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Worst-Case Performance of
Cellular Channel Assignment Policies

ScoTT JORDAN* AND ERric J. ScHwABE!
Department of EECS
Northwestern University
2145 Sheridan Road
FEvanston, IL 60208

E-mail: {scott,schwabe}@eecs.nwu.edu

Many cellular channel assignment policies have been proposed to improve effi-
ciency beyond that resulting from fixed channel allocation. The performance of
these policies, however, has rarely been compared due to a lack of formal metrics,
particularly under nonhomogeneous call distributions. In this paper, we introduce
two such metrics: the worst-case number of channels required to accommodate all
possible configurations of N calls in a cell cluster, and the set of cell states that can
be accommodated with M channels. We first measure two extreme policies, fixed
channel allocation and maximum packing, under these metrics. We then prove a
new lower bound, under the first metric, on any channel assignment policy. Next,
we introduce three intermediate channel assignment policies, based on commonly
used ideas of channel ordering, hybrid assignment, and partitioning. Finally, these
policies are used to demonstrate the tradeoff between the performance and the
complexity of a channel allocation policy.

1 Introduction

Wireless services are one of the strongest growth areas in telecommunications
today. Cellular voice is well established as a high-end service in most areas,
but demand is increasing rapidly. Personal communications services (PCS) are
expected to be introduced in the next few years as a mass market phone service.
Wireless data services are appearing in the form of cellular digital packet data
(CDPD), wireless local area networks (LANs), and wireless modems. Capacity,
however, is now a critical issue for all of these services. In response, carriers are
investigating cell splitting, allocation of new spectrum, alternative multiple access
architectures, and dynamic channel allocation. In this paper, we focus on this last
approach for increasing the available capacity.

*Supported by the Ameritech Foundation.
TSupported by the National Science Foundation under grant CCR-9309111.
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Figure 1: A cell cluster and interference region.

In cellular systems, the geographical region is split, using a regular topology,
into cells, each containing one base station. The most common cell shape in
two dimensions is a regular hexagon (Figure 1). A mobile wishing to initiate a
call must request a channel from the base station in the cell in which the mobile
currently exists. The base station must assign a channel that is not currently used
within some specified distance. The set of cells that interfere with a given cell is
called the interference region of that cell. In Figure 1, the center cell’s interference
region consists of all cells within two cell diameters. For certain regular topologies
(including those of interest), there exists a smaller set of cells called a cluster such
that the reuse constraint can be satisfied only if the total number of calls active
within each cluster does not exceed the total number of system channels. In
Figure 1, one such cluster consists of the center cell and all cells within one cell
diameter.

The existing cellular system was proposed by Schulte [1] in 1960. Called fized
channel allocation (FCA), it partitions the available spectrum into channel sets
(A-G in Figure 1). The reuse distance constraint is satisfied by assigning these
channel sets to the cells in each cluster in a manner determined by a graph coloring
problem (c.f. Hale [2]). A base station is allowed to transmit to and from mobiles
in its cell only on channels in its assigned channel set.

In Figure 1, a mobile attempting a new call while in the center cell must obtain
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a channel in segment G of the spectrum. This FCA policy clearly is sufficient
to insure that no other mobile uses the same channel within the reuse distance,
since channels in G can not be reused within the interference region of the center
cell. However, the policy is not necessary to guarantee that the reuse constraint is
satisfied. To demonstrate this, suppose that all channels in G are currently used
in the center cell, that no other mobiles are placing calls within the interference
region in Figure 1, and that one additional mobile in the center cell wishes to
initiate a call. Under FCA, this mobile must use a channel in segment G, and
hence its attempt would be blocked. However, a channel could be found in (for
instance) segment A that is not used anywhere in the interference region of the
center cell. Assigning this channel to the new call would thus not violate any
reuse constraint. The realization that FCA is overly restrictive has inspired all
other channel allocation policies.

In the late 1960s and early 1970s, a number of alternatives were suggested.
Araki [3] introduced the original dynamic channel allocation (DCA) policy, which
assigns to a new call any channel that is unused in the originating cell’s interfer-
ence region. Cox [4, 5, 6, 7] introduced the concepts of keeping channels in an
order (channel ordering), assigning channels based on information about channel
usage just outside the interference region (channel assignment), and reassigning
existing calls when a call completes to maintain good channel usage (channel
reassignment). Engel [8] introduced the concept of initially assigning channels us-
ing the FCA policy, but then allowing a base station to borrow a channel from a
neighboring cell if it has none available (channel borrowing). A plethora of policies
have followed from the late 1970s through today. These dynamic channel allo-
cation schemes involve various combinations of permanent channel assignment,
channel borrowing, shared pools of channels, channel ordering, channel reassign-
ment, and dynamic adjustment of parameters.

