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ABSTRACT OF THE DISSERTATION

Statistical Issues in Measurement with Applications in Forensics and Methylomics

By

Hina Manojbhai Arora

Doctor of Philosophy in Statistics
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Professor Hal Stern, Chair

The reliability of a measurement system is studied as a precursor to establishing the ac-

curacy of the measurement system. Forensic science disciplines that rely on feature-based

comparisons (e.g., handwriting analysis, fingerprint analysis) have been criticized for the

absence of studies demonstrating reliability and accuracy. This has led to empirical evalua-

tions through the use of “black-box” studies. Typically, data collected from inter-examiner

(reproducibility) studies is analyzed separately from studies of intra-examiner (repeatability)

studies. Motivated by these forensic studies, this dissertation develops methods to assess reli-

ability for continuous, binary, and ordinal outcomes in forensics by combining inter-examiner

and intra-examiner data for efficient estimation of reliability, while accounting for possible

examiner-forensic sample interactions. Furthermore, we propose an exploratory method to

cluster raters/ examiners to identify subpopulations that appear to apply similar decision-

making approaches. The dissertation also includes the development of a statistical model to

address measurement variability in methylomic studies.
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Chapter 1

Introduction

Systems of measure or decision-making must have scientifically evaluated error and consis-

tency rates. Accuracy is defined by the correctness of the measure and reliability is related

to its consistency. Studying measurement reliability and accuracy is crucial in medicine,

engineering, forensics, etc. Statistics plays a key role in the inference due to the empirical

nature of the studies conducted and the need to have uncertainty bounds for obtained error

and consistency rates.

Analyses of forensic evidence often involve subjective feature-based comparison assessments

by forensic examiners, for example, latent fingerprint analyses, shoe-print examinations,

firearm comparisons, etc. The National Academy of Sciences (NAS) and the President’s

Council of Advisors on Science and Technology (PCAST) emphasized the need for stan-

dardization and formal scientific foundations for forensic science disciplines in their reports

(National Research Council, 2009; President’s Council of Advisors on Science and Tech-

nology, 2016). Black-box studies were recommended in the PCAST report for empirically

establishing error rates and reliability in forensic assessments. Following these recommenda-

tions, numerous studies have been conducted so far, to empirically establish the error rates
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and precision of subjective pattern matching disciplines (Ulery et al., 2011; Ulery et al.,

2012; Baldwin et al., 2014; Hicklin et al., 2021; Hicklin et al., 2022a; Hicklin et al., 2022b;

Monson et al., 2023a).

Typically, black-box studies have two components; in the first trial, forensic examiners assess

selected forensic samples that are presented to them exactly like they would in real casework.

In the second trial, examiners re-evaluate a subset of the samples that they observed in the

first trial. While reporting the results from these trials, the data collected from the different

trials are analyzed separately. Additionally, the agreement between examiners, for categori-

cal conclusions, is reported through contingency tables. In this dissertation, we will develop

methods to analyze the data from black-box studies that will enable understanding the vari-

ance in decisions across examiners by combining the data from different trials. Additionally,

our method will enable accounting for possible examiner-forensic sample interactions.

We then identify measurement issues that arise in exploratory dimension reduction/ factor

analysis of proportion data. The motivating setup has a matrix of data
yij
nij

, where i =

1, 2, . . . , n and j = 1, 2, . . . , d (d >> n), yij are the number of successes in nij counts, and it

is of interest to see if a lower q-dimensional space (d >> q) can explain most of the variation

in the matrix of proportions (
yij
nij

). The estimated proportions may not be reliable if they

are based on a few counts, nij, and could influence the process of factor analysis/ dimension

reduction. We aim to provide a method that accounts for binomial variation in counts while

performing factor analysis. The motivating data is DNA methylation counts in n human

infants at d CpG sites. The counts nij vary between 5-1000s and our proposed method will

account for this heterogeneity in counts while exploring whether a few underlying factors

can explain the variation in proportions of methylation.

We will now describe the layout of this dissertation. In Chapter 2, we provide background

material that supports the manuscripts that follow. We describe issues of reliability in

forensic science and the black-box studies being used to estimate reliability. The current
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methods that are used to analyze the data from these studies are also reviewed. Limitations

of the methods are identified which motivates the work reported in Chapters 3, 4, and 5. The

final contribution of the thesis is a novel approach to exploratory factor analysis of proportion

data. The motivation for this project is described along with the existing approach for such

data. Chapters 3-6 consist are four manuscripts that summarize the thesis results. These

manuscripts are in different stages of the preparation process.

Chapter 3 which is the first paper is under review in Law, Probability and Risk. Chapter 4

which is the second paper has been submitted to Forensic Science International. Chapters 5

and 6, which are the third and fourth papers, are in the preparation stage.

In Chapter 3 we apply a two-way ANOVA model with interactions as an approach for

modeling reliability for continuous and binary outcomes in forensic science. These models

contribute to the literature by allowing us to combine the data from intra-examiner and inter-

examiner trials that are used in forensic black-box studies. This approach also allows for

assessing examiner-sample interactions. We conduct simulation studies to study the effects

of limited intra-examiner trials on the inference for reliability and thereby provide advice for

future studies. Additionally, we study the effect of model misspecification on estimates of

reliability and variance components. The methods are applied to data from two reliability

studies; a signature complexity assessment study (Angel et al., 2017; Stern et al., 2018) and

the 2011 FBI latent fingerprint study (Ulery et al., 2011).

Decisions in forensics are often on a categorical scale with a meaningful order to the cat-

egories. Chapter 4 begins with an introduction to the methods that are typically used to

model ordinal outcomes. We then develop a model for ordinal decisions that accommodates

inter-examiner and intra-examiner trials, allows for examiner-sample interactions, and al-

lows for varying thresholds across examiners. We propose variations of the model that are

constrained versions with fewer parameters to address settings with limited data. We use

simulation studies to assess the effect of limited repeated decisions as well as the effect of a
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misspecified model on the estimates of the variance parameters. We then use these methods

to obtain inferences for the data from two reliability studies.

Chapter 5 explores a different way to analyze reliability studies with ordinal outcomes. This

exploratory approach investigates whether there exist clusters of examiners that tend to

make decisions similarly. We extend the model of Chapter 4 to incorporate a Dirichlet

process mixture that can cluster examiners based on their outcomes. Alternatively, the

same approach can be used to determine if there are clusters of samples that tend to be

rated similarly. We use simulation studies to assess the effectiveness of the method and

apply it to the data from two forensic reliability studies as well as the data from a maternal

depression study.

Chapter 6 describes a project that arose from our work with the Conte Center at UCI. The

aim of the Conte Center is to understand the effects of early life adversity in the cognitive

development across species. One of the Center’s projects is examining the effects of adversity

by looking at changes in the DNA methylation. Principal component analysis (PCA) of DNA

methylation has been used to quantify the variation that arises across CpG sites (Jiang et al.,

2019). The PCA analysis is applied to a matrix with each row corresponding to a different site

on the genome, each column identifying a sample (e.g., an individual at a given time point),

and the matrix entry reporting the percentage of read at that site which are methylated.

PCA ignores the variation in the number of reads which lead to heterogeneous variances

across the matrix entries. We develop a factor analysis model that accounts for variation in

methylation proportions with heterogeneous sample sizes and allows us to examine whether

the variation in methylation proportions may be explained by a few latent variables. We use

simulation studies to assess the performance our model and apply it to the motivating data

set.

Finally, Chapter 7 summarizes the contributions of the methods proposed in this dissertation

along with the conclusions. We suggest some future directions for each of the projects. We
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follow that with supporting materials in the Appendix.
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Chapter 2

Background and Aims

2.1 Reliability

Reliability is a concept that arises in the context of a measurement or decision process.

Reliability focuses on the consistency of measures or decisions. It is distinct from validity/

accuracy which are defined by the correctness of the measures or decisions. Reliability is a

precursor to accuracy because the correctness of examiner decisions is limited by whether

they are consistent. We are especially interested in two types of reliability. Reproducibility

relates to the consistency of measurement or decisions when different examiners are assessing

the same item/ sample. Reproducibility refers to inter-examiner reliability. Repeatability

is the consistency of decisions from the same examiner on the same item/ sample at two

different points in time. Repeatability is intra-examiner reliability.

Reliability is of interest in many fields such as engineering, radiology, biology, etc. For ex-

ample, Tsai (1988), Vardeman and VanValkenburg (1999), Weaver et al. (2012), Vardeman

(2014) have discussed methods to analyze repeatability and reproducibility of gauge mea-

surements. Heydorn et al. (2000), Furlan et al. (2007), Pearson et al. (2011) have provided
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methods to analyze reliability in biological applications. Van Wieringen and De Mast (2008)

have discussed reliability for binary measurements such as pass/ fail during inspections.

Here we briefly introduce some ways that reliability is measured and introduce applications

of reliability in forensic science.

2.1.1 Measurements of reliability

There are a variety of approaches to assessing reliability. The methods vary by data type.

We provide a brief summary here.

Continuous Data The correlation between two sets of continuous measurements on j =

1, 2, ..., J items/ samples, (Y1j, Y2j) is defined by:

Correlation =
1

Js2

J∑
j=1

(Y1j − Ȳ )(Y2j − Ȳ ), (2.1)

where, Ȳ = 1
2J

∑J
j=1(Y1j + Y2j) and s2 = 1

2J

∑J
j=1(Y1j − Ȳ )2 + (Y2j − Ȳ )2. Note here that

correlation is one type of reliability but it does not judge exact agreement. For example

Y1 = (1, 2, 3, 4, 5) and Y2 = (2, 3, 4, 5, 6) have perfect correlation but never agree.

The intraclass correlation coefficient (Shrout and Fleiss, 1979), also denoted as ICC, is used

to evaluate the correlation between measurements from I raters on J items. Shrout and

Fleiss (1979) provided ICC evaluations for three cases: a. each sample is assessed by I

different set of examiners from a larger population of examiners, b. I random examiners

are samples from the population and they each assess the same set of J samples, c. The

population of interest consists of I examiners and they each rate the same set of J samples.

Let Yij denote the measurement from examiner i on sample j, then for case a, the model

and ICC were evaluated as follows:
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Yij = µ+ γj + ϵij

ICC =
σ2
γ

σ2
γ + σ2

ϵ

(2.2)

Here, µ is the population mean and µ + γj is the true measurement from sample j. γj is

assumed to be a random effect from population N(0, σ2
γ). ϵij is random noise modeled to be

drawn N(0, σ2
ϵ ). For case b, the following model and ICC are proposed:

Yij = µ+ αi + γj + δij + ϵij

ICC =
σ2
γ

σ2
γ + σ2

α + σ2
δ + σ2

ϵ

(2.3)

The interpretation for µ and γ are the same as the case a. However, αi is examiner i

tendency to rate a sample which is assumed to belong to the population N(0, σ2
α and δij is

the interaction between examiner i and sample j assumed to be drawn from the population

σ2
δ . Finally, for case c, the same model is used as b given in equations (2.3), however, αi

are fixed effects so that
∑

i αi = 0, additionally,
∑

i δij = 0. ICC for case c is given as

follows:

ICC =
σ2
γ −

σ2
δ

I−1

σ2
γ + σ2

δ + σ2
ϵ

(2.4)

Categorical data For categorical data where each measurement results in one of l =

1, 2, ..., L categories, percentage agreement is a common reliability measure. Again, assume

that = 1, 2, . . . , I be the examiners/ judges and j = 1, 2, . . . , J are the samples and Yij is the

categorical outcome. Denote njl as the number of decisions across examiners for sample j in

category l for l = 1, 2, . . . , L and nj. is the total number of decisions on sample j. Then, the

percentage agreement is given as follows:

8



pj =
1

nj.(nj. − 1)

L∑
l=1

njl(njl − 1)

P =
1

J

J∑
j=1

pj,

(2.5)

where, pj is the percentage agreement on sample j and P is the mean percentage agreement

across samples.

Percentage agreement may be optimistic while evaluating agreements because it does account

for the possibility that agreements may have happened by chance. Cohen’s κ and its weighted

versions (Cohen, 1960; 1968;Fleiss, 1971) use corrections to percentage agreements to account

for chance agreements. There are other proposed measures such as polychoric correlation

(Pearson, 1900) that uses the correlation between latent variables that are used to model

ordinal data, Cronbach’s α (Cronbach, 1951), Krippendorff’s α (Krippendorff, 2011) that

prioritizes disagreements, etc. Refer to Hallgren (2012), Gadermann et al. (2012), Nelson

and Edwards (2015), Raadt et al. (2021) for further discussion on these measures.

2.2 Reliability in Forensic Science

Forensic evidence has a notable effect on case proceedings (Peterson et al., 2013). Forensic

science is the application of scientific means to investigate a crime through the evidence

that is collected at the scene of crime, for example, latent fingerprints, shoe prints, gunshot

residue, etc. However, the specific evidence and the testimony provided is governed by

Federal Rule of Evidence 702 as well as the holdings in Frye v. United States, 293 F. 1013

(D.C. Cir. 1923) and Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579, 113 S.

Ct. 2786 (1993), in order for it to be admissible. The Federal Rule of Evidence 702 states

that expert testimony about forensic evidence may be admissible if the expert testimony

is based on reliable methods applied reliably to the case evidence. Frye v. United States,
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293 F. 1013 (D.C. Cir. 1923) states that expert testimony must be based on scientifically

established methods. Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579, 113

S. Ct. 2786 (1993) additionally states that the techniques used by the examiner must be

generally accepted in the scientific community with peer-reviewed studies and known error

rates.

The National Academy of Sciences (NAS) published a report titled “Strengthening Forensic

Science in the United States: A Path Forward” (National Research Council, 2009) detailing

the steps that must be taken to standardize and establish scientific foundations for foren-

sic science disciplines. Among other recommendations, the report emphasized the need for

studies assessing the reliability and validity of forensic science decisions. This recommen-

dation also specified the need for quantifiable measures and uncertainties for reliability and

accuracy.

Several years later, the President’s Council of Advisors on Science and Technology pre-

pared a report “Forensic science in criminal courts: Ensuring scientific validity of feature-

comparison methods” (President’s Council of Advisors on Science and Technology, 2016)

assessing the scientific evidence regarding a number of disciplines such as latent fingerprint

analysis, footwear analysis, and firearm analysis. The report recommended the use of “black-

box” studies to provide evidence regarding accuracy and reliability of pattern comparison

disciplines. Such studies provide a series of examples (questioned and known pairs), for which

the ground truth is known by the study designers, to a sample of examiners. The examiners

are told to use their usual process and to provide their conclusion regarding the evidence.

In essence, they are treated as a black box, taking in evidence as input and outputting a

conclusion.
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2.2.1 Black-box studies

In 2010, the FBI conducted the first large-scale study to assess decision-making in latent

fingerprint comparisons (Ulery et al., 2011; Ulery et al., 2012). Following this, there were

two studies for assessing reliability and validity for bullet and cartridge case comparisons

(Baldwin et al., 2014; Monson et al., 2023a), a study in bloodstain pattern analysis (Hicklin

et al., 2021), a study for handwriting analysis (Hicklin et al., 2022a), and a study for footwear

analysis (Hicklin et al., 2022b).

Typically, examiners participating in black-box studies work for various national, state, and

local laboratories. Forensic examiners can differ in their training backgrounds, certifications,

and years of experience. Examiners are assigned a number of forensic samples, for which

the ground truth is known by the study designers, and they are asked to make forensic

assessments on a pre-defined outcome scale just like they would in real casework. After

some time has passed from this first assessment/ study, some of the examiners are asked

to re-assess a subset of the samples that they initially observed. We call the first part of

the study, the reproducibility trial because the aim is to assess the consistency of decisions

across examiners and to assess the accuracy of the disciplines on average. The second part

of the study is known as the repeatability component as its aim is to study is to assess the

consistency of decisions by the same examiner.

2.2.2 Limitations in Analyses

Black-box studies are expensive and time intensive, and due to this fact, in the studies

conducted thus far, the reproducibility trial is much larger in terms of the total number of

decisions compared to the repeatability trial. For example, in the FBI latent print black-box

study (Ulery et al., 2011) there were ≈ 17,000 decisions in the reproducibility part of the

study and the repeatability trial had ≈ 1900 decisions.
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The data collected from the reproducibility and repeatability trials in black-box studies are

typically analyzed separately. For example, in the results from latent fingerprint examination

decisions which were analyzed in Ulery et al. (2011; 2012), reproducibility is reported using

the data from the first trial conditionally on mated and non-mated pairs. Additionally,

repeatability was reported using a subset of 72 out of 169 examiners that participated in

the repeatability trial. Similarly, in the results from handwritten signature complexity data

analyzed by Stern et al. (2018), repeatability is assessed only through the repeated decisions

that were made on less than 6% of signature samples in the reproducibility trial.

Reliability, for categorical outcomes in black-box studies, is typically evaluated through

percentage agreement or Cohen’s κ (Cohen, 1960). Note that this aggregate measure does not

account for differences among examiners and samples. Additionally, it ignores the ordering

of categories if there is one.

It is worth noting that in the black-box studies conducted so far, covariates related to

examiners or samples are not provided, though some aggregate survey information about

their education, experiences, employer agencies, etc. may be available.

2.3 Statistical Models for Reliability in Forensic Sci-

ence

A common approach in reliability studies across disciplines is the two-way random effects

ANOVA. For example, it has been applied in reliability studies in manufacturing, radiology,

etc. (Vardeman and VanValkenburg, 1999; Pearson et al., 2011). This method can be

applied to forensics as well but there are several challenges such as limited data and non-

continuous/ Gaussian outcomes. We briefly discuss the two-way ANOVA approach and

discuss the limitations in the application to data from black-box studies.
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2.3.1 Two-way random effects ANOVA

The two-way ANOVA model (Tabachnick and Fidell, 2007) is used to model outcomes that

vary according to the levels of two categorical variables. For example, let there be i =

1, 2, ..., I examiners and j = 1, 2, ..., J samples and each examiner provides K decisions on

each sample, then the outcomes Yijk can be modeled as follows:

Yijk = µ+ αi + γj + δij + ϵijk (2.6)

Here, the outcome Yijk is assumed to depend linearly on population mean µ, and the effects

αi, γj, and δij. αi is an examiner effect that dictates how examiners are expected to deviate

from the population mean, γj is a sample effect that dictates how samples deviate from

the population mean, and δij is an interaction effect between examiners and samples which

dictates how examiner i deviates from their tendency αi for sample j. ϵijk is random noise

that is assumed to follow N(0, σ2
ϵ ) distribution. The effects may be modeled as random

effects when the examiners and samples belong to a larger population and do not need to be

estimated individually. A common distribution used to model random effects is the normal

distribution:

αi
i.i.d.∼ N(0, σ2

α)

γj
i.i.d.∼ N(0, σ2

γ)

δij
i.i.d.∼ N(0, σ2

δ )

(2.7)

This method is typically applied to continuous data, for example, gauge measurements

in manufacturing (Vardeman and VanValkenburg, 1999; Vardeman, 2014) and agriculture

(Aguirre et al., 2020). In forensics, this model can be directly applied to some complexity

data such that handwriting complexity data discussed in Alewijnse et al. (2011) that were

on a scale of 0-100 that may be approximated to a continuous scale.
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As discussed previously in equations (2.3), in a two-way random effects ANOVA with inter-

actions setting given by the equations (2.6), reliability can be estimated as follows:

Reproducibility = corr(Yijk, Yi′jk′) =
σ2
γ

σ2
α + σ2

γ + σ2
δ + σ2

ϵ

Repeatability = corr(Yijk, Yijk′) =
σ2
α + σ2

γ + σ2
δ

σ2
α + σ2

γ + σ2
δ + σ2

ϵ

.

(2.8)

We now discuss some limitations of the application of the two-way random effects ANOVA

model in forensics.

2.3.2 Applications in Forensic Science

Outcomes in forensics are often non-continuous, they may be categorical/ ordinal and some-

times binary. In this dissertation, we will model such binary and ordinal outcomes by

assuming that they depend on a latent scale.

It is interesting to estimate possible examiner-sample interactions by combining the data

from the reproducibility and repeatability trials in the black-box studies. We would like to

understand how interactions limit reliability. Note that with plenty of repeated decisions, σ2
δ

can be estimated very well. However, as previously mentioned, black-box studies typically

collect repeated decisions on a very limited number of samples which limits the ability to

address interactions.

In this dissertation, Chapter 3 applies the two-way random effects ANOVA model with

interactions to combine the reproducibility and repeatability studies for studies that collect

continuous or binary outcomes such as signature complexity data, match/ no match outcomes

on fingerprint comparisons. Reliability is evaluated using intraclass correlations and typical

agreement statistics on posterior predictive data sets.
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Chapter 4 extends the methods in Chapter 3 to model ordinal outcomes. We propose two

methods to that end, one method enables the estimation and inference for examiner thresh-

olds to make decisions in a specific category and the other method is a constrained version

of the first method that is more appropriate when interactions need to be estimated with

limited data.

The methods in Chapters 3 and 4 we have looked at a few methods to model variability

in continuous, binary, and ordinal outcomes in black-box studies. In Chapter 5 we propose

a method that encourages parameter sharing between raters/ samples by clustering exam-

iners based on their ratings. This technique is exploratory in nature and can be useful for

hypothesis generation with the covariates.

2.4 Early Life Adversity and DNA Methylation

The Conte Center at the University of California, Irvine is interested in exploring the effects

of early-life adversity on cognitive and emotional outcomes later in life. They have conducted

studies across species to explore how maternal unpredictability, a specific form of early life

adversity, can affect development in infants (Baram et al., 2012; Davis et al., 2017; Davis

et al., 2019; Short and Baram, 2019).

2.4.1 Entropy

Conte Center researchers have found that entropy rate for sequences of maternal behaviors

can be used to assess unpredictability across species. Entropy (Shannon, 1948) is a concept

in information theory that can be used to quantify the predictability of random variables. Let

X be a discrete random variable with probability mass function defined by P (X = xi) = pi

for i = 1, 2, ..., n, then the entropy of the variable X is defined by:

H(X) = −
n∑

i=1

pi log2(pi). (2.9)
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The concept can be expanded to address the entropy rate for a stochastic process {Xt : t =

1, 2, . . . }. For example, for a first-order Markov chain with transition probabilities pij and

stationary distribution π = {πi}ni=1, entropy is defined as (Vegetabile et al., 2019):

H(X) = −
∑
i,j

πipij log2(pij). (2.10)

Davis et al. (2017) used this concept of entropy to model maternal sensory input to infants.

Higher entropy scores indicate less predictable sequences. They found that in rats and

human beings, low predictability of maternal behaviors was associated with poorer cognitive

outcomes as seen in Figures 2.1 from the paper.

(a)

(b)

Figure 2.1: Figures show that infants that experience higher unpredictability have poorer
cognitive development. In subfigure 2.1a, they observed that rats that experienced low
predictability performed worse on a spatial memory task compared to rats that experienced
more predictable maternal care. In subfigure 2.1b they noted that human infants that
experienced low predictability at 1 year of age had a worse Mental Development Index
(MDI) at 2 years of age and 6.5 years of age compared to infants with a more predictable
input (figures from Davis et al., 2017, used with permission from PNAS).

2.4.2 DNA Methylation

Various Conte Center projects explore possible mechanisms using rodents as an animal model

and study the consequences of unpredictable maternal signals in human cohorts. One project

investigates whether early life unpredictability may leave a certain biological marker. DNA

methylation (Moore et al., 2013) data were analyzed to test this hypothesis.
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DNA samples are collected for i = 1, 2, . . . , n subjects and methylation counts yij for CpG

sites j = 1, 2, . . . , d are recorded from nij reads for individual i at CpG site j. These reads

are collected at least two points in time. Due to limitations in sequencing technologies and

the quality of DNA samples, it is difficult to observe reads for each site j in each subject

i. Furthermore, due to intra-individual variation in CpG changes across time points it is

difficult to isolate sites that have significant changes in methylation across individuals due

to unpredictability.

Jiang et al. (2019) conducted a study with infant rats and analyzed the changes in their

methylation profile when they were subjected to different early life experiences. As seen in

Figure 2.2 that is from the paper, DNA samples were collected from rats on post-natal day

two (P2), and then they were divided into Limited Bedding and Nesting (LBN) or control

groups. Then DNA samples were collected again on post-natal day ten (P10). Differentially

methylated sites (DMSs) were identified when they were significantly methylated in two or

more pups. DMSs were then tiled into regions of 100 base pairs to obtain differentially

methylated regions (DMRs).

Figure 2.2: Figures show that DNA samples were collected from rats at ages P2 and P10.
Differentially methylated sites were identified when they were shared by at least two infant
rats and then tiled into differentially methylated regions (figures from Jiang et al., 2019,
used with permission from Life Science Alliance).
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2.4.3 Principal Component Analysis

Principal component analysis (Abdi and Williams, 2010) is a dimensionality reduction tech-

nique used to explain variation in high dimensional data with fewer dimensions. The method

relies on linear algebra techniques and identifies eigenvectors that correspond to the q-largest

eigenvalues of the variance-covariance matrix of the data.

As seen in Figure 2.3 PCA on differentially methylated regions in rat pups was able to

differentiate between age (P2 vs P10) but not able to differentiate between LBN and control

groups.

Figure 2.3: Figures show that PCA on differentially methylated regions was not able to
differentiate between experiences (figures from Jiang et al., 2019, used with permission from
Life Science Alliance).

Jiang et al. (2019) then defined the quantity “δ-methylation” = log2(
P10

P2
) to account for vari-

ation in intra-individual methylation. The principal component analysis on δ-methylation

was able to differentiate between pups that experienced early life adversity and control groups

as demonstrated in Figure 2.4.
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Figure 2.4: Figures show that δ-methylation was able to differentiate between control and
LBN experiences (figures from Jiang et al., 2019, used with permission from Life Science
Alliance).

Unlike in rats, PCA in human beings has not been as successful in accounting for variation

in data. Also, in human beings there are no clear early life adversity and control groups.

Therefore, childhood experiences will be quantified through entropy of maternal sensory

input. We note that PCA on differentially methylated regions or δ-methylation ignores the

variation that arises due to heterogeneity in sample sizes that are used in estimating the

proportion of methylation. For example, we observed that in over 71% of the DMSs the

number of reads used for obtaining the proportion of methylation was less than 50. We

would like to account for such variation while analyzing methylation patterns.

2.4.4 Factor Analysis

Factor analysis (Gorsuch, 2014) is a classic dimensionality reduction technique used widely in

psychology and sociological sciences to explain high dimensional data with fewer underlying

factors. For example, if the variation in the data Yd×n, where n is the sample size and d is

the dimension of the observations, can be explained by a q-dimensional space, where q < d,

then:

Yd×n = Wd×qXq×n + µd×111×n + Ed×n

x̃i ∼ N(0q×1, Iq×q)

(2.11)
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W is known as the factor loading matrix and x̃i is a q-dimensional vector that represents

observations ỹi with fewer dimensions. X is independent of E. The total variation in the

data is Cov(Y ) = Σ = WW T + Cov(E).

PCA and FA have similarities, for example, PCA also seeks to perform dimension reduction.

Additionally, Tipping and Bishop (1999) discuss how E = σ2 I in 2.11 is a probabilistic

PCA model. However, there are key differences between these models, such as PCA assumes

that there is no specific variation E that is attributed to the features. Additionally, FA

and probabilistic PCA are generative models, i.e., they assume that data is generated from

the specified distribution. However, PCA is just a method to project the features on a

lower dimensional space. FA is more interpretable compared to PCA. E in FA literature is

typically assumed to be a diagonal matrix so that each feature has a specific variance and

conditional on xi, yij are independent for all j. PCA assumes no such structure.

Confirmatory factor analysis (CFA) is conducted with a specific hypothesis in mind and

involves choosing a q as well as investigating whether W has a specific structure. We are

interested in exploratory factor analysis (EFA) because although we hope to find associations

between the factors and entropy measures, we do not a priori know the number of desired

factors q and the specific methylated regions that W should highlight.

Multiplying W to an orthogonal matrix Lq×q and multiplying LT
q×q to X in equations (2.11)

leads to equivalent parametrizations of the model. Therefore, fitting factor analysis models

typically involves imposing certain constraints on W , for example fixing the upper triangular

part of W to 0 is a popular technique (Geweke and Zhou, 1996; Bernardo et al., 2003; Lopes

and West, 2004). This constraint may be too restrictive and recently sparsity inducing priors

have been used to avoid identification issues in addition to encouraging factors to load onto

fewer dimensions.
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Chapter 3

Combining Reproducibility and

Repeatability Studies with

Applications in Forensic Science

3.1 Introduction

Presentation of scientific evidence in U.S. courts is governed by Daubert v. Merrell Dow

Pharmaceuticals, Inc., 509 U.S. 579 (1993) and Federal Rule of Evidence 702. These say

that the expert testimony based on scientific knowledge must have “a standard of evidentiary

reliability”, which means that the testimony should be valid and reliable, and must be the

“product of reliable principles and methods”. A 2009 report from the National Academy

of Sciences (National Research Council, 2009) identified concerns with the scientific founda-

tions of some forensic disciplines and called for scientific studies to establish their validity

and accuracy. A subsequent 2016 report from the President’s Council of Advisors on Sci-

ence and Technology (President’s Council of Advisors on Science and Technology, 2016),

focused on feature comparison methods, re-iterated the concerns raised by the NAS report,
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and identified strategies for establishing reliability and validity of forensic analysis. We note

here that the European guidelines (Willis et al., 2015) recommend using probabilistic state-

ments while evaluating forensic evidence and the reporting of likelihood ratios rather than

categorical conclusions. The methods we develop are based on the current approach of the

U.S. for assessing forensic evidence.

We focus here on the reliability of assessments for the feature-based comparison methods

discussed by the PCAST report. Forensic disciplines that rely on feature-based comparisons

include fingerprints, shoeprints, firearms, etc. In a standard forensic examination, expert

examiners are asked to provide assessments of samples collected from a crime scene, e.g., a

bullet cartridge case, and a second analogous sample collected from a known source, e.g.,

a suspected firearm. The decision process, based on the training, experience, and expertise

of the examiner, is subjective and thus prone to psychometric variation across examiners.

We provide a general-purpose statistical methodology to assess the reliability of a subjective

workflow of this type.

Reliability, in the context of subjective forensic examiner decisions, refers to the consistency

of decisions made for the same sample. Reliability is distinct from accuracy, which refers

to the correctness of the decisions. There are two types of reliability that are of interest

to the forensics community. Repeatability refers to the consistency of the decisions made

by the same examiner in judging the same sample (or evidence) at two different times.

Reproducibility refers to the consistency of the decisions made by different examiners in

judging the same sample. Reliability is of interest in its own right. Reliability is necessary

but not sufficient for accuracy.

The PCAST report emphasizes the importance of conducting “black-box” studies for evalu-

ating the reliability and accuracy of feature-based comparison methods. In a typical study,

forensic examiners, recruited from various government and private agencies, are provided

with forensic samples similar to the ones they would see in real case work. They are pro-
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vided with questioned samples (pieces of evidence) and exemplar samples which are collected

under ideal circumstances from known sources. The examiners are asked to make source de-

terminations for the questioned sample just like they would in practice. The ground truth for

the comparisons, that is whether the questioned sample and exemplar sample come from the

same source, is known in a black-box study. Studies of this type are called black-box studies

because the decision-making process is subjective and the individual steps in the decision-

making process are unspecified. The decision-making process is treated like a “black box”.

