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Microstructural Mechanics of Granular Media

Introduction

During the last decade a number of theoretical works appeared in which the problem of developing
the new models in mechanics of deformable solids was addressed. These models differ from a conven-
tional classical approach prevalent in the field for a very long time. These new developments were dictated
in the first place by the well-known limitations of the classical models of the solids going back to Cauchy
and G. Green. According to the latter any continuum representing a solid body consists of an infinite
number of material points not separated by any gaps. Since the point mass is an infinitesimal (and we
should say more a mathematical than physical) object it has only three degrees of freedom, namely transla-
tion along three axes. As a result the deformations in such a body are entirely determined by the 3-D trans-
lational vector, @@’

Such an approach fails to take into account the fact that any real body consists of the material parti-
cles (physical entities, and not mathematical points!) which have small but finite sizes. These particles are
either molecules or larger aggregates, e.g. the bulk solid granules. What is considered as such particles,
depends on the solid's structure, goals of a specific study and other facts. But in any case, the particles in
question have more than three degrees of freedom (cf. the above mentioned translation vector 7 for poin_t’
masses). Therefore there may be a need to introduce at least one more three-dimensional vector o
representing the rotations of a particle viewed as a small solid body.

Generally speaking one can introduce a variety of different quantities describing the additional
degrees of freedom for an arbitrary particle and taking into account its possible deformations. Such an
approach is characteristic for the microstructural theories of mechanics of solids.

The above considerations make clear why it is both timely and important to broaden the development
of various microstructural theories, especially for the bodies with strongly pronounced discrete-continuous
structure (e.g., bulk solids, or granular media) since their particles can move both translationally and rota-
tionally.

In this paper a new version of a microstructural theory for a granular medium is presented. In con-
tradistinction to the existing theories we develop a new and rather simple approach based upon the ideas
borrowed from the solid state physics. Our approach stems from a discrete nature of a granular medium
and the contact character of interaction of deformable particles comprising the medium. As a result the
structure of the medium, the size of its particles, and two displacement vectors ¥ and if are taken into
account.

The proposed theory is characterized by the following feawres:
1) its assumptions have simple geometrical and obvious physical meaning,

2)  itallows one to drastically simplify one of the most difficult problems in the solid mechanics,
that is the problem of the constitutive equations, including the non-linear cases,

3)  prediction of the stressed states based on particles’ sizes (the scaling effect). In particular, this

effect is essential for the dynamic situations with perturbations whose length is comparable to
the typical particle size,
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4) it represents a natural generalization of the well-known conventional theories of elasticity
developed by Cauchy (classical model) and Cosserat brothers (model of coupled stresses).
These models follow as particular cases from our theory.

1. Microstructure

We consider a granular body as a spatial set H comprised of a large number N of the elastic spheri-
cal particles of a small diameter d. The particles are either in contact with each other or separated by thin
adhesive layers.

To simplify the problem without loosing its main features we assume that H, (where 0" denotes
the initial state of the sef) is a regular set. The centers of particles (which we call the nodes) form the Bra-
vais lattice, I'.

A couple of the adjacent particles A, BeH represents a doublet (A,B) with the directed axis
described by the vector C" going from the node a€ A to the node be B (Fig. 1). The respective unit vector

(director) is = —%o-, where quantity 1= IT° | denotes the distance between the nodes a and b. If the par-

ticles are in contact then n=4d, if they are separated by thin adhesive layers, n=d (more exactly,
1 = d+Ad ,Ad <«<d, where Ad is layer’s thickness).

Let V, and V', denote the volumes of the set H, as a whole and of a thin surface layer S, respec-
tively. As a result, every intemal node a €T in the region (V,—V’,) generates the ray T, (a) comprised of
m doublet axes T2, Here o denotes the number of an adjacent node b€ B in a given doublet (A B ) (see
Fig. 1),and a =12, - ,m, withm =2n (n is the valence of the Bravais lattice). For the granular struc-
tures made of spherical particles whose nodes a€ T, the valence n = 3,4,5,6. In particular, the simple cubic
structure (SCS) and the face-centered cubic structure (FCCS) have the valence n = 3, and n = 6 respec-
tively (Fig. 2). Let us mention that the FCCS is also called a pyramidal structure.

From the inversion symmetry of the Bravais lattice I follows that at any internal node ae T the set
T..(a) admits the following dichotomy

To(@)=T\(@)uT (@), To(@)Tr@)=6 (1.1)

where the subsets T, and 7, coincide with respect to the reflection about the center of inversion at the node
a. This means that these rays are structurally equivalent, and each of them is sﬂufﬁciem for a description of
the lattice T". For definiteness sake, we consider in what follows only the rays T,.

The relations (1.1) lead to the following properties of the set H, in the region (V, ~V,):

D f, (a)= fn (b)Y¥a,bel,ie., for any vector ?{;e f, (a) there is always an equal vector _'E)ge f, (b) (the
structural homogeneity). Thus we obtain for fixed o

2 70 = const VaeT. (12)
Here and in what follows the Greek subscripts ., etc. =1,2,...,n.

