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ABSTRACT 

The stability of the Van Allen belt in the outer trapping 

zone (2 < L < 8) against electrostatic low-frequency perturbations 

is studied. Inside the plasmapause, the energetic belt (E > 40 keV) 

is found to be stable. Outside the plasmapause, the ring current 

belt is found to be unstable when the density gradient at the outer 

edge exceeds a certain critical value. A component of the electric 

field along the magnetic field line is associated with the instability. 

When the ring current belt is stable by itself, it supports a wave 

which ~an resonantly interact with the drift motion of the energetic 

particles. The'condition for overstability is derived. The possible 

relevance of the instabilities to auroral phenomena is discussed. 
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I. INTRODUCTION 

Two outstanding problems in current space research are the 

origin of the radiation beltsl and the occurrence of the aurora and 

its associated phenomena. It has become increasingly clear that the 

two are closely related problems and must be explained simultaneously. 

Since the discovery of the radiation belts, there have been numerous 

attempts to explain the auroral production as a simple dumping of 

the trapped particles into the atmosphere. However, later measurements 

indicate that the flux of the energetic belt is insufficient to 

sustain an auroral precipitation2 (O'Brien, 1964); that the flux of the 

trapped particles, in fact, increases as the precipitation flux 

increases (O'Brien, 1964). Thus the mechanisms that produce auroras 

must accompany the increase in the population of the radiation belts, 

and the "splash catcher" model replaces the leaky bucket (O'Brien,. 

1964) . 

This is also evident from the magnetic storm observations: 

the polar substorn -- aurora breakup and its associated bay event -­

occurs intermittently during the main phase decrease, and the main 

phase develops more or less strongly as the sub storms are more or 

fewer (Chapman, 1961). Because the polar substorm is due to intense 

precipitation of charged particles into the polar ionosphere and the 

main phase decrease is due to the ring current belt, this correlation 

again shows that the enhanced injection of particles into the closed­

field-line region of the magnetosphere is accompanied by or may even 
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be due to,the intense precipitation. The ring current belt, as recently 

discovered by Frank (1967), is composed mainly of low-energy particles 

(proton energy ~ 40 keY, electron energy ~ 10 keY) with relatively 

narrow energy range • 

. The main source of the trapped particles 'in the geomagnetic 

field is the solar wind. There are two processes by which the solar 

wind particles are introduced into the earth's magnetic field: 

diffusion and convection (injection.). 

It is believed that the ring current belt, which has most energy 

content during the storm time, is injected from the tail of the magneto­

sphere (Axford, 1967). A possible injection mechanism is the reconnec­

tion of the field lines in the tail(Axford, .Petchekand Siscoe, 1963). 

Implicit in the reconnection model is that the sub storm should coincide 

with the relaxation of the magnetic field in the tail and with the 

injection of plasma into the inner magnetosphere to form the ring, 

current belt. The question remaining is that of the sporadic nature 

of the polar substorm. 

The more energetic particles (E > 100 keVfor protons and 

E > 40 keY for electrons) are believed to be diffused into the outer 

zon~ (2 < L < 8), where L is the magnetic shell parameter (McIlwain, 

1961). In analyzing Davis and Williamson's data (1963) on the outer 

radiation zone protons, Dungey, Hess, and Nakada (196)) found evidence 

.that supports Kellogg's conjecture (1959) that the particles are of 

solar origin and are diffused into the outer zone by processes that 

conserve the magnetic moment and longitudinal invariant, but break the 

flux invariant of the particles. 

" 
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Subsequently Nakada and Mead (1966) calculated the diffusion 

coefficient due to the magnetic fluctuations of the sudden commencements 

and sudden impulses. Their result, however, is smaller by a factor of 

ten than the observed value (Falthammer, 1966). Furthermore, in their 

calculation only the collisional loss is included, whereas the 

anomalous loss due to various plasma instabilities, such as the loss 

cone and whistler, are certainly important (Kennel and Petchek, 1965). 

Thus a diffusion rate at least a factor ten larger than that calculated 

by Nakada and Mead is needed to account for the observed diffusion in 

the outer belt. Recently Crifo and Mozer (1967), in analyzing the 

proton data (0.5 MeV < E < 150 MeV) at L = 1.5, B = 0.18 (L, Bare 

McIlwain coordinates), found that the inward diffusion rate driven by 

the magnetic disturbances associated with sudden commencements and 

sudden impulses fails by many orders of magnitude to explain the 

observed flux of protons with energy ~ 500 keV at L ~ 1.5, B ~ 0.18. 

In plasma phy.sics, it is well known that plasma instabilities 

can cause anomalous diffusion across the magnetic field. Dungey (1965) 

has suggested that the polar sub storm, with its time scale typically 

of the order of an hour, can contribute Significantly to the inward 

diffusion of the energetic particles in the outer zone. 

'Because of its sporadic nature, the polar substorm is most 

likely to be cause by plasma instability in the magnetosphere 

(Akasofu, 1967; Cole, 1967; Swift, 1967; Coppi et al, 1966). In 

this paper we study the low-frequency electrostatic instabilities 
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(which conserve the first two adiabatic invariants of the particles) 

in the outer trapping zone (2 < L < 8) and their possible relation 

to polar substorms. 

Condi tion of the outer Trapping Zone (2 < L < 8) 

In the study of electron density in the magnetosphere by . 

means of whistlers, Carpenter (1966) found that there exists a sharp 

boundary - the plasmapause, separating a dense plasma (n ~ 103/cm3 ) .. 

inside and a rarified plasma (n ~ l/cm3) outside. The location of 

the plasmapause depends not only on longitude. but also on the distur-

bance condition of the magnetosphere. (Carpenter, 1967). In the 

periods of magnetic quiescence, the average location (over longitude) 

, of the plasmapause is at L ~ 5, During the storm time, the plasma-

pause contracts to L ~ 3. (Carpenter, 1967; Taylor, et al., 1968) 

The region inside the plasmapause, called plasmasphere, is 

mainly populated by charged particles originating from the ionosphere 

with thermal energy (E ~ 1 eV). In addition to the thermal plasma 

of terrestrial origin, there is also a plasma (E ~ 1 keY) of solar 

origin. The main energy reservoir insiQ.e the plasmapause are energetic 

protons E ~ 100 keY (Davis, 1965; Frank, 1967a). At the equatorial 

plane inside the plasmapause, this energetic component has an energy 
1'\. 

density .of the order of 10-7 ergs~m~, or about one tenth of that of . . ... 

the local magnetic field. On the other hand, the energy density of. 

the lovr-energy proton (190 'eV < E < 50 keY), during. the period of 

magnetic quiescence, is of the order of 10-9 ergs/cm3 for L < 5 
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(Frank, 1967a). The energy density .of the thermal plasma (E ~ 1 eV) 

is alse .of the .order .of 10-9 ergs/cm3 • Because the equaterial pitch 

angle distributien .of the energetic cempenent (pretens E > 100 keV, 

electrens > 40 keV) has a maximum abeut the equaterial plane (Davis 

and Williamsen, 1963), the number.density .of the enErgetic particles 

in a given flux tube has a maximum at the equaterial plane and falls 

.off rapidly away frem it. The regien near the equatorial plane where 

the main bedy .of the energetic particles resides will be called 

"Regien I". In this regien, the temperature is clearly determined 

'by the energetic cempenent. The energetic preten's spectra may be 

appreximated by exp(-E/EO) with .EO oc L-3 ec B (Davis and 

Williamsen, 1963). This suggests that the particles are accelerated 

. by betatren precesses that diffuse particles radially inward, while 

censerving the particles' magnetic mements' I.l and lengitudinal 

invariant J (Nakada et al., 1965). Nakada etal., (1965) further 

shewed that the particle distributien functien fl[E(1.l J L), (XO(1.l J L) ,LJ, 

i.e. the number density .of particles with energy E and EPA (equaterial 

pitch angle) (Xo in the equaterialplane at L, is such that 

(Ofl/OL)I.lJ > 0 (Fig. 1), suggesting that the seurce is at large L. 

In fact, fl(1.l J L) is facterizable in its I.l J and L dependence: 

fl(l.llJiL) = g(l.l, J) h(L) (Hess, 1967). Despite their large variability 

in flux in relatively shert times (~erder .of heurs, Ferbush et al., 

1962), the .outer-belt electrens (40 keV < E < 5MeV) have character-

istics very similar te the pretense The energy range is abeut the 
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same, and the fluxes are comparable.· The spectra· show similar falloff 

with increasing energy, and similar softening with L (Hess et al., 

1965). The similarities indicate a common source and that common 

mechanisms are operating on protons and electrons. 

Outside the plasmapause, the main energy contel:\t is associated 

with the ring current belt of low-energy particles (1 keV < E < 50 keV) 

(Frank, 1967 a, b). Its flux is peaked inL-space. During the quiet 

times the peak is located at about L ~ 6, approximately the au'roral 

zone. During the storm time, the peak moves inward to L ~ 4 while 

enhanced tenfold in magnitude, causing the main phase decrease. The 

inward movement of the peak is correlated with the contraction of the 

plasmasphere (Taylor, et al.,1968), and is also in agreement with 

shift toward the equator of the southernmost auroral arc (Frank, 

1967 a, b). By comparing Figs. 2 and 3 for D t ~ -50 ,,/, we conjec- . ·s 

ture that the instantaneous L-shell of the auroral arc is about the 

same as the peak of the ring current belt. At a given L-sheil, the 

differential·energy spectrum of the flux is peaked around 10 keV 

(Frank, 1967 a). 

comment on Previous Work 

Gold (1959) first suggested the possible interchange motion 

in the magnetosphE?re and derived from thermodynamic considerations. 

the stability criteria for both the adiabatic and the isothermal 

processes of a tenuous plasma in a dipole field. Subsequently his 

. .Jl' 
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work was extended by Sonnerup and Laired (1963) to include other 

effects such as gravity • 

. Chang et ale (1965, 1966) have previously considered the 

ionospheric effects in stabilizing the low-frequency electrostatic 

- instabilities in the magnetosphere~ But in view of the fact that 

for the energetic belt which they considered, it is not 

clear whether instability exists in the first place, In fact, in the 

presence of the dense thermal plasma, it will be shown that the 

Van Allen belt is stable against ~J-conserving electrostatic pertur-

bations. Furthermore they treated the thermal plasma (;::: leV, 

which exists inside the plasmapause) as a dynamic component on equal 

,footing with the energetic Van Allen component (E ~ I keV). But the 

two components have widely different time scales as well as total 

energy contents. For the perturbation with period ~ 1 hour (SUCh 

as they considered) which breaks the flux invariant but conserves 

~J for the energetic component, the longitudinal invariant J for 

the thermal protons would also be broken, as their bounce period is 

~. I hour. Thus one cannot use the ~J-conserving formalism for 

both components. Due to these inconsistencies, their resulting 

stability criterion is unreasonable in that it depends only on the 

number density of the particles (Eq. 66 of Chang et al.) but not on 

the energy, and the thermal plasma becomes the dominant contributor 

to the instability. But we know that the energy content (or energy 
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density) is mainly associated with the energetic bel~"and it is the 

free energy residing in the energy density gradient that drives the 

instability. 

Recently Swift (1967) extended the work of Chang~t al. to 

include the ring current belt, but retaiped the assumption that the 

perturbation electric field has no component along the ma~etic field 

line, which is valid within the p1asmapause (as is shown in Section II). 

But the ring current belt is outside the p1asmapause, and therefore 

in a co11ision1ess region. 4 A parallel electric field in general 

exists in a collisionless plasma (Alfven and Falthammer, 1963;­

Persson, 1966). Thus it is not justified to set Ell = 0 as in 

Swift's treatment. There is evidence (Johansen and Ornholt, 1963; 

" O'Brien, 1964; Mozer, 1965, 1966) that the parallel electric field 

indeed exists in the auroral zone during-the breakup phase. Furthermore 

Swift (1967) suggested that the interchange instability occurring at 

the outer edge of the, ring current belt could explain the auroral 

breakup. But with the assumption of no parallel electric field,it 

is not clear how this can cause enhanced precipitation. 

Chamberlain (1963) has 'proposed a drift wave instability 

(Krall and Rosenbluth, 1963) with an electric field along the magnetic 

field line as a mechanism for auroral precipitation. But the calcula­

tion is, based on a model of slab geometry with straight magnetic 

field lines, and it is not clear whether it is applicable to the 

trapped plasma in the geomagnetic field' (Dungey, 1966). Furthermore, 

the ring current belt is not included in his treatment. 