In many of the black-box studies conducted so far, data has been collected such that it

enables two different types of reliability assessments. The primary design of the study can

be thought of as a reproducibility study, a number of examiners make decisions on a certain

number of samples and the goal is to assess the consistency of examiner decisions on the

same samples. The studies also include a second component, which can be thought of as a

repeatability study, wherein examiners give repeated decisions on a subset of the samples

they encountered in the reproducibility study. It has also been observed that the repeatabil-

ity trials rely on much smaller samples compared to the reproducibility trial. For example,

in the latent fingerprint examination study of Ulery et al. (2011, 2012) described below in

Section 3.2.2, the reproducibility trial had 17121 total decisions and the repeatability trial

had 1906 decisions.

In response to the NRC (2009) and PCAST (2016) reports, black-box studies have been

conducted for many forensic disciplines. This includes latent print examinations (Ulery et

al., 2011, 2012), blood stain pattern analysis (Hicklin et al., 2021), bullet and cartridge case

comparisons (Baldwin et al., 2014; Monson et al., 2023a), and footwear analysis (Hicklin

et al., 2022b). Additional studies are underway. This paper demonstrates and evaluates a

statistical model that can be used to analyze the reliability data from black-box studies.

Measurement reliability is also a key concept in engineering, radiology, and many other dis-

ciplines (Weaver et al., 2012; Vardeman and VanValkenburg, 1999; Vardeman, 2014; Pearson
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et al., 2011; Furlan et al., 2007; Van Wieringen and De Mast, 2008). Researchers, in some

applications, have also identified instances in which there appear to be interactions such

that the performance of examiners can vary based on the characteristics of the object. For

example, Tsai (1988) studies variability in gauge measurements accounting for the interac-

tion between operator and parts. Heydorn et al. (2000) studied reproducibility in biofilm

experiments while accounting for the interaction between bacterial strain and experiment

round.

Other related work considers the reliability of forensic examination from a decision-making

rather than a measurement perspective. Item response theory (IRT) models are often used

for measuring the responses from individuals to a set of questions. Luby and Kadane (2018)

and Luby et al. (2020) have employed Rasch models and item response theory (IRT)-like

models for the analysis of the data from proficiency testing of forensic examiners. Luby

and Kadane (2018) uses an IRT model to understand the variation in examiner behavior

while accounting for item difficulty. Luby et al. (2020, 2021) extends the previous work

and provides a framework for assessing proficiency with a decision tree-like model for the

sequential decision-making process in fingerprint comparisons.

We focus here on developing a general statistical approach to quantify the variation in sub-

jective forensic determinations. We are motivated by several recent black-box studies which

include a large reproducibility study and a smaller repeatability study. Thus far the two

components have been analyzed separately (Stern et al., 2018; Ulery et al., 2012). Combin-

ing the two should provide a method to assess for the possible presence of examiner-sample

interactions, as well as, provide greater precision in estimating examiner and sample-specific

tendencies in reliability inferences. An interaction between examiner and sample implies that

examiners have different tendencies for rating forensic samples or that examiner abilities/

thresholds change depending on the forensic sample. Some results in Ulery et al. (2012)

and Hicklin et al. (2020) suggest possible interactions in latent print analysis with higher
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repeatability and reproducibility for easier prints than for prints that were rated to be dif-

ficult by examiners. It is essential to understand the magnitude of these interactions and

understand how they may limit overall repeatability and reproducibility. We begin our dis-

cussion by briefly describing in Section 3.2 the data from two forensic studies that motivate

our work. In Section 3.3, we introduce the statistical method used to assess reliability for

decisions that can be approximated to a continuous scale and then extend to address binary

decisions. Section 3.4 has results from simulation studies of different designs where continu-

ous and binary data are generated from a known distribution and the aforementioned model

is used to fit the data. Section 3.5, presents analyses of the data sets described in Section

3.2, handwritten signature complexity data (Angel et al., 2017), and fingerprint comparisons

data (Ulery et al., 2011, 2012). Finally, Section 3.6 discusses the results, limitations of the

approach, and future work.

3.2 Data

This section describes data collected from two forensic science studies that incorporated

reliability assessments. The first is a study regarding assessments of the complexity of

handwritten signatures (Angel et al., 2017; Stern et al., 2018). The second is a large-

scale study conducted by the FBI to investigate the accuracy and reliability of fingerprint

comparison decisions (Ulery et al., 2011, 2012).

3.2.1 Handwritten Signature Complexity

Found and Rogers (1996) and Found et al. (1998) provided a statistical method to define

complexity for handwritten signatures. Dewhurst et al. (2007) reported that complex signa-

tures are difficult to imitate. Forensic document examiners are more confident and accurate

in their decisions while judging handwriting of higher complexity as compared to their deci-

sions while judging handwriting of lower complexity (Sita et al., 2002). This suggests that
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assessing the complexity of handwritten samples is a key step for an examiner.

Signatures were collected in a Los Angeles Police Department (LAPD) and Los Angeles

County Sheriff’s Department (LASD) study described by Angel et al. (2017) and Stern et

al. (2018). The study was focused on assessing the reliability of complexity assessments

and the characteristics associated with those judgments. The data are also intended as a

resource for a future study of the effect of complexity on examiner decisions. A total of 123

participants, ages 21 − 70, submitted 5 samples of their signatures on paper in the study.

A total of five forensic document examiners (FDE) with an average experience of 28.8 years

(s.d.= 8.9 years) provided complexity assessments based on images of 300 dpi (dots per inch)

resolution for each of the 123 signers using both a 3 point rating scale and a 5 point rating

scale. The complexity rating reflected the examiner’s judgment of the difficulty with which

the signature could be replicated, with the 3-point scale corresponding to the choice of fairly

easy, medium, or difficult and the 5-point scale including easy, fairly easy, medium, difficult,

and very difficult as options. The five examiners provided repeated decisions on a very small

subset, 7 out of the 123 signatures.

Stern et al. (2018) analyzed the reproducibility study (123 signatures assessed by five ex-

aminers) and the repeatability study (seven signatures assessed twice by each examiner)

separately. They analyzed the 5-point scale data and treated the outcome as a continuous

measure. The repeatability was found to be quite similar to the reproducibility. This is a bit

surprising but may also reflect the small number of observations in the repeatability study.

We are interested for: i) combining the data sets from the two types of trials for a more ef-

ficient estimation of reliability, and ii) deriving information about possible examiner-sample

interactions from this very limited repeatability data set.
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3.2.2 Latent Print Comparisons Reliability

The analysis of latent print evidence has a long history in the United States, dating back to

1911 (see People v. Jennings). In the face of high-profile errors such as the misidentification

in the Mayfield case (Office of the Inspector General, 2006), there was a need to formally

assess the accuracy and reliability for the friction ridge examination procedure. The first

large-scale black-box study for evaluating the accuracy and reliability of latent fingerprint

analysis was conducted by the FBI (Ulery et al., 2011, 2012). Fingerprint examination

is a sequential, multi-part process and it is important that the outcomes from each step

of the process are reliable and accurate. Most U.S. agencies use the ACE-V procedure in

which the following steps are executed: Analysis, Comparison, Evaluation, and Verification

(ACE-V).

3.2.2.1 ACE-V workflow

We begin with a brief description of the ACE-V approach to fingerprint analysis (see Figure

3.1). As a first step, latent prints collected from the crime scene are analyzed by forensic

examiners to assess the quality of the prints. Ideally, the collected print should have suf-

ficient distinguishing marks, patterns, or minutiae to make source determinations. Based

on the operating procedures of the agency, this analysis step can have a binary outcome

(Value for Individualization/ Not Value for Individualization) or a trinary outcome (Value

for Individualization, Value for Exclusion Only, No Value). If a latent print is not deemed

suitable for comparison i.e., Not Value for Individualization on the binary scale or No Value

on the trinary scale, it is not used for comparisons. If a latent is “Of Value” (VID/ VEO)

in the analysis step, exemplars are provided to the examiner in the comparison step, where

examiners compare the latent print with the exemplar for levels of details such as ridge flow,

minutiae, and pattern types. The exemplar prints are comparison prints collected under dif-

ferent circumstances and may be obtained from suspects or from an Integrated Automated
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Figure 3.1: Simplified version of ACE-V workflow.

Fingerprint Identification System (IAFIS) which relies on pattern matching and other rele-

vant information to produce top potential matches for a latent print. The evaluation step

involves an assessment of the similarities and differences between the latent print and the ex-

emplar. This step has three outcomes based on the features shared between the latent print

and the exemplar: Individualization (questioned print and exemplar are believed to have

come from the same source), Exclusion (questioned print and exemplar are from different

sources), Inconclusive (cannot conclude whether the questioned print and exemplar are from

the same source or not). Depending on the agency that the examiner belongs to, certain

outcomes from the evaluation step warrant review by another examiner in the verification

step. Some agencies have a verification step for only individualization decisions, to reduce

the potential for false identifications. Other agencies have a verification step irrespective

of the outcome of the evaluation step. Verification can be blind in which case the verifier

carries out a separate independent examination or unblinded.
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3.2.2.2 Latent print FBI Black-Box Study

In 2009, the FBI recruited a total of 169 examiners from federal, state, and private agencies to

participate in the first large-scale black-box study for latent fingerprint comparison decisions.

Examiners were asked to fill out an anonymous survey about their demographic information,

type of training or certification, type of agency (employer), years of experience, etc. The

survey responses were only used in the aggregate sense, and not matched with the examiners

with any identifying information due to restrictions in the Institutional Review Board (IRB)

approval for this study. About 83% of the examiners were certified as latent print examiners

by the International Association for Identification (IAI) or other agencies, and the median

years of experience was 10 years. More information about this survey can be found in the

appendix to Ulery et al. (2011) and on the FBI website (Black Box Study Results 2017).

Twenty-one individuals provided a total of 356 latent prints deposited on various surfaces and

processed by different techniques as well as clear exemplars. The latent print and exemplars

were then combined to form 744 total pairs, 520 mated pairs (latent and exemplar are from

the same source) and 224 non-mated pairs (latent and exemplar are from different sources).

The quality of latent prints and the difficulty of comparisons were meant to mimic real cases.

The ground truth for comparison decisions were known. Each examiner was given an average

of 100 latent-exemplar pairs, with roughly the same ratio of mated and non-mated pairs,

for making quality and source determinations. Examiners were asked to assess samples like

they would in real case work.

The data from the first phase of the study provide inferences about accuracy and repro-

ducibility. To study the repeatability of decisions, 72 of the 169 examiners participated

in a second phase of the study about 7 months from the first study (Ulery et al., 2012).

Each examiner was assigned 25 pairs out of the samples they observed in the first phase

of the study. Out of the 25 pairs, 9 were non-mated, and 16 were mated. The assigned

pairs were randomly selected except that there was also an attempt to include pairs that
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examiners possibly made false negative errors on in the first study. Ulery et al. (2011, 2012,

2014, 2016) report high accuracy and good reliability for source determinations. They also

report less reliability in the analysis phase of the ACE-V process compared to the source

determinations.

3.3 Statistical Models for Reliability

Measurement reliability in the physical sciences is often assessed via a two-factor analysis

of variance (ANOVA) model: Yijk = µ + αi + γj + ϵijk, where, Yijk is the measurement

or decision for examiner i on sample j in the kth repetition; αi is the examiner effect or

examiner tendency, γj is the sample effect or sample complexity, and ϵijk is the random

noise in the outcomes. These models have been used previously, for example, in the study

of inter-rater reliability in engineering, by Vardeman and VanValkenburg (1999), Vardeman

(2014), and Weaver et al. (2012). Two-way ANOVA models are easy to fit, intuitive, and

used extensively in scientific applications. If there is a reason to believe that there may be

an interaction between the two factors, an interaction effect δij can be used in addition to

the effects for the two main factors (examiner and sample).

3.3.1 Continuous Data

It is most straightforward to introduce the use of the two-way random effects model for

outcomes that may be approximated as continuous. In the forensic context, this could be

a complexity assessment score or could also be a subjective assessment of the degree of

similarity. For example, Alewijnse et al. (2011) analyzed the data from signature complexity

assessments on a scale of 0-100. Incorporating an interaction within the model, we get:

Yijk ∼ N(µ+ αi + γj + δij, σ
2
ϵ ). (3.1)
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We assume that the continuous decisions Yijk, from examiner i for sample j in repetition

k, follow a normal distribution around a mean that depends on a grand mean, examiner-

specific and sample-specific random effects, and their interaction, that is µ, αi, γj, and δij

respectively. Let the total number of examiners be I and the number of samples be J . The

normal distribution, though common, is just illustrative. It simplifies computation but other

continuous distributions are possible.

More specifically, in the case of handwriting complexity examination, we assume that exam-

iners have an individual tendency to rate samples higher or lower in complexity compared to

the overall mean, and we let this tendency for examiner i be denoted by αi. The parameter,

αi, informs whether a certain examiner is more or less prone to see complexity as compared

to other examiners while assessing the same sample. The examiner effect, αi can be modeled

to depend on examiner features such as years of experience or the employer agency; if no

such information is collected during the study, αi can be a proxy for such characteristics.

Similarly, the parameter related to the sample informs whether the sample tends to receive

higher or lower complexity ratings compared to the mean. The complexity for sample j is

denoted by γj. There may be additional information about the samples that can be used

to model γj. Finally, δij is an interaction effect between examiners and signature samples.

Without interactions there is an additive examiner and sample effect; however interactions

change that so there is a differential effect of a sample on examiner effects, i.e., examiner

effects change with the sample and vice versa. Inference for δij is challenging, especially in

a high dimensional case when the level of factors I and J are large. Ideally, we need several

repeated decisions for examiner-sample pairs to enable estimation.

In applying the model given by equation (3.1) to reliability studies, we model αi, γj, and δij

as random effects.
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αi
i.i.d.∼ N(0, σ2

α)

γj
i.i.d.∼ N(0, σ2

γ)

δij
i.i.d.∼ N(0, σ2

δ )

(3.2)

This part of the model treats examiners and samples as subsets of a large population of

examiners and samples. Therefore, there is an additional level of hierarchy; αi, γj, and δij

are modeled as normal distributions with means 0 and variance parameters σ2
α, σ

2
γ, and σ2

δ

respectively. These variance parameters describe how examiners, samples, and interaction

respectively contribute to the observed variation in scores. The variance of decision scores,

σ2
ϵ is the random noise or the variation that exists in repeated observations of the same

sample by the same examiner. The choice of normal distribution here is common for ran-

dom effects (e.g., examiner tendencies) being modeled as draws from a large population.

Schielzeth et al. (2020) provide evidence that conclusions are generally robust to the choice

of distributions in (3.2). We address the situations when data deviates from the distribu-

tional assumptions with some simulation studies, the results for which can be found in the

Supplemental material.

3.3.2 Binary Data

The determination of value in a latent print examination is an example where the forensic

decision can be thought of as binary or categorical. Here, we focus on the binary decision

scale where samples are assessed for quality (value/ no value). Another example of binary

data in forensic examination is match or non-match (excluding Inconclusives). For binary

data, percentage agreement is often used to assess reliability. However, percentage agreement

or the Cohen’s κ (Cohen, 1960) statistic, does not account for the difficulty of samples

or variation across examiners. Hence, we are interested in developing a methodology for

assessing the reliability for such binary data, while accounting for sample difficulty and
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allowing for interactions.

Albert and Chib (1993) proposed a methodology for analyzing binary or categorical response

data by modeling it in terms of an underlying latent continuous variable. Their approach

can be used to generalize the two-way ANOVA model that was discussed in the previous

subsection. An underlying continuous variable, denoted as Zijk, is modeled using the model

(3.1) that includes an examiner-specific effect, a sample-specific effect, and interactions be-

tween examiner and sample. The binary decision or outcome is represented by Yijk where

examiner i is making a binary decision for sample j in repetition k. The binary decision

is assumed to depend on a latent variable Zijk with Yijk = 1 when Zijk > 0, and Yijk = 0

otherwise. The model we propose can be found below:

Zijk ∼ N(µ+ αi + γj + δij, 1)

Yijk =


1, if Zijk ≥ 0

0, otherwise

(3.3)

Under this model, P (Yijk = 1) = Φ(µ + αi + γj + δij), where Φ is the standard normal

cumulative distribution function. Similar to the model given by equation (3.1), αi, γj, and

δij are assumed to be drawn from a normal distribution with mean 0 and variances σ2
α, σ

2
γ,

and σ2
δ respectively.

A model is said to be non-identifiable when two or more parametrizations of the model yield

the same likelihood. In other words, if modifying some or all parameters in the model, for

example by adding a certain constant to each or multiplying them by a certain factor, yields

the same statistical representation of the model, the model is not identifiable. A few different

constraints are introduced in the above model to make it identifiable. The cut-point on the

latent scale Zijk that determines the value of the observed binary variable to be either 1 or

0, is assumed to be known and fixed at zero. Note that a non-zero cutpoint would merely
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change the meaning of the intercept µ. We also fix the variance for Zijk, to be equal to 1.

This is done because a variance parameter other than one would merely change the scale of

the random effects.

3.3.3 Assessing Reliability

One way of assessing reliability for continuous decisions, with the setup in equation (3.1),

is to use the intraclass correlation (Shrout and Fleiss, 1979). Reproducibility may be esti-

mated by looking at correlations between outcomes for the same sample across examiners.

Repeatability may be estimated by looking at correlations between outcomes for the same

sample by the same examiner. It is expected that repeatability is higher than reproducibility

because while assessing reproducibility one needs to account for variance across examiners.

For continuous data, the intraclass correlations are the following:

Reproducibility = corr(Yijk, Yi′jk′) =
σ2
γ

σ2
α + σ2

γ + σ2
δ + σ2

ϵ

(3.4)

Repeatability = corr(Yijk, Yijk′) =
σ2
α + σ2

γ + σ2
δ

σ2
α + σ2

γ + σ2
δ + σ2

ϵ

(3.5)

Similarly, for the binary data model given by equation (3.3), we can assess reliability through

intraclass correlation for the underlying latent variable Zijk by the same equations as (3.4)

and (3.5) but with σ2
ϵ replaced by 1.

Combining the data sets from reproducibility and repeatability trials are especially beneficial

for repeatability assessments when the size of the repeatability data set is much smaller

compared to the reproducibility data set. If the data sets are not combined in the analyses,

the estimated random effects αi, γj, and δij as well as the variance components, using the

models given by the equations (3.1) or (3.3), will have a lower precision. Additionally, if

there is an examiner-sample interaction, using the reproducibility data set alone cannot
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estimate it. Therefore, combining the data sets is beneficial for both reproducibility and

repeatability.

3.3.4 Bayesian Inference and Computation

We use a Bayesian approach to fit the models given by equations (3.1) and (3.3), where the

model parameters have an associated prior distribution before observing the data (Gelman

et al., 2013, Carlin and Louis, 2008). A Bayesian approach to modeling provides a way

to incorporate prior information about the parameters, allows us to deal with missing data

naturally, and easily provides credible intervals for all parameters including reproducibility

and repeatability. Posterior distributions for the model parameters are obtained after in-

corporating information from the data through the likelihood. Markov chain Monte Carlo

(MCMC) algorithms are used to obtain samples from the posterior distribution. Specifically,

we use a Gibbs sampling algorithm (Geman and Geman, 1984) where parameter values are

drawn conditional on other parameters (fixed) through their conditional posterior distribu-

tions. The full conditional distribution for fitting the models (3.1) and (3.3) through Gibbs

sampling can be found in Appendix A. The posterior samples are summarized through their

posterior medians and credible intervals.

3.4 Simulation Studies

Before applying the models of Section 3.3 to the data from Section 3.2, we present results

from simulation studies for the continuous model and binary model. As stated above, it

is common that the repeatability study is much smaller compared to the reproducibility

study. This presents a challenge for our analysis in that there are limited data for studying

interactions. This is a key element that we explore via simulation.
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3.4.1 Continuous data

Although we experimented with a range of study sizes, the core design of the simulation study

involves I = 50 examiners and J = 80 samples. As a first step, we simulate one decision

per examiner-sample pair, so we have a simulated matrix of 50 × 80 outcomes generated

according to the continuous model given by the equation (3.1). This is a reproducibility

data set. The second step incorporates data from a repeatability study. This is described

further below.

The value of parameters chosen are µ = 3.5, σ2
α = 1, σ2

γ = 4, σ2
δ = 0.5 and σ2

ϵ = 0.2. We

use these specific values because σ2
γ > σ2

α > σ2
δ > σ2

ϵ and the value for µ is motivated by

the handwritten signature complexity data set. The intercept or grand mean µ is given

a relatively uninformative prior distribution, a normal distribution centered around 0 and

having a large variance (100). The standard deviation components σα, σγ, σδ and σϵ are

given uniform prior distributions as suggested in Gelman (2006). The half-Cauchy prior

distribution suggested in Gelman (2006) also provided similar results.

We have used the libraries “rstan” (Stan Development Team, 2022) as well as “rjags” (Plum-

mer et al., 2019) in the R language to analyze the simulated data sets. We have used three

MCMC chains for obtaining posterior inference. We incorporate a burn-in period for each

chain, samples obtained during this initial period are not used for posterior inference. A

burn-in allows for the algorithm to converge to the posterior distribution. We use 20, 000

draws with a burn-in of 10, 000 draws. We evaluate the convergence of the chains for each pa-

rameter using the potential scale reduction factor (PSRF) also known as the Gelman-Rubin

statistic (Gelman and Rubin, 1992). If the chains have not converged, it indicates that the

draws have not found the stationary target distribution and we need to run the chains for

longer. Each chain has a different starting point and PSRF informs on whether the different

chains have converged to the same distribution.
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In practice, the repeatability component of a black-box study is small and usually only

a subset of the examinations are repeated. We explore the impact of limited repetitions

through a simulation study. In the reproducibility trial, a decision is simulated for each

examiner-sample pair (50 x 80 decisions). In the repeatability trial, we investigate four

scenarios; a second decision is simulated for each examiner for a total of: i) 80 samples (100%

repeated samples), ii) 40 samples (50% repeated samples), iii) 20 samples (25% repeated

samples) or iv) 10 samples (12.5% repeated samples). The subset of the samples for which

a second decision is obtained varies across examiners. For each of the four settings that are

described, 25 simulated data sets are generated. Figure 3.2 provides the posterior medians

and 95% credible intervals for parameters µ, σ2
α, σ

2
γ, σ

2
δ , reproducibility, and repeatability

for each of these 25 × 4 data sets. Table 3.1, provides summaries such as average posterior

median and average credible interval limits.

Figure 3.2: Posterior medians with 95% credible intervals for 25 simulated data sets in each
case are shown with the black line indicating the true value. The results from different sim-
ulated data sets are represented along the x-axis. Here, the setting indicates the percentage
of samples that received repeated assessments by the examiner.
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Repeat.

Setting
µ = 3.5 σ2

α = 1 σ2
γ = 4 σ2

δ = 0.5 σ2
ϵ = 0.2 R1 = 0.70 R2 = 0.97

100%
3.50

(2.97, 4.03)

1.03

(0.71, 1.59)

4.07

(3.02, 5.68)

0.50

(0.48, 0.53)

0.20

(0.19, 0.21)

0.70

(0.61, 0.78)

0.97

(0.96, 0.97)

50%
3.49

(2.96, 4.03)

1.04

(0.71, 1.60)

4.09

(3.03, 5.71)

0.50

(0.47, 0.53)

0.20

(0.19, 0.22)

0.70

(0.61, 0.78)

0.97

(0.96, 0.97)

25%
3.49

(2.96, 4.03)

1.03

(0.70, 1.59)

4.10

(3.04, 5.72)

0.50

(0.47, 0.53)

0.20

(0.18, 0.22)

0.70

(0.61, 0.78)

0.97

(0.96, 0.97)

12.5%
3.50

(2.97, 4.03)

1.04

(0.71, 1.61)

4.09

(3.03, 5.71)

0.50

(0.46, 0.54)

0.20

(0.18, 0.23)

0.70

(0.61, 0.78)

0.97

(0.96, 0.97)

Table 3.1: Results from 25 simulation data sets with continuous data. Posterior median
estimates with the average lower 2.5% quantile and the average upper 97.5% quantile (up to
2 decimal places) are presented. R1 denotes reproducibility and R2 denotes repeatability.

In Figure 3.2, we observe little variance in posterior median estimates for examiner vari-

ance, sample variance, and reliability components across the simulated data sets, even with

few (12.5%) repeated decisions. The credible intervals are also comparable across simula-

tions. This is promising and ensures that when model assumptions hold, good estimates for

the variance parameters can be obtained by using the model given by equation (3.1) even

with limited data. This is encouraging for designing black-box studies; especially when an

interaction between examiners and samples is not expected.

The results presented in Table 3.1 and Figure 3.2 were obtained when the simulated data

was generated with the distributions specified in the model given by the equations (3.1) and

(3.2). In practice, it is difficult to check model assumptions and the data often deviates from

these distributional assumptions. In the supplemental material accompanying this paper, we

present the posterior medians and credible intervals for variance parameters, reproducibility,

and repeatability when the error distribution is different from Gaussian such as Student’s

t-distribution, bimodal distribution, or Laplace distribution. We conclude that in several

cases our model is robust against violations in model assumptions.
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3.4.2 Binary data

For the model given by the equation (3.3), the simulation studies mimic the settings that

were described in subsection 3.4.1. We simulate binary decisions according to the model

given by the equation (3.3), for I = 50 examiners and J = 80 samples; the data is simulated

with interactions. As an initial step focused on reproducibility, decisions are simulated for

each examiner-sample pair so that there are 50× 80 total binary decisions. For the repeated

decisions (same examiner and same sample), we have four settings with decreasing fractions

of repeated decisions just as in subsection 3.4.1. The value of parameters chosen are µ = 1,

σ2
α = 1, σ2

γ = 4 and σ2
δ = 0.5. We present the results from these simulations in Figure 3.3

and provide limited summaries in Table 3.2.

Figure 3.3: Posterior medians with 95% credible intervals for 25 simulated data sets in each
case are shown with the black line indicating the true value.
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Repeatability

Setting
µ = 1 σ2

α = 1 σ2
γ = 4 σ2

δ = 0.5 R1=0.62 R2=0.85

100%
1.00

(0.46, 1.54)

1.02

(0.68, 1.62)

4.04

(2.83, 5.94)

0.47

(0.33, 0.64)

0.62

(0.52, 0.71)

0.85

(0.81, 0.88)

50%
1.02

(0.47, 1.60)

1.09

(0.71, 1.77)

4.28

(2.93, 6.45)

0.56

(0.34, 0.83)

0.62

(0.52, 0.71)

0.86

(0.81, 0.89)

25%
1.02

(0.47, 1.61)

1.07

(0.67, 1.78)

4.29

(2.84, 6.71)

0.55

(0.26, 0.96)

0.62

(0.52, 0.71)

0.85

(0.79, 0.90)

12.5%
1.13

(0.52, 1.82)

1.34

(0.79, 2.41)

5.27

(3.24, 8.99)

0.83

(0.33, 1.68)

0.62

(0.52, 0.71)

0.88

(0.82, 0.92)

Table 3.2: Results from 25 simulated data sets with binary data. Posterior median estimates
with the average lower 2.5% quantile and the average upper 97.5% quantile (up to 2 decimal
places) are shown above. R1 denotes reproducibility and R2 denotes repeatability on the
latent scale.

As demonstrated by Figure 3.3 and Table 3.2, with a decrease in the number of samples that

have repeated decisions, we obtain wider credible intervals and more bias in posterior median

estimates. This difference is most notable for σ2
δ . The case with 12.5% repetitions exhibits

the worst performance. However, it is noteworthy that the inference for reproducibility and

repeatability is quite robust even with 12.5% repetitions. While designing black-box studies,

we recommend that at least 25% samples should require repeated decisions on them for

appropriate inference regarding variance components and reliability estimates.

The challenge in fitting the binary model with limited data from repeated trials is that there

are not enough data to draw reliable inferences about the interactions and the interaction

variance components. This was confirmed by repeating the simulation scenario for data

generated by a model with no interactions.
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3.4.3 A note on computation

Fitting the binary outcomes model can be computationally challenging, especially for cases

with a small number of repeated trials. Convergence of the MCMC was slower in such cases

and it can be a challenge for some starting values. This is especially the case observed when

σ2
δ is small. In such cases, it may be helpful to re-parametrize the model (Gelman et al.,

2013).

3.5 Forensics Data Results

We next present the results of applying the models to the data from the reliability studies

described in Section 3.2.

3.5.1 Signatures data set

The handwritten signature data of Section 3.2.1 describes the complexity assessments for 123

signatures by 5 examiners. The prompt for the examiners used a five-point scale. Though

this is not necessarily a large enough scale for a continuous model, we follow Stern et al.

(2018) and use the continuous data model given by equation (3.1) in Section 3.3.1. We note

that complexity or quality measures are often on continuous scales (e.g., Alewijnse et al.,

2011) and this example is helpful for seeing how the model performs.

Parameters µ σ2
α σ2

γ σ2
δ σ2

ϵ

Estimates
3.55

(3.21, 3.89)

0.06

(0.01, 0.65)

0.80

(0.61, 1.06)

0.02

(0.00, 0.11)

0.36

(0.27, 0.42)

Table 3.3: Posterior medians with 95% credible intervals for the combined reproducibility
and repeatability handwritten signature complexity data sets. The 5-point complexity scale
is approximated to a continuous scale like in Stern et al.(2018).
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The estimated value of grand mean µ is 3.55, which means that on average the signature

complexity is between 3-4. The examiner variation is much smaller than the signature

(sample) variation. The examiners are trained experts and though their scores vary, there is

much greater variation across the signers. The interpretation of the interaction component

is that it allows examiner effects on signature complexity to depend on the signature. It is

noteworthy that the interaction variance component is quite small. The lower bound for the

credible interval is close to zero and hence this could be a sign that there is little evidence

that examiner effects vary across samples.

Stern et al. (2018) previously analyzed the signature complexity data. However, their

methodology is different from ours in the following ways: i) as opposed to the Bayesian

setting presented here, they work in a frequentist setting, ii) they do not account for inter-

actions, iii) they analyze the data collected in the two trials separately, i.e., for the inference

on repeatability they only use the signatures that have repeated decisions on them (7 sig-

natures, 5 examiners). They provided the following estimates for the reproducibility data:

variation in the complexity decisions attributed to the signatures was 0.79, the variation

explained by examiners was 0.04, and the residual variation was 0.38. These estimates are

close to the posterior medians in our case. This also indicates that the interaction variation

is low because if there was a high interaction variance, these two approaches would result in

different estimates.
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Reliability
Methods or data used in

Stern et al. (2018)
Stern et al. (2018) Our method

Reproducibility
two-way ANOVA

123 123 ×5

0.65

(0.58, 0.72)

0.64

(0.43, 72)

Repeatability

Fisher z-transformation

(Snedecor and Cochran, 1989)

7 × 5 × 2

0.67

(0.36, 0.85)

Repeatability
two-way ANOVA

7 × 5 × 2

0.57

(0.28, 0.85)

0.72

(0.64, 0.82)

Repeatability
two-way ANOVA

(inferred from reproducibility study)

0.68

(0.62, 0.74)

Table 3.4: Posterior medians with 95% credible intervals for reproducibility and repeatability
obtained by our method compared to Stern et al.(2018).

In Table 3.4, we have presented comparisons of reliability estimates obtained by our method

compared with the results in Stern et al. (2018). The reproducibility estimates are extremely

close. The credible interval for reproducibility obtained in our case is considerably wider,

this may be due to the fact that Stern et al. (2018) used the delta method (Casella and

Berger, 2021) to approximate the confidence interval and we used no approximations. The

repeatability estimate obtained by our method is a bit higher and the repeatability credible

interval obtained is much smaller compared to the confidence interval from the first two

methods in Stern et al. (2018). This is expected since we leverage a lot more data to make

inferences about the variance components.