2) Thesetof therays7 = {f,, (a) | va er‘} forms the covering of the Bravais lattice I'. Therefore we
can establish the correspondence between a primitive cell of the volume v and respective ray 1,(a),
which implies

V=Y vV, (O<k<l). (1.3)

Yael

Let the particle number N —o and its diameter 4 —0. As a result, the values v and V, go to zero,
and we can consider v as an elementary volume. This procedure allows one to replace summation over all
B

the nodes ae I in (1.3) by the integration over the volume V,. Thus if some function d(a)= 3 Fola)is
N a=1
defined on a doublet ray T, (a),a T then performing the transition 1o a continuous model one can assume
that
T d@)= T T Fua)=| T Fuav (1.4)
=1

Yael Yoela=1 Vo
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where 7 is the position vector of the node a€ I in the region V, including S,. Since the valence of the
Bravais lattice I" is constant (n = const ¥PeV,) then in (1.4) we can interchange the summation and
integration:

Y SFda)= 3 [FoPav. (1.5)

YaelTa=1 a=1V,

This identity forms the basis for the subsequent transition to the continuous description of a discrete
Bravais lattice T in the volume V, occupied by the granular body under consideration.

2. Microstrains

When a granular body undergoes a deformation certain microstrains are developed in each of its
doublet. We specify three of them:

1)  the relative separation (or convergence) of the doublet nodes,
2)  the mutual twist of particles about the doublet axis,
3) the slipping of particles past their contacts.
Let us call these doublet microstrains
1)  the elongation (the compression),
2)  the torsion, and
3)  the shear respectively.

The above microstrains are induced by inhomogeneous translations of the nodes and by rotations of
the particles in the given granular body. It should be noted that all these displacements are defined only at
the nodes of a discrete Bravais lattice I. Meanwhile, we have to make a transition to the continuous
description of the above displacements throughout the volume occupied by the granular body. But it is
clear that this goal can not be achieved exactly, because the continuous volume is not isomorphic to any

multitude of its points. Therefore the problem of a transition to a continuum can be solved only approxi-
mately.

There are approximate methods for doing this, and they were applied to various microstructural
models (see for example, the review! ). All these methods prove to be rather complicated. In view of this
fact we are going to use another, more convenient and simple approach inherent to the solid state physics,
especially to the theory of elastic crystals? .

We assume that the displacements of particles vary little at the lengths on the order of their diameter
d. We can then introduce two smooth continuous functions, the mutually independent vector fields of the
translations (K .1 ) and rotations (6(1? 1) where K is the position vector of an arbitrary point in a region V,.
{ is the time. We assume that these two vectors coincide with the real translations and rotations of the
granular body particles at the nodes a€T, i.e., when R=r.

We introduce also two increment vectors A and AGy. The first of them is AR=(P+lat T (P1).
It represents an increment of the translation vector @ in a transition from an arbitrary node ae€A to the
gdjacem node boe B (Fig. 3). The second vector A®, has the same meaning if we use the rotation vector
0.

We assume that the above increment vectors AZ,, AG, may be expanded in convergent Taylor series
at the neighborhood of an arbitrary node a € I” whose position vector is 7. Truncating this series at the M-
th term we obtain

ATy M (na)l > E’(}?[) =
—_ E= — o_v S’ = 2.1

where ¥ is the Hamilton operator, and *** denotes the dot product. The value of number M depends on a
degree of approximation. The greater is this number the more exact will be a description given by (2.1).

Furthermore, we introduce a stationary orthogonal Cartesian frame of reference {x; } with a basis
e:(i = 1,2,3). In this frame of reference the above vectors ?3,17,3,?’,}? and operator Vare



=102, P =2, §= 08, P=x8, K =58, V=2l @2
s

We adopt the convention that the repeated indices denote summation from 1 to 3. This convention does not
cover the Greek subscripts.

In view of expression (2.2), the homogeneity condition (1.2) takes on the form
13 = const¥PeV,,. (2.3)
Equations (2.1)-(2.3) allow one to proceed with a derivation of the basic kinematic relations for the three
above-mentioned microstrains.
Let us consider an arbitrary doublet (A ,B,) with axis TS in the initial region V, (see Fig. 1). In
actual region V (which reflects the deformation of the body) this axis becomes another axis ‘Cu (see Fig. 3):
To = To+A,, (24)
According to (2.4), the corresponding director ?a is |
- ta 1 = ATy
Tz = —— (T3 —) (2.5)
* - 1+eq * L™

where {o=1Ty! , Ne=1T21, £= ()
a

microstrain of an arbitrary doublet. The elongation occurs if £,>0, and the compression occurs if £,<0.

We also assume that relative displacements of the doublet nodes and the elongation microstrains are
small, i.e., lé}ﬁ’q_’l «T|g agd go<<1 respectively. Then taking into account these assumptions and a pair of
. o - . . . .
the identities T5T=1, ToTo=1 one obtains from an exact expression (2.5) the approximate relation

T9-AR,
Eq = —T]——— .
[+

Substituting A%, from (2.1) into (2.6) and using (2.2), (2.3) we have the following formula for the elonga-
tion microstrain g4 of any arbitrary doublet (A ,B o)

is the unit microelongation (microcompression) or the elongation

(2.6)

Mo, o

=1 TG TG L x =x°, 2.7
The equality x = x° means that after derivation the continuous coordinates x,, - - * %, have to be replaced
by discrete coordinates of Bravais lattice nodes, viz., x%,, . .. X%k, respectively. Each subscript of the

latter set {ky, - - - ,k,/J runs through the integers 1,2,3.