~, 
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Coppi et al. (1966) have suggested that the dynamics of the 

tail and hence auroral phenomena 'is entirely due to the sheet-pinch 

instability. Concerning their work, Axford (1968) has the following 

criticism: The nonlinear effect of such an instability would only 

produce a turbulent resistivity ~. But the maximum merging rate as 

given by Petschek (1961) is inversely proportional to the logarithm 

of the magnetic Reynold number RM = VAL/~, where VA is the Alfven 

speed, L the characteristic dimension of the system. Therefore the 

merging rate is not very sensitive to the change in resistivity, but 

it is mainly determined by the macroscopic conditions such as pressure 

difference between the tail and the ring current belt or boundary 

conditions. 

In this work, we study the low-frequency electrostatic 

instabilities in the outer trapping zone (2 < L ~ 8) in the low 

/3 approximation. (/3 is the ratio of plasma pressur'e to magnetic 

pressure.) The region inside ,the plasmapause and that outside.the 

plasmapause are treated separately. Inside the plasma~ause, 'where 

there is a dense thermal plasma in addition to the energetic particles 

(E > 1 keV), we treat the thermal plasma as a cold plasma because of 

its very low temperature compared with the energy of the Van Allen 

particles. The cold plasma then provides a large conductivity along 

the field line and a dielectric constant across the field line. 

In Section II we discuss the ordering scheme with small 

parameter €, the ratio of proton gyroradius to the characteristic 
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dimension for ~J-conserving perturbations. With the conditions 

on ~J conservation, the Poisson'equation can be ordered. 'Outside 

the p1asmapause, the quasi-neutrality condition is found to be valid 

to 
2 

O(€ ). Thus we must use the quasi-neutrality condition in our 

lowest-order calculation while neglecting the Laplacian of potential 

for consistency in ordering. Moreover, the parallel electric field, 

of the same order as the perpendicular one, in general exists in this 

region. Inside the plasmapause, the parallel electric field is found 

to be much smaller than the perpendicular field because of the large 

conductivity along the field line. An ordered Poisson equation is 

derived. The reduced V1asov equation (Northrop and Teller, 1960) in 

the ordering used in this paper is also discussed. 

Section III is devoted to the stability of the outer belt 

inside the plasmapause. Using the variational principle, we derive 

a dispersion relation from which the stability condition is obtained. 

The outer belt with the distribution function such that (2lfl/2lL)~J > 0 

is' found to be stable against the low-frequency perturbations. There 

is no "resonant instability" due to the interaction of' particle drifts 

and the wave as claimed by Chang et al.; (1966). 

In Section IV, we study the stability of the plasma outside 

. the plasnrapause., Since the ring current belt dominates in both energy 

and particle density, we neglect the energetic belt'in the first 

approximation and study the ring current belt by itself. The ionosphere, 

taken to be perfectly conducting, provides the boundary condition. 
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A necessary and sufficient condition for stability is obtained. The 

inner. edge of the ring current belt, where the density gradient is 

opposite to the magnetic field gradient, is found to be always stable. 

The outer edge of the ring current belt, where the density gradient 

is along the field gradient, is found to be stable for a weak density 

gradient, but becomes unstable when the density gradient reaches a 

certain critical value. The instability has a finite parallel electric 

field along the magnetic field line. The electric field, though 

O(€) in magnitude, i.e., CEil /B ~ €v, where v is the velocity of 

'the ring current particles, can cause a potential energy drop along 

2 '" f the field line of the order of Mv '" 10 keV, or the fundamental 

mode. 

If the ring current belt is stable by itself, as at the inner 

edge of the belt or during the period of magnetic quiescence when 

the density gradient is weak, it supports a wave. The wave can 

interact resonantly with the drift motion of the energetic particles 

(E > 100 keV) when the azimuthal phase velocity of the wave is equal 

to the drift velocity of the particles. The wave is damped if the 

distribution of the energetic particles at the resonant drift frequency 

is such that (OFoenergetic/OL)~J > 0, where FO(~ J~) is the 

distribution in ~ J ~ space. 3 On the other hand, if 

(OFoenergetic/OL}~J < 0, then the wave grows. This oversta.bility has 

a finite parallel electric field. A physical interpretation is given, 

and a possible overstability in the magnetosphere is discussed in 

Section V. 
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FinaJ..ly, in Section VI, we discuss the possible relation of 

theriIlg current belt instability found in Sect,ionIV to the polar 

substorm -- the injection and precipitation mechanisms. The inward 

pre.ssure gradient of the ring current belt on its outer edge tends 

to stop the merging of field lines in the tail of the magnetosphere, 

until the instability sets iil.(Axford, private communication.) 

Because the instability has a finite paraJ..lel electric field, it causes 

intense electron precipitation. Since the instability tends to relax 

the pressure gradient of the ring current, it aJ..lows merging to occur 

again. Thus the sporadic nature of precipitation and injection as 

evidenced by the sub storms can be explained. 

',4, 
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II. ORDERING SCHEMES 

The stability of low-frequency oscillations in an inhomogeneous 

plasma in a nonuniform magnetic field has 

the Finite Larmor Radius ordering scheme: 

(Krall and Rosenbluth, 1963), where Q. 
J. 

and r are ion gyro frequency 
g 

and gyroradius respectively: This scheme treats the detailed motion 

along the magnetic field line consistently with the drift motion 

across the field line in the drift time scale,thus requiring 

L-L 
~ E ,where LII ' is the characteristic dimension along B and 

L1. is the characteristic dimension perpendicular to B, for the 

system is equilibrium. Thus FLR ordering is suitable only for systems, 

with small aspect ratios (long-thin system, LII » L1.); and for 

such systems, the problem is essentially two-dimensional, and curva­

ture effects are negligible (Kennel and Greene, 1966). 

For systems with comparable characteristic dimensions (short-

fat systems) such as Van Allen radiation belts, the bounce frequency 

Vb along the field line is much faster than the drift frequency 

across the field lines: If one is interested 

in the stability of such a system against low-frequency modes 

,.. 2 ('\ ro ,.. € ~6., we can simply average the parallel motion along the field 
J. 

line by introducing the longitudinal invariant J = § PII ds. With 
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perturbations conserving I-lJ,the Liouville equation (Northrop­

Teller, 1960) for'guiding center distribution function F in the 

Eulerian coordinate space (1.jr, cp) defined by ~ x 7CP = B can be 
, ,oJ 

used for stability analysis. The treatment will benonrelativistic. , ' 

Coordinate System' 

We shall use the natural coordinate system 1.jr, cp, X, where 

X is the magnetic potential X =fB . dS, 
, ,..., ". 

for 7 x B = O. 
,v 

For 

an axisymmetric poloidal'magnetic field, we can take cp to be the 

azimuthal angle, and 1.jr would then be the flux,function 

= dr r B(r), ' where is the equatorial distance 

CD 

, from the axis. For a dipole field with dipole moment ~ 1.jr----
- r ' o ' 

and essentially measures the L value (L= rO in the units of earth 

radius; McIlwain, 1960). The elements of length along the three 

coordinates are 

d t1.jr = Ld1.jr , 
Bp , 

d tcp = P d cp, 

and 

ds = 1. dX , 
B 

. ' 

r ' 

,'I 

,,', 
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where pis the perpendicular distance to the axis of symmetry 

from a point Xof a given field line at (W, ~). 

Adiabatic Motion of Charged Particles 

Suppose a particle of charge e, mass M moves in a magnetic 

field ! and an electric field ] with potential ~,with velocity 

components vII, vJ.. parallel and perpendicular to the magnetic field. 

For fields with time variation much longer than the bounce period and 

spatial variation much larger than a gyroradius, the magnetic moment . 
I-L = ~ M vJ.. ~/B and longitudinal invariant J = MfvJl ds of the 

particle are conserved. Its drift motion averaged over a bounce is 

described by the following Hamiltonian equations (Northrop and Teller, 

1960; Northrop, 1961): 

<~ ) = c OK\ 
- e acp I-LJ'If 

, (1) 

<ci» c OK\ = - diV ' e I-LJcp; 
(2) 

where 

K(I-L J 'If ~; t) 1 2 
= 2' Mvll + I-L B + e ~, 

is.just the lowest-order total energy of the particle. K(I-L J'If cp; t) 

is determined by the equation for the longitudinal invariant, 
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J(1-1 K:w q>; t) = 1 ds 
1 ., 

[2M(K -I-1B ..; eel'» 12 (4) 

The bounce period is given by 

= (5) '. 

Kinetic Equation 

Let F(I-1J ~ q>; t) be the distribution function in 1-1 J ~ q> 

space; i.e., ;F(1-1 J ~ q> t) dl-1 dJ d~ dq> gives the number of particles 

in the flux tube d~ dq> at (~, cp) with magnetic moment andlongitu-

dinal action in the intervalsdl-1 at 1-1 and dJ at J respectively' 

at time t. Since .1-1 J are invariants for each particle, and the 

motion in (~, cp) is described by Hamiltonian equations, there is a 

Liouville theorem in (W, cp). space: 

(6) 

This equation was first derived by Northrop 1'lndTeller (1960) from 

a ~tudy Of particle motion, and was recently derived.from theVlasov 

equation by Hastie et aI.· (1967). 

The local particle spatial density is related to F(1-1 ~ * cp) 

in the lowest order (Appendix B) by 

. " ... ~ ." .. 
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n [r ('It cp X) J 
(

2 ] I , 
M(K - J-tB - e~) "2 

. because the cross section of the flux tube is inversely proportional 

to B, and the fraction of time the particle spends in a unit segment 

at X on the field line during one bounce period is Vb/VII (X) 

Equilibrium 

The long-term equilibrium of a low-~ plasma in a magnetic 

field is defined as a steady state over a time much longer than the 

drift period, and is given by FO[J-t J K(J-t J'It cp)J, the steady-state 

distribution function, which is the general solution of Eq. (1) with 

OF/ot = O. 

Note that the dependence upon ('It, cp) of the equilibrium 

distribution FO must be implicit through its dependence upon K. 

For axisymmetric systems, K = K(J-t J'It) and FO(J-t J 'It), and we 

have 

Perturbations 

(8) 

We are interested in low·-frequency el"ectrostatic perturbations 

that occur in a time scale long compared with the bounce period of 
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the energetic particles (l-keV protons) but shorter. than or comparable 

to their drift periods, so that their flux invariants are broken 

while their Il J are still conserved. For Il J to be conserved, 

three conditions on the perturbation must be satisfied (Northrop, 

(i) The ·frequency ill and the Doppler-shifted frequency 

ill ± m illd (m is the azimuthal mode number) of the perturbation must 

be much smaller than the bounce frequency, 

. Because illd/vb ~ €, the second inequality above implies that 

-1 m «€ ,or the azimuthal wavelength of the perturbation must be 

much larger than the proton gyroradius. 

(ii) The perpendicular electric field associated with the pertur-

bation must be such that the resulting E x B drift is of the same 

order as or higher than vd' the drift due to magnetic field gradient 

and curvature, 

E.l 
c B (1' 2: 1), 

where v is the velocity of the Van Allen particles (E > 1 keV). 
:.~ . 

Hence in one bounce period, the pa~ticles drift to a neighboring 

position where the magnetic field differs from that of the previous 

.~. 
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position only in € order, vb- l din B/dt ~O(€), and J is thus 

conserved. If ExB were of the order of v, the particle could have 

drifted to a very different region of the magnetic field in a bounce 

period, and J could not be invariant. 

(iii) The parallel electric field associated with the perturbation 

must be such that 

for ~ conservation. 

If there is no other constraint that limits the magnitude 

of the electric field, then the perturbation electric fi.eld will 

take the lowest allowable order, p = q = 1. 

Perturbed Number Density 

The perturbed number density can be obtained by varying (7), 

,on = 
F o oK - e54> 

- M 2 
vII 

-., . 
where the second term results from the perturbation of 

1 

VII = [2(K - ~B - e<!J/MJ? , 
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and the last term. comes from the variation of vb' ·Noting that 

1 = . - ~ (:.1:\ J. we can rewrite the last term in (9) as 
. OK~II)IJ.~ 

/i ~x 

= 

The vanishing of the first term in the above equation is due to 

J conservation: 

8 J 

Using (5), we can rewrite the last two terms in (9) as 

= -.11 [ 1 (°
1°0 1 dlJ. dK --- ~K (oK -e8~) 

. v,I U ,'t . . IJ.'I' . 

--! 1 

:~ . 

. . 

(10) 

(11) 



• 

-21-

substituting (11) into (9), we have an expression for the perturbed 

density: 

The perturbed distribution function 8F can be solved from the 

linearized Eq. (6). Setting 

~(w, CP, X; t) =~o(w, X) + L ~m(W' X) ei(mcp - (J)t~ 
m 

F( J ,I, t) F ( J ,I,) \" F
m

("" "J ,I,') ei(mcp - (J)t,) • ~ 0/ cp; = 0 ~ 0/ + L- ~ 0/ 

m 

(~o is the equilibrium potential, m the azimuthal mode number), 

we have, from linearized Eqs. (6) and (2), 

where 

K (~ J W) 
m 

c Km(OFo/01Jr)~J 
- e '(J)d - (J)/m, , 

= e(<I» m 

by J-conservation as in Eq. (10). 

