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ABSTRACT OF THE DISSERTATION

The shape of things to come: examining the interplay of elasticity,
activity and geometry in soft matter

by

Arthur A. Evans

Doctor of Philosophy in Physics

University of California, San Diego, 2011

Professor Eric Lauga, Chair
Professor Alexander Groisman, Co-Chair

This dissertation contains within an exploration of the interactions between

various soft matter systems and an environmental stimulus. The natural case stud-

ies for examining soft matter using the language of thermodynamics and phase

transitions are biological constituents, from slender filaments to entire collections

of organisms. We first present a brief overview of soft condensed matter, couching

the thesis in terms of states of matter and preparing the stage for using continuum

mechanics to examine the sensitive balance between competing physical forces in

determining the final state of the systems of interest. Following this we present

analysis of long-range interactions in a ubiquitous soft matter system, flexible fila-

xii



ments. Adhesion events that occur between attractive filaments can be understood

in terms of phase transitions, and herein we present a methodology for describ-

ing physical regimes where such transitions take place. Following this we present

analyses of slender filaments and flexible membranes interacting with viscous flu-

ids; of primary concern is the transduction of undulatory motion of the surface

into propulsive thrust, as a model of microorganism locomotion. We show that

slender filaments near walls can be shown to exhibit non-intuitive force character-

istics as a fundamental consequence of the flexibility and geometry of the system,

for several models of passively actuated and internally active model flagella. We

then present two different active models for propulsion using a flexible membrane:

the first simplifies the geometry in order to elucidate the direct consequences of

internal forcing on macroscopic propulsive thrust, while the second is a proof of

principle model for a microscopic vesicular swimmer. Finally, we study collective

locomotion of microorganisms and active colloidal dispersions by performing a ro-

bust hydrodynamics simulation of a concentrated suspension of microswimmers.

We find that global polar order persists throughout the system as a function of

various microscopic swimming/activity parameters, as well as the volume fraction.

xiii



Chapter 1

Introduction to active soft matter
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As children, many of us are taught about the three classical phases of mat-

ter: liquid, solid and gas. Zealous pedagogues may even go so far as to introduce

the exotic “fourth state” known as plasma. These are, perhaps, the most common

states of matter found on our planet, but there actually exists a host of more es-

oteric forms that are not as easily classified. Complex fluids under external stress

may behave more like solids, like the mixture of cornstarch and water known affec-

tionately as “oobleck”; other complex fluids like toothpaste or mayonnaise behave

in the opposite fashion, flowing more easily when under an applied force than with-

out. There are even more complex materials that eschew simple demarcation of

any sort, and it is this last type that is the focus of this dissertation.

The following work provides an examination of different types of “soft mat-

ter”, with a particular emphasis on activity and interactions in the material. By

couching the study of soft materials in the language of phase transitions and sta-

tistical mechanics, we can explore how biological constituents, whole organisms,

and even collections of swimming cells all behave as novel active materials.

1.1 Sticky hairs, geckos and MEMS

Wet hair clumping together after bathing is perhaps one of the most com-

mon examples of a phenomenon known as elasto-capillary coalescence; the com-

petition between surface tension and elastic forces determines a critical length at

which a relatively straight elastic hair bends into an adhered state, leading to

clumping [1, 2, 3]. At the microscopic scale, elasto-capillary interactions become

a burden for those engaged in precise fabrication of devices that involve thin fil-

aments. Microelectromechanical structures (MEMS) depends on identifying this

competition between forces that leads to different types of phase behavior [4, 5].

Unlike in traditional materials, the phases here are not solid, liquid or gas, but

rather “stuck” or “unstuck”.

Not all sticky hairs require elasto-capillary interactions, however: geckos

have a multitude of microscopic fibers lining their feet which act on surfaces via

Van der Waals forces, leading to an adhesive strength that does not depend on fluid-
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structure interactions [6, 7]. By studying “dry” adhesion, similar statements can

be made about phase transitions between different material states, either stuck or

unstuck. In viewing arrays of fibers in this fashion we gain insight into the greater

workings of this particular class of soft matter system.

1.2 Elasticity and fluid dynamics

Microorganisms present a stark contrast with the relatively static organi-

zation of sticky hairs and gecko feet, while still providing a natural framework

in which we can study interacting soft matter; engaged in a frenetic dance of

reproduction and consumption, swimming microbes and their fluid-structure in-

teractions highlight the shades of nuance that develop in the presence of active

hydrodynamics [8, 9].

In order to generate propulsive thrust, microorganisms must generate inter-

nal forces to actuate their swimming appendages, and then use viscous dissipation

to propel themselves through the fluid environment. This task is by no means sim-

ple, nor intuitive; the sensitive balance between an organism’s activity, elasticity,

and geometry combine to yield the startling efficacy with which these swimmers

can traverse their hostile surroundings.

While studying single organism locomotion is an exercise in material prop-

erties and fluid interaction, collections of swimming microbes can be considered a

material in and of itself. The perpetual interactions between these motile cells can

generate patterns of whirls and whorls that are generally considered to be only the

purview of turbulent hydrodynamics; the assembly of organisms can be considered

a living fluid, and to understand the behavior of the whole we can use the theoret-

ical techniques and insights provided by nonequilibrium statistical mechanics and

active hydrodynamics.
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1.3 Collective locomotion

Under a microscope, the living world teems with swimming cells each striv-

ing individually to feed, reproduce, and evade inevitable doom. Even amongst

these unthinking micro-organisms, however, cooperation and connectivity ties the

future of the individuals to the population as a whole. Lacking even the vestiges

of a brain, these micro-swimmers can communicate, at best, through secretion of

reactive chemicals, but even in the absence of such substances, these entities in-

teract in complicated patterns and exhibit surprising behavior. Without a central

nervous system or chemical signaling to guide the swimming cells, spontaneous

self-organization is possible only through the medium that the entire population

shares: the fluid that they are immersed in every moment of their small lives. Dis-

turbances in the fluid, created by nearby boundaries or other cells, propagate long

distances, thus connecting entire populations of swimmers in a web of interactions.

This connectivity is a source of great complexity, and in understanding the

physical mechanism by which patterns form in space and time, we can more fully

understand how collective behavior and multi-cellularity develop in biology.

Every disturbance in a fluid environment dominated by viscosity has long-

range effects, and this is the primary difficulty encountered when studying the

hydrodynamics of the microbial world. Each swimmer in a population is an active

cell that sets up a flow field, influencing its neighbors just as it is, in turn, affected

by them. These complex interactions can lead to aggregation amongst cells, ori-

entational diffusion, and interactions with solid boundaries that create collective

motion out of many individual swimmers [10]. Although some micro-organisms

communicate crudely via chemical signaling, these instances of cooperativity and

collective interaction are emergent phenomena based solely on hydrodynamic in-

teractions.

Locomotion on the level of the individual cell can be achieved by a number of

different means, but one of the most common methods is via flagella or cilia. These

whiplike appendages oscillate due to microscopic motors powering the filament of

an organism, beating back and forth to drive the cell through the viscous fluid.

Some organisms have an array of these devices patterned on their surface, called
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cilia, which coordinate their motion in order to propel the swimmer; lacking any

kind of central nervous system or chemical signaling, this synchronization can be

achieved by hydrodynamic interactions alone, and without the long-range coupling

of the fluid, this would not be possible.

In addition to the already intractable many-body problem offered by the

governing fluid mechanics, each individual cell is a machine, burning energy to

swim through the viscous fluid that interacts so strongly with it’s neighbors. Be-

cause of the highly coupled nature of the fluid, and the activity of the individual

constituents, complicated patterns can be formed.

Classical studies of many-particle systems have been restricted to simplified

cases like ideal gases or slight perturbations from an idealized state. Biological

systems, due to their complexity and fundamentally active nature, have stymied

attempts to perform similar analyses. Although some efforts have been devoted to

studying the inherently non-equilibrium nature of collective locomotion [11], and

inroads have been made in studying pattern formation in active systems [12, 13],

there is no general theory for non-equilibrium statistical mechanics of dissipative

systems.

Much of the success of modern physics relies on the ability to calculate

macroscopic quantities from microscopic variables, and vice versa. The celebrated

fluctuation-dissipation theorem gives the fundamental relationship between macro-

scopic diffusion and microscopic thermal noise of a system in equilibrium. Alas,

for the chemically driven microscopic cells that show such rich behavior, the gov-

erning physics are certainly far from thermal equilibrium. So far, despite the

best efforts of many determined thermodynamicists, a general theory eludes the

scientific community. Biological physics has proven indispensable in providing a

ubiquitous testing ground for non-equilibrium theories and experiments.

The emergent collective swimming modes displayed by bacterial populations

and dense spermatozoa suspensions are an example of the unexpected order that

arises from interactions with the fluid medium. In the inertialess environment

endemic to microbial fluid dynamics, phenomena such as turbulence cannot exist

in the usual sense. However, large scale order and mixing in swimming suspensions
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of micro-organisms has been observed to occur in a manner that is reminiscent

of turbulence. This collective behavior seems to defy intuition, but stationary

patterns and time-independent order has been observed in active systems ranging

from optical systems to biological suspensions. Pattern formation in driven systems

is by no means a new topic, and the mathematics that governs dynamical systems

has been explored extensively [14]. The physics of these phenomena, however,

remains mysterious.

1.4 Outline

The organization of this dissertation generally follows a path from the rel-

atively simple problem of dry adhesion between filaments towards increasingly

complex issues, incorporating the effects of confining geometries and progressively

difficult interactions amongst material constiuents. Chapter 2 describes the mor-

phological states between interacting filaments or sheets, and couches the transi-

tion between adhered and unadhered shapes in the language of phase transitions.

Chapter 3 provides an introduction to active elastohydrodynamics, emphasizing

the importance of describing the balance between elasticity, activity and confine-

ment effects in flagellate propulsion. Following the completion of this study on

filaments, propulsion due to membranes is discussed in Chapter 4, and the fun-

damental difficulties associated with the deformation of surfaces are incorporated

into the framework of active fluidics. Again, the transduction of microscopic in-

teractions are couched in terms of phase transitions to provide the foundation to

discuss propulsion in relation to a thermodynamic engine. Finally, collective mo-

tion of swimming microbes is studied in Chapter 5, and comparisons with existing

models for active soft matter are made.
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Adhesion in flexible filaments
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2.1 Introduction

As fabrication technology and nanoscale engineering increase in complexity,

it becomes vital to understand small-scale interactions between material compo-

nents. Surface-tension mediated forces play a large role in self-assembly, not only at

the macro-scale [2], but also for micro-electromechanical and nano-electromechanical

structures (MEMS and NEMS), and as such, a large amount of work has been done

in studying the adhesive forces involved [4, 15, 1]. Carbon nanotubes (CNTs) have

attracted significant attention since they were discovered to exhibit novel electri-

cal and mechanical properties, and it has been found that CNTs can adhere to

each other under the influence of capillary forces [5, 16, 17]. At these scales, fluid-

regulated forces are not the only factors that must be examined. Dispersion (or

van der Waals) forces may become more important than at larger scales, and the

microscopic intermolecular forces of extended media start to have a macroscopic

effect on structural stability [18, 19].

In addition to progress in nanotechnology, many biological systems also

display adhesion phenomena whose origins can be traced to intermolecular forces.

Geckos are known to adhere to smooth surfaces, without any liquid interface. The

microscopic arrays of hairs, or setae, on the base of the gecko foot are therefore

believed to be the source of such effective dry adhesion [20, 21, 22, 6, 7]. In cellular

biology, cytoskeletal morphogenesis is regulated by complex biopolymer networks:

Series of long, thin, elastic filaments that form a scaffolding for eukaryotic cells.

Mechanical properties of macromolecules such as actin filaments or DNA can be

measured by force or deflection analysis at small scales, and polymers adsorbed

onto a surface or “zipped” to another molecule can be peeled apart by applying

optical tweezers or other external pulling forces [23, 24, 25, 26].

Most of the research into interactions between materials at these scales in-

volve close-range, contact, and sometimes capillary forces, and this is the limit

considered by many models and experiments to date [23, 24, 25]. However, long-

range forces due to fixed charge distributions, polar, or even non-polar interactions

can lead to adhesion events if the right conditions are satisfied. Previous work has

characterized the van der Waals attraction between thin flexible objects, both the-
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oretically [27, 28] and experimentally [29]. In this chapter, we aim to develop an

understanding of the physical mechanisms by which long-range interaction forces

compete with elasticity in the adhesion of thin, flexible structures. We first in-

troduce and motivate the prototypical system of interest using a macro-scale ex-

periment showing the hysteretic adhesion of a piece of flexible tape over a plastic

substrate. We then develop a model of far-field dry adhesion between two elastic,

slender sheets interacting via a power-law potential, and study numerically their

relative adhesion. We uncover that phase transitions from unadhered to adhered

states occur as dictated by a dimensionless bending parameter representing the

ratio of interaction strength to bending stiffness, as well as the form of the in-

teraction potential between the flexible sheets. We then generalize our model in

order to study the interactions between several sheets, and show that additional

geometrical considerations determine the hierarchical or sequential nature of the

adhesion transitions in that case.