3.5.2 Fingerprint data set

The black-box study of Ulery et al. (2011, 2012) examined the reliability and accuracy of

latent print examiners. They find good accuracy and reliability for final decisions but noted

lower reliability (more variation in decisions) of the initial assessment of prints. Decisions
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regarding the suitability of latent print examination can be viewed as being made on a

binary (e.g., VID or not VID) or trinary (e.g., VID, VEO, or NV) scale. We work with

the binary scale and apply the binary model of Section 3.3.2 given by equation (3.3). As

a first step, we focus on the quality determinations from the analysis phase of the latent

print examination using VID and not VID as the possible determinations. Here, αi would

represent the tendency of examiner i to rate latent prints as VID, and γj would represent

a measure of the suitability of the latent print j relative to the average print. Table 3.5

presents the results from the analysis.

Parameters µ σ2
α σ2

γ σ2
δ Reproducibility Repeatability

Estimates

for Analysis

phase

0.90

(0.40, 1.42)

1.38

(1.04, 1.87)

18.22

(13.84, 24.46)

0.27

(0.07, 0.53)

0.85

(0.81, 0.88)

0.95

(0.94, 0.96)

Table 3.5: Results from fitting the binary model to the data from the Analysis phase of
the latent print examination process. Posterior medians with 95% credible intervals are
presented. Reproducibility and repeatability results are provided on the latent scale.

It is important to note that the variance estimates must be interpreted in the context of

the model. They refer to the latent scale where the error variance was fixed to one and all

variance components are estimated in relation to that. Again, note that the variation among

examiners (σ2
α) is much smaller compared to the variation among latent prints (σ2

γ). This

confirms the intuition that the latent prints have a lot of variation in their quality or their

tendencies to be declared of value (γj) and there is less variation in examiners’ tendencies

to declare value/ no value decisions (αi). Interestingly, there seems to be little evidence of

interactions present in the decisions (σ2
δ is quite small). The estimates for reproducibility

and repeatability on the latent scale indicate very good reliability for analysis decisions on

the binary scale.

Ulery et al. (2012) used percentage agreement and κ (Fleiss, 1971) for the estimation of
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reliability. They evaluated reliability on the quality determinations from 72 out of the 169

examiners who participated in the repeatability study and provided the following percent

agreement estimates for reproducibility and repeatability for the analysis phase: 0.85 (0.82,

0.87) (90% confidence interval) and 0.90 (0.87, 0.91) (95% profile likelihood confidence in-

terval) respectively. Note that our reliability estimates are model-based and account for

variations in examiner tendencies and latent print complexities. Thus, they are not directly

comparable with percentage agreement or κ. To better understand the differences, we fit the

binary model on the subset of the data (72 examiners) used by Ulery et al. (2012) and then

used posterior draws for µ, σ2
α, σ

2
γ, and σ2

δ to generate new decisions and obtain posterior

predictive (Gelman et al., 2013) estimates for reproducibility and repeatability. These pos-

terior predictive percent agreement measures yield very similar median estimates to those

obtained by Ulery et al. (2012) for reproducibility, with the posterior median estimate of

0.85 and 95% credible interval (0.81, 0.88), through this procedure, and repeatability, with

the posterior median 0.90 with 95% credible interval (0.88, 0.92).

Although the estimate of the interaction variance is small, we further investigate the dis-

tribution of the interactions to provide insights into what they can tell us about the data.

Figure 3.4 presents the distribution of the interaction effects across examiners in four panels,

with examiners sorted in quartiles by their estimated effects. The lower quartiles are least

likely to judge prints as suitable and the higher quartile are most likely. Figure 3.5 provides

a heatmap of the value and sign of the interaction effects.
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Figure 3.4: Distribution of interaction effects across examiners and samples. Examiner effects
were ordered in increasing order of posterior medians (αi|Yijk), which is the estimate for their
tendencies to see value in latent prints and further divided examiners in four quartiles.

Figure 3.4 reveals that examiners that are least likely to find value in latent prints (top

left panel) had more non-zero interactions for higher quality prints (γj > 0). Additionally,

examiners that are more likely to see value (bottom right panel) have more non-zero inter-

action effects for low-quality prints (γj < 0). The primarily positive interaction effects for

higher quality prints 0 < γj < 3 among examiners that are least likely to find value suggests

that in these combinations, the quality of the print has a bigger impact on the suitability

determination. The pattern in the plot showing examiners in the upper quartile seems to

support the notion that their tendency to see value is accentuated for these lower-quality

prints.
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Figure 3.5: A heatmap showing the posterior medians for δ’s across examiners and samples.
The horizontal axis shows examiner effects from least likely to see value (on the left) to most
likely to see value (on the right) in latent prints. The vertical axis represents latent print
effects from least likely to receive VID decisions(on the bottom) to most likely to receive
VID decisions (on the top) for value decisions. The blank spaces are missing values since
the interactions are only plotted for the examiner-sample pairs that have repeated decisions
on them.

From the heatmap in Figure 3.5, we observe higher absolute value for posterior interactions

(|δij|) which are the blue and red values in the plot, for prints that are of mediocre value.

These findings are consistent with the results of Hicklin et al. (2020), where they found

that examiners had more disagreements amongst each other for value determinations and

comparison decisions with mediocre quality prints.

We also analyzed the conclusions in the Evaluation phase of the latent print examinations.

We change the trinary decision scale of Individualization, Exclusion, and Inconclusive to a

binary scale. Reliability is separately evaluated within mated pairs by treating the Individu-

alization decision as Yijk = 1 and the other conclusions, Exclusion, Inconclusive, and Latent

No Value are considered as Yijk = 0. We fit the model and present the results in Table 3.6.

In this case, αi would be the tendency of an examiner to give Individualization decisions
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for mated pairs and γj would be the tendency of a mated latent-exemplar pair to receive

Individualization decisions based on shared characteristics. As in our other results, there is

much more variability among pairs than among examiners.

Parameters µ σ2
α σ2

γ σ2
δ

Estimates for

Evaluation phase

(Mates)

-2.40

(-3.00, -1.87)

0.89

(0.63, 1.28)

19.02

(13.68, 26.61)

0.38

(0.09, 0.77)

Table 3.6: Results from fitting the binary model to the data from the Evaluation phase of
the latent print examination process on known mated pairs. Posterior medians with 95%
credible intervals are presented.

The posterior median for reproducibility on the latent scale is 0.89 with 95% credible interval

of (0.87, 0.91) and the posterior median for repeatability is 0.95 with 95% credible interval

(0.94, 0.97).

3.6 Conclusions

A two-way ANOVA random effects model is widely used to model the reproducibility and

repeatability of measurements in engineering, medicine, and other fields. The model is ap-

plied here to analyze data from forensic science studies of reproducibility and repeatability

with ordinal outcomes approximated as continuous outcomes and binary outcomes such as

value/ no-value. It provides a number of benefits in this context: i) The model can combine

reproducibility trials (different examiners assess the same set of samples) and repeatability

trials (examiners re-assess samples), ii) Variation due to inter-examiner differences and sam-

ple differences can be accommodated, iii) When there are sufficient (25%) repeated decisions,

the model can allow us to draw inferences about examiner-sample interactions. The model

works well in the ideal setting where there are enough repeated comparisons. We observed
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that if the percentage of repeated analyses in the study decreases, then the credible interval

for variance components widens as would be expected.

The model currently models examiner tendencies (α) and sample characteristics (γ) as ran-

dom effects. A natural extension would allow these to depend on the measured characteristics

of the examiner and sample. Unfortunately, our motivating data does not include covariates

measured on examiners and samples. We do not have access to the actual latent prints or

signatures or covariates on examiners which can explain their decisions better.

The primary goal of black-box studies is to get estimates of the reliability and validity of

forensic sciences. This paper facilitates and furthers that goal by implementing and assessing

a model that can be applied to continuous as well as binary data in an incomplete or sparse

data setting and enables pooling data from two or more repeated comparisons. Due to

this flexibility, this model can be applied to many forensic fields. With the above results,

we show that variance in decisions can be explained by the examiners, prints, and their

interactions. In the future, we will be extending this methodology to multi-categorical and

ordinal decisions without the need for continuous approximations.
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Chapter 4

Reliability of Ordinal Outcomes in

Forensic Black-Box Studies

4.1 Introduction

Expert decisions on forensic evidence are admissible in a U.S. federal court of law provided

that the assessment is a “product of reliable principles and methods” (Federal Rule of Evi-

dence 702) and the testimony is valid and reliable (Frye v. United States, 293 F. 1013 (D.C.

Cir. 1923); Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993)). A substan-

tial share of forensic science disciplines require subjective assessments in all or some steps of

the evidence analysis process. It has been observed that forensic experts can vary amongst

each other while making decisions on the same piece of evidence. For example, in the anal-

ysis of latent fingerprints, examiners often differ in the count and type of minutiae that are

marked (Ulery et al. 2014; 2015; 2016). Furthermore, there have been numerous cases where

erroneous findings in forensic science procedures have resulted in wrongful convictions (Hsu,

2012; Federal Bureau of Investigation, 2015; Bonventre, 2021).
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In 2009, the National Academy of Science (NAS) prepared a report (National Research

Council, 2009) that emphasized the need for establishing scientific foundations for forensic

science disciplines. In 2016, the President’s Council of Advisors on Science and Technology

(PCAST) prepared a report (President’s Council of Advisors on Science and Technology,

2016), assessing the strength of the scientific evidence regarding the reliability and validity of

forensic disciplines that rely on feature-based comparisons (pattern matching). The PCAST

report recommended conducting black-box studies to deduce the validity and reliability of

forensic science analyses. In a black-box study, enrolled forensic experts are asked to make

decisions on forensic samples, for which the ground truth is known, just like they would in

practice. The steps taken by an examiner to reach a decision are not explicitly defined and

hence these studies are called “black-box” studies. In the last decade many black-box studies

have been conducted including for latent fingerprint comparison decisions (Ulery et al., 2011,

2012), bloodstain pattern analysis (Hicklin et al., 2021), handwritten signature comparisons

(Hicklin et al., 2022a), footwear comparisons (Hicklin et al., 2022b), and firearms examination

(Monson et al., 2023b).

Black-box studies provide information about validity and reliability, with the primary focus

on validity. Validity or accuracy of decisions, in that, validity relates to the correctness of

the decisions and reliability relates to the consistency of decisions. Reliability is a precursor

to validity because the decision-making process cannot be correct unless it is consistent,

which is why we focus on providing methods to assess reliability. We consider two different

components of reliability. Reproducibility, also known as inter-rater reliability, is defined

as the consistency of decisions when different examiners provide assessments on the same

sample. Repeatability, also known as intra-rater reliability, refers to the consistency of

decisions when the same examiner provides assessments of the same sample at two different

points in time. Black box studies often have two phases: a reproducibility study, where

different examiners provide assessments on a set of samples, with at least a few shared

samples between examiners. The reproducibility study is followed by a repeatability study
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where examiners give repeated decisions on a subset of the samples they judged in the

first study. The repeatability portion of the study is usually much smaller. Arora et al.

(2022) provides methods to assess the reliability from such studies for continuous and binary

outcomes.

Decisions from forensic examination procedures are often reported as categorical conclusions.

These categories often follow a meaningful order. Some examples of ordinal data in forensic

decision-making are handwritten signature complexity, quality assessments for latent finger-

prints, conclusions for shoe-print comparisons, etc. In latent fingerprint assessments, quality

may be judged on a three-category ordinal scale such as VID (Value for Individualization),

VEO (Value for Exclusion Only), and NV (No Value). In footwear comparisons, the conclu-

sion scale may be on a seven-point scale based on the degree of match: Exclusion, Indications

of Non-Association, Inconclusive, Limited Association of Class Characteristics, Association

of Class Characteristics, High Degree of Association, and Identification.

Reliability from black-box studies is usually reported through contingency tables conditional

on different categories of examples (Ulery et al., 2012; Hicklin et al., 2022b; Hicklin et al.,

2022a). Ulery et al. (2012) also used mean percentage agreement across fingerprint samples.

However, these measures do not account for examiner tendencies or sample difficulties. Other

measures of inter-rater agreement that are used for categorical data, and that have largely

not been used to analyze black-box studies, include the κ-statistic (Cohen, 1960), and its

variations such as the weighted-κ (Cohen, 1968), Fleiss’ κ (Fleiss, 1971), ordinal alpha

(Zumbo et al., 2007), and Krippendorff’s α (Krippendorff, 2011). Although κ has been used

widely to understand the agreement in various scientific fields, it has drawbacks such as the

bias effect and prevalence effect (Feinstein and Cicchetti, 1990; Byrt et al., 1993; Delgado

and Tibau, 2019). Nelson and Edwards (2015) provided a method to assess reproducibility

for ordinal data but they did not account for interactions.

We briefly describe previous work that developed models for ordinal data as well as reliability
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for ordinal data. Albert and Chib (1993) proposed a latent variable approach to model

binary and polychotomous data. Johnson (1996) proposed an analysis of ordinal data with

applications to automatic essay grading. The methods proposed in this work enable the

assessment of inter-rater reliability through the rater variances. Johnson and Albert (2006)

also provides methods for ordinal data regression as well as multi-rater ordinal data models.

The models described in the aforementioned work also assumed that the ordinal data depends

on an underlying continuous variable. Bradlow (1994) and Bradlow and Zaslavsky (1999)

extended the method in Albert and Chib (1993) by modeling missing data in ordinal customer

survey data. Johnson et al. (2002) proposes an algorithm for fitting a hierarchical model to

a multi-rater ranking data with applications to primate intelligence ranking using a similar

latent variable approach. Luby et al. (2020) proposes a cumulative logit model for examiner-

reported difficulties for latent-exemplar comparison decisions.

We provide a methodology to analyze and assess reliability for the ordinal data collected

from black-box studies by leveraging the latent variable approach to ordinal data modeling

used by Albert and Chib (1993) and other references cited above. This extends the work of

Arora et al. (2022) to ordinal data. Our model offers several contributions: we are able to

combine the data collected from reproducibility and repeatability studies and we are able

to account for the possibility of examiner-sample interactions. This method also enables an

exploratory approach to infer different examiner thresholds for making categorical decisions.

Such an exploratory analysis can provide insights into whether examiners differ significantly

in their tendencies to rate samples into a certain category, and could be used to assess

whether examiners that belong to the same agency or have similar training tend to make

decisions similarly.

We begin by introducing three data sets that motivate our work in Section 4.2. We propose

a statistical model for modeling ordinal decisions in Section 4.3 and discuss some special

cases of the model. We also discuss methods to assess reliability with our model. This dis-
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cussion is followed by simulation studies in Section 4.4 to assess performance of the proposed

methodology on data that is generated with known parameters in various settings, including

different study designs and different mixes of reproducibility and repeatability data sets. We

present the results from using these methods for inferences on the motivating data in Section

4.5. Section 4.6 summarizes the advantages of using the proposed methods and discusses

limitations and future work.

4.2 Data

We describe three data sets that motivate this work. The first data set is from a handwritten

signature complexity study, the second is from a latent fingerprint analysis study, and the

third is from a handwriting comparison study.

4.2.1 Signature Complexity Data

Found and Rogers (1996) and Found et al. (1998) developed a statistical method to define

the complexity of handwritten signatures in terms of a number of signature features. Using

this complexity measure, Sita et al. (2002) concluded that forensic experts are more accu-

rate and confident about signature assessments when the questioned signature is of higher

complexity. Additionally, signatures with higher complexity are more difficult to reproduce

(Dewhurst et al., 2007). This means that any study of handwriting analysis should try to

account for complexity but to do that we need to know whether examiners can reliably judge

complexity.

Angel et al. (2017) describes data collected by the Los Angeles Police Department (LAPD)

and the Los Angeles County Sheriff’s Department (LASD) where 123 participants submitted

5 copies of their signatures. Five forensic document examiners (FDEs) provided complexity

assessments on each of the 123 signature samples on two scales, a 3-point scale and a 5-point

scale. On the 5-point scale, a signature with a complexity rating 1 reflects the examiner’s
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belief that the questioned signature is easy to imitate, a signature complexity of 2 reflects

the examiner’s belief that the questioned signature is fairly easy to imitate, and so on up to

a signature with complexity rating 5 which reflects the examiner’s belief that the questioned

signature is very difficult to imitate. The three-point scale was similar but only allowed

assessments of easy, medium, and difficult to imitate. Repeated decisions by all five FDEs

were collected for a small subset of seven signature samples.

Stern et al. (2018) assessed the data from this study by treating the 5-point scale data

as continuous data. They reported that the reproducibility and repeatability, calculated

through intraclass correlations (Shrout and Fleiss, 1979) were 0.65 and 0.67 respectively. It

is more appropriate to treat the 3-point scale and 5-point scale data as ordered categories.

We re-analyze the data treating the responses as ordinal variables.

4.2.2 Latent Fingerprint Comparisons Reliability

The FBI conducted the first large-scale black box study of latent print analysis (Ulery et al.,

2011, 2012). The latent print examination process involves ordinal decisions in two different

steps. We briefly review the process here.

The multi-step process of friction ridge examination is known as ACE-V, which is an acronym

for Analysis, Comparison, Evaluation, and Verification (Ulery et al., 2011). In the Analysis

step, an expert provides a quality determination for the questioned latent print. In some

forensic labs, a 3-point ordinal scale is used with possible outcomes that the print has enough

distinguishing features to make an individualization or identification decision, known as

Value for Individualization (VID); has enough features only to support an exclusion, known

as Value for Exclusion Only (VEO); or does not have enough information to be useful, known

as No Value (NV). Although some agencies combine VID and VEO to form a single category,

the FBI study asked examiners to use these three categories for the Analysis Phase. If the

latent print is found to have value, then in the Comparison phase an exemplar (print collected
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under ideal circumstances) is presented to the examiner for comparison with the latent print.

In the Evaluation phase, examiners provide the results of their comparison on a 3-point

scale: Exclusion (questioned print and exemplar are believed to have come from different

sources), Inconclusive (the examiner cannot make an Individualization or Exclusion), and

Individualization (questioned print and exemplar are believed to have come from the same

source). We would like to assess reliability of these ordered categorical decisions in the

Analysis and Evaluation phases.

For the reproducibility part of the black box study, 169 examiners were recruited from

government and private laboratories. A total of 744 distinct latent-exemplar pairs (520

mated pairs, 224 non-mated pairs, 356 distinct latent prints) were used in the study. Each

examiner made quality and source determinations on a 100 latent-exemplar pairs, which

were selected to have a balance of mated and non-mated pairs and a similar level of difficulty

across examiners. Approximately seven months after the first study, 72 of the 169 examiners

participated in a repeatability study and each examiner was presented with a subset of 25

latent-exemplar pairs that they made assessments on in the first study. It was reported in

Ulery et al. (2011, 2012), that examiners were very accurate (0.1% false positives and 7.5%

false negatives) and their comparison decisions had good reliability. However, it has been

established that a lot of inter-examiner variation is observed in the Analysis phase (Ulery

et al., 2011, 2012, 2014, 2015, 2016).

4.2.3 Handwriting Comparisons Data

Previously, the reliability and accuracy of handwritten signatures was studied in Kam et

al.1994, Kam et al. (1997), Kam et al. (2001), Kam and Lin (2003), Durina and Caligiuri

(2009), Mitchell (2016). Recently, a large-scale black-box study was conducted to assess

the subjective handwritten comparisons discipline (Hicklin et al., 2022a). Handwriting com-

parisons follow the ACE-V procedure similar to the one described for latent fingerprint
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comparisons. Therefore, this black-box study was conducted similarly to the one described

in Ulery et al.(2011).

Here, 86 forensic document examiners that worked for federal, state, and local agencies

participated in the study. Each examiner was assigned about 100 questioned and known

(QK) sets from among 180 possible pairs over the course of 10 months. Ninety of the 100

QK sets were distinct and 10 of the QK sets were repeats of sets previously examined by the

individual. Examiners were given a five-point scale to assess comparisons: “Written”, when

the examiner believes that questioned and known come from the same source; “ProbWritten”,

when the examiner believes that questioned and known probably come from the same source;

“NoConc”, when the examiner is not confident about whether the sources for the questioned

and known are same or different; “ProbNot”, when the examiner believes that questioned

and known probably come from different sources; “NotWritten”, when the examiner believes

that questioned and known come from different sources.

4.3 Methods

In this section, we develop a probability model for ordinal outcomes that can accommodate

data from intra-individual (repeatability) and inter-individual (reproducibility) reliability

studies.

4.3.1 Category Unconstrained Thresholds (CUT) Model

Consider subjective outcomes Yijk, on an ordinal scale with M levels, with i denoting ex-

aminer, j denoting sample or example (typically a questioned sample and a known sample),

and k denoting the repetition (if any). In a standard reproducibility study k = 1 for all

made assessments in that examiner i sees sample j and draws conclusion Yij1. If the study

includes repeatability trials then the same examiner/ sample assessment may be observed

more than once. For the data in Section 4.2, we only see k = 1 or k = 2. For some simula-
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tion scenarios, we use k > 2. We will assume that Yijk depends on an underlying continuous

random variable Zijk as proposed in Albert and Chib (1993). The underlying latent score

is modeled as a continuous random variable with Gaussian distribution that depends on the

sample j through γj and also allows for the possibility of an interaction δij. This appears

as the first equation of the model (4.1). The variance of Zijk is fixed at 1, because this is a

latent scale the data does not identify the scale. In the handwriting example, the parameter

γj can be interpreted as a measure of the intrinsic complexity of the sample. The presence

of a non-zero interaction would indicate that inter-individual differences in the outcomes for

a given sample can be expected to vary from sample to sample. Although, this is not a

desirable feature for a forensic examination process, Hicklin et al. (2020) have indicated evi-

dence for the possible presence of interactions in the latent fingerprint examination process.

They found that examiners had more disagreements for latent prints that were of mediocre

quality. There is also likely to be variation among examiners. This is modeled through vari-

ation in the thresholds, τi,m, that map the underlying continuous scores into the categorical

outcomes Yijk as shown in the second equation in the model (4.1). The sample effects γj and

the interaction effects δij are modeled as Gaussian random effects. Henceforth, we will refer

to this model as the Category Unconstrained Thresholds (CUT) model and it is presented

below:

Zijk | γj, δij ∼ N(γj + δij, 1)

P (Yijk = m) = P (τi,m < Zijk ≤ τi,m+1); m = 1, 2, . . . ,M

γj, j = 1, 2, . . . , J |σ2
γ

i.i.d.∼ N(0, σ2
γ)

δij, i = 1, 2, . . . , I; j = 1, 2, . . . , J |σ2
δ

i.i.d.∼ N(0, σ2
δ )

−∞ ≡ τi,1 < τi,2 ≤ . . . ≤ τi,M < τi,M+1 ≡ ∞

(4.1)
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Figure 4.1: A visual presentation for how the cutpoints affect the decision category through
Zijk for M=3.

Figure 4.1 provides a graphical representation of the CUT model (4.1) for M = 3. Each ex-

aminer is assumed to observe a latent score Zijk depending on sample j, with an interaction

term δij causing the curve for individuals to vary around the sample mean γj. Additionally,

the cutpoints τi,2 and τi,3 determine the category for the sample. The cutpoints for an exam-

iner do not change across samples, however, the interaction term affects how the examiners

view each sample. Note that to fit this model, we need at least one decision in each category

for every examiner. The forensics community has been interested in accounting for individ-

ual differences in thresholds between examiners. This model may be used as an exploratory

means to account for sample difficulty while quantifying differences among examiners.

If covariates related to the examiners and samples are available, for example, examiner

experience or a quantitative measure of sample complexity, then they can be incorporated in

the CUT model directly. This could be accommodated by incorporating sample covariates

in the model for Zijk or by incorporating examiner covariates in a model for thresholds τi,m.

However, this is not the case for the motivating examples described in Section 4.2.
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4.3.2 Constrained model

If there are sufficient data, several samples per examiner for each category, along with several

repeated decisions per examiner-sample pair, separate thresholds may be estimated for each

examiner in the CUT model (4.1) along with interactions between examiner and samples.

However, with limited repetitions the CUT model is too complex and is likely to overfit the

data which may negatively impact inferences for interactions as well as examiner thresholds

τi,m. We discuss this issue in more detail in Section 4.4. If it is known that there are no

interactions between examiners and samples or it is not interesting to estimate interactions,

then the CUT model may be fit without interactions. However, as we are interested in

interactions, we will explore more parsimonious models that have fewer parameters that can

be estimated with limited data.

One possible parsimonious model is obtained by introducing some parameter sharing between

examiners. For example, we can assume that the cutpoints for all examiners are spaced

equally. The constrained CUT model (4.2) below uses the same structure as model (4.1) but

replaces the I vectors (τi,2, τi,3, . . ., τi,M) with I parameters τi,2 (one for each examiner) and

M-2 cutpoint distances (τ ∗2 , τ
∗
3 , . . ., τ

∗
M−1). The inter-cutpoint distances are assumed to be

the same for each examiner.

Zijk | γj, δij ∼ N(γj + δij, 1)

P (Yijk = m) = P (τi,m < Zijk ≤ τi,m+1); m = 1, 2, . . . ,M

γj, j = 1, 2, . . . , J |σ2
γ

i.i.d.∼ N(0, σ2
γ)

δij, i = 1, 2, . . . , I; j = 1, 2, . . . , J |σ2
δ

i.i.d.∼ N(0, σ2
δ )

τi,m = τi,m−1 + τ ∗m−1, ∀ i, 2 < m ≤ M

(4.2)

This model may be thought of as assuming a fixed distributions of perceptions (centered

around γj when marginalized over δij) with individual thresholds that have a structure over
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them. τi,2 are allowed to vary across examiners.

The constrained CUT model (4.2) can be rewritten as a two-way random effects analysis

of variance model similar to the one used by Arora et al. (2022) for assessing reliability for

continuous and binary subjective decisions. This setup can also inform about the variation

in outcomes attributed to the examiners, the samples and a possible interaction between

examiners and samples. Henceforth, we will address this model as the Shared Examiner

Thresholds (SET) model to differentiate it from the CUT model that has different category

thresholds for each examiner.

Zijk |αi, γj, δij ∼ N(αi + γj + δij, 1)

P (Yijk = m) = P (κm < Zijk ≤ κm+1); m = 1, 2, . . . ,M

αi, i = 1, 2, . . . , I |σ2
α

i.i.d.∼ N(0, σ2
α)

γj, j = 1, 2, . . . , J |σ2
γ

i.i.d.∼ N(0, σ2
γ)

δij, i = 1, 2, . . . , I; j = 1, 2, . . . , J |σ2
δ

i.i.d.∼ N(0, σ2
δ )

−∞ ≡ κ1 < κ2 ≤ . . . ≤ κM < κM+1 ≡ ∞

(4.3)

The cutpoints κm in the SET model (4.3) are shared between all examiners. This model can

be thought of as fixed thresholds shared across examiners with individual shifts/ biases (the

αi parameters). The parameterization (4.2) of the constrained version of the CUT model is

equivalent to the parameterization of the SET model (4.3) stated above, if τi,2 have a normal

prior. For M = 3, for example, τi,2 = κ2 − αi, τi,3 = κ3 − αi, and τ ∗2 = κ3 − κ2. We demon-

strate this through comparing conditional probabilities P (Yijk = m |model parameters) in

Appendix B.
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4.3.3 Bayesian Computation

We use a Bayesian paradigm to fit the previous models. For the CUT model (4.1), the

priors for the variance components σ2
γ and σ2

δ we used are proportional to the inverse of

the standard deviations σγ and σδ respectively (Gelman, 2006). These are improper prior

distributions that yield proper posterior distributions as long as J > 2. Examiner thresholds

(τi,m) have a uniform prior subject to ordering constraints:

p(τi,2, τi,3, . . . , τi,M) ∝ 1τi,2≤τi,3≤...≤τi,M

p(σ2
γ) ∝

1

σγ

p(σ2
δ ) ∝

1

σδ

(4.4)

Alternatively, examiner thresholds (τi,m) can also be given a normal prior though they must

still obey the ordering constraints. A Gibbs sampling (Geman and Geman, 1984) technique

may be used for obtaining draws from the posterior distribution of the parameters; the full

conditionals for parameters are derived in Appendix B for the case with M = 3.

For the constrained version of the CUT model (4.2), we assume a normal prior over τi,2:

τi,2 |µτ2 , σ
2
τ2

i.i.d.∼ N(µτ2 , σ
2
τ2
)

p(τ ∗) ∝ 1τ∗>0

p(µτ2) ∝ 1

p(σ2
τ2
) ∝ 1

στ2

The priors for σ2
γ, σ

2
δ are the same as in the equations (4.4). The SET model (4.3), which

is a different parameterization to the constrained version of the CUT model (4.2), uses the

following priors for κm and σ2
α:
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p(κ2, κ3, . . . , κM) ∝ 1κ2≤κ3≤...≤κM

p(σ2
α) ∝

1

σα

The full conditionals for a Gibbs sampling algorithm are provided in Appendix B.

4.3.4 Assessing Reliability

In a black-box reproducibility study, examiners are assigned roughly similar number of sam-

ples balanced in difficulty. Although the set of samples vary across examiners, every sam-

ple receives multiple assessments by different examiners and some samples receive repeated

assessments in the repeatability study. Reliability in black-box studies have been widely

reported through summaries of raw data, for example with contingency tables (Ulery et al.,

2012; Hicklin et al., 2021; Hicklin et al., 2022b; Hicklin et al., 2022a) that enable inferences

of the following nature: “Reproducibility of VID Individualization decisions was 78.5% on

mated pairs” (Ulery et al., 2012). These contingency tables merely provide summaries of the

comparisons conditional on ground truth but they fail to account for the “difficulty” of the

samples or the individual tendencies of the examiners. Additionally, they may be difficult

to report to the jury due to the absence of a single overall reproducibility or repeatability

score.

Additionally, Ulery et al. (2012) uses percentage agreement and Cohen’s κ to report reliabil-

ity. This example was not followed by other black-box studies (Hicklin et al., 2021; Hicklin et

al., 2022b; Hicklin et al., 2022a; Monson et al., 2023b). Percentage agreement is a reliability

measure defined on categorical data. Ulery et al. (2012) defined it as follows:

p̄j =
1

nj.(nj. − 1)

M∑
m=1

njm(njm − 1)

p̄ =
1

J

J∑
j=1

p̄j.

(4.5)
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Here, p̄j is the percentage agreement on sample j defined through njm and nj. which are

decisions on sample j made in category m and the total decisions made on sample j respec-

tively. p̄ is the average percentage agreement across samples j. Percentage agreement, again,

does not account for sample difficulties as well as examiner tendencies or interactions. Addi-

tionally, it ignores the possibility of chance agreements (McHugh, 2012). Cohen’s κ (Cohen,

1960), defined below, provides a way to account for chance agreement as follows:

κ =
p̄− pe
1− pe

,

with p as the observed percentage agreement between raters and pe is the agreement expected

by chance. Cohen’s κ suffers from prevalence and bias effects (Feinstein and Cicchetti, 1990;

Byrt et al., 1993; Delgado and Tibau, 2019) which arise from uneven distribution of cate-

gories in the population and individual examiner tendencies respectively. Some practitioners

recommend using the weighted-κ in practice to overcome limitations of the κ-statistic (Co-

hen, 1968; Jakobsson and Westergren, 2005).

