static, stochastic magnetic field, which can be calculated. This is based

on the tacit assumption that the perturbation in magnetic fields on the Rossby scale has a neg-

ligible effect on the structure of the imposed random fields and its stress-energy tensor. Put

simply, (Btot)2 ' B2
st (i.e. first order correction term vanishes, upon averaging), where Btot is

the averaged total field, regulated by Rossby waves.

We apply random-field averaging to the vorticity equation first, so as to deal with the

nonlinear magnetic term. This yields

∂

∂ t
ζ −β

∂ψ

∂x
=−(B ·∇)∇2A

µ0ρ
+ν∇

2
ζ . (2.19)

However, we don’t apply the random-field average to the induction equation at this stage, as Ast

is static so that the induction equation for stochastic fields reduces to

∇
2Ast =

−1
η

(Bst ·∇)ψ. (2.20)
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We hold, nonetheless, the general induction equation for mean field, such that ∂

∂ t A0 = B0 ·∇ψ +

η∇2A0. Combining Eq. 2.19 and 2.20, we have

∂

∂ t
ζ −β

∂ψ

∂x
=

1
ηµ0ρ

∂

∂y
(B2

st,y
∂

∂y
ψ)− B0

µ0ρ

∂ (∇2A0)

∂x
+ν∇

2
ζ . (2.21)

Next, we consider the vorticity wave perturbation after applying the random-field average:

∂

∂ t
ζ̃ +β ũy + ũy

∂

∂y
ζ =

∂

∂y

B2
st,y

∂

∂yψ̃

ηρµ0
− B0

µ0ρ

∂ (∇2Ã0)

∂x
+ν∇

2
ζ̃ . (2.22)

Equation 2.22 is formally linear in pertubations and allows us to calculate the response of the

vorticity in the presence of tangled fields, namely

ζ̃k =

( −i

ω + iνk2 +
iB2

st,yk2
y

µ0ρηk2 +
−B2

0k2
x

µ0ρ(ω+iηk2)

)
ũy,k
( ∂

∂y
ζ +β

)
. (2.23)

The effective medium Rossby-Alfvén dispersion relation can be derived from this Eq. 2.23, and

is given by (
ω−ωR +

iB2
st,yk2

y

µ0ρηk2 + iνk2
)(

ω + iηk2
)
=

B2
0k2

x

µ0ρ
. (2.24)

This model [9] with its two-average method allows insights into the physics of how the evolution

of zonal flows is suppressed by disordered fields both via reduced PV flux (Γ) and by an induced

magnetic drag, i.e.
∂

∂ t
〈ux〉= 〈Γ〉−

1
ηµ0ρ

〈B2
st,y〉〈ux〉+ν∇

2〈ux〉. (2.25)

Here, 〈ux〉 is mean velocity in the zonal direction, 〈Γ〉 is the double-average PV flux, η is

resistivity, ρ is mass density, and ν is viscosity. Here 1
ηµ0ρ
〈B2

st,y〉 is the magnetic drag coefficient.

Several important results are obtained. First, stochastic fields suppress PV flux by
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reducing the PV diffusivity (DPV )

Γ =−DPV
( ∂

∂y
ζ +β

)
, (2.26)

where β is the Rossby parameter and the PV diffusivity can be written as

DPV = ∑
k
|ũy,k|2×

νk2 +(
B2

0k2
x

µ0ρ
) ηk2

ω2+η2k4 +
B2

st,yk2

µ0ρηk2(
ω− (

B2
0k2

x
µ0ρ

) ω

ω2+η2k4

)2

+

(
νk2 +(

B2
0k2

x
µ0ρ

) ηk2

ω2+η2k4 +
B2

st,yk2

µ0ρηk2

)2

.

(2.27)

Eq. (2.27) shows that strong mean-square stochastic field (B2
st) acts to reduce the correlation

of the vorticity flux, thus reducing PV mixing. This explains the Reynolds stress suppression

observed in simulation[9] (Fig. 1.6). Note that this reduction in Reynolds stress sets in for values

of B0 well below that required for Alfvénization (i.e. Alfvénic equi-partition 〈ũ2〉 ' 〈B̃2〉/µ0ρ).

Second, magnetic drag physics is elucidated via the mean-field dispersion relation for

waves in an inertial frame (β = 0), on scales l� k−1
avg,

(
ω +

iB2
st,yk2

y

µ0ρηk2 + iνk2
)(

ω + iηk2
)
=

B2
0k2

x

µ0ρ
. (2.28)

The drag coefficient χ ≡ B2
st,yk2

y/µ0ρηk2, emerges as approximately proportional to an effec-

tive spring constant/dissipation. The ‘dissipation’ and ‘drag’ effects suggest that mean-square

stochastic fields B2
st form an effective resisto-elastic network, in which the dynamics evolve. The

fluid velocity is redistributed by the drag of small-scale stochastic fields. Ignoring viscosity

(ν → 0), we have

ω
2 + i (χ +ηk2)︸ ︷︷ ︸

drag + dissipation

ω−
(

B2
st,yk2

y

µ0ρ
+

B2
0k2

x

µ0ρ

)
︸ ︷︷ ︸
effective spring constant

= 0. (2.29)
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Note that this is effectively the dispersion relation of dissipative Alfvén waves, where the

‘stiffness’ (or magnetic tension) is determined by both the ordered and the mean-square stochastic

field (B2
st). In practice, the latter is dominant, as B2

st ' RmB2
0 and Rm� 1. So, the ensemble

of Alfvénic loops can be viewed as an network of springs (Fig. 2.4). Fluid couples to network

elastic elements, thus exciting collective elastic modes. The strong elasticity, due to Alfvénic

loops, increases the effective memory of the system, thus reducing mixing and transport and

ultimately causes Reynolds stress decoherence.

Finally, this network is fractal and is characterized by a ‘packing factor’, which determines

the effective Young’s Modulus. It is important to note that the ‘stochastic elasticized’ effect is

one of increased memory (not one of enhanced dissipation) as in the familiar cases of turbulent

viscosity or resistivity.

Alfvénic loops Site-percolation Network

blob

Figure 2.4. Site-Percolation Network. Schematic of the nodes-links-blobs model (or SSdG
model, see [90, 14, 65]). This depicts the resisto-elastic medium formed by small-scale stochastic
fields.

2.2 Conclusion for the β -plane MHD in presence of stochas-
tic magnetic filed

In this Chapter (and presented in Chen & Diamond (2020)[9]), we have developed and

elucidated the theory of PV mixing and zonal flow generation, for models of Rossby–Alfvén

turbulence with two different turbulence intensities. The balance between Reynolds and Maxwell
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stress in a fully Alfvénized system where fluid and magnetic energy reach near equi-partition is

the conventional wisdom. Simulation results (Fig. 1.6), however, show that Reynolds stress is

suppressed by stochastic fields well before the mean field is strong enough to fully Alfvénize

the system [9]—-at which the magnetic field is strongly disordered. Our most novel model

considered the large fluctuation regime (〈B̃2〉/B2
0 > 1) — where the field is tangled, not ordered.

For this, we developed a theory of PV mixing in a static, stochastic magnetic field. It is striking

that this model problem is amenable to rigorous, systematic analysis yet yields novel insights

into the broader questions asked.

Our main results can be summarized as follows. First, we have defined the magnetic

Kubo number and demonstrated the importance of ensuring Ku� 1 for the application of QL

theory to a turbulent magnetized fluid. In this regime, we have derived the relevant QL model for

turbulent transport and production of jets and shown the utility of the critical damping parameter

in determining the transition between jet drive and suppression by the magnetized turbulence.

A striking result is that numerical experiments show how magnetic fields may significantly

reduce the Reynolds stresses, which drives jets, well before the critical mean field strength needed

to bring the Maxwell and Reynolds stresses into balance, i.e. before Alfvénization. This is

important and demonstrates that the magnetic field acts in a subtle way to change the transport

properties — indeed, even more subtle than was previously envisaged. The explanation of this

effect required the development of a new model of PV mixing in a tangled, disordered magnetic

field. This tractable model has Kumag < 1, because the tangled field is delta correlated and allows

the consideration of strong stochastic fields B2
st/B2

0 > 1. We use a ‘double average’ procedure

over random-field scales and mesoscales that allows treatment of the wave and flow dynamics in

an effective resistive-elastic medium.

We identify two principle effects as the crucial findings:

1. A modification (reduction) of the cross-phase in the PV flux by the mean-square field B2
st .

This is in addition to ω2
A effects, proportional to B2

0, which appears in QL theory. Note that
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this is not a fluctuation quench effect.

2. A magnetic drag, which is proportional to 〈B2
st〉, on the mean zonal flow. The scaling of

〈B2
st〉/η resembles that of the familiar magnetic drag in the ‘electrostatic’ limit, with B2

st

replacing B2
0. Note that the appearance of such a drag is not surprising, as stochastic fields

are static, so ∂

∂ t Ast → 0.

Finally, in the specific context of modeling tachocline formation and dynamics, this

analysis yields a tractable model of PV transport, which can incorporate magnetic effects into

hydrodynamic models. In this Chapter, we ignore the perturbation of random fields B̃ (see

Appendix I). Here B̃2 can be replaced by 〈B2
st〉 and be estimated using the Zel’dovich value

B2
st ∼ B2

0Rm. The model suggests that the ‘burrowing’ due to meridional cells that drives

tachocline formation will be opposed by relaxation of PV gradients (not shears!) and the resisto-

elastic drag. The magnetic-intensity-induced phase modification will reduce PV mixing relative

to the prediction of pure hydrodynamics.

These results suggest that turbulent momentum transport in the tachocline is suppressed

by the enhanced memory of stochastically induced elasticity. This leaves no viscous or mixing

mechanism to oppose ‘burrowing’ of the tachocline due to meridional cells driven by baroclinic

torque ∇p×∇ρ[60]. This finding suggests that the Spiegel & Zahn (1992) [91] scenario of

burrowing opposed by latitudinal viscous diffusion, and the Gough & McIntyre (1998) [31]

suggestion of that PV mixing opposed burrowing both fail. Finally, by process of elimination, the

enhanced memory-induced suppression of momentum transport allows the Gough & McIntyre

(1998) [31] suggestion that a residual fossil field in the radiation zone is what ultimately limits

tachocline burrowing. Thus, it seems fair to comment that neither the model proposed by Spiegel

& Zahn (1992) [91], nor that by Gough & McIntyre (1998) [31] is fully “correct”. The truth here

is still elusive, and ‘neither pure nor simple’ (apologies to Oscar Wilde).
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2.3 Implications for the solar tachocline

The picture discussed in this paper is analogous to that of dilute polymer flows, in

which momentum transport via Reynolds stresses is reduced, at roughly constant turbulence

intensity, leading to drag reduction. The similarity of the Oldroyd-B model of polymeric liquids

and MHD is well known [69, 70, 4, 73, 67, 6]. A Reynolds stress phase coherence reduction

related to mean-square polymer extension is a promising candidate to explain the drag reduction

phenomenology.

More generally, this paper suggests a novel model of transport and mixing in 2D MHD

turbulence derived from considering the coupling of turbulent hydrodynamic motion to a fractal

elastic network [7, 76, 74, 75, 58, 3]. Both the network connectivity and the elasticity of the

network elements can be distributed statistically and can be intermittent and multiscale. These

would introduce a packing fractional factor to Ck in the cross-phase, i.e. 〈B̃2〉 → p〈B̃2〉 in Ck,

where 0 < p < 1 is probabilities of sites. This admittedly crude representation resembles that

of the mean field limit for ‘fractons’ [2]. Somewhat more sophisticated might be the form

〈B̃2〉 → (p− pc)
γ |B̃|2ε , where pc is the magnetic activity percolation threshold, and γ , ε are

scaling exponents to be determined [92]. We also speculate that the back-reaction (at high

Rm) of the small-scale magnetic field on the fluid dynamics may ultimately depend heavily on

whether or not the field is above the packing ‘percolation threshold’ for long-range Alfvén wave

propagation. Such long-range propagation would induce radiative damping of fluid energy by

Alfvénic propagation through the stochastic network.

We also note that this study has yielded results of use in other contexts, most notably that

of magnetized plasma confinement where the field is stochastic, as for a tokamak with resonant

magnetic perturbations (RMP). Indeed, recent experiments [51, 66, 86] have noted a reduction

in shear flow generation in plasmas with RMP. This reduction causes an increase in the low/high

confinement regime power threshold.

Chapter 2, in full, is a reprint of the material as it appears in Chang-Chun Chen & Patrick
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H. Diamond, The Astrophysical Journal 892, 24( 2020). The dissertation author was the primary

investigator and author of this paper.
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Chapter 3

The Stochastic Field on Momentum Trans-
port in Fusion Devices

This section focuses on the effect of stochastic fields on zonal flow suppression, such as

in the case of RMPs at the edge of tokamak. Experimental results shows that pre-L-H transition

Reynolds stress bursts drop significantly when RMPs are applied to the edge of DIII-D [50].

The power threshold for L-H transition increases, as the normalized intensity of radial RMPs

(δBr/B0) increases [54, 30, 46, 84, 64, 85, 39, 86]. This paper aims to shed light on these

two phenomena, and to address the more general question of Reynolds stress decoherence in a

stochastic magnetic field.

To begin, we explore the timescale ordering for the physics. Consider a generalized

diffusivity D0

D0 = Re{∑
k

∫
dω

k2
θ

B2
0
|φkω |2

i
ω− vAkz + iDk2} (3.1)

where the D is a spatial diffusivity under the influence of stochastic field, defined as D≡ vADM,

and vA ≡ B0/
√

µ0ρ is Alfvén speed[106]. As discussed below, vA appears as the characteristic

velocity for signal propagation along the stochastic field, since zonal flows follow from the

need to maintain ∇ · J = 0, in the face of ambipolarity breaking due to polarization fluxes. Here

DM ' lacb2 (hearafter b2 ≡ 〈B2
st,⊥〉/B2

0) is the magnetic diffusivity, first derived by Rosenbluth

[82]. Here, the bracket average is a stochastic ensemble average 〈〉 ≡ ∫ dR2 ∫ dBst ·P(Bst,x,Bst,y) ·F .