2.2 Macro-scale experiment

An example of adhesion transition between between elastic bodies due to

long-range interactions may be demonstrated using everyday materials, namely a

piece of adhesive tape and a plastic substrate. As shown in Fig. 2.1, this tape

can be shown to exhibit complex adhesion properties. The tape is first given a

static charge distribution by applying it to a piece of plastic and then removing it

swiftly. The tape is initially suspended at the distance shown in Fig. 2.1a, sticky

side away from an uncharged substrate. As the suspension distance is slightly

decreased (Fig. 2.1b), the tape becomes weakly attracted to the surface. At a

critical distance (Fig. 2.1c), the attraction suddenly pulls the tape completely to

the surface, where it lays flat along the majority of the substrate. As the tape

is pulled away from the surface, the shape exhibits hysteresis (Fig. 2.1d). As the

top of the tape is returned to its initial position, the shape remains stuck to the

surface, even past the distance where it first adhered.

This simple macro-scale experiment allows us to introduce some qualitative
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(a) (b)

(c) (d)

Figure 2.1: (Color online) An example of an adhesion transition between flexible
sheets. A piece of adhesive tape is charged electrostatically and then moved slowly
towards an uncharged surface, with the adhesive side turned away from the surface.
(a): The charged tape is held far from from the surface and no noticeable bending
occurs; (b): Weak bending is exhibited just before the critical transition point; (c):
At a critical distance the tape moves rapidly towards the surface; (d): Moving the
tape away from the wall back to its original position shows hysteretic behavior in
the shape of the tape.
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features of the adhesion transition, namely a competition between bending and

long-range interaction, a sharp transition in shape, and hysteresis. We present

below a numerical approach to quantify the behavior of similar, but more general,

systems. Note that there are other characteristics of the macroscopic experiment

that we will not attempt to model in this work, namely the presence of dynamic

effects and force due to gravity.

2.3 Theory

2.3.1 Setup

The system that we study is displayed schematically in Fig. 4.5. Two sheets

of length L, thickness a � L, and width d (not shown) are clamped at their left-

most edges, separated by a distance h, and free to interact along their lengths. We

assume the deformations to be two dimensional, and describe each sheet by the

vertical deformation of its centerline, denoted yi, with i = 1, 2. While DNA and

other semiflexible polymers can become kinked, looped, and otherwise knotted,

this study will be limited to the case where the length ratio ε = h/L� 1, i.e. the

long-wavelength limit.

Under these assumptions the total energy of the system is given by

E =
1

2
B1

∫ L

0

y′′1(x1)2dx1 +
1

2
B2

∫ L

0

y′′2(x2)2dx2 +∫ L

0

∫ L

0

V [x1, x2, y1(x1), y2(x2)]dx1dx2, (2.1)

where Bi is the bending modulus of the ith sheet, and xi is the horizontal distance.

The function V describes the interaction potential energy density between the

two sheets, as yet unspecified (note that the integration along the widths of the

sheets has already been performed formally in V ). Extremizing this functional

yields mechanical equilibrium, as shown by the following system of coupled integro-
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L

h

x1

x2

y1

y2

a

Figure 2.2: A schematic representation of a two-dimensional cross-section for a
system of two flexible sheets (see text for notation). Our analysis will be limited
to the regime where ε = h/L� 1.

differential equations with boundary terms

B1y
′′′′
1 +

∫ L

0

dx2
∂V

∂y1

= 0, (2.2)

B2y
′′′′
2 +

∫ L

0

dx1
∂V

∂y2

= 0, (2.3)

y′′′1 δy1

∣∣∣L
0

= 0 y′′1δy
′
1

∣∣∣L
0

= 0, (2.4)

y′′′2 δy2

∣∣∣L
0

= 0 y′′2δy
′
2

∣∣∣L
0

= 0. (2.5)

The boundary conditions are set by the physical conditions of the sheets. While

there are many possible cases that could be examined, we will consider the common

physical scenario in which the sheets are fixed and clamped on the left (y1(0) =

h, y2(0) = 0, y′i(0) = 0, i = 1, 2) and the right edge of the sheets are force- and

moment-free (y′′i (L) = y′′′i (L)=0, i = 1, 2).

The potential V can be chosen to describe the physical mechanism re-

sponsible for the adhesion between the sheets, [15, 25, 20]. In this paper, we

are considering a general long-range potential of the form V ∼ 1/rn, where r =√
(x1 − x2)2 + (y1(x1)− y2(x2))2, and n is a positive integer. More specifically, we
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set

V =
N∑
n=1

AnWσn

[(x1 − x2)2 + (y1(x1)− y2(x2))2]n/2
, (2.6)

where σ is the van der Waals-like radius, W is the strength of the interaction,

and N is the number of singular modes. The sign of An determines whether the

interaction is attractive or repulsive. We will examine the more specific form of

this general potential where only two terms remain, an attractive term n = p with

Ap = −1 and a repulsive term n = q with Aq = +1. This is the familiar Lennard-

Jones-like potential that is used to model intermolecular interactions [19]. We will

also work with the case that σ > a, so no “true” contact between the sheets will

occur. In a related study, Oyharcabal and Frisch [27] use a van der Waals-like

medium range potential with values of p = 3 and q = 9 to model the attraction

between a thin filament and a nonpolar substrate. Other examples include the van

der Waals interaction between two filaments (p = 6, q = 12), polarized attraction

between two sheets (p = 2, q > p), Coulombic attraction (p = 1, q > p), and

many others (see Ref. [19] for a review). In fact, a surface with an arbitrary

charge distribution can be represented by a standard multipole expansion, and in

a suitable far-field regime a charged polymer or conducting elastic sheet can be

modeled by this potential as well. Very generally, by specifying the values of p and

q, any number of potential interactions can be represented, except in the rather

exceptional cases in which a power-law potential model is insufficient.

2.3.2 Dimensionless Equations

The system described by Eqs. (2.2)-(2.5) is non-dimensionalized by scaling

the vertical displacements by h, and horizontal distances by L. In what follows

variables are understood to be dimensionless. In that case, Eqs. (2.2)-(2.5) become

y′′′′1 (x1) + Πp,1I(x1, y; p, 2)− Πq,1I(x1, y; q, 2) = 0, (2.7)

y′′′′2 (x2)− Πp,2I(x2, y; p, 1) + Πq,2I(x2, y; q, 1) = 0, (2.8)

y1(0) = 1, y′1(0) = y′′1(1) = y′′′1 (1) = 0, (2.9)

y2(0) = 0, y′2(0) = y′′2(1) = y′′′2 (1) = 0, (2.10)
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where Πp,i = pσpL3−pW/Bi is a dimensionless quantity, and where we have defined

the integral I(xi, y;α, k) as

I(xi, y;α, k) =

∫ 1

0

y dxk

[(xi − xk)2 + ε2y2]
α
2

+1
, (2.11)

with y = y1(x1)− y2(x2).

2.3.3 Asymptotics

We now take advantage of the long wavelength approximation (ε � 1)

to simplify the integrals of the form I(xi, y;α, k). Introducing the substitution

x1 − x2 = εξ we obtain

I(x1, y;α, 2) =
1

εα+1

∫ 1−x1
ε

−x1
ε

y1(x1)− y2(x1 − εξ)
(ξ2 + [y1(x1)− y2(x1 − εξ)]2)

α
2

+1
dξ. (2.12)

Expanding to leading order in ε,

I(x1, y;α, 2) =
1

εα+1

∫ ∞
−∞

y1(x1)− y2(x1)dξ

(ξ2 + [y1(x1)− y2(x1)]2)
α
2

+1
+ o

(
1

εα+1

)
(2.13)

=
1

εα+1[y1(x1)− y2(x1)]α

∫ ∞
−∞

du

(1 + u2)
α
2

+1
+ o

(
1

εα+1

)
(2.14)

=

√
π

εα+1[y1(x1)− y2(x1)]α
Γ(1+α

2
)

Γ(1 + α
2
)

+ o

(
1

εα+1

)
, (2.15)

where we have used u = ξ/[y1(x1)− y2(x1)]. The other integrals in Eqs. (2.7)-(2.8)

are evaluated similarly. Physically, Eq. (2.15) expresses the fact that, in the long

wavelength limit L � h, each sheet see the other one as being locally flat, and

therefore at leading order the integration along the horizontal direction can be

performed first.

2.3.4 Identical sheets

Having derived above the general system of equations for two interacting

sheets, we now consider the simplified case where the sheets are identical. Defining

z(x) as the distance between the sheets, z(x) = y1(x) − y2(x), Eqs. (2.7)-(2.10)
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become

z′′′′ + Ω

(
1

zp
− β

zq

)
= 0, (2.16)

z(0) = 1, z′(0) = 0, (2.17)

z′′(1) = 0, z′′′(1) = 0, (2.18)

where Ω = (2WJpL
3σp)/(Bhpε), β = (σ/h)q−pJq/Jp and Jα = Γ((1 +α)/2)/Γ(1 +

α/2). Note that the divergent behavior z = 0 is prohibited thanks to the repulsive

part of the potential in Eq. (2.16). The dimensionless quantity Ω, which we refer to

as the bending parameter, is a measure of the relative importance of the interaction

forces to the elastic forces, while β is a dimensionless van der Waals-like radius

with a numerical prefactor. Hence the symmetric system is completely described

by the four parameters {Ω, β, p, q}.

2.3.5 Numerics

The symmetric nonlinear system described by Eqs. (2.16)-(2.18) is solved

numerically on an adaptive grid to an absolute error tolerance 10−12, along with

a standard Newton-Raphson shooting method using MATLAB. A continuation

scheme in Ω and β allows efficient computation of nearby systems. This treatment

is similar to that followed in Ref. [27].

2.4 Adhesion transition

2.4.1 Main result

The main result of this paper is illustrated in Fig. 2.3. For the particular

values p = 3, q = 9 and β = 0.05J9/J3, we display the nondimensional bending

energy of the sheets EB — i.e. the sum of the first two terms in Eq. (2.1) —

as a function of the bending parameter Ω. Although here we have chosen values

for {p, q, β}, the results are similar for other values, with some possible qualitative

differences highlighted in the sections below.
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EB

E0

(a)

(b)

(c)(d)

h

L

(e)

Ω

Figure 2.3: (Color online) Dimensionless bending energy EB/E0 as a function of
the bending parameter, Ω, with p = 3, q = 9 and β = 0.05J9/J3. Here E0 is a
typical bending energy, E0 = Bh2/L3. Representative shapes of the two interacting
sheets are shown in the different regions. In Fig. 2.3a, the sheets are essentially
straight. Fig. 2.3b shows a slightly bent state due to weak attraction between
the sheets. Fig. 2.3c: Past a critical value of Ω, the sheets abruptly adhere to one
another. As Ω is decreased, the sheets retain their adhered character, although the
shapes change, as seen in Fig. 2.3d (dashed lines indicate shape from Fig. 2.3c).
There is also another sharp transition as Ω is decreased even more, and the sheets
detach into a bent arc-like shape (Fig. 2.3e). As Ω is decreased further still there
is a final sharp transition back to the original weakly attracted shapes shown in
Fig. 2.3a.

The sudden shape changes, quantified by the bending energy, are reminis-

cent of the behavior observed experimentally in §2.2. For Ω � 10−2, the two

sheets are essentially free-standing, as indicated in Fig. 2.3a. As Ω is increased

the sheets are attracted weakly to one another, resulting in a small shape change

(Fig. 2.3b). At a critical value of Ω, the bending energy jumps discontinuously

and the sheets abruptly snap together (Fig. 2.3c). As Ω increases further, the

sheets become more tightly bound, with the unclamped portion becoming smaller.
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y′′′
1 (0)

y′′
1 (0)

Ω

Figure 2.4: (Color online) Dimensionless force, y′′′1 (0), and moment, y′′1(0), on the
left side of the first sheet as a function of the bending parameter, Ω, for values of
p = 6, q = 12, and β = 0.15J12/J6. Note the lack of a second hysteresis loop for
these values of the parameters.

If Ω is then decreased, the system exhibits hysteretic behavior, with the sheets

remaining adhered as shown in Fig. 2.3d (dashed lines indicate the previous shape

from Fig. 2.3c). As Ω is decreased further still there is another discontinuity in the

energy, and the sheets once again take on a qualitatively different shape, arc-like,

as displayed in Fig. 2.3e. Remarkably, there exists a second (smaller) hysteresis

loop on this branch of the energy profile. The jump in the energy at this sec-

ond hysteresis corresponds to a large change in the contact between the sheet end

points and the slope of the sheets. Finally, for decreasing Ω, the sheets return to

the positions shown by Fig. 2.3a via another sharp transition.