<I> (X) , 
m 

(12) 

(14) 
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Ordering Scheme 

(a) Outside the plasmapause, there is no .cold plasma effect, and 

the ordering is straightforward . With conditions (ii) and (iii); 

we can now order the Poisson equation, 

\l . E = 411 ~ n. e
j <I'V J 

j 

. Multiplying (15) by c/B n. to render it dimensionless, we have 
~ 

the ordering: 

'" q+l 
'" E , 

c '" kl.~ v./n. '" EP+l 
(k.L L.J Bn. v.1. EL '" '" ~ ~ 

~ 

2 
. 2 2 2 n. - n 411 n Mi· vi c 

c4 ~ e '" e Bn:'" 1'( n e '" 2 e2B2 n M. ~ v. 
~ ~ 

where we have taken kllLI! ~ O( eO) and Au = 

'" p+l 
'" m € , 

n. - n 
~ e 

n 

2 . 2 1. 
[M. V. /411 n e J2 

~ .. ~ 

Since there is no other constraint on the magnitude of the 

(15)· 

electric field, p = q = 1. The Poisson equation is thus ordered as 

... 
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\711 E \7.1 E J. 4rr L n. e. , 
J J 

j 

2 2 (~)2 . n. - n 
~ e 

€ m € n 

Let us consider the following situations: 

(i) High density: 

2 4rt n M. c 
~ » 1. 

(16) 

The charge neutrality condition is valid at least through the first 

order, as m € <~ 1: 

(ii) Medium density: 

In this case, the left-hand side (lhs) of (10) ~ m €2 while rhs 

~ o(€o). Thus the quasi-neutrality condition must again be used in, 

the lowest-order calculation. 

'(iii) Low density: 

In this 

2 m € 

case, the Ihs 

m on 
(kJ.. "n)2 n 

2 2 I 2 4rr n M. c IB = (r X-) «1 . 
~ g '1) 

of (10) ~ m €2 while the rhs is of the order 

For (k
1 

"n)2 «1, the quasi-neutrality 
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condi tion may still be used in the lowest order of . calculation. For 

" a short-wavelength case (k.l An)2 2:1,:we must use the Poisson 

equation even in the lowest-order calculation. Thus it is only for 

the case of low density and small wavelength that the Laplacian of 

the potential in the Poisson equation should" be kept in the lowest-

order calculation. " 

In the region outside the p1asmapause, n ~ 1/cm3, 

~ 102 "km. 

T ~ 10 keV 

( Carpenter, 1965; Frank, -1967), An ~ 1 km, r 
g 

Thus" we 

are in a high-density region r »An' and the quasi-neutrality g " 

condition must be used. The characteristic parameters of the plasma . 

in the outer zone are tabulated in Table I. 

(b) Inside the p1asmapause, the cold plasma with density n has 
c 

important effects. For low-frequency perturbations under study, 

the . cold plasma contribution can be represented by a 

dielectric tensor ~"=" K: II 
,~, 

+ ~, ~ I ), where is 

the unit vector along the field line, 

K:l = 1 + 4rt n c M. 
~ 

c2/B2, 

1 - 4:n: 2/ " vc ), (i8) 'K: II = n e M m(m + i c e 

where v is the collision frequency of the electrons with protons. c 

The Poisson equation then becomes 

«, 
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v . K -4rc I , 
j. 

where is the density of the Van Allen belt ~articles alone. 

The collision frequency Vc is given (Alfven and Falthammar, 1963) 

by 

= -5 -2 -1 0.3 n v 10 'T .en A sec , c e. e 

where A is the plasma parameter, v the electron thermal velocity e 

in cgs units and T the electron temperature in degrees Kelvin. e 

The electron density inside the plasmapause is n ~ 5 x 102/cm3 

(Carpenter, 1966), and the temperature is taken to be 104 0 K 

(Gringauz, 1967) •. 

estimated to be 

With these values, the collision frequency is 

-2· -1 v ~ 3 x 10 sec ,which is of the same order of c 

magnitude as the bounce frequency of the energetic protons 

Because of the low frequency of the perturbation m ~ ~vbh ~ EV 
C 

rv 2 n 
rv E ~6" 

hrc n e2 
'" 1 c 
~ - 2 M (J)V 

e c 
= 

M, 
1 - ~ 

M e 

Ml.' 
'" 1 - -M e 

Qi

2 
.(rg. )2 

ill Vc AI 
D 

l. 

-4 ( / I )2 
E rg A D (20) 



. 1 . . 

where A' D . = [Thj1+1C nC e2 p: is the D~bye length obta.ined by using 
, . ."' .. 

the temperature of the hot plasma and the density'of the cold plasma, 

~ '" -1 '''' and we have taken M '" € ; AD'" 50 m ,and rg ~ 10 km fc;>r 100keV 
·e 

protons at L = 3. Thus r »A/D inside the plasmapause. 
g . 

(iii): 

Now we can order Eq. (19) according to conditions '(ii). and 

To make it dimensionl'ess"we multiply (19) by c/B U., 
~ 

n. 
~ 

Similarly 

..S- 9.1 K: E 1. ~ €p+l (kJ. t) [1 + (rgl"l-!. D)2] B n. . . .1. 
~ 

P+l '. 2 
~ m ~ (r lA' ) 

g D 

c ) ~ 
~ +n u nh e = 

. ~ 
2 

M. v. 
~ ~ 

2 . ,2 
M. v.c on. 
~ ~ n 

2 . 2 n 
eB . c 

n. 
~ 

... '. "'(,!.' 

..... 
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where we have :put 5 ~/nh ~ O( EO). Thus the terms in (19) stand 

in ratios: 

h h 4rr (n. - n ), 
~ e· 

(21) 

Since the :pitch angle distribution of the energetic belt plasma is 

:peaked around the equatorial plane (Davis and Williamson, 1963), its 

density variation along a given field line has a sharp maximum at the 

equatorial :plane and falls off rapidly as one moves away from the 

equatorial plane. Davis and Williamson (1963) found the pitch angle 

distribution at L = 3.5 to be proportional to 

sin3 "e ["e = ,tan -1 (:~ lq is the equatorial pitch angle 1. The 

density ~(s) then varies like B-3/ 2(s) (Appendix F). 

In the region near the equatorial plane, called Region I, 

nh/n
C 
~ 10-)-/- ~ E, and the ratio of the terms in (21) is 

q-3 
€ 

p+l 
€ E. (22a) 

In the region far from the equatorial :plane, called Region II, where 

B increases by a factor of 102 above its equatorial value, 

would be a factor 10-3 ~ € smaller than the equatorial density, 
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which in turnis € smailer than the cold plasma density, and. the 

ratio of the terms in (21) is 

q-3 
€ (22b) 

Since p 2: 1, by comparing the second and the third terms in (22a), 

we see that the '\7.L K..L E.L is always negligible in Region 1. 

Furthermore,by comparing the first and third terms in (22a), we see 

that q == 4 or Ell'. ~ o( €4) in Region 1. 

Similarly, from (22b) q = 5 or Ell '.~ o( €5) . in Region II,' 

and v:..L K 1 E J.. is no longer negligible in Eq. (21), as there is no 

other constraint on . E J. ' and it will take the lowest-order value 

,allowable, i.e., p = 1. 

Thus the existence of the cold plasma effectiv~ly provides 

a large conducti vi ty along the ·field line, which limits the magnitude 

of the parallel electric field to o( € 4) in Region I, and to . 

o(€5) in Region II. 

Let us expand the potential . <Pm(X) formally in an asymptotic 

series, 

<P (X) 
m 

. €£ <P (£) (X) 
. m ' 

where 
( 0 ) 2 i c d~ ( £ ) 

e~ ~ mv , and~vax ~ o( €£+lj. -From the above 

discussion 'we haVe in.Region I 

.~. - . 
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d~ (o) d<l) (1) d<l) (2) 
m m m =f= 0 , = 0, = = ax ax ax 

or<l) (£)(X) constant along the f'ield line f'or P, =0, 1, 2. In 
m 

Region II, 

ax = 0 f'or P, = 0, 1, 2, ·3. 

(24) 

Since we are interested in Region I, where the main body of' 

the Van Allen particles resides, we have, f'rom (22a) and (24), the 

f'ollowing ordered Poisson equation: 

with boundary condition 

d~ (3) 
m E (4) 

II = - ax 

because of' (25) • 

= 0, 

, (26) 
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III. ',' STABILITY OF VAN ALLEN BELT INSIDE PLASMAPAUSE 

Let us f'irst consider the region inside the, plasmapause. 

Substituting Eq. (12) and (14) into Eq~ (26), and uSing (24), we 

get 

o 
:B dx 

= 8tt ~(O) ~.j ff~ dJ 
J '. 

, (28) 

Because we are primarily interested in the stability problem, 

the location of' the eigenvalues in the complex ro plane, we shall 

construct a variational principle from which one can derive certain' 

stability criteria by employing a suitable trial function, without 

having to obtain a complete solution to Eq. (28). Multiplying 

by<T> *(x) and integrating over the line of force' 'J' ~ dX m ' B ,Xc 
Region I, and we have a variational expression: 

(28) , 

in 

" 

; '~ 
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/'1 0<1> (3) 
2 

-8. ~ejJJd~ 
c 
~m(Of o~j 

3 dX m dJ 11J 
€ ~II oX = 

m j - m/m 
·Xo J d 

+ o(€) , 

where we·have used (23), (24), and (27). Since the Ihs of (29) is 

0(€3) smaller than the rhs, we have, in the lowest order, 

~ej If ~ COFoj/~ J 
(30) dJ . I:!: = o. 

md J ~ m/m 

This is the dispersion relation whence we can derive the stability 

condition. Note that (28) and (30) are valid for each and every *. 

Th:usthe stability of our system becomes local· in the sense that the 

stability of a given shell at ('I', * + d*) depends only upon the local 

properties of the system at *. 

Before considering the specific equilibrium distribution 

function, we shall examine the conditions for the existence of the 

purely growing mode and of overstability, :using the Nyquist method 

(Appendix E). 

In (30), as m ~OO, D(~) '" m-
2

, and the number of roots 

in the upper half m plane is 

N -1 + t:,.e 
2·]( 

(Appendix E), 
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. where 

6,9 :::::- ArgD((J) = (0) - Arg D((J) = -co), (31)· 

i.s the Change in the argument of D as (J) goes from -00 to· (J!) . 

along the real axis. 

To find 6,9, we express the real and imaginary part of D·· 

on·the real (J) axis explicitly, using the Plemelj formula, 

1 1 =.p--x±,y ; rri S(x ± y) •. (32) 

.~ ~ .. '. ~':'"\' '," 
~ ',,' ~ : I " " 

Inside the plasmapause, there can be no parallel ele~tric field 

along the field line in equilibrium. We assume that radiB.l electric 

field is also zero, neglecting the effect of the earth's rotation. 

Thus we can set the equilibrium potential to be zero inside the 

plasmapause •. 

Now we change variables from jJ.J to kinetic energy 

E = K - e<flO (in this case, <flO = 0, E = K), r.- jJ./E= l/BT, the 

inverse of the magnetic field strength at the t~rning point vII = O. 

In terms of· the new variables, .thebounce.and drift frequency can 
1 

be written (Appendix F) as v = vo(r., W)E2, (J)d = a(k, W)E. Then 

(31) becomes. 

. ~ .: 

•• A 

';,", ; 

. ".} 
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where EO is the low-energy cutofr5 of the Van Allen particles 

(EO ~ I keV) , and BO' Br are the magnetic field strength at 1/i 

in the equatorial plane and the boundary of Region r respectively; 

we have used Eq. (8) and (2), with illd = aE. For a dipole type 

(a ::: -a. > 0). 
e J. 

The singularity in the integrand 

is to be handled by considering ill to have a positive imaginary 

part. Using (33) for ill on the real axis, we have, for m > 0, 

o 

where aO is the minimum value of a't(A), and 
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. ,-

'~~D(;;V) = 

Note that Re D <. 0 . for /(1) / <. m aOEO' and ReD ~ - 00 as 

(OF/OK) .. J <... 0'. 
" Il 

,is a monotonic function of K for all IlJ at'" , i.e., (dF o/OK) IlJ < 0 

for all IlJ at W, then Im D will not go through any additional 

zero besides those at (t) = ;I; co . and between -m aOEO and m 3.0 EO. 

The change of the 'arguIllent of D as (1) moves from -,00 to 00 

, along the real axis is 211: (Fig. 5).·. From (32), N = 0, i.e., there 

is no' unstable mode. Therefore (OFO/OK) IlJ< 0 is a sufficient 

condition for stability against electrostatic 'IlJ-conserving modes 

an energetic plasma in an axisymmetric field in the presence of a 

dense, Cold plasIlla background. 