1t should be noted that elongation microstrain €, of the dg&lblet (A B ) is caused by the motion of a
node bqeB 4 away from a node ac A along the vector-director To. Therefore this microstrain can be con-
veniently represented as the vector Ty = £4Tq Al the same time, in the above discussio_rg we aisumed that
| ARyl <M and €, 1. It results in the fact that the angle Wy, between the directors T, and Tg is small:

. — =3, . — = .= =) .
yo<<1 (see Fig. 3). Hence 1,=Tq, and instead of €y = €474 ONE Can WIILE £q = €4Tq- Thus using (2.2) we
obtain the equality

By = EqTa = EaT4;8) = Eqj €] 2.38)
where £4; = €414, and scalar &, is defined by (2.7).

It follows from the expression (2.7) that the first approximation (M = 1) for the elongation micros-
train has the form

€a=TaiTqE; | x =x°. 2.9)
1 au; au}' . . A -
Here E.','E-z— T+¥) are the components of the usual linear strain tensor £=g;;€;€;. We assume for the
X .
j i
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moment being that the quantities u; are the components of a translational velocity. The expression (2.9)
then coincides with the similar one obtained earlier for the granular media by V. Nikolaevskii and E.

Afanasiev 3 .

Now we can turn our attention to the other two microstrains of a doublet, i.e., to its torsion and shear.

In particular it is clear (see Fig. 3) that an elongation €4 of an arbitrary doublet (A B o) is induced by
that part of a translation vector increment A, which is directed along the unit vector ?u”. Similarly a tor-
sion |1, of the above doublet (A4 B ) is caused by that part of a rotation vector increment A®, which is
directed along the same unit vector TJ (Fig. 4). From these facts the simple analogy follows: the formula
for a torsion i, can be obtained from the expression (2.6) for an elongation g, by replacing the quantities
£, and AT, with y, and AB,, respectively. As a result we obtain

= = (2.10)
Ma
Substituting Ad,, from (2.1) in (2.10) and taking into account (2.2), (2.3) we find the following expression
for the torsion microstrain p, of any arbitrary doublet (A ,B o).

mx:l x! ok Oy, - 0x,

l x =x°. (2.11)

Combining this with (2.8) one can obtain the similar formula for the torsion microstrain vector
o = Moo = KT, E) = o, T (2.12)
where |L,; = Hqtg; and scalar i, is defined by (2.11).

Finally, we consider the shear microstrain. To this end we mention that the nodes a and by of an
arbitrary doublet (A ,B,) have different translations. Therefore the doublet axis Cg turns by the angle ﬁa.
Because the increment vector Al is small (| AiZ,! << 1) this angle is also small: Il <1 (see Fig. 3). If
the independent rotations @ of the granular body particles would be impossible (¢=0), the contact points
a’eA and b’qe B (see Fig. 1) would remain in contact after the body deformation.

However our case is somewhat different. Owing to the independent rotations the vector 3540, and the
doublet particles A and B, undergo the auxiliary rotations by the small angles [: i 3—\?&, and §’f§u+A$a
respectively. Because of that, the above contact points @’ and b’y move (slip) into the opposite directions
which are perpendicular to the director ?{;. This leads to the appearance of the shear of the doublet parti-
cles, (i.e., shear microstrain) which can be easily found.

In fact the relative displacements of the contact points a” and b’ are
1 o ) G — o , 1 /) I » 2 0
AW = 'z"aux'ga = "é’(‘b‘\Va)xCa’ AW’ = ”'"é‘"_é o= 'E(Q"*A‘Da"ﬁa)xZa-

We assume here that the angle  (analogous to ﬁ/’a) is small: l&?! <« 1. Then the difference betlveen AW and
Aw’, divided by the length 1, of the above doublet (4 ,B ), yields its shear microstrain vector Yo

- o ] -t P ”
Yo = @+ A8V ¥Ta. 2.13)
The quantity y,=1 \T/ul is the small angle between the directors ?& and ?u (see Fig. 3). Therefore
Vo = ToXTy. (2.14)

Substituting the vectors Adq, ¢, Wo from (2.1), (2.2), (2.14), respectively into (2.13) and taking into
account the expressions (2.3), (2.5) we obtain

Yo=Y 8 (2.15)
1 ¥ (m* o0,
Yui = | @+ otk T&’k,‘g“—_“‘j’é‘—’)‘fép&jp+
x=1 X O, (2.16)
M e &, .

+(TO'TO‘—‘8“) ————-'Tgk v 0 e | ¥ = X
ey 1§1 x’ ' ok axk, o axk

i



where g, is the Levi-Civia axial tensor.

3. The Evaluations of the Formulas for Microstrains
Let us consider a particular case in which the translations u; vary according to the following

U; =fi(t)exp(mjxj) (ml = const ,m,-sl‘,-"'!).
From this we obtain

du, u;
— f. ) x. ) m — 3.1
axj ft (t )mj exp(m:x;) Ij . ( )

In the general case, the above relations are not valid. Nevertheless, we can write the equality (3.1)
approximately, as an estimation (symbol *‘~"")
oui Wi (3.2)
ax,- [ ;
where [; and u; are the constants treated usually as the certain average (characteristic) quantities: the
halfwavelength and the amplitude of a microstrain, respectively 4,
In view of (3.2), the expression (2.7) takes on the form

Tou M (v

Eq— 3.3
T\a xgl X'
0. l.
Here vy = e p; = —L- . The value p; shows by how much the microstrain halfwavelength [; is larger
J Pj j

o

than the lengjth T\ Of a doublet. Below in this section, we assume for simplicity that a granular body con-
sists of identical dry particles, without thin adhesive pellicles. In that case Ng = d=const¥a=12,...,n.
Therefore one would be able to replace the worlds ‘‘length 1, of doublet’” by the worlds ‘‘particle diame-
terd’’.

