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Abstract

Topological matter is known to exhibit unconventional surface states and anomalous transport

owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and

quantum transport to elucidate the topology of the room temperature magnet Co2MnGa. We

observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants

present in the magnetic phase. On the surface of the magnet, we observe electronic wave functions

that take the form of drumheads, enabling us to directly visualize the crucial components of the

bulk-boundary topological correspondence. By considering the Berry curvature field associated

with the observed topological Weyl fermion lines, we quantitatively account for the giant anomalous

Hall response observed in our samples. Our experimental results suggest a rich interplay of strongly

correlated electrons and topology in this quantum magnet.
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The discovery of topological phases of matter has led to a new paradigm in physics, 30

which not only explores the analogs of particles relevant for high energy physics, but also 31

offers new perspectives and pathways for the application of quantum materials [1–10]. To 32

date, most topological phases have been discovered in non-magnetic materials [6–8], which 33

severely limits their magnetic field tunability and electronic/magnetic functionality. Iden- 34

tifying and understanding electronic topology in magnetic materials will not only provide 35

indispensable information to make their existing magnetic properties more robust, but also 36

has the potential to lead to the discovery of novel magnetic response that can be used to ex- 37

plore future spintronics technology. Recently, several magnets were found to exhibit a large 38

anomalous Hall response in transport, which has been linked to a large Berry curvature in 39

their electronic structures [11–15]. However, it is largely unclear in experiment whether the 40

Berry curvature originates from a topological band structure, such as Dirac/Weyl point or 41

line nodes, due to the lack of spectroscopic investigation. In particular, there is no direct vi- 42

sualization of a topological magnetic phase demonstrating a bulk-boundary correspondence 43

with associated anomalous transport. 44

Here we use angle-resolved photoemission spectroscopy (ARPES), ab initio calculation 45

and transport to explore the electronic topological phase of the ferromagnet Co2MnGa [10]. 46

In our ARPES spectra we discover a line node in the bulk of the sample. Taken together with 47

our ab initio calculations, we conclude that we observe Weyl lines protected by crystalline 48

mirror symmetry and requiring magnetic order. In ARPES we further observe drumhead 49

surface states connecting the bulk Weyl lines, revealing a bulk-boundary correspondence in a 50

magnet. Combining our ARPES and ab initio calculation results with transport, we further 51

find that Berry curvature concentrated by the Weyl lines accounts for the giant intrinsic 52

anomalous Hall response in Co2MnGa. 53

Weyl lines can be understood within a simple framework where one categorizes a topolog- 54

ical phase by the dimensionality of the band touching: there are topological insulators, point 55

node semimetals and line node semimetals [8, 16–18]. Point nodes are often further sub- 56

categorized as Dirac points, Weyl points and other exotic point touchings [8]. Analogously, 57

line nodes can include Dirac lines (four-fold degenerate), Weyl lines (two-fold degenerate) 58

and possibly other one-dimensional band crossings [19–21]. Line nodes can be protected by 59

crystal mirror symmetry, giving rise to drumhead surface states [9, 17, 18, 22–25]. Co2MnGa 60

takes the full-Heusler crystal structure (Fig. 1A), with a cubic face-centered Bravais lattice, 61
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space group Fm3̄m (No. 225), indicating the presence of several mirror symmetries in the 62

system. Moreover, the material is ferromagnetic with Co and Mn moments [26] and Curie 63

temperature TC = 690 K (Fig. 1B) [27], indicating broken time-reversal symmetry. This 64

suggests that all bands are generically singly-degenerate and that mirror symmetry may 65

give rise to two-fold degenerate line nodes. In a detailed theoretical analysis, we studied the 66

band structure of Co2MnGa by ab initio calculation, neglecting spin-orbit coupling (SOC). 67

We observed that the ferromagnetic exchange splitting drives a phase with two majority 68

spin bands near the Fermi level that exhibit two-fold degeneracies on the mirror planes [18]. 69

These degeneracies, which arise due to a crossing of bands with opposite mirror eigenvalues, 70

form three families of Weyl lines (Fig. 1C, Fig. S10), which are pinned to each other, form- 71

ing a nodal chain, and some of which further form Hopf-like links with one another. The 72

predicted Weyl lines are protected only when the spin-orbit coupling (SOC) is strictly zero, 73

but numerical results in the presence of SOC suggest that the gap opened is negligible (Fig. 74

S9). 75

Motivated by these considerations, we investigate Co2MnGa single crystals by ARPES. 76

We focus first on the constant energy surfaces at different binding energies, EB. We readily 77

observe a feature which exhibits an unusual evolution from a < shape (Fig. 1D,E) to a 78

dot (Fig. 1F) to a > shape (Fig. 1G-H). This feature suggests that we observe a pair of 79

bands which touch at a series of points in momentum space. As we shift downward in EB, 80

the touching point moves from left to right (black guides to the eye) and we note that at 81

certain EB (Fig. 1F) the spectral weight appears to be dominated by the crossing point. 82

This series of momentum-space patterns is characteristic of a line node (Fig. 1I). For the 83

constant-energy surfaces of a line node, as we slide down in EB the touching point slides from 84

one end of the line node to the other, gradually zipping closed an electron-like pocket (upper 85

band) and unzipping a hole-like pocket (lower band). To better understand this result, we 86

consider EB − kx cuts passing through the line node feature (Fig. 2A). On these cuts, we 87

observe a candidate band crossing near kx = 0. We further find that this crossing persists 88

in a range of ky and moves downward in energy as we cut further from Γ̄ (more negative 89

ky). We can fit the candidate band crossing with a single Lorentzian peak, suggestive of a 90

series of touching points between the upper and lower bands (Fig. S13). Taking these fitted 91

touching points, we can in turn fit the dispersion of the candidate line node to linear order, 92

obtaining a slope v = 0.079 ± 0.018 eVÅ. Lastly, we observe that at a given ky, the bands 93
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disperse linearly in energy away from the touching points. In this way, our ARPES results 94

suggest the presence of a line node at the Fermi level in Co2MnGa. 95

To better understand our experimental results, we compare our spectra with an ab initio 96

calculation of Co2MnGa in the ferromagnetic state [10]. We consider the spectral weight of 97

bulk states on the (001) surface and we study an EB − kx cut in the region of interest (Fig. 98