For the outer belt inside the plasmapause. (2 < L < 5), the 

,distribution function fl [E(1l J w), a(1l J"'), "'] of the energetic ,,'~' ". " 

protons (0.1 MeV <.E < 5 MeV) found bY,Davis and Williamson (1963) 

has the property that (9f l/dI!r) IlJ > 0 (Nakada et al., 1965). It can . 

be shown (Appendix B-2) that fl is simply related to FO(1l J w) 'by 
1 

Fo = f 1/[2 Il B/M]2, 

,,', : 

...... 

:,.,:, . 

'," " 

.. , 
. ':. -

':", . 

, .. 
. ,", ': .. ' 
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. 1 fl 1 dB 
--"T - I 

(2 ~ B/M)2 2[2 ~ B/MJ2 B d~ 

As dB/d~ < 0 for a dipole-type field, (Ofl/dW)~J > 0 implies that 

(OFO/~)~J > 0, i.e., (OFO/OK)~J < O. Thus the outer energetic belt 

inside the plasmapause is stable against electrostatic . ~J-conserving 

perturbation. 

In order to have instability, 1m D must go through zero at 

least twice at some ill, say ill:L' ill2, besides ill = ±oo and 

I ill I < m aO EO' In this case, it is not possible to have Penrose-type 

criteria (Penrose, 1961), i.e., necessary and sufficient conditions 

for stability in terms of the general properties of the distribution 

function. Only in a special case can simple conditions for the 

existence of the purely growing mode be found (Appendix G). In the 

following we consider a model distribution function and derive 

sufficient conditions for instability in terms of macroscopic para-

meters such as density and temperature. 

As we have noted previously,the energy content of the outer 

zone inside the plasmapause is mainly associated with the energetic 

belt (40 keY < E < 5 MeV). The energy spectra of its flux are well 

represented by exp(-E/T), and T;:::; L-3 ;:::; B for the equatorial 

particles. For simplicity, we assume the ptich-angle distribution 

as a power law in the sine of the equatorial pitch angle 

5" 
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(EPA)O:e : sin.e O:e ::: ,,}/2. In general, .e ° is a function 0 of both 

°energy E 0
0 
and the magnetic shell parameter L.As computed by 

Hoffman and Bracken (1965), the dependence of o£ on Eo is rather 

'weak, and the dependence on L for particles with average energy is 

found to be .e = 2.84 - 0.12 L for L between 3.7 and 10. For the: 

region inside the plasmapause (L < 5), we ~ut £ = 2 as a crude 

approximation. Thus we have a model distribution function whose 

dependenceoon energy and pitch angle is factorizable: 

F [~ J (,,- E 1.jr) 1.jr] = I I 
4(2M)2 T(1.jr) E2 

H:­
E ' 

where n(1.jr) ° is the particle density in the equatorial plane at o0 1.jr0 
;" 

" as given by (7), BO(1.jr) is the equatorial magnetic field strength 

oat 1.jr,and T(1.jr) the temperature of the plasma at 1.jr. In view of 

the similarities between the characteristics of the electron and 

proton fluxes in the outer belt (Hess et al., 1965), we assume the. 

same distribution function for electrons and protons for Simplicity. 

Inside theplasmasphere, the distortion of the magnetic field by 

solar wind is not ilnportant, and we assume the magnetic field is a
O 

dipole field. For axisymmetric systems.with electrons and protons 

haVing theo same distribution, the azimuthally propagating over stability 

for a given mode number m must exist in pairs. For each unstable 

mode propagating eastward, there must also be one :propagating west-

ward. Thus if there is only one unstable mode fora given m, it 

must be a purely growing mode. 

," . ' 

: ) 0 

-~ . 

oo~ 

... : .... 
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In a dipole magnetic field, the bounce 'and drift frequenciee 

of the charged particles with energy E and A=, sin2 a /BO are , e 

given approximately (Hamlin et al., 1961) by 

1 

VO(A) .1 '1 (2E)2 .1 ':'1 
Vb - E2 = 4r - [1.30 - 0.50 (A BO)2] , r M 

6 c E 1 

Wd - a(A) E = 
e BO r 

[0.35 + 0.15 (A BO)2], 

where r is the equatorial distance from the dipole axis. Because 

the energetic particles have their pitch angle distribution peaked 

about the equatorial plane, they are confined mainly in the region 

near the equatorial plane, A ~ BO-l • Therefore (39) can be 

approximated by 

~ 3 c E 
wd B e 0 r 

Using (37), (40), and (2), we have 

= 

(40) 

(41) 



where; 

'. 

G('lr) 1 Cd tnn _ dtn T + 2)·· 
'I' - -. -2 d.en r d .en. r ,2 .'. 

BO r. 

(42) 

Substituting (41) into (30) and noting that for a dipole type field, 

a (A.) .. = -a~(A.) > 0, we obtain e J. 

D==L 
± 

EO 

(G + HE) e-E/ T 

E ± m/m a . e 
=0. (44) , . 

.' IfG/R < 0, then Im D vanishes at m = ± m a G/R, from (35) and 
. , e . 

(41), and there is a possible instability. Since these are the only 

possible zeros of Im D in addition to those at m='±oo and 

1m I < m aO EO' the change in the argument of D from m = - 00 to + 0:> 

can at most be 4:rr and there is at most one unstable mode--a purely 

gowing one. Setting m = iy in (41), where y is real,' gives 

= 
E(G + HE) e-E/ T 

2 2 . 2 - 0, 
E + r /(m a ) e 

D(y, w) (45) 

which is always real. Its asymptotic forms are\. 

.. ' " 

; -. .' 

',." .. 
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r ~O 

r ~ 00 : 
2 . 2 

D(r ~ 00) '" (m ae) (G + 2HT) exp(-Er/T)/r, 

where El(X) is the exponential integral (Abramowitz and stegum, 

1964). I~ these two limiting values o~ D are o~ opposite signs, 

then the expression D(r) must go through zero at some value o~ r 

between ° and 00, i. e., there exists an unstable mode. Thus a 

su~~icient condition ~or instability is 

-x 
+ HT e < 0, 

G + 2HT > 0, (46) 

where x = EO/T.. Or al ternati vely, 

-x G El(X) + HT e > 0, 

G + 2HT < 0. 

We note that 

(48) 

is just the necessary and su~~icient condition ~or the interchange 
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stabili ty derived on the energetic grounds (Taylor, 1963) (Appendix H). 

Condition (47) thus corresponds to the occurrence of the interchange 

instability. The additional condition, the second inequality of (47), 

. arises from the use of the kinetic equation, representing the additional 

constraint of the motion. Even when '0
2 W> ° is satisfied, there is 

another instability which will be called drift mode [as in (46) J • 

. Using (42) and (43) to express (46) and (47) in terms of macroscopic 

parameters for two ratios of cutoff energy to temperature, we have, 

for instability in a·dipole field, 

Ratio (i) for: 

x - Eo/T = 0.01, Le., El (x) =4.0, 

·The condition 

1 t:7 d £n T _ 9~ > d £n n T >-7.5 
4" ~ d £ri r . 1) .. d £n r 

from (46) for the dirft mode, and 

-7.5 > d £n n T > 1 (7 d· £n T - 9) 
. d £n r 4" d In r .' 

from (47) for the interchange mode; 

Ratio (ii) for: 

-x . 
e '= 0.99, 

x. - 0.1, 
-x '.- .. 

e :::0.9;-

(50) -

. , . . - " 

·i' 

. .1 
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The condition 

d tn T > d tn n T 
-3'+ 1·5 d In r d tn r >" -7·5 , 

from (46) for the drift mode, and 

-7·5 
> d tn n T d tn T 

d £n r > -3 + 1·5 d £n r , 

from (47) for the interchange mode. For the energetic particles 

inside the plasmapause, T oc d tn n > 0. 
d tn r 

From (42) 

and (43) it follows that G> 0, . H = 0. ,Hence (48) is always 

satisfied and the plasma is stable against the interchange. .Further-

.more, conditions (46) or (47) cannot be fulfilled, and the long-term 

. equilibrium of the system is stable against the ~J-conserving 

perturbations. This is in fact already obvious from.the analysis by 

Dungey et al., that (Ofl/dL) J > 0, which implies ~I > O· for 
~ ~J 

a dipole field, i.e., ~I~J < ° for all ~J inside the plasmasphere, 

the sufficient condition for the long-term stability, as previously 

discussed. 

• 
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IV. THE STABILITY OF THE· RING CURRENT BELT 

By comparing the simultaneous measurements of theiocation of 

the plasmapause (Taylor et 0.1., 1968) and the ring current belt 

(Frank, 196'7) with OGO satellite, we see that the peak of the ring 

c11I'rentbelt is just outside of the plasmapause (Figs. 3 and 4). This 

close relation suggests that the formation of the.plasmapause . is 

directly related to the ring curr~nt belt. Furthermore, the outer 

edge of the ring current belt is outside the plasmapause. Because 

the plasma outside the plasmapause is collisionless, in general there 

is an electric field along the magnetic field line (AlfVen and 

Falthammar, 1963), and stability analysis must include the effect 

,of such a parallel electric field. 

The stability of a lOW-I) plasma against J..lJ-conserving electro-

static perturbations with a finite parallel electric field has been 

examined by Rosenbluth (1967) for a plasma in a multipole field. 

Frieman and Rutherford (1968) derived sufficient conditions for 

stability from an energy principle for general geometry. In 'the 

following, we first give an alternative derivation of the Rutherford-

Frieman criteria, then derive a necessary and sufficient con,tiition 

for stabi;t.ity in a special case. The result is applied to the ring 

current belt with ionosphere as boundary condition.: 

From the ordering scheme (16), the charge neutrality condition 

is to be used for analyzing the low-frequency stability' of the ring 

-. 

: .. : 

,". 
.0., 
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current belt that lies outside the plasmapause. Substituting (12) 

and (14) into the linearized quasi-neutrality condition,. (17), leads 

to 
OF j 

~ ej ]] 

c(~ )~ 
.~ d!J. dJ vb m J 

e. on
j 

=. Il 
J vII ill j ill 

j d m 

(~m) ~j 1 ~. ° 0, - e. m)dK w = 
J 

Il J 

where FO~' J(Il, K, W), w) = FO(Il, K, ~). Equation (53) is an 

eigenvalue equation for ~ (X), localized in W. 
m 

(53) 

Multiplying by ~ *(x) 
m 

and integrating over the field line, 

. ~ . 

£ ~x, with the lindts 
o 

. - o. 

of integration at the ionosphere, we have 
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Transforrningto new variables E = K - e~(O)(s)(the 'kinetic energy) 

. C<f>O 

6 '.' '. 
is a function of s alone assumed, Appendix. F), we have 

= 0, 

where we have used the relation 

.. 
; ,." 

At the ionosphere~, XO' the var:i.ation of. the potential. 

o<f>m (1jr, X), is taken to be zero due to the high conducti vi ty there •. 

With this boundary cohdition o<f> = Oat Xo' ~,the Ihs. ofEq. (55) .~. 

. *.' 
becomes a variational expression, i.e., oD/oiI>m = 0 yields (53) ~. 

,' ..... :. 

The eigenfunctions of (53) form a subset of theset'of all trial 

, functions of (55). If Eq. (55) has no root in the upper half. ruplane, 



-1+5-

for any triaL function, then Eq. (53) has no unstable solution. The 

sufficient condition of stability derived from (55) impl"ies a 

sufficientcondit:L6ri :of stability fer' (53). 'Such conditions can be 

obtained by means of Nyquist analysis., 

In (56) ,for large ill, D(ill) ~ Const. and the number of roots 

in the upper half ill plane is (Appendix E), where 

A9 == arg D(ill = +(0) - arg D(ill == -(0) is the change in the argument 

of D as ill goes from -00 to +00 along the ,real axis. 

To find A9, we express the real and imaginary part of D 

on the real ill axis explicitly, using the Plemelj formula (33), 

for ill > 0 

= 

for ().) < o. (57 ) 

Clearly Im D vanishes at ill:: 0 and ill:: ± 00. 

for all ~J at ~,then these are the only zeros of Im D. When 
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this is the case, ,the change in the argwnent of' ,:0 as m goes 

from -00 to 00 along the real axis is at most " 211:. 

Now we look at the real part of' D at ill = 0, :r 00: 

Re D(m= o,~) = L e j 
2 J J dA dEE~ VO-

l 

j 

ReD(oi~, t)- L e/ J JdJ-dEE%VO:-~. [<I~mI2) - Wm)12j 

j 

Note that 

of j I of j' 
"TK'"""KO , < 0' and ~ " < ° ,then Re D(m == 0) < 0, and 

,flJ oK fl~ 

ReD(m~ :roo) < 0.' In this case, the mapping of the real maxis 

onto the D plane does not enclose the origin, and N = ~cp =,0. 