The latent variable models offer an alternative approach to measuring reliability by using

inter-rater reliability tools for continuous data on the latent scale. Bradlow et al. (1999) also

used this method to evaluate inter-rater reliability. Using the parameterization in the SET

model (4.3) which is the same as the constrained version of the CUT model (4.2):

Latent Reproducibility (R1) = corr(Zijk, Zi′jk′) =
σ2
γ

1 + σ2
α + σ2

γ + σ2
δ

Latent Repeatability (R2) = corr(Zijk, Zijk′) =
σ2
α + σ2

γ + σ2
δ

1 + σ2
α + σ2

γ + σ2
δ

(4.6)

The reliability given by (4.6) are intra-class correlation coefficients for the latent variables;

which indicate the degree of similarity of values in the same group. Values closer to 0 indicate

very little reliability and values closer to 1 indicate high reliability. However, these have the
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disadvantage of not addressing the observed outcomes Yijk. We further evaluate a model-

based reproducibility by extending the statistic provided in Nelson and Edwards (2015) to

incorporate interactions, and also derive a model-based repeatability as follows:

Reproducibility =
M∑

m=1

∫ ∞

−∞

[
Φ

(
κ∗
m+1 − x

√
R1√

1−R1

)
− Φ

(
κ∗
m − x

√
R1√

1−R1

)]2
ϕ(x) dx

Repeatability =
M∑

m=1

∫ ∞

−∞

[
Φ

(
κ∗
m+1 − x

√
R2√

1−R2

)
− Φ

(
κ∗
m − x

√
R2√

1−R2

)]2
ϕ(x) dx

(4.7)

In the model-based reliability expressions (4.7), Φ is the standard normal cumulative den-

sity function and ϕ is the standard normal probability density function, κ∗
m are given by

κm

1+σ2
α+σ2

γ+σ2
δ
in the SET model (4.3). R1 and R2 are the reliabilities on the latent scale given

by expressions(4.6). The estimates in (4.7) have been derived in Appendix B. This measure

of reliability has several advantages over percentage agreement as well as Cohen’s κ as it

does not suffer from prevalence and bias effects, accounts for examiner-sample interactions,

and generalizes across the population of examiners and samples that have not been observed.

However, it does not account for chance agreement.

An additional approach to assess reliability is to use the posterior predictive distributions

(Gelman et al., 2013) of some of the more traditional discrete data reliability metrics. Data

sets are generated given posterior draws from the model fit. For example, for the SET model

(4.3) for M=3, data sets for outcomes can be generated through κ2, κ3, σ
2
α, σ

2
γ, σ

2
δ and we

can evaluate percent agreement or the κ statistic on generated data sets. We are also able

to get a posterior distribution for percentage agreement or κ values through the generated

data sets and thus better understand the uncertainty. The posterior predictive approach

provides a way of summarizing model-based reliability and can also be compared to the

measures obtained for the observed data (although the latter do not account for sample

variation).
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4.4 Simulation Studies

The novel aspects of this approach to ordinal data for forensic studies include the ability to

incorporate reproducibility and repeatability study data and the inclusion of interactions.

A significant challenge is that repeatability studies are typically small relative to the repro-

ducibility studies. This limits information about interactions. We now present the results

from simulation studies where data is generated using our models to: i) check if the poste-

rior draws obtained by using a Markov chain Monte Carlo (MCMC, Gelman et al., 2013)

algorithm provide accurate estimates for model parameters and reliability components; and

ii) check if accurate estimates are obtained in the presence of potential interaction terms

when there are limited repeated decisions. The results provide advice for the design of fu-

ture forensic studies. The simulation setup is similar to that of Arora et al. (2022); we have

created data sets under a variety of scenarios for the CUT model in (4.1) and the constrained

version of the CUT model/ SET model in (4.2, 4.3).

We start by generating data sets with the CUT model (4.1). We generate 5 random data

sets for ordinal data with M = 3 outcome categories, for I=30 examiners and J=50 samples

under two scenarios. In the first scenario, each examiner provides 5 decisions for each of the

J = 50 samples. In the second scenario, each examiner provides two decisions for each of

the J = 50 samples. It is important to note that typical forensic black-box studies have two

decisions for a subset of the examiner-sample pairs (those re-assessed in the repeatability

study) and one decision for the rest of the pairs in the reproducibility study. The large

number of decisions in these initial simulations are to confirm that the CUT model (4.1) has

the potential to address interactions given enough data. The values for σ2
γ= 10 and σ2

δ = 0.5

were chosen based on values obtained in the analysis of the latent fingerprint examination

data. The cutpoints τi,2 were generated from a uniform distribution (−3, 1) and τi,3 were

generated from a uniform distribution (−1, 3) for each data set, subject to the constraint

that τi,2 < τi,3.
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These data sets were then fit using Gibbs sampling as described in Section 4.3.3 and Appendix

B. We ran 4 chains for 100,000 iterations and used every hundredth sample for inference.

Convergence was assessed using the potential scale reduction factor (PSRF, Gelman and

Rubin, 1992). Figure 4.2 presents the distribution of the differences between estimated

examiner thresholds (posterior medians) and true examiner thresholds.

Figure 4.2: Results from fitting the CUT model (4.1) to five simulated random data sets
with 5 decisions per examiner-sample pair (in red) and with 2 decisions per examiner-sample
pair (in blue). Posterior medians with 95% credible intervals for σ2

γ, the sample variation,
and σ2

δ , the interaction variation, are presented in the first row. The horizontal black line
indicates the true value. The next three plots are density plots for the differences between
the true value and posterior medians for τi,2, τi,3, and γj for all five data sets pooled together.

The results in Figure 4.2 demonstrate that for the CUT model (4.1), inference for σ2
γ, σ

2
δ ,

as well as for the examiner thresholds τi,2, τi,3 is done well in the scenario with 5 repeated

decisions per examiner-sample pair. However, in the second scenario, with only two re-

peated decisions, the inferences for all parameters are less accurate and have more variance

compared to the previous setting. Clearly, it is difficult to estimate σ2
δ with fewer repeti-

tions when also estimating all examiner thresholds. Assuming it is not possible to obtain

many repetitions, there are two strategies that may be useful for analyzing forensic studies

with ordinal outcomes. If we are confident that there are no interactions, then we may use
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δij = σ2
δ = 0 in the CUT model (4.1). Otherwise, it can be useful to introduce constraints

as in the SET model (4.2, 4.3).

To demonstrate the second approach, we simulated 25 random data sets for ordinal data

with M = 3 categories with I = 50 total examiners and J = 80 samples under the model

assumptions in the SET model (4.3) for four different scenarios regarding the repeatability

study. For each of the four scenarios, decisions are generated for each examiner-sample pair

yielding a total of I × J decisions, these correspond to the first examinations that would

occur as part of the reproducibility part of a forensic study. For the repeatability trial,

however, we present four cases: i) decisions re-generated for each examiner-sample pair (100%

repetitions), ii) decisions re-generated for half of the samples an examiner encountered in

the first trial; the subset of samples for different examiners is different (50% repetitions), iii)

decisions re-generated for a quarter of the samples an examiner encountered in the first trial;

the subset of samples for different examiners is different (25% repetitions), iv) decisions re-

generated for an eighth of the samples an examiner encountered in the first trial; the subset

of samples for different examiners is different (12.5% repetitions). Stan is a probabilistic

programming language that uses No U-Turn (NUTS) or Hamiltonian Monte Carlo (HMC)

sampling for a fully Bayesian inference. RSTAN (Stan Development Team, 2022) is an R

interface for Stan and we have used it to obtain results for the simulation studies below.

The following parameter values were chosen for the simulation studies: κ2 = −2, κ3 = 2,

σ2
α = 2, σ2

γ = 10, and σ2
δ = 0.5. The random effects αi, γj, and δij are generated separately

for each data set. The generated data sets are fit using the SET model (4.3). Figure 4.3

provides a visual summary for the variation in the posterior distributions across different

simulations by showing posterior medians and credible intervals compared against the true

value for all parameters.

68



Figure 4.3: Results from fitting the SET model (4.3) on 25 simulated data sets for each
of four settings are presented. The posterior median and 95% credible intervals for each
parameter are shown. The black line indicates the true value for the parameter. The first
two plots are κ2 and κ3 respectively. Latent reproducibility (R1) and latent repeatability
(R2) specified in expressions (4.6) are also shown.

We also present, in Table 4.1, numerical summaries aggregated across the 25 repeated

datasets for each scenario from Figure 4.3.

Setting κ2 = −2 κ3 = 2 σ2
γ = 10 σ2

α = 2 σ2
δ = 0.5 R1 = 0.74 R2 = 0.93

100%
-2.02

(-2.86, -1.20)

1.99

(1.17, 2.82)

10.05

(7.42, 14.87)

2.04

(1.41, 3.29)

0.52

(0.38, 0.67)

0.74

(0.65, 0.81)

0.93

(0.91, 0.95)

50%
-2.00

(-2.83, -1.18)

1.98

(1.17, 2.81)

10.09

(7.12, 14.75)

2.03

(1.34, 3.21)

0.48

(0.30, 0.70)

0.74

(0.65, 0.81)

0.93

(0.90, 0.95)

25%
-2.02

(-2.90, -1.19)

2.01

(1.18, 2.89)

10.54

(7.21, 15.85)

2.13

(1.38, 3.45)

0.54

(0.28, 0.88)

0.74

(0.65, 0.81)

0.93

(0.90, 0.95)

12.5%
-2.05

(-3.04, -1.18)

2.07

(1.17, 3.05)

11.32

(7.35, 18.17)

2.23

(1.38, 3.82)

0.58

(0.21, 1.18)

0.75

(0.66, 0.82)

0.93

(0.90, 0.96)

Table 4.1: Results from Figure 4.3 are summarized for investigating overall behavior. The
estimate is the mean of the posterior medians across the 25 data sets and the average credible
interval is obtained by finding average lower 2.5% quantile and average upper 97.5% quantile.
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The results in Figure 4.3 and Table 4.1 reinforce the intuition informed by the results in

Arora et al. (2022) that the credible intervals for variance components, especially σ2
δ , are

much wider as the number of repeated decisions decrease. Also, the posterior median aver-

age for σ2
γ is farther away from the true value as the number of repeated decisions decrease.

However, we observe that even with repeated decisions on 25% of the samples observed in the

reproducbility trial, all parameter values are estimated well with the model when the data

generating mechanism is correctly specified. The case with 12.5% demonstrates poor perfor-

mance especially for σ2
δ . These results indicate that repeated decisions should be collected

for more than 12.5% (possibly 25%) of the samples to draw reliable inferences for examiner-

sample interactions. This observation can inform the design of black-box studies.

In practice, the data may violate model assumptions. We check the robustness of our model

by generating data under a variety of scenarios and then fitting these data using our SET

model (4.3). We observe that in most cases when the model generating assumptions are

misspecified, the model is still able to estimate variance parameters reasonably well. This

exercise assures us that our model is reasonably robust to model misspecifications. The

results are presented in detail in Appendix B.

4.5 Forensics Data Results

Motivated by the results from the simulation studies, we now use the models of Section 4.3

for the data from the handwritten signature complexity data set, the latent fingerprint data

set, and the handwriting comparisons data set described in Section 4.2.

4.5.1 Signature Complexity Data

The signature complexity data has complexity assessments for signatures from 123 signers

evaluated by 5 examiners. Signatures were assessed using a 3-point scale and then again using

a 5-point scale. Stern et al. (2018) analyzed these data, primarily focused on reliability using
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Data κ2 κ3 κ4 κ5

Examiner
Variation

σ2
α

Sample
Variation

σ2
γ

Interaction
Variation

σ2
δ

Signature
Complexity

(3-point scale)

-2.17
(-3.21, -1.43)

0.02
(-0.73, 0.75)

- -
0.25

(0.04, 3.03)
3.55

(2.24, 6.74)
0.13

(0.00, 1.03)

Signature
Complexity

(5-point scale)

-4.14
(-6.07, -3.12)

-2.00
(-3.18, -1.21)

-0.25
(-1.07, 0.51)

1.82
(1.04, 2.92)

0.29
(0.06, 3.48)

3.48
(2.13, 7.14)

0.33
(0.00, 1.66)

Handwriting
Comparisons

Evaluation Phase

-2.47
(-2.84, -2.10)

-0.52
(-0.86, -0.19)

0.49
(0.16, 0.83)

1.93
(1.58, 2.30)

0.32
(0.23, 0.47)

4.01
(3.12, 5.13)

0.86
(0.64, 1.14)

Latent Prints
Analysis phase

-3.18
(-3.76, -2.63)

-0.89
(-1.43, -0.38)

- -
1.01

(0.79, 1.32)
17.22

(13.76, 21.77)
0.53

(0.37, 0.72)

Latent Prints
Evaluation Phase

-1.08
(-1.29, -0.88)

1.57
(1.36, 1.79)

- -
0.10

(0.08, 0.14)
5.77

(4.91, 6.68)
0.23

(0.13, 0.34)

Table 4.2: Results from fitting the SET model (4.3) to the 3-point scale complexity data
from the signature complexity study, the 5-point scale complexity data from the signature
complexity study, the data from the Analysis phase of the latent print examination pro-
cess, the comparison decisions of the latent print examination process, and the handwriting
comparison decisions. κ4 and κ5 are estimated for data sets with the number of ordinal
categories, M = 5. Posterior medians with 95% credible intervals are presented.

the 5-point scale which was more appropriate to be approximated by a continuous scale. Our

method enables this analysis using both scales as ordinal scales. Since we are interested in

interactions between examiners and signature samples and we have very limited repetitions,

we will be using the SET model (4.3) instead of the CUT model (4.1). We report results

from fitting the method given by the SET model (4.3) to the 3-point scale data, reporting

posterior medians and 95% credible intervals for the parameters in Table 4.2. Note that the

posterior median estimates for σ2
α and σ2

δ are very small with the lower 2.5% quantile for the

credible interval close to zero. This suggests that there is much more variance in signatures

than examiners or interactions.

Table 4.3 presents reliability estimates on the latent and original scale that are derived from

the SET model using expressions (4.6) and (4.7) and it suggests good reproducibility and

repeatability on the latent and original scale. Additionally, we generate posterior predic-

tive data sets to perform model checking and compare results with traditional methods of
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assessing reliability using the original data set. Stern et al. (2018) reported that on the

1-3 point scale, exact agreement occurs between examiners for 63% of the signatures and

examiners differed by a single category for 33% of the signatures. We generated 1000 pos-

terior predictive data sets through posterior draws for σ2
α, σ

2
γ, σ

2
δ and found that the mean

exact agreement through the 1000 data sets was 62% with 95% credible interval (48%, 71%).

Similarly, the mean number of signatures for which the examiners differed by exactly 1 point

was 35% with the 95% credible interval (27%, 43%). This suggests that our model fits the

data well and enables us to obtain uncertainties for the agreement statistics obtained from

the data.

The 5-point scale data is again modeled with the method given by the SET model (4.3).

The posterior medians and 95% credible intervals for parameters are presented in Table 4.2.

We notice again that σ2
γ is much larger in comparison to the other variance components.

We present the reliability estimates derived from equations (4.6) and (4.7) in Table 4.3. We

observe that even though the latent scale has good reliability on the 5-point complexity data,

the agreement on the original scale is considerably lower. This is expected because when the

number of ordinal categories, M , is larger, examiner agreement is smaller. Stern et al. (2018)

reported that on the 1-5 point scale, exact agreement occurs between examiners for 45% of

the signatures and examiners differed in their conclusions by more than 1 point in about 9%

of the signatures. We generated 1000 posterior predictive data sets through posterior draws

for σ2
α, σ

2
γ, σ

2
δ and found that the posterior predictive statistics for percent agreement closely

match those in the observed data.

It is interesting to note that, the estimated variance components for σ2
γ and σ2

α are comparable

across the analysis from the 3-point data and the 5-point data. This could imply that the

variance σ2
γ is indeed capturing something intrinsic to the signatures irrespective of the scale

of decisions that are being used to estimate the variance. Similarly, σ2
α is also probably

the variance related to some examiner characteristics. We do not have any identifying
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Data
Latent reproducibility

(given by (4.6))

Reproducibility
on original scale
(given by (4.7))

Latent repeatability
(given by (4.6))

Repeatability
on original scale
(given by (4.7))

Signature
Complexity

(3-point scale)

0.70
(0.46, 0.79)

0.62
(0.52, 0.68)

0.80
(0.71, 0.90)

0.68
(0.63, 0.77)

Signature
Complexity

(5-point scale)

0.67
(0.43, 0.76)

0.47
(0.34, 0.49)

0.81
(0.71, 0.90)

0.53
(0.46, 0.64)

Handwriting
Comparisons

Evaluation Phase

0.65
(0.59, 0.69)

0.39
(0.36, 0.41)

0.84
(0.80, 0.87)

0.51
(0.48, 0.54)

Latent Prints
Analysis phase

0.87
(0.85, 0.89)

0.74
(0.73, 0.76)

0.95
(0.94, 0.96)

0.83
(0.81, 0.84)

Latent Prints
Evaluation Phase

0.81
(0.79, 0.83)

0.66
(0.65, 0.68)

0.86
(0.84, 0.87)

0.71
(0.69, 0.72)

Table 4.3: Reliability on the latent and original scale for the 3-point scale complexity data
from the signature complexity study, the 5-scale complexity data from the signature com-
plexity study, the data from the Analysis phase of the latent print examination process, the
comparison decisions of the latent print examination process, and the handwriting compar-
ison decisions are presented with 95% credible intervals. Note that credible intervals for the
reliability on the latent scale are used for producing the credible intervals for the reliability
on the original scale as per the expressions (4.7).
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information about examiners or signature samples. If there were any available features, it

would be interesting to check for any associations between examiner or sample features with

αi or γj respectively.

4.5.2 Latent Fingerprint Data

We next present results from different phases of the latent fingerprint black box study de-

scribed in Section 4.2 and compare the results obtained here with those of Ulery et al. (2011,

2012).

4.5.2.1 Analysis Phase

Forensic labs use different approaches for latent fingerprint comparisons. However, we will

refer to the approach described in Ulery et al. (2011). Quality determinations for latent

fingerprints used the ordinal scale NV, VEO, and VID that suggest increasing quality. We

have used the SET model (4.3) to fit the data from the latent print examination black-box

study (Ulery et al., 2011). The posterior medians and 95% credible intervals are reported

below in Table 4.2. Note that there are some interactions in the data although latent finger-

print variance is much higher in comparison to the examiner and interaction variance. This

contributes to very high reliability on the latent scale as shown in Table 4.3. Additionally,

the model-based agreement on the original scale is also good in Table 4.3.

Again, we perform posterior predictive analysis to check the model fit as well as obtain

uncertainties around the usual agreement statistics obtained with the original data. Ulery

et al. (2012) reported the inter-examiner percentage agreement to be 0.76 and intra-examiner

percentage agreement to be 0.88 on a subset of the data set that consisted of the 72 examiners

that participated in the repeatability study. We re-fit this subset of the data and generated

posterior predictive data sets and found that the mean reproducibility with these data sets

was 0.75 with 95% credible interval of (0.70, 0.79). This shows that our method is a good
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fit for the data. The model-based reproducibility and repeatability on the original scale in

Table 4.3 can also be compared to the agreement reported in Ulery et al. (2012). We observe

that the model-based reproducibility estimate, 0.74, and repeatability estimate, 0.83, are

both lower compared to the estimates reported in Ulery et al. (2012). One explanation is

that Ulery et al. (2012) only used a subset of the data as described previously. Our approach

used all the data which is more efficient. We have also accounted for possible interactions

between examiner and samples. Our agreement measure is not prone to bias due to examiner

preferences, as it is evaluated across examiners and it is not prone to bias due to imbalance

of the print qualities that each examiner observed as, again, we have adjusted for sample

difficulties. Our method also provides uncertainties around these reliability scores.

To better showcase the value of the latent model, we consider the results in terms of the

alternate parameterization given by the constrained version of the CUT model (4.2). This

provides inferences on individual examiner thresholds for rating samples. Figure 4.4 provides

the posterior medians for the cutpoints τi,2 and 95% credible intervals plotted against the

percentage of No Value (NV) decisions given by an examiner. There are two noteworthy

findings in Figure 4.4. First, there is a positive trend indication that a higher threshold

corresponds to more NV decisions. The correlation between the %NV decisions and the

posterior median for τi,2 is 0.77. A second finding demonstrates the advantage of explicitly

accounting for the samples assigned to each examiner. In Figure 4.4, we identify examiners A

and B that have similar estimated thresholds, posterior medians ˆτA,1 = ˆτB,1 = −3.65 (these

are identified in red in Figure 4.4), but different % NV decisions of 27% and 16% respec-

tively. The average sample difficulty, as estimated by the mean of the posterior median print

qualities (γj), is lower for the examples seen by examiner A (-0.32) compared to examiner

B (0.47). Examiner A saw more low quality prints. Our method is able to account for such

differences to identify examiners that have similar tendencies.
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Figure 4.4: Figure presents the posterior median and 95% credible intervals for examiner
thresholds τi,2 for analysis decisions on the scale of VID, VEO, and NV plotted against the
percentage of NV decisions given by examiner i. Examiners highlighted in red have similar
estimated thresholds but have a very different percentage of NV decisions which is attributed
to the fact that the difficulty of prints they analyzed were different.

4.5.2.2 Analysis Phase - Effect of imposing constraints

So far we have focused on the SET model (4.3) instead of the more flexible CUT model (4.1)

because we did not have enough repeated decisions and we were interested in inferences

about interactions. Given that the interaction variance is very small, it is possible to fit the

CUT model (4.1) on the quality assessments data by eliminating the interaction terms.

Parameter
CUT model (4.1)

(without δij)

Constrained model (4.2)

(without δij)

σ2
γ

14.77

(11.81, 18.67)

12.18

(9.82, 15.26)

Table 4.4: The posterior median estimates and credible intervals for σ2
γ from the CUT model

and the constrained version of the model (4.2) are compared here.
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Figure 4.5: Differences between the estimated thresholds (τ ′i,2 - τi,2 and τ ′i,3 - τi,3) obtained
by fitting the CUT model (4.1) and constrained version of the model (4.2) model (4.2).

Figure 4.5 presents the differences between the thresholds, τ ′i,2 - τi,2 and τ ′i,3 - τi,3, where τ ′

denote posterior medians using CUT model (4.1) with no interactions and τ denotes the

posterior medians with the contrained version of the CUT model (4.2) with no interactions.

We observe that for most examiners the differences between estimated thresholds from the

two methods is small.

Figure 4.6 plots the distribution of τ ′i,3 - τ ′i,2 obtained using the CUT model (4.1) with

no interactions and compares it to the estimated difference between cutpoints τ ∗ from the

constrained version of the model (4.2) without interactions. We observe that some examiners

have a difference τ ′i,3 - τ ′i,2 smaller than the difference τi,3 - τi,2 = τ ∗ ≈ 1.9 obtained by the

constrained version of the model (4.2) and some examiners have a greater difference between

thresholds than τi,3 - τi,2 = τ ∗. However, most examiners have a difference that is close to

τ ∗, this assures us that enforcing the constraint between examiner thresholds does not vastly

affect the inference.
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Figure 4.6: Distribution of τ ′i,3 - τ ′i,2 by fitting the CUT model (4.1) compared against
estimated τi,3 - τi,2 = τ ∗ from the constrained version of the model (4.2).

4.5.2.3 Comparison Decisions

We next analyze the decisions from the Evaluation phase of fingerprint comparisons. The

decisions were on a scale of Exclusion, Inconclusive, and Individualization based on the de-

gree of similarity between the latent print and exemplar print. We fit the data from this

phase with the SET model (4.3). Here αi represents the tendency of an examiner to de-

clare Individualization decisions with higher values representing greater tendency to declare

individualization and lower values representing higher tendency to exclude. Similarly, γj rep-

resents the degree of match between latent-exemplar pairs with higher values representing

higher degree of similarity and lower values representing very little similarity. According to

this interpretation for γj, an Inconclusive may arise when there are not enough similarities

or differences to allow for an Individualization or Exclusion respectively.

We observe in Table 4.2 that the posterior estimates and credible interval limits for σ2
α are

quite small. This suggest limited evidence for variation among examiners in terms of any

tendency toward individualization. The interaction variance is also small, though larger
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than the examiner variance. Figure 4.7 presents the posterior distributions of γj against the

percentage of exclusion decisions. We can observe that for mated pairs (in blue) the estimated

γj are much higher compared to the non-mated pairs (in red). In both populations (mates

and non-mates), lower values of γj are associated with more exclusions.

Figure 4.7: Posterior medians with 95% credible intervals for γj plotted against percentage
exclusion decisions for mated and non-mated pairs.

Table 4.3 presents the reliability on the latent scale and original scale obtained by fitting

the SET model (4.3) to comparison decisions. The reliability on the original scale is a bit

lower than expected. Again, we conduct posterior predictive analysis to check if the model

is a good fit for the data and to obtain credible intervals for percentage agreement statistics.

The inter-examiner percentage agreement for the comparison decisions in the original data

set was 0.76. We generated posterior predictive data sets based on the MCMC draws for

the parameters σ2
γ, σ

2
α, and σ2

δ . In the posterior predictive data sets, the posterior median

for inter-examiner reliability was 0.68 with 95% credible interval of (0.66, 0.69). A further

investigation into the reason for this disparity revealed that the posterior predictive data set
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had more latent-exemplar pairs for which all three decisions (Exclusion, Inconclusive, and

Individualization) are observed compared to the original data. The original data usually

includes only Exclusion/ Inconclusive conclusions or Inconclusive/ Individualization conclu-

sions. A possible reason for this issue might be that a proxy for degree of similarity between

latent-exemplar pairs through γj might not be sufficient to explain comparison decisions.

Another possible reason could be that the fixed thresholds imposed with this model expect

some examiners to use more Inconclusive decisions compared to the truth.

We further investigate whether our approach is better fitted to subsets of the data: mated and

non-mated pairs modeled separately with the SET model (4.3). Within non-mated pairs, the

inter-examiner agreement in the original data set was 0.79. We fit the SET model (4.3) to just

the non-mated pairs and then generated posterior predictive data sets to check if the model

is a better fit to the decisions on the non-mated pairs. We found that the posterior median

for inter-examiner percentage agreement on the posterior predictive data sets was 0.77 with

a 95% credible interval of (0.73, 0.81). This indicates that our model fits much better to

non-mated pairs as compared to all the data. Within mated pairs, the percentage agreement

in the original data set is 0.75. The SET model (4.3) fit only to the mated pairs suffered

from lower posterior predictive percentage agreement like observed in the overall data set.

The posterior median for percentage agreement was 0.60 with 95% credible interval of (0.58,

0.63). A possible reason for this is, as stated before, is that the model with fixed thresholds

assumes that some examiners provide more Inconclusive decisions than reality.

4.5.3 Handwriting Comparisons

We next apply the SET model (4.3) to assess reliability in the handwriting black-box study

(Hicklin et al., 2022a). The handwriting comparison decisions were reported on a 5-point

ordinal scale: “NotWritten”,“ProbNot”,“NoConc”,“ProbWritten”, and “Written”. Table

4.2 shows these results. We note in the table that there seems to be some evidence for
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interactions between examiners and handwriting samples. σ2
α is smaller than σ2

δ , and σ2
γ is

again much higher than both σ2
α and σ2

δ . We present reliability on the latent scale and original

scale in Table 4.3. We note that the reliability on the latent scale is good, however, model-

based agreement on the original scale is poor. This is expected; percentage agreement is

smaller when the number of categories, M is greater. Note that the only reliability measures

provided in Hicklin et al. (2022) are through contingency tables that are conditional and not

able to provide an overall estimate for reliability. To check if the model is a good fit for the

data, we again generate posterior predictive data sets through σ2
δ , σ

2
α, and σ2

γ. The inter-

examiner percentage agreement on the true data set was 0.41. With 1000 posterior predictive

data sets we found that the posterior median for inter-examiner percentage agreement was

and the 0.39 with a 95% credible interval of (0.38, 0.41). This indicates that our method is

a good fit to these comparisons.

4.6 Conclusions

Decisions on an ordinal scale continue to be an important part of the forensic examina-

tion process. We have proposed a latent variable framework for assessing the reliability of

forensic examination decisions using the data from reproducibility and repeatability stud-

ies. This modeling approach explains the variation in decisions through contributions from

the samples, examiners, and a possible interaction between examiners and samples. The

most flexible version of the model, incorporating separate decision thresholds for each exam-

iner, is difficult to fit given that the typical study design includes fewer repeated decisions.

We introduce a restricted model for use with limited repeated decisions that still enables

quantifying different examiner thresholds for ordinal decisions. We applied these methods

to three data sets, a signature complexity assessments study and two black box studies,

a latent fingerprint analysis study and a handwriting comparisons study. The previously

reported analyses on these data sets considered reproducibility and repeatability separately
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and used contingency tables or percentage agreement on subsets of the data set to report

reliability. These approaches ignore important information. The model here incorporates

reproducibility and repeatability data and derives reliability estimates that adjust for the

samples seen and the tendencies of examiners. The model developed also explicitly accounts

for the possibility of interactions. We have established through simulation studies that these

methods can provide a fair assessment of reliability even with as few as 25% repeated deci-

sions. We also saw some evidence of interactions in latent fingerprint quality determinations

and handwriting comparison decisions. We also noticed that accounting for interactions as

well as using both the reproducibility and repeatability data sets, produced model-based

agreement measures that were lower compared to the percentage agreement calculated using

the black-box study data. This indicates that ignoring interactions or using only a portion

of the data to calculate agreement may provide a false sense of higher reliability.

The results of the latent variable model can be used in an exploratory fashion to assess

examiner and sample characteristics. For example, we identify examiners that have similar

tendencies while accounting for the different print difficulties that were encountered by the

examiners. If examiner covariates or sample covariates are collected, it will be possible to

see how the examiner effects or sample effects are associated with such covariates. Examiner

and sample features can also be added to the model.
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Chapter 5

Identifying Clusters of Raters from

Ordinal Data

5.1 Introduction

The design in various scientific and analytical studies involves multiple raters/ respondents

that evaluate the same sets of items or answer the same set of questions on an ordinal scale.

Examples include forensic science studies (Ulery et al., 2011; Hicklin et al., 2022a; Hicklin

et al., 2022b), psychological studies (Glynn et al., 2018), course evaluations (Johnson and

Albert, 2006), radiology or medical studies (Spoorenberg et al., 2004; Jones et al., 2007),

and customer satisfaction questionnaires (Bradlow, 1994; Bradlow et al., 1999). The moti-

vation for such studies typically includes evaluating the accuracy and reliability of decisions,

assessing the distribution of rated items against other covariates associated with the raters,

or conducting an analysis to explore whether there exist subpopulations of the raters that

respond to items similarly.

Assessing whether there are extant subpopulations within the population of raters is of ex-
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ploratory interest. Additionally, it may be helpful for hypothesis generation. For example,

in forensic black-box studies that are aimed at assessing the reliability and accuracy of sub-

jective feature-based comparison decisions by expert examiners, it is interesting to explore

whether forensic examiners that make decisions similarly share certain covariates such as

years of training/ experience, employer agency, etc. This can be explored directly if these

data are recorded in advance, but this is not the case in common black-box study designs.

Furthermore, certain forensic examination procedures consist of multiple steps. Latent fin-

gerprint and footwear comparisons have a quality determination step that occurs before final

comparisons occur between a questioned print and an exemplar print. In those settings, it

is interesting to question whether examiners that, say, make similar decisions during quality

assessments, have higher reproducibility in comparison decisions.

We propose a method that can cluster raters/ examiners based on their tendency to answer

a similar set of questions on an ordinal scale. This method may also be applied to binary

outcomes. The motivating data sets, described in Section 5.4, are two forensic black-box

studies as well as a maternal depression study. Our method is an extension of a two-way

random effects ANOVA model with interactions that has been previously used by Arora et

al. (2022, 2023) to model continuous, binary, and ordinal outcomes from black-box studies.