But here dR2 is an averaging area (at scale 1/kst) over y- and z- direction. |φkω |2 is the electric
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potential spectrum, such that

|φ |2kω = φ
2
0 S(k)

|∆ωk|
(ω−ω0,k)2 +(∆ωk)2 , (3.2)

where S(k) is the k-spectrum of the potential field, ω0,k is the centroid of the frequency spectrum,

and |∆ω| is the natural linewidth of potential field. Performing the frequency integration, we

have

D0 = Re{∑
k

φ 2
0 S(k)

∫
dω{ i

(ω−ω0,k)+i|∆ωk|
i

ω−vAkz+iDk2}

= Re{∑
k

φ 2
0 S(k)

−2πi
ω0,k+i|∆ωk|−vAkz+iDk2}. (3.3)

Now consider a Lorentzian k-spectrum

S(k) =
S0

(k− k0)2 +(∆k‖)2 . (3.4)

We have

D0 = Re{∫ dk‖φ 2
0

S0
(k−k0)2+(∆k‖)2 · −2πi

ω0,k−vAkz+i|∆ωk|+iDk2}

' Re
(

S0φ 2
0 (2π)2 i

ω0,k0−k0,zvA+i|∆k‖|vA+i|∆ωk0 |+iDk2
⊥

)
, (3.5)

assuming |∆k‖| � k⊥ and ∂∆ω/∂k ' 0. The ordering of these broadenings (|∆k‖|vA, |∆ωk0|,

and Dk2
⊥) in the denominator is the key to quantifying stochastic field effects. The first term,

|∆k‖|vA, is the bandwidth of an Alfvén wave packet excited by drift-Alfvén coupling. Here

vA|∆k‖|. vA/Rq, where R is major radius and q≡ rBt/RBp is the safety factor. The bandwidth

|∆k‖|vA is a measure of the dispersion rate of an Alfvén wave packet. The second term is the

rate of nonlinear coupling or mixing—due to ambient electrostatic micro-instability |∆ωk0 | ≡

∆ω ' ω∗ = kθ ρsCs/Ln, where the ω∗ is drift wave turbulence frequency, ρs is gyro-radius, Cs is
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sound speed, and Ln is density scale length. ∆ω is comparable to k2
⊥DGB, where DGB ≡ω∗/k2

⊥ '

ρ2
s Cs/Ln is the gyro-Bohm diffusivity (for kθ ρs ∼ 1). The third is the stochastic field scattering

rate Dk2
⊥' k2

⊥vADM. Ultimately, we will show that k2
⊥vADM & ∆ωk (or vADM >DGB) is required

for Reynolds stress decoherence (see Figure 3.1). In practice, this occur for k2
⊥vADM & vA|∆k‖|,

i.e. Kumag' 1 is required. The condition k2
⊥vADM >∆ωk requires that stochastic field broadening

exceeds the natural turbulence linewidth [86], so that k2
⊥vADM > ∆ω . Satisfying this requires

b2 >
√

βρ2
∗ε/q∼ 10−7, where lac ' Rq, ε ≡ Ln/R∼ 10−2, β ' 10−2∼−3, and normalized gyro-

radius ρ∗ ≡ ρs/Ln ' 10−2∼−3. It is believed that b2 at the edge due to RMP is∼ 10−7 for typical

parameters; hence, the stochastic broadening effect is likely sufficient to dephase the Reynolds

stress. Following from this condition, we propose a dimensionless parameter α ≡ b2q/ρ2
∗
√

βε—

defined by the ratio k2
⊥vADM/∆ωk—to quantify the broadening effect. The increment in L-I and

I-H power thresholds as α varies are explored using a modified Kim-Diamond L-H transition

model [47] in Sec. 3.2. We also give a physical insight into stress decoherence by showing how

stochastic fields break the ‘shear-eddy tilting feedback loop’, which underpins zonal flow growth

by modulational instability.

ω
Dk2⊥ΔωvA |Δk∥ |kθΔx

∂
∂x

uy

Stochastic 
broadening

Natural 
linewidth

Alfvénic 
DispersionShear flow rate

Figure 3.1. Timescale ordering for drift-wave turbulence in fusion devices. We are interested
in a regime where stochastic field effect becomes noticeable, which requires ∆ω < Dk2

⊥. The
comparison between Alfvénic dispersion rate vA|∆k‖| and stochastic broadening rate Dk2

⊥ gives
a magnetic Kubo number Kumag ' 1.

3.1 Model Setup

We construct a model in Cartesian (slab) coordinates—x is radial, y is poloidal, and z is

toroidal direction, in which the mean toroidal field lies (Fig. 3.2). A current flows in the toroidal
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direction, producing a mean poloidal field. In contrast to the tachocline, here the magnetic field is

3D, and stochasticity results from the overlap of magnetic islands located at the resonant k ·B = 0

surfaces. The stochasticity is attributed to the external RMP field, and typically occurs in a layer

around the separatrix. The distance between neighboring magnetic field trajectories diverges

exponentially, as for a positive Lyapunov exponent. Stochastic fields due to RMPs resemble

Zel’dovich ‘cells’ [105] (Fig. 2.1), lying in x− y plane with a mean toroidal field (on z-axis),

threading through perpendicularly. Of course, once overlap occurs, the coherent character of

the perturbations is lost, due to finite Kolmogorov-Sinai entropy (i.e. there exists a positive

Lyapunov exponent for the field). In this case, the magnetic Kubo number is modest Kumag . 1.

Mean magnetic !eld  B0

 Bst,x

 Bst,y

 z

 x

 y

Magnetic islands overlapping forms stochastic !elds

vortices

(radial)

(toroidal)
(poloidal)

Figure 3.2. Magnetic fields at the edge of tokamak. RMP-induced stochastic fields (black loops)
lie in radial (x) and poloidal (y) plane. Mean toroidal field is treading through stochastic fields
perpendicular in z-direction (blue arrows).

We start with 4 field equations—

1. Vorticity evolution—∇ · J = 0

∂

∂ t
ζz +uy

∂

∂y
ζz +uz

∂

∂ z
ζz =

1
ρ

B0
∂

∂ z
Jz +

1
ρ

Bx,st
∂

∂x
Jz +

2κ

ρ

∂

∂y
P, (3.6)
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where ζ is the vorticity, uy is E×B shear flow, uz is intrinsic rotation, and κ is curvature.

2. Induction evolution

∂

∂ t
Az +uy

∂

∂y
Az =−

Bx,st

B0

∂

∂x
φ − ∂

∂ z
φ +η∇

2Az, (3.7)

where φ is electric potential field (ζ ≡ ∇× v = 1
B0

∇2φ ).

3. Pressure evolution

∂

∂ t
p+(u ·∇)p =−γ p(∇ ·u), (3.8)

where γ is the adiabatic index .

4. Parallel acceleration

∂

∂ t
uz +(u ·∇)uz =−

1
ρ

∂

∂ z
p, (3.9)

where p is pressure.

3.2 Calculation and Results

We define a Elsässer-like variable f±,kω ≡ φ̃kω ± vAÃkω , and combine Eq. (3.6) and (3.7)

to obtain

(−iω + 〈uy〉iky) f±,kω ± vA(ikz + ik j
B j,st

B0
) f±,kω

=
ũx

k2
∂

∂x
∇

2〈φ〉+ 2κ

ρ
iky(

B0

−k2 )p̃≡ S f ,

(3.10)

where S f is the source function for f±,kω . Eq. 3.10 is the evolution equation for the Elsässer

response to a vorticity perturbation. Note that this response is defined by

1. Propagation along the total magnetic field, i.e. ikz + ik jB j,st/B0. Note this includes

propagation along the wandering magnetic field component.
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2. Advection by mean flow iky〈uy〉.

3. Finite frequency iω .

Hence, the Elsässer response for f±,kω is be obtained by integrating along trajectories of

total magnetic field lines (including perturbations), i.e.

f±,kω =
∫

dτei(ω−〈uy〉ky∓vAkz)τe∓ivA
∫

dτ ′(
Bi,st
B0

ki)×S f (3.11)

Integration along the perturbed field trajectory can be implemented using the stochastic average

over an scale (1/kst)

e∓ivA
∫

dτ ′(
Bi,st
B0

ki)→ 〈e∓ivA
∫

dτ ′(
Bi,st
B0

ki)〉, (3.12)

where the bracket denotes an average over random radial excursions δxi =
∫

dτvABi,st/B0. This

yields the Elsässer response

〈 f±,kω〉=
∫

dτei(ω−〈uy〉ky∓vAkz)τ〈e∓ivA
∫

dτ ′(
Bi,st
B0

ki)〉×S f , (3.13)

where i, j are indexes for perpendicular components and Dk2 = Dxk2
x +Dyk2

y and M f is the

propagator. Here, 〈e∓ivA
∫

dτ ′(
Bi,st
B0

ki)〉 is set by the diffusivity tensor D = v2
A
∫

dτ”b2
j,st(τ”)

so

〈e∓ivA
∫

dτ ′(
Bi,st
B0

ki)〉 ' 1− kiDi jk jτ ' e−k·D·kτ , (3.14)

where τ is the decorrelation time due to field stochasticity, such that τ ' ∫ dτ” ' lac/vA. We

assume no correlation between x- and y-direction of stochastic field (i.e. and 〈Bx,stBy,st〉 = 0)

and 〈Bi,st〉 = 0. Hence, only diagonal terms of D survive (i.e. Di j = δi jvAlacb2
i ). A number

of important comments are in order here. First, D ' vADM, indicating that vorticity response

decorrelation occurs by Alfvénic pulse diffusion along wandering magnetic fields. This is a

consequence of the fact that PV (or polarization charge) perturbations (which determine the PV or

polarization charge flux—i.e. the Reynolds force) are determined via ∇ · J = 0, the characteristic
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signal speed for which is vA. Second, vADM is actually independent of B0 and is a set only by

b2. To see this, observe that b2 ≡ 〈B2
st〉/B2

0, vA = B0/
√

µ0ρ , and lac = Rq. Thus, D ∝ b2 reflects

the physics that decorrelation occurs due to pulses traveling along stochastic fields, only. In this

respect, the result here closely resembles the 2D case (i.e. β -plane MHD in Chapter 2). Third,

vA for the mean field enters only via the linear vorticity response—which is used to compute the

vorticity flux—and thus the Reynolds force.

Now we have the averaged Elsässer response

〈 f±,kω〉=
i

(ω−〈uy〉ky∓ vAkz)+ iDk2 ×S f ≡M f S f , (3.15)

where Dk2 = Dxk2
x +Dyk2

y . And M f is a propagator defined as

M f =
1
2

(
i

(ωsh− vAkz)+ iDk2 +
i

(ωsh + vAkz)+ iDk2

)
, (3.16)

where ωsh ≡ ω−〈uy〉ky is the shear flow Doppler shifted frequency. From Eq. (3.10), we have

the fluctuating vorticity

ζ̃ =
1

B0
∇

2
φ̃ = ∑

kω

Re[M f (
−k2

B0
S f )] (3.17)

Hence, the response of vorticity (ζ̃ ) to the vorticity gradient and curvature term in the presence

of stochastic fields is:

ζ̃ = ∑
kω

[
Re(M f )(−

ũx,kω

B0

∂

∂x
∇

2〈φ〉)+Re
(
ikyM f

2κ

ρ
p̃kω

)]
(3.18)

The first term determines the diffusive flux of vorticity. The second sets the off-diagonal stress, or

residual stress, that depends on the pressure perturbation and the curvature of the mean magnetic

field. We calculate the residual stress term in Eq. (3.18) by using another set of Elsässer-like

variables g±,kω ≡ p̃kω

ρC2
s
± ũz,kω

Cs
, defined from Eq. (3.8) and (3.9), and follow the approach discussed
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above. This yields p̃kω = Mgũx
∂

∂x〈p〉 and Mg is defined as

Mg =
1
2

(
i

(ωsh−Cskz)+ iDsk2 +
i

(ωsh +Cskz)+ iDsk2

)
' i

ωsh
. (3.19)

where Ds≡CsDM (for pressure decorrelation rate τc = lac/Cs) is the diffusivity due to an acoustic

signal propagating along stochastic fields. Notice that p̃ is the pressure perturbation set by the

acoustic coupling. Hence, it has slower speed Cs � vA (or β � 1) as compared to Alfénic

coupling. An ensemble average of total vorticity flux yields

〈ũxζ̃ 〉=−∑
kω

|ũx,kω |2Re(M f )
∂

∂x
〈ζ 〉

+∑
kω

[
|ũx,kω |2Re(ikyM f Mg)

2κ

ρ

∂

∂x
〈p〉
]

︸ ︷︷ ︸
Residual Stress

.
(3.20)

Notice that Dsk2 'CsDMk2. Hence, the broadening effect of random acoustic wave propagation

itself is negligible as compared to the natural linewidth, since the plasma β � 1. Now, we have

〈ũxζ̃ 〉=−DPV
∂

∂x
〈ζ 〉+Fresκ

∂

∂x
〈p〉, (3.21)

where DPV ≡ ∑
kω

|ũx,kω |2Re(M f ) is PV diffusivity, and Fres ' ∑
kω

−2ky
ωshρ

DPV,kω is the residual stress.