There can be no unstable mode, and the plasma is thus stable. These 

suf'ficient conditions for stability" were ftrst derived by 

Rutherford and Frieman (1968) from an energy principle. 

" 

.':. .. :, 

, ,'~ ~ . 

"',, . 
!,:, " .. 

. , ': 

·t."" 

; ....• :. 

. ..... ,'" 
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To derive a necessary condition for stability, we consider 

a. special case in which thG eigenfrequency as a function of tempera-

ture and density gradient is much.greater than the· mean drift 

frequency, ill » m illd;we follow the app:t.'oach by Rosenbluth (1967). 

Neglecting the resonance effect, we expand the denominator in (55), 

~ millj) _!!! 1 + d 
ill . ill 

Using (59) and (8), we have the expanded variational expression of 

where 

2 ill . ill 
S 2 + 1) iii + ~ = 0, 

m 

(59) 

(60) 

(61) 
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... Equation (61)is nota very useful.varia:tionB.l expression, 

because ill is in general complex and no minimization principle is 

available. (But we can obtain sufficient conditions for. stability 

by requiring T)2 -4st; > O. It is sufficient to have st; < O. This 

is the case if 

• OFo
j

\ ... 
< O. and dK"" < 0, 

... I-1J 

which are again the Frieman-Rutherford conditions.)· The variational 

expression (60) becomes a minimal principlewhenT) =O~ . Such is 

the case when the electrons.and protons have the same pitch angle 

distribution for distribution functions factorizable in their energy 

and pitch angle. dependence (Appendix I) (or trivially so when they 

have the same distribution functions). Then the minimization expres-· 

(62) 

The minimum value of ill
2 is just the square of the eigenfrequency of 

the fundamental mode, the minimum eigenfrequency. As the eigen­

function of the fundamental mode yields the minimum value ofw2 . in 

-.... 

., 

.' 

."'. 

", f 



(62), the necessary and sufficient condition. for stability is the non­

negativeness of the minimum value of ri?,-Therefore, the system is 

unstable if (J)2 < 0 for any suitable trial function (by " suitable" , 

we mean that it satisfies proper boundary conditions)-. For the system 

to-be stable, (J)2 must be positive - for all trial functions. [Note 

that this is a much stronger condition than the stability condition 

for interchange given by (48) .-J Even when (48) is satisfied, the 

system may still become unstable with respect to the low frequency 

modes according to (62). It has been shown (Rosenbluth, 1967) that, 

for (OF/OK)IlV < 0, a necessary and sufficient condition for stability 

is (OF OK)IlJ < o. 

We use (62) to derive the stability criteria for the ring 

current belt. 

Ring Current Belt Stability 

As observed by Frank (1967), the ring current belt energy 

-. , 

density is predominantly shared by low-energy protons (30 keY < E - ~ 

< 50 keY) (75/,.,) and electrons (0.2 keY < E < 50 keY) (25/0). Its 

flux is peaked in L space. In the region around the peak, the ring 

current belt dominates the energetic belt of Davis and Williamson 

(protons 100 keY < E < 5 MeV, electrons 50 keV < E < 5 MeV) in both 

the energy denSity and the particle density. The pitch angle distri- . 

but ion of the ring current belt is almost isotropic. From above 

information, we construct the following model distribution for the 

ring current belt: 



~(*) aCE. ~. E±) 
" .' '. 1 " 

2[2M±E:I:}2 

where~(*) is the ring current belt density at1jr in the equatorial 
. . , " 

plane. The narrowness in its energy spectrum is approximated by a 

a function,.with electrons and protons having different energies, and 

the near-isotropy is approximated by the independence of f on ~. 

Therefore, the region outside the-plasmapause is populated with the 

predominating ring current belt particles as well as the ,energetic 

belt particles: Their contributions to D in Eq. (55) are separable:' 

, (64) 

where DR is the part due to the ring current belt and DE is that 

due to the energetic belt. Because the ring 'current belt dominates, 

,in both energy density and particle density, we first study the 

stability of the ring current belt by itself, neglecting the contribu-

tion of the energetic particles in the first ap,proximation. 

When the scale length of the density gradient of the ring 

current belt becomes much smaller than that of the average magnetic 

. ,".",", 

field gradient experi.enced by the particles over a bounce, , 

1 .9!! » i(OB) 
n d'lr B· df ' the diamagnetic drift is much faster than the . ' ...... . 

... ~.' , 

particle drift because of (2): 

: .... ; . 

" ,; 

.. ) 

. .: .' 

. ' .. ,", .. '," 
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In this case, ill ~ m.ywc wd »m wd' as can be seen in (67). We 

substitute (63) and (55) and expand the denominator, using (59): 

= 0, 

or 

2 
W 

c
2 ~ ~ ~ E~i1 d>. Vo -1(>.) a.± er · 1 (0m) 12 

"2 = -
m L E:~ J d;\ vo-l [(I~ml)2 - 1(~m)12J 

± 

2 
Note that 002 

m 
a E ~ For a dipole-type 

field, the average drift for electrons is in the positive sense . 

(eastward), i.e., 

= 1 dE' 
E O1Ir!-iJ ~ < ~~> < o. 

[lJ 

(66) 

(68) 
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Thus the plasma will become locally unstable: oP< 'Oatt for 
"," .",' ",., dn ..... . ....... . 

inward density gradient dt < () a.t t. Therefore,theouter edge of 

the ring current belt, where .~ <0, is likely to become. unstable 

during the storm t:i,mewhen '. i ts density 'gradient becomes sharpened., 

On the other hand, the inner edge of the ring current pelt, where 

dn .' 
dt > 0, is always stable and supports a wav:ewith angular velocity 

The potential variai;ion along,the' field line-~the eigenfunction 
- . ,"' 

of the fundamental unstable mode--is such that i~ minimizes' (67) 

or maximizes the growth rate,subject to theboundary.condi~ions. 'If 

"there were no boundary conditions, such as th~. case of mul tipole 

geomtry With closed field lines:, thenonecouid'argue . (Rosenbluth, 1967) 

that the fastest growing mode is .<1> (s) 
m = constant, for which the 

denominator of (67) vanishes. One then 'recovers.the hydromagnetic 

interchange instability which occurs in a'bounce time scale, thus 

appearing with infinite growth rate in the pr.esentscheme. However, 

in the present situatiqn, i;heionospli~re Elayeras a conducting 

end imposes a boundary condition that <1> be zero at the ionosphere •. , m 

Thus the unstable mode must have a potential variation along the field 

line,i. e., 'a finite parallel electri.c field. Furthermore, this 

instability is not ,the interchange in the sense of interchange two 

' .. 
".," 

,,' 
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flux· tubes with pla.sma "frozen in." . The perfect conductivity of th~ 

ionosphere as we assumed here would have prevented such instability 

from occurring for a low-~ plasma. 

Marginal Stability Criterion 

As the parameters of the system are continually varying, the 

system goes through a series of equilibrium configurations. If the 

system is originally in a stable configuration but its parameters are 

varying in such a way ast~ make it approach an unstable configuration, 

then the tran.sition from stable to unstable configuration is character-

ized by a set of critical values of the parameters--the marginal 

stability condition. To obtain such a marginal stability condition 

, for our present case, in which only purely growing modes or pure 

oscillations are considered, we let ru = iy and stun over species in 

(55) , 

I ( ~ m > /2 ( of oj / OK) J.1J ( oK/ 0IIr) ~J 

rud
2 + (y/m)2 

+ .2 "£11<4< dJG~0~v [<i~mI2) - 1(~m)12J 
J 

= o. 

(69) 

where we have used (2), and the assumption that electrons and protons 

have the same pitch angle distribution. At the onset of the instability, 



r ;, O. Upcm eXtremiiing D (r = 0, w) = 0 with.respectto ¢ , we 
m . 

then obtain the ~ritical con~tion'at .the onflet of the purely growing. 

instability. 

As the density gradien:t of the ring current belt is being 

built up, it· approa'ches an unstable configuration. . To find the 

critical density gradient at the onset of the instability, we 

substitute (63) into (69) and put. r = 0: 

D(W, r = 0) 

whereea/c = 1 .~ I .... -B
l (~-) -< 0 . for a dipole-type field. 

E qljl J,lJ Oljl 

We· can rewrite (70) as 

(71) 

-.:.-:" 

The trial function q) Cx.) is chosent6 maximize D • Substituting . this' . . . m 

extremizing trial function (eigenfunction) into (70) ~.we then. obtain. 

the critical density gradient. This is equivalenttoextremizing the 

densi ty gradient in (71) (Appendix K) , i.e., q) 
m 

is so chosen as to 

"" ;, 

-'.1 
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minimize This miniinum value is then the critical density 

gradient, and in general it depends upon the field geometry and the 

boundary conditions. It is important to note that the minimizing 

function if> (X) 
m in general depends upon X, i.e., the parallel 

electric field is nonvanishing at th~ onset of the instability. 

Furthermore, this marginal stability condition is different from and 

usually weaker than that of interchange stability in that it requires 

a less steep density gradient. Substituting (63) into. (48), and 

setting o2w = 0, we have the marginal condition for interchange: 

For a dipole field, ea/c.:: d .en B/Oo/ ~ -3. The crit.ical density 

gradient for the onset of the low-frequency instability as' given by 

(71) is d.en ~/d\!r ~ -~. But that for interchange is 

d .en ~ rV 

d1jr '" -15/2• If the density gradient is to be built up gradually, 

the low-frequency instability, would occur first. 



, , 

, '/.' 

'. -:' . 

',',:V. RESONANTINSTP.;sILIT:Y' 
'" 

When·tlie rillg ;current'pelt is stable by itself and supporting, 
.;"" '.' '. i" ',' 

an oscillation, we can no;long~r ,igno:ret~e :coritribution, from the' 

energetic particles in Eq. (64) (the~second,ter:T),because the energetic 
.'. ' :. : '.' . 

particles can now resonate with this~zimuth~ly proP9:.gating wa.ve when' 

theirdri,:rt v,eloci ty equalf3 the pnase:velocitY:0f the';wave. ,. This 

resona,ntexchange of energy between :partic,le drift and wa.ve leads 

either to,' the <iampi~g' or totl;le gtowtp of' tAe wave, depending upon 
, .' . .. .;- . . '~. " 

the sig~of (O~>OW)J' at the resonance",drift frequency. Setting, 
':' ','1-1, 

m = nt ir"wherey« n forth,e we~k;g:roWt;hor damping, we can 

expand D(m) , in (64) about m = n, thesolution'a~ given byRe D 0: 

D(lli) = Re pen) + °t D\'(l1') + i lni D(n). ,-0. 
, '" m=n 

.'. :": .' '. 

Since the ring current, isdomihat~ng iIi partlcledensi ty, ' the real 
" .,<: .. 

:pa.rt of ,D is approximateiy ])R,the contributi:on of, the rin€;, current 

belt: 
. . , . . 

,,'j": ." 

, J:ieD(n) ;.. );. 
(74)' 

,f,' 

Equation (74) then 'determinesthe:rea1 pe.rt~fthefreqUenCY.When. 

the rj,ng currentb~lt:has 'Shari densitygrad~~nt~,mc::;->" m (l)d' 
" , 

Eq. (74) can be approximated by Eq. (66)'" alld' 
:.'. 

, '.i 

, .-. 

, ; 

..... 
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'Using the Plemelj formula (32) and (56), we find from (57) the 

contribution of the energetic belt to the imaginary part of D, 

for n > a 

for n < 0, 

=~ 'IT) 
m a 

E = milla ' 'IT) 
+ 

whe;re FOt-(ill'IT) are :the distribution functions in Il J'IT space for 

the energetic protons and electrons, respectively. Equating the 

imaginary part of (73) to zero, we have 

r 1m D~~ n = - (dD! n • 

Substituting (75) and (76) into (77), we obtain 



± 

, ', .. ' ~ :.-' .;. . . : 
..,.: 

:: . ~ : ';. 

'. '. '.': 
." ,'" 

For ad~pole~type' field, e,± at: <O,,~d.for.th~ringqu,rr~nt belt 

. to be stable'in a. dipole-typefierd:dnidw>:o~::,'nlt~i'efore'H' 
., 

? ' 

y <0 

y'> 0. 
, .'" ~ . , 

, ,.' 

Thus the wavesllpp~rted by' the st~b~e: :ririgctl;'re~~ ~;-;b~~t· .. rnl:iy .... :be~6me . 

ov~rstabieifthe d:i,.stribution·furictioIi forth,eenergetic.·belt . 
" 

F(IJ.JW) decreas:eswi th wforfixe<fl IJ..J. ,', 
.; . , ' 

WE!, have noted that:fo~:.the e~¢;+get'icproton' be.It. (l.ooIi~v< E), 

'.(dfl/Ot.)IJ.J.> 0 . (Dungey etaJ,..:) 1965)"for.,: 2 .•.. ~,~ ~7,(~J~iYing; 
. '. 