Let us return to the dependence (3.3). When M —eo, this estimation reaches the upper limit of its
exactness

T ldi
:u (expvqy — 1). 34

a

Ea—..

While comparing (3.3) and (3.4), we come to a conclusion that the elongation microstrain £, can be
determined with an error of 5% by the following approximations of the formula (2.7):

1)  the first approximation (M = 1), if the microstrain halfwavelength I; is 27 times the particle
diameter d. Let us call this *‘a low-frequency wave approximation’’

2)  the second approximation (M = 2), if the quantity /; is 5 times the particle diameter d. This
case can be named as ** a medium-frequency wave approximation’’,
3) by the third approximation (M = 3), if the quantity /; is 2.5 times the particle diameter d. We
call it ** a high-frequency wave approximation’’
1t should be emphasized that in second and higher approximations, the expression (2.7) involves the
scale parameter: the particle diameter d. Therefore we can call any theory corresponding 1o such an
approximation *‘the scale theory’”. The others theories correspond then to ‘‘the non-scale theories’’.

The traditional theories of elasticity are non-scale ones since they neglect the solid’s microstructure
and do not account for the particle sizes. Therefore they are unsuitable for the study of granular body
deformations in general case. Their applicability is restricted to the low-frequency wave deformations.

Rigorously speaking, such a case is possible only under uniform (or close to uniform) compression
(tension) of the whole body, i.., under very particular conditions. In other cases any theory leads to the
errors which increase with the increases of the inhomogeneity of the deformations in space and time.
However the scale theories are in principle much more exact than the traditional theories, especially under
the deformations with medium- and high-frequency waves, i.., in the problems of the dynamics, sStress



concentration, etc.

The preceding consideration is concemned with elongation microstrain. One can arrive at the same
conclusions about the microstrains due to torsion and shear if we make use of the approximate formulas
(2.11) and (2.16).

4., Microstresses. Equations of Motion. Boundary Conditions

Let us postulate the existence of internal generalized microforces which w_i}l bicorlsistent with inter-
nal generalized microdisplacements. We will take the above microstrains €4, Mg, Yo as generalized
microdisplacements. As the generalized microforces one then has to adopt the following microstresses:

1)  elongation microstresses (consistent with 'é:,)
Fu=Pa?g:PaT&a =Pl Poi =Ppolai)s @.1)
2)  torsion microsiresses (consistent with ﬁu)

Mo =Mmols=motae =mu (Mo = MaT&), (42)

3)  shear microstresses (consistent with Tfa)
Ty= 108 43)

The virtual work of microstresses in each doublet ray T.(a), aeT, is caused by the corresponding
microstrains in an actual (deformed) state of the granular body. Therefore it is

8A(a) =~ E (D5 E o7 M+ Y- (4.4)

a=1
In all the volume of the granular body such a work is
84 =Y 84(a). 4.5)

Yael

We can go from the discrete expression (4.5) to the continuous one, using basic identity (1.5). Then,
taking into account (4.4), we transform (4.5) into the continuous form

A =~ i J(ﬁ’a‘guﬂﬁ o STy Vo)V (4.6)
a=1V

Naturally, one assumes here that under granular body deformation, its particles don’t mix and the valence
n is conserved. In addition, because the microstrains are supposed to be small we don’t distinguish in (4.6)
the volumes and surfaces of granular body in the actual and initial states. This entails V = V,and § =S,.
Such assumptions are also used later.

Now we use the variational principle of the virtual displacements in the following form 5

8A +[(F—pa)dmdV+(T-82+M -8§)dS =0
14 N

where T =T,2, M = M, are the force and couple on"a per—m2u't basis of the surface S, respectively,
U; . . .

F=F .2 is the force on a per-unit basis of the volume V, @ = (—a—i-)éi is the acceleration of an arbitrary
t

granular medium point with position vector Rev, p is the bulk density of the above medium.

We substitute in (4.7) the expression 8A according to (4.6). Then, using the equations (2.7), (2.8),
(2.11), (2.12), (2.15), (2.16), (4.1)-(4.3) and using the well-known technique based on Gauss’s theorem we
obtain for the granular media the following equations in the terms of microstresses (the designation
Ix = x? is further omitted):

1. Differential equations of the motion (small oscillations) in the volume V.
a) ““force”’ equations (of the linear momentum conservation):
n Mo ()t Mo —P o) 3%,
fca P »to __.———_-_——-—.’_F‘ = p—, (4.8)
BB T e T e, T TP
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b)  ““couple’ equations (of the moment of momentum conservation):

» MmS*
2 | EijaTajTogt E -D*
a=1 x 1 x! 4.9)
ax(mm"’a’nasijq ngtaq)

.. g0 =0.
Tak, Tak, oxy, - - axk;

2.  Natural boundary conditions at the surface S:
a) ““force’’ conditions :

x-1 *7 (1
ne Z 12 Z 1% (ﬂa) RIS .Cgkl.___._(._i":‘._.p_ﬁ"_)_ =T;8,1, (4.10)
a=1  y=r Ox,, " 0%,
b) ‘““couple’’ conditions :
(na)"“

ng Z Tak E 1t
a=1 x=r 4.11)

Y 1 o
(Mo +Enu5ijq Tojlag )

"Cuk.u""tukl

= M,5,,.
axLﬂ s axkl ! !