The performance of a given policy has usually been measured by blocking
probabilities, under the assumption that call attempts are uniformly distributed
among all cells in the system (c.f. [9, 10, 11]). This assumption, however, is
increasingly inaccurate in evolving wireless systems with high user mobility. Fur-
thermore, dynamic channel assignment policies reap their greatest gains when the
number of calls in each cell are not equal. Performance comparisons of channel
assignment policies under nonhomogeneous call distributions, therefore, are crit-
ical. Such comparisons, however, have been rare. Recently, one study provided
capacity bounds for a single channel system under arbitrary arrivals [12]. Previ-
ous studies of nonhomogeneous call distributions, however, have generally either
assumed a fixed call configuration (c.f. [13, 14]) or a specific set of cell loads (see
e.g. [15, 16, 17, 18, 19]). Any comparison with other policies, therefore, is re-
stricted to the particular call configuration or cell loads used. We believe that
additional formal metrics might help in the measurement of the performance of
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cellular channel assignment policies under nonhomogeneous call distributions.
In this paper, we introduce two such metrics to measure the worst-case per-
formance of a channel allocation policy P:

e CH(SN, P), the worst-case number of channels required to accommodate
any configuration of at most N calls in each cell cluster;

o SS(M,P), the set of cell states that can be accommodated using a total of
M channels.

The first metric C'H provides information about the capability of a channel
assignment policy P to accommodate mobility, since the worst-case usually occurs
with a skewed call distribution. The second metric 55 provides more detailed
information as to which call distributions a policy P can accommodate.

The remainder of the paper is organized as follows. In Section 2, we formally
define our metrics and briefly review known upper and lower bounds on channel
allocation policies under these two metrics. These bounds are generally derived
from two extreme policies, fixed channel allocation (FCA) [1] and maximum pack-
ing (MP) [9]. In Section 3, we prove a new general lower bound, under the C H
metric, on the performance of any channel assignment policy. Section 4 intro-
duces three intermediate channel assignment policies that use well-known ideas
such as channel ordering, hybrid assignment, and partitioning. Finally, in Section
5, these three policies are used to demonstrate the variation of performance with
the complexity of the channel allocation policy.

2 Known Bounds

2.1 The CH and 55 Metrics

First, we define the cell geometry with which we will be working. We assume
an infinite regular hexagonal cellular array. Cochannel interference constraints
require that a channel not be reused within some minimum distance. This con-
straint is usually satisfied by specifying an interference region around each cell,
and requiring that any channel used within a cell not be reused within that cell’s
interference region. In this paper, we assume that the interference region of cell ¢
is specified as the union of those cells whose centers are a distance of up to and
including » — 1 (a nonnegative integer) from cell ¢’s center, where the distance
between centers of neighboring cells is normalized to 1.

Using hexagonal cellular geometry, it can be shown that the minimum distance
from the center of cell 7 to the center of a cell outside cell ¢’s interference region
is given by d = Vk2+ kl+ 1%, where k = | = r/2 for r even and k = (r —
1)/2,1 = (r + 1)/2 for r odd. Furthermore, a cluster can be defined, containing
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exactly C' = d? cells, as any maximal mutually interfering group of cells. Cell i’s
interference region can then be represented as the union of all clusters containing
cell ¢. In Figure 1, the interference region is given by r = 3 and the cluster size is
given by d* = 7.

Label the cells as ¢ = 1,2,... and the clusters as j = 1,2,.... Denote the
number of calls in cell ¢ as z;, and the collection of such variables for the entire
system as the vector = (21, 22,...). We denote the number of calls in cluster j

by

yj = > i,
all cells ¢ in cluster j

and the maximum number of calls in any cluster in the cellular system by
p(z) = max{y; | j a cluster}.

Let P be a channel allocation policy. Then we define C'H (x, P) to be the number
of channels required by policy P to accommodate the call configuration z.

It is well known (c.f. [13]) that p(z) is a lower bound on the number of channels
required in the cellular system — that is,

CH(z,P)> p(z) forall P. (1)

Furthermore some call configurations have been found for particular cellular topolo-
gies and reuse distances which no channel assignment policy can accommodate
with only p(z) channels [13] — that is,

For some topologies, there exists an & such that CH(z, P) > p(x) for all P. (2)

Additional bounds have been provided for particular call configurations by repre-
senting the channel assignment task as a graph coloring problem [2] or by using
additional constraints limiting adjacent channel interference [13].

We are interested, however, not only in how a channel assignment policy
accommodates a single call configuration z, but also in how it accommodates a
collection of call configurations. In particular, we would like to know how a policy
reacts to significant user mobility. We thus define the set of cellular system states
in which each cluster carries no more than NV calls, in any combination as

Sy =Az|y; <N forall j}.

Our first metric for measuring the performance of a channel assignment policy
P is CH(SN,P) — the number of channels required to accommodate all cell
configurations in Spy. This metric provides a worst-case measure of the capability
of a policy to accommodate mobility. Our second metric is S5(M, P) — the set of
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cell configurations, or state space, that can be accommodated under a particular
channel assignment policy P given a total of M channels. SS(M, P) thus displays
exactly what types of mobility a channel assignment policy can handle. This
second metric is more detailed because given the sets S5(M, P) for all values M
and some policy P, we have that

CH(Sy, P)=min{M | Sy C $S(M, P)}.