(dFr;>!dL)IJ.J >.0. for .dipole~·typ~fielcr~;.· ihUS,~h~. ~~·st~~~~":Ptop~ating·., ..... . 

wave, capable of reson'ating wi.th energet{~ protons~ is. a.1.ways dampe~ .. 
.. ,' ; .... 

On'the bther hahd,·the .flux of the eneig~tic··eleC!tr.cms :(40 keV.<. E)" .. ' . . .' " ", .' " . . 

. " " . 

has a rather well7"defined trapPing'b9~rclB;ry,bey:ori~' wh:ich.the f;Lux" 
: r. '.' - . . :~'.'.'" . 

.. ,., 
- .:., 

.. :," .. 

',. ,'.--

.. '," . 

, .' . . '., .•. ,' 

~. ; 
': '. 

., ... 

." ..... :', 

I .•. · 

.~. ..', 

: . ..:.' . 

',~ . 

. , . . ... 

. '. , 
" ::.' , 

. ,~ 
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of the energetic electrons drops sharply (Frank et al., 1964). The 

trapping boundary appears to be $lightly outward of the peak of the 

ring current belt (Frank, 1967 a); its location also depends upon the. 

storm condition,.and it moves inward to a lower Lshell during the 

magnetic storm (Williams and Ness, 1967). Hence,. at the outer edge 

of the ring current belt the energetic electron flux decreases 

sharply with L, and it is possible that (dF/dL)~J < 0 for some 

values of ~ J. The eastward propagating wave supported by the stable 

ring current may then become unstable due to resonance with the 

energetic electrons. 

Physical Interpretation for the Overstability 

The physical mechanism for the overstability is the resonant 

interaction between the wave and the particle drifts. This is 
I 

essentially the same mechanism for Landau damping or growth, except 

that the thermal velocity ·of the particle is replaced by the drift 

velocity of the guiding centers. For a low-frequency wave traveling 

in the direction of the particle drift, it can exchange energy with 

those resonant particles whose drift velocity is almost equal to the 

phase velocity of the wave. Those resonant particles with drift 

velocities slightly greater than the phase velocity of the wave will 

give up energy to the wave, while those with drift velocities slightly 

less than the phase veloCity will pick up energy from the wave. If 

there are more resonant particles picking up energy, then the wave 

I 
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will be damped as the energy of the wave.ispositive7 (Rutherford and 

Frieman; 1968). 'Conversely ,the wave will grow'. Let us consider the 

case of guiding centers in a dipole field; the drift speed of the 

guiding centers at V near the equatorial plane is 

C 
'V P e 

where rO' is the equatorial distance. Fora given Il J, .' vd('V) 

(80) 

is greater for the smaller rO (or smaller 'lr). Thus the particles 

resonating with the wave at 'lr but lying slightly outward of'lr will 

be moving more slowly than the wave, and the particle resonant with 
. '. 

the wave at 'lr but lying slightly inward of 'lr is moving faster 

than the wave. ,Thus for the group of resonating particles with the 

same v d (Il J 'lr), if there are more of them lying ,just inside 'lr , 

(oF/O'lr) J < 0 for the set of 
Il 

i.e., such that 

Wd(1l J 'lr) = w/m, then the wave will gain energy. 

We, can also see this by calculating th~ work done on,the 

resonating p~rticles by the wave. The azimuthal component of the 

electric field of the wave is Ecp = -im (/)m/p directed along cp 

which is positive for eastward direction. But the current of the 
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particle drifts is always westward, as the electrons drift to the east 

while the protons drift to the west. Let oj be the resonant res 

current density due to perturbation.. The rate of work done on the 

resonating electrons with mth mode at 1\r is 

P = J d ds o· 
cP B J res !~ = i r. ~ J ~s *( ) () res( ) (Pm s -e wd onm s, . 

-' 
m 

(81) 

where' onm
res , the resonant part of the perturbed electron denSity 

associated with the ~th mode, is related to 0 Fm' the perturbed 

distribution in 11 J 1\r space, by Eq. (12). From (12) and (14), 

for w/m > 0. (82) 

Substi tuting (76) into (75) and noting v rf) ds.~ . = (~ ), W'e have 
b j vII m m 

P ::: rr m e JI ~ dJ I (~m) 12 (oFoldllr)IlJ o(Wd - w/m). 

OFor 
If ~ (wd = w/m) > 0, then P > 0. The resonating particles gain 

IlJ . 

energy and the wave will be damped. Conversely, for 

:1 (wd = (jj/m) "< 0, P < 0, and the wave will gain energy and grow. 
!lJ 
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Theoretical Conclusions 

To summarize, we have studied the stability .of the Van Allen 

belt in, the outer zone (2 <L < 8) against electrostatic IJ.J-

conserving perturbations in the low-~.nonrelativistic approximations. 

Inside the plasmapause, a sufficient condition for the stability of 

the energetic belt is that the distribution function F(IJ. J 1jr)be 

a monotonically increasing function·of the magnetic shell parameter 

L for fixed IJ. J, i.e., (OF/~)IJ.J > 0. As this seems to be the case 

for the outer belt particles, we concluded that the outer belt inside 

the plasmapause is always stable (Section III). Outside the plasma-

pause, there is a collisionless plasma dominated by the ring current 

belt even during the periods of magnetic quiescence (Frank, 1967). 

-,' The outer edge of the ring current belt, where the density gradient 

is along the magnetic field gradient, is found to be unstable when the 

density gradient exceeds a certain critical value. The growth rate of 

the instability divided by the mode number is of the order of the 

geometric mean of the diamagnetic drift frequency and par~icle drift 

frequency. There is in general a parallel electric field associated 

. with the instability. When the ring current belt is· stable by itself, 

it can support a wave which then interacts with the energetic particles 

drifts. 'If the distribution function of the energetic particles is 

such that ( ~Fener,/~,.) t o u~ IJ.J < 0, then the wave becomes .overs able • 

. . 

.• 

',. 
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VI. roSSIBLE RELEVANCE TO roLAR SUBSTORM AND AURORA PHENOMENA 

Two major problems in geomagnetic storm and auroral phenomena 

are the injection of plasma and energy into the closed-field-line 

region of the magnetosphere and the precipitation of the charged 

particles into the ionosphere to cause the polar sub storm. The injection 

of the enhanced plasma into the inner magnetosphere and its subsequent 

inflation following a polar substorm was observed by Explorer 26 (Cahill, 
• 

1966; Davis, 1966; Brown and Roberts, 1965). Thus the processes of 

enhanced injection and precipitation, both sporadic in nature, coincide 

with each other, as evidenced by the sporadic nature of the polar sub-

storm. 

Injection 

It has been suggested that the reconnection of the field line 

can be an important injection mechanism (Axford, Petchek and Siscoe, 

1963; Axford, 1968). The sporadic nature of the polar sub storm suggests 

that it is most likely due to plasma instability in the magnetosphere 

(Aka s ofu, 1967; Cole, 1967). Axford (1968) has emphasized the importance 

of the boundary conditions that could constrain the fluid from moving, 

thereby reducing the merging rate to zero. Thus the inward pressure 

gradient-of the ring current belt in our case tends to prevent further 

merging w~en it is sufficiently steep. But as soon as the pressure 

gradient reaches a certain critical value, the ring current belt becomes 

unstable (Sec. IV), and the instability tends to relax the pressure 

gradient. With the collapse of the pressure gradient, the merging of 
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thef..;1eld line is resumed,and the injection qf plasma again tends to . 

. rebuild the density· gradient of the ring current belt. This, then, 

accounts for the intermittent nature of the substorms. 

Precipitation 

The instability of the ring current belt has a finite parallel 

electric field. Although the parallel electric field is of the order 

of€ v B/c (v is the velocity of a 10-keVproton), the potential drop 
2(- . 

along the field line for the fundamental mode is of the order of Mv /e. J-------

The parallel.electric field accelerates the charged particles along the 

field line with the only resistance due to magnetic inhomogeneity: 

M dv" = 
dt 

0/ 
ed'S. 

Because of the smallness of the electron-to-proton mass ratio, 

the parallel electric field tends to eject electrons -into the ionosphere 

or pull electrons out of the ionosphere. This is the reason that the 

preCipitation particles are mainly electrons. 

The magnitude of the potential drop along the magnetic field 

line can be estimated as follows: The parallel electric field can grow 

to a _critical value for which the particles with average energy--the 

ones that are responsible for the instability--are. themselves being 

pulled out of the system. This happen when 

- ~ (OB/os) e oj/os = 0 

or 

E "'" .10 keY uv 



When this steady-state potential difference is reached, low-energy 

electrons (E < 10 keV) will be accelerated to 10.keV while being 

pulled out of the magnetosphere to cause the precipitation. In this 

sense, the auroral eiectrons are freshly accelerated. Recent measure­

ments by Albert (1967) have shown that the auroral electrons are indeed 

nearly monoenergetic, with fluxes peaked 'at about 10keV. The conjugacy 

of the auroral phenomena is due to the evenness of the potential varia­

tion along the field line with respect to the equatorial plane, which 

results from the evenness of the ring current belt distribution with 

respect to the equatorial plane. 

According to some observations, the polar magnetic disturbances 

are proportional to the maximum electron density in the auroral sporadic 

/layers (Nagata, 1963). This suggests that the variations in the polar 

magnetic disturbances are produced by varying amounts of precipitation, 

which produce the variations in the conductivity, while the electric 

field associated with the current system (or potential drop across the 

p'olar cap along the dawn-dusk meridian) remains approximately constant 

(Bostrom, 1966). The electric field can be regarded as necessarily 

accompanying the injection of the ring current belt into the geo­

magnetic field by drift (Block, 1967; Axford, 1968). Thus the problem 

of the auroral electrojet simply reduces to that of intense precipitation 

with simultaneous injection, and can be understood from the previous 

discussion. 
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• Table I • Characteristic Parameters 

Particle parameters, lo~~ev'particleih '~diPoie fiel~ 

Protons 

L = 3 

Gyrofrequency 18 cps 

Bounce period, 1 min, 

Drift period 29 hr 
" 

Gyroradius ' 12 kin 

Density 

Temperature 

Debye length 

Electron collision 
frequency 

Mean free path' 

Plasma frequency 

13 at e9.uatorial·plane 

L == 6 

2 cps 

2 min 

14 hr 

10Okm' 

Plasma parameters 

L =3 

33kc 

1 sec, 

, 29,hr, 

0.5 kIn" 

L = 6 

4 kc 

2 sec 

14 hr' 

.2.3 kIn 

Iriside; plB.smapau.se 

103/ cm3 

'Outside piasmapause 
. 3 
l/cm· 

1 eV 

20 cm 

2 ; 
3 x 10· /sec 

10
4 

kIn 
, 6 ,'. 
, ,2x 10 /sec 

1/6 

1 keV 

20: meters 

'. ':'8, 
'10 /sec 

;, 1013 kIn 
' , 

, , 5" 
:(). 5x 10 / sec 

" ._< 

1 

" <,.',' 

':\ ' 

" '" ",',-",: 

, ~" 
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APPENDICES 

A. Hamiltonian Equations for Drift Motion of Guiding Centers 

For charged particles moving in a slowly varying and weakly 

inhomogeneous, curved magnetic field, the guiding-center approxima-

tion often greatly simplifies the problem whenever it is applicable 

and the adiabatic invariants exist, For the magnetic moment 

2/. ~ = P1 2mB to be an adiabatic invariant, we require that 

where Qi' rg are the ion gyrofrequency and gyroradius respectively; 

,.- ~, L l' LII are the chara.cteristic frequency of the magnetic field, 

and the linear dimensions perpendicular and parallel to the field line, 

and € == rg/L1' 

In general each of the three quantities must be small: 

The third inequality can be written as 

This implies also a limit on the magnitude of the. parallel electric 

field, as 



;' 
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For Jto be conserved, it is necessary that 

-1 1 dB -1 1 dB' 'VB . 
. . [ . . 

vb ii dt = Vb ii dt +l4J.. B]« 1, 

Xa. being the drift velocity of· the guiding center a.cross the field'line, 

including E x B, 'VB drifts, -and curVa.ture drifts in g~neral. This,. in . 
. . . . 

. . 

general, . requires that ~ «Vb' and~ .. \7 In·.B« Vb' This second. 

inequality implies the limit on the magnitude of electric field com,:, 

ponents perpendicular to the field line, 

cE 1 
-~ 

B 

When Ii, J exist as adiabatic invariants' (in fact, there are two 

invariant asymptotic series for which Ii, J are the f:trst terms in the .... 

expansion), the average drift mot.ion of the guidipg center can be 
e . 

written as the' Ramiltonianequation wi. th - 'Ir,cp as canonically con-e . 

jugate variables. We shall. give here an heuristic derivation following 

Taylor (1963) and referring to Northrop J~961) fora rigorous derivation.· 

The Lagrangian for a guiding center with mass M, magnetic moment . 
. . . . . 