We also plot in Fig. 2.4 the dimensionless force, y′′′1 (0), and moment, y′′1(0),

necessary to apply to the left edge of the first sheet to maintain it clamped. For

the values of {p, q, β} considered (6, 12, and 0.15J12/J6, respectively), the system

models two filaments interacting via van der Waals forces. Much like the shapes
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(a) (b) (c) (d)

Ψ(x)

[y′′(x)]2

x x x x

Figure 2.5: (Color online) Bending energy density, [y′′(x)]2, and interaction en-
ergy density, Ψ(x), for various sheet shapes (top) along the hysteresis loop for
p = 3, q = 9, and β = 0.05J9/J3: (a) Weak bending (Ω = 0.5), with ends of the
sheets approximately straight (zero bending energy); (b): Tightly clamped config-
uration (Ω = 0.89) with local minimum in the interaction energy density denoting
the end of the unclamped region. The local minimum in the interaction energy
is in the same vicinity, but not at the same point; (c): Hysteretic clamped shape
(Ω = 0.5), with vertical dashed line indicating the position of the local maximum of
bending energy density, and the vertical dotted line indicates where this local max-
imum was in Fig. 2.5b. The red (outer horizontal dashed) line in the upper inset
denotes the weakly bent shape from (a), while the blue (inner horizontal dashed)
line denotes the shape from (b). (d): Arc-shape (Ω = 0.11), with a notable small
local maximum in Ψ(x) near the end point indicating localized adhesion.

themselves, the forces and moments undergo sharp transitions and exhibits hys-

teresis. Note that if the sheets were free to interact they would adhere along their

entire length, and a force would need to be applied to one end in order to peel them

apart. In essence the same effect is seen in our system. Hysteresis is known to

occur in the strong loading of cantilevers [30], and recent experimental investiga-

tions into the peeling of CNTs from a substrate have reported results qualitatively

similar to ours [29].
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2.4.2 Phase transition and physical quantities

By viewing the shape-change as a phase transition, where the control pa-

rameter is Ω instead of temperature, we can borrow several concepts from statis-

tical physics in order to further characterize our model system. The natural order

parameter to assign is the distance between the sheets, z(x), as z(x) = 1 denotes

totally unadhered sheets and z(x) = β1/(q−p) corresponds to complete adhesion

(see Eq. 2.16). A natural analogy exists between the energy functional given by

Eq. (2.1) and a one-dimensional magnetic system with two-component spin subject

to an external field [31]. In our system, there is an energy penalty associated with

deforming the sheets (analogously, misaligning spins), and there is an interacting

field that acts to order the system (analogously, the external magnetic field). It

is known that even at zero temperature, the magnetic system displays a phase

transition at a critical value of the ordering field (except in the thermodynamic

limit of the sheet length L→∞), and as such we could expect such behavior from

our system as the relative field strength (i.e. Ω) is increased.

In analogy to the external field of the magnetic system, we define an interac-

tion energy density given by Ψ(x) = Ω (−1/zp + β/zq), and discuss the qualitative

changes that govern the phase behavior of the system by studying the minima

in the free energy (see Ref. [32] for a textbook treatment). When a local mini-

mum appears or disappears along the length of the sheets we can expect a change

in shape, and whether this change is dramatic or smooth will correspond to a

first- or second-order phase transition (first-order when ∂E/∂Ω is discontinuous,

second-order when ∂2E/∂Ω2 is discontinuous).

In Fig. 2.5, we display a representative sampling of the energy densities

(bending and interaction energies) with their associated shapes, for p = 3, q = 9,

and β = 0.05J9/J3. We see qualitatively different energy densities, confirming

the transitions between three different phases. In Fig. 2.5a, the sheets store little

elastic energy and are only weakly attracted. Past the critical adhesion point,

the shape as displayed in Fig. 2.5b now shows a large energetic favorability from

the interaction force, with large deformation energy penalties on the left edges of

the sheets and at the end of the un-adhered length. As the bending parameter is
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increased further, the spatial location of the energy minima shifts, as displayed by

Fig. 2.5c. The length of the adhered region (or domain wall), δ, increases with Ω

as δ ∼ Ω−1/4, as expected from the boundary layer scaling arising from Eq. (2.16).

This scaling is confirmed by our numerical simulations (not reproduced here).

Decreasing Ω, and coming down on the hysteresis loop, at a lower critical value

of Ω the adhered sheets become arc-like, and the second local minimum in Ψ(x)

disappears (see Fig. 2.5d).

2.4.3 General Behavior

Although our investigation to this point has considered particular values

for the parameters {β, p, q}, qualitative changes in the hysteresis and transition

behavior can be obtained for different values of these parameters. Not only can

the hysteresis region be made to shrink, but it can also disappear entirely. In

addition, while the transitions seen so far have been first-order, by tuning the

model parameters this transition can be made to become second-order.

These different behaviors are illustrated in Fig. 2.6, where for convenience

we have introduced the parameter b = βJp/Jq. As we saw above, there are three

characteristic shapes for the sheets that we will denote as weakly bent (W), ad-

hered/clamped (C), and arc-shaped (A). The areas that exhibit each of these

shapes are depicted in Fig. 2.6. In Fig. 2.6a and b, we display the total energy

(bending plus attraction) for a system with p = 6, q = 12. These values model

the attraction between two thin non-polar filaments, and the characteristic shapes

seen are similar to those in Fig. 2.3. If b is increased, representing an increase in

the minimum adhesion distance between the fibers, the arc-shapes and associated

phase transition vanish. Similarly for the case where p = 3 and q = 9 [27], increas-

ing the value of b causes the hysteresis region to shrink and the arc-shape vanishes

(Figs. 2.6c and 2.6d). Furthermore, the hysteresis region can be made to disappear

completely for p = 2 and q = 4 (Fig. 2.6e and 2.6f).

The transformation of a first-order transition into a second-order transition

indicates that there may be a cusp catastrophe in the parameter space we are

exploring [33]. For the case p = 3 and q = 9, we plot on Fig. 2.7 the bending
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p=6,q=12
b=0.3
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Figure 2.6: (Color online) A comparison of total energies for the system (bending
+ attraction energy) for different values of p, q, and β. For convenience we have
introduced the parameter b = βJp/Jq. (a): For p = 6 and q = 12, these values
model the attraction between two thin non-polar filaments. Dotted lines denote
sharp phase transitions, while dashed denote smooth transitions. This system
displays all three characteristic shapes; (b): By changing the value of b so that the
sheets do not come as close during adhesion, the tightly clamped region is seen to
disappear; (c) and (d): For p = 3 and q = 9, further qualitative changes shrink
the hysteresis region and cause the disappearance of characteristic shapes; (e) and
(f): In the case where p = 2 and q = 4, the hysteresis can disappear completely
even in the presence of a transition.

energy landscape as both Ω and b = βJ3/J9 are varied. For small values of β, the

first-order nature of the transition is apparent. For a fixed value of Ω, increasing β

decreases the area of hysteresis, until a critical value is reached where the hysteretic

behavior vanishes completely.

2.4.4 Non-identical sheets

We have considered so far the case where the two sheets are identical. If we

allow instead their bending rigidity to be different, we now have two parameters,
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EB

E0

Ω

βJ3/J9

Figure 2.7: (Color online) Bending energy landscape for p = 3, q = 9 over a range
of β and Ω. Note that there is a distinct cusp in this parameter space, indicative
of the “catastrophic” behavior that is associated with first order phase transitions.
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(a)

(b)

(b) (c)

(d)
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(d)

Ω1

Ω2

Figure 2.8: (Color online) Phase diagram of sheets with asymmetric bending
parameter for p = 3, q = 9, and β = 0.15J3/J9. There is a region of multiple
stability (MS) where arc-shapes and weak bending are both possible, arc-shapes
only (A) and tightly clamped (C) sheets. (a): In this region, the sheets are either
bending weakly, or in the hysteretic case they exhibit arc-shapes; (b): As Ω1 is
increased, the sheets snap together into an arc-shape (a first-order transition); (c)
As Ω1 increases further, there is a smooth variation from arc-shapes into clamped
(i.e. a second-order transition, dashed line); (d) If Ω1 remains fixed, and Ω2 is
decreased, the bottom sheet will become relatively more rigid, producing a net
shift in the equilibrium adhesion position (the dashed lines indicate the adhesion
shape in Fig. 2.8c).
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Ωi = (2WJpL
3σp)/(Bih

pε) for i = 1, 2. In this case, the difference in rigidity

causes a change in both the equilibrium point of adhesion and the critical values of

Ωi. The different shapes can be characterized by a phase diagram that maps the

transition points for different values of the two bending parameters, as displayed

on Fig. 2.8. Three distinct regions exist: Multistability of both arc-shapes and

weak bending (MS), arc shapes exclusively (A), and adhered or clamped states

(C). As shown in Fig. 2.8a, for small values of Ω2 and Ω1, weak attraction occurs,

unless the hysteretic regime has been entered, in which case there will be adhesion

(not shown). As Ω1 is increased past the fixed value of Ω2, the sheets adhere in

an asymmetric arc shape (Fig. 2.8b). This transition is first-order, and the sheets

snap together. As Ω1 crosses the second-order transition threshold (dashed line

in Fig. 2.8), the shapes smoothly evolve into a clamped phase (Fig. 2.8c). In this

final clamped state, the position of the adhered portion of the sheets depends on

the relative values of the bending parameters (Fig. 2.8d).

2.4.5 Adhesion of three sheets

We now consider the adhesion transition for an array of multiple sheets, and

illustrate the complexity and richness of the system considered on a few examples.

Assuming nearest-sheet interaction for simplicity, with identical potentials, we can

easily extend the modeling approach offered above to the case of N interacting

sheets 1. The equation of shape for the ith sheet, 1 ≤ i ≤ N , is then given by

y′′′′i + Ωi

∑
j

[
1

(yi − yj)p
− β

(yi − yj)q
]

= 0, (2.19)

where the sum on j runs over nearest neighbors, and Ωi, p, q, and β are defined

as in the N = 2 case.

For multiple sheets, any asymmetry in the system now plays a role in deter-

mining the order in which sheets adhere to one another. For three sheets, unless

there is perfect symmetry between the top and bottom sheet, the adhesion events

always occur in a sequential fashion (see Fig. 2.9 and 2.10). Specifically, two sheets

1Even for p = 1 (long-ranged or Coulombic attraction) adding contributions from all neighbors
does not qualitatively change our results.
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p=3 q=9 b=0.35
all Gammas equal
top beam at z=2
middle at z=.95
bottom at z=0

Ω1

(a)

(b)

(c)EBtot

E0

Figure 2.9: (Color online) Sequential adhesion transition for three sheets:
(1, 1, 1) → (1, 2) → (3). Two consecutive first-order transitions occurring for the
total bending energy of the sheets as a function of the (identical) bending parame-
ters in the case p = 3, q = 9 and β = 0.35J9/J3. An inherent asymmetry has been
introduced in that the middle sheet is pinned slightly closer to the bottom sheet
than to the top one (five percent difference in height). (a): Weak attraction; (b)
As the bending parameters are increased, a first-order adhesion transition takes
place where two of the three sheets adhere; (c): A second first-order transition
occurs when the three sheets adhere. Both transitions display hysteresis.

first come together, and then adhere to the third sheet for a further increase in

the relevant bending parameter. By locating the middle beam slightly closer to

one of its neighbors, this sequential can be made to occur preferentially between

two previously-chosen sheets (by changing the clamping distance, the competition

between bending and interaction energy changes, and in effect one of the bending

parameters gets a boost from the geometric asymmetry). For three identical sheets,

as the bending parameters are increased, there is a transition from the weakly at-

tracted phase (Fig. 2.9a and 2.10a) to a regime where two sheets adhere to each

other (Fig. 2.9b and 2.10b). As the bending parameters are further increased, a

subsequent transition occurs where all three sheets come together (Fig. 2.9c and

2.10c). As for the N = 2 case, tuning the value of β can change the nature

of the first adhesion transition (a→b), from first-order (Fig. 2.9) to second-order

(Fig. 2.10). The second adhesion transition, however, remains first-order.
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p=3 q=9 b=0.45
all Gammas equal
top beam at z=2
middle at z=.95
bottom at z=0

Ω1
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(c)
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Figure 2.10: (Color online) Same as Fig. 2.9, but for β = 0.45J9/J3. In contrast
with the case depicted in Fig. 2.9, the first adhesion transition is now of second
order.

2.4.6 Adhesion of four sheets

When a fourth sheet is added, the adhesion transitions can be made to occur

in either a hierarchical or a sequential fashion. This is illustrated in Figs. 2.11 and

2.12.

We show in Fig. 2.11 an example of sequential adhesion for four identical

sheets, similar to the one discussed in the three-sheet case. The values of p, q and

β, as well as the geometric asymmetry, have been chosen so that there is a mix

of first- and second-order transitions (see figure captions). The relative distances

between the four sheets are as follows: The top sheet is pinned at y = 3h, the

second-highest at y = 1.8h, the third-highest at y = 0.7h and the final sheet at

y = 0. As all four bending parameters are increased at the same rate, the sheets

start by a state of weak attraction, with more bending exhibited by the sheets

that are closer to one another. Past a critical value of the bending parameters,

there is a second-order transition for these values of the model parameters, and the

two bottom sheets adhere (Fig. 2.11b). As the bending parameters are increased
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Figure 2.11: (Color online) Sequential adhesion transition for four sheets:
(1, 1, 1, 1) → (1, 1, 2) → (1, 3) → (4). Total bending energy as a function of the
(identical) bending parameters for p = 1, q = 2, and β = 0.1J2/J1. The four sheets
form first an adhered pair, then a triplet, then all four clamp together. Adhesion
in this manner is highly dependent on the asymmetry of the array of multiple
structures. In this case the top sheet is placed at y = 3h, the second highest at
y = 1.8h, the third at y = 0.7h and the lowest beam placed at y = 0. (a): Weakly
bent state; (b): Adhesion between the lower two sheets; (c): Adhesion between
the lower three sheets; (d): Adhesion of all four sheets. Inset: Non-monotonic
variation of the bending energy in the second-highest sheet.
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Figure 2.12: (Color online) Same as Fig. 2.11 except that the original distances
between each sheet is now identical. As a result, the adhesion transitions occur in
a hierarchical fashion: (1, 1, 1, 1)→ (2, 2)→ 4.

further, another second-order transition takes place and the lower three sheets

adhere (Fig. 2.11c). Finally, a final first-order transition occurs when the four

sheets adhere (Fig. 2.11d). Note the non-monotonic variation of the bending energy

in the second-highest sheet (inset of Fig. 2.11).