We use a Dirichlet process prior (Ferguson, 1973, 1974) on the examiner effects to encourage

parameter sharing between examiners that make decisions similarly.

A number of authors have used finite mixture models to model ordinal data. For example,

Breen and Luijkx (2010) have used a latent variable approach to model ordinal responses

with a finite mixture of ordered logit models. Ranalli and Rocci (2016) used finite mix-

tures of Gaussian distributions to model ordinal responses. Their approach is dependent on

evaluating an information criterion to select among different values for the number of mix-

ture components. Matechou et al. (2016) used finite mixture models to bicluster rows and

columns for ordinal data using a variational approximation. Mixtures of Dirichlet process
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(Ferguson, 1973; Blackwell and MacQueen, 1973; Ferguson, 1974; Antoniak, 1974; MacEach-

ern, 1994; Escobar, 1994; Escobar and West, 1995; Neal, 2000) have also been used to model

discrete (non-continuous) data. Erkanli et al. (1993) used a mixture of Dirichlet processes

(MDP) of probit links for ordinal data regression to predict class probabilities in a more

flexible way. Mukhopadhyay and Gelfand (1997) have developed methods for using MDPs

and overdispersed MDPs for generalized linear models (GLMs) and have shown how they

may be efficiently used in place of GLMs and overdispersed GLMs for the purposes of pre-

diction. Ibrahim and Kleinman (1998) suggested the use of a Dirichlet process prior in place

of a normal distribution for modeling random effects in a mixed effect model. Shahbaba and

Neal (2009) and Hannah et al. (2011) have proposed a generative Dirichlet process mixture

method to model GLMs non-parametrically so that items in a mixture share the covariate

distribution function and the parameters in the link function that connects the covariates

with the items. The methods are shown to be superior to other prediction methods for

GLMs. The approach we propose in this paper is most closely related to the one suggested

in Ibrahim and Kleinman (1998), however, our goal is clustering raters/ items for the setting

where raters mark the same or similar sets of items, which has not been addressed by any of

these previous works. We hypothesize that raters that mark questions in a similar way may

share some observed or unobserved covariates.

This paper is structured in the following way. In Section 5.2 we propose our method for clus-

tering examiners/ samples using a Dirichlet process mixture setup. Computational methods

are addressed there, as are approaches to inferring the number of clusters. Section 5.3

presents the results from a set of simulation studies. In Section 5.4, we use the proposed

method to investigate the data from two forensic black-box studies and data regarding ma-

ternal depression. Finally, in Section 5.5 we summarize the obtained results, and discuss

future applications and extensions of the proposed work.
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5.2 Methods

Mixture models (McLachlan and Basford, 1988) are strong modeling candidates when the

population under study is believed to contain subpopulations with different distributions.

Finite mixture models typically require pre-specifying the number of mixture components.

Nonparametric models such as Dirichlet process mixtures (Escobar, 1994; MacEachern, 1994;

MacEachern and Müller, 1998) have become a popular choice due to their flexibility for

density estimation and generalizability on new data. Rasmussen (1999) argue that infinite

mixture models outperform finite mixture models due to avoiding the need to find the right

number of clusters. We now provide a brief background on Dirichlet processes (DP) and

methods of formulating DPs.

5.2.1 Dirichlet process and stick-breaking representation

Dirichlet processes (DP) (Ferguson, 1973; Blackwell and MacQueen, 1973; Ferguson, 1974)

are nonparametric stochastic processes that define a probability model over distributions.

Let, G0 be a probability distribution over a measurable set, Ω, and let λ be a positive real

number, then a Dirichlet process defined by (λ, G0), defines random probability distributions

over Ω as follows. For any finite partition A1, A2, . . . , Ak of Ω, if G is a DP defined by (λ,

G0), then:

(G(A1), G(A2), . . . , G(Ak)) ∼ Dirichlet (λG0(A1), λG0(A2), . . . , λG0(Ak)),

where, Dirichlet(ω1, ω2, . . . , ωk) is the Dirichlet distribution with parameters (ω1, ω2, . . . , ωk).

If a DP is used as a prior for the distribution of a set of independent and identically dis-
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tributed data Xi, for i ∈ {1, 2, . . . , n},

Xi |G
i.i.d.∼ G

G |λ,G0 ∼ DP(λ,G0),

(5.1)

then the posterior distribution of G is also a DP,

G |Xi, λ,G0 ∼ DP

(
λ+ n,

λ

λ+ n
G0 +

1

λ+ n

n∑
i=1

δXi

)
.

where δXi
is the Dirac delta function having unit probability at Xi. The distribution G is

infinite-dimensional and therefore is a nonparametric process. If G is integrated out of the

specification given in equations (5.1), thenXi are no longer independent in their marginal dis-

tribution. It is then convenient to write the joint probability distribution, p(X1, X2, . . . , Xn)

through the product of conditional distributions p(Xj|X1, X2, ..., Xj−1), as follows (Blackwell

and MacQueen, 1973):

Xj|X1, X2, ..., Xj−1


= Xi, with probability 1

j−1+λ
, i = 1, 2, ..., j − 1

∼ G0, with probability λ
j−1+λ

. (5.2)

The parameter λ is known as a concentration parameter and it determines (probabilistically)

how many distinct values are drawn from the base distribution G0, with bigger values of λ

supporting more distinct values.

Sethuraman (1994) proposed a constructive way to define G known as the “stick-breaking”

process. Define a set of probabilities v1, v2, ... that are independent and identically dis-

tributed with a Beta(1, λ) distribution. Say there is a stick of length of 1, that is infinitely

broken as follows. Let vi define the proportion of the remaining stick that is broken at the

ith step. A stick-breaking prior is defined for the total proportion of the stick broken at each
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step, w1, w2, . . ., through v1, v2, ... in the following way:

w1 = v1

w2 = v2(1− v1)

wn = vn

n−1∏
i=1

(1− vi).

Then, if Y1, Y2, ... are drawn from the base distribution G0, the stick-breaking representation

of G is given through wi and Yi as follows:

G =
∞∑
j=1

wjδYj
, (5.3)

where δz is again the Dirac delta function which represents a unit probability at z. We

use the stick-breaking construction for sampling from a DP distribution in Sections 5.3 and

5.4.

5.2.2 Mixtures of Dirichlet processes

The DP described in Section 5.2.1 is often used as a prior distribution for the parameters

in a hierarchical Bayesian model. Suppose Yi, i ∈ {1, 2, . . .} are modeled as independent

observations with distributions F (.|θi), where θi are assumed to have a DP prior, then the

resulting model is known as a mixture of Dirichlet processes (MDP, Antoniak, 1974; Escobar,

1994; MacEachern, 1994; MacEachern and Müller, 1998). The MDP uses densities from a

parametric family F = {fθ | θ ∈ Θ}, where the components θ have a DP prior over them.

One way to describe the MDP is to first consider a finite mixture model with L components.

Consider Yi for i ∈ {1, 2, . . . , n} that are independently drawn from distributions F (Yi | θ∗ci),

where ci takes values in {1, 2, . . . , L} and follows a multinomial distribution with probability

vector p that has length L, and θ∗l are drawn from a distribution G0, then this setup defines
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a finite mixture model as follows:

θ∗l |G0,
i.i.d.∼ G0 ∀ l ∈ {1, 2, ..., L}

p |λ ∼ Dirichlet(
λ

L
, ...,

λ

L
)

ci |p ∼ Multinomial(p)

Yi | ci, θ∗1, ...θ∗L ∼ F (Yi | θ∗ci).

(5.4)

A mixture of Dirichlet processes (MDP) is obtained as the limit of the finite mixture model

L → ∞ (Teh, 2010) in the model (5.4). Model (5.5) presents an example of an MDP:

Yi | θi
ind.∼ F (Yi | θi), ∀ i ∈ {1, 2, ..., n}

θi |G,
i.i.d.∼ G

G |λ,G0 ∼ DP (λ,G0).

(5.5)

As stated before, samples from a DP are a discrete distribution with probability one. It

is observed in the representation of the DP that is marginalized over G in (5.2), there is

a non-zero probability that θi = θj are equal for i ̸= j. Let there be K (≤ n) distinct

values of θi across the n data points Yi, i ∈ {1, 2, . . . , n}, denoted as {θ∗1, θ∗2, . . . , θ∗K}.

Define Bk = {i : θi = θ∗k} or following the notation in the finite mixture model (5.4)

Bk = {i : ci = k}, for all k ∈ {1, 2, . . . , K}; then the Bk, k = 1, 2, . . . , K, define a partition

over the set {1, 2, . . . , n} that can be viewed as a clustering. This is how MDPs are used to

define clusters across the data set. The cluster memberships are random because the θi are

random. Bush and MacEachern (1996) proposed a method to sample θi from its marginal

distribution when G is integrated out (so that θi are dependent):

θi | θ−i,x


= θ∗−k , k = 1, 2, . . . , K with probability ∝ n−

k p(Yi | θ∗−k )

∼ H1, with probability ∝ λ
∫
p(Yi | θ)dG0(θ)

,

89



where, θ∗−k are the unique values of θ amongst θ−i = {θ1, θ2, . . . , θi−1, θi+1, . . . , θn}; n−
k = |{j :

j ̸= i, θ∗−cj = θ∗−k }| (the number of θj that are equal to θ∗−k for j ̸= i); H1(θ) ∝ p(Yi | θ)dG0(θ).

When p(.) and G0 are conjugate, evaluating H1 and subsequently the sampling for θi is fairly

straightforward. Otherwise, it can be difficult to sample from H1(θ). We will now describe

our proposed method to cluster raters based on ordinal decisions.

5.2.3 Ordinal Data Model

The aim of this paper is to apply the MDP for clustering in an ordinal data setting. We will

use the language of the forensic science black-box studies that motivated this work.

Assume Yijk are ordinal outcomes on a scale of {1, 2, ..., M}, given by examiner i, on sample

j, in the kth trial. In a standard forensic reproducibility study, k = 1. Often, examiners are

asked to provide repeated assessments on a subset of the samples (k > 1) that they observed

in the reproducibility study to study the intra-examiner repeatability of judgments. We will

assume that there are I examiners and J samples. As proposed in Albert and Chib (1993),

we can model the ordinal data through a latent continuous variable, Zijk. The ordinal model

data is written as:

P (Yijk = m) = P (κm < Zijk ≤ κm+1)

Zijk ∼ N(α∗
ci
+ γj, 1)

−∞ ≡ κ1 ≤ κ2 ≤ ... ≤ κM ≤ κM+1 ≡ ∞

(5.6)

where, Zijk is the latent continuous variable corresponding to outcome Yijk, κ2, κ2, . . ., κM

are cutpoints that define the ordinal outcomes, γj is a sample or example effect that controls

the tendency of the sample to be rated into higher or lower categories, and α∗
ci
is an examiner

effect when examiner i belongs to a mixture component that is indicated by ci. Examiners in

a cluster are assumed to share their tendencies to rate samples into higher or lower categories.
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The example effects γj are traditional random effects distribution centered at 0:

γj |σ2
γ

i.i.d.∼ N(0, σ2
γ).

Arora et al. (2022, 2023) have used a latent variable approach to combine ordinal outcomes

from the reproducibility and repeatability parts of forensic black-box studies while allowing

for possible examiner-sample interaction. The presence of interactions implies that there is a

differential effect of samples on examiner decisions/ ratings. If it is suspected that there are

interactions between examiners and examples, i.e., examiner tendencies to rate samples are

not constant across samples, we could extend the method given in model (5.6) to incorporate

interactions as follows:

P (Yijk = m) = P (κm < Zijk ≤ κm+1)

Zijk ∼ N(α∗
ci
+ γj + ζij, 1)

(5.7)

where, ζij, is an interaction effect between examiner i and sample j. The assumption in

model (5.7) is that examiners in a cluster still share tendencies to rate samples, even though

the tendencies vary slightly (assuming that |ζij| < |α∗
ci
|) based on the samples. In the

forensic black-box studies presented in Section 5.4, we will model an interaction effect be-

tween examiners and forensic samples. We assume a standard random effects distribution

on ζij ∼ N(0, σ2
ζ ).

A DP prior is used on examiner tendencies α∗
ci
. Ishwaran and James (2001), Ishwaran

and Zarepour (2002) and Ishwaran and James (2002) proposed a blocked Gibbs sampling

technique for fitting a non-conjugate mixture of DPs. Their method relies on a truncation

of the stick-breaking representation of G in equation (5.3) at a value T . They provided an

error bound for the absolute difference in the marginal densities of the outcomes (p(xi) in
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model (5.5)) when the DP model is not truncated and in the truncated model (
∫∞
−∞ | p∞(xi)−

pT (xi) | dxi, that is approximately 4n exp
(

−(T−1)
λ

)
for a normal mixture model with sample

size n when the infinite representation of G is truncated at a value T . This bound applies to∫∞
−∞ | p∞(Zijk)−pT (Zijk) | dZijk in the model (5.6) as well. Ishwaran and James (2002) noted

that even with n = 1000 samples, and λ = 3, T = 50 leads to an error bound of 3.2× 10−4.

We will be using T = I, which is the largest possible value for our applications.

The truncated stick-breaking priors are described in expression (5.8). Choosing the final

stick-breaking probability vT = 1 ensures that
∑T

t=1 wt = 1. The stick-breaking weights are

defined as follows:

vt
i.i.d.∼ Beta(1, λ), vT = 1 ∀ t ∈ {1, 2, ..., T − 1}

w1 = v1, wt = vt

t−1∏
l=1

(1− vl), ∀ t ∈ {2, ..., T}.
(5.8)

The weights wt are used to define an approximate Dirichlet process that are used to cluster

examiners in (5.9). The membership indicator ci takes values in {1, 2, . . . , T}, according

to:

ci |w =
T∑
t=1

wt δt. (5.9)

The examiner effects, α∗
t , are drawn from the base distribution as follows:

α∗
t |µ0, σ

2
0

i.i.d.∼ N(µ0, σ
2
0) ≡ G0 ∀ t ∈ {1, 2, ..., T} (5.10)

We finally complete the specification of the model with hyperpriors on σ2
0, σ

2
γ (according to
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Gelman, 2006), and µ0:

p(σ2
0, σ

2
γ) ∝

1

σ0σγ

p(µ0) ∝ 1

We use a mean parameter with the base distribution µ0. With this parameter, κ2 is set to

zero because it would otherwise not be identified. We use a noninformative uniform prior

on the ordered thresholds κm:

κ2 = 0 ; p(κ3, . . . , κM) ∝ 10≤κ3≤...≤κM
(5.11)

5.2.4 Bayesian Computation

A Gibbs algorithm (Geman and Geman, 1984) is used to sample from the posterior distri-

bution of the full conditionals for Zijk, γj, and σ2
γ (5.12):

Zijk | {α∗
t }Tt=1, {ci}Ii=1, {γj}Jj=1, {Yijk}, {κm}Mm=2 ∼



N(α∗
ci + γj , 1) I(−∞, κ2 = 0), if Yijk = 1

N(α∗
ci + γj , 1) I(κ2 = 0, κ3), if Yijk = 2

...

N(α∗
ci + γj , 1) I(κM ,∞), if Yijk = M

{γj}Jj=1 | {Zijk}, {α∗
t }Tt=1, {ci}Ii=1, σ

2
γ ∼ N(

∑
i

∑
k(Zijk − α∗

ci)
1
σ2
γ
+
∑

i

∑
k 1ijk

,
1

1
σ2
γ
+
∑

i

∑
k 1ijk

)

(5.12)

σ2
γ | {γj}Jj=1 ∼ Inv-Gamma(

J − 1

2
,

∑
j γ

2
j

2
)

where, 1ijk is an indicator function that is equal to 1 if Yijk is observed in the data, 0 other-

wise. Sampling the thresholds κm through a typical Gibbs sampling strategy conditional on
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the Zijk mixes very slowly. To remedy that we use a Metropolis-Hastings update as suggested

in Cowles (1996) which works with the densities for {κm}Mm=3 | {Yijk}, {α∗
t}Tt=1, {γj}Jj=1, {ci}Ii=1

instead of κm | {Zijk}, {α∗
t}Tt=1, {γj}Jj=1, {ci}Ii=1. We note that the joint distribution of {Zijk}

and {κm}Mm=3 can be written as:

p({Zijk}, {κm}Mm=3 | {Yijk}, {α∗
t }Tt=1,{γj}Jj=1, {ci}Ii=1) ∝

p({Zijk} | {κm}Mm=3, {Yijk}, {α∗
t }Tt=1, {γj}Jj=1, {ci}Ii=1)

p({κm}Mm=3 | {Yijk}, {α∗
t }Tt=1, {γj}Jj=1, {ci}Ii=1)

The first term is the Gibbs sampling update as per (5.12). Updates for κm are done as

follows. During the Gibbs/ Metropolis-Hastings updates let the current values of κm be

denoted as κold
m . The proposal distribution for candidates for κm is a truncated normal

km ∼ N(κold
m , σ2

prop) I(km−1, κ
old
m+1) for m = 3, 4, . . . ,M with κold

1 = k1 = −∞, κold
2 = k2 = 0,

and κold
M+1 = kM+1 = ∞. Define R as follows:

R =
∏
i,j,k

Φ(kYijk+1 − α∗
ci − γj)− Φ(kYijk

− α∗
ci − γj)

Φ(κold
Yijk+1 − α∗

ci − γj)− Φ(κold
Yijk

− α∗
ci − γj)

M∏
m=3

Φ((κold
m+1 − κold

m )/σprop)− Φ((km−1 − κold
m )/σprop)

Φ((km+1 − km)/σprop)− Φ((κold
m−1 − km)/σprop)

where Φ(.) is the cumulative density function for standard normal distribution. We accept

km as the new updates for κm with probability min(R,1), otherwise κm = κold
m . Since the

likelihood terms in R can cause underflow issues while sampling, we calculate the logarithm

of R during the computation. The variance of the proposal distribution σ2
prop is chosen so

that the acceptance rate for the new candidates km ranges between 0.25-0.5 (Gelman et al.,

1996). We start with a value of σprop = 0.5
M

and the value may be decreased or increased if

the acceptance rate is less than 0.25 or greater than 0.5 respectively (Johnson and Albert,

2006).
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The method to sample membership labels {ci}Ii=1 is presented next:

ci | {Zijk}, {α∗
t}, {v}

ind∼
T∑
t=1

βt,iδt

βt,i | {wt}Tt=1, {Zijk}, {α∗
t}Tt=1, {γj}Jj=1 ∝ wt

∏
j

∏
k

ϕ(Zijk|α∗
t + γj, 1)

βt,i are the probabilities that examiner i belongs to the cluster t. The product in the update

for βt,i is evaluated for all the samples j that are observed by the examiner i in repetition k.

Here, ϕ(.|ω, τ 2) is the Gaussian probability distribution function with mean ω and variance

τ 2. Also note that
∑

t βt,i = 1. The the stick-breaking parameters v, w are updated as

follows:

vt | {ci}Ii=1 ∼ Beta ( 1 + St , λ+
T∑

l=t+1

Sl ), vT = 1, St =
∑
i : ci=t

1 (5.13)

w1 = v1, wt = vt

t−1∏
l=1

(1− vl)

St are defined as the number of examiners in cluster t. The cluster effects α∗
t are updated

through the densities proportional to the following expressions, depending on the examiners

that belong in cluster t:

p(α∗
t |µ0, σ

2
0, {ci}Ii=1, {Zijk}) ∝


ϕ(α∗

t |µ0, σ
2
0), if no examiners are associated with component t(∏

i:ci=t

∏
j

∏
k ϕ(α

∗
t |Zijk − γj , 1)

)
ϕ(α∗

t |µ0, σ
2
0), otherwise

(5.14)

The conditionals for the hyperparameters µ0 and σ2
0 use α∗

t from clusters that have at least

95



one examiner associated with them:

µ0 | {ci}Ii=1, {α∗
t }Tt=1, σ

2
0 ∼ N

(∑
t′ α

∗
t′∑

t′ 1t′
,

σ2
0∑
t′ 1t

)
, t′ ∈ {t : ∃ i, ci = t} (5.15)

σ2
0 | {ci}Ii=1, {α∗

t }Tt=1, µ0 ∼ Inv-Gamma

(∑
t′ 1t′ − 1

2
,

∑
t′(α

∗
t′ − µ0)

2

2

)
, t′ ∈ {t : ∃ i, ci = t}

In a non-truncated DP representation, Escobar and West (1995) and Görür and Rasmussen

(2010) have proposed methods of sampling the concentration parameter λ. However, we may

not be able to utilize those because we have used the truncated stick-breaking process. We

instead use the method suggested in Ishwaran and Zarepour (2000). If a Gamma prior is

chosen over λ then the posterior is also Gamma:

λ | a1, a2 ∼ Gamma(a1, a2)

λ |w ∼ Gamma(T + a1 − 1, a2 − log (wT ))

Alternatively,

λ |v ∼ Gamma(T + a1 − 1, a2 −
T−1∑
t=1

log (1− vt)) (5.16)

More discussion on the prior chosen for λ can be found in Section 5.3.

5.2.5 Posterior Inference - Consensus clustering

The Gibbs algorithm described in Section 5.2.4 will produce samples from the posterior

distribution for the parameters as well as the cluster memberships ci for each examiner.

Posterior inferences for the cluster memberships can be challenging to interpret due to the

randomness in ci as well as label-switching (Stephens, 2000). For example, Figure 5.1 presents

the posterior draws for the number of clusters for a simulated scenario (Scenario E in Table

5.1) with I = 50 raters that belonged to 3 clusters during the data generating process. We

observe that the mode of the posterior distribution for the number of clusters is 3 which is

the true value for the number of clusters. However, we also observe that the distribution
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Figure 5.1: Distribution for the number of clusters based on posterior draws from one of the
five simulated data sets in I = 50 and 3 clusters settings (Scenario E). Note the long tail for
the draws.

has a long tail. One approach to posterior inference would be to report this posterior

distribution and the posterior inferences for parameters and clusterings conditional on the

number of clusters. We chose not to do this because the distribution of clusterings exhibits

great variation and is difficult to interpret. Instead, we draw inferences based on a consensus

cluster obtained using the algorithm of Dahl et al. (2022).

Rastelli and Friel (2018), Wade and Ghahramani (2018), and Dahl et al. (2022) provide

different algorithms for obtaining point estimates for a consensus clustering through the

posterior draws of the membership labels ci. The algorithms minimize a posterior loss such

as Binder loss (Binder, 1978), variation of information (Meilă, 2007), and their variants.

We use variation of information (defined below), which is invariant to label-switching and

is therefore particularly attractive as a loss function. First, given two ways to cluster data

{1, 2, . . . , N0} namely the clustering a with clusters d1, d2, . . . , dT1 and the clustering b
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with clusters e1, e2, . . . , eT2 , define:

na,b
dj ,ek

=

N0∑
i=1

Ici=djIc′i=ek

na
dj

=

T2∑
k=1

na,b
dj ,ek

where ci ∈ {d1, d2, . . . , dT1} defines cluster membership for data i under a and

c′i ∈ {e1, e2, . . . , eT2} defines cluster membership for data under b. The entropy for clustering

a is defined as:

H(a) = −
T1∑
j=1

na
dj

N0

log(
na
dj

N0

)

The joint entropy between a and b and the variation of information are defined as fol-

lows:

H(a,b) = −
∑
j,k

na,b
dj ,ek

N0

log

(
na,b
dj ,ek

N0

)

LV I(a,b) = 2H(a,b)−H(a)−H(b)

We use the greedy algorithm provided in Dahl et al. (2022) that finds the consensus cluster-

ings for examiners ĉ = {ĉ1, ĉ2, . . . , ĉN0} that minimizes the variation of information loss given

the posterior draws for these clusterings. Let, the number of MCMC draws be d = 1, 2, . . . , D,

then the consensus clusters (ĉ) are obtained as follows:

ĉ = argminĉ

∑
i

log2

(∑
j

Iĉi=ĉj

)
− 2

∑
i

log2

(∑
j

π∗
ijIĉi=ĉj

)

where, π∗
ij =

1

D

D∑
d=1

I(c
(d)
j = c

(d)
i ), ∀j ̸= i
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Scenario
Number of
clusters

Cluster 1 mean
(Cluster 1 size
I=50/ I=150)

Cluster 2 mean
(Cluster 2 size
I=50/ I=150)

Cluster 3 mean
(Cluster 3 size
I=50/ I=150)

Cluster 4 mean
(Cluster 4 size
I=50/ I=150)

Cluster 5 mean
(Cluster 5 size
I=50/ I=150)

κ2 κ3

A 3 -2.00 (16/ 50) 0.00 (18/ 50) 2.00 (16/ 50) - - -1.00 1.00
B 3 -2.00 (16/ 50) 0.00 (18/ 50) 1.00 (16/ 50) - - -1.00 0.50

C 3 -1.00 (16/ 50) 0.00 (18/ 50) 2.00 (16/ 50) - - 0.00 1.00

D 3 -2.00 (16/ 50) 0.00 (18/ 50) 1.00 (16/ 50) - - -1.00 1.00

E 3 -3.00 (16/ 50) 0.00 (18/ 50) 2.00 (16/ 50) - - -2.00 1.00

F 5 -2.00 (10/ 30) -1.00 (10/ 30) 0.00 (10/ 30) 1.00 (10/ 30) 2.00 (10/ 30) -1.00 1.00

G 5 -3.00 (10/ 30) -1.75 (10/ 30) 0.00 (10/ 30) 0.75 (10/ 30) 1.50 (10/ 30) -2.00 0.50

H 5 -1.50 (10/ 30) -1.00 (10/ 30) 0.00 (10/ 30) 0.75 (10/ 30) 1.25 (10/ 30) -0.50 1.00

I 5 -1.50 (10/ 30) -1.00 (10/ 30) 0.50 (10/ 30) 1.00 (10/ 30) 2.00 (10/ 30) -1.00 1.50

J 5 -1.75 (10/ 30) -0.75 (10/ 30) 0.00 (10/ 30) 0.75 (10/ 30) 2.00 (10/ 30) -0.50 1.50

K 5 -2.00 (-/ 12) -1.00 (-/ 13) 0.00 (-/ 15) 1.00 (-/ 10) 2.00 (-/ 100) -1.00 1.00

L 5 -1.50 (-/ 100) -0.75 (-/ 10) 0.00 (-/ 15) 0.75 (-/ 13) 1.50 (-/ 12) -1.00 1.00

M 5 -1.50 (-/ 20) -1.00 (-/ 45) 0.00 (-/ 55) 0.75 (-/ 20) 1.25 (-/ 10) -1.00 1.00

N 5 -1.50 (-/ 10) -1.00 (-/ 50) 0.50 (-/ 50) 1.00 (-/ 30) 2.00 (-/ 10) -1.00 1.00

O 5 -1.75 (-/ 10) -0.75 (-/ 40) 0.00 (-/ 50) 0.75 (-/ 40) 2.00 (-/ 10) -1.00 1.00

Table 5.1: The different generated simulation scenarios are detailed. There are 3 or 5 clusters
in the generated data set with I = 50 or I = 150 examiners. The cluster means and the
number of examiners in each cluster are indicated for each design. The cutpoints κ2 and κ3

vary across the scenarios. J = 50 γj’s are generated from N(0, σ2
γ = 10) separately for all

scenarios.

5.3 Simulation studies

We will now present the results from simulation studies that were conducted to check how

effectively the model and algorithm presented in Section 5.2 are able to differentiate between

clusters in different settings.

Data generating process

Data is generated for all of the simulation studies through the ordinal data model in (5.6)

with M = 3 ordinal outcome categories. The number of examiners/ participants in the

simulated data sets are either I = 50 or I = 150. These sizes are based on the experiments

discussed in Section 5.4. The number of samples assessed by each examiner was fixed at

J = 50 for all experiments. In generating the data, we vary the cluster means as described

below and set the variances of the sample random effects σ2
γ = 10 (we do not simulate

interactions). In all there are 10 scenarios for the cluster means, five with three clusters and

five with five clusters. These are denoted as Scenarios A through J in Table 5.1. We carry

out a simulation for each scenario with I = 50 and I = 150.
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Scenario
Values

for αi (I=50)
κ2 κ3

P {-1.00, -0.96, . . ., 0.92, 0.96} -0.50 0.50

Q {-2.00, -1.92, . . ., 1.84, 1.92} -1.00 1.00

R {-3.00, -2.88, . . ., 2.76, 2.88} -1.50 1.50

S {-4.00, -3.84, . . ., 3.68, 3.84} -2.00 2.00

T {-5.00, -4.80, . . ., 4.60, 4.80} -2.50 2.50

Table 5.2: Data generating Scenarios P-T with I = 50 examiners where there are no examiner
clusters in the data generating model. The examiner effects are increasingly more separated
as we move down the rows. The cutpoints κ2 and κ3 vary across the scenarios. J = 50 γj’s
are generated from N(0, σ2

γ = 10) separately for all scenarios.

The cluster means are shared within the cluster and the cluster sizes across the scenarios

are balanced for I = 50 and I = 150 designs. The distances between clusters are varied as

demonstrated in Table 5.1. Additionally, the thresholds κ2 and κ3 are also different across

the scenarios. In practice, there may be an imbalance in the number of examiners in a

cluster. We need to test our method for cases that have an uneven number of examiners in

certain clusters. We carried out 5 additional simulations with uneven cluster sizes identified

as Scenarios K through O for I = 150 examiners in Table 5.1. Furthermore, we generate

data sets with no clusters, in a design with I = 50 total examiners and J = 50 samples. In

the unclustered simulations, the examiner parameters αi are evenly spaced out over a range.

These are denoted as scenarios P-T in Table 5.2.

Model fitting process

For each of the simulated data sets, we use the hybrid Gibbs/ Metropolis-Hastings algorithm

sampler of Section 5.2.4 for 2000 iterations and 4 chains. It is tricky to assess the convergence

in an MDP model due to label-switching (Stephens, 2000), which arises from the fact that

the likelihood for an MDP model is invariant to permutation between the cluster labels. It

was recommended in Gelman et al. (2013) that the convergence should be checked on the

parameters not related to the mixture components. The convergence was assessed through

the potential scale reduction factor (PSRF, Gelman and Rubin, 1992) on the parameters σ2
γ,

κ3, µ0, σ
2
0 as well as the log-likelihood log

(∏
i,j p(Yij |α∗

ci
, γj)

)
. We found that 2000 iterations
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were sufficient to fit the data sets. The first 1000 draws in each chain were discarded and

posterior inference is based on the second half.

The truncated stick-breaking process was used with T = I = 50 or 150. Examiners were

initially assigned to separate clusters in the initial step. The initial values for each chain

in the sampler are set as follows: the parameters σ2
γ, σ

2
0, were drawn from a Uniform(0,2)

distribution; µ0 was set to be 0 initially for each chain; κ3 is initially drawn from Unif(0,1);

initial value for λ was chosen to be 2; and v was generated with Beta(1,2).

The value of λ controls the distribution of the number of clusters and can have a big impact

on posterior inferences with higher values of λ supporting more clusters. The prior for λ

requires careful consideration. We made the choice of the prior based on some simulating

data sets where we monitored the number of clusters obtained by a DP prior with different

sizes of the data sets and different values of λ. The results of these simulation runs are

reported in the Supplemental material. Based on the runs, we found that the range of λ

between 0.5 - 3 provides enough flexibility for the number of clusters that seem likely to be

interesting and scientifically relevant for the data sets of Section 5.4. By this we mean, a

small enough number of clusters so that there are multiple examiners per cluster. This led

us to choose a Gamma(2,2) prior distribution. The rate parameter in gamma distribution

controls the spread of the distribution with higher values meaning that the variance is lower.