Ii, charge e moving in a magnetic field B = \7'1r x\7cpwith vector potential' 

A == fVCP and magnetic potential X '= f~'dS" and electric field given by 

p6tential~ is' 

'" ' 
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2 
mV11 e I ::: - + - v·A - e4> - I-LB + 2 c,,:,'" 

where we have used 

v . A ~ v .)j.fV1<p ~ 1jrr~ 
"'d '" "'d 't' , 

because for a stationary magnetic field we have ~/Ot ::: O. 

The conjugate momenta to 1jr, <p, X are 

oX ,..., ::: -::: 0 .l:"1jr • ., 
01jr 

o:t e 
p :::-:::- , 

<p OcP· e and 
. 

mX 
IX ::: B2 • 

e ... Note that c 1jr is the conjugate momentum to <p.The Hamiltonian is 

H= 

·2 
2 Px 

::: B - + I-LB + e4>. 
2m 

We transform from PX' X to action and angle variable J, e, where 

This equation defines H implicitly as a function of JI-L1jrcp, which is 

we have 

e Recalling that - 1jr, <p are canonical conjugates, c 



;i. 
:.i 

, . 
.··:r ;: : , .... : 

'.',' 

OK 
,-

'Ir' 
c (~J1jrcp); = - dCP, e . . " 

" 

•... ':'.:",.:'. : 

·i··· '" 

;'; .,'.,. 

oK 
,,' . c' 

(~1jrcp)", cp = + - -"dl e 
" 

and, the "Liouville equatioIl; 

~',F, (oo T, ",""') c "( 0, F,OK OFGK,:) m; t-LU 'f'Y +e dcP ~ - ~dq) =, o. 
'.,.. : .... :.; .. 

. . . .;. 

This equation is just the lowe-st o~derreduceg:V1~floV equations in the 

dri:rt Mine seale. This eqUa.-tipn ¥.s:recentl§,:beende:dved from Vlasov 
,. ,. ..... . '" 

equations by Hastie et al. (1967) .;: 
" .,'." 

",; ; 

./ 

. :.'~ .... 

"i;;" 

"',/:: 
"-.: 

.. .~ 

," 
:, .. 

" ' 

. : ~ . 
. -..-' 

.:-.. 

. ....... 

. '.' 
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B.lo Transformation of Phase-Space Variables 

Let us begirt with cylindrical coordinates in veloCity space: 

(VII' V1' e), where VII' v1 are the magnitudes of velocity components 

parallel and perpendicular to the magnetic field, and e the phase 

angle of Xl. Let *, ~, X, the intrinsic coordinate system for the 

magnetic field, be the spatial coordinates. Introducing the conjugate 

momentum of X, ~, and the magnetic moment ~, which is proportional to 

the conjugate momentum of e(e thus becomes ignorable, as ~ is invari-

ant), we have the distribution function in ~, *, ~, ~, X space 

Particle denSity n(~ = fd\ r(r. ~ = fB2 (~rd~ dPx·(:;r 3' 

= B
2J d~ dPx 1-. 

e . 
As we have seen in Appendix A, PX' X; - *, ~ are the canonical conju­c . 

gate pairs (~ is a parameter), so they satisfy the Hamiltonian equa-

tions of motion, 

and 

where 

+ ~B + e~ • 

Also there is a Liouville theorem 
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This is the so-called drift kinetic equation in the Russian literature. 

It treats the detailed motion along the field line in a bounce time 

scale (hydromagnetic time scale) and is of the Chew-Goldberger-Low 

(1958) ordering scheme. For all terms of this equation to be of the 

same order, El must be of zeroth order (i.e., CE1/B~ vth) to give a 

zeroth-order drift velocity .. On the other hand, if CE1/B ~ €.vth>and, ... 

thus all drifts are of O(E), then the last two terms can be neglected, 

.and we have 

(B-2) 

,I t which is Grad's (1967) gUiding-center equation. 

If the bounce motion is nearly periodic, there exists a second 

adiabatic invariant J. For low-frequency perturbations conserving J, 

we can transform PX' X to J, eJ where e, being the angle variable con­

jugate to J; e = vbjds/vlI' is ignorable; Noting that dt dcp = Bd
2
rl' we 

have for the distribution function in J.LJ1jIq> space, 

The density in space (1jtcpX) expressed in terms of F is 

nh:(ljrcpX)] = Ja3X f(X .. t) = BJaj.J. dJ F(!lJljrcp) ~ 

= B JJ dlJ. dJF [( 2/m)(E _ :: _ e<p) y/2 .. 

.. " 
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The Jacobian of the transformation is 

which only confirms that this is a canonical transformation. 

B. 2. Relation between fleE, a, ~) and Fo(~' J, *) 

Letfl (E, a, ~L f2(E; ~, ;C), f 3(1i, J, ;c) be the distribution 

functions in (E, a" ;C), (E,~, ;C), (~, J,;C) spaces respectively. The 

number density at ;C is given by 

fleE, a, ;c)dE da =f2(E, ~, ;C)dE dli 

i 
=f3(~' J, ;c)dlJ. dJ. 

Since d~ = 2E sin a cos a da/B 

-1 (dJ/OE)~lV-CP == Vb (~*cp), 

(B-3) 

But we also have 

VbB 

f3 = (2E/M)1/2 cos a FO(~,J, *, cp). (B-4) 

From (1) and (2) 

fl (E, a, ~) 
FO(~' J, *, cp) == 1/2 ' 

(2E/M) sin a 

= fl (E, a,;c) / (2~B/M)1./2. ' (B-5) 
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At the equational plane, the distribution funct~onfl for an axisym­

metric system is €J. function of E, ex, '" only. E, ex, in turn, are .. ' 

From (3) we have 

. of ° . Of'l 1 fl 1 dB 

oL ~ = oL I-lJ (2I-lB/m)1/2 - 2(2I-lB/m)1/2 ~ d", • 

For a. dipole-type field, dB/d", < 0, and the positiveness Of(Ofl/OL)~ 

thus implies the positiveness of (oFoloL)!-lJ' 

.: "t" 

... ~ -. 

,,,,." 
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C. Existence of Electric Field Component Along the Magnetic Field Line 

For the ver,y-low-frequency perturbations ru, ~d « Vb that we con-
, , 

sider here, the system can be regarded as in a series of hydromagnetic 

equilibria, i.e., steady states over the bounce time scale, during the 

course of the perturbation. And for a system in a hydromagnetic 

equilibrium, * (Ii, Pl/s, 'IrCP) = 0, Eq. (B-2) becomes (with PI/' s 

instead of PX' X, where Px = pI//B) 

The general solution is 

/ The particle density in the equilibrium is given by 

where 

n[!( '¥CPs)] = B(!) JJ~, dPI/1-(IiJ H, '!rep) 

= - B(~) If dli dH ~Pl/ ' 

The quasi-neutrality ,condition is 

(C-l) 

(C-2) 

(C-3) 

This equation determines the potential variation along the field line. 

To find E = - 'O<P/as, we differentiate (C-4)' with respect to sand 

obtain 
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\ 

,!oB\, <V1, 2) e 
BdS~ 2 ± 
, .± VII '± 

= + ------~."....-

L jJr. 'a} 1 
Be," J dll dH~-

±.J ' ~HVII 
± 

, (C-5) 

,'(c-6) " 

//1s just a Il!easureof p1tchangle distribution. The parallel electric, 

field can exist in the hydromagneticsteady state if and only if the 

magnetic field is nonuniform along the field line and the electrons 

,and protons have different pitch angle distributions. 

" 

",-

" " 

',: . 



.. 

D. Variation of Particle Density Along the Field Line 

Suppose a distribution function, factorizable in its energy E 

and pitch angle a dependence, is proportional to sin2£ a = ~£ 

The number density n(s) at a distance s from the equatorial plane 

s= 0, along the field line at (f)~)) is given by (7): 

n(*, ~s) = 2B(*~S)~~~. dJ :b F 

/ 

For B . »B, 
max 

.. J 1/2 =: 2B(W~S) dEE f(E, W, 

/. 
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, E.Nyq'\list Method 

Foran eigenvalue: eqUilt10n 

D.(ro) := 0," 

where D(ro) is analytic in the upper half cD pl!3-ne:, the number of roots 

in the upper half ro plane is given by 

, 1 J dD =..1:....f ~ ... dD/am 
. N =. m ,',]Y" 21ri UUJ D ' , 

Z C ' -
(E-l) 

where the contour C consists of, the real axis and a semiicircle enclos-

ing the upper half c.b plane ,in the positive sense and th:e contourZls 
, ' 

, the mapping ,of c' orito the D plane.: ,Then by Cauchy theorem, ""he ,number ,,' 

of zero eEl D has in the upper halfro plane is equal to the number 'of 

times the contour Z encloses the origin in the Dplanein the counter-, 

/ clockwise sense. 
. . .: . 

Thus the necessary and sufficiemt 'condition for: the, 

existence of unstable modes is.that Z enclose, the origin in the counter-

cloGkwise sense at'least once. 

Usually the integration of (dD/ain)/ri along the semicircJ,.e at 
, ". • • . . ". I • 

infinity can readily be performed by knowing the asymptotic behavior 

of D(ro) for ro large. For example,. ifD(ro)- ""ro-:-~ forro large, then 

, ' 7T 

" Jam dD/dJJ:J = J" deie (~, ~):= ' £7Ti. , D " , J.e 
, semi- ,,' 0"" e 
circle 

Thereforetrie nUmber of roots in th.eupperha.lfCb,pla~e 'is 

- .~' . 

:j. 

" 

.'. '; ,;-,' ""' . 

'" ", . ',.:,:;i: 

" 

""<" . 

0' ',' 

, : .: .. ~ .. ' 

.... ,! 

'. >. ',';,I' ~ 
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00 

N ~ - ! + ...L J cU.J.)_dD-=/~dm_ 
2 2vi D 

since In( 00 ) I = ID( -(0) I, 

I- f:13 
N=--+-2 2v 

~OO 

bE ;E arg D( (0) - arg D( -00 ) 

is the change in the argument of D as ro goes from -00 to +00 along 

the real axis. 

(E-2) 
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F. The Explicit Expression of" Bounce and Drift Frequencies in Terms 

of Kinetic Energy E and~ = ~/E 

The bounce f"requency as given by Eq. (6) in terms of" E and ~ is 

-1 OJI f Vb = dK ~ 1jr = [-:~:::--(-K---~B---e¢-)-J 0::""1/"1-::::2 

ds 

OJI f [2 ( )] -1/2 -l() -1/2 dK = ds ME.;. ~B . = Vb x E 
~1jr 

where 

The drif"t f"requency is given by 

where 

c oK . c (OJld1jr)~K 
lJ.)d = e df ~J = - e(OJldK)~1jr 

(ds -~(dB/d1jr) - e«(jcl)/d1jr) 

= - ~ Vb J [(2/M}{K - ~B - e~)Jl}2 

= E - V (x) ~ . + -c . f ds· .( dB eM) 
e 0 (1 _ ~B)172(2/M)172 ~ E .~J 

If" the component of" the equilibrium electric f"ield vanishes in the 1jr 

direction, then b = O. 

. ')0.:. 

;'. ; 
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G. Sufficient Conditions for Instability 

We have noted in Chapter III that for Eq. (30) to have unstable 

roots, it is necessary for (OF/OK)~ to change sign. In general, the 

necessary and sufficient conditions for instability a!~ quite compli­

cated. Consider a special case in which FO- = F+ and (OF/OK)~ = 0 

only for one set of ~J at ~,[~J/ill~+(~J~) = ± illl/m J,7 where illl > mEOaO. 

Situation 1 

Suppose (qF/OK)~ changes sign in the following way: 

(OF/OK)~ > 0 

<0 

and illl is such that 

Then: from (34) we have 

Im D < 0 

>0 

= 0 

<0 

>0 

for 

for 

Putting a.e == -ai = a, we have 

Re D (,±~, ~) 

/illd±/< illl/m 

> illl/m 

ill > ~ > maOEO' 

illl > ill > maOEO' 

maOEO > ill > - maOEO' 

- maOEO > (J.) > - ~, 

ill<-~. 

(G-l) 

(G-2) 
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. ", 

ReD(m,~ o)=:~e~ff d~dJ (dF/dK)~,?>6)""", ' ...... 

, ; 

,. ,.' .... " 

. ,...' 

" ' 

, i. 

There are two 'subcases: 

subcasela. The interchange, stabi~ity cr:Lterioriis'satis,fied:, 

,,' .... : ... 