2B) [28]. At kx = 0 we observe a band crossing (white arrow) which we can trace back in 99

numerics to a line node near the X point of the bulk Brillouin zone (blue line node in Fig. 100

S10). According to our earlier theoretical analysis, it arises on the Mxy (and equivalent) 101

mirror planes [10]. This line node is a Weyl line, in the sense that it is a two-fold degenerate 102

band crossing extended along one dimension [19–21]. It is predicted to be pinned to a second, 103

distinct Weyl line, forming part of a nodal chain. To compare experiment and theory in 104

greater detail, we plot the calculated dispersion of the Weyl line against the dispersion as 105

extracted from Lorentzian fits of ARPES data (Fig. S13). We observe a hole-doping of 106

experiment relative to theory of EB = 0.08± 0.01 eV. We speculate that this shift may be 107

due to a chemical doping of the sample or an approximation in the way that DFT captures 108

magnetism in this material. The correspondence between the crossing observed in ab initio 109

calculation and ARPES suggests that we have observed a magnetic Weyl line in Co2MnGa. 110

Having considered the blue line node, we search for other line nodes in our data. We 111

compare an ARPES spectrum (Fig. 2C,D) to an ab initio calculation of the surface spectral 112

weight of bulk states, taking into account the observed effective hole-doping of our sample 113

(Fig. 2E). In addition to the blue Weyl line (labelled here as a), we observe a correspondence 114

between three features in experiment and theory: b, c and d. To better understand the 115

origin of these features, we consider all of the predicted Weyl lines in Co2MnGa [10] and 116

we plot their surface projection with the energy axis collapsed (Fig. 2F). We observe a 117

correspondence between b in the ARPES spectrum and the red Weyl line. Similarly, we see 118

that c and d match with predicted yellow Weyl lines. To further test this correspondence, 119

we look again at our ARPES constant-energy cuts and we find that d exhibits a < to > 120

transition suggestive of a line node (Figs. S16, S17). The comparison between ARPES and 121

ab initio calculation suggests that an entire network of magnetic Weyl lines is realized in 122

Co2MnGa. 123

Next we explore the topological surface states. We study the ARPES spectrum along ka, 124

as marked by the green line in Fig. 3F. On this cut we observe three cones (red arrows in 125
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Fig. 3A) which are consistent with the yellow Weyl lines. Interestingly, we also observe a 126

pair of states which appear to connect one cone to the next (Fig. 3A-C). Moreover, these 127

extra states consistently terminate on the candidate yellow Weyl lines as we vary kb (Fig. 128

S20). We further carry out a photon energy dependence and we discover that these extra 129

states do not disperse with photon energy from hν = 34 to 48 eV, suggestive of a surface 130

state (Fig. 3G). In ab initio calculation, we observe a similar pattern of yellow Weyl lines 131

pinning a surface state (Fig. 3E) [28]. These observations suggest that we have observed 132

a drumhead surface state stretching across Weyl lines in Co2MnGa. The pinning of the 133

surface states to the cones further points to a bulk-boundary correspondence between the 134

bulk Weyl lines and the drumhead surface state dispersion. 135

Now that we have provided spectroscopic evidence for a magnetic bulk-boundary corre-

spondence in Co2MnGa, we investigate the relationship between the topological line nodes

and the anomalous Hall effect (AHE). We study the Hall conductivity σxy under mag-

netic field µ0H at different temperatures T and we extract the anomalous Hall conductivity

σAH(T ) (Fig. 4A). We obtain a very large AHE value of σAH = 1530 Ω−1 cm−1 at 2 K,

consistent with earlier reports [11, 12]. To understand the origin of the large AHE, we study

the scaling relation between the anomalous Hall resistivity, ρAH, and the square of the lon-

gitudinal resistivity, ρ2xx, both considered as a function of temperature. It has been shown

that under the appropriate conditions, the scaling relation takes the form,

ρAH = (αρxx0 + βρ2xx0) + γρ2xx,

where ρxx0 is the residual longitudinal resistivity, α represents the contribution from skew 136

scattering, β represents the side-jump term and γ represents the intrinsic Berry curvature 137

contribution to the AHE [29–31]. When we plot ρAH against ρ2xx, we observe that a linear 138

scaling appears to hold below ∼ 230 K (Fig. 4B). It is possible that the deviation from 139

linearity at high temperature arises from cancellations of Berry curvature associated with 140

thermal broadening of the Fermi-Dirac distribution, as recently proposed for the AHE in 141

metals [32]. From the linear fit, we find that the intrinsic Berry curvature contribution to 142

the AHE is γ = 870 Ω−1 cm−1. This large intrinsic AHE leads us to consider the role of 143

the Weyl lines in producing a large Berry curvature. To explore this question, we compare 144

the intrinsic AHE measured in transport with a prediction based on ARPES and DFT. 145

We observe in first-principles that the Berry curvature distribution, which we calculate in 146
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the presence of spin-orbit coupling, is dominated by the topological line nodes (Fig. 4C) 147