Here 7 = n; 2 denotes the unit vector of an external normal directed towards the surface §. The sub-
script 7 = 1,2, ... ,M~1if M>2,and r = 1, if M = 1. However the value r+1 should not exceed the upper
limit ) : r+1<y. Otherwise one has to take the product T, - - T, =1 and to ignore the differential
operator in (4.10), (4.11), assuming %7 (- - - )= (- - ).

For example, let M = 3. Then max r =M —1 =2, and formula (4.10) gives

a) forr=1:

L Mo, MaPai)
nk.a};:]%x, ~(Tai—Poi 1t 21 T o
B Ma)® o o (i —Pai) - T
3! ki ok axk,axk, e
b) forr =2:
" Na Mo)? |, u—Pa)
T t ; Tak, =0,
m,(E m,{ o (lai=Pai ) 31 T 5y

5. The Transition from Microstresses to Macrosiresses
Let us represent the components T; and M; of the above surface vectors of the forces T and couples
M in a usual form 5
T, =0une, M; =Myn, (5.1)

where o, and My; are the components of two tensors: of the force macrostresses T =0,;;€; and the cou-
ple macrostresses M = M,; ;€ respectively. From comparison (5.1) with (4.10) and (4 11) follows the
natural connections between the micro- and macrostresses:

- -1 o
ma)x L, apa) 52)

(M) _ ve
ok:l a;] 1;1( 1) TC’*: Takx axkg N axkl 3
R X1
MO == 558, 3 (17 ("")
a=1 1-‘ (5.3)
ax-l(mm+‘2“ﬂa€qq ngfaq)
T T

axk, o axkl
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The superscript M gives here the level of an approximation at which the macrostresses are represented by
MICTOSresses.

The formulas (5.2) and (5.3) allow us to show that in general case the macrostresses C; and M;; are
asymmetric. Indeed, we can write the couple equations of motion (4.9) in the form

A am .
X ﬁ-’;qféjturté’x—a-iJrOi(na) =0 (5.4)

a=1 X
where 0;(1},) denotes the terms which contain the characteristic diameter T, of the granulz,i‘r particles to the
first and higher powers and depend on the subscript i. The equations (5.4) show that 3 €;,Tg;faq %) if

a=l

m o #eonst (), Ne#0 and O; (), or simpler
Alj= 3 (1010181 o ) #) ). (5.5)
a=1

In a well-known case of a nonpolar medium (mq;=0) with infinitesimal particles (Me—0.0; (Mx)—0) Egs.
{5.4) imply

At;=0. (5.6)

One can write the dependence (5.2) similarly to (5.4):

o= ng[lm—Pm+0'i(ﬂa)]
=1

a

or

oM =3 1 [taj"puj+0 ’j (Tla)]
=1

a

whence it appears that

80=a o) = -1, + 5 [ wpa—tap a0 5 M) (5)
a=|
where 0';; (N)=150 " (Ma)14;0 1 (M), O (MI#0 " M), if i 2.
While using the expression (4.1), we obtain

18P i~ 8P aj =10jP a%ai~TaiP oTa;=0.

In view of this identity, the equality (5.7) reduces to the form

Aci = -A+ T, 0% (o). (5.8)

a=1

Taking into account the expression (5.5), we obtain from (5.8) the final result: AcM )s!)‘, or
oMM, even if nq—0 and O';j(Nx)—0. In other words, the force macrostresses j; are asymmetric in
any polar media with internal couple microstresses /%0 under any particle sizes T, considered.

In usual case of nonpolar media with infinitesimal particles we have to use the identity (5.6) apd con-
dition 0”;;(Mg)—0. Then (5.8) takes on the form Ac{*’=0, or 6{’=cf}*). Thus, in such (and only in such)
media the macrostresses o;; are symmetric.

It is very interesting to look into an intermediate case, where the granular medium isﬂ nonpolar
(7=0), but the scaling effect (1,30) is considered. Then the equations (5.4) imply that A= 3 0, (M),

a=1
g #i,q#J. Substituting this equality in (5.8), we have

n

Ac=3 [0 ij(Ma)—Og m“)] o

Q=]
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1t follows that G,-(,M )stc},-" ), i.e., the force macrostresses G;; are asymmeltric.

Such an asymmetry of nonpolar and therefore, one would think, conventional medium (but with
finite sizes of its particles!) has been discovered we believe for the first ame. This result revises a widely-
held belief that ‘‘in the nonpolar case, that is, when couple stresses, body moments and internal spin are
zero, the stress tensor T is symmetric™ ©.

The similar results can be derived for the couple macrostresses M;; , using the corresponding identi-
ties (5.3). We omit this step for the shoriness of space.

Let us return to the identities (5.2) and (5.3) having another goal in mind. While comparing them
with (4.8) and (4.9), we obtain the equations of motion for a granular medium in the volume V which are
expressed in terms of macrosiresses:

60;(,”) azuj

=i 59
™ +F;=p PR (5.9)
oMM

a; +€; 04 = 0. (5.10)

Taking into account (5.2) and (5.3), the boundary conditions (4.10) and (4.11) for the microstresses
on the granular body surface S can be represented in the form of macrostresses, as well:

T, =M n;, M; =Mn;. (5.11)

It should be noted that in the first approximation (M = 1), the dependences (5.9) and (5.10) are in
agreement with the similar differential equations of motion for Cosserat’s continuum 5 . When the couple
macrostresses are absent in all of the body volume V (M;; =0VRe V), the medium is nonpolar, and for
M =1 the dependences (5.9) are reduced 1o the differential equations of motion used in a classical linear
theory of elasticity with symmetric force macrostresses G;; = Oj; 5 . The couple equations (5.1) and the
second boundary conditions (5.11) become identities.