An example of hierarchical adhesion transition is displayed in Fig. 2.12,

where we plot the total bending energy profile for a symmetric four-sheet system

(i.e. there is no asymmetry in the relative distances between the sheets). As

the bending parameters are increased, a second-order phase transition leads to

adhesion between two pairs of sheets (Fig. 2.12a). First-order transitions are also

possible for other values of the model parameters (not shown here). As the bending

parameters are increased further, a first-order transition occurs and the four sheets

all adhere to one another (Fig. 2.12b). Remarkably, in this case, the first-order

transition does not display any hysteresis.
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2.5 Conclusion

In this chapter we have studied the prototypical dry adhesion problem be-

tween flexible sheets or filaments, and focused on their morphological transitions.

Motivated by a simple macro-scale experiment showing hysteretic adhesion, we

have introduced a model of dry adhesion between two elastic, slender sheets in-

teracting via a power-law potential, and studied numerically the transitions in

their conformations. Given a particular form of interaction potential, the system

is completely described by a single dimensionless parameter quantifying the rela-

tive effect of long-range attraction and bending rigidity, and governing the nature

of the adhesion transitions (first or second-order). We have also generalized the

model to multiple sheets, showing in particular that additional geometric consid-

erations dictate the order in which structure adhere to each other. The physical

systems modeled here include the interactions between charged sheets, or between

nonpolar filaments. Future work will focus on the presence of thermal fluctuations

allowing the adhered states to “jump” from one state to another. We will also

consider the case where the filaments are actuated, and will include the effect of

hydrodynamic interactions. Finally, using an approach similar to ours, the adhe-

sion of three-dimensional structures such as coiled filaments or planar arrays could

be investigated.
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3.1 Introduction

In the highly viscous environment inhabited by micro-organisms, locomo-

tion is a difficult task, and one rarely achieved in the absence of fellow organisms,

boundaries or other obstacles. Because drag forces from the fluid dominates iner-

tia, swimming becomes a problem for microscopic life qualitatively different from

that of larger organisms such as fish, and nature has evolved several strategies

for solving it. Flagellated organisms such as bacteria and spermatozoa utilize the

fluid drag anisotropy of slender filaments (flagella) in order to propel themselves

through a viscous fluid [10]. From a biological standpoint, both prokaryotic and

eukaryotic flagella serve the same purpose, to propel the organism through the

fluid, but from a mechanical standpoint the filaments are quite different. Bacteria

such as E. coli and B. subtilis actuate passive helical filaments using rotary motors

embedded in the cell walls, and whose rotation gives rise to propulsion [34, 35].

In contrast, spermatozoa (and more generally, eukaryotic) flagella are active fila-

ments. They possess an internal musculature, termed the axoneme, which deforms

in a wave-like fashion due to the action of molecular motors. These motors gen-

erate time-varying and coordinated bending moments along the flexible flagellum,

giving rise to traveling waves, and propulsion of the cell [36, 10]. In that case, the

waveform displayed by the cell is a physical balance between the motor activity,

the flagellum elasticity, and the fluid forces.

Near solid boundaries, the behavior of both types of swimming cells is

strongly affected. Since the governing equations for inertialess fluid flow are time

invariant, the geometry of the system fully defines the hydrodynamics. Bacte-

ria swim in circles near a wall, as the chirality of the flagellar rotation induces a

hydrodynamic torque on the body [37, 38, 39]. Boundaries also tend to hydrody-

namically attract swimming cells, and as a result the steady-state distribution of

motile cells strongly peaks near walls [40, 41, 42, 43, 44, 45]. Near walls, large

arrays of cilia (short flagella) are known to synchronize, and display coordinated

modes of deformation known as metachronal waves [46, 36, 47, 48, 9, 49].

One topic of renewed interest concerns the dynamics of spermatozoa in

confinement, as relevant to the situation in mammalian reproduction [50]. Early
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theoretical studies considered flagellated cells with waveforms unchanged by the

presence of walls. In that case, because of increased drag forces, the cells have to

increase their work against the fluid to maintain their waveforms, and as a result

they speed up when near a boundary [51, 52, 53, 54, 42]. If instead the cells are

assumed to work with a fixed power, the presence of a boundary leads in general

to a decrease of the swimming speed [51, 52].

Physically, the speed at which a cell swims is a balance between the propul-

sive force generated by its flagellum and the drag from the surrounding fluid. Near

a boundary, both the flow field generated by the flagellum and the subsequent

propulsion generated are expected to be modified, but in a manner which has not

been quantified yet.

Recently, an experimental investigation was carried out using optical trap-

ping on human spermatozoa to investigate the influence of boundaries on force

generation. Briefly, spermatozoa cells swimming near and parallel to a cover glass

(distance about 5 µm) were optically trapped, and then moved to a pre-defined

distance of up to 100 µm from the glass surface. As the flagellum of the trapped

cell continuously beat, the trap power was then gradually attenuated until the cell

escaped. The magnitude of the propulsive force applied by the cell, equal to the

minimum force required to hold the cell in place by the optical trap, was found to

be decreased by the presence of the glass surface [55]. These results indicate that

the cells do not maintain their waveforms, as for a cell with a fixed waveform the

propulsive force would increase near the wall. This experimental result suggests

therefore that, for eukaryotic cells, the interplay between flagellum elasticity, inter-

nal actuation, and hydrodynamics can lead to a non-trivial relationship between

the environment (here, confinement) and the propulsive force generated by the

cells.

In this chapter, we use a series of simple models to examine the propulsive

effects of a solid boundary on passively actuated filaments and model flagella. Our

work aims at capturing the essential physics that describes the geometric effects on

the body, and builds on previous studies of flagellar locomotion far from external

influences, both for passive filaments [56, 57, 58, 59, 60], and for active flagella
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[61, 62, 63, 64, 65] (see also Ref. [10] and references therein). By considering

different modeling approaches for the filament actuation, and by quantitatively

including the change in viscous friction due to the presence of the wall, we predict

analytically the change in flagellar waveform, as well as the resulting change in

propulsive force. We demonstrate that the relationship between the wall-flagella

distance and the propulsive force it generates is in general non-monotonic. For

the case of passive flagella actuated at one end, the presence of the wall increases

the propulsive forces generated by the filament dynamics for displacement-driven

actuation, but decreases them in the case of force-driven actuation. In contrast,

for active filaments we demonstrate that the manner in which a solid wall affects

propulsion cannot be known a priori, but is instead a complicated function of the

flagella frequency, wavelength, their boundary conditions and the manner in which

the molecular motors self-organize to produce oscillations.

The chapter is organized as follows. We start with a summary of the general

class of elastohydrodynamics problems, and prescribe our course of action for de-

termining the propulsive force and force gradients in the presence of a wall for our

models (Sec. 3.2). Following this we consider a passive filament actuated at one

end, and the modification of the thrust it produces in the presence of the no-slip

boundary (Sec. 3.3). We then consider two models for active flagella swimming

very close to the wall, first the case of a prescribed internal sliding force, and then

the more realistic case of flagellar beating via self-organization of molecular motors

in the axoneme (Sec. 3.4). In both cases, we determine the propulsive force, and

how it is modified by the presence of the wall. We finish with a discussion of our

results in the context of spermatozoa locomotion (Sec. 3.5)

3.2 Elastohydrodynamics and setup

3.2.1 Setup

The physical system that we will investigate is illustrated schematically in

Fig. 4.4. We consider a single flagellated cell (or synthetic device with a flagellum-

like filament), for which the flagellum undergoes planar beating a distance h from
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Figure 3.1: (color online) Schematic diagram of a flagellated cell (or passive
flexible filament) in the presence of a stationary no-slip boundary. (a): 3/4 view
of the model system. The planar beating of the flagellum or filament takes place
parallel to the plane of the wall (x, y), and the cell is located at a distance h
from the surface. For simplicity we ignore the head effects in this work; this is a
reasonable assumption as many experiments to measure the propulsive force would
anchor the head in place (e.g. an optical trap or micropipet). (b): Side-view of the
model system. Note that from this angle the flagellum or filament appears only as
a straight rod, as it is assumed to beat along the y direction.

the surface of a solid boundary. The plane of actuation is assumed to remain

parallel to the plane of the wall (directions x and y in Fig. 4.4). In the experiment

of Ref. [55], when the cells are trapped, their plane of beating is parallel to the

surface, and thus it is a reasonable approximation to assume that it remains so at

different heights. We will consider both the case of a passive filament actuated at

one end (Sec. 3.3) as well as an active filament with internally distributed actuation

(Sec. 3.4)

3.2.2 Hydrodynamics

Since the Stokes equations are time-invariant, the geometry of the system

completely defines the fluid dynamics at zero Reynolds number. Although the

governing equations are themselves linear, nonlinearities in the shapes of swimming

organisms can make calculating the flow difficult. Furthermore, because the flow

is determined by the instantaneous shapes of the surfaces immersed in the flow,

nonlocal hydrodynamic effects can make the calculations impossible to do without
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numerical analysis.

Fortunately, for flagellated organisms the slenderness of the swimming sur-

face in question leads to several simplifications that can be made to the fluid

dynamics. Using the asymptotic limit of a slender filament, the force acted by the

fluid on the moving filament is approximately given by [66]

ffl = −
[
ζ‖t̂t̂ + ζ⊥(I− t̂t̂)

]
· v, (3.1)

where ζ⊥ and ζ‖ are the force-velocity resistance coefficients derived from resistive

force theory (ζ‖ < ζ⊥) [10], and accounting for filament motion perpendicular and

parallel to the filament axis respectively; here t̂ is the unit tangent vector along

the filament, I is the identity tensor, and v is the velocity of the filament as it

moves through the quiescent fluid.

In addition to slenderness, for small amplitudes of the flagellar beat the

geometric terms simplify considerably. Although real flagella beat with a large

amplitude, experiments and numerics have shown that corrections to linearized

dynamical shape equations are sub-leading [67, 68, 60]. In the linearized regime,

only the normal velocity component of the filament is important for calculating

the fluid force, as the tangential motion enters only for higher-order curvature

or bending of the filament. In that case, we can represent the amplitude of the

filament perpendicular to the propulsive direction as a function y(x, t), and the

fluid drag on the filament can be simply expressed in terms of the amplitude y as

ffl ≈ −ζ⊥∂y/∂t ey.

3.2.3 Flexibility and activity

In order to model propulsion, we need to balance the expression for the fluid

force on the filament with the internal forces, fint, of the model flagellum. In the

case of a passive filament actuated at one end, only the elastic forces contribute

to this term. For a model of spermatozoa, the internal distribution of molecular

motors in the axoneme leads to an active bending moment that contributes to

force and torque balance. In the inertialess realm of low Reynolds number that is

inhabited by the swimming cells that we examine, the total force on each infinites-
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Figure 3.2: (color online) Schematic of a flagellated micro-organism swimming
via an active flagellum. The inset shows the model of the active filament that we
use in this analysis (adapted from Ref. [63]). The two pieces of the filament slide
past one another, each exerting an equal and opposite active force f(s) that is
dependent on the position along the flagellum (the arclength s). This produces a
sliding displacement ∆. In the simplest case, that of purely elastic response, and
for small amplitude motion, this displacement ∆ induces a restoring force that is
proportional to the magnitude of f(s). The distance between filaments, a, has
been exaggerated for viewing purposes.

imal element of the flagellum sum to zero, and therefore mechanical equilibrium is

written as

ffl + fint = 0. (3.2)

Thin passive filaments are well modeled by the elastic beam theory [69].

Their elastic strain energy associated with deformation is given by

Eel =
A

2

∫ L

0

κ(s)2ds, (3.3)

where A is the bending rigidity of the filament, L its length, and κ(s) its local

curvature along the arclength, s.

For an active filament that is powered by an internal musculature, such as a

eukaryotic flagellum, we must consider not only similar elastic restoring forces, but

also any internal actuation forces. We use in this paper the model of Camalet &
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Julicher [63] to address the mechanics of active filaments, as illustrated in Fig. 3.2.

The active filament is assumed to be composed of two inextensible elastic beams

which are attached to the basal (or head) region, but allowed to bend relative to

one another, and acted upon by a distribution of equal and opposite active force

f(s). As the filaments bend, they induce a distribution of sliding displacements,

∆(s), given geometrically by

∆(s) =

∫ s

0

aκ(s′)ds′, (3.4)

where a is the fixed distance between the filaments at the base. The work done by

the filament against the internal forces is then added to the enthalpy functional,

and we get

E =

∫ L

0

ds

[
A

2
κ2(s) + f∆(s)

]
. (3.5)

In the case of a passively actuated filament, the internal forces are zero, and thus

only the elastic contributions enter the equations of motion. Extremizing the

energy given by Eq. (4.7), for a particular form of the active forces, yields the

total internal force per length on the flagellum, fint, which must then be equal and

opposite to the fluid force.