We suggest that these two metrics be used in conjunction with more tradi-
tional metrics. Probability of blocking provides a measure of the performance of
a dynamic channel allocation policy under a particular set of cell loads. The C'H
and 55 metrics provide complementary information about the ability of a policy
to accommodate mobility. State space analysis has enjoyed a long tradition in the
telecommunications performance community. Calculation of blocking probabili-
ties for dynamic channel allocation policies has usually been accomplished through
event-driven simulation, without explicit determination of the policy’s achievable
state space. Worst-case analysis can not replace such load-specific analysis, but
we believe that it can complement it by providing information about bottlenecks,
through the C'H metric, and information about achievable mobility, through the
55 metric.

2.2  Bounds for FCA and MP

The fized channel allocation policy (FCA) for a cellular system with M channels
partitions these channels among the C' cells in each cluster. It therefore accepts a
call to cell ¢ if and only if doing so would result in a state  such that a; < M/C.
In other words,

SS(M,FCA) = {2 | 2; < M/C for all 7}. (3)

It therefore requires as many as C'N channels to accommodate any combination
of N calls in a cluster (since those calls might all occur in a single cell), namely
CH(Sn,FCA) = CN. Since all other proposed channel assignment policies are
more complicated than FCA, we think of FCA as providing an upper bound on
CH(Sn, P) for reasonable policies P.

On the other hand, the mazimum packing channel assignment policy (MP)
for a cellular system with M channels accepts a call to cell ¢ if and only if doing
so would result in a state z such that y; < M for all clusters j containing .
Therefore SS(M,MP) = Sy, and MP only requires N channels to accommodate
any combination of N calls in a cluster, namely C'H(Sn,MP) = N. (It will be
shown in Section 3, however, that maximum packing is unrealizable, and hence
only an ideal bound.)

Summarizing, we know that:
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N < CH(Sn,P)< CN (4)

and

SS(M,P)C Sy (5)

for all policies P.!

Our goals in the remaining sections of this paper are to provide tighter bounds
and to demonstrate the tradeoffs between the performance and the complexity of
channel assignment policies under these metrics.

3 A New Lower Bound on the Number of Channels

Individual call configurations z have been presented in the literature for partic-
ular cellular topologies and reuse distances that satisfy & € Sy and yet violate
frequency reuse constraints under any channel assignment policy that uses only N
channels. In this section, we introduce a family of cell configurations that provides
a general lower bound on C'H (S, P) that is strictly greater than N for all reuse
distances.

The configuration includes a simple cycle of adjacent cells, each with N/r calls.
Such a configuration is displayed in Figure 2 for the case of r = 2. The cycle is
constructed so that every connected set of r cells interferes, but no subset of r+ 1
cells interferes. It is therefore clear from expression (1) that the configuration will
require a minimum of N channels.

The cycle length [, however, is chosen not to be a multiple of the reuse distance
r. In Figure 2, the cycle length is chosen to be [ = 9 and the number of channels
N = 6. Thus each cell contains N/r = 3 calls. Without loss of generality, suppose
that channels 1, 2, and 3 are assigned to the cell 0 in the cycle. We must then
assign channels 4, 5, 6 to cell 1, since cells 0 and 1 interfere. Similarly, we must
assign channels 1, 2, and 3 to cell 2. Proceeding around the cycle clockwise,
we will eventually assign channels 4, 5, 6 to cell 7. This leaves cell 8 with no
channels that are unused in its interference region. A more detailed analysis of
this configuration can furthermore show that no assignment that obeys the reuse
constraints is possible with fewer than 8 channels.

The following lemma states that such a cycle can be always be found for any
reuse distance r > 2 and number of channels V.

'In the upper bound on CH in expression (4), we ignore policies that perform worse than

FCA.
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Figure 2: A cycle of cells with 3 calls each.

Lemma 1

For any reuse distance r, there is a cycle of | pairwise adjacent cells, 6r — 6 <[ <
6r — 3, such that | is not a multiple of v and no set of r + 1 cells in the cycle is
mutually interfering.

Proof

For all r except r» = 2, 3,6, the conditions of the Lemma are satisfied by a regular
hexagonal cycle of | = 6(r — 1) = 67 — 6 cells. It is easy to verify that such a
cycle satisfies the interference conditions for all r. However, for r = 2,3, 6, it has
length [ that is a multiple of r. We address these three cases separately:

o r = 6: We can elongate two opposite sides of the regular hexagonal cycle by
a single cell each, so that two opposite sides of the cycle contain seven cells
each, and the other four side contain six cells each. This yields a cycle of
length | = 6r — 4 = 32 that satisfies the interference conditions and whose
length is not a multiple of r.

o r = 3: Again, we elongate two opposite sides of the regular hexagonal cycle
by a single cell each, so that two opposite sides of the cycle contain four cells
each, and the other four side contain three cells each. This yields a cycle of
length | = 6r — 4 = 14 that satisfies the interference conditions and whose
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length is not a multiple of r.

e r = 2: A hexagonal cycle of nine cells whose sides alternate between having
two and three cells satisfies the interference conditions and has length [ =
6r — 3 = 9 that is not a multiple of . (This is the cycle pictured in Figure
2.)