[28]. Next we integrate the Berry curvature up to a given binding energy to predict σint
AH 148

as a function of the Fermi level. Then we set the Fermi level from ARPES, predicting 149

σint
AH = 770+130

−100 Ω−1 cm−1 (Fig. 4D). This is in remarkable agreement with the value extracted 150

from transport, suggesting that the topological line nodes contribute significantly to the large 151

AHE in Co2MnGa. 152

In summary, our ARPES and corresponding transport experiments, supported by ab 153

initio calculation, provide evidence for magnetic Weyl lines in the room-temperature ferro- 154

magnet Co2MnGa. We further find that the Weyl lines give rise to drumhead surface states 155

and a large anomalous Hall response, providing the first demonstration of a topological 156

magnetic bulk-boundary correspondence with associated anomalous transport. Since there 157

are 1651 magnetic space groups and thousands of magnets in three-dimensional solids, the 158

experimental methodology of transport-bulk-boundary exploration established here can be 159

a valuable guideline in probing and discovering novel topological phenomena on the surfaces 160

and the bulk of magnetic materials. 161
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FIG. 1: Magnetic line node in Co2MnGa. (A) Crystal structure of Co2MnGa. (B) Mag-

netization as a function of temperature of Co2MnGa single crystals, in the absence of a magnetic

field (zero-field-cooled, ZFC) and cooled under a constant magnetic field of µ0H = 200 Oe oriented

along the [001] crystallographic axis (field-cooled, FC). We find a Curie temperature TC = 690

K. (C) Schematic of a generic line node. A line node (red curve) is a band degeneracy along an

entire curve in the bulk Brillouin zone. It is associated with a drumhead surface state stretching

across the line node (green sheet). In the case of a mirror-symmetry-protected line node, the line

node lives in a mirror plane of the Brillouin zone, but it is allowed to disperse in energy. (D-H)

Constant-energy surfaces of Co2MnGa measured by ARPES at hν = 50 eV and T = 20 K, pre-

sented at a series of binding energies, EB, from the Fermi level, EF, down to EB = 0.08 eV. (I)

Schematic of constant-energy cuts (green curves) of a line node, suggesting a correspondence with

the observed ARPES dispersion.
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FIG. 2: Evidence for a Weyl line. (A) Series of ARPES EB − kx cuts through the candidate

line node, corresponding to the feature discussed in Fig. 1. The band crossing points near kx = 0

are fit with a single Lorentzian peak (cyan dots) and the train of dots is then fit with a line (blue

line), the experimentally-observed line node dispersion. (B) Ab initio EB − kx predicted bulk

bands of Co2MnGa in the ferromagnetic state, projected on the (001) surface, predicting a Weyl

line at kx = 0 (white arrow) [10]. The colors indicate the spectral weight of a given bulk state

on the surface, obtained using an iterative Green’s function method [33]. (C) Same as Fig. 1E,

with (001) surface Brillouin zone marked (green box). (D) Key features of the data, obtained from

analysis of the momentum and energy distribution curves of the ARPES spectrum. (E) Ab initio

constant-energy surface at binding energy EB = 0.08 eV below EF, on the (001) surface with MnGa

termination, showing qualitative agreement with the ARPES, as marked by a− d. (F) Projection

of the predicted Weyl lines on the (001) surface, with energy axis collapsed, suggesting that the

key features observed in ARPES and DFT arise from the predicted Weyl lines: a (blue Weyl line),

b (red), c (yellow), d (another copy of the yellow Weyl line).
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photon energies. We observe three cone-like features (red arrows). (D) Key features of the data of

C, obtained from analysis of the momentum and energy distribution curves (MDCs/EDCs). Apart

from the cone-like features (yellow) there are additional states (green) connecting the cones. (E)

The corresponding EB − ka cut from ab initio calculation, crossing three Weyl lines (red arrows)

connected by drumhead surface states [28]. (F) Same as Fig. 2F, marking the location of the

ARPES spectra in A-C (green line) and defining the ka,b axes. (G) Photon energy dependence of

an EDC passing through the candidate drumhead state (red dotted line in A). The peaks marked

by the black vertical line correspond to the drumhead surface state. We observe no dispersion as

a function of photon energy, providing evidence that the candidate drumhead is a surface state.
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FIG. 4: Giant anomalous Hall transport and topological Weyl lines. (A) The Hall

conductivity σxy, measured as a function of applied magnetic field µ0H at several representative

temperatures T , after two-point averaging of the raw data (Fig. S5), with µ0H applied along

[110] and current along [001]. Inset: the anomalous Hall conductivity, σAH(T ), obtained from

σxy. (B) The anomalous Hall resistivity ρAH plotted against ρ2xx, both as functions of T , as

indicated by the colors: blue (2 K)→ red (300 K). A linear scaling relation estimates the intrinsic,

Berry curvature contribution to the AHE, given by the slope of the line [29–31]. (C) Bottom: z-

component of the Berry curvature, calculated with spin-orbit coupling, integrated up to EB = −0.09

eV, |Ωxy|. Top: the ARPES constant-energy surface at the corresponding EB (same as Fig. 1D).

The correspondence between ARPES and DFT suggests that the Berry curvature is dominated by

the Weyl lines. (D) Prediction of σintAH by integrating the Berry curvature from DFT up to a given

EB (red curve), with EF set from ARPES and compared to the estimated σintAH from transport.