3.2.4 Propulsion and wall effects

Given a system, either the passive or active filament, and a set of boundary

conditions for the flagellum corresponding to a given physical situation, the elas-

tohydrodynamics balance allows us to solve for the flagellar beating pattern and

thus for the propulsive force. For small-amplitude motion, the propulsive force,

defined as the force acted by the beating flagellum on the surrounding fluid when

it is beating but not swimming, is given by

F =

[
(ζ‖ − ζ⊥)

∫ L

0

∂y

∂t

∂y

∂x
dx

]
ex, (3.6)

where ex is the unit vector along the average position of the beating filament [59]

(see Fig. 4.4). In particular, if y(x, t) deforms as a pure traveling wave propagating
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in the +x direction, y(x, t) = y0(x−ct), we get F =
[
(ζ⊥ − ζ‖)c

∫ L
0

(∂y0/∂x)2dx
]

ex.

In that case, the force on the fluid is in the +x direction, and therefore the force

on the filament, and the swimming direction if it was free to swim, is in the −x
direction.

To determine the values of ζ⊥ and ζ‖ in Eq. (3.6), we look at previous work

calculating friction coefficients for slender bodies near walls [36]. For a slender

body of radius a and length L in an unbounded fluid the drag coefficients can be

calculated asymptotically in the slender limit a� L, and are given by

(ζ⊥)∞ ≈
4πµ

ln(2L/a) + C1

(ζ‖)∞ ≈
2πµ

ln(2L/a) + C2

(3.7)

where µ is the fluid viscosity and C1 and C2 are O(1) constants that depend on the

specific geometry of the filament. Near a boundary, if h is the distance between

the filament and the wall, the situation relevant to the experiments in Ref. [55] is

that of h . L. In this near-field limit, the resistance coefficients relevant to the

planar beating geometry considered in Fig. 4.4 are given by

ζ⊥ ≈
4πµ

ln(2h/a)
, ζ‖ ≈

1

2
ζ⊥. (3.8)

The far-field limit, h & L, yields only a small correction to the values of ζ⊥ and

ζ‖ in Eq. (3.7) which would likely be too small to be measured experimentally,

and thus we will not consider this case here. For a comprehensive account of

these calculations see Ref. [36] and references therein. Experiments on sedimenting

cylinders near boundaries were considered in Ref. [70], where it is shown that the

difference in drag between a cylinder far from a wall, and one in the near-field

regime that we consider can easily be as much as 50%. In particular, the result of

Eq. (3.8) implies that there is a gradient in the fluid friction if the body changes

its distance, h, from the wall. The friction gradient is given by

dζ⊥
dh

= − ζ2
⊥

4hπµ
, (3.9)

which is always negative, reflecting physically that viscous forces are increased by

the presence of a solid boundary.

For a slender rod dragged through a viscous fluid with a fixed velocity,

the sign of this force gradient implies that moving the rod closer to the wall will
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increase the force required to maintain its speed. For an actuated filament, friction

from the surrounding fluid plays a dual role. It first affects the propulsive force, as

given by Eq. (3.6), through change in the drag coefficients. In addition, for either

boundary- or internally-actuated filaments, the change in ζ⊥ and ζ‖ in Eq. (3.1)

modifies the force balance, Eq. (3.2), thereby changing the shape of the flagellum,

and therefore affecting the propulsion in Eq. (3.6) through a modification of y(x, t).

It is this interplay between viscous friction, elasticity, and activity that we propose

to quantitatively analyze in this paper. As we detail below, it usually results in a

non-trivial and non-monotonic relationship between wall distance and propulsive

force.

3.3 Passive filaments

We first consider the case of a passive elastic filament driven at one end. In

that case, the elastic energy is

Eel =

∫ L

0

A

2

(
∂2y

∂x2

)2

dx, (3.10)

where the linearized regime allows for the approximation of the curvature κ by the

concavity of the function y(x). Calculating the functional derivative of the energy

in Eq. (3.10) leads to the elastic force density which, when balanced with the fluid

force density, results in the linearized dynamics equation

ζ⊥
∂y

∂t
= −A∂

4y

∂x4
, (3.11)

as obtained in previous studies [56, 59]. We will consider a harmonic driving with

frequency ω, and by focusing only on post-transient effects, we will assume a similar

periodic dynamics for the filament.

Since the filament is driven only at one end, the boundary conditions at the

tail (x = L) end are

A
∂2y

∂x2
(L, t) = 0, (3.12)

A
∂3y

∂x3
(L, t) = 0. (3.13)
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This guarantees that the ends of the filament are force- and torque-free. At the

driving position (x = 0), different types of physical actuation could be implemented

experimentally, leading to different boundary conditions. If the tangent angle is

prescribed, with the position of the filament fixed in place, the boundary conditions

are

y(0, t) = 0, (3.14)
∂y

∂x
(0, t) = ε cosωt, (3.15)

where ε � 1 is the magnitude of the tangent angle deviation from horizontal

and ω the driving frequency (pivoted case). Alternatively, for experiments that

involve manipulating a passive filament via optical tweezers, the driving position

would be made to oscillate harmonically under torqueless conditions, leading to

the boundary conditions

y(0, t) = y0 cosωt, (3.16)

A
∂2y

∂x2
(0, t) = 0, (3.17)

where y0 is the magnitude of the oscillation in space (tweezed case). Finally, we

could also consider the case where an oscillating force or torque is applied to the

driving end leading to boundary conditions

y(0, t) = 0, (3.18)

A
∂2y

∂x2
(0, t) = M0 cosωt (Torqued), (3.19)

A
∂3y

∂x3
(0, t) = F0 cosωt (Forced). (3.20)

Here M0 and f0 are the magnitudes of the time-varying torque and force, respec-

tively. These boundary conditions described above are experimentally realizable,

for example using micro-pipets.

Since we ignore transient effects, the steady solution for the amplitude can

be written as y(x, t) = Re {ỹ(x)e−iωt}. Additionally, we can define a natural

length scale through the dimensionless “sperm number”, Sp = L/`ω where `ω =

(A/ζ⊥ω)1/4; Sp is the only dimensionless number in this problem, and as such it
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fully governs the filament dynamics. For Sp � 1, the penetration length `ω is

much larger than the length of the filament, and thus oscillations will not decay

along the length of the flagellum. For a passive filament, this is equivalent to a

very rigid rod being actuated back and forth. Conversely, for Sp� 1, oscillations

decay very quickly, indicating a floppy string or very viscous fluid. For an active

filament, there are additional length scales that must be considered, as will be

discussed later.

We nondimensionalize time by 1/ω and the direction x along the filament

by L, and the filament amplitude by y0 which is specified in the tweezed case,

and can be related to the forcing parameters in the other three cases. Specifically

we have y0 = εL for pivoted actuation, y0 = F0L
3/A for forced actuation, and

y0 = M0L
2/A for the torqued condition. By doing so, we obtain the following

dimensionless equation for the amplitude ỹ as

ỹ′′′′ − iSp4ỹ = 0. (3.21)

The dimensionless boundary conditions for the tail are thus given by

ỹ′′(1) = 0, (3.22)

ỹ′′′(1) = 0, (3.23)

while the various possible boundary actuations at the driving end are

ỹ(0) = 0, ỹ′(0) = 1 (Pivoted),

ỹ(0) = 1, ỹ′′(0) = 0 (Tweezed),

ỹ(0) = 0, ỹ′′′(0) = 1 (Forced),

ỹ(0) = 0, ỹ′′(0) = 1 (Torqued),

With a solution to the amplitude equation, Eq. (3.21), we find the total force

exerted on the filament by the fluid. Because we consider harmonic actuation, we

only look at the time-averaged propulsive force, which is given, in a dimensional

form, by

〈F 〉 =
1

4

ωζ⊥y
2
0I(Sp)

Sp4
, (3.24)
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where I(Sp) is a dimensionless integral defined by

I(Sp) = Re

[
1

2
ỹxxỹ

∗
xx − ỹxỹ∗xxx

]
(x = 0), (3.25)

where an asterisk denotes the complex conjugate, and Re the real part. This

expression is a direct consequence of the integral for the propulsive force, Eq. (3.6),

being a total derivative when the filament is passive, and thus the function depends

only on the non-dimensional amplitude ỹ evaluated at the endpoints [56]; the free

end x = 1 does not contributed because of Eqs. (3.22)-(3.23).

If we then define a scaling function Z(Sp) = I(Sp)/Sp4 to contain all of the

dependence on Sp for the propulsive force, we have that the four cases are given

by

〈F 〉 =
1

4
ωζ⊥ε

2L2Z(Sp) (Pivoted), (3.26)

〈F 〉 =
1

4
ωζ⊥y

2
0Z(Sp) (Tweezed), (3.27)

〈F 〉 =
1

4

ωζ⊥F
2
0L

6

A2
Z(Sp) (Forced), (3.28)

〈F 〉 =
1

4

ωζ⊥M
2
0L

4

A2
Z(Sp) (Torqued), (3.29)

and each of the scaling functions are unique to the four boundary conditions that

solve the amplitude Eq. (3.21)

We can now examine how the propulsive force changes as the filament

changes its distance h to the wall. Using the chain rule, the force gradient is

given by

d

dh
〈F 〉 =

1

4
ωy2

0

(
dζ⊥
dh

Z + ζ⊥
∂Z

∂h

)
(3.30)

=
1

4
ωy2

0

(
dζ⊥
dh

Z + ζ⊥
∂Z

∂Sp

∂Sp

∂ζ⊥

dζ⊥
dh

)
(3.31)

=
1

4
ωy2

0

dζ⊥
dh

(
Z +

1

4
Sp

∂Z

∂Sp

)
, (3.32)

where we have used the definition of Sp to take a partial derivative with respect to

the resistive coefficient. Since Sp is monotonic in the resistive coefficient ζ⊥, and

from Eq. 3.8, we see that ζ⊥ itself is a monotonic function of h, we can examine the

qualitative behavior of the force gradient by recasting the derivatives with respect
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to h in terms of the dimensionless number Sp. It is important to note at this

point that the variation of Sp with the distance between the flagellum and the

wall is weak, with a scaling Sp ∼ [log h/a]−1/4, and thus even large changes in the

distance from the wall will produce small changes in Sp. Quantitative details are

discussed in Sec. 3.4.1, and for a bull spermatozoa cell with Sp ≈ 7 away from a

boundary, bringing the cell closer to the wall will lead to a typical increase of Sp

of about 10%.

The force gradient is now composed of two terms: the first is due entirely

to the changing fluid friction, but the second is a more complicated effect that

incorporates the elasticity of the filament through the shape change. This term

reflects the fact that, in the presence of a wall, the elastohydrodynamic penetra-

tion length is a function of the distance from the wall. Changing that distance

changes the essential character of viscous-induced oscillation in the filament. Due

to the competition between these terms, it is now not necessarily the case that

this gradient be negative, as we would expect for the case of the rigid rod. From

a dimensional standpoint, we can write

d

dh
〈F 〉 =

1

4
ωy2

0

∣∣∣∣dζ⊥dh

∣∣∣∣Z ′ (3.33)

where we have therefore, since dζ⊥/dh is negative (see Eq. 3.9),

Z ′ = −
(
Z +

1

4
Sp

∂Z

∂Sp

)
· (3.34)

To represent the change of the force with the wall distance, we plot in

Fig. 3.3 the dimensionless force, Z (top, blue solid line) and force gradient, Z ′

(bottom, red dashed line) for all four different boundary conditions. Representative

shapes of the filament over an entire period of oscillation are also shown for various

values of Sp. For low values of Sp, the filament behaves like a rigid rod, while for

larger values the decay length of the actuated filament becomes apparent. In both

the pivoted and the tweezed cases, there is a maximum propulsive force (blue curve)

that occurs for Sp > 1: Sp ≈ 4 for the tweezed case, Sp ≈ 2 for the pivoted case.