This yields for every r a cycle of length between 67 — 6 and 6r — 3 that satisfies
the conditions of the Lemma. (Il

The following theorem uses this cycle to prove a formal lower bound on the
worst-case number of channels required to satisfy a configuration of calls in cells
with at most N calls per cluster.

Theorem 2

Suppose we have a cycle of pairwise adjacent cells of length I, where | is not a
multiple of v and no set of r + 1 cells in the cycle is mutually interfering. Then
we can assign calls to each cell in the cycle in such a way that there are at most

N calls per cluster but at least N + [LLJX//TGW channels are needed to satisfy the calls

within the reuse constraints.

Proof
We will prove the theorem for the case where N is a multiple of r; the proof of
the general case is nearly identical.

Label the cells of the cycle ig, iy, ...,4_1, and assign exactly N/r calls to each
cell in the cycle. Note that this assigns at most V calls to each cluster. Assume
that we can satisfy this configuration of calls with N 4+ k channels. Since cells
19 through 7,_1 of the cycle are mutually interfering, they together must use N
channels. Therefore cells ig and ¢, must have at least N/r — k of their assigned
channels in common. Similarly, cells 7, and i3, must have least N/r — k of their
assigned channels in common — it follows that ¢g and i3, must have at least
N/r — 2k of their assigned channels in common. It is straightforward to verify
that for any ¢ < |{/r], cells iy and ¢y, must have at least N/r — ¢k of their
assigned channels in common. Consider cell ¢|;/,|,. This cell must have at least
N/r—|l/r]k of its assigned channels in common with ig. However, these two cells
are within the reuse distance r of each other, so they cannot have any channels
in common. Therefore it must be the case that N/r — |I/r]k is at most zero.

It follows that k& > %, and therefore that the number of channels required to

satisfy this configuration is at least NV + [%w =N+ P-L];f/—/ﬁq
When N is not a multiple of r, assigning either | N /7| or [N/r] calls to each

cell in the cycle in an appropriate fashion will yield the general form of the theorem
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by an identical argument. (Il

Applying Theorem 2 to the cycles whose existence was proved in the previous
lemma yields the following corollary:

Corollary 3
For any reuse distance r, there is a configuration of calls in cells with at most N
calls per cluster for which the number of channels required to satisfy the calls is

N+ [|N/r]/4] if r <5, and N + [|[N/r]/5] if r > 6. O

Note that this lower bound is strictly greater than the previous lower bound,
p(z) in expression (2), with the trivial requirement that N > r, since here p(z) =
N. Furthermore, this bound applies to all channel assignment policies P and all
reuse distances r, using only cochannel constraints. Maximum packing, therefore,
is an unrealizable channel assignment policy, and represents only an unachievable
performance bound. It follows that the lower bound of N in expression (4) is a
strict inequality. Furthermore it also follows that no policy can accommodate all
combinations of M calls in a cluster with only M channels, namely SS(M, P) C
Sas for all policies P.

4 Three Intermediate Channel Allocation Policies

In this section, we introduce three intermediate channel assignment policies, based
on commonly used ideas of channel ordering, hybrid assignment, and partitioning.
These policies were chosen due to the prevalent usage of their underlying concepts
in the dynamic channel assignment literature and to our ability to construct an-
alyzable variants of them. Furthermore, little is known about the performance
benefits of these concepts under nonhomogeneous loads [5, 16]. These policies
will be used to demonstrate the variation of performance with the complexity
of the channel allocation policy, and are not meant to outperform other policies
proposed in the literature.

4.1 Curcular Ordering

Our first scheme, Circular Ordering (CO), is relatively simple and based on chan-
nel ordering, which has been widely used in dynamic channel allocation policies
since it was first suggested by Cox [5].

Circular Ordering: Each cell is marked as in FCA with one of C' letters (A,
B, C, ...), such that cells marked with the same letter are noninterfering. This
marking is shown in Figure 3(a) for a system with r = 2. The M channels are
conceptually arranged on a circle and each of the €' segments is assigned a center;
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Figure 3: (a) A cell’s clusters. (b) A channel assignment circle for one cluster.

these centers are equally spaced around the circle. For each cluster, this circle is
used to track which channels are currently in use in each cell. In Figure 3(a), there
are six clusters containing the center cell, one of which is shaded. A representative
circle is shown in Figure 3(b).