A large portion (95%) of the selected gamma distribution is between 0.1-2.8. These values

support a prior expected range of up to 20 clusters but typically 3-10 clusters.

As described in Section 5.2.5, we use the algorithm presented in Dahl et al. (2022) to obtain

a consensus clustering for the raters in each simulation. Dahl et al. (2022) provided a parallel

implementation of their algorithm which is available through the CRAN as an R package

(Dahl et al., 2021). Consensus clusterings are compared to the clusters that the raters

belonged to in the data-generating process.
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Results

In all, we have 30 simulation scenarios as described in Table 5.1. We summarize results

separately for six different situations: the five Scenarios A-E with I=50 (3 clusters), the five

Scenarios F-J with I=50 (5 clusters), the five Scenarios A-E with I=150 (3 clusters), the five

Scenarios F-J with I=150 (5 clusters), the five Scenarios K-O with I=150 (5 clusters) with an

uneven number of examiners between the clusters, and the five Scenarios P-T with I=50 and

no clusters in the data with αi having a linear structure. Figure 5.2 presents the posterior

medians for σγ as well the 95% credible intervals for the 30 simulated scenarios. Note

that the prior specification (5.11) assumes κ2 = 0; in reality, the data has been simulated

with a non-zero κ2. Therefore, we also report the differences between the posterior median

estimates for the distance between the cutpoints (κest
3 -(κest

2 = 0)) and the true distance

between the cutpoints (κ3 − κ2). Figure 5.2 demonstrates that the model parameters are

reliably estimated.

We compare the clustering results obtained by our method against those obtained with k-

means clustering (Hartigan and Wong, 1979). The k-means clustering is a technique used for

partitioning continuous data into k clusters. The method works by finding k “centers” that

define k clusters based on minimizing the Euclidean distances between the points in a cluster

and their centers. For selecting the value of k we use silhouette clustering (Rousseeuw, 1987),

which compares the distances between the points in a cluster against the distances between

points in different clusters. The silhouette values are calculated for each cluster and range

between -1 to 1, where 1 indicates perfect clustering and -1 indicates that the points belong

to incorrect clusters. For k-means clustering, we start by centering and scaling our simulated

data sets within a sample j. We fit the k-means model for k = 3, 4, . . . , 9 for Scenarios A-O,

and for k = 3, 4, . . . , 49 for the linear αi Scenarios P-T and select the k that maximizes the

mean silhouette values across the obtained clusters.
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In Tables 5.3 and 5.4, we report the misclassification rates (MCR, Rand, 1971) with different

techniques, and the number of clusters obtained across the 25 simulated data sets (Scenarios

A-O) in each scenario based on whether the consensus clustering matches the ground truth

in the following way:

Misclassification rate (MCR) =
c+ d
I (I−1)

2

where, c = pairs of examiners in the same cluster that appear in different consensus clusters

d = pairs of examiners in different clusters that appear in the same consensus cluster.

The classifications are highly accurate with our model for Scenarios A-O. The number of

clusters estimated with our method are generally accurate, but sometimes off by one. Most

misclassifications occur in cases like Scenarios H and I where the cluster means are close

to each other (α∗
1 = −1.50 and α∗

1 = −0.75). Even with the simulated data sets with

an imbalance in the number of raters across clusters, the misclassifications rate is low and

misclassifications happened in cases with clusters that were close to each other. Our method

does much better compared to the baseline method of k-means clustering.

In Scenarios P-T in Table 5.2, where αi are linear with increasing separation between the

points, our method finds 4, 6, 8, 9, and 11 clusters respectively. The k-means clustering

method finds 5, 7, 3, 3, and 3 clusters. We notice that our method finds more clusters as the

separation between examiner effects increases although it still finds clusters when in reality

there are no clusters in the underlying data set.

5.4 Experiments

We apply the methods described in Section 5.2 to three data sets: two from black-box studies

conducted for latent fingerprint examination and handwriting comparison procedures; and
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Figure 5.2: Posterior medians and 95% credible intervals for the difference between the true
and estimated distance between cutpoints and for the parameter σγ obtained by fitting the
model given by equations (5.6) on the data simulated in I = 50, 150 settings with 3 or 5
clusters in the underlying data, the case when there is an imbalance between the number of
examiners/ raters in each cluster as well as the case where there are no clusters in the raters/
examiners. There were 5 simulated data sets in each setting. The black line represents the
true value of the parameters.

Design

True
no.
clus

Proc.
Scenario Scenario Scenario Scenario Scenario Mean

MCR MCR MCR MCR MCR MCR

I = 50 3
MDP

A
0.012

B
0.027

C
0.000

D
0.052

E
0.000 0.018

k-means 0.000 0.076 0.112 0.091 0.000 0.056

I = 50 5
MDP

F
0.016

G
0.060

H
0.137

I
0.143

J
0.071 0.085

k-means 0.171 0.265 0.180 0.326 0.179 0.224

I = 150 3
MDP

A
0.000

B
0.000

C
0.034

D
0.000

E
0.000 0.006

k-means 0.054 0.026 0.094 0.152 0.254 0.116

I = 150 5
MDP

F
0.005

G
0.029

H
0.140

I
0.161

J
0.056 0.078

k-means 0.171 0.242 0.177 0.153 0.219 0.192

I = 150 5
MDP

K
0.013

L
0.048

M
0.144

N
0.177

O
0.083 0.093

(imbalanced) k-means 0.066 0.097 0.156 0.161 0.240 0.144

Table 5.3: The misclassification error rates (indicated by MCR) are presented for each
scenario. The column “Proc.” indicates the method used to fit the data: mixtures of
Dirichlet processes (MDP, our method) or k-means clustering. Average misclassification is
presented in the last column. The better results for each scenario are highlighted with bold
text.
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Design

True
no.
clus

Proc.
Scenario Scenario Scenario Scenario Scenario

no.
clus

no.
clus

no.
clus

no.
clus

no.
clus

I = 50 3
MDP

A
4

B
3

C
3

D
3

E
3

k-means 3 3 7 6 3

I = 50 5
MDP

F
5

G
5

H
7

I
4

J
5

k-means 3 3 7 3 3

I = 150 3
MDP

A
3

B
3

C
3

D
3

E
3

k-means 4 3 3 8 3

I = 150 5
MDP

F
5

G
5

H
4

I
4

J
5

k-means 3 3 4 5 3

I = 150 5
MDP

K
6

L
5

M
4

N
4

O
5

(imbalanced) k-means 3 3 3 5 4

Table 5.4: The number of clusters obtained through the techniques are presented for each
scenario. The column “Proc.” indicates the method used to fit the data: mixtures of
Dirichlet processes (MDP, our method) or k-means clustering. The correct results for each
scenario are highlighted with bold text.

one psychological study of maternal depression and its impact on child development.

5.4.1 Latent Fingerprint Examination

Reliability and accuracy for feature-based comparison disciplines in forensic science such as

fingerprint examination, footwear comparison, bloodstain pattern analysis, and handwriting

comparisons is measured through black-box studies. In a typical black-box study, examiners

from various agencies, that may have different standards for forensic analyses, are asked to

analyze forensic samples with known ground truth. Forensic experts provide assessments of

the samples, based on the standards/ decision scale provided by the designers of the study,

just like they would in real casework. The steps taken by an examiner to reach a specific

conclusion are not defined and hence the decision-making process is treated like a “black

box”. In the black-box studies conducted so far, data is not collected in a way that allows

examiner performance to be connected to their characteristics. This is due to the protections

provided in IRB protocols.
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The accuracy or validity is defined by the correctness of the decisions. Reliability is defined

by the consistency of the decisions. The forensics community is interested in two types of reli-

ability; reproducibility and repeatability. Reproducibility or inter-examiner reliability is the

consistency of decisions across examiners for the same forensic evidence sample. Repeatabil-

ity is the consistency of decisions made by the same examiner for the same forensic evidence

sample at different points in time. Previously, Arora et al. (2022) and Arora et al. (2023)

have proposed statistical methods to assess the reliability and variability in decisions that

are collected in black-box studies. Our method provides another way to model variability in

decisions by encouraging parameter sharing among examiners in a cluster.

The Forensic Bureau of Investigation (FBI) conducted the first large-scale black-box study

to establish a scientific foundation for latent fingerprint examinations (Ulery et al., 2011,

2012). The study included 169 examiners from different laboratories all across the United

States participated in this study. There were a total of 356 latent prints used in the study

design. These were used to develop 744 latent print-exemplar pairs (520 known mates, 224

non-mates). Each examiner was presented with about a hundred latent print-exemplar pairs

and they were asked to conduct the examination just as they would in real casework.

Latent print examination is typically a multi-step process and most laboratories follow the

ACE-V procedure. The steps are analysis, comparison, evaluation, and verification. More

specifically, they involve: Analysis, when the latent print is analyzed for quality; Compar-

ison, an exemplar print is presented if the latent print is deemed suitable for comparisons;

Evaluation, examiners present conclusions based on all features observed during compar-

ison; Verification, some agencies present the latent print-exemplar pair independently to

another examiner for re-examination. Examiners were asked to provide their conclusion for

the analysis phase using the following ordinal categories: Value for Individualization (VID)

when the latent print has enough features to support an individualization decision; Value for

Exclusion Only (VEO) when the latent print has enough features to support an exclusion
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but not an identification; and No Value (NV) when the latent print does not have sufficient

information to carry out a comparison. The evaluation phase also has a three-point ordinal

decision scale as well; Individualization, when the examiner believes that the latent print and

exemplar come from the same source; Exclusion, when the examiner believes that the latent

and exemplar come from different sources; and Inconclusive, when the examiner is not able

to reach either of the other conclusions. We think of these as being ordered as Exclusion,

Inconclusive, and Individualization.

5.4.1.1 Clustering Examiners

We are interested in whether there exist clusters of examiners that make similar decisions

while accounting for variation in the samples examined. As a first step, we focus on conclu-

sions in the analysis stage. The decisions were on an ordinal scale of NV, VEO, and VID.

There were 169 examiners that participated in the study and 356 distinct latent prints in

the data. We fit the model with interactions given in the equations (5.7). We found that the

posterior median for σγ was 3.46 with 95% credible interval of (3.14, 3.82), the posterior me-

dian for σζ was 0.54 with 95% credible interval of (0.43, 0.66), and the posterior median for

κ3 was 1.90 with a 95% credible interval (1.76, 2.06). We observe that the interaction vari-

ation is much smaller compared to the latent print variance. Note it is difficult to interpret

κ3.

We present the inference for the examiner clusters through the consensus clusterings ob-

tained using the approach described in Section 5.2.5. We found that there were 7 clusters

of examiners in the data set based on their quality assessments. Figure 5.3 presents the dis-

tribution of percentages of decisions that are Value for Individualization (VID) assigned by

examiners in different consensus clusters. Similarly, Figures 5.4 and 5.5 present the percent-

ages of decisions that are Value for Exclusion Only (VEO) and No Value (NV) respectively.

We observe a clear difference in the frequency of use for the categories across the clusters,

especially VID and NV categories. Figure 5.6 presents the combined frequencies of NV and
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Figure 5.3: Differences in percentages of Value for Individualization (VID) decisions provided
by the examiners in different consensus clusters.

VEO decisions across consensus clusters.

Figure 5.7 is a heatmap of the analysis decisions of examiners across the samples. The

examiners (rows) are grouped by their consensus clusters indicated by the grayscale colors

on the left vertical axis of the plot, which are in turn ordered by the mean decisions within a

consensus cluster. The samples (columns) are ordered by the average decisions on the sample

increasing from left to right. The NV decisions are in red, VEO decisions are in green and

VID decisions are in blue. The top cluster has the most NV decisions and the least VID

decisions. The clusters below show fewer NV decisions and more VID decisions. There is

still variability within clusters.

Figure 5.8 is a comparison of decisions within a cluster against all the other clusters on ten

randomly chosen latent prints. Random noise has been added to the decisions to be able to

visualize how the ratings received by a sample in the same cluster are more similar compared

to the ratings across all other clusters.
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Figure 5.4: Differences in percentages of Value for Exclusion Only (VEO) decisions provided
by the examiners in different consensus clusters.

One hypothesis is that assessment will be more consistent (reliable) within clusters. We

explore this using average percentage agreement as reported in Ulery et al. (2012). It is

calculated as follows: let njm denote the number of times sample j was placed in category m

and nj. denote the total decisions on sample j. The P̄j, the percentage agreement for sample

j is:

P̄j =
1

nj.(nj. − 1)

M∑
m=1

njm(njm − 1)

and the average percentage agreement across samples is P̄ :

P̄ =
1

J

J∑
j=1

P̄j.

Percentage agreement ranges from 0 to 1 and is a method to evaluate the reproducibility

of decisions across raters. We expect that within the consensus clusters, the reproducibility
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Figure 5.5: Differences in percentages of Value for No Value (NV) decisions provided by the
examiners in different consensus clusters.

Figure 5.6: Distribution of percentages of (No Value indicated as NV, Value for Exclusion
Only indicated as VEO) decisions provided by the examiners in different consensus clusters
that are indicated by the different colors.
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Figure 5.7: Heatmap of analysis decisions is presented. Red indicates NV decisions, green
indicates VEO, and blue indicates VID decisions. The examiners (rows) are grouped by
the consensus clusters indicated by the grayscale colors in the left vertical axis in the plot.
The prints (columns) are ordered by the average decision on the print with NV=1, VEO=2,
VID=3.
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Figure 5.8: Decisions compared within a cluster (blue) against decisions across all other
clusters (pink) on ten randomly chosen latent prints.

of decisions will be higher when compared to the overall reproducibility. The percentage

agreement across all latent prints is 0.76. As expected, the percentage agreement within

clusters is higher with values 0.77 (n=27), 0.80 (n=29), 0.80 (n=48), 0.83 (n=45), 0.86

(n=16) for the five sizeable clusters in Figure 5.3. It is also interesting to see if these clusters

are meaningful outside of the analysis stage of decision-making. For example, do examiners

within a cluster also make evaluation decisions similarly? We analyzed the reproducibility

of the evaluation decisions of examiners within these clusters and compared it to the overall

reproducibility. The overall reproducibility, assessed through percentage agreement, for the

evaluation decisions was 0.76 on a total of 13174 decisions on the scale of Exclusion, In-

conclusive, and Individualization. The reproducibility within 5 of the 7 clusters (2 clusters

have < 5 examiner each) was 0.77 (n=27), 0.79 (n=29), 0.78 (n=48), 0.78 (n=45), 0.78

(n=16). The percentage agreement for evaluation decisions within the clusters of examiners

that make similar quality determinations is a bit higher compared to the overall agreement

for evaluation decisions though the differences are relatively small.
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Figure 5.9: Average pair decisions plotted against posterior clustering. As expected, the
latent-exemplar pairs are being clustered based on their tendencies to receive decisions.

5.4.1.2 Clustering Samples

So far we have discussed clustering raters based on their tendencies to rate samples in similar

ways. We are also able to cluster items or samples based on their tendencies to be rated

in the same way by examiners. We cluster the 744 latent-exemplar pairs in the FBI data

set based on their tendency to receive Exclusion, Inconclusive, or Individualization decisions

with the model (5.6). The truncation value for the stick-breaking procedure was chosen to

be T = 100 because it may be difficult to draw out meaningful observations if there are too

many clusters.

The posterior median for σα was 0.28 with a 95% credible of (0.23, 0.33). The examiner

variation is small which is expected due to the fact that the latent-exemplar pairs will have

a lot more variation compared to the variation in trained and practicing examiners. The

posterior median for κ3 with the 95% credible interval was 2.35 (2.11, 2.56),

There were 9 clusters of latent-exemplar pairs in the consensus clustering based on the poste-
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Cluster index No. of mates No. of non-mates

1 4 101

2 1 0

3 7 64

4 4 24

5 251 35

6 46 0

7 53 0

8 45 0

9 58 0

Table 5.5: Distribution of mated and non-mated pairs within consensus clusters.

Figure 5.10: Average examiner-reported difficulty of the comparison decision plotted against
the posterior clusters.
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rior samples. Figure 5.9 plots the spread of the average evaluation decisions received by the

pairs in the clusters. Cluster 5 seems to consist primarily of mated pairs that mostly receive

Inconclusive decisions (see Figure 5.9). Categorizing inconclusive decisions is a controversial

issue in assessing examiner proficiency and reliability; it is unclear whether they should be a

separate category, discarded, or treated as errors (Scurich, 2022). One suggestion has been to

identify samples for which there is a consensus that Inconclusive is the best answer. Cluster

5 in Figure 5.9 may provide a relevant set of examples. Inconclusives in these samples could

be interpreted as correct, while Inconclusives in other clusters as incorrect.

Table 5.5 presents the ground truth for the samples across the consensus clusters. Clusters

2, 5, 6, 7, 8, and 9 in Table 5.5 seem to have mostly mated pairs, and Clusters 1, 3, and 4

seem to have mostly non-mated pairs.

Figure 5.10 presents the average examiner-reported difficulty for the comparisons across

the samples in the clusters. There is a lot of variation in the type of conclusions received

in Clusters 4, 5, 6, and 7 in Figure 5.9 and they also receive higher examiner-reported

comparison difficulties as seen in Figure 5.10.

5.4.2 Handwriting Comparisons

The reliability and accuracy of handwriting comparisons have been previously studied by

many authors (Durina and Caligiuri, 2009; Kam et al., 1997, 2001; Kam and Lin, 2003; Kam

et al., 1994; Mitchell, 2016). Handwriting comparisons also follow the ACE-V procedure

described in subsection 5.4.1. The questioned handwriting sample should ideally contain

sufficient quality and quantity of information to qualify for comparisons and evaluations

with exemplar documents.

Hicklin et al. (2022) described the results from a black box study conducted to establish

a scientific foundation for handwriting comparison decisions. This study was conducted
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Parameters κ3 κ4 κ5 σγ σζ

Handwriting Comparisons
1.47

(1.42, 1.53)
2.26

(2.18, 2.33)
3.34

(3.26, 3.43)
1.53

(1.37, 1.71)
0.77

(0.66, 0.91)

Table 5.6: Results from fitting the model (5.7) to the comparison decisions in handwriting
black-box study with posterior medians for parameters and 95% credible intervals.

in a similar manner to the FBI latent fingerprint examination study (Ulery et al., 2011).

Eighty-six forensic document examiners from federal, state, and local agencies participated

in the study. Each examiner was assigned about 90 distinct questioned and known (QK)

sets (each set included a questioned sample and a known sample) from among 180 distinct

pairs that were prepared. Examiners carried out the analysis over a 10-month period. Ten

of the 90 QK sets were re-assigned to each examiner so that repeatability could be assessed.

Thus we have a total of 100 assessments for each examiner. Examiners were asked to make

assessments on a five-category ordinal scale: Written when the QK set is believed to come

from a single writer ProbWritten, when the examiner believes that the QK set was probably

written by a single writer; NoConc, when the examiner is not able to make a decision either

way; ProbNot, when the QK set is believed to probably not have been written the same

writer; NotWritten, when the QK set is believed to have different writers.

We cluster the 86 examiners based on their tendencies to rate samples based on the model

(5.7) with interactions. Table 5.6 presents posterior estimates of the parameters that are not

related to examiner clusters. We observe that there are some interactions between examiners

and handwriting samples as was observed in Arora et al. (2023).

Figure 5.11 provides the consensus clustering of the examiners based on the posterior draws.

There are six clusters in the data set with three clusters having one examiner each. Figure

5.11 demonstrates that the examiners in Clusters 4, 5, and 6 possibly provide a lot of NoConc,

ProbWritten, or Written conclusions compared to other examiners. The other clusters show

a clear tendency to rate samples similarly, assuming the type of pairs assigned to each

examiner is balanced.
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Figure 5.11: Average examiner conclusions plotted against posterior clusterings.

Figure 5.12: Heatmap of decisions across QK sets are shown for examiners in consensus
clusters, indicated by the grayscale colors on the left vertical axis. The QK sets (columns)
are ordered in increasing order of average decisions provided on the QK set. Red indicates
NotWritten, yellow indicates ProbNot, green indicates NoConc, blue indicates ProbWritten,
and violet indicates Written decisions. Clusters are also ordered by their average decisions.
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Figure 5.12, is a heatmap of the decisions on the QK sets (columns) within and across

the consensus clusters indicated by the grayscale vertical axis on the left of the heatmap.

The columns are ordered by average decisions in an increasing order and the examiners

are grouped by consensus clusters which are ordered by average decisions. Red indicates

NotWritten, yellow indicates ProbNot, green indicates NoConc, blue indicates ProbWritten,

and violet indicates Written decisions. Clusters are also ordered by their average deci-

sions.

Although we do not have covariate information for raters, we further explore the clusters

based on the information provided in Hicklin et al. (2022). They indicate that examiners

that had more than 2 years of formal training (73% ≈ 62 examiners) made less definitive

conclusions compared to examiners that had less than 2 years of formal training (27% ≈ 24

examiners). However, the examiners with more than 2 years of formal training also made

more accurate decisions on the samples for which they made definitive conclusions compared

to the examiners with less than 2 years of formal training. In Figure 5.13, we have plotted

the most frequent decisions provided by examiners in a cluster where 0 indicated more

definitive statements such as Written and NotWritten, 1 indicated probabilistic statements

such as ProbWritten and ProbNot, 2 indicated NoConc decisions. Figure 5.13 indicates

that the first cluster (n=17) made more definitive decisions, the pattern expected by less

experienced examiners. Clusters 2 and 3 (total n=66) tend to use probabilistic conclusions

more often.

5.4.3 Maternal Depression Data

We now apply the method to the data from an application in psychology. The Conte Center

at the University of California, Irvine aims at discovering the effects of early life adversity on

cognitive and emotional development in infants across species. In one study, they examined

the effects of maternal mood on a child’s mental health (Glynn et al., 2018). The maternal
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Figure 5.13: Tendency to make probabilistic statements in different clusters through exam-
iner modes.

mood was assessed in 934 mothers who were asked to fill the Center for Epidemiologic

Studies Depression Scale Short Form (CES-D SF) questionnaire (Radloff, 1977; Santor and

Coyne, 1997; Glynn et al., 2018). There are 9 questions that track depressive symptoms

of mothers on a Likert scale of 0-3 where 0 indicated no presence of depressive symptoms

such as lack of happiness, restless sleep, etc.; 1 indicated feeling the symptom sometimes;

2 indicated feeling the symptom occasionally; and 3 indicated feeling the symptoms all the

time. Additionally, covariates such as household income, household income to needs ratio,

marital status of the mother, and education level were also collected. This data set is

interesting for us because it provides an opportunity to cluster respondents and see if the

clusters are related to measured covariates. However, note that this data is different from

the data in the forensic black-box study setting because all mothers rated the same items

which are aimed at assessing depression.

We use the model (5.6) to fit these data. Note the slight change in category notation that
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range from 0 − 3 instead of 1 − 4 and the notation for cutpoints κm accordingly dictates

that: κ0 = −∞, κ1 = 0. Again, with the aim of extracting meaningful clusters in the data,

we truncated the stick-breaking process at T = 100. The posterior median for the standard

deviation of question effects, σγ, has the posterior median of 0.47 with a 95% credible interval

(0.30, 0.84). Note that the estimated standard deviation of question effects is very low which

can be explained by the fact that the questions assess very similar traits in the mothers, for

example, how depressed they felt or whether they had difficulty enjoying life. The posterior

median for κ2 (cutpoint between category 1 and 2) is 1.27 with 95% credible interval (1.23,

1.3); κ3 (cutpoint between category 2 and 3) has the posterior median estimate of 2.30 with

a 95% credible interval (2,22, 2.35).

Next, we look at the consensus clustering of the mothers. Figure 5.14 presents the dis-

tribution of the percentage of questions that were answered with a 3 on the Likert scale,

which indicates feeling depressive symptoms all the time, across the clusters. We notice

that there is a clear difference between the frequency with which the mothers in different

clusters respond with a 3 to the questions. Similarly, Figure 5.15 plots the distribution of the

percentage of questions that were answered with a 0 on the Likert scale, which indicates no

depressive symptoms, across the clusters. We observe a difference between clusters similar

to that seen in Figure 5.14.

We further investigate whether the posterior clusters have associations with underlying co-

variates. We hypothesize that the clusters may be related to covariates such as household

income and the marital status of the mother. Figure 5.16 plots the average log of household

income across the clusters. We see that there is almost a decreasing trend in the mean of

the log household income. Medians of log household income across the clusters were 11.08,

10.92, 10.71, and 10.71 respectively in the clusters. We also conducted an ANOVA test for

the log household income across the clusters and it was statistically significant with a p-value

of 0.0019.
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Figure 5.14: Distribution of the percentage of questions that were answered with a 3 across
clusters. On the Likert scale, 3 indicates feeling depressive symptoms all the time.

Figure 5.15: Distribution of the percentage of questions that were answered with a 0 across
clusters. On the Likert scale, 0 indicates feeling no depressive symptoms.
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Figure 5.16: Average of log household income across the posterior clusters. We did not have
the household income for all mothers which is why not all 934 mothers are included in this
plot.

5.5 Conclusions

We have presented a method to cluster raters based on their tendencies to classify items of

varying “difficulties” on an ordinal scale. Our approach is able to adjust for different exam-

ples while clustering raters. We deploy an MDP model, which encourages parameter sharing

between raters and has the advantage of not needing to pre-specify the number of clusters in

the data set. This method may also be used to cluster items. We demonstrated in Section

5.3 that our proposed method is able to correctly place examiners in clusters even when there

is an imbalance between the number of examiners in each cluster. Most misclassifications

were in cases when the clusters were not well separated from each other.

Our method has several applications: we are able to identify clusters of raters that make

decisions similarly, we are also able to generate further hypotheses based on this exploratory

technique. Another application of our method is using clusters of questions/items (based on
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their tendencies to receive similar decisions) to inform future study design. Our approach

was demonstrated with the experiments in Section 5.4 with latent fingerprint comparisons,

handwriting comparisons, and maternal depression data. In the examples, we gained in-

sights about the raters and items through the consensus clusterings based on the ordinal

ratings. For example, we found in the FBI study that the tendencies shared by examiners

for the analysis stage of latent fingerprint examination might generalize to their tendency

to make comparison decisions. We also clustered latent-exemplar pairs based on their ten-

dencies to be assessed similarly by examiners. Typically, it is tricky to evaluate whether

inconclusive decisions in black-box studies are errors or should be discarded before assessing

examiner proficiency. Our approach may provide a relevant set of examples that have a

consensus of Inconclusive decisions. The inconclusive decisions within these examples could

be interpreted as “true inconclusives” and inconclusive decisions on other examples may be

considered as incorrect. We hope that the findings in this paper are able to motivate future

studies to collect examiner and sample covariates. Forensic black-box studies are an inte-

gral technique for assessing the reliability and validity for subjective forensic examination

procedures. Typically, the reliability and validity are reported as an aggregate across all ex-

aminers and samples. However, as previously observed in Hicklin et al. (2022), the accuracy

of decisions depends on examiner covariates such as years of formal training. Additionally,

it is expected that reliability on samples that are more difficult to assess must be lower than

for the easier assessments. Previously, Arora et al. (2022, 2023) have presented a method

to model variability in forensic black-box studies. Our model is another way to model vari-

ability while accounting for possible interactions. In the future, we could bicluster based on

both raters as well as items; similar work that has been done in other settings (Rost, 1990;

Duong, 2013; Guo and Kwok, 2016).
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Chapter 6

Latent Factor Analysis for Binomial

Data with Applications to DNA

Methylation Data

6.1 Introduction

DNA methylation profiles of CpG islands (Moore et al., 2013) are known to be altered as a

result of the environment (Smith et al., 2020; Katrinli et al., 2022). However, the variation in

DNA methylation that is associated with changes in the environment is highly confounded

by inter-individual variation and variation in epigenome due to age and tissue (Hüls and

Czamara, 2020; Czamara et al., 2021). Exploratory dimension reduction techniques are

often used for analyzing epigenetic data due to the high-dimensional nature of such data

(Richardson et al., 2016). For example, Jiang et al. (2019) have used principal component

analysis (PCA) for analysis of DNA methylation data in rats to differentiate between pups

that were exposed to early life adversity and the control group. Short et al. (2023) also used

PCA in DNA methylation data for human infants. However, it was observed that the first
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several principal components did not explain a significant portion of the data.

We posit that part of the reason that PCA explains limited variation in human data is due

to the quality of the samples and the limitations in sequencing technologies that entail that

not all subjects have sufficient reads for all CpG sites. Additionally, PCA aims to extract

lower dimensional representations of the data that are obtained with linear combinations

of the features. This method may be restrictive because it does not explicitly account for

measurement errors; methods such as factor analysis (FA) although similar to PCA (Tipping

and Bishop, 1999) may have an advantage over PCA by accounting for measurement error

(Harman, 1976; Kim et al., 1978; Rummel, 1988).

In this paper we introduce a Binomial Latent Factor Analysis (BLFA) model, an exploratory

method that accounts for variation in the number of reads through a binomial distribution;

the true proportions of methylation profiles are further assumed to depend on a small di-

mensional space through a factor analysis (FA) model. We encourage sparse representations

of the factor analysis model with a spike-and-slab prior on the elements of the factor load-

ing matrix (George and McCulloch, 1997). The Binomial Latent Factor Analysis (BLFA)

model has several contributions: we are able to account for heterogeneity in sample sizes and

account for measurement variation; our model is also able to extract sparse representations

of the factor loading matrix so that the pathways that contain the methylated sites that

explain more variation in the data can be deduced.

This paper is structured in the following way. We begin Section 6.2 with a description of

the typical DNA methylation data setup that motivated the proposed method. We also

describe the variation in the reads obtained across the CpG sites and across subjects and

how that can affect the statistical inference of the data. Section 6.3 begins with a discussion

of factor analysis models followed by the Binomial Latent Factor Analysis (BLFA) model

and the algorithm used for fitting the method. In Section 6.4, we present some results from

applying the BLFA model to simulated data sets and compare the BLFA method with a

125



baseline model. This discussion is followed by applying our model in Section 6.5 to a data

set collected from 107 infants that had different early life experiences. Section 6.6 presents

a discussion and proposes future directions for this work.

6.2 DNA Methylation Data

We briefly describe the data setup for methylation data. DNA samples are collected from

different subpopulations of subjects that share characteristics such as disease status or envi-

ronmental factors such as early life adversity. DNA samples are processed using methylation

sequencing techniques such as the reduced representation bisulfite sequencing (RRBS) tech-

nique. Denote sites along the DNA as j = 1, 2, . . . , d and subjects by i = 1, 2, . . . , N , then

let nij be the reads obtained for subject i on site j and let yij be the methylated reads

within the nij total reads. The collected data can be arranged in two matrices of size d×N ;

one matrix can contain the reads nij and the second matrix can have the methylated reads

yij.

Such data is typically analyzed through p̂ij =
yij
nij

also known as β-values in the literature.

Due to the high dimensional nature of omics data, the analysis is focused on the sites

that show significant change across subpopulations, for example, disease/ control sites, time

point 1/ time point 2 sites, etc. The sites that show significant changes in methylation

across subpopulations of interest are called differentially methylated sites (DMS). Due to

the limitations in sequencing technology and the quality of the samples collected, there is

often significant variation in the number of reads nij that are used to estimate p̂ij.