For the torqued and forced, the maxima occur for Sp < 1, and as Sp approaches

zero these conditions leave the linearized regime, and the model breaks down.
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Z ′
Z ′

Z ′

Figure 3.3: (color online) Passive filament: Normalized propulsive force, Z, (blue
solid line /top curve) and propulsive force gradient, Z ′ (red dashed line/bottom
curve) as a function of the dimensionless parameter Sp, for all four boundary con-
ditions. Shapes of the filament for different Sp are superimposed. (a): Pivoted
case; (b): Tweezed actuation; (c): Torqued condition; (d): Forced boundary con-
dition. In the case of displacement-driven actuation, dZ/dh is negative; since ζ⊥
is also a decreasing function of h (see Eq. 3.9), the time-average propulsive force,
Eq. (3.24), is a decreasing function of h, and the presence of a boundary always
increase the propulsion of the filament. On the contrary, for force-driven actua-
tion, the sign of dZ/dh is positive, indicating that the presence of the boundary
decreases the propulsive force.
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As can be seen in Fig. 3.3, Z is always positive meaning that the actuation

at x = 0 leads to filament dynamics pushing against the fluid always in the +x

direction. In addition, we see that Z ′ is always negative for the pivoted and

tweezed cases (displacement-driven actuation), indicating that the force (or Z) is

a decreasing function of the distance to the wall, h. The time-average propulsive

force, Eq. (3.24), generated is therefore always increased by the presence of a

boundary. As such, it is somewhat similar to the increase of the drag on a body

driven at a constant velocity by the presence of a boundary. Note however that

Z ′ displays a non-monotonic dependence on Sp (and therefore on h, since Sp is

a monotonically decreasing function of h), which is due entirely to the change in

the filament shape accompanying the change in height. In contrast, in the torqued

and forced cases (force-driven actuation), we see that Z ′ is positive, indicating that

the opposite is true, and the propulsive force is now decreased by the presence of

the wall. These result are reminiscent of early work showing a similar contrast

between two-dimensional swimming with fixed kinematics or fixed hydrodynamic

power [51, 52, 53, 54].

3.4 Active flagella

We now turn to the case of an active filament as a model for a eukaryotic

flagellum, and investigate how the changes in hydrodynamic drag induced by the

wall and the response of the flagellar amplitude couples to the internal activity. As

before, we examine force balance, but for an active flagellum we retain the internal

forcing term, and the linearized dynamics equation becomes [63, 62, 68]

ζ⊥
∂y

∂t
= −A∂

4y

∂x4
+ a

∂f

∂x
· (3.35)

Since the total force and moment on the filament must vanish, this imposes

boundary conditions on the distal, or “tail”, end as

−A∂
3y

∂x3
(L, t) + af(L) = 0, (3.36)

−A∂
2y

∂x2
(L, t) = 0. (3.37)
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Regarding the other side of the flagellum (its “head” side), we will exam-

ine two different types of boundary conditions, either clamped or hinged. For a

clamped filament, physically corresponding to a cell that is immobilized via micro-

pipet, both the head and its tangent angle cannot change, and the boundary

conditions are thus

y(0, t) = 0, (3.38)
∂y

∂x
(0, t) = 0. (3.39)

In the hinged case, the head remains fixed, but the tangent angle can move torque-

lessly. This is the situation that would take place in the presence of an optical trap,

so the boundary conditions become

y(0, t) = 0, (3.40)

A
∂2y

∂x2
(0, t) + a

∫ L

0

f(x)dx = 0. (3.41)

If we non-dimensionalize x by L and time by 1/ω as in the previous section,

but additionally scale the magnitude of the flagellar beat y0 by af0L
3/A, where f0

is the magnitude of the internal force, then the equation for mechanical equilibrium

becomes

ỹ′′′′ − iSp4ỹ =
∂f̃

∂x
· (3.42)

The dimensionless version of the boundary conditions are

−ỹ′′′(1) + f̃(1) = 0, (3.43)

ỹ′′(1) = 0, (3.44)

for the tail end, and ỹ(0) = 0 and one of the following for the head

ỹ′(0) = 0 (Clamped), (3.45)

ỹ′′(0) +

∫ 1

0

f̃(x)dx = 0 (Hinged). (3.46)

In order to consider the response of the flagellum due to changing the dis-

tance from a wall, and thus changing the friction of the fluid, the mechanism of the

axoneme itself must be taken into account, i.e., a model for f must be prescribed.

We proceed in the next two sections by considering two such models.
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Υ′

ΥΥ′
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Figure 3.4: (color online) Active filament with prescribed activity and clamped
boundary conditions: dimensionless force, Υ, force gradient, Υ′, and gradient of
the square of the norm of the force, ΥΥ′, for various values of (Sp, kL). The
corresponding shapes are displayed at their representative values on the curves.
(a) Υ (blue, top), Υ′ (red, middle) and ΥΥ′ (bottom, black) as a function of kL
for Sp = 5 (solid) and 9 (dashed); kL runs from 0.1 to 8π (b) All three again
as a function of Sp for kL = 3π (solid) and kL = 8π (dashed); Sp varies from 3
to 10. The axis limits were chosen to cover a wide range of biologically relevant
filaments and viscosity solutions, keeping in mind that for small Sp the rigid rod
limit renders the model inaccurate and is irrelevant for biological locomotion.

3.4.1 Prescribed activity

In the first approach, we consider that the active force per unit length takes

the form of a prescribed traveling wave, i.e. f(x, t) = Re{f0e
ikx−iωt} [62], whose

frequency (ω) and wavenumber (k) are not modified by the presence of a boundary.

This enables us to completely specify the filament shape, its propulsive force, and

the propulsive force gradient, with two dimensionless numbers: Sp and kL. The
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Hinged(a) (b)
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Υ′

ΥΥ′

Υ
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kL = 3π

kL = 8π

kL Sp

Figure 3.5: (color online) Active filament with prescribed activity and hinged
boundary conditions: Dimensionless force, Υ, force gradient, Υ′, and gradient of
the norm squared of the force, ΥΥ′, for various values of (Sp, kL). The corre-
sponding shapes are displayed at their representative values on the curves. (a)
Υ (blue, top), Υ′ (red, middle) and ΥΥ′ (bottom, black) as a function of kL for
Sp = 5 (solid) and 9 (dashed); kL varies from 0.1 to 8π (b) All three again as a
function of Sp for kL = 3π (solid) and kL = 8π (dashed); here Sp runs from 3 to
10.
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dimensionless equation of mechanical equilibrium is now written as

ỹ′′′′ − iSp4ỹ = ikLeikLx, (3.47)

with boundary conditions

ỹ(0) = 0, (3.48)

ỹ′′′(1) = eikL, (3.49)

ỹ′′(1) = 0, (3.50)

and either of the following

ỹ′(0) = 0 (Clamped), (3.51)

ỹ′′(0) = −(1− eikL)

ikL
(Hinged). (3.52)

It is then straightforward to calculate the propulsive force on the fluid due

to the active filament, which is given by

〈F 〉 =
1

4
ωζ⊥y

2
0Υ(Sp, kL), (3.53)

where the scaling function Υ(Sp, kL) is defined as the dimensionless integral

Υ(Sp, kL) = Im

[∫ 1

0

ỹ∗
∂ỹ

∂x
dx

]
· (3.54)

Here Im denotes the imaginary part. Note that the amplitude of the flagellar beat

is proportional to the magnitude of the active force, and thus the propulsive force

scales quadratically with it. This dependence has been scaled out of the propulsive

force, and is assumed to remain constant.

As in the previous section, the force gradient can be calculated using the

chain rule and we get

d

dh
〈F 〉 =

1

4
ωy2

0

(
dζ⊥
dh

Υ + ζ⊥
dΥ

dh

)
(3.55)

=
1

4
ωy2

0

dζ⊥
dh

(
Υ +

1

4
Sp

∂Υ

∂Sp

)
· (3.56)

The main difference between Eq. (3.56) and Eq. (3.32) is that the scaling function

Υ is a function of both the elastohydrodynamic length scale parameterized by Sp
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and an active length scale defined by kL; the interaction of these two lengths leads

to several non-intuitive results, as shown below. From a dimensional standpoint,

we can write
d

dh
〈F 〉 =

1

4
ωy2

0

∣∣∣∣dζ⊥dh

∣∣∣∣Υ′ (3.57)

where, as above, we have defined the dimensionless force gradient as

Υ′ = −
(

Υ +
1

4
Sp

∂Υ

∂Sp

)
· (3.58)

Anticipating that the mean force, 〈F 〉, can change sign, we compute the gradient

in the norm squared of the force and get

d

dh

[
1

2
〈F 〉2

]
=

1

16
ω2y4

0

∣∣∣∣dζ⊥dh

∣∣∣∣ζ⊥ΥΥ′, (3.59)

so that ΥΥ′ is the dimensionless gradient in the norm (squared) of the propulsive

force.

In Fig. 3.4a we display Υ (top, blue), Υ′ (middle, red) and ΥΥ′ (bottom,

black) for Sp = 5 (solid line) and Sp = 9 (dashed line) as a function of kL in

the case of clamped boundary conditions. In Fig. 3.4b we show the same system,

only this time several representative values of kL are chosen and the resulting

dimensionless force and force gradients are plotted as a function of Sp. Similar

results are shown in Fig. 3.5 in the case of hinged boundary conditions.

First, we observe that although the activity wave is always traveling from

the body of the cell to the tip of the active filament (ω/k = c > 0), the propulsive

force can change sign: Υ > 0 means a force on the fluid in the same direction as

the wave, and therefore (if the cell was free to move) swimming in the direction

opposite to the wave. As a difference, Υ < 0 means the generation of a force

on the fluid opposite to the wave propagation, and therefore swimming along the

direction of the wave propagation. Recall that in the passive case analyzed in the

previous section, we always had a positive force. We also observe here, in general, a

non-monotonic variation of the propulsive force with both the activity wavelength

(through kL) and frequency (through Sp). We further note the importance of

the boundary conditions as markedly different results are obtained in Fig. 3.4 and

Fig. 3.5.
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The second important results to note from Figs. 3.4 and 3.5 are the varia-

tions in the sign of the force gradient. In all cases where the product ΥΥ′ > 0, the

presence of the boundary causes the magnitude of the propulsive force to decrease.

The opposite is true in all cases where ΥΥ′ < 0. It should be obvious from Figs. 3.4

and 3.5 that the sign of the force gradient displays a complex dependence on the

parameters (Sp, kL), as well as on the type of boundary conditions considered.

To demonstrate the physical significance of our results, we consider as an

example the case of a bull spermatozoa. For such a cell, we have L ≈ 60 µm,

A ≈ 10−21 Nm2, ω ≈ 10 Hz and the “bare” resistive coefficient (ζ⊥)∞ ≈ 10−3

Ns/m2 far from the wall, leading to Sp∞ ≈ 7 [36]. As discussed above, the wall

increases fluid drag, and thus it increases the value of Sp. Since is possible to

change the drag coefficient by as much as 50%, and since Sp ∼ ζ1/4, the change in

the value of Sp can be as high as about 10%. The active length scale kL is more

difficult to estimate, because the prescribed activity is not immediately obvious

through direct observation of the flagellar beat, but reasonable estimates give kL

between 3π and 5π [71, 62]. In the context of the prescribed activity model studied

here, kL is assumed to not change with distance from the wall.

We show in Fig. 3.6 contour plots of the gradient of the norm of the propul-

sive force, ΥΥ′, as a function of both Sp and kL (left: clamped conditions; right:

hinged conditions). The force gradient is positive in the filled contour regions;

contour lines are 5 × 10−3 in dimensionless units of force square per unit length.

Any given point in the (Sp,kL) plane gives a particular value of the dimension-

less force gradient. By bringing the beating flagella closer to the wall, the sperm

number is progressively increased, and the value of the new force gradient is found

by gradually moving along horizontal lines in Fig. 3.6 (which are lines of constant

kL). We show in Fig. 3.6 arrows corresponding to this gradual increase starting

at Sp = 7 and for kL = 3π, 5π and 7π.

First we observe, again, that the nature of the boundary condition strongly

affects the sign of the force gradient, and experiments performed using optical

trapping should give different results from experiments employing micropipettes.

Second, we see that three distinct cases are possible depending on the domain
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kL

Clamped Hinged

ΥΥ′ ΥΥ′

Sp

Figure 3.6: (color online) Contour plots for the dimensionless propulsive thrust
gradient, ΥΥ′, as a function of Sp and kL. Left: clamped boundary conditions
(micro-pipette); right: hinged conditions (optical trap). The force gradient is
positive in the filled contour regions; contour lines are 5 × 10−3 in dimensionless
units of force square per unit length. The arrows indicate the increase in the value
of Sp taking place as a beating cell is gradually approached to a solid boundary,
starting at Sp = 7 and for kL = 3π, 5π and 7π.

crossed by one of the arrows in Fig. 3.6. In the first case, the cell away from the

wall is in a region where ΥΥ′ is negative (white domains in Fig. 3.6) and remains in

it during the increase of Sp; in that case, a measurement would lead to a monotonic

increase of the propulsive force as the flagellum comes closer to the boundary. A

second case is the one for which ΥΥ′ is always positive (for example the middle

arrow in the left figure, which remains located inside the positive contour plots),

in which case the force would be measured to be monotonically decreased by the

presence of boundaries. Finally, a third situation can arise where the arrow crosses

the boundary between a region of positive (resp. negative) gradient and a region of

negative (resp. positive) gradient, leading to a surprising non-monotonic variation

of the propulsive force with the flagellum-wall distance.
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Figure 3.7: (color online) Dimensionless force (Λ, blue line) and force gradient
(Λ′, red dashed line) for the linear response model with clamped (left) and hinged
(right) boundary conditions, as a function of Sp. Characteristic flagellar beat
patterns are also shown at several values of Sp.

3.4.2 Self-organized axonemal beating

The prescribed activity model studied in the previous section assumes that

the internal activity of the flagellum is not modified by the change in the fluid

friction near a wall. In a more physically realistic model, the oscillations of the

flagellum would arise from a self-organized motion of the molecular motors, and

thus the internal force generation would in turn be a function of the force distri-

bution on the filament (both bending and fluid drag).