Notice that there is no parity issue lurking in the term 2ky/ωshρ since 2ky/ωshρ ∝ 2��ky/��kyρ ∝ 2/ρ

(i.e. even) for ky〈uy〉 � ω ' ω∗. By using the Taylor Identity[93], we rewrite the PV flux as

Reynolds force 〈ũxζ̃ 〉= ∂

∂x〈ũxũy〉. In the limit of the DPV and Fres slowly varying as compared

with vorticity 〈ζ 〉 and pressure 〈p〉, respectively, the poloidal Reynolds stress is

〈ũxũy〉=−DPV
∂

∂x
〈uy〉+Fresκ〈p〉, (3.22)
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where the effective viscosity is

DPV = ∑
kω

|ũx,kω |2
vAb2lack2

ω2
sh +(vAb2lack2)2 . (3.23)

This indicates that both the PV diffusivity and residual stress (and thus the Reynolds stress) are

suppressed as the stochastic field intensity b2 increases, so that vAb2lack2 exceeds ωsh. This

result is consistent with our expectations based upon scaling and with the Reynolds stress

burst suppression in presence of RMPs, observed in Kriete et al. [50]. This model is build on

gyro-Bohm scaling and hence the stochastic dephasing effect is insensitive to the details of the

turbulence mode (e.g. ITG, TEM,. . . etc.), within that broad class.

Physical insight into the physics of Reynolds stress decoherence can be obtained by

considering the effect of a stochastic magnetic field on the ‘shear-eddy tilting feedback loop’.

Recall that the Reynolds stress is given by

〈ũxũy〉=−∑
k

|φ̃k|2
B2

0
〈kykx〉. (3.24)

Thus, a non-zero stress requires 〈kykx〉 6= 0, i.e. a spectrally averaged wave vector component

correlation. This in turn requires a spectral asymmetry. In the presence of a seed shear, kx tends

to align with ky, producing 〈〉 6= 0 (Fig. 3.3). To see this, observe that Snell’s law states

dkx

dt
=−∂ (ω0,k + kyuy)

∂x
' 0− ∂ (kyuy)

∂x
. (3.25)

So, to set a non-zero phase correlation 〈kykx〉 6= 0, we take kx ' k(0)x − ky
∂ 〈uy〉

∂x τc, where τc is a

ray scattering time that limits ray trajectory time integration. Ignoring k(0)x , we then find

〈ũxũy〉 ' 0+∑
k

|φ̃k|2
B2

0
k2

y
∂ 〈uy〉

∂x
τc,k. (3.26)

Note that the existence of correlation is unambiguous, and the Reynolds stress is manifestly non-
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zero. Here, eddy tilting (i.e. kx evolution) has aligned wave vector components. Once 〈uxuy〉 6= 0,

flow evolution occurs due to momentum transport. Then, flow shear amplification further

amplifies the Reynolds stress, etc. This process constitutes the ‘shear-eddy tilting feedback loop’,

and underpins modulational instability amplification of zonal shears. Central to shear-eddy

tilting feedback is the proportionality of stress cross-phase to shear. However, in the presence of

stochastic fields, the correlation 〈kxky〉 is altered. To see this, consider drift-Alfén turbulence, for

which

ω
2−ω∗ω− k2

‖v
2
A = 0. (3.27)

Let ω0 be the frequency of the drift wave roots. Now, let k‖ = k(0)‖ + k⊥ · (Bst,⊥/B0) due to

stochastic field wandering, and δω the corresponding ensemble averaged correction to ω0—i.e.

ω = ω0 +δω . After taking an ensemble average of random fields from Eq. (3.27), we obtain

〈δω〉 ' v2
A(2k‖

〈Bst,⊥〉
B0
· k⊥+ 〈(

Bst,⊥
B0
· k⊥)2)〉/ω0, where 〈Bi,st〉= 0 so the first term vanishes. The

ensemble averaged frequency shift is then

〈δω〉 ' 1
2

v2
A

ω0
b2k2
⊥. (3.28)

Here, 〈ω0〉 ' ω∗, corresponding to the drift wave. Note that δω ∝ 〈B2
st〉 is independent of B0,

except for ω0. Thus, in the presence of shear flow, the Reynolds stress becomes

〈ũxũy〉 '∑
k

|φ̃k|2
B2

0
(k2

y
∂ 〈uy〉

∂x
τc,k +

1
2

ky
v2

Ak2
⊥

ω0

∂b2

∂x
τc,k). (3.29)

This indicates that for ∂ 〈uy〉
∂x <

v2
Ak2
⊥

ω0
∂b2

∂x , the shear-eddy tilting feedback loop is broken, since the

〈kxky〉 correlation is no longer set by flow shear. In practice, this requires b2 & 10−7, as deduced

above.

We modify a well-known predator-prey model of the L-H transition, the Kim-Diamond

model [47] to include the effects of stochastic fields. The Kim-Diamond model is a zero-

dimensional reduced model, which evolves fluctuation energy, Reynolds stress-driven flow

46



time

eddy

shear flow

Figure 3.3. Shear-eddy tilting feedback loop. The E×B shear generates the 〈kxky〉 correlation
and hence support the non-zero Reynolds stress. And the Reynold stress, in turns, modifies the
shear via momentum transport. Hence, the shear flow reinforce the self-tilting.

shear, and the mean pressure gradient. As heat flux is increased, a transition from L-mode to

Intermediate phase (I-phase) and to H-mode occurs. Here, we include the principal stochastic

field effect—Reynolds stress decoherence. This is quantified by the dimensionless parameter

α ≡ qb2/
√

βρ2
∗ε . The aim is to explore the changes in L-H transition evolution (i.e. power

threshold increment) due to magnetic stochasticity. This dimensionless parameter α quantifies

the strength of stochastic dephasing relative to turbulent decorrelation. As shown in the previous

paragraph, the E×B shear feedback loop that forms the zonal flow is broken by the stochastic

fields. Hence, the modification enters the shear decorrelation term in the turbulence (ξ ) evolution,

the corresponding term in the zonal flow energy (v2
ZF ) evolution, and the pressure gradient (N )

evolution. The third term is smaller by
√

β (i.e. α → α
√

β ), due to the fact that acoustic wave

scatting is what causes decoherence in the pressure evolution. A factor 1/(1+ cα) captures the

modification due to the effect of stochastic suppression effect, where c a constant. The modified
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Kim-Diamond model becomes

∂ξ

∂ t = ξN −a1ξ 2−a2(
∂ 〈uy〉

∂x )2ξ − a3v2
ZFξ · 1

(1+a4α)︸ ︷︷ ︸
Reynolds stress decoherence

(3.30)

∂v2
ZF

∂ t = a3v2
ZFξ · 1

(1+a4α)︸ ︷︷ ︸
Reynolds stress decoherence

−b1v2
ZF (3.31)

∂N
∂ t =−c1ξN · 1

(1+a4α
√

β )︸ ︷︷ ︸
turbulent diffusion of pressure

−c2N +Q, (3.32)

where ai, bi, and ci (a1 = 0.2, a2 = 0.7, a3 = 0.7, a4 = 1, b1 = 1.5, c1 = 1, c2 = 0.5,
√

β=0.05)

are model-dependent coefficients, and Q is the input power.

We find that stochastic fields raise the L-I and I-H transition power thresholds, linearly in

proportion to α (Fig. 3.5). And recall that α is proportional to stochastic fields intensity b2 (Fig.

3.4). This is a likely candidate to explain the L-H power threshold increment in DIII-D [86].

We are also interested in stochastic field effects on the toroidal Reynolds stress 〈ũxũz〉,

which determines intrinsic toroidal rotation. Consider toroidal Eq. (3.9) with the stochastic fields

effect ∂

∂ z =
∂

∂ z
(0)

+b ·∇⊥. We have

∂

∂ t
〈uz〉+

∂

∂x
〈ũxũz〉=−

1
ρ

∂

∂x
〈bp̃〉, (3.33)

The second term on the LHS is the toroidal Reynold stress 〈ũrũz〉. The RHS contains the 〈bp̃〉

the kinetic stress. Both of these terms can be dephased by stochastic fields, but the dephasing of

the former is of primary importance. In the context of intrinsic rotation, we follow the method

for the derivation of decoherence of the poloidal residual stress—i.e. using Elässer-like variables

g±,kω ≡ p̃kω

ρC2
s
± ũz,kω

Cs
from Eq. (3.8) and (3.9). The only difference from the previous residual

stress calculation is the presence term of ∂

∂x〈uz〉, and hence the source of toroidal stress becomes
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Sg,± ≡− ũx,kω

ρC2
s

∂

∂x〈p〉∓
ũx
Cs

∂

∂x〈uz〉. We find ũz,kω = Mg,−Cs, where Mg,− is a propagator such that

Mg,− =
i
2
( Sg,+

(ωsh−Cskz)+ iDsk2 −
Sg,−

(ωsh +Cskz)+ iDsk2

)
, (3.34)

Noted that when ∂

∂x〈uz〉 = 0, the propagator Mg,− reduces to Mg. Thus, the toroidal Reynold

stress is

〈ũxũz〉= ∑
kω

|ũx,kω |2
[ −2Dsk2

ω2
sh +(2Dsk2)2

∂ 〈uz〉
∂x

+
−2Dsk2

ω2
sh +(2Dsk2)2

kz

ωshρ

∂ 〈p〉
∂x

]
.

(3.35)

The first term in RHS contains the turbulent viscosity (νturb), which we define as

νturb ≡∑
kω

|ũx,kω |2
2Dsk2

ω2
sh +(2Dsk2)2

= ∑
kω

|ũx,kω |2
2Csb2lack2

ω2
sh +(2Csb2lack2)2 .

(3.36)

This turbulent viscosity has a form similar to DPV in Eq. (3.23). However, decorrelation of νturb

is set by Cs while that of DPV is set by vA. Thus, decoherence effects here are weaker. The

second term in Eq. (3.35) contains the toroidal residual stress (Fz,res)

Fz,res ≡∑
kω

(
−kz

ωshρ
)|ũx,kω |2

(2Dsk2)

ω2
sh +(2Dsk2)2 ∼∑

kω

−kz

ωshρ
νturb,kω . (3.37)

Notice that non-zero value of Fz,res requires symmetry breaking (i.e. 〈kzky〉 6= 0) since kz
ωshρ

∝
kz
ky

.

Thus, a symmetry breaking condition—non-zero 〈kzky〉—must be met for finite residual toroidal

residual stress (Fz,res) . Here, 〈kzky〉 must now be calculated in the presence of the stochastic

field. The details of this calculation involve determining the interplay of stochastic field effects

with spectral shifts (i.e. symmetry breaking by E×B shear) and inhomogeneities (i.e. spectral

symmetry breaking by intensity gradient). This will involve competition between the radial
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scale length of stochastic fields and the scales characteristic of the spectral shift (induced by

E×B shear) and the spectral intensity gradient. This detailed technical study is left for a future

publication. We rewrite the toroidal stress as

〈ũxũz〉=−νturb
∂

∂x
〈uz〉+Fz,res

∂

∂x
〈p〉, (3.38)

which has similar form to that of poloidal Reynolds stress in Eq. (3.22). This shows that

stochastic fields reduce the toroidal stress and hence slow down the intrinsic rotation. However,

from Eq. (3.36) and (3.37), the stochastic suppression effect on toroidal stress and residual stress

depends on CsDM (not vADM), and so is weaker than for zonal flows.

3.3 Conclusion for Drift-Wave Turbulence in Fusion Devices

RMPs are applied to the edge of tokamak plasma to mitigate Edge Localized Modes

(ELMs), which produce unacceptably high transient heat loads on plasma-facing components.

The ‘cost’ of this benefit is an increase in the Low to High confinement mode transition (L-H

transition) threshold power, as observed with RMPs. Because several studies suggest that the L-H

transition is triggered by edge shear flows, it implies that the transition dynamics are modified

by the effects of stochastic fields on shear flow evolution. Stochasticity results from k ·B = 0

resonance overlap, and field line separations diverge exponentially. And the magnetic Kubo

number is modest. Hence, a key question is the effect of stochastic fields on self-generated shear

flows. In this chapter, the system is the L-mode tokamak edge plasma, in the presence of a

stochastic magnetic field induced by external RMP coils. We showed that the ‘shear-eddy tilting

feedback loop’ is broken by a critical b2 intensity, and that k2
⊥vADM characterizes the rate of

stress decoherence. Note that the Alfvén speed follows from charge balance, which determines

Reynolds stress. A natural threshold condition for Reynolds stress decoherence emerges as

k2
⊥vADM/∆ω > 1. In turn, we show that this defines a dimensionless ratio α , which quantifies

the effect on zonal flow excitation, and thus power thresholds. α ' 1 occurs for b2 ' 10−7,
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consistent with stochastic magnetic field intensities for which a significant increment in power

threshold occurs. Note that this scaling is somewhat pessimistic (i.e. ρ−2
∗ ).

3.4 Future work for the drift-wave turbulence in presence of
stochastic fields

This study has identified several topics for future work. These include developing a

magnetic stress—energy tensor evolution equation, for representing small-scale fields in real

space. Fractal network models of small-scale magnetic field are promising in the context of

intermittency. A better understanding of stochastic field effects on transport for Kumag ≥ 1 is

necessary as a complement to our Kumag ≤ 1 model-based understanding. For MFE plasmas, an

1D model for the L-H transition evolution is required. This study will introduce a new length scale

(M. Jiang & W. Guo et al. in press), which quantifies the radial extent of the stochastic region.

Finally, the bursty character of pre-transition Reynolds work, suggests that a statistical approach

to the transition is required. The challenge here is to identify the physics of the noise and flow

bursts, and how the presence of stochasticity quenches them. The stochasticity-induced change

in ‘shear-eddy tilting feedback loop’ discussed herein is a likely candidate for the quenching of

the noise and flow burst.