Thus in the first approximation, the equations of motion (5.9) and (5.10) are the same as the
corresponding dependencies in the conventional theories of elasticity. In the subsequent approximations
(M =2,3,...), this similarity comes to an end because the equations (5.9), (5.10) include a scale parameter
T\ and are virally the motion equations (4.8), (4.9) expressed in microstresses. In fact already at M =2
we have in the first system the macrostresses 6 which drastically differ from the macrostresses ol inthe
second system (5.10). This difference is eliminated in a natural way when we return to the equations (4.8)
and (4.9).

In that way, if the problem is expected to be related to deformations with medium- or high-frequency
waves (see Sec. 3) then one should use the motion equations only in terms of the microstresses, i.e., in the
form (4.8) and (4.9). At the same time, even for a first approximation with low-frequency waves of defor-
mations, the proposed theory is not identical to the Cosserat’s theory because the former provides an
insight into the microstructure of the granular body. This allows us to consider the microscopic interac-
tions of body particles. This in turn gives us the opportunity to simplify one of the most difficult problems
in solid mechanics: the formulation of the invariant constitutive (physical) relations for the media when
their internal structure is included into consideration (see below sec. 7).

In this respect, the considered theory is also sharply different from the well-known microstructural

theories proposed by C. A. Eringen and E. S. Suhubi 7, A. E. Green and R. S. Rivlin® , R. D. Mindlin? , R.
Stojanovic 10 .

6. Thermodynamics of Microstrains

The system of the kinematic equations (2.7), 2.11), (2.16) and the dynamic equations 4.8), (4.9)is
not closed. For its closure it is necessary to use the constitutive relations which can be correctly formulated
only by including a thermodynamics of the medium deformations!! .

We will consider only elastic (reversible) deformations which follow a thermodynamics of the rever-
sible processes. For such processes, the first and the second principles of thermodynamics for an elemen-
tary volume are of the form!2 :
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dW =—dA+dQ, (6.1)
T dS =dQ. (6.2)

Here W, A, Q, T and S are the internal energy, work of microstresses, external heat inflow, absolute tem-
perature and entropy respectively. When combined the equations (6.1), (6.2) yield

dW =-dA+T d§. (6.3)
The internal energy W is a function which depends on the variables defining a deformed state ther-

modynamics of granular media. It is quite naturally to select as such variables the microstrains £q, Ko, Yo
and entropy S , i.e., to specify W in the form W=W (€4.lg. Yo »5 ). 1t follows

oW oW aw oW
dW = ¥ (m—deggt—d g+ ——d Yo H—=odS. (6.4)
Z G o o M o, e s
Besides that, by virtue of (4.4) we have
dA =- Z (P ad€atm od ot o d Yoi )- (6.5)

a=1

The expression (6.5) allows one to write (6.3) in the form

dW = ¥ (pod€qtmod gt o d Yo HHT dS. (6.6)
a=1
While comparing (6.6) with (6.4), we obtain the following potential reladons (caloric staie equa-
1ions):
w W oW

oW
= T ="2-
dey

g = = .
Me ¥ Nw as

We consider also the second thermodynamic potential of the free energy ®@=W —ST that is the func-

tion of the above microstrains and temperature T. In such a case, by reasoning along similar lines, we find

e 0 @
pa""aga’ Cl—aua? m-aymr aT

Pa 6.7)

6.8)

Relations (6.7) and (6.8) are used below for a correct derivation of the well-grounded constitutive
equations.

7. Linear Elastic Uniform Granular Media. Constitutive Equations

The linear elastic granular media are such that their microstresses depend on the microstrains
linearly. According to this definition, we may write the linear dependences between micCrostresses and
microstrains in the most general invariant form

Pa™ E (A uﬂ£B+B uguﬁ+Cag‘- Yai )+Jue, (7. 1)
p=1
mey= Z (D uﬁeﬂ+EuﬂLﬁ+F oPi 'Ya, )+Ka9, (72)
B=1
loy = Z(GG&EB‘#HG&%-FIG&I'YBI)*FLO‘G (1.3)
B=1
where for an uniform granular body, the quantities A g, B g, Capi» * * - » Lo are the scalar, vector or tensor

microconstants (micromoduli of thermoelasticity), ®=T~T,, is an increment of the temperature, T, is the
absolute temperature of the granular media in an initial state.

The above micromoduli can not be arbitrary inasmuch as the microstresses and microstrains are con-
nected with each other by the caloric equations (6.7) and (6.8). Therefore the invariant equations (7.1)-
(7.3) should be examined from the thermodynamic standpoint.
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We begin from the microstrains € and €g entering the caloric equations (6.7), (6.8). It follows
Fw__ P _%a _pp 74)
deq0eg  OEdeg  Ofp €y
With the help of (7.1) we obtain from (7.4)

Analogously one derives
E@:Em’Buﬂszvcu&zGM'nFGﬁt:Hﬂ(M’IGﬁl)=Iﬁ0}l (7.6)

The caloric relations (6.7), (6.8) can not give us more information than the restrictions (7.5), (7.6).
The further examination of the constitutive equations (7.1)-(7.3) have to based on other considerations
beyond the bounds of the thermodynamic principles (6.7), 6.8).