. ~. 

or 

Re D (m, ~ .± co) > O. 
,.') 

This is possible beca~se; of (G-l). 
.... .:' '.' . :,' .;,' :" 

The result1ngNyquist d1agra;m 1s shown,:I.n ~ig~6a. ,The change in 
, , 

the argument of Dis 4'IT and there is one 'unstable rc)ot~ We will call 
, , 

this a "drift mode)" as the plasma is energetically stabie against 

interchange. 
, , .. . . :. . 

, Subcase lb. The 1nterch~nge ste.b1lity,cr1terio~ 'is not satisfied:' , ' 

The Nyquist d:tagr~ 1s shown' in, Fig~. 6-,b. The charigeiil'argtunent" 

of D 1s ,21r and there '1s no unstable root,. 

'.~ . 

-i' " 
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Situation :2 

Suppose (oF/OK) J changes sign in the following way: . Il 

(OF/OK)\lJ < 0 

> 0 

and en
1 

is such that 

for 

JJd~ dJ (OF/OK) IlJ < 0, 

Then from (35) we have 

Im D> 0 for 

<0 

= 0 

> 0 

<0 

/end±/ < enl/m, 

. /<i)d ± / > (J.,]/m, 

en> en1 > maOEO' 

~.> en> maOEO' 

maOEO > en > - maOEO' 

- maoEO > en > - ~ J 

en < - (01' 

From (36) and (0-3). and (0 ... 4) we have 

Re D (en -+ 0) = 2e1J dll dJ (OF/OK)\lJ < OJ 

as (OF/OK)IlJ < 0 

at ood = aOEO < 00l/m, 

Re D (en ... ± 00) 

(0-3) 

(0-4) 
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There are two pos'sib;llities: 
,", .-

'. ,; ........ ~.. ,' .. 

Subcase 2a •. . . 
He D (ill .... ± .cn) > o. 

. . ',f 
) l' 

The stability criterion for the interchange is still satisfied. 

The Nyquist diagram (6-c) shows there is no unstable root • . ' 
$ubcase 2b. 

Re D (ill .... ±co) < O. 

The stability criterion for interchange is violated and the 

Nyquist diagram (6-d) shows there is one. un$table mode. 

"',' :' 

, ,'," 
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H. Taylor's Criteria for Interchange Stability 

For a low-~ plasma, the criteria for the interchange stability 

have been derived from energy considerations (Taylor 1963) under the 

assumptions that 

(1) particles are tied to the field line, i.e., particles 

initially in a given flux tube remain in that flux tube after inter-

change. This results from the usual hydromagnetic "·frozen-in" condi­

tion ~ + ~ x ~ = 0, the validity of which requires that the particles' 

drifts can be neglected in the time scale of interest (hydromagnetic 

time scale ~ average bounce period), and that CE1/B » vdrift . 

(2) J be conserved in the process. For J to be conserved the 

time scale of the variation must be sufficiently long compared with 

;' the bounce period, and cE liB « vth' where vthis the thermal velocity. 

/ To satis:f.'y both conditions, we would required that CE1/B ~ €1/2Vth, 

i.e., that El be SO large compared with the drift velocity that the 

frozen-in condition is still valid but so small compared with the 

thermal velocity that J is still conserved. 

With these assumptions, we can find the variation in energy result;. 

ing from the int~rchange of particles on a flux tube (tl~l) with those 

on another flt~ tube (t2~2) 

6W ;.. .Udf..L dJ { [F(J..LJtl Cj)l)K(J..LJtl Cj)l) + F(J..LJt2Cj)2)K(f..LJ t 2Cj)2) ] 

- [F(J..LJtlCj)1)K(J..LJt2~2) + F(J..LJt2Cj)2)K(f..LJ t l Cj)1)J} 

= -If ilt.< dJ { [F(iJJV2'1'2) - F (iJJVl '1'1) ] [ K( iJJV2'1'2) - K( iJJVl '1'1) ] J 
For infinitesimal variations, we have 



/ 

~ \ , 

. . . . , .-.., 

" .' 

. .... .' . ." . 

·· ... ~-ffaJ dJ [~t/v +.~I~ a~r ~lwc··· 
, The neces~arY and su:f'ficient condit+onfor"stability is . 

" .. :' .. ."'.,. 

(H-l) 

, '~" . 

. ..... 

;.' ,.. 

.' ) 

" .. :, .' .' 

.. ~, . 

Thus for an axisymmetric sy"stem,,, the neceEq3a.r~/a.,ndsuf'ficientcondi tion , 
-,'. • .,'.... ,o" ' • 

, ..... 

for E!ttlbility is 

.. Since' 
;/ .. . . 

001 . .. ( OF") ,. .( of\ '(OK)' 
. , 'W iJJ= '.dif"J~ m;~' ": 

(H-2) can be rewritten 

' .. JJ" . ": '" (OK) . ( of 0) '" .. .-. 
dll dJ ~"a,¥~ < 0.·" 
, ' "/J.tJ .~ , 

.1" • 
. '.-' 

" .: 

'. '.' '. ~.. \: . ' .,:,: ~ , 

.... 
';., .' 

. . 

" ,. 

. ' ..... ,: .. 

, ,~; 

. ' '. 

.' ~ , . 

:' ',' 

. '.' 
,., ' 

. , . 

. ,', 

•• ,.<t • 

,.., 
.... ,I 

(H-3) ;' ..... 

::',' 

" , . •. "j . 

.' l 
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I. Condition for the Vanishing of ~ in Eq. (62) 

The quasi-neutrality condition is 

(I-l) 

fi 

Integrating over the line of force, we have 

Differentiating with respect to V and changing to variables ~, E gives 

/'In terms of A., E, the average potential < <Pm> is a function of A. and 

only: 

< ) - 1 f dX 1/2 (dX <Pm = -;;,=I72 1/2 VO(A., \If)E = VO(A., \If) . • 
E B(l - A.B) ..J B(l - A.B) 

For FOj factorizable in its dependence on A. and E, i.e., Foj(A., E, \If) = 
j e i g (A.)h(E, \If), and if the two species have the same g(A.), g = g , 

Eq. (I-2) becomes 

(I-3) 



.', '., 
.:, .. ' " ' 

. .' "" . 

-Cf;g(~)V~l(~) (~,,}(~) .t,., ;'.: 

-: .. 
,: . 

:;:' .0, 
,.', ;'-',' 1", 

be, cause ,of (I~ 3) . 

.;·t, 

. -';.-

. ,'~' 

-: .... 

. ~ , 

-,':. 

:: ... 
,~ , 
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J. Proof of the Minimal. Principle (62) 

Equation (62) can be put into the form 

. * Varying this equation with respect to 4lm; and uS1l1g, . 

we obtain the eigenvalue equation 

:2 
:t(X, X,)~ (X') = (~).~ (X), 

. m m m " 

where 

Z(X, X') 

(J-l) 

(J-:2) 

2 is self-adjoint, as (1) is real in Eq'. (62). Suppose the eigenfunctions 

Z (X) of. X, 
n 

(J-3) 

form a complete orthonormal·set. Th~n we can expand ~m(x) 



~m(x).=Lanzri(xr, . 
n·· 

"'" 

where L/an /2 = lb~cause ~m isnormaiized to unity. 

Substituting (J-4) into (J-l) gives 

"1. (X, X')~ (X') = Va n 2z.(X) . m. L nn n . . . . 
n 

... ~ . 

. 2 
wher~ nlis the smallest eigenvalue. 

Because' 
" 2·2 . 
n - n·. >0, nl -

we have 

Theref'ore (62) is a minimizing express~on..· ,/; . " 
". , - '. ',' 

" .'-. 
. .. ' :' 

~ • ... < 

, .' . ~o~ .. : 
" .. 

. ... :,. 

. . .' , ...• :~.. '. . ' 

." " 

-'of ',:'., .~' .' 

. .' . 

.' ...... ~ . -.. 

... 

' .. -'i.'" 

.. ; .. 
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K. The Equivalence of the Extremizat10n of D in (70) 
and the Extremization of dn/d~ in (71) 

Writing (70) symbolically as 

and extremizing D: 5D = 5g + n'(~)5h = 0, we obtain 

n' = - 5g/5h. 

From (K-l) and (K-2), the extremization of D corresponds to 

Alternatively, we can first solve (K~l) . 

Extremizing n' in. (K-4) gives 

5n' = 0 = _ h5g -2S5h , 
h 

which is the same as (K-3) • 

o 

(K-l) 

(K-2) 

(K-3) 

(K-4) 
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FOOTNOTES 

1. We, shall use the terms I~adiation' belt" ~nd!!Vah Allen belt It 

synonymously, mean:t~gthe' ene;getic <!1:la.rged particles trapped in the , " 

earth's magnetic field. By energetic belt, ,we mean the trapped particles _ , 

with energy ? 1 keV. 

2. The energy flUx needed for an intense auroral excitEj.tion dUring an 
:," ". "" . 

, auroral 
, , ' ", 18' 

substorm is ty:pically ~ 5 x 10 ' ergs/sec .In 'the meantime, 
, ' 

the raiE,of energy d,issipation in the, ionosphere du,e tci ion~ospheric 

18 " 
current is about 2 x 10 ,ergs/sec.' The lifetime ofa sUbstorm is of 

the order of an hour, ~ 104 sec. T1;ius thetota.l 'eneJ;'gy input ,into the " 

ionosphere for a substorm is 1023 ere;s. ,The total k:{net;f.c ,energy Of 

thetra.pped plrticles is estirrla.te~ t9,'be, of the order.': 9f>lO~3ergs " " 

(Van Allen, 1966). ,~E;lref'ore thetra~pe9-: partic:t.es¢~h~Oj;;~\l:J?P1Y' the 

energy needed for an auroral substormwithout f~esh ep.b.a.:p,cem~nt. . . "', ,;," . .'. . 

The total kinetic energy Ep of' the- trapPeO.:Particles ,is r~.14t-
k '/ 

ed to the decrease, of the georr,Jagneticfi~ld ~, on earth, (sckophe, 1966) 

a.ccordlngto 

where BO ;f.s the magnetic ,field on e~th, 1::.s0,.·3, gauss, \t is t~e", 

tota.l magnetic field energy, ~ 1025 ~rgs.For amain phase decrease 

of 100 r == 10-3 gauss" total particle e~er~ Epmust be' of the order ,,' 

of 1023 ergs. Since the substorm occurs intermit-j:;ently during the main' 

" ..... ), 



... 

phase, the trapped particle energy and the precipitated energy must 

increase simultaneously. 

3. The symbols ~, J, L, Fe are defined in Sec. II. The relation 

between f1 and Fe is discussed in Appendix B-2. 

4. By co11ision1ess plasma, we mean that the mean free time is much 

greater than the characteristic time scale under consideration, and 

the mean free path is much greater than the characteristic dimension of 

the system. 

The electron density (for all energies) outside the p1asmapause 

is of the order of one particle per cm3, from the whistler measurement 

(Carpenter, 1964). The particle density of the ring current belt (Frank, 

1966) is also about 1 per cm3 • Thus the cold plasma (1 eV) density 

outside the plasmapause can at most be'of the same order as the ring 

current belt denSity. (If the ring current belt were injected into the 

magnetosphere, then the electric field associated with. the injection 

would sweep away any thermal particles, and one would not expect to have 

any thermal particles at all.) The temperature of the plasma outside 

the knee is effectively that of the ring current belt, which is of the 

order of 1 keV. The me~n free path can then be estimated (Alfven and 

Fa1tha~r, 1963) as 

which is much greater than the characteristic length of the system, 



·L·~ R 
.e 
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The collision frequency 
-8 ··-1 

v ~ 10 sec is much less than the 
c 

characteristic frequency, 

collisionless. 

. -4 -1 
~10 sec • The plasma is therefore 

5. The flow energy of the solar wind is about 1 keV per particle. When 

the flow is stopped (for instance, at the bow shock of the earth), the 

flow energy is converted into the thermal energy of the particles. Thus 

the trapped particles of the solar origin have at least 1 keV. 

6. In general rod = a (A., .\If)E + b (A., \jr) (Appendix.F). When the 

equilibrium potential lo(\jr, X) is independent of \jr, b = O.This 

corresponds to the assumption of no radial electric field in equilibrium, 

1. e., the effect of the earth's rotation is neglected. 

7. The energy of the J..tJ -conserving perturbation is derived by 

Rutherford and Trieman (1968): 

where 

For the system to be stable, Wl + W
2

.> O. Thus the stable ring current 

belt support a positive energy wave. 

.;., .. : 



-103-

v 

8. From the analysis by Hess (1968), the distribution function for the 

energetic protons is factorizab1e: f1(~*) = g(~)h(*). From Appendix 

B-2, 

Then (dF/O*)~ = 0 for all ~ at some * requires only that 

dM/d* = 0 at *. 
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