Chapter 3, in full, is a reprint of the material as it appears in Chang-Chun Chen, Patrick

H. Diamond, Rameswar Singh, and Steven M. Tobias, Physics of Plasmas 28, 042301 (2021).

The dissertation author was the primary investigator and author of this paper.
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Figure 3.4. Modified Kim-Diamond model. (a) Turbulent intensity ξ . (b) Zonal flow energy
v2

ZF . (c) Pressure gradient N evolution with increasing input power Q. Dotted lines indicate L-I
transitions, dashed lines indicate I-H transitions. As we increase the mean-square stochastic field
(b2), L-I and I-H transitions power threshold shift to the right, i.e. from b2/ρ2

∗
√

β = 0 (blue) to
0.6 (green).

52



0 0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8

0.9

1
 
Linear:  y = 0.2131*x + 0.4875

0 0.5 1 1.5 2

1.2

1.3

1.4

1.5

1.6

1.7

1.8
 
Linear:  y = 0.2421*x + 1.224

 (a)

 (b)

Figure 3.5. Power threshold increments in modified Kim-Diamond model. (a) L-I transition
power threshold increment. (b) I-H transition power threshold increment. Mean-square stochastic
fields (b2) shift L-H and I-H transition thresholds to higher power, in proportional to b2/ρ2

∗
√

β .
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Chapter 4

Ion Heat, Parallel Momentum Transport
and the Hybrid Diffusivity

Transport in a stochastic field has long been recognized as a fascinating though complex

problem. It is one of the classic ‘paradigm problems’ of magnetic fusion physics and has

stimulated the writing of many well-known papers, most notably Rosenbluth et. al 1966 [82] and

Rechester & Rosenbluth1978 [77]. The bulk of previous work on the subject is concerned with

electron thermal transport in a stochastic magnetic field [43, 87, 38, 68]—this is on account

of the tiny electron inertia, which is thought to allow long-distance electron streaming along

wandering field lines. However, the more recent awareness of the need to achieve both good

confinement and good power handling (and boundary control) has driven a resurgence of interest

in the stochastic-field-induced transport problem—this time in new contexts. Topics of interest

include, but are not limited to:

• L-H transition dynamics in a stochastic magnetic field, as produced by resonant magnetic

perturbations (RMPs) [24]. It’s now well known that the application of an RMPs raises the

transition threshold[54, 30, 46, 84, 64, 85, 86, 50] while it ‘stochasticizes’ the edge layer.

• Intrinsic rotation in a stochastic magnetic field, as for the H-mode pedestal torque with

RMPs [80, 81, 19, 96, 18].

• Internal transport barrier transitions triggered by magnetic islands[11, 36, 99, 42, 37, 35].
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Note that most or all of these phenomena are rooted in ion transport and flow physics—topics

rarely associated with stochastic magnetic fields. The related questions of the effect of magnetic

stochasticity on the mean radial electric field and its shear are also of great interest in this context.

To this end, this paper addresses aspects of ion energy and parallel momentum transport in a

stochastic magnetic field.

The theory of turbulent transport of parallel momentum and ion heat by the interaction of

stochastic magnetic fields and turbulence is presented. Attention is focused on determining the

kinetic stress and the compressive energy flux. In this Chapter, a critical parameter is identified

as the ratio of the turbulent scattering rate to the rate of parallel acoustic dispersion. For the

parameter large, the kinetic stress takes the form of a viscous stress. For the parameter small, the

quasilinear residual stress is recovered. In practice, the viscous stress is the relevant form, and

the quasilinear limit is not observable. This is the principal prediction of this paper. A simple

physical picture is developed and shown to recover the results of the detailed analysis.

4.1 A heuristic model

A heuristic but enlightening model of the pressure response δ p/δb is presented here and

serves to guide the reader through the subsequent detailed analysis. The parallel flow response

δu‖/δb can be estimated in a similar way. Hence, we discuss only δ p/δb. Here, it is helpful for

the reader to consult Figure 4.2 and 4.1. One can ‘pluck’ a magnetic field line by b̃. Since a mean

radial pressure gradient ∂r〈p〉 is present, the magnetic perturbation will generate a localized

slug of pressure excess-per-length b̃r∂r〈p〉. To balance this local pressure excess, there are two

possibilities:

• If the rate of turbulent (i.e. viscous) mixing of the parallel flow response is large (i.e.

νT/l2
⊥ > other rates), then a turbulent viscosity νT will dissipate the parallel flow per-

turbation ũ‖, produced in response to the magnetic perturbation and pressure slug (see

Figure 4.1). In this case, νT ∇2
⊥ũ‖ ' b̃r∂r〈p〉/ρ , where νT is the turbulent viscosity
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due to the electrostatic turbulence. In this limit, perturbed pressure is replaced by a

dynamic balance of the turbulent Reynolds force with the local pressure excess. Here,

νT ' DT '
∫

dt ′〈ũ⊥(0)ũ⊥(t ′)〉 ' 〈ũ2
⊥〉τac, where τac is the autocorrelation time of the

electrostatic fluctuation and DT is the turbulent fluid diffusivity.

• If the rate of sound propagation along the perturbed field is large (i.e. cs/l‖ > other rates),

then a pressure gradient will build up along the mean field, so as to cancel the initial

imbalance due to the slug (see Figure 4.2). In this case, p̃cs/l‖ '−csb̃r∂r〈p〉, which leads

to the quasilinear result for p̃ and K.

Strong Turbulence:  ̃br ∇r
⟨p⟩
ρ

≃ DT ∇2⊥ ũz

Mean Toroidal  Magnetic Fields

  : Parallel Speed  x

 z

Flow particles

 ̃bx

 ̃uz(x)

Distorted Toroidal  Magnetic Fields

  : Parallel Speed

Figure 4.1. Left: Mean magnetic field in the parallel direction with fluid flow speed. Right: The
magnetic field is perturbed by the stochastic field b̃r. In response to magnetic perturbation and
pressure slug, turbulent viscosity νT will dissipate the parallel flow perturbation. In this chapter,
we obtain that the change in mean pressure (∂x〈p〉/ρ) is balanced by turbulent mixing of parallel
flow, i.e. ∇2

⊥ũz. Blue arrows indicate the change of parallel speed.
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Weak Turbulence:  ̃br ∇r⟨p⟩ ≃ − ∇z p̃

Mean Toroidal  Magnetic Fields

Pressure Intensity

 x

 z

Distorted Toroidal  Magnetic Fields

 ̃bx

 ̃p(z)

Figure 4.2. Left: Mean magnetic field in toroidal direction with constant pressure in z-direction.
Right: The magnetic field is perturbed by the stochastic field b̃r. In response to magnetic
perturbation and pressure slug, the pressure gradient will build up along the mean field. Regions
with higher and lower pressure intensity are colored orange and yellow, respectively.

Here, the critical competition (highlighted in Figure 4.2 and 4.1) is that between the

parallel acoustic transit rate cs/l‖ ' cs∆k‖ and the perpendicular diffusive mixing rate' νT/l2
⊥ '

k2
⊥DT . Hereafter, we take k‖ ' |∆k‖|. In most relevant cases (i.e. as for drift wave turbulence),

k2
⊥DT ' ω > k‖cs, so the dynamic balance regime is relevant. Note that in this regime, the

qualitative form of the response to b̃ differs from the quasilinear case. In particular, a hybrid

viscous stress replaces the residual stress and involves turbulent decorrelation resulting from

scattering by electrostatic fluctuation. In the weak turbulence regime, we recover perturbed

pressure balance. The detailed analysis supports the conclusion derived from heuristics here.
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4.2 Models setup and Transport by Static Stochastic Fields

Here, we construct a model for the evolution of density and parallel flow in presence of

stochastic fields in Cartesian (slab) coordinates used in previous chapter [10]—x is radial, y is

poloidal, and z is toroidal direction, in which the mean toroidal field lies (Figure 3.2). In this

3D system, the stochasticity of magnetic fields, given by a response to an external excitation

such as an RMP coil, results from the overlap of magnetic islands located at resonant k ·B = 0

surfaces [97]. Once overlap occurs, the coherent character of the perturbations is lost, due to

finite Kolmogorov-Sinai entropy (i.e. there exists a positive Lyapunov exponent for the field)

[48, 89]. Hence, the total magnetic field can be decomposed into the mean toroidal (parallel)

field on the z-axis plus the stochastic field lying in x− y plane. In this case, we take the magnetic

Kubo number [52] to be modest Kumag . 1—so mean field theory is valid. This is consistent

with reported experimental values of magnetic perturbations b̃ [103, 100, 27, 39]. We decompose

the magnetic fields, magnetic potential, velocities, electrical potential, pressure, and density



magnetic fields B = (B̃x, B̃y, B0)

potential fields A = (−1
2B0y, 1

2B0x, Ã(x,y))

velocities u = (ũx, 〈uy〉+ ũy, 〈uz〉+ ũz)

electric potential φ = 〈φ〉+ φ̃

pressure p = 〈p〉+ p̃

particle density n = 〈n〉+ ñ.

(4.1)

Here 〈uy〉 is the mean poloidal flow, 〈uz〉 is the parallel flow. The tilde ˜ denotes the perturbations

of the mean.
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4.3 Non-diffusive Effect for Electron Particle Flux

In this section, we discuss the transport of parallel momentum and particles due to

stochastic fields. One aim here is to make contact with and clarify the FGC result [28] as a

baseline for later studies of stochastic scattering along with turbulence. Another is to elucidate the

contribution to the physics of particle transport in a stochastic magnetic field—i.e. to determine

the physical significance of the result. Following FGC, here, we assume an isothermal plasma,

so the basic equations reduce to:

n
∂

∂ t
uz =−c2

s ∇zn (4.2)

∂

∂ t
n =−n∇zuz (4.3)

where ∇z = ∇
(0)
z + b̃ ·∇⊥. Then the mean fields 〈uz〉 and 〈n〉 evolve according to

n0
∂

∂ t
〈uz〉=−c2

s
∂

∂x
〈b̃xñ〉 (4.4)

∂

∂ t
〈n〉=−n0

∂

∂x
〈b̃xũz〉, (4.5)

where n0 is a static, uniform background density. Thus, determining the effect of a stochastic field

on density evolution (i.e. particle transport) requires a calculation of the flux 〈b̃xũz〉. Likewise,

for the effect on parallel flow, the kinetic stress c2
s 〈b̃xñ〉 is needed. The physical interpretation of

how the density evolution discussed here is related to the particle flux is discussed at the end of

this section.

To calculate 〈b̃xũz〉 and 〈b̃xñ〉, we proceed by quasilinear theory. Proceeding from Eq.

4.4 and Eq. 4.4, these equations can be written as

∂

∂ t
ũz

cs
=−cs∇

(0)
z

ñ
n0
− csb̃x

∂

∂x
〈n〉
n0

(4.6)
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∂

∂ t
ñ
n0

=−cs∇
(0)
z

ũz

cs
− csb̃x

∂

∂x
〈uz〉
cs

. (4.7)

We combine Eq. 4.6±Eq. 4.7 and obtain the Riemann-like variables h± ≡ ũz
cs
± ñ

n0
, and the

Riemann equation

∂

∂ t
h±± cs

∂

∂ z
h± =−csb̃x

∂

∂x
〈n〉
n0
∓ csb̃x

∂

∂x
〈uz〉
cs

. (4.8)

Note that h± propagate at cs in opposite directions. Now, the magnetic perturbations here are

static, so we can immediately take ∂th± = 0. No acoustic wave dynamics enters, though the

acoustic speed appears in the problem. From Eq. 4.8, we can then immediately write

h±,k =∓
∫

dl[b̃x
∂

∂x
〈n〉
n0
± b̃x

∂

∂x
〈uz〉
cs

]. (4.9)

Here, l parameterizes the distance along a magnetic field line, and the solution of Eq. 4.8 is

affected by integrating along static stochastic field lines. Now, ũz/cs and ñ/n0 can be recovered

noting
ũz

cs
= (h++h−)/2 =−

∫
dlb̃x

∂

∂x
〈uz〉
cs

(4.10)

ñ
n0

= (h+−h−)/2 =−
∫

dlb̃x
∂

∂x
〈n〉
n0

(4.11)

It then follows that

〈b̃xũz〉=−DM
∂

∂x
〈uz〉 (4.12)

〈b̃xñ〉=−DM
∂

∂x
〈n〉, (4.13)

where

DM =
∫

dl〈b̃x(0)b̃x(l)〉= 〈b̃2
x〉lac (4.14)
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and 〈b̃x(0)b̃x(l)〉 is the magnetic perturbation correlation function, DM is the usual stochastic field

diffusivity, and lac is magnetic perturbation auto-correlation length. The mean field equations

then are
∂

∂ t
〈uz〉
cs

=
∂

∂x
csDM

∂

∂x
〈n〉
n0

(4.15)

∂

∂ t
〈n〉
n0

=
∂

∂x
csDM

∂

∂x
〈uz〉
cs

. (4.16)

Several aspects of these results merit some discussion. First, Eq. 4.15 and Eq. 4.16

are transport equations with a characteristic transport coefficient csDM. Thus, the rate for

perturbations on scale l⊥ is 1/τ(l⊥)' csDM/l2
⊥ as noted by FGC. However, the actual fluxes

in Eq. 4.15 and Eq. 4.16 are not diffusive, but rather off-diagonal, leading to cross-coupling of

〈n〉 and 〈uz〉 evolution. In particular, 〈b̃xñ〉 contributes to a fundamentally non-diffusive residual

stress but not a viscosity. Here, ∂x〈n〉 drives the residual stress. Likewise, 〈b̃xũz〉 yields an

off-diagonal convective flux driven by ∂x〈uz〉 but not particle diffusion. FGC overlooked these

points since that analysis never transformed back from Riemann variables (referred to as Elsässer

variables by FGC) to physical variables. We note also that the results of Eq. 4.12 and Eq. 4.13

may be obtained directly from linearizing

B ·∇uz = 0 (4.17)

B ·∇n = 0, (4.18)

and using ũz, ñ to derive the fluxes. The problem is fundamentally static, and no sound wave

dynamics is involved.