The ARPES/DFT prediction is consistent with transport, suggesting that the line nodes dominate

the giant, intrinsic AHE in Co2MnGa.
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Supplementary Materials for: 289

290

Discovery of topological Weyl fermion lines and drumhead surface 291

states in a room temperature magnet 292

MATERIALS AND METHODS 293

Single crystal growth 294

Single crystals of Co2MnGa were grown using the Bridgman-Stockbarger crystal growth 295

technique. First, we prepared a polycrystalline ingot using the induction melt technique 296

with the stoichiometric mixture of Co, Mn and Ga metal pieces of 99.99% purity. Then, we 297

poured the powdered material into an alumina crucible and sealed it in a tantalum tube. 298

The growth temperature was controlled with a thermocouple attached to the bottom of the 299

crucible. For the heating cycle, the entire material was melted above 1200◦C and then slowly 300

cooled below 900◦C (Fig. S1A). We analyzed the crystals with white beam backscattering 301

Laue X-ray diffraction at room temperature (Fig. S1B). The samples show very sharp spots 302

that can be indexed by a single pattern, suggesting excellent quality of the grown crystals 303

without any twinning or domains. We show a representative Laue diffraction pattern of the 304

grown Co2MnGa crystal superimposed on a theoretically-simulated pattern, Fig. S1B. The 305

crystal structure is found to be cubic Fm3̄m with lattice parameter a = 5.771(5) Å. 306

Magnetization, transport 307

Magnetic measurements were performed using a Quantum Design vibrating sample mag- 308

netometer (VSM) operating in a temperature range of 2 − 950 K with magnetic field up 309

to 7 T. The transport experiments were performed in a Quantum Design physical property 310

measurement system (PPMS, ACT option) in a temperature range of 2− 350 K with mag- 311

netic field up to 9 T. For the longitudinal and Hall resistivity measurements, we employed 312

a 4-wire and 5-wire geometry, respectively, with a 25 µm platinum wire spot-welded on the 313

surface of the oriented Co2MnGa single crystals. 314
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Angle-resolved photoemission spectroscopy 315

Ultraviolet ARPES measurements were carried out at Beamlines 5-2 and 5-4 of the Stan- 316

ford Synchrotron Radiation Lightsource, SLAC in Menlo Park, CA, USA with a Scienta 317

R4000 electron analyzer. The angular resolution was better than 0.2◦ and the energy reso- 318

lution better than 20 meV, with a beam spot size of about 50× 40 µm for Beamline 5-2 and 319

100 × 80 µm for Beamline 5-4. Samples were cleaved in situ and measured under vacuum 320

better than 5 × 10−11 Torr at temperatures < 25 K. A core level spectrum of Co2MnGa 321

measured with 100 eV photons showed peaks consistent with the elemental composition 322

(Fig. SS2). 323

First-principles calculations 324

Numerical calculations of Co2MnGa were performed within the density functional theory 325

(DFT) framework using the projector augmented wave method as implemented in the VASP 326

package [35, 36]. The generalized gradient approximation (GGA) [37] and a Γ-centered k- 327

point 12 × 12 × 12 mesh were used. Ga s, p orbitals and Mn, Co d orbitals were used to 328

generate a real space tight-binding model, giving the Wannier functions. The surface states 329

on a (001) semi-infinite slab were calculated from the Wannier functions by an iterative 330

Green’s function method. 331

SUPPLEMENTARY TEXT 332

Magnetism & transport 333

The magnetic hysteresis loop recorded at 2 K shows a soft ferromagnetic behavior, (Fig. 334

S3A). The magnetization saturates above ∼ 0.5 T field with saturation magnetization 335

MS ∼ 4.04 ± 0.11µB/f.u. Earlier neutron diffraction experiments reported a moment of 336

3.01 ± 0.16 µB/Mn atom and 0.52 ± 0.08 µB/Co atom, with negligible moment on Ga 337

and total moment 4.05 ± 0.05 µB/f.u. [26], consistent with our saturation magnetization 338

measurement. Evidently, the compound follows the Slater-Pauling rule, MS = N − 24, 339

where N is the number of valence electrons, N = 28 for Co2MnGa. We see a ferromagnetic 340

loop opening with coercive field ∼ 35 Oe (Fig. S3A, inset). We observe that MS decreases 341
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slightly with increasing temperature (Fig. S3B). An earlier work addressing the origin of 342

the ferromagnetic phase performed a first-principles calculation of exchange interaction 343

parameters in Co2MnGa and found that the leading contribution is provided by exchange 344

between 3d orbitals on nearest-neighbor Mn and Co sites, see Tables II and III in [38]. 345

This nearest-neighbor Mn-Co exchange was found in calculation to have a positive sign, 346

favoring ferromagnetic alignment. Next, we study the temperature dependent longitudinal 347

resistivity of our samples ρxx(T ), with zero applied magnetic field (Fig. S4). We measure 348

current along the [100] direction. Clearly the compound shows metallic behavior throughout 349

the temperature range with very low residual resistivity: ρxx (2K) ∼ 5.6 × 10−5 Ω cm and 350

residual resistivity ratio (RRR) ρxx (300K)/ρxx (2K) = 2.6. 351

352

We provide some additional background on the Hall measurements presented in maintext

Fig. 4. The Hall resistivity ρxy is generally expressed as,

ρxy = R0µ0H + ρAH

where R0 is known as the ordinary Hall coefficient arising from the Lorentz force and ρAH is

the anomalous Hall contribution [40]. The Hall conductivity σxy is defined from the matrix

inverse of ρ,

σxy =
−ρxy

ρ2xy + ρ2xx

where ρxx is the longitudinal resistivity. Therefore, we can obtain σAH (or, in a similar 353

way, ρAH) by extrapolating the high field σxy value back to µ0H = 0 to find the y intercept, 354

as shown in main text Fig. 4A and Fig. S5A. We find σAH = 1530 Ω−1 cm−1 at 2 K, the 355

largest anomalous Hall response in any known material except Fe and Co2MnAl, Fig. S6 356

and Ref. [39]. Further, from the high field slope of ρyx as a function of µ0H, we find an 357

ordinary Hall coefficient R0 = 2.76× 10−3 cm3/C at 2 K and 9.98× 10−5 cm3/C at 300 K. 358