Therefore we turn our attention to the symmetric properties of the body’s deformations. Let the
granular body be subjected to a uniform heating (8 = const VR e V). We consider in this body an arbitrary
doublet (A ,By) and draw a plane [ which runs through the contact point C being perpendicular to the
director T2 (Fig. 5). In that plane, the torsion and shear microstresses m g, T, can act. Since the temperature
field is isotropic in the plane [, any directions of microstresses mq and T, are equivalent. However, it is
clear that under any mq#0 and 7% 1#0 the certain directions are preferred and the isotropic condition is
violated. It follows that microstresses m =T,=0. The above reasons hold true for corresponding micros-
trains piy and Yy, viz., Ho=Yo=0.

As for the elongation microstress Fy and corresponding microstrain E’a (see Fig. 5) their projections
onto the plane of isotropy [] are the points under any |7, !#0 and g, 1#0. Hence these quantities may be
arbitrary and under a uniform heating, they are, generally speaking, different from zero.

Thus, we obtain pa=Yy; =m o=t o;=0. Then the expressions (7.2) and (7.3) take the form

3 D opept+K o8=0,
B=1 b

z Guﬂ‘- EB+L(,,-SEO.
B=1

Since the variables £, and © are mutually independent, the above identities mean respectively that

D gg=K o=0,

G oy =L os =0. .7

With the help of (7.6) these identities imply
B po=Cpy=0. (7.8)_

Now we assume that the torsion microstress m is induced by the shear microstrain Y. If one looks
at the plane [] from above (see Fig. 5), then the vector 73 is rotated by the micromoment m o counterclock-
wise. If one looks at the plane [ from below than Yo is rotated by m clockwise. To return to the preced-
ing situation we might have turned the vector 7, into the opposite direction (see the dashed arrow at Fig. 5).
However, in such a case we would obtain quite a different patiern of deformed state, if only Yo70. Atthe
same time, it is clear that the strain field of a medium does not have to be dependent on the observer posi-
tion. This requirement can be satisfied at Yo30, if the induced micromoment mq=0. Taking into account
the constitutive equations (7.2), such a condition means that micromoduli Fgg;=0. In view of thermo-
dynamic restriction (7.6) this implies H po, =0. Hence, we have the additional identities

FQ&EHMEO. (7.9)

In that way, including the identities (7.7)-(7.9), the invariant constitutive equations (7.1)-(7.3) take
on the final form

Pa= 2, Agptpt)o®, (7.10)
p=1
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ma= 3 Eoplip, 7.11)
B=1

foi = lefa&ﬂﬁr (7.12)

We would like to attract attention to the simplicity of these very general physical relations. Together
with the kinematic equations (2.7), (2.11), (2.16) and the dynamic relations (4.8), (4.9) these physical rela-
tions form the closed system of equations which allow one 1o define the mechanical fields of displacements
u;, O;, MICTOSITAINS €4, Mg, Yo aNA MICTOSUESSES Pa, Manlai in the linear elastic uniform granular media
under an adiabatic loading. In the different cases, the above mechanical fields are connected with the heat
field ®, and their determination calls for further thermodynamic study. Such a study is carried out in the
next secton.

In conclusion of this section we briefly consider one important problem about the relations between
the macrostresses G;;, m;;, on the one hand and the displacements u;, ¢;, on the other hand. Let us substi-
tute in the physical equations (7.10)-(7.12) the expressions for microstrains €g, hg, Ya: from the kinematic
equations (2.7), (2.11), (2.16) and then substitute the expressions for microsuresses Pa, Maos fai in the
macro-micro-equations (5.2), (5.3). In the long run, we obtain the desired expression. For example, in a
first approximation (M = 1), the force macrostresses c,-(}" ) are represented in the following form:

au a '
ol = Ayutu+Biju (&f‘"*ﬁmu Om)-Bij 9+12lcijup E1pm %‘" (7.13)

where n=T=cons! is a diameter of particles, €, are the components of a conventional linear strain tensor
(see formula (2.9)), the macromoduli of elasticity A;j, Biju » Cijum and macromoduli of heat expansion B;;
are simply expressed in terms of above micromoduli A o, etc.:

n n
Aijkl = E Z(Aug’tgj”iugjp'fgp)'r&'fﬁk’t&, (714)
a=1f=1
Biju= % ZlappTa (1.15)
a=18=1
A a
Cip = X 2T opu Tai W81 hp (7.16)
a=1f=1
13
Bij = - ZJa’tao,'ng. (7.17)

a=]

The similar dependences are also obtained for the couple macrostresses M., which are not
presented here due to shortness of space. In the second and higher approximations (M 22), the expressions
of the above type become rather complicated.

On the whole the dependences (7.13) are a generalization of the Duhamel’s equations for the aniso-
tropic media with the couple stresses and scaling effect. Such equations, as far as we know, are obtained
for the first ime. It is worthy to mention an extremely natural way in which we derived these dependences.

8. Entropy. Heat Flow Equations

It follows from caloric state equations (6.8) and constitutive equations (7.10)-(7.12) that the specific
free energy for the linear elastic uniform granular media is defined by the following expression

D= Y T (AapeatptE aptlablpt opij Yu Yo )+ 2 J o€aO+A(B). 8.1)
a=1

a=18=1

According to (6.8) we obtain from (8.1)

o® - dA
S e = — 2
S 5T (u=1jaeu+ ST (8.2)
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Hence it is seen that $=5(g,,7), Le.,

ds = az::}[—gg—i—jl Tdeu-{ -g—“%] &arf. (8.3)
The dependence (8.2) can be written as follows
i = 3 Jode- TR ar. 8.4)
a=1 - dT
Combining (8.3) and (8.4) we find
s __d’A 8.5

9T dar?’