Eq. 4.16 describes density evolution. A natural question that arises is how is this related

to particle transport, as it is conventionally understood. FGC refers to the density evolution in

this problem as ‘sound wave transport’, yet it is clear that no sound wave dynamics is involved.
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To clarify this question, we consider electron particle transport in a stochastic magnetic field.

Here, we consider the stochastic field as co-existing with plasma current perturbations which

generate it, so that Ampère’s law is satisfied. This does not preclude the possibility of external

excitation of the stochasticity, as by an RMP. The drift kinetic equation for electrons is

∂

∂ t
f +uz ·∇z f − E⊥× ẑ

B0
·∇ f − |e|

m
Ez

∂

∂uz
f =C( f ), (4.19)

so that the electron density evolution due to b̃ effects is determined by

∂ne

∂ t
=−n0,e∇zuz,e, (4.20)

where f is a general distribution function and uz,e is the parallel electron flow. Then for mean

electron density, noting that ∇z = ∇
(0)
z + b̃ ·∇⊥, it follows that

∂ 〈ne〉
∂ t

+n0,e
∂

∂x
〈b̃xũz,e〉= 0

⇒∂ 〈ne〉
∂ t
− ∂

∂x
〈b̃xJ̃z,e〉
|e| = 0,

(4.21)

where J̃z,e = −ũz,en0,e|e| is electron current density. Note that the divergence of the electron

current along tilted field lines (Ampère’s Law) is what determines 〈ne〉 evolution. Ampère’s Law

states

−∇
2
⊥Az = µ0(Jz,e + Jz,i). (4.22)

Substitution into Eq. 4.21 gives

∂ 〈ne〉
∂ t

+
1

µ0|e|
∂

∂x
〈b̃x∇

2
⊥Ãz,e〉+n0,i

∂

∂x
〈b̃xũz,i〉= 0. (4.23)

In the last term on the RHS of Eq. 4.23, we take uz = uz,i the parallel ion flow, consistent with
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our notation. Using the magnetic Taylor identity [9], we then obtain

∂ 〈ne〉
∂ t

+
∂

∂x
Γe,s = 0, (4.24)

where

Γe,s =
−B0

µ0|e|
∂

∂x
〈b̃xb̃y〉+n0〈b̃xũz〉 (4.25)

is the electron particle flux due to b̃. Note there are two contributions. The first is the familiar

piece due to the divergence of the Maxwell stress [21]. It arises from the flow of current along

tilted field lines. The second contribution 〈b̃xũz〉 studied here is due to ion flow along tilted lines.

Note both total and ion current contributions are required to calculate ∂t〈ne〉. For the model

analyzed here, Eq. 4.12 then gives

Γe,s =
−B0

µ0|e|
∂

∂x
〈b̃xb̃y〉−n0DM

∂

∂x
〈uz〉. (4.26)

The first piece adds to the familiar Maxwell force contribution. The second term shows stochastic

lines and parallel ion flow gradient drive a net electron particle flux. The discussion here clarifies

the relations between Eq. 4.16 and the electron particle flux.

4.4 Calculating the Kinetic Stress and Compressive Energy
Flux: Stochastic Fields and Turbulence

In the introduction, we discuss the kinetic stress and compressive energy flux due to

stochastic fields. In this section, we consider fluctuating E×B flow effects. These introduce a

relatively fast scattering time scale which enters the response to b̃. We investigate the evolution of

mean parallel flow and that of mean ion pressure (in presence of stochastic fields and turbulence)

through the kinetic stress and compressive energy flux, respectively. Consider flow and pressure

evolution in the basic model presented in the introduction, we have the parallel acceleration and
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pressure equations:
∂

∂ t
uz +(u ·∇)uz =−

1
ρ

∇z p. (4.27)

∂

∂ t
p+(u ·∇)p =−γ p(∇z ·uz), (4.28)

where z is set in parallel direction, and x and y are set in perpendicular direction. We decompose

velocity and pressure as mean and its perturbation such that u = 〈u〉+ ũ, p = 〈p〉+ p̃. By using

mean field theory, we have

∂

∂ t
〈uz〉+

∂

∂x
〈ũxũz〉=−

1
ρ

∂

∂x
〈b̃x p̃〉. (4.29)

∂

∂ t
〈p〉+ ∂

∂x
〈ũx p̃〉=−ρc2

s
∂

∂x
〈b̃xũz〉. (4.30)

The right hand side (RHS) of Eq. 4.29 is the divergence of the kinetic stress (K) such that

− 1
ρ

∂

∂x
〈b̃x p̃〉 ≡ − ∂

∂x
K

The kinetic stress K ≡ 〈b̃x p̃〉/ρ is determined by the stochastic magnetic field and the turbulence,

as pressure perturbation p̃ is scattered by both the drift-wave turbulence and the stochastic field.

However, since it is the coherence of b̃x and p̃ that determines K, we seek p̃ = (δ p/δb)b̃, while

including turbulent scattering in δ p/δb. Hence, the kinetic stress is derived by considering

the p̃ response to b̃x that evolves in the presence of drift wave turbulence. Notice that both the

Reynolds stress 〈ũxũz〉 and Kinetic stress 〈p̃b̃r〉/ρ in Eq. 4.29 are affected by stochastic magnetic

fields. Chen et al. [10] discussed magnetic stochasticity effects on Reynolds stress. Also, the

RHS of Eq. 4.30 contains the compressive energy flux H ≡ ρc2
s 〈b̃xũz〉, such that

−ρc2
s

∂

∂x
〈b̃xũz〉 ≡ −

∂

∂x
H.
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This compressive energy flux H describes the heat transport effect induced by compression along

stochastic magnetic field lines. This effect contributes to the evolution of mean pressure.

We calculate the response of p̃ and ũz to b̃x, so as to determine K and H. However, we

do so in the presence of scattering by drift-wave turbulence. Hence, Eq. 4.27 and Eq. 4.28 yield

−iω
p̃

ρcs
+ csikzũz + ũ⊥∇⊥

p̃
ρcs

=−ũx
∂

∂x
〈p〉
ρcs
− b̃xcs

∂

∂x
〈uz〉, (4.31)

−iω ũz + csikz
p̃

ρcs
+ ũ⊥∇⊥ũz =−ũx

∂

∂x
〈uz〉− b̃xcs

∂

∂x
(
〈p〉
ρcs

). (4.32)

Note that the response to ũx on the RHS is not of interest since we take 〈b̃xũx〉 = 0, i.e. drift

waves and stochastic field uncorrelated, for simplicity. By taking Eq. 4.32 ± Eq. 4.31, we define

the Riemann variables f±,kω ≡ ũz,kω ± p̃kω/ρcs and obtain

(−iω± icskz + ik⊥ũ⊥) f±,kω =−b̃xcs
( ∂

∂x
〈p〉
ρcs
± ∂

∂x
〈uz〉

)
. (4.33)

This is the evolution equation for the Riemann response to magnetic perturbation b̃x. We compute

the response of ũz and p̃ to b̃x, which is static—i.e. no time dependence. And ũ⊥ is taken as

stationary. Then, for ω → 0, we have:

(±icskz + ik⊥ũ⊥) f±,k =−b̃xcs
( ∂

∂x
〈p〉
ρcs
± ∂

∂x
〈uz〉

)
. (4.34)

Notice that the ũ⊥∇⊥ operator in Eq. 4.31 and Eq. 4.32 can be expressed as a cumulant scattering

effect on a timescale long, compared to the auto-correlation time of drift-wave turbulence τac,

i.e.

〈 i
−cskz∓ ũ⊥k⊥

〉 =
∫

dτe−icskzτ〈e∓iũ⊥k⊥
∫

dτ
′
〉 (4.35)

=
∫

dτe−icskzτe−kiDi j,T k jτ , (4.36)

65



where Di j,T ≡ ∑
k

ũi,kũ j,kτac is turbulent fluid diffusivity. For perpendicular transport (i = j = x

or y), we have DT ≡ ∑
k
|ũ⊥,k|2τac, which generically is the order of the Gyro-Bohm diffusivity

DGB ∼ ρ2
s cs/Ln,⊥, as is νturb. Here, Ln,⊥ is density scale length. So, we can replace ũ⊥∇⊥ with

ũ⊥∇⊥ ≡−∇⊥ ·DT ·∇⊥. (4.37)

Hence, Eq. 4.33 become

(±icskz + k2
⊥DT ) f±,k =−b̃xcs

( ∂

∂x
〈p〉
ρcs
± ∂

∂x
〈uz〉

)
. (4.38)

From this equation, we have

p̃k

ρcs
=

1
2
( f+,k− f−,k) =

−1
k4
⊥D2

T + k2
z c2

s
×[

b̃x,kcsk2
⊥DT

∂

∂x
〈uz〉− ikzc2

s b̃x,k
∂

∂x
(
〈p〉
ρcs

)

]
,

(4.39)

ũz,k =
1
2
( f+,k + f−,k) =

−1
k4
⊥D2

T + k2
z c2

s
×[

b̃x,kcsk2
⊥DT

∂

∂x
(
〈p〉
ρcs

)− ikzc2
s b̃x,k

∂

∂x
〈uz〉

]
.

(4.40)

Then, Eq. 4.39 and Eq. 4.40 yield

K =
1
ρ
〈b̃x p̃〉= 1

ρ
∑

ky,kz

|b̃x,k|2
−1

k4
⊥D2

T + k2
z c2

s[
ρc2

s k2
⊥DT

∂

∂x
〈uz〉− ikzc2

s
∂

∂x
〈p〉
]
.

(4.41)

H ≡ ρc2
s 〈b̃xũz〉= ρc2

s ∑
ky,kz

|b̃x,k|2
−1

k4
⊥D2

T + k2
z c2

s[
k2
⊥DT

∂

∂x
〈p〉
ρ
− ikzc2

s
∂

∂x
〈uz〉

]
,

(4.42)
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The first term at the denominator of the response function 1/(k4
⊥D2

T +k2
z c2

s ) can be approximated

as (k2
⊥DT )

2 ' 1/τ2
c,k, where τc is the decorrelation time due to perpendicular turbulent scattering.

The significance of the factor of i in the second term of the source will be apparent when

considering reduction to the quasilinear limit (see Sec. 4.7). Non-zero correlations 〈b̃xũz〉 and

〈b̃x p̃〉, which contribute the kinetic stress K and compressive energy flux H, are due to the

synergetic effect of the perpendicular turbulent mixing (k2
⊥DT ) and stochastic magnetic field

(|b̃x|2) scattering, via gradients of mean parallel flow ∂x〈uz〉 and mean pressure ∂x〈p〉. Also, by

observing the denominator of the responses, one can notice that K and H can be set by different

mechanisms. When k2
⊥DT > kzcs, the decorrelation due to scattering is stronger than that due to

acoustic signal decoherence. For kzcs > k2
⊥DT , we recover the quasilinear results. These two

regimes will be discussed further in Sec. 4.6 and Sec. 4.7.

4.5 Calculating the flux

In the following Sec. 4.5, 4.6, and 4.7, we consider the effect of magnetic shear in pres-

ence of stochastic fields. We’ll calculate the kinetic stress and compressive energy flux in detail.

Sheared magnetic field geometry is used to clarify aspects of the competition between acoustic

pulse decorrelation at rate kzcs and turbulent scattering, with rate k2
⊥DT , and its implication for

the structure of the fluxes. Attention here is focused on the interplay of different terms in the

expressions for K and H.

The second term in the denominator of the response function in Eq. 4.41 and Eq. 4.42

can be approximated as k2
z c2

s = (kyx/Ls)
2c2

s , where Ls the is magnetic shear length such that

1/Ls = q′r0/q2R0, q′ ≡ dq/dx, q is the safety factor, and x is the distance from the resonant

surface of the perturbation—i.e. x = r− rm,n, where m, n are the poloidal and toroidal mode
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numbers, respectively. We decompose Eq. 4.41 into two parts

〈b̃x p̃〉= ∑
ky,kz

|b̃x,k|2
τc,k

1+(kyx/Ls)2c2
s τ2

c,k

(
−ρc2

s
∂

∂x
〈uz〉

)
︸ ︷︷ ︸

a©

+ ∑
ky,kz

|b̃x,k|2
1

(k2
⊥DT )2 + k2

z c2
s

(
ikzc2

s
∂

∂x
〈p〉
)

︸ ︷︷ ︸
b©

.