The positive sign of R0 suggests that the charge carriers in Co2MnGa are majority hole type 359

through the full temperature range. We estimate the carrier concentration as n = 1/(eR0) 360

and the carrier mobility as µ = R0/ρxx, where e is the electron charge, Fig. S5B. 361
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Survey band structure calculation 362

We consider a bird’s eye view of the ab initio bulk band structure in the ferromagnetic 363

state (Fig. S7). We observe two majority spin bands near the Fermi level—these are 364

the bands which form the Weyl lines [10]. There is also a large, irrelevant minority spin 365

pocket around Γ which we experimentally suppress by judicious choice of photon energy in 366

ARPES. For completeness, we present ARPES measurements on this minority spin pocket 367

below (Fig. S22). Without magnet order, the ab initio band structure changes drastically 368

(Fig. S8). This provides additional evidence that in ARPES we access the magnetic state 369

of Co2MnGa. Moreover, this result suggests that the Weyl lines we observe are essentially 370

magnetic in the sense that they disappear if we remove the magnetic order. 371

372

We also perform a band structure calculation taking into account spin-orbit coupling 373

(SOC) and we find that the gap opened is of order ∼ meV, negligible for our ARPES 374

measurements (Fig. S9). 375

Weyl lines from calculation 376

Here we give a more systematic introduction to the full network of Weyl lines in 377

Co2MnGa as predicted by ab initio [10]. Recall that a Weyl line is a one-dimensional 378

crossing between a pair of singly-degenerate bands. In Co2MnGa, the Weyl lines are 379

contained in the mirror planes of the bulk Brillouin zone but they are allowed to disperse 380

in energy. As a result, it is instructive to plot each Weyl line as a function of kx, ky and 381

EB, where kx and ky without loss of generality are the two momentum axes of the mirror 382

plane. Ab initio predicts three independent Weyl lines in Co2MnGa, which we denote the 383

red, blue and yellow Weyl lines (Fig. S10B-D). The energies are marked with respect to 384

the Fermi level observed in numerics. Since we find in experiment that the Fermi level 385

is at −0.08 ± 0.01 eV relative to calculation, the experimental Fermi level cuts through 386

all of the Weyl lines. To better view the full pattern of line nodes throughout the bulk 387

Brillouin zone, we collapse the energy axis and plot the line nodes in kx, ky, kz (Fig. S10A). 388

Although we start with three independent line nodes, these are each copied many times by 389

the symmetries of the crystal lattice, giving rise to a rich line node network. 390
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391

Since we are studying the (001) surface, it’s useful to consider more carefully how the 392

line nodes project onto the surface Brillouin zone—in other words, to see how Fig. 2F arises 393

from Fig. S10A. To start, the center red line node will project straight up on its face around 394

Γ̄. By contrast, the adjacent blue line nodes are “standing up” and will project on their 395

side, so that in fact there will be a “double” cone in the surface projection. Moreover, the 396

blue line node projection will form an open line node segment. The other red line nodes 397

will also project on their side, forming “double” red cones along an open line segment. The 398

yellow line nodes also projects in two distinct ways. The yellow line nodes in the kz = 0 399

plane will produce a single yellow line node projection, while the yellow line nodes in the 400

kx = 0 and ky = 0 planes are standing up, so they will produce a double yellow line node in 401

an open segment. Band folding associated with the (001) surface projection further sends 402

the kz = 0 yellow line node towards Γ̄. 403

ARPES systematics on the blue Weyl line 404

We present an extended dataset for main text Fig. 1D-H (Fig. S11), with a finer 405

EB sampling. We observe in greater detail the evolution of the dispersion from a < to 406

a dot to a >. For instance, we find that the crossing point moves systematically away 407

from Γ̄ with deeper EB, consistent with a line node. In ab initio, we observe a similar 408

evolution for the blue Weyl line (Fig. S12A,B). We can better understand this evolution 409

by considering the constant-energy surfaces for a generic line node (Fig. S12C,D). For 410

EB above the line node, the slice intersects only the upper cone, giving I. For EB which 411

cross the line node, we find electron and hole pockets intersecting at a point, as in II. As 412

we continue to move downward the intersection point traces out the line node, shifting 413

from left to right. Comparing to our ARPES spectra, we observe that the photoemission 414

cross-section appears to be dominated by the intersection point for this range of EB. 415

Lastly, as we scan below the line node, the intersection point completely zips closed 416

the electron pocket and zips open the hole pocket, as in III. A detailed study of the EB 417

dependence of the constant energy surface in ARPES again suggests a line node in Co2MnGa. 418

419

To provide another perspective, we cut parallel to the blue Weyl line (Fig. S13). In 420
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contrast to main text Figs. 1,2, here we cut along the Weyl line. Sweeping in ky, we 421

see the conduction and valence bands approach (Fig. S13A-D), touch each other at fixed 422

kLy = −0.03 Å
−1

along a finite range of kx (Fig. S13E) and then move apart again (Fig. 423

S13F-I). These parallel EB − kx cuts again suggest a line node dispersion. 424

425

Next, we perform a Lorentzian peak fitting of the blue Weyl line. We begin with the 426

EB − kx cuts discussed in main text Fig. 2 and we choose the energy distribution curve 427

(EDC) passing through the crossing point (Fig. S14). We fit these EDCs to the following 428

form, 429

I(x) = (C + L1(x) + L2(x))f(x)