Statistical techniques for DNA methylation data

Statistical techniques that are appropriate for analyzing DNA methylation data have been

developed and compared in numerous studies. Siegmund et al. (2004) used a Bernoulli-

lognormal mixture model that used a Bernoulli model to account for zeroes that are observed
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and a mixture model to separate aberrant DNA methylation patterns. Du et al. (2010) com-

pared the performance of β-values
(

yi,meth

yi,meth + yi,unmeth +α0

)
and M-values

(
log2

(
yi,meth +α0

yi,unmeth +α0

))
for quantifying the methylation and concluded that M-values are more suited to differential

analysis of methylation levels as they are more robust to heteroskedasticity and beta-values

are more biologically interpretable. Zhuang et al. (2012) found that M-values aggravated the

effects of outliers on inference for methylation levels and preferred β-values for principal com-

ponent analysis. We use β-values which are more interpretable and additionally account for

the difference in sample sizes used to estimate the proportions. Ma and Teschendorff (2013)

applied a variational Bayes beta mixture model to perform feature selection and avoid false

positives in detecting biomarkers in DNA methylation data. Dimension reduction tech-

niques on DNA methylation data have been compared by Ma et al. (2014). Non-Gaussian

and Gaussian dimension reduction techniques, followed by clustering were compared and

it was concluded that non-Gaussian techniques that accounted for the bounded nature of

β-values had the better performance in terms of clustering. Hubin et al. (2020) has been the

only work so far that has accounted for the count variation in the methylation reads. They

modeled the methylation counts in a regression model with auto-correlated errors between

neighboring sites.

Jiang et al. (2019) used PCA to study the differences in DNA methylation profiles between

rodent pups in limited bedding and nesting (LBN) and control groups. They collected buccal

swabs from pups on post-natal day 2 and then they were randomly assigned to control and

LBN groups. Buccal swabs were again collected on post-natal day 10. Principal component

analysis on the DMS (differentially methylated sites that showed significant changes between

post-natal day 2 and post-natal day 10) was able to distinguish between methylation profiles

at different ages but not able to differentiate between different experiences. They further

used an intra-individual approach called δ-methylation scores (log2 (
p10
p2
), pn=proportion of

methylation at CpG site at postnatal day n) to differentiate between pups in LBN and

control groups. It was found through the principal component weights that differentiated
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between experiences, that rats in the LBN group had more methylation in genes that were

responsible for important metabolic functions and less methylation in genes related to in-

flammation.

In human subjects, PCA techniques have not been successful in explaining a lot of the

variation in the data. We would like to account for the heterogeneity in the number of reads

nij across individuals while possibly extracting latent representations of the methylation

proportions that explain the variation in the profiles. PCA aims to extract lower dimensional

representations of the data that are obtained with linear combinations of the features. This

method may be restrictive because it does not explicitly account for measurement errors;

methods such as factor analysis (FA) although similar to PCA (Tipping and Bishop, 1999)

may have an advantage over PCA (Harman, 1976; Kim et al., 1978; Rummel, 1988).

6.3 Methods

A principal component analysis (PCA) might have limitations when applied to empirical

proportions of methylations due to the high variability in counts. We develop a method

that accounts for the variation in empirical proportions due to limited counts and accounts

for measurement error. We assume a factor analysis model on unobserved methylation

proportion profiles that influence the observed methylated counts yij and observed propor-

tions
yij
nij

. We briefly review factor analysis methods before introducing our proposed BLFA

model.

6.3.1 Bayesian Factor Analysis

Bayesian factor analysis has been widely studied and applied to scientific and sociological

studies. Factor analysis is known to have infinite solutions due to the model being invariant

to multiplication with an orthogonal matrix. This problem is known as rotational invariance

and a lot of literature focuses on fitting factor analysis models that introduce the uniqueness
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of solutions, for example, some methods impose a positive lower triangular structure on the

factor loadings (Geweke and Zhou, 1996; Bernardo et al., 2003; Lopes and West, 2004),

and Frühwirth-Schnatter and Lopes (2018) recommended the use of a generalized lower-

triangular representation of the factor loading matrix that avoids overfitting in a sparse

model and correctly recovered the unknown number of factors.

There have also been efforts to perform sparse BFA so that the factor consists of fewer

features for an interpretable model. Also since the number of factors are unknown a priori,

methods have been explored that can either compare the fit between models that are fit

with different number of factors or estimate the number of factors. Bernardo et al. (2003),

Carvalho et al. (2008), and Bhattacharya and Dunson (2011) used different sparsity priors on

the factor loading matrix to encourage sparsity, estimate the number of factors and perform

Bayesian variable selection. Bai and Ng (2002) proposed an information criteria that can be

used in large n and large p situations to compare models with different number of factors.

Lopes and West (2004) proposed a reversible jump Markov chain Monte Carlo technique

that can vary between different number of factors. Conti et al. (2014) proposed a Bayesian

factor analysis model where each item loads onto at most one factor which produces sparse

representations and can estimate the number of factors in the factor loading matrix. Finally,

Ročková and George (2016) used a new sparsity prior (spike-and-slab Lasso, Ročková and

George, 2018) coupled with an Indian Buffet process prior to avoid pre-specifying the number

of factors.

6.3.2 Binomial Latent Factor Analysis (BLFA) Model

Let i = 1, 2, . . . , N , denote the samples (subject), j = 1, 2, . . . , d, denote the sites. The

number of sites could include all CpG sites or just a subset based on a preliminary statistical

analysis (i.e., DMS). For the jth site in individual i, let nij be the number of observed reads in

the DMS, and yij be the number of methylated reads. A binomial distribution is assumed for

129



yij with nij trials and an unknown probability of methylation, pij. Denote the d-dimensional

vector of methylation probabilities across sites for a sample i as pi. We assume that pij

depend on a latent variable Zij through a probit link. We assume that the vector of latent

variables Zi can be represented through a factor analysis model with a q-dimensional factor

representation xi,q×1 (q << d). We write the model as follows:

yij | pij ∼ Binomial(nij, pij)

pij = Φ(Zij)

(Zi)d×1 |W, x, µµµ ∼ MVN(Wd×qxi,q×1 + µµµd×1,ΣΣΣ),

(6.1)

where Φ(.) is the standard Gaussian cumulative density function and the final equation uses

a traditional FA setup (Harman, 1976; Rummel, 1988). The factor loading matrix Wd×q

defines the mapping from the d-dimensional vector Zi to a lower-dimensional representation

xi. The factor loading matrix W, the intercept vector µµµd×1, and the variance-covariance

matrix ΣΣΣ is shared across individuals. If a significant fraction of the variation in Zi can be

captured in a few underlying continuous latent variables for all individuals, then the sites

loading on these factors may shed insights on the samples. We assume that conditional

on W, xi, and µµµ, Zij are independent for all j, so that ΣΣΣ = diag(σ2
1, σ

2
2, σ

2
3, . . . , σ

2
d) is a

diagonal matrix. It is a typical assumption in factor analysis that xi ∼ MVN(0q×1 , Iq×q).

This assumption means that the factors are independent and centered around zero. The

variance of xik, k = 1, 2, . . . , q are fixed at the identity for identifiability of the factor loading

matrix W.

The key differences between a traditional factor analysis model and BLFA is that our model

makes the distinction between pij and p̂ij and assumes the factor analysis model applies to

the unobserved methylation proportions.

130



6.3.3 Prior Distributions

We now discuss the prior distributions for the parameters of the BLFA model (6.1).

The model attempts to explain high-dimensional data in terms of a smaller number of factors

with a subset of sites associated with each factor. This preference for sparse factor loading

matrices W is expressed through the prior distribution on the elements of W . George and

McCulloch (1997) introduced a spike-and-slab (SS) prior that uses a mixture of Gaussian

distributions with different variance parameters for the “spike” (small variance) and “slab”

(large variance) part:

π(wjk | γjk, σ2
j, spike, σ

2
j, slab) = (1− γjk)ϕ(wjk | 0, σ2

j, spike) + γjk ϕ(wjk | 0, σ2
j, slab)

σ2
j, slab = σ2

j σ
2
slab

σ2
j, spike = σ2

j σ
2
spike

ϕ(wjk | 0, σ2) =
1√
2π σ2

exp

(−w2
jk

2σ2

)
γjk | θk ∼ Bernoulli (θk) j = 1, 2, . . . , d; k = 1, 2, . . . , q

(6.2)

In the priors for the factor loadings, the elements wjk are selected from either a “spike”

Gaussian distribution with parameter σ2
spike or a “slab” Gaussian distribution with parameter

σ2
slab, where σ2

slab >> σ2
spike. The γjk are indicators as to whether the spike or the slab

distribution is used for the site j for factor k respectively. The indicators γjk follow a Bernoulli

distribution with success probability θk, shared by the factor loadings in a column. The

hyperparameters σ2
slab and σ2

spike are not estimated and are specified such that σ2
slab >> σ2

spike.

We use a simple prior for θk, such as a uniform distribution on the unit interval:

θk ∼ Beta(1, 1) (6.3)
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Non-informative priors are used on both µj and σ2
j :

π(µj) ∝ 1

π(σ2
j ) ∝ Inv-Gamma(

1

2
,
1

2
) ∀ j ∈ {1, 2, . . . , d}.

6.3.4 Choosing the dimension q

The model described in Sections 6.3.2 and 6.3.3 depends on the dimension of the underlying

factors q. It is common in PCA or FA to fit the model with different values of q and compare

the results through metrics such as cross-validation loss or variance explained. We briefly

describe the Indian Buffet process prior that can automatically infer the number of factors

q in the factor analysis model.

The Indian Buffet Processes (IBP, Ghahramani and Griffiths, 2005; Teh et al., 2007; Knowles

and Ghahramani, 2007; Griffiths and Ghahramani, 2011) are stochastic processes that define

distributions over sparse binary matrices with a finite number of rows and potentially an

infinite number of columns. The IBP prior is used in situations when the number of columns

in a matrix are not assumed to be known. Teh et al. (2007) proposed a stick-breaking

formulation for the IBP. First, consider a beta-Bernoulli prior on the elements of a finite

binary matrix Γ with d rows and q columns as in our specification (6.3). For each column

k = 1, 2, . . . , q, θk is defined as the probability that γjk = 1 for the elements in column k.

The θk are modeled as draws from a beta distribution:

θk
i.i.d∼ Beta

(
α

q
, 1

)
, ∀k = 1, 2, . . . , q

Teh et al. (2007) define the IBP after marginalizing θk and taking the limit q → ∞. Addi-

tionally, a stick-breaking construction for IBPs was presented which is very similar to the

stick-breaking construction for Dirichlet Processes (Sethuraman, 1994). We next define the
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stick-breaking construction for the IBP. Define, the ordered elements of the vector θq as

θ(1) > θ(2) > θ(3) > . . . > θ(q). Then, in the limit q −→ ∞, the following stick-breaking law

holds:

θ(k) =
k∏

k0=1

vk0

vk0
i.i.d.∼ Beta(α, 1), ∀ k0.

(6.4)

The model specification in (6.3) incorporates a fixed uniform prior on the set of θk’s with

known q. We can replace that prior with (6.4) to obtain the IBP prior on the binary matrix

that represents whether the factor loading matrix has non-zero elements. This prior on the

binary matrix, ΓW = [γjk]d×q = [ I(|wjk| > 0) ]d×q avoids the need to pre-specify the number

of factors in the sparse factor loading matrix. This setup has also been used in Ročková and

George (2016) for a sparse factor analysis model.

For the preliminary results provided here, we fix q and compare results across different

values.

6.3.5 Computation

The BLFA setup presented above with the model (6.1) and priors (6.2, 6.3) are fit to the data

by using an expectation-maximization algorithm to obtain maximum a posteriori (MAP) pa-

rameter estimates. Note that the number of factors q is pre-specified here. The Expectation

Maximization (EM) algorithm is an iterative approach for obtaining maximum likelihood

(ML)/ maximum a posteriori (MAP) parameter estimates in the presence of missing or

latent variables (Dempster et al., 1977).

We start by specifying the joint distribution L (up to a constant) of the data yij, latent

variables x,ΓΓΓ, and the parameters W,p,µ,θ,ΣΣΣ, that is proportional to the product of the
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conditional distributions specified in (6.1), (6.2), and (6.3):

L ∝ π(y | p) π(p |W,µ,Σ) π(W |Γ, σ2
j, spike, σ

2
j, slab) π(Γ | θ) π(xi) π(µ)π (θ)π(Σ)

∝
N∏
i=1

d∏
j=1

p
yij
ij (1− pij)

nij−yij ×

N∏
i=1

1√
|Σ|

exp

(
−(Φ−1(pi)−Wxi − µ)TΣ−1(Φ−1(pi)−Wxi − µ)

2

)
exp

(
−xTi xi

2

)
×

(6.5)

d∏
j=1

q∏
k=1

γjk
1√

σ2
j, slab

exp

(
−w2

jk

2σ2
j, slab

)
+ 1− γjk

1√
σ2
j, spike

exp

(
−w2

jk

2σ2
j, spike

)
×

d∏
j=1

q∏
k=1

(1− θk)
1−γjkθ

γjk
k ×

q∏
k=1

θa−1
k (1− θk)

b−1 ×
d∏

j=1

1

(σ2
j )

3
2

exp

(
−1

2σ2
j

)

The expression L in (6.5) is maximized with respect to the parameters of interest ΩΩΩ =

(p,W,µµµ,θθθ,ΣΣΣ), with the components x,ΓΓΓ are treated as latent or missing. In the first (ex-

pectation) step, we derive the expected value of the complete data likelihood L with respect

to the conditional distribution of the latent variables x and ΓΓΓ given the data and the param-

eters ΩΩΩ = (p,W,µµµ,θθθ,ΣΣΣ). In the second (maximization) step, the expression obtained from

the expectation step is then maximized with respect to the parameters ΩΩΩ = (p,W,µµµ,θθθ,ΣΣΣ).

This may be done simultaneously if possible or we can find maxima of each parameter in ΩΩΩ

one at a time. The latter approach is called Expectation Conditional Maximization (ECM,

Meng and Rubin, 1993). These two steps are repeated until convergence. The general EM

steps are defined below where t denotes the iteration number:

E-step: Q(Ω |Ω(t)) ≡ Eπ(x,Γ |Ω(t)) [ log (L) ]

M-step: Ω(t+1) ≡ arg maxΩ Q(Ω |Ωt))

(6.6)

The EM steps for fitting the model (6.1) through the expression proportional to the log

posterior given in (6.5) are discussed in more detail here. In the tth iteration, conditional on
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Ω(t)Ω(t)Ω(t), the E-step replaces functions of the augmented variables xi and ΓΓΓ with their expected

values with respect to the conditional distribution π(x,ΓΓΓ |Ω(t)Ω(t)Ω(t), y). The binary elements of ΓΓΓ

appear in log L, thus the E-step computes E(γjk |Ω), denoted as γ̂
(t)
jk in the tth iteration:

γ̂
(t)
jk =

ϕ(w
(t−1)
jk | 0, σ2 (t−1)

j, slab ) θ
(t−1)
k

ϕ(w
(t−1)
jk | 0, σ2 (t−1)

j, slab ) θ
(t−1)
k + ϕ(w

(t−1)
jk | 0, σ2 (t−1)

j, spike ) (1− θ
(t−1)
k )

∀ j = 1, 2, . . . , d; k = 1, 2, . . . , q,

(6.7)

where ϕ( . |µ, σ2) denotes the Gaussian density function for a distribution with mean µ and

variance σ2. The conditional distribution of xi given ΩΩΩ is multivariate Gaussian distribution

with mean (Iq×q +W TΣ−1W )−1W TΣ−1(Zi − µ) and variance (Iq×q +W TΣ−1W )−1. These

are used to calculate the E(xi |Ω) denoted as x̂
(t)
i and E(xix

T
i |Ω) denoted as x̂2

(t)

i which are

needed to compute E (logL).

x̂
(t)
i = (Iq×q +W T (t−1)Σ−1 (t−1)W (t−1))−1W T (t−1)Σ−1 (t−1)(Z

(t−1)
i − µ(t−1)) (6.8)

x̂2
(t)

i = (Iq×q +W T (t−1)Σ−1 (t−1)W (t−1))−1 + x̂
(t)
i x̂

T (t)
i .

The maximization step involves maximizing the result from the expectation step with respect

to the parameters in ΩΩΩ. This can be done analytically for W,µ,Σ, θ after some linear algebra
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manipulation in Q(W,Σ |W (t),Σ(t)):

Q(W,Σ |W (t),Σ(t)) ∝
N∑
i=1

(
log(

√
|Σ|)−

(
−(Φ−1(pi)−Wx̂

(t)
i − µ)TΣ−1(Φ−1(pi)−Wx̂

(t)
i − µ)

2

)

+

(
x̂
T (t)
i W TΣ−1W x̂

(t)
i − x̂2

(t)

i W TΣ−1W

2

))
+

q∑
k=1

d∑
j=1

1

σ2
j

(
γ̂
(t)
jk

−w2
jk

2σ2
slab

+ 1− γ̂
(t)
jk

−w2
jk

2σ2
spike

)
− 1

2

q∑
k=1

d∑
j=1

log(σ2
j )−

d∑
j=1

1

2σ2
j

=

N∑
i=1

(
log(

√
|Σ|)−

(
−(Φ−1(pi)−Wx̂

(t)
i − µ)TΣ−1(Φ−1(pi)−Wx̂

(t)
i − µ)

2

)

+

(
W TΣ−1W (Iq×q +W T (t−1)Σ−1 (t−1)W (t−1))−1)

2

))
+

q∑
k=1

d∑
j=1

1

σ2
j

(
γ̂
(t)
jk

−w2
jk

2σ2
slab

+ 1− γ̂
(t)
jk

−w2
jk

2σ2
spike

)
− 1

2

q∑
k=1

d∑
j=1

log(σ2
j )−

d∑
j=1

1

2σ2
j

The second term in the expression (
∑N

i=1
x̂
T (t)
i WTΣ−1 W x̂

(t)
i −x̂2

(t)

i WTΣ−1 W

2
) is a trace of a matrix

and can be written as a function of N
∑d

j=1 w̃j
T (Iq×q +W T (t−1)Σ−1 (t−1)W (t−1))w̃j. Define,

Z0 =

(ZT
N×d − µT ) = (Φ−1(p)− µT )

0q×d


(N+q)×d

and

x0 =

 x̂T
N×q

√
N(Iq×q +W T (t−1)Σ−1 (t−1)W (t−1))

− 1
2

q×q


(N+q)×q

, then the maximization steps are:

w̃j
(t) = (xT0 x0 + Λ

(t)
j, q×q)

−1xT0 Z0,j , where, Λ
(t)
j = diag

 γ̂
(t)
jk

σ2
slab

+
1− γ̂

(t)
jk

σ2
spike

 , k = 1, 2, . . . , q

µ
(t)
j =

∑N
i=1(Φ

−1(p
(t)
ij )− x̂Ti w

(t)
j )

N
, j = 1, 2, . . . , d

σ
2 (t)
j =

∑N+q
i=1 (Z0,i,j − x0,iw

(t)
j )2 +

∑q
k=1 Λ

(t)
j,kkw

2 (t)
jk + 1

N + 2 q + 1
, j = 1, 2, . . . , d (6.9)

θ
(t)
k =

∑d
j=1 γ̂

(t)
jk

d
, k = 1, 2, . . . , q

Note that in the maximization steps for the loadings w̃j , Λj is a diagonal matrix consisting of
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elements that are a function of ⟨γjk⟩, σspike, and σslab. The maximization expression for w̃j is

obtained as the closed-form estimate of ridge regression (Ročková and George, 2014).

The maximization step for methylation proportions pij involves finding the maximizing value of

the function specified below:

yij log(pij) + (nij − yij) log(1− pij)−
(Φ−1(pij)− x̂iw̃j

(t) − µ
(t)
j )2

2σ
2 (t)
j

(6.10)

We achieve this by using the optimize function in the R programming language. Alternatively, the

Newton-Raphson algorithm (Ypma, 1995) can also be employed.

Additionally, at the end of each ECM step, we perform varimax rotations (Kaiser, 1958) on the

factor loading matrixW , similar to the technique used in Ročková and George (2016). This rotation

allows variables to load onto fewer factors and makes the results easier to interpret.

6.4 Simulation Studies

We demonstrate the analysis approach on simulated data.

6.4.1 Data Generation Technique

We describe our approach for generating simulated data for d sites, N samples, and q factors. In

all simulations the number of samples, N was fixed to 50. The factor analysis parameters σ2
j = 1

and µj = 0.5, j = 1, 2, . . . , d, are also fixed for all simulations. To generate the latent scores Zi

we need to specify W . We simulate different W values for different values of d = 100, 500, 1000

and q = 3, 5, 7. In all cases, W is a block-diagonal matrix so that starting with the first column,

adjacent rows in W are set to 1 and the rest of the elements in the column are set to 0. An example

of a block-diagonal factor loading matrix is demonstrated in Figure 6.1. Zi = Φ−1(pi) are then

generated with a multivariate normal (MVN) distribution having mean µ and variance-covariance

matrix W TW+Σ, the marginal distribution of Zi once xi is integrated out. Finally, our approach is
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intended to address binomial sampling variability; we introduce this variation by randomly drawing

yij ∼ Bin(nij , pij), with the binomial counts nij uniformly sampled from [5, 50].

Fitting the data

The input to the algorithm are yij , nij and starting values for parameters ΩΩΩ0, which are generated

randomly. We use a Gaussian distribution for W,µ and σ2
j . The proportions θk and p are uniformly

generated from the interval (0,1). The hyperparameters are set as σ2
spike = 0.1 and σ2

slab = 100. Note

we assume that the number of latent factors (q) is specified. The ECM steps provided in (6.7, 6.8,

6.9, 6.10) are repeated until the maximum absolute difference in W values, maxj,k |w
(t+1)
jk −w

(t)
jk | are

less than a very small number, e.g., ϵ = 0.05. Additionally, we monitor the log posterior probability

(up to a proportionality constant) given by log (L) (6.5).

Baseline Model

In previous exploratory analyses of DNA methylation data (Du et al., 2010; Ma et al., 2014; Jiang

et al., 2019) the methylation proportions are used without accounting for binomial variation. In

order to assess the contribution of accounting for binomial variation, we compare the BLFA model

to a baseline model that uses factor analysis on the probit transformed proportions.

p̂ij =
yij
nij

Φ−1(p̂ij) = Zb
ij

Zb
i |W b, µb, xb,Σb ∼ MVN(W bxbi + µb,Σb)

(6.11)

We assume a spike-and-slab prior on the factor loading matrix for the baseline model similar to

the setup presented earlier. The only change in this method is ignoring the binomial variation. We

compare metrics such as root mean squared error (RMSE) between the true methylation proportions

and the estimated methylation proportions, and the Frobenius norm
√∑

ij(aij − bij)2 between the

true and estimated variance-covariance matrices of the distributions for Φ−1(p) marginalized over

x (W TW +Σ).

138



Results

Data was generated for six total designs: i) d = 100 and q = 3, 5, ii) d = 500 and q = 5, 7, iii)

d = 1000 and q = 5, 7. Details for the W used to simulate the data have been provided in Section

6.4.1. For each design (i.e., each choice of d and q), we generate 5 data sets and report results

combined over the five repetitions. Figure 6.2 shows an example of the recovered factor loading

matrix after convergence for one of the simulated cases with the simulated block diagonal matrix

given in Figure 6.1. Note that the columns get re-ordered because the factor loading matrices are

only identifiable up to a rotation of columns. We can see that factor 2 in the recovered loading

matrices corresponds to factor 5 in the original. The same is true for other factors. Figure 6.3

shows the trend in the log posterior (6.5) as a function of iteration for a simulated example. These

figures demonstrate that our algorithm is able to recover the factor structure pretty well.

Table 6.1 reports the mean RMSE and Frobenius norm for 5 simulated data sets in each setting

with the BLFA method (6.1) and baseline method (6.11). It is important to note that the Frobenius

norm increases with d because it has not been normalized. We notice that for most settings, our

method performs better compared to the baseline model in terms of RMSE and Frobenius norm.

The RMSE is better with our model for q = 3 and 5, and worse for q = 7 compared to the baseline

across all examples. The Frobenius norm obtained by the BLFA method was lower for d = 500,

and 1000 compared to the baseline for 4 out of the 5 simulated data sets and higher for d = 100 in

all 5 simulated data sets.

We also study the effect of misspecifying q in two settings: i) d = 100 and qtrue = 5 and ii) d = 100

and qtrue = 7. For both these designs, 5 data sets were generated and then fit using 3 values of

qfit each so that: qfit,1 < qfit,2 = qtrue < qfit,3. Table 6.2 reports the mean RMSE, mean Frobenius

norm, and the value of log(L) in expression (6.5) over the 5 simulated data sets. We notice that

RMSE is worse when qfit > qtrue and Frobenius norm is worse when qfit < qtrue. The criteria log(L)

increases with qfit. These results indicate that the method does not necessarily identify the true

number of underlying factors.
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Figure 6.1: An example of the simulated block diagonal factor loading matrix W that was
generated for simulations for d = 500 sites and q = 5 underlying factors.

Figure 6.2: The recovered factor loading matrix. An example of the resulting factor loading
matrix obtained after fitting the simulated data with the simulated block diagonal matrix
in Figure 6.1.
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Figure 6.3: Log posterior of L in expression (6.5) is plotted before convergence for a simulated
data set.

Metric
Setting

Mean
RMSE (BLFA)

Mean
RMSE (baseline)

Mean Frobenius
norm (BLFA)

Mean Frobenius
norm (baseline)

d = 100
qtrue = 3

0.0775 0.0816 46.8976 42.8977

d = 100
qtrue = 5

0.0795 0.0823 35.723 33.0995

d = 500
qtrue = 5

0.0805 0.0825 171.1929 185.2211

d = 500
qtrue = 7

0.0821 0.0813 147.3723 159.0564

d = 1000
qtrue = 5

0.0810 0.0821 358.9809 378.2567

d = 1000
qtrue = 7

0.0834 0.0820 287.4971 318.2121

Table 6.1: Average RMSE and Frobenius norm between true W TW + Σ and estimated
W T

estWest + Σest are reported across 5 simulated cases for each design (d and q). Data is fit
using BLFA method (6.1) and baseline method (6.11).
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Metric
Setting

Mean
RMSE (BLFA)

Mean Frobenius
norm (BLFA)

Mean
log(L) (BLFA)

d = 100
qtrue = 5, qfit = 4

0.0791 37.2928 -58957.21

d = 100
qtrue = 5, qfit = 5

0.0795 35.7230 -58674.73

d = 100
qtrue = 5, qfit = 7

0.0822 36.4136 -58398.18

d = 500
qtrue = 7, qfit = 5

0.0796 162.8881 -291079.2

d = 500
qtrue = 7, qfit = 7

0.0821 147.3723 -288246.6

d = 500
qtrue = 7, qfit = 10

0.0880 137.2893 -286012.4

Table 6.2: Effect of misspecifying q is compared through RMSE, Frobenius norm, and mean
log posterior. qfit indicates the q that was assumed and qtrue indicates the true number of
factors that were used to generate the data.

6.5 Studying DNA methylation in Human Subjects

Data

The Conte Center at the University of California Irvine aims to study the effects of early life

adversity (ELA) on cognitive and emotional development. DNA methylation data is being explored

to assess whether there is an epigenetic signature of ELA. The analysis of these data motivated the

development of the BLFA method.

We briefly describe the data that were gathered. DNA samples were collected through buccal swabs

from N=107 infants at one month of age and then again at one year post birth. DNA sequencing was

done through reduced representation bisulfite sequencing (RRBS) technique followed by aligning

the reads with the reference genome with Bismark 0.16.3 (Short et al., 2023, Krueger and Andrews,

2011). This procedure identified > 1.6× 106 distinct methylated or unmethylated CpG sites across

individuals and time points.

We focus on methylated sites that show significant changes in methylation across time points of 1

month of age and 1 year of age; firstly, sites that had more than ±5% change in methylation were
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identified. These sites were then tested for change in the methylation proportions with a Fisher’s

exact test and the logarithm of these p-values for each site was added across individuals. Define,

Tj = −2
∑N

i=1 ln(ρij), ρij denotes the p-value for Fisher’s exact test (Fisher, 1922) for subject i at

site j (Dai et al., 2014). Under the null hypothesis that ρij ∼ Unif(0, 1), statistic Tj follows a χ2
2N

distribution (Fisher, 1992); so for each site we obtained a new p-value with ρχ,j = P (T > Tj |H0).

We then used the Benjamini-Hochberg procedure to control for false discovery rate q=0.1 with the

p-values ρχ,j (Benjamini and Hochberg, 1997). Sites that were selected after this process were used

for downstream analysis with the BLFA model proposed in Section 6.5. These sites were called

differentially methylated sites (DMS). There were 14,103 DMS in our data.

Due to limitations in sequencing techniques and the quality of samples collected, note that the

resulting DMS data has a lot of variation in the number of reads nij . We are interested in using

β-values
(

yi,meth

yi,meth + yi,unmeth +α0

)
which can display a lot of variation especially when there are an

insufficient number of reads, i.e., the denominator is small. For example, in our data, ≈ 40.4% of

the DMS have less than 30 reads to estimate the methylation proportion (β value) and ≈ 70.9%

of the DMS have less than 50 reads. However, some sites have more than 1000 reads for some

individuals. Note that for < 1% of the data across individuals and sites, there are 0 reads for a

site. This situation arises when a site is a DMS but there were no reads for an individual for that

site during the sequencing. The BLFA model presented in Section 6.3 addresses the heterogeneity

in read counts.

Quantifying Childhood Unpredictability

Along with DNA samples, some other covariates such as sex, household income, etc. were collected

for each infant child. One of the main aims of this study was to understand the associations

between childhood unpredictability and DNA methylation. One of the methods used for quantifying

unpredictability is entropy (Davis et al., 2017; Vegetabile et al., 2019; Davis et al., 2022). For a

discrete random variableX withK states and probability mass function: π1, π2, . . . , πK , the entropy

is defined as follows:
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H(X) = −
K∑
k=1

πklog2(πk)

Interactions between a mother and child were recorded and sensory input to infants was measured

through combinations of auditory, tactile, and visual input (23 = 8 total states). These interactions

were then modeled with a first-order Markov chain and the transition matrix that has elements

Pkl that indicate the probability of jumping from state k to state l. A first-order Markov chain

is fully specified with a transition matrix and under a few regularity conditions it has a stable

long-term behavior in terms of the frequency with which the stochastic process visits the different

states. Denote this stable frequency as π′
k, then the entropy for the behavioral interactions may be

calculated as follows:

H(X) = −
K∑
k=1

∑
l ̸=k

π′
kPkllog2(Pkl)

which is a sum of entropies across the rows of the transition matrix weighted by the long-term

behavior π′. Higher entropy indicates more unpredictability and it ranges between 0 and log2K.

Entropy has been shown to be associated with cognitive functions later in life (Davis et al., 2017;

Davis et al., 2019; Davis et al., 2022). We will use the entropy measure to check if latent factor

representations are associated with early life experience.

Results

We analyze the DNA methylation data collected in infants with the BLFA method. We use σ2
spike =

0.1 and σ2
slab = 100 as initial hyperparameter values. The initial values for the parameters are chosen

randomly as described in the simulation studies in Section 6.4. We start with q = 5 latent factors

because we are interested in capturing the variation in the data with a few latent variables that

load on some DMSs each so that we may be able to interpret the significance of these DMSs.

Results from a spike-and-slab analysis involve thresholding the resulting output to select the factor

loadings that are larger/ more significant than others (George and McCulloch, 1997; Ishwaran and

Rao, 2005). We use an ad-hoc approach to identify loadings that are significant with absolute value

> 0.3.
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Figure 6.4: One of the factor representations xi (fifth factor) is able to differentiate between
ages the samples at age 1 month and 1 year.