(4.43)

The spectral sum relevant to this shear effect is ∑
ky,kz

. The radial structure is accounted for

by a box function F(x/wk) for the magnetic perturbation intensity, which we further analyze in

the following paragraph. We approximate the discrete summation ∑
kykz

by a continuous integral:

∑
kykz

= ∑
m,n

=
∫

dm
∫

dn. (4.44)

By using n = m/q and dn = |m|q′dx/q2, we have

∫
dm
∫

dn =
∫

dm
∫

dx
|m|
q2 q′ = r0

∫
dky

∫
dx
|ky|
q

ŝ, (4.45)

where ŝ is the magnetic shear, i.e. ŝ = r0
q

dq
dr . Now, we write the magnetic perturbation spectrum

|b̃x,k|2 as

|b̃x,k|2 =CS(ky)F(x/wk),

where C is a normalization constant, S(ky) is the k-spectrum of b̃x, F(x/wk) is the spatial

spectrum form factor, and wk is the spatial width of |b̃x,k|2 (see figure 4.3) . We assume |b̃x,k|2

perturbations are densely packed and take the spatial spectrum F(x/wk) to be a normalized box

function such that
∫

dxF(x/wk) = 1. Hereafter, we define the intensity of magnetic perturbation
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Rational surface

width 2 wk

Spatial spectrum    F(x/wk)

Intensity

Figure 4.3. F(x/wk) is spatial spectrum for |b̃x,k|2 in radial direction. Here we define x= r−rm,n,
where rm,n is the location of a rational surface with mode number m, n.

b2
x,0 as

b2
x,0 ≡ ∑

kykz

|b̃x,k|2 = r0
∫

dky
∫

dx kyŝ
q ·CS(ky)F(x/wk)

=C
∫

dky
kyr2

0q′

q2 S(ky)
∫

dxF(x/wk)︸ ︷︷ ︸
=1

=C
∫

dky
kyr2

0q′

q2 S(ky). (4.46)

The normalization constant C hence is defined as

C ≡
b2

x,0∫
dky

kyr2
0q′

q2 S(ky)
(4.47)

where m/r0 ≡ ky, R0 and r0 are the major and minor radius, respectively. The first term in
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equation (4.43) becomes

a©= ∑
kykz

|b̃x,k|2
τc,k

1+(kyx/Ls)2c2
s τ2

c,k

(
−ρc2

s
∂

∂x
〈uz〉

)

=C
∫

dky
kyr2

0q′

q2 S(ky)
∫

dxF(x/wk)︸ ︷︷ ︸
∑

kykz
|b̃x,k|2

·

τc,k

1+(kyx/Ls)2c2
s τ2

c,k

(
−ρc2

s
∂

∂x
〈uz〉

)
(4.48)

The response function 1/1+(kyx/Lscsτc,k)
2 in the equation is the key to understanding the

physics of pressure evolution. We define the acoustic width (xs) by

xs ≡
Ls

kycsτc,k
, (4.49)

The acoustic width is the value of x for which kzcs(x) = 1/τc,k(x), where kz = kz(x). So,

xs = Ls/kycsτc,k. Loosely speaking, xs defines the location where the rate of parallel acoustic

streaming equals the decorrelation rate. Here xs is analogous to the familiar xi =ωLs/kyvth,i—the

ion Landau resonance point, where vth,ix is the ion thermal speed [1]. The τc,k sets the acoustic

width—e.g. in strong fluid turbulence (small τc), xs is large; in weak fluid turbulence, xs is small.

Hence, the first term of Eq. 4.43 becomes

a©=C
∫

dky
kyr2

0q′

q2 S(ky)
∫

dxF(x/wk)·

τc,k

1+(x/xs)2

(
−ρc2

s
∂

∂x
〈uz〉

) (4.50)

For strong turbulence, τc,k is small such that xs� wk. So wk is the cutoff length in the integral

(see Figure 4.4, green curve). For weak turbulence (i.e. xs� wk), however, the acoustic width xs

is the cutoff length scale (see Figure 4.4, red curve). Let’s consider these two limits.
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 F(x/wk)

1

Weak  
Turbulence

Strong  
Turbulence

1
1 + x2/x2

s

 x

Intensity

wk−wk xs−xs xs−xs

Figure 4.4. The integral of spatial spectrum of stochastic field and the response function∫
dxF(x/wk) · [1/1+(x/xs)

2]. Green and red lines indicate response functions in strong and
weak turbulence regime, respectively. For strong turbulence (xs� wk), wk is the cutoff length in
the integral. For weak turbulence (xs� wk), xs is the cutoff length scale.

4.6 Strong Turbulence

In strong fluid turbulence, we have xs � wk ( or k2
⊥DT > kzcs). Recall in Eq. 4.43,

〈b̃x p̃〉 = a©+ b©. Here, the integral
∫

d(x)F(x/wk)

1+���x2/x2
s
' 1. So, the first term in equation (4.50)

becomes

a©= ∑
kykz

|b̃x,k|2
τc,k

1+(kyx/Ls)2c2
s τ2

c,k

(
−ρc2

s
∂

∂x
〈uz〉

)
'−ρc2

s ∑
kykz

|b̃x,k|2τc,k
∂

∂x
〈uz〉

(4.51)

The second term in equation (4.50), assuming k4
⊥D2

T � k2
z c2

s , becomes small

b©= ∑
kykz

|b̃x,k|2
1

(k2
⊥DT )2 + k2

z c2
s

(
ikzc2

s
∂

∂x
〈p〉
)
→ 0, (4.52)
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in the limit k4
⊥D2

T � k2
z c2

s . Derivation details can be found in Appendix I. Hence, the kinetic

stress can be simplified to

〈b̃x p̃〉 ' −ρc2
s ∑

kykz

|b̃x,k|2τc,k
∂

∂x
〈uz〉. (4.53)

This indicates that in the presence of strong scattering, the kinetic stress depends on the electro-

static τc,k. The kinetic stress hence becomes simply:

K ≡ 1
ρ
〈b̃x p̃〉 ' −∑

kykz

|b̃x,k|2τc,kc2
s

∂

∂x
〈uz〉 (4.54)

From this, we recover a hybrid viscosity produced by stochastic magnetic fields |b̃x,k|2c2
s , with a

correlation time set by electrostatic scattering τc,k. Hence,

Dst(x)≡
b2

x,0
∫

dky
kyr2

0q′

q2 τc,kS(ky)c2
s∫

dky
kyr2

0q′

q2 S(ky)

' ∑
kykz

|b̃x,k|2(x)
c2

s

k2
⊥DT

(4.55)

Eq. 4.55 leads us to notice that the combined effects of stochastic fields in the numerator and

(electrostatic) turbulent scattering in the denominator together define Dst . This hybrid turbulent

viscosity is the actual diffusivity that describes how the mean flow is scattered by stochastic

magnetic fields. The parallel flow evolution equation then becomes

∂

∂ t
〈uz〉=−

∂

∂x
〈ũxũz〉+

∂

∂x
Dst(x)

∂

∂x
〈uz〉. (4.56)

This indicate that the turbulent viscous stress balances b̃x∂x〈uz〉.
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Similarly, Eq. 4.42 gives the compressive energy flux (H)

H(x)≡ ρc2
s 〈b̃xũz〉

' −c2
s ∑

kykz

|b̃x,k|2τc,k
∂

∂x
〈p〉 ' −Dst(x)

∂

∂x
〈p〉.

(4.57)

This indicates that the tilting of the magnetic field lines in presence of the pressure gradient

(i.e. b̃x∂ 〈p〉/∂x 6= 0) balances with the turbulent diffusion. Notice that Eq. 4.57 also shows that

DT ∇2
⊥ũz '− ∑

kykz

b̃x,k∂x(〈p〉/ρ). This again indicates that the change in mean pressure (∂x〈p〉/ρ)

due to the stochastic fields is balanced by turbulent mixing of parallel flow (∇2
⊥ũz, see Figure

4.2). The pressure equation now can be written as

∂

∂ t
〈p〉=− ∂

∂x
〈ũx p̃〉+ ∂

∂x
Dst(x)

∂

∂x
〈p〉, (4.58)

again a diffusion equation.

4.7 Weak Turbulence

For weak fluid turbulence, we have wk� xs ( or kzcs > k2
⊥DT ). Recall Eq. 4.50)

a©=C
∫

dky
kyr2

0q′

q2 S(ky)
∫

dxF(x/wk)·

τc,k

1+(x/xs)2 ·
(
−ρc2

s
∂

∂x
〈uz〉

) (4.59)
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Since in the weak turbulence limit, the cutoff of integral is set by xs and hence F(x/wk) '

F(xs/wk→ 0). So, a© is simplified as follows:

a©'
b2

x,0��������∫
dky

kyr2
0q′

q2 S(ky)

��������∫
dky

kyr2
0q′

q2 S(ky)
· τc,k

xs

wk
F(0)·

x=xs∫
0

d(x/xs)
1

1+(x/xs)2︸ ︷︷ ︸
=arctan(xs/xs)=π/4

(
−ρc2

s
∂

∂x
〈uz〉

)

'−b2
x,0τd,k

xs

wk
F(0)

π

4

(
ρc2

s
∂

∂x
〈uz〉

)
(4.60)

where τd,k ≡ Ls/kycswk is dispersal timescale of an acoustic wave packet propagating along the

stochastic magnetic field. This dispersal timescale τd,k defines the width of the acoustic signal

‘cone’. The second term in equation (4.50) becomes

b©= ∑
kykz

|b̃x,k|2
1

�����(k2
⊥DT )

2 + k2
z c2

s

(
ikzc2

s
∂

∂x
〈p〉
)

'−DM
∂

∂x
〈p〉,

(4.61)

where DM(x)≡ ∑
kykz

|b̃x,k|2τd,k(x)cs is the magnetic diffusivity. Hence, the kinetic stress flux is

〈b̃x p̃〉=−b2
x,0τd,kF(0)

π

4
ρc2

s
∂

∂x
〈uz〉−DM

∂

∂x
〈p〉. (4.62)

The first term on the RHS is asymptotically small, so a©→ 0 for xs/wk→ 0 in this limit. The

detailed calculation is shown in Appendix II. Notice that Eq. B.13 also shows that ∇z p̃ '

−∑
k

b̃x,k∂x〈p〉, by approximating 1/τd,kcs with operator ∇z. This indicates that the change in

mean pressure (∂x〈p〉) due to the stochastic fields is balanced by a parallel pressure gradient
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(∇z p̃, see Figure 4.2). The kinetic stress in this limit can be simplified as

K(x)≡ 1
ρ
〈b̃x p̃〉 ' − 1

ρ
DM(x)

∂

∂x
〈p〉. (4.63)

Hence, we have the parallel flow evolution

∂

∂ t
〈uz〉 ' −

∂

∂x
〈ũxũz〉+

∂

∂x
DM(x)

ρ

∂

∂x
〈p〉. (4.64)

Similarly, we have the compressive energy flux

H(x) = ρc2
s 〈b̃xũz〉=−ρc2

s DM(x)
∂

∂x
〈uz〉. (4.65)

Notice that this equation shows the response of mean parallel flow, due to stochastic field tilting

(b̃x∂ 〈uz〉/∂x), is balanced by the parallel flow compression (∇‖ũz), i.e. equivalent to Bz ·∇uz = 0

or ∇‖ũz =−b̃x∂ 〈uz〉/∂x. Hence the pressure equation can be written as

∂

∂ t
〈p〉=− ∂

∂x
〈ũx p̃〉+ ∂

∂x
ρc2

s DM(x)
∂

∂x
〈uz〉. (4.66)

Eq. 4.63 and Eq. 4.65 indicate that for weak scattering, momentum and energy transport

occur only through stochastic fields, with the familiar transport coefficient csDM. There is

no dependence on DT for k2
⊥DT � kzcs. This result is equivalent to that in FGC [28]. Note,

however, that the key effect for 〈uz〉 is residual stress; and for 〈p〉, it is an off-diagonal flux. The

comparison of K and H in strong and weak turbulence regime is shown in Table 4.1.

4.8 Summary for parallel momentum and ion heat trans-
port

In this Chapter (all the work are presented in Chen et al. (2022)[8]), we develop the

theory of ion heat and parallel momentum transport due to stochastic magnetic fields and
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Table 4.1. A comparison of strong and weak turbulent MHD for Kinetic stress and compressive
energy flux.

Weak
Turbulence

Strong
Turbulence

Kinetic Stress
K ≡ 〈b̃x p̃〉/ρ

K =−Dst
∂

∂x〈uz〉 K =−DM
∂

∂x〈p〉

Compressive energy flux
H ≡ ρc2

s 〈b̃xũz〉
H =−Dst

∂

∂x〈p〉 H =−ρc2
s DM

∂

∂x〈uz〉

turbulence. We focus on the kinetic stress (K) and the compressional flux (H) due to stochastic

fields in the presence of (electrostatic) turbulence. The responses δ p/δb and δu‖/δb are

calculated by integration over perturbed particle trajectories and then used to close the fluxes.

Interestingly, this analysis renders moot one of the deepest questions in stochastic-field-induced

transport. Recall that Rechester and Rosenbluth [77] showed that irreversibility requires some

means to scatter particles off magnetic field lines, lest they bounce back and undergo no net

excursion. Here, ambient cross-field electrostatic scattering supplies this needed effect. Thus,

δ p/δb and δu‖/δb should be viewed as statistically averaged nonlinear responses. Here, we

posit an ambient ensemble of drift waves, which specifies 〈ũ2
⊥〉. The probability distribution

functions (PDFs) of 〈ũ2
⊥〉 and 〈b̃2

x〉 are assumed to be quasi-Gaussian and independent. General

results are obtained and shown to recover the dynamic balance limit (viscous dissipation vs.

b̃x∂ 〈p〉/∂x, for k2
⊥DT > kzcs) and the parallel pressure balance limit (∇z p̃ vs. b̃x∂ 〈p〉/∂x, for

kzcs > k2
⊥DT ), as appropriate. In reality, dynamic balance is the relevant case, and the quasilinear

regime is of very limited practical interest. We calculate the explicit form of the turbulent

viscous flux and compressive energy flux, and show both are diffusive with a hybrid diffusivity

Dst ≡ ∑
k
|b̃2

x,k|c2
s/k2
⊥DT —i.e. determined by magnetic fluctuations but with correlation time set

by turbulent scattering. The hybrid diffusivity Dst is sensitive to the long wavelength content of

|b̃2
k |. The analysis is extended to the case of a sheared mean magnetic field. We show that the

critical comparison is between the |b̃|2 spatial spectral width (wk) and the acoustic width, i.e.
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xs = Ls/kycsτc,k, where τc,k is decorrelation time due to perpendicular turbulent scattering.