Li(x) =
A2

i

(x−Bi)2 + C2
i

f(x) = (exp(β(x− µ)) + 1)−1

430

We include two Lorentzian peaks L1(x) and L2(x), where the first peak corresponds to the 431

line node crossing LN, while the second peak corresponds to a deeper valence band VB’ 432

which is useful for improving the fit. We also include the Fermi-Dirac distribution f(x) 433

and a constant offset C which we interpret as a background spectral weight approximately 434

constant within the energy range of the fit. We find a high-quality fit close to Γ̄ (Fig. 435

S14A-D) using a single LN peak. Away from the crossing point, the peaks are well-described 436

by a linear dispersion, further suggesting a band crossing (Fig. S14C). At ky = 0.45 Å
−1

, 437

we observe that the fit begins to deviate from the data, and at ky = 0.5 Å
−1

there is an 438

even more noticeable error (Fig. S14E-H). We speculate that this deviation may arise due 439

to our finite ky resolution/linewidth as well as the fact that these spectra cut near the 440

extremum of the Weyl line, producing a smeared-out energy gap. Another explanation 441

considers the detailed dispersion of the blue Weyl line, which exhibits a rapid upward 442

dispersion at its extremum (Fig. S10C). Due to broadening along ky, we may capture 443

LN peaks from a range of ky, smearing out this rapid dispersion and producing a plateau 444

structure in the EDC. For ky = 0.54 Å
−1

, we clearly observe two peaks on the EDC, so we 445

fit with an additional Lorentzian L3(x) (Fig. S14I-J). This gives VB and CB, the peaks 446

corresponding to the conduction and valence bands of the line node. This interpreta- 447
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tion is consistent with ab initio, which predicts that the blue Weyl line ends at ky = 0.5 Å
−1

. 448

449

Lastly, we take the results of our peak fitting and compare them with the calculated blue 450

line node dispersion. We plot the LN peak maxima and the standard deviation of the peak 451

positions, Fig. S15. We ignore EDCs at ky > 0.45 Å
−1

because the plateau shape in the EDC 452

is poorly described by a single Lorentzian, as discussed above. We compare these numerical 453

fitting results with a first-principles calculation of the blue Weyl line dispersion, shifted 454

by 0.08 eV. We find a reasonable quantitative agreement between the fit and calculated 455

dispersion. Note that there is some expected contribution to the error from the ab initio 456

calculation as well as corrections to the Lorentzian fitting form. These results support our 457

observation of a line node in our ARPES spectra on Co2MnGa. 458

ARPES study of the yellow Weyl line 459

We can also observe signatures of yellow Weyl lines in our ARPES data, at incident 460

photon energy hν = 50. We can identify a candidate yellow Weyl line by comparing an 461

ARPES constant-energy surface and the projected nodal lines (Fig. S16A, B). We reiterate 462

that there are two different ways in which the yellow Weyl lines can project on the (001) 463

surface. In particular, the four yellow Weyl lines along Γ̄ − M̄ are “standing up”, so two 464

crossings project onto the same point in the surface Brillouin zone, similar to the blue Weyl 465

line we discussed above. By contrast, the outer yellow Weyl line runs in a single large loop 466

around the entire surface Brillouin zone. It projects “lying down”, with single crossing 467

projections. Here we focus on the double yellow line node. We study constant-energy 468

surfaces at various binding energies (Fig. S16C-E) and we observe the same < to > switch 469

that we discussed in the case of the blue Weyl line. We see similar behavior on an ab initio 470

constant energy surface (Fig. S16I-K). Note crucially that the electron-to-hole transition 471

occurs in the same direction in the ARPES spectra and calculation, suggesting that the 472

line node dispersion has the same slope in experiment and theory. This provides additional 473

evidence for the yellow Weyl line. Next we search for signatures of the yellow Weyl line on 474

a series of EB − ka cuts (green lines in Fig. S17G, H). We observe the upper cone near the 475

center of the cut for ka closest to Γ̄ (Fig. S17A), corresponding to the yellow markers in 476

Fig. S16C. As we slide away from Γ̄, we observe the band crossing and lower cone (Fig. 477
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S17B, C). To pinpoint the cone, we study MDCs through the line node. We observe twin 478

peaks corresponding to the upper and lower cone (S17D,F), as well as a single peak when 479

we cut through the line node (S17E). In this way, we observe signatures of the “double” 480

yellow Weyl line of Co2MnGa in our ARPES spectra. 481

482

Lastly, we search for signatures of the other, “single” yellow Weyl line. The outer features 483

in Fig. S17B, C, as well as the large off-center peaks in Fig. S17E, F, correspond well to 484

the predicted locations of the single yellow Weyl line. The valence band further shows a 485

cone shape. However, we note that the conduction band appears to be shifted/offset in 486

momentum relative to the valence band, for instance near the Fermi level at ka ∼ 0.25 487

Å
−1

(Fig. S17B). This suggests that we are perhaps observing a surface state or surface 488

resonance which partly traces out the line node. This explanation appears to be consistent 489

with our calculations, compare main text Fig. 3E, which show a similar surface resonance. 490

In summary, we provide evidence for the yellow Weyl lines in our ARPES spectra. 491

ARPES study of the red Weyl line 492

Having discussed the blue and yellow Weyl lines, we search for ARPES signatures of 493

the red Weyl line. On the constant-energy surfaces, we observe a square feature around Γ̄ 494