When a mobile requests a channel from cell ¢z, the cell attempts to assign
it the channel, among those unused by cell ¢ and between adjacent centers on
the circle, that is closest to cell ¢’s center. If no such channel exists or if this
channel is occupied by another cell in any cluster containing cell 7, then the call
request is blocked. When any channel is released, the cell reassigns that channel
to the call currently occupying the channel furthest from the cell’s center. Thus
an assignment is maintained in which the calls in each cell ¢ occupy a contiguous
range of z; channels,

(kﬁ — [xi_ 1-‘) mod M, ..., (kl—l— {xi_ 1J) mod M,
2 2 2 2

symmetric about the cell’s center, where k = 1 for type A cells, k = 2 for type B
cells, etc. O

In Figure 3(b), the shaded portions represent channels occupied by cells A,
B, and C in the shaded cluster in Figure 3(a). For this example, a new call in

the shaded cell A or B would be blocked. A new call in the shaded cell C would
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be assigned to the unshaded channel closest to its center, if this channel were also
free in the circles corresponding to the other clusters containing that cell.

The states that are achievable under this policy are described in the following
theorem.

Theorem 4
Circular Ordering, with M channels (assumed to be a multiple of the cluster size
C'), can satisfy any state in Sy such that:

2M
i+, < Yol for all cells i1, 15 in a common cluster and adjacent on the circle.
(6)
Thus SS(M,CO) = those configurations satisfying expression (6) C Syy.
Furthermore, Circular Ordering can satisfy any configuration of calls in cells

with at most N calls per cluster using % channels when C'N is even, [%W =

ENEL channels otherwise. Thus CC(Sn,CO) = [<X].

Proof
(We will give the proof for the case where N is even. The proofs for when N is
odd but C'is even, and for when C'N is odd are nearly identical.)

Let M = % We show that if each cluster contains at most N calls, then
no two of the ranges of channels assigned to two cells in the same cluster overlap.
The Theorem follows.

Suppose that each cluster contains at most N calls. Let ¢; and i3 be two cells
in the same cluster, of types k;; and k;, and with z;, and z;, calls respectively;
then z;, + z;, < N. Without loss of generality, assume that k;, < k;,. The calls
in each cell are assigned channels

N i — 1 N N i — 1 N
(kil——[xl -D modC—, ey (kil——l—{LJ)modC—
2 2 2 2 2 2
and
N i — 1 N N i — 1 N
(ki,z——[xz) -Dmodc—, ey (kiz)——l—{xz) J)modc—.
2 2 2 2 2 2

The high end of #1’s range overlaps the low end of 23’s range only if

. > L. _ 2
kll 2 —I_ \‘ 2 J - klg 2 " 2 -‘ ?

N x;, — 1 ., — 1
ki, — k. )— < “ 2 .

or equivalently,
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However, since z;, + z;, < N, we have
{952'1_1J_|_[95i2_1-‘<$i1_1_|_95i2_1_|_1<N 1
2 2 - 2 2 2= 2 2

but from the fact that &;, — k;; > 1,

(k

N
- kh)?

N
> ?
=2

12
so it can never be the case that the high end of #;’s range of channels and the
low end of ¢5’s range of channels overlap. A similar argument shows that the low
end of ¢1’s range and the high end of i3’s range of channels cannot overlap either.
We conclude that the ranges of channels assigned to the calls in cells ¢ and @9
are disjoint. Since ¢; and iy were arbitrary interfering cells, and the assignment
of calls to cells was arbitrary, the Theorem follows. O

The modifications to this proof required to establish the more general result
are minimal. When N is odd, rather than using the €' centers to divide each
circle of % channels into C' equal arcs of % channels, we instead divide it into C'
alternating arcs of [5] and | 4] channels. When C'N is odd the fact that there
is one more arc of size [£] than of size %] leads to the increase in the bound.

Note that this scheme allows more sharing than FCA since FCA’s state space,
as given by expression (3), is a strict subset of Circular Ordering’s state space, as
given by expression (6). Those states in 55(M, CO) but not in S5(M,FCA) rep-
resent call configurations CO can handle but FCA can not. This sharing results
in a reduction by one half of the number of required channels to accommodate
any configuration of N calls in a cluster. Circular Ordering thus achieves a per-
formance, with respect to our two metrics, that is near the midpoint of the ranges
defined by FCA and MP in expressions (4) and (5). This increase in performance
above that achieved by FCA directly measures Circular Ordering’s superior abil-
ity to react to mobility, and helps explain the popularity of channel ordering in
the literature.

4.2 Hybrid Graph Coloring

Better performance in our metrics can be achieved using more sharing. Hybrid
Graph Coloring (HGC) is a bit more complex and is based on hybrid allocation

[16]. We define M = 2 N, and we assume for convenience that NV is an integer
multiple of 6, so that M is an integer multiple of 2C" 4+ 7. The general version is
considered in Theorem 5.

Hybrid Graph Coloring: Each cell is marked as in FCA with one of C letters
(A,B, C,...),such that cells marked with the same letter are noninterfering. This
marking is shown in Figure 4 for a system with » = 2. A total of C'N/3 channels
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C) Cells with excess

Figure 4: Cell marking and construction of the excess graph.

are partitioned equally among the C' markings. This leaves M — CN/3 = TN /6
channels to be shared among all cells.