We consider in this section such a model as first introduced by Camalet and

Julicher [63]. In this framework, the active force is described by a linear response to

the filament sliding, f = χ∆. Spontaneous oscillations of flagellum then arise as a

self-organized phenomenon for specific values (eigenvalues) of the response function

χ. If we use Eq. (3.35) with the linear response relationship f = χ∆ ≈ aχ∂y/∂x,

then we obtain the following dimensionless eigenvalue equation for the filament

amplitude

ỹ′′′′ − χ̄ỹ′′ + iSp4ỹ = 0, (3.60)

where χ̄ = aL2χ/A.
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The amplitude can be solved as ỹ =
∑4

i=1Aie
qis, where the qi are the four

solutions to the characteristic equation corresponding to the characteristic modes

of Eq. (3.60). For a given value of Sp, we note that there is an infinite number of

discrete eigenvalues χn; as in previous work, we will consider only the eigenvalue

with lowest norm as they correspond to the lowest degree of motor activity. Non-

trivial solutions to Eq. (3.60) exist only for certain critical pairs of parameters

(Spc, χc), set by the boundary conditions [63, 68]

4∑
i=1

MijAj = 0, (3.61)

where the matrix M is defined by the boundary conditions (clamped or hinged,

same as in the previous section). Since the solution, ỹ, is an eigenfunction for a

linear equation, it is known only up to a multiplicative constant, and the absolute

magnitude for the oscillations can therefore not be obtained. Away from a wall,

it has been shown theoretically and experimentally that the beating amplitude

depends only weakly on nonlinear corrections [68, 67], so we will proceed by writing

the (arbitrary) amplitude of the filament oscillations as y0, which we assume is the

magnitude of the first component of the eigenvector (i.e. A1 = y0), and is assumed

to remain constant.

The propulsive force acting from the flagellum on the fluid in this case is

given by

〈F 〉 =
1

4
ωζ⊥y

2
0Λ(Sp), (3.62)

where

Λ(Sp) = Im

[∫ 1

0

ỹ∗
∂ỹ

∂x
dx

]
· (3.63)

and which can be written more explicitly as

Λ(Sp) = Im

[∫ 1

0

4∑
i=1

A∗i e
q∗i x

4∑
j=1

Ajqje
qjxdx

]
, (3.64)

In Eq. (3.64), the Ai’s and qi’s are all implicit functions of the response χ, which is

in turn a function of Sp. These functions are all known, albeit verbose, and thus

allow us to explicitly write the force in terms of Sp.



54

Near a wall, the fluid friction modifies the fluid resistance coefficient, ζ⊥,

but the bending modulus A remains constant. In order to elucidate the variation

of the propulsive force with a change of flagellum-wall distance, we thus need

to know how both the beat frequency, ω, and the response function, χ, vary.

Without further biological information about the behavior of molecular motors

under changing load, we now have to make modeling assumptions.

The functional dependence of the response function χ, on the oscillation

frequency and other materiel parameters is, in general, unknown. In order to

satisfactorily solve Eq. (3.60) we need to find the complex eigenvalues that allow

for non-trivial solutions of the equation to exist. To fully model the active system,

the filament response function should be derived from a model for the molecular

motors, and without such an explicit model, χ could very generally be a function

of on Sp, ATP production and concentration (i.e. activity level), load distribution,

structural inhomogeneities, and any other parameter(s) that govern activity in the

axoneme. The most general solution would thus require a detailed model of the

molecular motors (see e.g. [63, 68, 67]).

Since our primary focus in this paper is to explore the hydrodynamic conse-

quences of activity, boundaries, and elasticity, we will make below several modeling

assumptions in order to examine extreme cases, by essentially specifying the func-

tional dependence of χ. In general both the frequency ω and the response function

χ will vary, but we are going to assume here that one of them remains essentially

constant as the wall-flagellum distance is varied. We thus assume that one pa-

rameter shows a strong variation with h whereas the other depend only weakly on

h.

In the first case, the linear response function remains constant, such that

the only way for the eigensolution to Eq. (3.60) to have non-trivial values requires

the oscillation frequency, ω, to change in such a manner that Sp remains constant.

Given the definition of Sp, this means that one would observe experimentally a

frequency change given by ω(h)/ω(h =∞) = ζ⊥(h =∞)/ζ⊥(h), but no waveform

variation. In that case, the only change in the propulsive force, Eq. (3.62), would

arise from the variation of ζ⊥ with h, and therefore one would experimentally
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measure a increase of the magnitude of the force near boundaries.

The second case, more complex, is one in which the frequency of oscillation

of the filament would remain fixed. Although there is no experimental evidence

that demonstrates that ω does remain constant as the distance between the cell

and the boundary is changing, it is a reasonable assumption to make in the absence

of this information. This assumption, however, puts a stringent constraint on the

response function χ; in order to provide non-trivial solutions to Eq. (3.60) the

response function must be only a function of Sp in such a fashion as to match

the eigenvalues exactly. In this case, varying the distance between the flagellum

and the wall, h, modifies the value of Sp. As a result of changes in Sp, both the

response function χ, and the eigenfunction, will be continuously modified, which

will produce a non-trivial variation in the propulsive force. As in the previous

section, we will write the force gradient formally as

d

dh
〈F 〉 =

1

4
ωy2

0

∣∣∣∣dζ⊥dh

∣∣∣∣Λ′. (3.65)

For this scenario, we plot in Fig. 3.7 the dimensionless propulsive force (Λ)

and force gradient (Λ′) for the clamped and hinged boundary conditions respec-

tively, as well as several exemplary beat patterns. With this modeling approach,

we see that Λ is always positive. Using the notation of Fig. 4.4, the flagellum is

therefore always pushing the fluid along the x direction, and is thus expected to

swim in the −x direction. Furthermore, we obtain that the sign the force gradient

depends on the nature of the boundary conditions. In the clamped case, we get

that Λ′ is always negative, and therefore the presence of boundaries systematically

increases the propulsive force. In contrast, in the hinged case, the function Λ′

is seen to be negative for Sp below 7, and positive otherwise. In that case, and

similarly to what was reported experimentally using optical trapping in Ref. [55],

the measurements would show a decrease of the propulsive force near boundaries.

3.5 Discussion

Biological cells do not swim in a vacuum; the environment itself is what

makes swimming possible, and thus we must consider characteristics of the sur-
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roundings that may modify motility behavior. Since flagellated organisms generate

propulsion by actuating an elastic filament to do work against their viscous envi-

ronment, the specific response of that environment can be crucial to understanding

the overall locomotion characteristics. The particular environmental effect that we

have studied in this paper is the modification of fluid drag by the presence of a no-

slip boundary, and the balance between the deformable waveform of the flagellum

and the viscous fluid forces that generate propulsive thrust.

For driven filaments, we have shown that fluid drag plays a dual role: not

only does it change the propulsion generated by a given filament waveform, but it

also affects the waveform itself expressed by the beating filaments. For passively

actuated filaments, the resulting wall effect is a systematic increase of the propul-

sive force that the beating filament imparts on the surrounding fluid in the case

of displacement-driven actuation, while a decrease is obtained in the case of force-

driven actuation. In contrast, for active filaments as models for eukaryotic flagella,

the modification to the propulsive force depends sensitively on a combination of

the flagellar material properties, the boundary condition applied to the flagellum,

and the manner in which the molecular motors organize to cause oscillation; dif-

ferent values of parameters can increase, decrease or even display non-monotonic

influence on the cellular propulsive force.

Using simple scaling arguments, let us finally estimate the expected size

of the propulsive force change induced by a wall on an active flagella . Let us

compare the order of magnitude for the force far away from the boundary to

the average change in force between near- and far-field. Far from the wall the

propulsive force scales as F∞ ∼ ωy2
0(ζ⊥)∞Υ. Since our calculation for the force

change due to a wall focuses on the near field, we can estimate the average change

in force as ∆F ∼ L× dF/dh as L, the cell length, gives approximately the spatial

range over which the near-field matches with the far-field. Using the estimate

dF/dh ∼ −ωy2
0(dζ⊥/dh)Υ′ we therefore get

∆F

F∞
∼ −L(dζ⊥/dh)Υ′

(ζ⊥)∞Υ
· (3.66)
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According to Eq. (3.9), we have dζ⊥/dh ∼ −ζ2
⊥/hµ hence the scaling becomes

∆F

F∞
∼ Lζ2

⊥
hµ(ζ⊥)∞

(
Υ′

Υ

)
· (3.67)

Since we know that (ζ⊥)∞ ≈ µ/ ln(2L/a) and ζ⊥ ∼ µ/ ln(2h/a), we get the final

scaling relationship
∆F

F∞
∼ ln(2L/a)

[ln(2h/a)]2

(
Υ′

Υ

)
L

h
· (3.68)

From the results obtained above, we observe that Υ′/Υ ∼ ±1. For human sper-

matozoa, the parameters are L ≈ 40 µm, a ≈ 0.20 µm. In the experiment of

Ref. [55] the near-field measurements get as close as h = 5 µm which leads to

∆F/F∞ ∼ ±1. This simple order-of-magnitude calculation shows that the force

could be expected to be changed by order one by the introduction of a boundary.

In the experiment conducted in Ref. [55] the force was measured to be reduced by

a factor of three, which is consistent with this simple estimate.
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4.1 Introduction

In the previous two chapters we explored the ramifications of elasticity,

activity, and interactions (both of the potential and dissipative variety) for thin

flexible filaments. To broaden our approach we now consider two dimensional

surfaces; specifically, we examine the fluid-elasticity coupling between membranes

immersed in a viscous environment, and study the transduction of deformation

into macroscopic fluid pumping.

Modeling viscous locomotion, and the dual problem of pumping, are gener-

ally approached in one of two ways: the first simplifies the geometry of the problem

while retaining full fluid interactions, while the second retains more complicated

geometric nonlinearities but simplifies the non-locality of Stokes flow.

We present here a natural extension of this modeling by considering active

processes in flexible membranes. We explore two different ways to model the

interaction of an elastic membrane with an external fluid: we will prescribe an

internal activity and then solve the fluid mechanics precisely using linear response

in order to find the pumping of fluid caused by this activity, and we will prescribe

the kinematics of deformation according to an energy minimization model in order

to calculate propulsion for a more complex geometry. The former method allows

analytical calculations to be performed, thus elucidating the fundamental scalings

involved with relating an internal stress state to a macroscopic flow velocity, while

the latter solves the fully nonlinear shape equations and fluid mechanics using a

robust numerical method.

As before, in considering elasticity of filaments and rods, we now use an

example of a soft material that occurs readily in biological systems: the lipid

bilayer membrane. Many of the properties of this particular material are easily

generalizable to non-bilayer surfaces, but the ubiquity with which the lipid bilayer

appears in biology makes it a tempting target for our analysis.

The preeminence of viscous dissipation over inertial effects at low Reynolds

numbers leads to many interesting consequences for life and engineering efforts

at the micron-scale. In particular, swimming at zero Reynolds number is impos-

sible using time-reversible motions, a result known as the Scallop theorem [72].
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As a result, at least two actuation degrees of freedom are necessary to generate

locomotion. The breaking of this time-reversal symmetry has been studied both

from a mathematical point of view, and in the context of modeling real organisms

[36, 73, 74, 62, 10]. Unlike in high Reynolds number flows, such as those relevant in

describing the swimming of fish and flying of birds, fluid motion at low Reynolds

numbers is set almost instantaneously by the time-dependent geometries of the

immersed bodies. Thus it is natural to inquire about the shapes of immersed (and

possibly fluctuating) cell membranes, and their relationships to locomotion.

Membranes composed of lipid bilayers are ubiquitous in nature, and the

study of bilayer vesicles as a model system for biological cells has yielded signifi-

cant insight into their behavior [75, 76]. In addition to the biological relevance of

lipid bilayer vesicles, or liposomes, advances in self-assembly have paved the way

for other types of vesicles to be developed experimentally [77, 78]. Vesicles assem-

bled from block copolymers [79], liquid crystal amphiphiles [80], and membranes

with embedded proteins or anchored polymers [81, 82, 83, 84, 85] all have tunable

material properties which can be manipulated with unprecedented control [86, 87].

It is also well known that many biological cells actively modify or maintain the

shapes of their membranes [88, 89], either for developmental [90] or locomotive

processes [91, 92].

Recently, synthetic microswimmers inspired by the locomotion of eukaryotic

cells have been successfully designed in experiments [93], exploiting the planar

beating of a flagellum-like organelle. Beyond biomimetic engineering, other small-

scale synthetic swimmers or swimming strategies have also been proposed, both

theoretically and experimentally [72, 94, 95, 96, 97, 98, 99, 10, 100]. One recently-

studied example is a self-propelled colloidal particle which exploits asymmetrically-

distributed chemical reactions to swim in a viscous fluid [101, 102].

Active materials, ranging from living fluids to lipid membranes interspersed

with force generating molecular machines, present interesting challenges for mod-

ern soft matter physicists [103]. Understanding the dynamics of materials whose

characteristics and responses depend on dynamically varying internal stresses is

not only intellectually stimulating but also holds promise for revealing meaningful
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features of the cellular world. Mechanical feedback between the environment that

a cell is immersed in and the fluctuating inner behavior of its internal constituents

plays an important role in motility, morphology, and reproduction [104, 88, 92, 91].