(Fig. S18F-H). This corresponds well to the predicted red Weyl line (Fig. S18D). Next, we 495

study a series of EB − kx cuts passing through the center square feature. We see two clear 496

branches dispersing away from kx = 0 Å
−1

as we approach the Fermi level (red arrows, Fig. 497

S18A-C). We can mark these features on an MDC (Fig. S18E). However, we observe no 498

cone or crossing. We speculate that this may be because the other branch of the Weyl line 499

has low photoemission cross-section under these measurement conditions. 500

Photon energy dependence of the drumhead surface state 501

We present an extended dataset to accompany main text Fig. 3, showing the drumhead 502

surface states. In main text Fig. 3, we presented an energy distribution curve (EDC) stack 503

cutting through the drumhead surface state at different photon energies. Here we present 504

the full EB−kx cut for each photon energy included in the stack. We observe the drumhead 505
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surface state consistently at all energies (orange arrow, Fig. S19A-I). Additionally, we 506

show an EDC stack at a different momentum, k|| = 0.45 Å
−1

, which cuts not through the 507

drumhead surface state but the yellow line node cone (Fig. S19J) analogous to main text Fig. 508

3G. When cutting through the candidate drumhead, the EDC stack showed no dispersion in 509

the peak energy as a function of photon energy, indicating no kz dispersion and suggesting 510

a surface state. Here, by contrast, we can observe that the peak positions shift with photon 511

energy (blue arrows). This shift suggests that the yellow line node lives in the bulk. 512

In-plane dispersion of the drumhead surface state 513

We briefly study the in-plane dispersion of the drumhead surface states. At hν = 35 514

eV, with Fermi surface as shown in Fig. S20A, we study a sequence of EB − kx cuts 515

scanning through the drumhead surface state, Fig. S20B-E. We observe that the surface 516

state disperses slightly downward in energy as we scan away from Γ̄ and that it narrows in 517

k||, as expected because the line node cones move towards each other as we approach the 518

corner of the Brillouin zone. The dispersion of the candidate drumhead in-plane (but not 519

out-of-plane) is consistent with the behavior of a surface state. 520

ARPES and ab initio study of the minority spin pocket 521

We briefly noted that Co2MnGa has a large minority spin pocket around the Γ point (Fig. 522

S7). We can omit this pocket from our ARPES measurements by an appropriate choice of 523

photon energy hν, which then corresponds to a kz away from Γ. In particular, at hν = 50 524

eV, main text Fig. 2, we find that we cut near the top of the Brillouin zone (near the X 525

point) and far from the Γ point. As a result, we then compare our data with the majority 526

spin bands from ab initio, as in main text Fig. 2E. However, to further compare ARPES and 527

DFT, it is useful to search for this irrelevant pocket in ARPES and better understand why 528

it does not compete with the line node and drumhead states in photoemission. In the DFT 529

bulk projection, the minority spin projects onto a large pocket around Γ̄, see Fig. S21A-C. 530

Experimentally, we performed a photon energy dependence on a cut passing through Γ̄. For 531

hν > 50 eV we find that the red Weyl line disappears and a large hole pocket appears near 532

Γ̄ (Fig. S22B-J). This pocket matches well with the minority spin pocket in calculation. 533
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This photon energy dependence suggests that the minority spin pocket does not interfere 534

with our measurements of the Weyl lines because at hν = 50 eV we cut near the top of the 535

bulk Brillouin zone in kz (near the X point). 536



26

FIG. S1: Crystal structure of Co2MnGa. (A) Grown single crystal of the full Heusler material

Co2MnGa. (B) Laue diffraction pattern of a [001] oriented crystal superposed with a theoretically

simulated one.
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FIG. S2: Core level spectrum of Co2MnGa. (A) An XPS spectrum of our Co2MnGa

samples clearly shows Ga 3d, Mn 3p and Co 3p peaks, without significant irrelevant core level

peaks, suggesting that our samples are of high quality. (B) The single crystal Co2MnGa samples

are readily picked up by an ordinary refrigerator magnet at room temperature.
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FIG. S3: Magnetic hysteresis of Co2MnGa. (A) Hysteresis loop at 2 K for a [001] oriented

Co2MnGa crystal. Inset: zoomed-in view at low field, with hysteresis loop. (B) Hysteresis loop for

various temperatures with field applied along the [110] direction. Inset: temperature dependence

of the saturation magnetization, which decreases slightly from 4.0 µB at 2 K to 3.8 µB at 300 K.
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FIG. S4: Longitudinal resistivity. Resistivity as a function of temperature for a Co2MnGa

single crystal with current along the [001] direction.
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FIG. S5: Hall resistivity. (A) Magnetic field dependence of the Hall resistivity at several

representative temperatures. The magnetic field is applied along the [110] direction and the current

along [001]. (B) Temperature dependence of carrier concentration and mobility of Co2MnGa

calculated from the Hall coefficient of the ρyx data, as described in the text.
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FIG. S6: The anomalous Hall response in various materials, reproduced from Jpn. J. Appl. Phys.

46, L642 (2007) (see references within). We add the measured values for Co2MnGa. Only Fe

(shown here) and Co2MnAl (Ref. [39]) are known to have a larger AHE.

http://iopscience.iop.org/article/10.1143/JJAP.46.L642
http://iopscience.iop.org/article/10.1143/JJAP.46.L642
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FIG. S7: Survey band structure of Co2MnGa. Ab initio band structure of Co2MnGa in the

ferromagnetic state. Two majority spin bands near the Fermi level form Weyl lines (orange arrow).
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FIG. S8: Non-magnetic survey band structure. Ab initio band structure, ignoring ferro-

magnetism. The magnetic Weyl lines disappear.
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FIG. S9: Band structure with spin-orbit coupling (SOC) in Co2MnGa. We observe

numerically that, cutting along the Γ − K direction in the bulk Brillouin zone, the band gap

opened in the magnetic Weyl line is < 1 meV. The yellow arrow represents the magnetization

direction m.
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FIG. S11: Constant energy surfaces of Co2MnGa. (A-I) We expand on the dataset shown

in main text Fig. 1D-H by plotting constant energy surfaces at additional EB. The evolution is

characteristic of a line node dispersion.
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arrows), to III, a hole pocket. The touching point at each energy is a point on the Weyl line.