When a mobile requests a channel from cell i, the cell first attempts to assign
it a channel in its segment of the partition. If no such channel is available, a
graph is constructed with a node for each cell carrying greater than N/3 calls
(including the new call) and with an edge between any two nodes that interfere.
Denote all calls not assigned channels in the partition as excess calls, and denote
the corresponding graph as the excess graph for the configuration. Such a graph
is shown in Figure 4. Let h be the number of colors required to color the excess
graph’s nodes so that no adjacent nodes receive the same color. Use Circular
Ordering, with the remaining M — CN/3 = TN/6 channels and h centers, to
satisfy the excess calls, if possible. If Circular Ordering can not satisfy all excess
calls, block the new call.

When a mobile terminates a call, if that call was assigned a channel by Circular
Ordering in the excess graph, proceed as in Circular Ordering. If the call was
assigned one of the fixed channels for its cell, terminate one of calls in the excess
graph node for the cell and assign to it the fixed channel that was just released.
O

The states that are achievable under this policy are described in the following
theorem.
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Theorem 5
Hybrid Graph Coloring, with M channels (assumed to be a multiple of 2C' + 7),
can accommodate a state space bounded by:

IM
2047

SS(M,CO)C SS(M,HGC) C Sy n{z; < Vi}. (7)
Thus SS(M,CO) C SS(M,HGC) C Sy

Furthermore, Hybrid Graph Coloring can satisfy any configuration of calls
in cells with at most N calls per cluster using C+7/2 channels whenever N is a

multiple of siz, and (C—I—?/Q)L | 414 channels otherwise. Thus CH(Sn,HGC) <
CHTEN 414,

Proof
Due to the variability of h, the number of colors required, we do not have a exact
characterization of Hybrid Graph Coloring’s state space. The number of shared
channels is M — ﬂ = 7N /6. The maximum number of channels any one cell can
occupy is therefore N/3+TN/6=3N/2=

For the lower bound, compare S5(M, HGC) to SS5(M,CO). Assume a conﬁg—
uration z € S5(M, CO). Use the coloring corresponding the Circular Ordering’s
markings to label the excess graph. Then any pair of cells x;; and z;5 in the
excess graph that are also adjacent on the ordering circle have an excess of at
most (4 — &)+ ( ). Since @, + x4, < 2L from expression (6), their joint
excess is at most 24 _ ﬁ On the other hand, Hybrrd Graph Coloring can accom-
modate these cells if therr joint excess is at most Z times the number of shared
channels, 7N/6. The two quantities are equal; it follows that € S5(M,HGC)
and hence SS(M,CO) C SS(M,HGC). In addition, the state (2%]\_{7,0 0,...) can
be accommodated under HGC but not under CO, since 2%M7 > 2% for C' > 2.
Hence SS(M,CO) C SS(M,HGC), and the lower bound is established.

It is clear that Hybrid Graph Coloring never assigns the same channel to two
calls in the same cluster; all that remains to be shown is that the claimed bound
on the number of channels used is correct. For clarity of proof, we will first assume

that N is a multiple of six.

If a pair of cells in the same cluster have excess, and the cluster carries at most
N calls, then the total excess of that pair can be at most N/3. Therefore Circular
Ordering can satisfy the excess calls with (h/2)(N/3) additional channels. Let
g be the maximum degree of the excess graph. Then the graph can be colored
with g + 1 colors, so h < g+ 1. Circular Ordering therefore will require at most
(g+1) additional channels. Since satisfying up to the first N/3 calls in each cell is
accomphshed using C'N /3 channels, and the number of shared channels available
is M — CN/3 = 7TN/6, it will suffice to show that the maximum degree of the
excess graph is six.
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Consider any node in the excess graph; this node corresponds to a cell ¢ that
initially had excess after N/3 of its calls were assigned channels. Consider the
region consisting of all cells within the reuse distance of cell ¢. This region can
be covered by six clusters, all containing 7, in such a way that every cell in the
region is in at least one cluster. Since at most two cells in each cluster can have
excess calls, and ¢ is already in each cluster, each cluster can contain at most one
cell other than ¢ with excess. It follows that no node in the excess graph has
more than six neighbors, so that the maximum degree of the excess graph is six.
Therefore Hybrid Graph Coloring requires a total of CN/3 + TN/6 = O+T7/2N
channels.

For the case in which N is not a multiple of six, we modify the scheme to
initially satisfy up to [ N/3] calls in each cell, so that any two cells with excess in
the same cluster must have joint excess at most |N/3| + 2. An identical analysis
to the one above yields the general form of the theorem. (Il

We note that for the case ' = 3, the lower degree of the resulting excess
graph together with its planarity can be used to improve the number of channels
to %N = %N when N is a multiple of three.

Hybrid Graph Coloring allows more sharing than Circular Ordering, since
SS(M,CO) C SS(M,HGC). This additional sharing results in a reduction in
the number of required channels to accommodate any NV calls in a cluster, from
EN(1 + o(1)) for Circular Ordering to <X(1 + o(1)) for Hybrid Graph Coloring.
The increase in performance under both metrics directly demonstrates the advan-
tage in using hybrid policies to react to mobility and helps explain their use in
many channel assignment policies. This performance gain, however, is achieved
at the cost of additional complexity. The allocation of a channel in Hybrid Graph
Coloring may rely on the construction of a graph of arbitrary size, and hence this
policy is likely to be more complicated than Circular Ordering.