This Chapter [8] relatively untouched issues, namely the interaction of stochastic mag-

netic field and turbulence, and how they together drive transport. As such several of the results

merit further discussion. First, while the analysis is in the spirit of a resonance broadening

calculation, the basic form of the flux-gradient relation charges with the ratio of kzcs to k2
⊥DT .

Indeed, the kinetic stress changes from a residual stress to a turbulence viscous stress. Also,

given that k2
⊥DT ' ω � kzcs, the strong turbulence regime results are surely the relevant ones,

and it is unlikely that the pure quasilinear predictions are ever observed. This point is the major

prediction of this paper. This outcome is in contrast to the case for the quasilinear predictions for

electromagnetic turbulence [71], which are more robust since ω , not kzcs, is the relevant base rate

there. Second, the sensitivity of the hybrid diffusivity Dst ≡ ∑
k
|b̃2

x,k|c2
s/k2
⊥DT to long wavelength

(i.e. ‘slow modes’) is interesting and reminiscent of the results of Taylor and McNamara [94].

Further study, including coupling to E×B shearing, is needed.

4.9 Future works

Several questions and extensions for further study naturally suggest themselves. Magnetic

drifts could be included in theory, which could then be used to study the effect of stochastic

magnetic fields and turbulence upon geodesic acoustic modes (GAMs) [98, 41, 59, 63, 104].

This topic is of obvious relevance to edge turbulence and transitions. Second, we have assumed

throughout the magnetic perturbations and electrostatic turbulence are uncorrelated, i.e. 〈b̃xφ̃〉=

0. Recent results, however, indicate that the constraint of ∇ ·J = 0 naturally forces the generation

of small scale convective cells by the interaction of long wavelength flows with turbulence. As a

consequence,〈b̃xφ̃〉 6= 0 develops, indicative of small-scale correlations between turbulence and

stochastic fields. These may induce novel cross-coupling in the fluxes. Work on this question is

ongoing. Finally, since the system studied here essentially is one of gas dynamics in a stochastic

field, we note it may have relevance to problems in cosmic ray acceleration and propagation
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[56]. In those problems, magnetic irregularities are thought to be scatter particles in turbulent

environments—similar to the physics discussed in this paper.

Chapter 4, in full, is a reprint of the material as it appears in Chang-Chun Chen, Patrick

H. Diamond, and Steven M. Tobias, Plasma Physics and Controlled Fusion 64, 015006 (2022).

The dissertation author was the primary investigator and author of this paper.
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Chapter 5

Summary and Future Work

5.1 Summary

This dissertation is about momentum and heat transport in presence of small-scale

disordered/irregular magnetic fields. It focuses particularly on turbulent momentum transport

influenced by disordered magnetic fields, which may be found in the interstellar/intergalactic

medium, the solar tachocline, and at the edge of fusion devices. Tachocline stochastic fields are

thought to from due to the occur from ‘pumping’ by the convective zone in the solar tachocline,

while in fusion devices, resonant magnetic perturbations (RMPs) are imposed to control the

edge localized modes (ELMs). Such ELMs produce high transient heat loads and damage wall

components of a fusion device. Thus, the RMP is as developed to mitigate them.

In the study of the solar tachocline [9], I studied stochastic magnetic-field effects on

momentum transport in β -plane magnetohydrodynamics (MHD) turbulence at high magnetic

Reynolds number and low Prandtl number. Simulation results showed that Reynolds stress and

momentum transport are suppressed by stochastic fields at a mean-field intensity lower than that

required for a fully Alvénized system at which fluid and magnetic energy reach near equipartition.

By developing an effective ‘mean-field theory’ for this high magnetic perturbation regime, I

obtained an explicit form for the PV flux suppression due to stochastic magnetic fields, and

hence—via the Taylor identity— the Reynolds stress suppression. This result explained that

the Reynolds stress (or flow generation) suppression is due to disordered magnetic fields in the
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relevant case of a relatively weak mean-field intensity. I also found that the dispersion relation

can be rewritten in a form that represents the dissipation and drag from stochastic fields. These

“dissipation” and “drag” effects suggest that stochastic fields form an effective resisto-elastic

network, in which Alfvén wave dynamics evolves. They also suggest that turbulent momentum

transport in the tachocline is suppressed by the enhanced memory of stochastically induced

elasticity (i.e. the random elastic network) and drag. A critical dimensionless parameter which

pinpoints at which intensity of mean field the growth of zonal flow ceases is obtained. These

results suggest that turbulent momentum transport in the tachocline is suppressed by the enhanced

memory of stochastically induced elasticity. This leaves no viscous or mixing mechanism to

oppose ‘burrowing’ of the tachocline due to meridional cells driven by baroclinic torque. This

finding suggests that the Spiegel & Zahn (1992) [91] scenario of burrowing opposed by latitudinal

viscous diffusion and the Gough & McIntyre (1998) [31] suggestion of that PV mixing opposed

burrowing both fail. Finally, by process of elimination, the enhanced memory-induced sup-

pression of momentum transport allows the Gough & McIntyre (1998) [31] suggestion that a

residual fossil field in the radiation zone is what ultimately limits tachocline burrowing.

Further, I asked how stochastic fields affect strongly magnetized 3D turbulence? Ex-

periments in fusion devices showed that Reynolds stress bursts—which may lead to the L-H

transition suppression—drop when RMPs are applied at the edge of DIII-D in pre-L-H tran-

sition stage. Experiments also found that an increase in the L-H power threshold occurs in

fusion devices. In my second paper [10], we shed light on these two phenomena and addressed

the more general question of the physics of Reynolds stress decoherence by stochastic fields.

This decoherence requires stochastic-field-induced broadening to exceed the natural turbulence

linewidth. By considering the effect of the “shear-eddy tilting feedback loop” for self-generation

of shear flows in presence of stochastic fields, I found that stochastic fields at or beyond the

critical magnitude can break this feedback loop, since then the phase correlation in Reynolds

stress is no longer set by flow shear, but rather by the mean-squre stochastic field 〈B̃2〉, which

is not related to the tilting. This explains the strong suppression of poloidal Reynolds stress at
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the edge of a tokamak with RMPs in DIII-D. Note that the Alfvén speed follows from charge

balance, which determines Reynolds stress. A natural threshold condition for Reynolds stress

decoherence emerges as k2
⊥vADM/∆ω > 1. Finally, a critical parameter α ≡ b2q/ρ2

∗
√

βε for

the increment in L-H power threshold was calculated—the stochastic magnetic field raises the

power thresholds linearly in proportional to the mean-square value of normalized stochastic field

intensity.

My third project [8] explored relatively untouched issues—the interaction of stochastic

magnetic fields and turbulent flow, and how they together drive transport in MHD turbulence.

I studied the transport of ion heat and parallel momentum via the pressure and parallel flow

responses to stochastic fields in strong/weak turbulence regimes. Regimes are separated by a

critical comparison between the mean-squre stochastic field |b̃|2 spatial spectral width (wk) and

the acoustic width, i.e. xs = Ls/kycsτc,k, where τc,k is decorrelation time due to perpendicular

turbulent scattering. I found in a strong turbulent regime (i.e. turbulent viscosity dissipation rate

larger than other rates), the turbulent viscosity will dissipate the parallel flow perturbation, in

response to the pressure excess. I explicitly derived that the transport mechanism is dominated

by a hybrid turbulent diffusivity, which contains a stochastic magnetic scattering term and a

turbulent fluid scattering term. While in a weak turbulence regime, a pressure gradient builds

up along the mean field line in response to a pressure excess. The momentum and energy

transport occur only through magnetic fields in this regime, with the familiar transport coefficient

CsDM, where Cs is the sound speed and DM is the magnetic diffusivity. Results of this paper are

amenable to testing via computer simulations. Such studies would necessarily be non-trivial,

as they require simulation of turbulence in stochastic fields. Studies might compare the kinetic

stress and compressive energy flux calculated directly from the simulation to the predictions

made here. Turbulence intensity could be scanned by varying the deviation from marginality.

In this way, one should be able to pass smoothly from the weak turbulence/quasilinear regime

(k2
⊥DT � kzcs ) to the strong turbulence/nonlinear regime (k2

⊥DT � kzcs), and evaluate scaling

trends in both limits.
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In general terms, we see that 42 years after the influential paper by Rechester and Rosen-

bluth [77] the physics of plasma dynamics in a stochastic magnetic field remains theoretically

challenging and vital to both astrophysical and magnetic fusion energy (MFE) plasma physics.

Transport in a state of coexisting turbulence and stochastic magnetic field is a topic of intense

interest. Overall, this dissertation summarizes my PhD works focus on the turbulent momentum

transport in 2D/quasi-2D MHD in presence of highly disordered magnetic fields. In these three

journal articles, I discussed aspects of momentum transport, heat transport, and zonal flow

generation in two systems with low effective Rossby number, where dynamics evolve in the

presence of a stochastic magnetic field. I proposed an analytical model based on a renormalized

mean-field theory—a theory well beyond the quasi-linear theory—to approach this daunting

non-linear problem. I derived critical parameters for the zonal flow suppression [9], for the

power threshold increment in L-H transition [10], and the hybrid turbulent diffusivity [8]. These

have not been stated explicitly before.

5.2 Future Work

Chen & Diamond [9] suggests a novel model of transport and mixing in 2D MHD

turbulence derived from considering the coupling of turbulent hydrodynamic motion to a fractal

elastic network [7, 76, 74, 75, 58, 3]. Both the network connectivity and the elasticity of the

network elements can be distributed statistically and can be intermittent and multiscale. These

would introduce a packing fractional factor to Ck in the cross-phaase, i.e., 〈B̃2〉 → p〈B̃2 in Ck,

where 0 < p < 1 are the probabilities of sites. This admittedly crude representation resembles

that of the mean field limit for “fractons” [2]. Somewhat more sophisticated might be the

form 〈B̃2〉 → (p− pc)
γ〈B̃〉2ε , where pc iss the magnetic activity percolation threshold, and γ , ε

are scaling exponent to be determine [92]. We also speculate that the back- reaction (at high

Rm) of the small-scale magnetic field on the fluid dynamics may ultimately depend heavily on

whether or not the field is above the packing “percolation threshold” for long-range Alfvén wave
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propagation. Such a long-range propagation would induce a radiative damping of fluid energy by

Alfvénic propagation through the stochastic network.

From Chen et al. (2022) [8] Several questions and extensions for further study naturally

suggest themselves. Magnetic drifts could be included in theory, which could then be used

to study the effect of stochastic magnetic fields and turbulence upon geodesic acoustic modes

(GAMs) [98, 41, 59, 57, 63, 104]. This topic is of obvious relevance to edge turbulence and

transitions. Second, we have assumed throughout the magnetic perturbations and electrostatic

turbulence are uncorrelated, i.e. 〈b̃xφ̃〉= 0. Recent results, however, indicate that the constraint

of ∇ · J = 0 naturally forces the generation of small scale convective cells by the interaction of

long wavelength flows with turbulence. As a consequence, a non-zero 〈b̃xφ̃〉 develops, indicative

of small- scale correlations between turbulence and stochastic fields. These may induce novel

cross-coupling in the fluxes. Work on this question is ongoing. Finally, since the system studied

here essentially is one of gas dynamics in a stochastic field, we note it may have relevance

to problems in cosmic ray acceleration and propagation (cite). In those problems, magnetic

irregularities are thought to be scatter particles in turbulent environments—similar to the physics

discussed in this paper [8].

A project currently in preparation is to study stochastic field effect in a β -plane partially

ionized MHD (PIMHD) system. Examples can be found in Jupiter-like gas giant planet atmo-

spheres, which are characterized by two regions—the outer neutral envelop and the fully ionized

interior, or in the tail of heliosphere where solar wind and interstellar medium (ISM) interact.

This transition from neutral to fully ionized regime happens continuously as a function of radius.

In this transition region, physics are depicted by PIMHD which contains neutral and charged

flows interaction. Compared with studies in β -plane MHD, this two-fluid interaction yields a

nonlinear ambipolar diffusion in the induction equation, and a Lorentz drag in the equation of

motion for neutral particles. Methods and ideas from momentum transport studies can be also

applied to the interstellar/intergalactic plasma. In the future, I would be interested in studying

the effects of perturbed/irregular magnetic fields on cosmic ray hydrodynamics and cosmic ray
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transport, or other related problems.

Another project in preparation is the shear layer and staircase formation in a stochastic

magnetic field. This staircase is analogous to the “salinity staircases” observed in oceanography.

The staircase-like structure of particle density and pressure (or density/pressure corrugation) will

form a “barrier” that prevents momentum transport and hence quenches the turbulence at the

edge of fusion devices. I will study the spatial scale of the layer and how resilient this barrier

is in the presence of a prescribed stochastic field. This study can be started using a turbulence

mixing length that involves two scales—the forcing scale and the Rhines scale. A preliminary

calculation suggests a large magnetic Kubo number is required for significant change in mean

field-turbulence coupling. For cases where the magnetic Kubo number is small, this result

indicates the staircase is resilient.