38

ky = 0.01Å
-1

VB

CBky
L
 = -0.03Å

-1

 line
node

ky = -0.17Å
-1 CB

VB

ky = -0.12Å
-1

VB

CB

0.2

0.1

0.0

E
B 

(e
V

)

ky = -0.08Å
-1

VB

CB

-0.5 0.0 0.5
kx (Å

-1
)

0.2

0.1

0.0

E
B 

(e
V

)

ky = 0.06Å
-1

VB

CB

-0.5 0.0 0.5
kx (Å

-1
)

ky = 0.10Å
-1

VB

CB

0.2

0.1

0.0
E

B 
(e

V
)

ky = -0.21Å
-1 CB

VB

-0.5 0.0 0.5
kx (Å

-1
)

ky = 0.15Å
-1

VB

CB

-0.5

0.0

0.5

k y
 (Å

-1
)

-0.5 0.0 0.5
kx (Å

-1
)

EB = 0eV

A-I

kx

E

VB

CB

VB = valence band
CB = conduction band kx

ky

E

A B C

D E F

G H I

J K L

FIG. S13: Cutting parallel to the bulk Weyl line. (A-I) EB − kx cuts sweeping through

the Weyl line in ky, as indicated in (J). The valence and conduction bands appear to meet at a

single kLy (red arrow). Note that kLy is slightly away from ky = 0 Å
−1

, probably due to a small

misalignment. (K) A generic cut parallel to a Weyl line and (L) its evolution in ky.
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FIG. S14: Lorentzian fitting of the blue Weyl line. (A, C, E, G) EB − kx cuts through

the line node, same as those in main text Fig. 2A. The yellow arrows mark the center EDC. Band

dispersion obtained from analysis of the spectra (cyan dots, C) with linear fit (purple line, C). (I)

Additional cut further away from Γ̄, past the predicted end of the blue Weyl line. (B, D, F, H,

J) Fits of the center EDC (fitting form discussed in the text), suggesting a band crossing.
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FIG. S16: Signatures of the yellow Weyl line. (A) Constant-energy surface from ARPES

compared with (B) the (001) projection of the line nodes from calculation, emphasizing signatures

of the yellow Weyl lines (yellow arrows). Note that the Weyl lines project both “standing up”

so that the band crossings project in pairs into the surface Brillouin zone (double yellow Weyl

line). The remaining yellow line node forms a large ring around the entire surface Brillouin zone,

projecting simply “face up” (single yellow Weyl line). (C-E) Constant-energy surfaces showing the

characteristic < to > transition (yellow arrows). (F-H) Corresponding ab initio cuts showing the

double yellow Weyl line (green guides to the eye).
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FIG. S17: Yellow Weyl line cones. (A-C) EB − k|| cuts sweeping perpendicular to the line

node. In A we observe the upper cone associated with the double yellow line node; in B we see

a line node crossing and the lower cone; in C we find a weak signature remaining from the lower

cone. (D-E) MDCs taken from the EB − k|| cuts, as indicated by the green arrows in A-C. The

weak peaks associated with the double yellow line node are marked by the red arrows. (G, H) The

locations of the cuts in A-C, as marked. Our MDC analysis provides additional evidence for the

yellow line node in Co2MnGa.
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FIG. S18: Signatures of the red Weyl line. (A-C) EB − kx cuts passing through the red

line node near Γ̄. We see two bands dispersing away from Γ̄ as we approach EF, consistent with

(D) the red line node in calculation. (E) The two bands on an MDC (taken at the red arrow in

G). (F-H) Constant-energy surfaces, emphasizing a square feature around Γ̄ in agreement with the

predicted red Weyl line. The square feature (red dots) appears to arise from the red Weyl line.
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FIG. S19: Evidence for kz dispersion of the yellow Weyl line. (A-I) EB−k|| cuts analagous

to main text Fig. 3A-C, but at more photon energies. (J) Stack of EDCs as a function of hν,

analogous to main text Fig. 3G, but instead of cutting through the drumhead surface state, the

EDC cuts through the yellow line node, at k|| = 0.45 Å
−1

(dotted red line in E). We clearly

observe the drumhead surface state in all cuts (orange arrows). Recall that the drumhead showed

no photon energy dependence, suggesting that it is a surface state. Here, by contrast, we see a

photon energy dependence (blue arrows in J), associated with the yellow Weyl line (cyan arrows

in E, I), suggesting a kz dispersion for the yellow line node cone.
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FIG. S20: In-plane dispersion of the drumhead. (A) Fermi surface at hν = 35 eV and (B-E)

EB − k|| cuts showing the drumhead surface state, with locations as marked in A (cyan lines). We

observe a weak dispersion of the surface state doward in energy as we move away from Γ̄. So we

a observe an in-plane dispersion of the drumhead, but not an out-of-plane dispersion (main text

Fig. 4), demonstrating a surface state.
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FIG. S21: Minority spin pocket in calculation. (A) Bulk projection of the majority spin

states, same as main text Fig. 2E. (B) Bulk projection of the minority spin at the same energy.

(C) The sum of Aand B, the bulk projection of all states at the given binding energy.
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FIG. S22: The minority spin pocket in ARPES. (A-I) EB − ka cuts through Γ̄ at different

photon energies, with the location of the cut shown in (J) by the green line. At hν > 65 eV a large

hole pocket appears (green arrows), consistent with the minority spin pocket seen in calculation.
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