The performance can be further improved by generalizing Hybrid Graph Col-
oring. If the number of channels assigned to each cell in the first stage of Hybrid
Graph Coloring is reduced, then the worst-case number of channels required can
also be reduced. In particular, for any integer k, we can choose to satisfy only
up to N/k calls initially in each cell. The resulting theorem is as follows (stated
without proof):

Theorem 6

For any integer k > 2, a modified version of Hybrid Graph Coloring (denoted by
HGC') can satisfy any configuration of calls in cells where there are at most N
calls per cluster with (% + 3k — 6)N channels when N is a multiple of 2k, (C' —
6k) 2| +3kN +1 channels otherwise. Thus CH(Sn,HGC') < (£+3k—6)N +1.
(When k =1, HGC' is equivalent to FCA.) O



S. Jordan and E. J. Schwabe / Worst-Case Performance of Policies 17

This increased performance is achieved at the cost of increasing the size of the
graph of cells with excess demand. As seen in previous studies of hybrid policies,
the number of fixed channels can be chosen according to the expected amount of
mobility. Here, the worst-case performance is explicitly represented. For a fixed
cluster size C', the optimal choice of & is @(\/5), and the resulting upper bound
on the number of channels required is @(v/CN). Recall that N < CH(Sy, P) <
C'N for all reasonable P. Circular Ordering and Hybrid Graph Coloring require
Q(CN) and Q(+VCN) channels, respectively.? The lower bound, however, still
leaves the possibility of policies that require only O(N ) channels.

4.3 Cluster Partitioning

One policy P that achieves CH(Sn, P) = O(N), which we call Cluster Partition-
ing (CLP), can be constructed by using the concept of partitioning, but among
clusters, not cells.
Cluster Partitioning: The cellular array is partitioned into clusters of size C,
as in FCA. Each cluster, not cell, is assigned a group of channels marked (A, B,
C, ...) in such a way that any pair of clusters containing cells that are within
distance r — 1 are assigned different markings. A channel in any cluster’s channel
group can be assigned to any one call in that cluster, arbitrarily. O

Such a marking is shown in Figure 5 for a system with » = 2. It can be shown
that for any cluster size €', only four channel groups are required to insure that
any two cells using the same channel (in two different clusters) are noninterfering.
The states that are achievable under this policy are described in the following
theorem.

Theorem 7
Cluster Partitioning, with M channels (assumed to be a multiple of 4), can satisfy
any state such that

y; < M /4 for all nonoverlapping clusters j. (8)

Thus SS(M,CLP) = the set of all configurations that satisfy expression (8).
Furthermore, Cluster Partitioning can satisfy any configuration of calls in cells
with at most N calls per cluster using 4N channels. Thus CH(Sy,CLP) = 4N.

Proof
For a cluster 7, we define the snowflake centered at @ to be the union of all clusters
7 in the partition such that there is a cell in cluster ¢ and a cell in cluster j that

*Roughly speaking, just as a quantity is said to be O(f(N)) if its asymptotic rate of growth
is at most c- f(N) for some constant ¢, a quantity is said to be Q(f(V)) if its asymptotic rate of
growth is at least ¢ - f(N) for some constant ¢. A quantity that is both O(f(N)) and Q(f(N))
is said to be O(f(N)). For a more detailed discussion, see [20].
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Figure 5: Partitioning channel groups among clusters.

are within distance r — 1 of each other (and therefore are mutually interfering).
For each cluster ¢, the snowflake centered at 7 consists of thirteen clusters:

1. The cluster ¢ itself;
2. The six clusters that are adjacent to ¢ in the partition;

3. The six additional clusters that are adjacent to two of the neighboring clus-
ters of ¢.

It is straightforward to verify that any cell that is within distance r — 1 of a cell
in cluster ¢ is contained in one of the clusters in the snowflake centered at «¢.

Furthermore, it is always possible to four-color the clusters in the partition
such that for every cluster ¢, all the clusters in the snowflake centered around ¢
are assigned different colors than ¢ is. Such a four-coloring is illustrated in Figure
5 for r = 3. Therefore any two cells within distance r — 1 of each other are in
clusters that are assigned different colors.

Any two calls in cells within distance r — 1 of each other will be assigned
different channels, as follows: In they are in the same cluster, they will be assigned
distinct channels from the same set of N channels. If they are in different clusters,
then they will be assigned channels from two disjoint sets of N channels, since
the clusters containing the two cells were assigned different colors.
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It follows that no two calls in cells within distance » — 1 of each other are
assigned the same channel, and therefore that any configuration of calls in cells
can be satisfied with 4N channels. O

Cluster Partitioning thus achieves a worst-case number of required channels of
4N to accommodate any configuration of at most N calls in a cluster, compared to
Q(\/@N) for previous schemes. It does so, however, by severely restricting sharing
of channels. Its state space does not contain SS(M,FCA), since a configuration
consisting of M/C calls in each cell could be accommodated under FCA but not
under CLP. CLP is thus tailored to accommodate skewed call configurations using
large cluster sizes.