Chapter 5, in full, is currently being prepared for submission for publication of the

material. Chang-Chun Chen & Patrick H. Diamond (2022). The dissertation author was the

primary investigator and author of this material.
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Appendix A

I Collective Random Magnetic Fields

We check the validity of the assumption for ignoring changes in random fields on the

small, stochastic scales (lst) due to Rossby wave straining, after applying the random-field

average method. Here we turn off the mean field (i.e. B = 0) and consider random fields only

(Btot = 0+ B̃+Bst). Since the Rossby wave may perturb the small-scale random field, we can

write the total magnetic field as

Btot = Bst + B̃, (A.1)

where Btot is the total random field including effect of the Rossby turbulence, Bst is stochastic

fields, and B̃ is the change of the magnetic field induced by Bst. Also, we define the linear

response of collective fields (δBtot) and of the random fields (δBst) has relation

δBtot

Btot
=

δBst

B̃
. (A.2)

Note that collective fields Btot are at Rossby-wave scale (kRossby) after applying the random-field

average method. Combining Eq. A.1 and A.2, we have

Btot ≡ Bst +
δBst

δBtot
Btot . (A.3)
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Since the magnetic field is dominated by random fields, the average total field is small (Btot→ 0),

rendering the second term of RHS in Eq. A.3 small. Eq. A.3 indicates that the collective field at

Rossby-scale (Btot) is not large enough to alter the structure of the random fields (B̃→ 0). Thus,

we can approximate the total magnetic field as the small-scale stochastic field Btot ∼ Bst . This

suggests that the perturbation of the Rossby wave has a minor influence on random fields. So,

the averaged magnetic stress tensor remains unchanged:

B2
tot = (Bst +

δBst

δBtot
Btot)2 ' B2

st . (A.4)

This indicates that the random field energy is fixed under the influence of the Rossby turbulence,

as described by the random-field average method. Thus, one can simplify the calculation by

ignoring the perturbation of random fields B̃.
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Appendix B

I Strong Turbulence Limit

In strong fluid turbulence, we have xs > wk (or k2
⊥DT > k‖cs)—wk sets a cut-off for the

integral
∫

dx. The first term in Eq. 4.43 becomes

a©= ∑
kykz

|b̃x,k|2
τc,k

1+(kyx/Ls)2c2
s τ2

c,k

(
−ρc2

s
∂

∂x
〈uz〉

)

=−C
∫

dky
kyr2

0q′

q2 τc,kS(ky) ·
x=wk∫
0

dx
F(x/wk)

1+(x/xs)2

(
ρc2

s
∂

∂x
〈uz〉

) (B.1)

We ignore the (x/xs)
2 in the denominator for that in the integration of step function F(x/wk),

the 1/(1+ x2/x2
s )→ 1 (see Figure 4.4). Hence, in this limit, we obtain

x=wk∫
0

dx
F(x/wk)

1+(x/xs)2 '
x=wk∫
0

dxF(x/wk) = 1. (B.2)

87



Hence, we have

a©=C
∫

dky
kyr2

0q′

q2 τc,kS(ky) ·
(
−ρc2

s
∂

∂x
〈uz〉

)

=
b2

x,0��������∫
dky

kyr2
0q′

q2 S(ky)τc,k

��������∫
dky

kyr2
0q′

q2 S(ky)

(
−ρc2

s
∂

∂x
〈uz〉

)

=−ρc2
s ∑

kykz

|b̃x,k|2τc,k
∂

∂x
〈uz〉

(B.3)

Also, the second term in Eq. 4.43 becomes

b©= ∑
kykz

|b̃x,k|2
1

(k2
⊥DT )2 + k2

z c2
s

(
ikzc2

s
∂

∂x
〈p〉
)

=−i ∑
kykz

|b̃x,k|2
kz

(−1+
k4
⊥D4

T

k4
⊥D4

T + k2
z c2

s
)

(
∂

∂x
〈p〉
)
,

(B.4)

In this limit, we have k2
⊥DT � k2

z c2
s such that

−1+
k4
⊥D4

T

k4
⊥D4

T +
�
��k2

z c2
s

' 0. (B.5)

Hence, the second term can be approximated as b©' 0, and 〈b̃x p̃〉 can be simplified to

〈b̃x p̃〉 ' −ρc2
s ∑

kykz

|b̃x,k|2τc,k
∂

∂x
〈uz〉. (B.6)
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II Weak Turbulence Limit

In weak fluid turbulence, we have wk� xs ( or k‖cs > k2
⊥DT ). The integral in equation

(4.50) becomes

a©= ∑
kykz

|b̃x,k|2
τc,k

1+(kyx/Ls)2c2
s τ2

c,k

(
−ρc2

s
∂

∂x
〈uz〉

)

=−C
∫

dky
kyr2

0q′

q2 S(ky)
∫

dxF(x/wk)
τc,k

1+(x/xs)2 ·
(

ρc2
s

∂

∂x
〈uz〉

)

'−
b2

x,0��������∫
dky

kyr2
0q′

q2 S(ky)

��������∫
dky

kyr2
0q′

q2 S(ky)
· τc,k

xs

wk
F(0) ·

x=xs∫
0

d(x/xs)

1+(x/xs)2︸ ︷︷ ︸
=arctan(xs/xs)=π/4

·
(

ρc2
s

∂

∂x
〈uz〉

) (B.7)

where arctan(xs/xs) = arctan(1) = π/4 and τd,k ' Ls/kycswk is dispersal timescale of acoustic

packet propagating along stochastic magnetic field. Hence,

a©'−b2
x,0τd,k(

xs

wk
)F(0)

π

4

(
ρc2

s
∂

∂x
〈uz〉

)
. (B.8)

Note that this term scales ∝ xs/wk, which is asymptotically small as xs/wk→ 0. Then a©→ 0,

so the first term is negligible. The second term in equation (4.50) becomes

b©= ∑
kykz

|b̃x,k|2
1

(k2
⊥DT )2 + k2

z c2
s

(
ikzc2

s
∂

∂x
〈p〉
)

= ∑
kykz

|b̃x,k|2
−i
kz

(−1+
(k2
⊥DT )

2

(k2
⊥DT )2 + k2

z c2
s︸ ︷︷ ︸

=0

)
( ∂

∂x
〈p〉
)
,

(B.9)
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where the response term is approximated as i/kz, since in this limit turbulent scattering is

weak—i.e. k2
⊥DT → 0. So, we obtain

b©= ∑
kykz

|b̃x,k|2
1

(k2
⊥DT )2 + k2

z c2
s

(
ikzc2

s
∂

∂x
〈p〉
)

' ∑
kykz

|b̃x,k|2
i
kz

∂

∂x
〈p〉.

(B.10)

Here, ∑
kz

i/kz can be approximate as

∑
kz

i
kz− iδ

= ∑
kz

iPV
[

1
kz

]
−πδ (kz)

= 0−πδ (kz),

(B.11)

where PV is Cauchy principle value and πδ (kzcs) as τd,k. So, we have

b©'−∑
kykz

|b̃x,k|2πδ (kz)
∂

∂x
〈p〉

' −DM
∂

∂x
〈p〉,

(B.12)

where DM is the magnetic diffusivity. Hence, the kinetic stress flux is

〈b̃x p̃〉=−b2
x,0τd,kF(0)

π

4
ρc2

s
∂

∂x
〈uz〉−DM

∂

∂x
〈p〉. (B.13)

The first term on RHS is approximate a©' 0 for F(0)' 0 in this limit. So, we obtain .

〈b̃x p̃〉=−DM
∂

∂x
〈p〉 (B.14)

in this limit.

90



Bibliography

[1] 61 - on the vibrations of the electronic plasma. In D. TER HAAR, editor, Collected Papers
of L.D. Landau, pages 445–460. Pergamon, 1965.

[2] Shlomo Alexander and Raymond Orbach. Density of states on fractals:�fractons�. Journal
de Physique Lettres, 43(17):625–631, 1982.

[3] JA Ashraff and BW Southern. Density of states and dynamic scaling on the vicsek
snowflake fractal. Journal of Physics A: Mathematical and General, 21(10):2431, 1988.

[4] Armstrong R. C. Bird, R. B. and O. Hassager. Dynamics of polymeric liquids. volume i :
Fluid mechanics. AIChE Journal, 34(6):1052–1053, 1987.

[5] D. Biskamp and H. Welter. Dynamics of decaying two-dimensional magnetohydrody-
namic turbulence. Physics of Fluids B, 1(10):1964–1979, Oct 1989.

[6] Stanislav Boldyrev, Don Huynh, and Vladimir Pariev. Analog of astrophysical magne-
torotational instability in a Couette-Taylor flow of polymer fluids. Physical Review E,
80(6):066310, Dec 2009.

[7] S. R. Broadbent and J. M. Hammersley. Percolation processes: I. crystals and mazes.
Mathematical Proceedings of the Cambridge Philosophical Society, 53(3):629–641, 1957.

[8] Chang-Chun Chen, P H Diamond, and S M Tobias. Ion heat and parallel momentum
transport by stochastic magnetic fields and turbulence. Plasma Physics and Controlled
Fusion, 64(1):015006, dec 2021.

[9] Chang-Chun Chen and Patrick H. Diamond. Potential vorticity mixing in a tangled
magnetic field. The Astrophysical Journal, 892(1):24, mar 2020.

[10] Chang-Chun Chen, Patrick H. Diamond, Rameswar Singh, and Steven M. Tobias. Potential
vorticity transport in weakly and strongly magnetized plasmas. Physics of Plasmas,
28(4):042301, 2021.

[11] Boris V Chirikov. A universal instability of many-dimensional oscillator systems. Physics
Reports, 52(5):263–379, 1979.

[12] Jørgen Christensen-Dalsgaard and Michael J. Thompson. Observational results and issues
concerning the tachocline, pages 53–86. Cambridge University Press, 2007.

91



[13] Navid C. Constantinou and Jeffrey B. Parker. Magnetic Suppression of Zonal Flows on a
Beta Plane. Astrophysical Journal, 863(1):46, Aug 2018.

[14] Pierre-Gilles De Gennes. On a relation between percolation theory and the elasticity of
gels. Journal de Physique Lettres, 37(1):1–2, 1976.

[15] P. H. Diamond, S.-I. Itoh, K. Itoh, and T. S. Hahm. TOPICAL REVIEW: Zonal flows in
plasma a review. Plasma Physics and Controlled Fusion, 47:35–+, May 2005.

[16] P H Diamond, S-I Itoh, K Itoh, and T S Hahm. Zonal flows in plasma—a review. Plasma
Physics and Controlled Fusion, 47(5):R35–R161, apr 2005.

[17] Patrick H. Diamond, Sanae-I. Itoh, Kimitaka Itoh, and Lara J. Silvers. β -Plane MHD
turbulence and dissipation in the solar tachocline, pages 213–240. Cambridge University
Press, 2007.

[18] Patrick H Diamond, Y Kosuga, ÖD Gürcan, CJ McDevitt, TS Hahm, N Fedorczak,
JE Rice, WX Wang, S Ku, JM Kwon, et al. An overview of intrinsic torque and momentum
transport bifurcations in toroidal plasmas. Nuclear Fusion, 53(10):104019, 2013.
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A.J.H Donné, U Samm, B Schweer, M Tokar, E Westerhof, and the TEXTOR Team.
Effect of the dynamic ergodic divertor in the TEXTOR tokamak on MHD stability, plasma
rotation and transport. Nuclear Fusion, 45(12):1700–1707, nov 2005.

[101] Richard B Wood and Michael E McIntyre. A general theorem on angular-momentum
changes due to potential vorticity mixing and on potential-energy changes due to buoyancy
mixing. Journal of the atmospheric sciences, 67(4):1261–1274, 2010.

[102] X. Z. Yang, B. Z. Zhang, A. J. Wootton, P. M. Schoch, B. Richards, D. Baldwin, D. L.
Brower, G. G. Castle, R. D. Hazeltine, J. W. Heard, R. L. Hickok, W. L. Li, H. Lin, S. C.
McCool, V. J. Simcic, Ch. P. Ritz, and C. X. Yu. The space potential in the tokamak
TEXT. Physics of Fluids B: Plasma Physics, 3(12):3448–3461, 1991.

[103] Q Yu, S Günter, K Lackner, A Gude, and M Maraschek. Interactions between neoclassical
tearing modes. Nuclear Fusion, 40(12):2031–2039, dec 2000.

[104] D. Zarzoso, Y. Sarazin, X. Garbet, R. Dumont, A. Strugarek, J. Abiteboul, T. Cartier-
Michaud, G. Dif-Pradalier, Ph. Ghendrih, V. Grandgirard, G. Latu, C. Passeron, and
O. Thomine. Impact of energetic-particle-driven geodesic acoustic modes on turbulence.
Phys. Rev. Lett., 110:125002, Mar 2013.

[105] Y. B. Zel’dovich. Percolation properties of a random two-dimensional stationary magnetic
field. ZhETF Pisma Redaktsiiu, 38:51, July 1983.

[106] Ya B Zel’dovich. The magnetic field in the two-dimensional motion of a conducting
turbulent fluid. Sov. Phys. JETP, 4:460–462, 1957.

99


	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Turbulence and Stochastic Fields in -plane MHD and in Fusion Devices
	Potential Vorticity
	A model Beyond Quasilinear Theory
	Drift-wave turbulence and Zonal Flow
	Overview of Chapters

	-Plane MHD Turbulence and the Solar Tachocline
	Model setup
	Conclusion for the -plane MHD in presence of stochastic magnetic filed
	Implications for the solar tachocline

	The Stochastic Field on Momentum Transport in Fusion Devices
	Model Setup
	Calculation and Results
	Conclusion for Drift-Wave Turbulence in Fusion Devices
	Future work for the drift-wave turbulence in presence of stochastic fields

	Ion Heat, Parallel Momentum Transport and the Hybrid Diffusivity
	A heuristic model
	Models setup and Transport by Static Stochastic Fields
	Non-diffusive Effect for Electron Particle Flux
	Calculating the Kinetic Stress and Compressive Energy Flux: Stochastic Fields and Turbulence
	Calculating the flux
	Strong Turbulence
	Weak Turbulence
	Summary for parallel momentum and ion heat transport
	Future works

	Summary and Future Work
	Summary
	Future Work

	
	Collective Random Magnetic Fields

	
	Strong Turbulence Limit
	Weak Turbulence Limit

	Bibliography