We observed that one of the five factors is able to differentiate between the ages at which the

samples were collected as demonstrated in Figure 6.4. Similar results were also found with the

baseline model. We further analyze if there may be any relationships between the latent factors

and covariates that indicate childhood unpredictability. However, we found only a weak association

for one of the factors with entropy. One possibility is that, as in Jiang et al. (2019) rodent study,

it would be better to focus on change in methylation between the two time points.

6.6 Conclusion

In this work, we have developed the BLFA method to account for the variation in DNA methylation

counts while conducting exploratory analyses of methylation proportions. We accomplished that

through a binomial model on methylation counts along with an underlying factor analysis model

with a spike-and-slab sparsity prior on the elements of the factor loading matrix. We have detailed

the steps for an ECM algorithm to fit this model along with presenting the efficacy of this technique

with simulation studies. We demonstrated with simulation studies that our method outperforms

145



the typical method of ignoring count variation when using dimension reduction techniques.

Additionally, we analyzed a DNA methylation data set from a study of early life adversity and found

that the BLFAmethod was able to obtain sparse representations of the methylation proportions. We

observed that one of the extracted factors was able to differentiate between age groups. However, we

did not observe a strong correlation between the extracted factors and childhood unpredictability.

Our results for these data are quite similar to those obtained by the baseline model that ignores

variation in read counts. In the future, we would like to extend our BLFA method to accommodate

an intra-individual design like the one applied in Jiang et al. (2019) with the δ-methylation measure.

Additionally, we would like to interpret the results from our sparse factor analysis approach by

recording the CpG sites that the factors load onto and understanding the role of the genes that are

associated with the respective sites.
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Chapter 7

Discussion and Future Work

The reliability of measurements is critical for scientifically well-founded inference. In forensics,

subjective decisions will continue to be part of evidence assessments for the foreseeable future.

Well-studied error rates and reliability for each forensic evidence discipline is key for interpreting

case evidence correctly as well as fair and just course proceedings.

In this work, the proposed statistical methods address numerous questions that are interesting to the

forensics community. We started out by developing a method to assess reliability for continuous and

binary outcomes while combining the reproducibility and repeatability black-box study data sets

that are generally analyzed separately. We also provided a method to infer possible examiner-sample

interactions. Even though continuous outcomes are rare in forensics, examples such as handwriting

complexity scores can be modeled with this method. Binary outcomes such as value/no-value,

match/no-match can also be assessed for reliability with the applied method.

Ordinal outcomes are ubiquitous in forensics. We extended the latent variable model applied

to the binary data for ordinal outcomes. Examiners differ in their tendencies to rate forensic

samples and the CUT model is again able to combine reliability studies. Additionally, we are able

to quantify examiner thresholds, while adjusting for sample difficulties, that enable comparisons

across examiners. The SET model, a simpler version of the CUT model, assumes that examiners
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share these tendencies but enables the estimation of possible examiner-sample thresholds. These

methods are applicable to many black-box studies that have been conducted so far and they provide

an efficient estimation for reliability while accounting for examiner thresholds and interactions. We

also developed a method that can cluster examiners based on their tendencies to rate varying

subsets of samples while accounting for their sample difficulties. We achieved this goal with a

mixture of Dirichlet processes (MDP) model on examiner tendencies. A similar structure can also

cluster samples based on their tendencies to receive decisions. This model has applications in

exploratory analysis and hypothesis generation. One can explore whether there exist unobserved

covariates (black-box studies do not collect examiner information such that they can be compared

against performance) that explain the clusters. This could imply that reliability and accuracy are

dependent on differences in such covariates. This motivates black-box studies that collect more

information.

We have also looked at measurement reliability in the application area of DNA methylation. Our

proposed BLFA model is able to account for the variation that arise due to limited reads while

estimating methylation proportion at a CpG site. We are also able to assess whether there exists

an underlying low-dimensional subspace that explains most of the variation in the methylation

proportions. Our method encourages sparse representations of the factor loading matrix which

entails that few CpG sites load to each factor.

7.1 Future Work

Our proposed methods enable efficient analysis of the data from black-box studies while accounting

for examiner tendencies, sample difficulties and examiner-sample interactions. There is, however,

more work that will follow these analyses. The jury should be informed of the empirical reliability

and accuracy of the forensic science discipline that is being used. The method and language that is

used to report conclusions to the jury is an ongoing area of research (Thompson, 2017; Thompson

et al., 2018).

In the future, if examiner and sample covariates are made available in black-box studies, it will be
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important to account for these variables while assessing accuracy and reliability. Our clustering

technique enables inferring groups of examiners or samples, however, there is the possibility of

performing biclustering. Such a technique would extract clusters of examiners and samples simul-

taneously. These biclusters may provide exploratory insights about the decision-making process

and might also be helpful for predictions.

It may also be helpful to identify examiners that differ significantly from other examiners while

making assessments. Holsclaw et al. (2012) used a spike-and-slab distribution as a base distribution

for a Dirichlet process mixture. A similar method may also be applied in the setting that was

motivated in Chapter 5, for example:

P (Yijk = m) = P (κm < Zijk ≤ κm+1)

Zijk ∼ N(α∗
ci + γj , 1)

α∗
t ∼ atN(µ0, σ

2
0) + (1− at) δα0

Here, at is the probability that cluster t samples from the slab component N(µ0, σ
2
0) and the spike

component is the Dirac-delta function δα0 centered around α0.

The sparse factor loading structure for methylation data that is identified with the BLFA model

is helpful while identifying CpGs that the factors load onto. In Chapter 6, we were interested

in associations between underlying factors and entropy (a proxy for early life predictability). We

would like to find the functions of the corresponding genes and find their biological functions.

Furthermore, we would like to extend our method to automatically select the number of factors q.

This can be accomplished using the Indian buffet prior (IBP) as described in Chapter 6. However,

we leave the implementation as future work. Additionally, we would like to extend our method to

account for intra-individual methylation as developed in Jiang et al. (2019).
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Appendix A

Appendix to Chapter 3

A.1 Full conditionals for Continuous Data

As described in Section 3.3.1, we take a Bayesian approach to inference using MCMC to obtain

samples from the posterior distribution. For the continuous data model given by the equation (3.1)

we apply a Gibbs sampling algorithm (Geman and Geman, 1984). This appendix provides the full

conditional distributions of each parameter conditional on all the other parameters and the data.

A flat (uninformative) prior distribution was assumed for µ and the standard deviation parameters

σα, σγ and σδ.

p(µ, σα, σγ , σδ) ∝ 1
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The full conditionals for µ, αi, γj , δij , σ
2
α, σ

2
γ and σ2

δ are:

µ|the rest ∼ N(

∑
i

∑
j

∑
k(Yijk − αi − γj − δij)∑
i

∑
j

∑
k 1ijk

,
σ2
ϵ∑
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∑
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∑
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)
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∑
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∑
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1
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α
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∑
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∑
k
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ϵ
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1

1
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α
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∑
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σ2
ϵ
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∑
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1
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γ
+
∑
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∑
k
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σ2
ϵ
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1

1
σ2
γ
+
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∑
k
1ijk

σ2
ϵ

)

δij |the rest ∼ N(

∑
k(Yijk − µ− αi − γj)

1
σ2
δ
+
∑

k
1ijk

σ2
ϵ

,
1

1
σ2
δ
+
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k
1ijk

σ2
ϵ

)

σ2
α|the rest ∼ Inv-Gamma(

I−
2

,

∑
i α

2
i

2
)

σ2
γ |the rest ∼ Inv-Gamma(

J − 1

2
,

∑
j γ

2
j

2
)

σ2
δ |the rest ∼ Inv-Gamma(

IJ − 1

2
,

∑
i

∑
j δ

2
ij

2
)

σ2
ϵ |the rest ∼ Inv-Gamma(

∑
i

∑
j

∑
k 1ijk − 1

2
,

∑
i

∑
j

∑
k(Yijk − µ− αi − γj − δij)

2

2
)

Note that 1ijk is an indicator function based on whether Yijk is an available observation for examiner

i, sample j in the kth repetition. Given these full conditionals, a Gibbs sampler can be used to

iterate over these with a systematic scan.

A.2 Full conditionals for Binary Data

We now describe the full conditionals to sample from the posterior distribution for the binary data

model given by the equation (3.3). The goal is to sample from the posterior distribution of the
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latent variables and model parameters:

p(Zijk, µ, αi, γj , δij , σ
2
α, σ

2
γ , σ

2
δ |Yijk) ∝

p(Yijk, Zijk, µ, αi, γj , δij , σ
2
α, σ

2
γ , σ

2
δ ) =

I∏
i=1

Ji∏
j=1

Ki∏
k=1

p(Yijk|Zijk)
I∏

i=1

Ji∏
j=1

Ki∏
k=1

p(Zijk|µ, αi, γj , δij)

I∏
i=1

p(αi|σ2
α)

Ji∏
j=1

p(γj |σ2
γ)

I∏
i=1

J∏
j=1

p(δij |σ2
δ )p(µ, σ

2
α, σ

2
γ , σ

2
δ )

The distribution of latent variables conditional on the observed Yijk are truncated normal distri-

butions:

Zijk|Yijk, µ, αi, γj , δij =


N(µ+ αi + γj + δij , 1) IZijk<0 , if Yijk = 0

N(µ+ αi + γj + δij , 1) IZijk>0 , if Yijk = 1

The full conditional distributions for other parameters are based on the latent variables Zijk and

can be found using the approach of the previous section:

µ|the rest ∼ N(Z ... − α. − γ. − δ..,
1∑

i

∑
j

∑
k 1ijk

)

αi|the rest ∼ N(
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∑
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∑
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)
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)
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A.3 Results under model misspecification

The models of Section 3 assume a Gaussian distribution for the outcomes Y or the latent variable

Z. Therefore, it is crucial to assess the robustness of the presented methodology when the data-

generating mechanism deviates from the model assumptions. Additionally, we must study how

the violation of model assumptions affects our inferences about reliability. To do this we consider

alternatives to the Gaussian when generating the data and use the normal model for analysis. We

briefly describe statistical distributions that we consider as alternatives. We will introduce some

statistical distributions before presenting the results under model misspecifications.

The Laplace distribution is a mirrored exponential distribution and even though the probability

distribution for Laplace distribution looks similar to that of a normal distribution, it has lighter

tails. Lighter tails mean that it is much less probable for a sample to be far away from the mean

for a Laplace distribution compared to the normal distribution.

Student’s t-distribution arises naturally for hypothesis testing about the mean of a normal distribu-

tion when the number of samples is small. It is also useful as an alternative to the Gaussian because

it is bell-shaped like a normal distribution but has heavier tails. Heavier tails imply that it is more

probable to sample away from the mean as compared to normal distributions. The t-distribution

has one parameter, the degrees of freedom, with smaller values indicating heavier tails.

The normal, Laplace, and t-distributions are all symmetric around the mean. It is also important to

study what happens when the data-generating mechanism deviates from symmetry. A generalized

extreme value distribution (GEV) allows for the distribution to be asymmetric.

To assess the impact of model misspecification, we change different parts of the data-generating

mechanism and try to fit the model as if the model assumptions are true. We compare the results

obtained from the MCMC with the original parameter values and also compare the results for

reliability. We simulate 25 data sets with a data-generating mechanism that is different from the

model assumptions. We generate two decisions per examiner-sample pair so that there are repeated

decisions on 100% of the samples. Firstly, we change the Yijk ∼ N(µ+αi+ γj + δij , σ
2
ϵ ) part of the
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model given by the equation (2) by changing the error distribution from normal to: i) Laplace, ii)

Student’s t-distribution (ν= 5), iii) generalized extreme value distribution (GEV), iv) a bimodal

distribution as a mixture of two normal distributions with different means and different variances.

Additionally, we change the distribution of the examiner and sample random effects in the model

given by equations (3) from Gaussian to Student’s t-distributed random effects and fit them using

the model in Section 3.1. The degrees of freedom chosen for the t-distribution were να = 4 for

examiner random effects and νγ = 8
3 so that the variances of these distributions were 2 and 4

respectively.

Figure A.1: Posterior medians and confidence intervals obtained by generating continuous
data from alternate distributions and fitting them by the model given by the equations
(2). The Normal (Gaussian) case represents the results from the example when the data is
generated from the model assumptions in equations (2 and 3).
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Misspecification µ=1 σ2
α=2 σ2

γ =4 σ2
δ =0.5 R1=0.49 R2=0.80

Normal
0.98

(0.39, 1.58)

2.06

(1.41, 3.19)

4.09

(3.03, 5.72)

0.51

(0.44, 0.58)

0.49

(0.40, 0.58)

0.80

(0.76, 0.84)

Student’s t
1.00

(0.41, 3.21)

2.10

(1.44, 3.21)

4.09

(3.03, 5.74)

0.49

(0.42, 0.56)

0.49

(0.40, 0.58)

0.80

(0.76, 0.84)

Laplace
1.00

(0.39, 1.61)

2.07

(1.41, 3.20)

4.09

(3.03, 5.70)

0.50

(0.43, 0.57)

0.48

(0.39, 0.57)

0.79

(0.75, 0.83)

GEV
1.58

(0.98, 2.20)

2.08

(1.42, 3.21)

4.06

(3.01, 5.67)

0.50

(0.43, 0.57)

0.49

(0.40, 0.58)

0.80

(0.76, 0.84)

Bimodal
1.00

(0.39, 1.59)

2.08

(1.42, 3.22)

4.12

(3.04, 5.75)

0.49

(0.42, 0.56)

0.49

(0.40, 0.59)

0.80

(0.76, 0.84)

Student’s t

random

effects

0.96

(0.38, 1.53)

2.31

(1.58, 3.58)

2.90

(2.14, 4.05)

0.49

(0.42, 0.56)

0.39

(0.31, 0.48)

0.77

(0.72, 0.81)

Table A.1: Effect of model misspecification on variance and reliability components. A total
of 25 simulated data sets were used for inference in each case.

The inference for the intercept is comparable to the Normal case in all settings except when the

errors have a generalized extreme value distribution. We also notice that the examiner variance,

the sample variance, as well as the reliability components, are robust against the choice of error

distribution. However, the posterior medians and credible intervals for σ2
δ have more variance

when the error distribution is changed from the Gaussian distribution. When the random effects

are generated from a t-distribution, our model is unable to obtain good inference for variance

components which affect the reliability components. This effect is observed especially for the

sample variation. This issue is observed due to heavier tails in a t-distributed random variable and

because νγ is smaller in comparison to να, sample variation (σ2
γ) has poorer inference compared to

examiner variance (σ2
α). It is reassuring that in most cases our model is robust to deviations from

assumptions.
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A.4 Effect of combining data sets on reliability

Since the repeatability studies (the second trials) are generally much smaller than the reproducibil-

ity studies (the first trials), it is interesting to assess how combining the data sets helps the inference

for reproducibility. One might assume that since repeated decisions inform about interactions and

add to the amount of data collected, the reproducibility estimate will have lower bias and narrower

credible intervals. We conducted an experiment to answer the above question and found that the

results confirm with our intuition. The inference for reproducibility is actually better (less bias and

smaller credible intervals) when the data from both trials are used.

The experiment is conducted with 33 = 27 combinations of variance values for examiner variation,

sample variation, and interaction variation: low (0.2), medium (1), and high (5). The error variance

is fixed to be 1 for all 27 data sets. One estimation technique only uses the reproducibility study,

one uses only repeated measurements and one uses the combined data. Repetitions are obtained

on 25% samples.

Reliability Metric (average)
Data from

first trial

Data from

repeated

decisions

Combined

data set

Reproducibility Absolute bias 0.072 0.097 0.071

Reproducibility Range of credible interval 0.069 0.116 0.067

Repeatability Absolute bias 0.359 0.067 0.058

Repeatability Range of credible interval 0.120 0.067 0.061

Table A.2: Average absolute bias and average range for repeatability and reproducibility for
different experiments.

A.5 Latent Print Analysis Results

We present additional results that compare the parameter estimates obtained from fitting the

latent print analysis data with some raw data summaries. We plot the following: i) the mean VID
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decisions by an examiner (Yi..) against the posterior median for examiner tendencies αi, ii) the

mean VID decisions on a sample (Y.j.) against the posterior median for sample tendencies γj , and

iii) the interaction estimate in a general continuous data ANOVA setting (Yij. − Yi.. − Y.j. − Y...)

against the posterior median for interaction effects δij . Note that Yij. is the mean decisions on an

examiner and sample pair and Y... is the mean of all decisions.

Figure A.2: Yi.. v/s posterior median for αi for the results from the analysis phase of the
latent print examination.

Figure A.3: Y.j. v/s posterior median for γj for the results from the analysis phase of the
latent print examination.
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Figure A.4: Yij.−Yi..−Y.j.+Y... v/s posterior median for δij for the results from the analysis
phase of the latent print examination.

We observe strong associations in all these plots which provides some evidence to the hypothesis

that the model is a good fit for the data.
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Appendix B

Appendix to Chapter 4

B.1 Equivalent parameterizations

We demonstrate that the constrained CUT model (4.2) and the SET model (4.3) are different

parameterizations of the same model when τi,2 have a normal prior. Consider the conditional

probabilities for Yijk given the parameters in the constrained CUT model (4.2) with M = 3 cate-

gories:

P (Yijk = 1) = Φ(τi,2 − γj − δij)

P (Yijk = 2) = Φ(τi,3 − γj − δij)− Φ(τi,2 − γj − δij)

P (Yijk = 3) = 1− Φ(τi,3 − γj − δij)

The analogous probabilities for the SET model (4.3), are:

P (Yijk = 1) = Φ(κ2 − αi − γj − δij)

P (Yijk = 2) = Φ(κ3 − αi − γj − δij)− Φ(κ2 − αi − γj − δij)

P (Yijk = 3) = 1− Φ(κ3 − αi − γj − δij)

Comparing these expressions, we find that the probabilities are the same with τi,2 = κ2 − αi,
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τi,3 = κ3 − αi, and τ∗ = κ3 − κ2.

B.2 Full conditionals for Gibbs sampling CUTs and

SETs model

We provide here the full conditional posterior distributions for sampling from the posterior distri-

butions for the CUT model (4.1) parameters for M = 3. We derive these using a uniform prior on

the thresholds as in the equations (4.4). Note that 1ijk is an indicator function that is equal to 1

if decision Yijk is observed for examiner i, sample j, in repetition k, and is 0 otherwise.

γj |the rest ∼ N(

∑
i

∑
k(Zijk − δij)

1
σ2
γ
+
∑

i

∑
k 1ijk

,
1

1
σ2
γ
+
∑

i

∑
k 1ijk

)

δij |the rest ∼ N(

∑
k(Zijk − γj)

1
σ2
δ
+
∑

k 1ijk

,
1

1
σ2
δ
+
∑

k 1ijk

)

σ2
γ |the rest ∼ Inv-Gamma(

J − 1

2
,

∑
j γ

2
j

2
)

σ2
δ |the rest ∼ Inv-Gamma(

IJ − 1

2
,

∑
i

∑
j δ

2
ij

2
)

Zijk|the rest ∼ N(γj + δij , 1) I(τi,Yijk
, τi,Yijk+1)

τi,2|the rest ∼ I (minlim,i,2 < τi,2 < maxlim,i,2)

minlim,i,2 = maxj,k(Zijk |Yijk = 1)

maxlim,i,2 = minj,k(Zijk |Yijk = 2)

τi,3|the rest ∼ I (minlim,i,3 < τi,3 < maxlim,i,3)

minlim,i,3 = maxj,k(Zijk |Yijk = 2)

maxlim,i,3 = minj,k(Zijk |Yijk = 3)

If M > 3 the expressions for the thresholds are derived using an analogous approach. For the

constrained CUT model (4.2), the full-conditional posterior distributions for Zijk, γj , σ
2
γ , δij , σ

2
δ
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are the same as derived. The full conditionals for τi,2, τ
∗, µτ2 , and σ2

τ2 are provided here for the

M = 3 case.

τi,2|the rest ∼ N(µτ2 , σ
2
τ2) I (minlim,i < τi,2 < maxlim,i)

minlim,i = maxj,k(max(Zijk |Yijk = 1),max((Zijk − τ∗) |Yijk = 2))

maxlim,i = minj,k(min(Zijk |Yijk = 2),min((Zijk − τ∗) |Yijk = 3))

τ∗|the rest ∼ Unif (min∗lim,max∗lim)

min∗lim = maxi,j,k(0, Zijk − τi,2 |Yijl = 2)

max∗lim = mini,j,k(Zijk − τi,2 |Yijl = 3)

µτ2 |the rest ∼ N(

∑
i τi,2
I

,
1

I
)

σ2
τ2 |the rest ∼ Inv-Gamma(

I − 1

2
,

∑
i τ

2
i,2

2
)

For the SETs model (4.3), the full conditional distributions for κ2, κ3, αi, γj , and δij have been

derived below:

αi|the rest ∼ N(

∑
j

∑
k(Zijk − γj − δij)

1
σ2
α
+
∑

j

∑
k 1ijk

,
1

1
σ2
α
+
∑

j

∑
k 1ijk

)

γj |the rest ∼ N(

∑
i

∑
k(Zijk − αi − δij)

1
σ2
γ
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∑
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∑
k 1ijk

,
1
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γ
+
∑

i

∑
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δij |the rest ∼ N(

∑
k(Zijk − αi − γj)
1
σ2
δ
+
∑

k 1ijk
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1

1
σ2
δ
+
∑

k 1ijk
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σ2
α|the rest ∼ Inv-Gamma(

I − 1

2
,

∑
i α

2
i

2
)

κ2|the rest ∼ Unif(maxi,j,k(Zijk|Yijk = 1),mini,j,k(Zijk|Yijk = 2))

κ3|the rest ∼ Unif(maxi,j,k(Zijk|Yijk = 2),mini,j,k(Zijk|Yijk = 3))

Zijk|the rest ∼ N(αi + γj + δij , 1) I(κYijk
, κYijk+1)
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B.3 Model-based Reliability

We derive the model-based agreement on the original scale as defined in the expressions (4.7), here

for the SET model (4.3). First, note that marginalizing over αi and δij from the distribution of

Zijk, we get:

Zijk|γj ∼ N(γj , 1 + σ2
α + σ2

δ ).

Additionally, define, Xijk = Zijk − γj , then:

Xijk|γj
i.i.d.∼ N(0, 1 + σ2

α + σ2
δ ) ∀ i, k

If we define reproducibility as the probability of agreement, then:

Reproducibility =

M∑
m=1

P ((Yijk = m) ∩ (Yi′jk = m))

=

M∑
m=1

∫ ∞

−∞
P ((κm < Zijk ≤ κm+1) ∩ (κm < Zi′jk ≤ κm+1)|γj)f(γj)dγj f(γj) ∼ N(0, σ2

γ)

=

M∑
m=1

∫ ∞

−∞
(P (Xijk ≤ κm+1 − γj)− P (Xijk ≤ κm − γj))

2f(γj)dγj

Xijk are independent

=

M∑
m=1

∫ ∞

−∞

(
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(
κm+1 − xσγ√
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δ

)
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(
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α + σ2
δ

))2

ϕ(x)dx where, x =
γj
σγ

=
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m=1

∫ ∞

−∞

[
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κ∗
m+1 − x

√
R1√

1−R1

)
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κ∗
m − x

√
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)]2
ϕ(x) dx

Divide by
√
1 + σ2

α + σ2
δ + σ2

γ

Here, R1 =
σ2
γ

1+σ2
α+σ2

γ+σ2
δ
, κ∗m = κm√

1+σ2
α+σ2

δ+σ2
γ

, x is a standard normal random variable, Φ is the

cumulative density function of the standard normal distribution, and ϕ is the probability density

function of standard normal distribution.
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Similarly, for repeatability, note that Zijk|αi, γj , δij
i.i.d.∼ N(αi + γj + δij , 1), ∀k. Define, Tij =

αi + γj + δij . Then, with the SET model (4.3), Tij |σ2
α, σ

2
δ , σ

2
γ

i.i.d.∼ N(0, σ2
α + σ2

δ + σ2
γ). Given,

examiner i and sample j, Zijk − Tij |αi, γj , δij ∼ N(0, 1) are independent for all k:

Repeatability =

M∑
m=1

P ((Yijk = m) ∩ (Yijk′ = m))

=

M∑
m=1

∫ ∞

−∞
P ((κm < Zijk ≤ κm+1) ∩ (κm < Zijk′ ≤ κm+1)|γj , αi, δij)f(tij)dtij

=

M∑
m=1

∫ ∞

−∞
(P (x′ ≤ κm+1 − Tij)− P (x′ ≤ κm − Tij))

2f(tij)dtij x′ = Zijk − Tij ∼ N(0, 1)

=

M∑
m=1

∫ ∞

−∞

(
Φ(κm+1 − x

√
σ2
γ + σ2

δ + σ2
δ )− Φ(κm − x

√
σ2
γ + σ2

δ + σ2
α)
)2

ϕ(x)dx

where, x =
Tij√

σ2
γ + σ2

δ + σ2
α

=

M∑
m=1

∫ ∞

−∞

[
Φ

(
κ∗
m+1 − x

√
R2√

1−R2

)
− Φ

(
κ∗
m − x

√
R2√

1−R2

)]2
ϕ(x) dx

Divide by
√
1 + σ2

α + σ2
δ + σ2

γ

Here, R2 =
σ2
α+σ2

γ+σ2
δ

1+σ2
α+σ2

γ+σ2
δ
.

B.4 Effects of Model Misspecification

A statistical model should be robust to deviations in assumptions. In practice, the data might

deviate from the data-generating mechanism that the model assumes. Similar to the discussion in

the Supplemental material in Arora et al. (2022), we present results from fitting the SET model

(4.3) when the data is generated from a model that differs from the model generating assumptions.

Similar results apply to the model specifications given by equations (4.1) and (4.2).

The distribution of Zijk are changed in the following ways while generating the data:

• Normal - Data is generated with the SET model (4.3) for comparison with the other cases.
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• Student’s t-error - Data is generated from a model where Zijk |αi, γj , δij ∼ αi + γj + δij + t6,

where t6 is a Student’s t-distribution with 6 degrees of freedom with variance 1.5. The

parameters κm, σα, σγ , and σδ are scaled (by the factor
√

6
4 which is the variance of t6) for

comparison with other cases. This alternative allows us to consider a case with heavier tails

for the latent variables Zijk, so it is more likely to sample values that are farther away from

the mean.

• Laplace - Data is generated from a model where Zijk |αi, γj , δij ∼ αi+γj + δij +Laplace(µ =

0, scale = 0.5). The Laplace distribution has lighter tails compared to the normal distribution.

The variance of the Laplace distribution with a scale 0.5 is 1, so the other parameters do not

need to be rescaled.

• GEV (Generalized Extreme Value) distribution - Data is generated from a model where

Zijk |αi, γj , δij ∼ αi + γj + δij + GEV(µ = 0, scale =
√
6
π , shape = 0). GEV is a distribution

that is not centered around its mean unlike all other distributions described in this Appendix.

• Bimodal case- Data is generated from a model where Zijk |αi, γj , δij , pijk ∼ pijkN(αi + γj +

δij − 0.5, 0.75)+ (1− pijk)N(αi+ γj + δij +0.5, 0.75), here, pijk ∼ Bernoulli(0.5). This latent

distribution has two modes.

Additionally, we also consider a model specification in which the random effects do not follow a

normal distribution:

• Student’s t- random effects- The random effects for αi and γj are generated from t-distributions

of 4 and 8
3 degrees of freedom. Student’s t-distribution has heavier tails compared to a normal

distribution. So, it is more likely to sample values that are farther away from the mean.

We generated 25 data sets for each of these cases, for I=50 examiners and J=80 samples where

each examiner observes each sample twice (100% repeated decisions). We fit these generated data

sets to the SET model (4.3) and have presented the posterior medians and 95% credible intervals

for κ2, κ3, σ
2
α, σ

2
γ , σ

2
δ , and reproducibility and repeatability on the latent scale in Figure B.1.
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Figure B.1: Posterior medians and 95% credible intervals for estimated parameters with a
misspecified model.

From Figure B.1, we can observe that in the GEV case, there is a bias in estimating the values

for κ2, κ3 through posterior medians. In the Student’s t-random effects case, there is slightly more

variation in the difference between the true values and the posterior medians for κ2 and κ3 but

in all other cases they are well estimated. The variance parameters σ2
α and σ2

γ are estimated well

in all cases when the distribution of Zijk deviates from the normal distribution. The interaction

variation is estimated well in most cases, it is overestimated slightly in the bimodal case.

We also consider alternative data generation for the random effects. The variance parameters σ2
α

and σ2
γ are not estimated well when the random effects are Student’s t-distributed. Note that

the random effects in this case were generated with a Student’s t-distribution with small degrees

of freedom (4 and 8
3) which implies that the distribution for the random effects had very heavy

tails. Given this fact, it makes sense that the estimation of the variance components is difficult.

Given these observations, we can conclude that our model is robust to these deviations in model

assumptions.
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Appendix C

Appendix to Chapter 5

C.1 Studying the Distribution of Clusters

We have used a Gamma(2,2) prior on the concentration parameter λ and we justify that choice

here by simulating data from the stick-breaking process. For different values of I (number of

examiners), we have generated clusters with the stick-breaking process for 10,000 data sets. We

report the mean, median, and the range of the number of clusters generated for each λ in the next

few tables for different choices of I. It is important to consider different choices of I because the

maximum number of clusters of potential interest can increase with I.
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λ Range Mean Median
Standard

Deviation

0.1 (1, 7) 1.43 1.00 0.65

0.25 (1, 7) 2.03 2.00 0.98

0.4 (1, 8) 2.59 2.00 1.19

0.5 (1, 9) 2.94 3.00 1.30

0.6 (1, 11) 3.29 3.00 1.41

0.8 (1, 11) 3.90 4.00 1.56

1.0 (1, 11) 4.49 4.00 1.67

1.5 (1, 16) 5.83 6.00 1.93

2.0 (1, 16) 7.02 7.00 2.12

2.5 (1, 18) 8.15 8.0 2.30

4.0 (3,22) 10.88 11.0 2.61

5.0 (3, 23) 12.46 12.0 2.68

10.0 (6, 29) 18.03 18.0 2.92

Table C.1: I=50. Summary from 10,000 draws for each λ.
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λ Range Mean Median
Standard

Deviation

0.1 (1, 6) 1.49 1.00 1.69

0.25 (1, 8) 2.21 2.00 1.06

0.4 (1, 10) 2.85 3.00 1.30

0.5 (1, 11) 3.26 3.00 1.43

0.6 (1, 11) 3.72 4.00 1.55

0.8 (1, 13) 4.47 4.00 1.73

1.0 (1, 14) 5.18 5.00 1.89

1.5 (1, 18) 6.88 7.00 2.20

2.0 (2, 19) 8.42 8.00 2.43

2.5 (2, 20) 9.83 10.0 2.61

3.0 (3,24) 11.11 11.0 2.75

4.0 (4, 28) 13.53 13.0 3.03

5.0 (6, 29) 15.70 16.0 3.20

Table C.2: I=100. Summary from 10,000 draws.
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λ Range Mean Median
Standard

Deviation

0.1 (1, 6) 1.55 1.0 0.74

0.25 (1, 8) 2.33 2.0 1.12

0.5 (1, 11) 3.54 3.0 1.52

1.0 (1, 16) 5.69 6.0 2.00

2.0 (2, 20) 9.39 9.0 2.61

3.0 (3, 26) 12.63 13.0 3.00

4.0 (5, 30) 15.62 15.0 3.36

5.0 (6, 32) 18.23 18.00 3.60

10.0 (14, 48) 29.30 29 4.39

Table C.3: I=169. 10,000 draws.

As demonstrated in the tables, it seems that for most designs λ ∈ (0, 2.5), gives enough flexibility

to infer the number of clusters that may be scientifically interesting in a data set.
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