5 Tradeoffs Between Performance and Complexity

It is often helpful to measure a channel assignment policy by the amount of in-
formation required to choose a channel, and by the number of reassignments of
channels to existing calls required [21]. One or more reassignments can be re-
quired at call termination to maintain channel ordering and/or at call setup to
accommodate a new call. Increased information or increased reconfigurations rep-
resent additional complexity which should be justified by increased performance
as demonstrated by such metrics as C'H or §5.

FCA represents the simplest policy on both accounts. It requires only knowl-
edge of the channels assigned within the cell in which a call originates. Further-
more, it never reassigns an existing call to another channel, except during handoff.
Maximum packing, on the other hand, represents the asymptotic upper limit. It
potentially requires knowledge of channel assignments in the entire (here assumed
infinite) cellular array to decide whether a new call can be accommodated. MP
also potentially requires an infinite number of channel reassignments at call setup
to free the required channel.

Circular Ordering attempts to assign a new call a channel that is adjacent to
those already used in the cell. The originating cell must check with any other
cell in a common cluster that is a neighbor on its channel assignment circle.
This requires collection of information within the originating cell’s interference
region. Furthermore, since Circular Ordering requires that channel assignments
be contiguous within each cell, it may require one channel reassignment at call
termination. The additional complexity above that required for FCA, in both
knowledge and reconfigurations, pays off with higher performance, as measured
by the two metrics discussed above. These results provide evidence for the ability
of channel ordering to accommodate mobility.

Hybrid Graph Coloring first attempts to assign a new call a channel from its
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permanent channel group. This requires no information outside the originating
cell. If all such channels are occupied, however, then that cell must enter the
excess graph. This graph must be colored to assign markings to each cell in the
graph, and then Circular Ordering must be applied to assign channels to each cell.
The graph coloring requires knowledge from channel assignments in each cell in
the excess graph, and this graph can contain an unlimited number of cells. The
information required, therefore, is unbounded. Similarly, the number of channel
reassignments required at call setup is unbounded. The additional complexity
above that required for Circular Ordering, in both knowledge and reconfigurations,
pays off with higher performance over Circular Ordering as measured by both
metrics discussed above. These results provide evidence for the ability of more
complex policies to further accommodate mobility.

Cluster Partitioning assigns a new call a channel from the channel group be-
longing to that cell’s cluster. This requires only information from that cluster.
Furthermore, no channel reassignments are required, except for handoffs. Under
the metric of accommodating any combination of N calls within a cluster, this
method can outperform Hybrid Graph Coloring for large cluster sizes with less
complexity. It also outperforms FCA, for cluster sizes exceeding 7, with little
additional complexity, under this C'H metric. Cluster Partitioning, however, does
not necessarily outperform even FCA under the 55 metric. Although CLP ap-
proaches the lower bound on the worst-case number of channels required for any
channel allocation policy, given in expression (4), it therefore does not approach
the upper bound on the set of achievable states, given in expression (5). These re-
sults leave open the question of whether more complicated policies could approach
both these bounds.

It should also be noted that the above pairwise comparisons of policies do not
necessarily hold under other metrics. If the desired loading is known, one would
generally prefer schemes that carry a higher average number of calls. In particular,
Cluster Partitioning allows little sharing among cells, and would perform badly
under even loading. Using average throughput as a performance measurement,
however, requires a statistical traffic model and a specific load distribution. In
contrast, this study has concentrated on provable bounds for the performance of
general channel assignment policies under a range of load configurations corre-
sponding to significant user mobility.

6 Conclusion

We have introduced two performance metrics for channel allocation policies in
cellular systems. The first metric, C H(Sy, P), measures the worst-case number
of channels required to accommodate IV calls in a cell cluster, in any combination,
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using the policy P. The second more detailed metric, SS(M, P), measures the
set of cell states that can be achieved with M channels using the policy P.

We have proven a new general lower bound, under the C'H metric, on the
performance of any channel assignment policy. This bound demonstrates the
degree to which the maximum packing policy is unachievable in cellular systems
with different cluster sizes. Three intermediate policies — Circular Ordering,
Hybrid Graph Coloring, and Cluster Partitioning — were also introduced that
demonstrate how commonly used channel allocation mechanisms achieve a wide
range of performances with respect to these metrics. Finally, we recognized that
increased performance is usually achieved at the cost of increased complexity, in
terms of required information and number of forced reconfigurations.

In the literature, many cellular channel assignment policies have been proposed
to improve efficiency above that resulting from fixed channel allocation. The
performance of these policies, however, has rarely been compared due to a lack
of formal metrics, particularly under nonhomogeneous call distributions. It is
our hope these two metrics may be used to gain some insight into the relative
performance of various channel assignment policies in systems with significant
user mobility.
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