The quantity c¢= T—g—‘; l .. is the measure of the heat, which is expended for heating or cooling of

the unit volume by one degree at a constant microstrain £,. This quantity is called a specific heat. Accord‘-
ing to Dulong’s principle, ¢ =const for any temperature T greater than the characteristic temperature T
(the Debye temperature). For granular media in realistic situations their temperatures T>T". Therefore
one may set ¢ = const. In view of that, we can multiply the equality (8.5) by T and integrate both sides.
As a result we obtain

- —‘;—T/}- = cgln(1+—T€2~).

o

Upon substitution of this identity into (8.2) we find

S=- Z Ja£a+cgln(1+~f—). (8.6)

a=1]
C =
The temperature 7 doesn’t usually exceed the value T, by far which implies l-—T——— | «1. Therefore

8. 8 ‘
1+—)=
ln(+Ta) T

, and the relation (8.6) may be written as follows

§ == 3 Jatatcedr. 3.7
a=1 TO

Formula (8.7) yields the final expression for the specific entropy dependence on the elongation
microstrains &, and temperature increment 6.

Let us proceed to the derivation of the heat flow equations. We return to the second principle of
thermodynamics (6.2) which connects the external heat flow Q with entropy § and temperature T. In the
case of the heat conduction, i.e., under heat transport due to a nonuniform temperature distribution in the
body, the elementary heat flow during the time d is defined by formula 12

dQ = - divqd: (8.8)
where 7 is the heat flux vector. Taking into account the second principle of thermodynamics (6.2) and an

dq;
identity divq"sgz—f the expression (8.8) takes on the form

]

oS aq;
o _ 8.9
T ot ax, ( )
From (8.6) follows
as n Oty oT
B = Z 8.10
T > TY J, PRI (8.10)
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Comparing (8.9) and (8.10), we obtain

2.9 o 8.11
TE:J"B: £ ot 0 ®.11)

oT
9i=—Aj3— (8.12)
/ axj
where A;; are the components of the symmetric tensor of thermal conductivity. Eliminating ¢; from equa-
tions (8.11) and (8.12), we arrive at the following dependence

¥ &, % 938
g =2 =0. 8.13
N ox; 0x; +Tu§‘11“ a T 0 ®.13)

Eq. (8.13) is nonlinear. Assuming that I—T@? I «<1 (which we did earlier) we may set in (8.13) T=T,. This
would result in the linearized version of (8.13)

2, n
8 % 96 (8.14)

There may be some heat sources in a granular body. In this case, the heat flow equation (8.14) is
transformed to the form

Pac) r 98 98
) % 30 . 8.15
Mi G o, TTe ey oy T =0 @15

L
where H denotes the density of the heat sources in the body. The term 7, 3/ “"é% connects the tempera-
a=1

ture field ©(x; ) with a field of microstrains €4(x; ).

9. Basic Equations of Thermoelasticity for Granular Media

In an adiabatic process the entropy S = const. Without any loss of generality this constant can be set
to be 0. Eq. (8.7) is then reduced to the form

:I-"— 3 J oo 9.1)

This equation replaces the heat flow equation (8.15) and relates the temperature increment 6 to micros-
trains €, in adiabatic processes. Substituting (9.1) in (7.10) we obtain

Talo ©2)

Pa= E aﬁ(A apt
p=1 Ce
The expressions (9.2) replace now the first group, Eq. (7.10), of the constitutive equations (7.10)-(7.12) for
adiabatic processes.
Thus we have obtained the closed system of equations for determining the stressed-strained and ther-
mal states of the granular media in both arbitrary and adiabatic processes. This system incorporates the
following equations:

1. For an arbitrary process :

1.1. The kinematic equations (2.7), (2.11), (2.16), relating the Microstrains €q, Mo, Yo t0 the dis-
placements u;, ¢;. In total one has n+n+3n = 5n such equations and Sn+3+3=5n+6 unk-
nowns.

1.2. The dynamic equations (4.8), (4.9), connecting the miCrostresses pg, Mg, foi W0 the external

forces F; and displacements u;. In total one has 3+3=6 such equations and n+n+3n = Sn new
unknowns.
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1.3. The physical equations (7.10)-(7.12), relating the microstresses pPo, Mo, fai 10 the micros-
trains &g, Mg, ¥s; and temperature increment ©. There is only one new unknown here and
n+n+3n = 5n equations.

14. The thermal equation (8.15) that contains no new unknowns.

Thus we have 10n+7 equations and 10n+7 unknowns . In addition the mechanical fields and the
temperature field are coupled.

2.  For an adiabatic process :

2.1. The kinematic equations remain unchanged (see 1.1).
2.2. The dynamic equations also remain unchanged (see 1.2).
2.3. The physical equations are Egs. (7.11), (7.12) and (9.2).

These 10n+6 equations contain 10n+6 mechanical unknowns which do not depend on the tempera-
ture increment 8. The latter is evaluated with the help of equation (9.1) after determining the unknowns of
mechanical origin €.

The above equations have to be supplemented by the mechanical boundary conditions (4.10), 4.11).
The thermal boundary conditions have to be formulated, as well. Furthermore, one mast include into the
set of boundary conditions the initial conditions for both mechanical and thermal variables. The formula-
tion of these conditions represents a topic of a specific character and therefore they will be addressed in the
sequence to this study ‘‘Applications of the theory’’, Part 2.
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