The study of biological membranes, in particular, and the role of morphology in

ultimately determining the functionality of a cell, has long generated interested in

the scientific community. The geometry of a cell impacts the proteins embedded

in its surface [90], and the shape fluctuations of an active membrane yields insight

about the activity within [87, 105, 106, 89].

In recent decades cell locomotion has occupied a great deal of attention

from the scientific community [72, 10, 9, 35]. One of the possible justifications

for this interest stems from the fact that self-propelled organisms represent one

of the ways in which soft active transport is accessible to our intuition. In all of

these cases, and in many others, shape matters. The deformation of a biological

membrane, and the rate at which it occurs, inevitably determines the effect that

the internal stress state has on the world around it: Internal activity competes

with dissipative forces arising from viscous fluids, frictional substrates, or other

external forces and – in addition to the particular constitutive relationship ruling

the behavior of the membrane itself – the final result is the shape of the body.

Focusing on cellular motility, and swimming in particular, the only external

stress is that exerted by the viscous fluid on the deforming surface. Provided that

the deformation of the membrane is not time-reversible, the body performs work

against the fluid and generates a macroscopic velocity [72]. Dual to this problem is

fluid pumping, wherein an actively deforming tethered membrane transports fluid,

rather than propelling itself through the bulk. This aspect of fluid transport is the

focus of the current paper.

To understand the origin of fluid transport by a beating membrane, one only

needs to know the deformation of the surface and the fluid properties; this is, in

fact, how previous work on the subject has been developed, either to model actual

organisms or to provide concepts for locomotion that do not occur in Nature [107,

10, 108, 109, 110]. If the kinematics of a membrane deformation are prescribed,

the transport characteristics require thus only solving the fluid mechanics problem
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[107].

A more physically-relevant model would start from knowledge of the internal

forcing, and then both the deformation and the transport would be solved for at

the same time. Recently there have been attempts to prescribe not merely the

kinematics, but instead the internal dynamics of a deforming body as model for

the physics of axonemal beating in eukaryotic cells [63, 62]. The physical problem

becomes then: given an internal state, and a dynamic evolution equation, what are

the macroscopic results? Currently this work has covered only active filaments;

our present endeavor extends this dynamical analysis to membranes. Bridging

the gap between transport properties and an internal stress condition is a vital

first step towards synthesizing a comprehensive description of active pumping or

locomotion.

In this manuscript we present a model for the internal force generation in

an active membrane. Introducing two models for internal actuation, and taking

advantage of the asymptotic limit of small forcing, we analytically derive the mem-

brane deformation from its linear response, and then use the deformation to deduce

the (quadratic) fluid transport. Our results are recovered by scaling arguments,

which allow us to intuitively quantify how the three-way balance between internal

forcing, passive (elastic) constitutive modeling and external viscous forcing impact

fluid transport.

4.2 Transport by general deformation of a sheet

4.2.1 Setup

For the microscopic regimes that we are interested in the fluid flow is well

modeled by the incompressible Stokes equations, ∇p = µ∇2u, ∇ · u = 0, where

u is the fluid velocity, p the pressure and µ the shear viscosity. We consider an

infinite, two-dimensional sheet that passes a traveling wave of arbitrary shape h

over its surface (see Fig. 4.4 for notation). If there is no variation in the y-direction

then the fluid is two-dimensional and a streamfunction ψ such that u = ψzx̂−ψxẑ
can be defined.
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2π/k

x̂

ŷ
ẑ

c =
ω

k
(a)

h

Figure 4.1: Generalized Taylor swimming sheet passing a traveling wave in the
positive x direction with constant wave speed c = ω/k. The wavelength is 2π/k
and the height of the membrane denoted h(kx − ωt). In the reference frame of
the sheet, the material points undergo transverse displacements, while at infinity
a uniform pumping flow U develops.

For an arbitrarily shaped traveling waveform h(kx−ωt), we apply a no-slip

boundary condition to the sheet to get

ux =
∂ψ

∂z
|S = 0, (4.1a)

uz = −∂ψ
∂x
|S = −∂h

∂t
, (4.1b)

where these conditions must be applied on the material itself, S. This is precisely

what leads to geometric nonlinearities and precludes a fully general analysis of the

present problem.

4.2.2 Fluid pumping

We expand the waveform as h = εh(1) + ε2h(2) + ... where ε is a small

parameter denoting the magnitude of the wave amplitude. The stream function ψ

is expanded similarly.

To leading order, we write h(1) = Re{∑ bne
in(kx−ωt)} and, following Chil-

dress [47], solve for the stream function to obtain

ψ(1) = Re{
∑
n

ω

k
bn(1 + nkz)e−nkzein(kx−ωt)}. (4.2)

At this order there can thus be no flow far from the sheet: the h→ −h symmetry

demands that any expansion of the velocity U be symmetric in powers of h.
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At second order, then, we find that

ψ(2)
z (x, 0) = −ψ(1)

zz (x, 0)Re

{∑
n

inkbne
in(kx−ωt)

}
. (4.3)

Since the sheet is periodic, averaging this quantity over one period in space yields

the flow at infinity, or the macroscopic fluid transport velocity, and we obtain

U (2) =
1

2

∑
n

ωk|nbn|2. (4.4)

Importantly, we see that the knowledge of only the first order height coefficients,

bn, leads to the determination of the transport properties at second order.

4.2.3 Stress

In the following section we will invoke local force balance at leading order

to determine the membrane shape and thus we need to know the distribution of

stress from the fluid. The pressure at first order is given by

p(1) = −2µωRe{
∑
n

inkbne
−nkzein(kx−ωt)}, (4.5)

while the components of the fluid stress are

σ(1)
zz = −p(1) + 2µ

∂2ψ(1)

∂x∂z
, (4.6a)

σ(1)
xz = 2µ

(
∂2ψ(1)

∂x2
− ∂2ψ(1)

∂z2

)
. (4.6b)

4.3 Active membrane mechanics

We now proceed to derive the dispersion relations for two models of ac-

tive elastic sheets that will provide a quantitative bridge between the microscopic

formulation and the macroscopic flow.

In general the internal forces (i.e. the forces not originating with the viscous

fluid) will consist of a passive elastic response and an active component. The gen-

eral enthalpy functional that describes the internal energetic state of the membrane
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(b)

f(x, t)

Figure 4.2: Active membrane where active two-dimensional moments are pre-
scribed with density f(x, t). Normal deformations arise over regions with a gradi-
ent in the active stress.

is given by [111]

G =

∫
κ

2
(C − C0)2dS +

∫
γdS +Gact. (4.7)

Here κ is the bending rigidity of the membrane, C is the mean curvature, C0 is

the so-called spontaneous curvature of the membrane, and γ the surface tension.

Real biological membranes are complex, containing proteins embedded in

the surface, several layers of chemical activity, or possibly even an elaborate scaf-

folding of interlinked polymer networks (relevant, e.g., to the cytoskeleton in eu-

karyotic cells). For simplicity, we ignore these effects, as well as possible viscous

dynamics inside the membranes, and focus on bending energetics [75, 112]. In

addition, although spontaneous curvature can lead to interesting morphological

consequences in cells and vesicles ([113, 76]), we work with C0 = 0 and only con-

sider local curvature changes from inclusions in the membrane. The form of the

active contribution to the enthalpy, Gact, depends on the particular method of in-

ternal forcing [114]. Below we consider two models, focusing on internal bending

moments and normal forcing to the membrane respectively.

4.3.1 Active bending stresses

Setup

In this first model, we assume that there is a distribution of forces acting

entirely within the surface of the membrane. These forces then generate a moment

distribution that depends on the thickness of the membrane itself. We then define

an internal, prescribed two-dimensional moment per length (units of force) f(x, t)
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(see Fig. 4.2). Balancing this activity with internal passive response and viscous

fluid forces yields the instantaneous equations of mechanical equilibrium

κ∇2C + n̂ · σ · n̂|S = ∇2f (normal), (4.8a)

τ + t̂ · σ · n̂|S = 0 (tangential), (4.8b)

where τ = γ + κC2 is the physical tension in the membrane, and t̂ and n̂ are

vector tangent and normal to the membrane respectively. This equation is correct

for any arbitrary distribution of forces, or any shape of the membrane, as long as ∇
is taken to be the covariant gradient. For long-wavelength membrane deformation,

however, we already solved the fluid mechanics that results in fluid transport.

In this case the membrane shape can be parameterized by a height field h(x, t),

and the curvature C ≈ ∇2h. To lowest order in the expansion of the height, the

equations for the pointwise force balance across the membrane then become

2κ
∂4h(1)

∂x4
− ∂2f

∂x2
= −p(1) − 2µ

(
∂2ψ(1)

∂z∂x

)
S

, (4.9a)

τ (1) =

[
∂2ψ(1)

∂z2
− ∂2ψ(1)

∂x2

]
S

. (4.9b)

Using the expression for the first order stream function from the previous section,

we find that to first order the tension τ (1) = 0: to lowest order in the deformation

of the membrane, only normal effects are important [112].

Scalings

Using scaling arguments we derive in this section the expected scaling of the

pumping velocity by the active membrane. In the context of the classical Taylor

swimming sheet, the swimming velocity is expected to scale as U ∼ c(bk)2, where

c = ω/k is the wave speed.

Two physical regimes need to be considered, those of “stiff” and “floppy”

membranes. In the stiff regime, viscous forces are negligible compared to bending

resistance, and thus the dynamic balance is between elastic and active stresses.

The elastic stress in a membrane with rigidity κ, typical height deformation beff ,

and deformations occurring at typical wavenumbers k scales like κbeffk
4, while the
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active stress is on the order of f0k
2. This yields a value for the effective height

of the membrane as beff ∼ f0/κk
2. We then expect pumping to occur at speed

U ∼ c(beffk)2 ∼ ωf 2
0 /κ

2k3.

In contrast, in the floppy limit the bending resistance is negligible and the

dynamic balance is between viscous stresses and internal activity. The typical

shear stress on the sheet scales as µcbeffk
2. Force balance leads thus to the scaling

f0k
2 ∼ µcbeffk

2, and the deformation is given by beff ∼ f0/µc. Fluid pumping is

thus predicted to happen with speed U ∼ c(beffk)2 ∼ f 2
0k

3/µ2ω. Interestingly, in

floppy limit, the dependence of the pumping speed on both the sheet frequency

and wavenumber is opposite to that in the stiff limit.

We now introduce the dimensionless group a = 1/k` where ` = (κ/µω)1/3 is

an elasto-viscous penetration length that determines how strongly the membrane

shape is effected by the bending resistance versus the viscous forces (similar to

the so-called “Sperm number” used to model viscous locomotion of flagellated

organisms [59, 62]).

The dimensionless number a characterizes thus the relative size of the mem-

brane deformation to this length scale. When a � 1 the membrane is stiff and

hence it is energetically prohibitive to introduce an excitation of linear dimension

the order of 1/k, so the viscous forces do not modify the shape of the membrane

and the waveform is a result of the balance between activity and rigidity alone. In

contrast, when a � 1, the membrane is floppy, and the fluid forces dynamically

balance the internal forces to determine the shape.

Asymptotics

Expanding the distributed moment in the same basis as the height field,

namely f = f0Re{∑ fne
in(kx−ωt)}, and utilizing the results for the pressure and

streamfunction from the previous section we find the linear response for the height

field as a function of the internal tangential stress

bn =
f0

2κk2 [n3 + i2a3]
fn. (4.10)

Using the result Eq. (4.10), we are then able to derive the pumping flow,
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Eq. (4.4), as a function of the activity, elasticity, and viscosity, and we obtain

U (2) =
1

2

∑
n

ωk|nbn|2 =
1

8

ωf 2
0

κ2k3

∑
n

n2|fn|2
n6 + 4a6

· (4.11)

In the stiff limit, a � 1, the asymptotic results in Eq. (4.11) recover the scaling

derived in Sec. (4.3.1). For the floppy limit, a � 1, the series in Eq. (4.11) is

only asymptotically convergent, but for a finite sum the scaling in Sec. (4.3.1) also

holds.

4.3.2 Active normal stresses

Setup

In the section above we neglected the details of the activity within the

membrane, in favor of a more generic modeling approach describing the relation-

ship between fluid flow, internally applied bending moments, and passive bending

resistance. In a biological context, many sources of activity could instead generate

normal stresses in the membrane. Our second model, described below, consid-

ers a concentration of active elements dispersed throughout the membrane and

generating fluid stresses.

A schematic of the proposed model system is sketched in Fig. 4.3. A dilute

concentration of “pumps”, each one capable of driving a microscopic flow through

the membrane surface, act as inclusions, effectively modifying the material prop-

erties. Not only does the shape of the individual pump alter the shape of the

membrane [115, 90], but the flow itself generates fluid stresses on the surface.

Each pump is modeled as a circular aperture of radius d. Since d is a

molecular length scale far smaller than any other length scale, L, in the system,

we can approximate the flow as resulting from a point source embedded in on a flat

surface [116], such that the stream function is given by ψ = −q/2π[1− (̂t · r/r)3],

where t̂ is the radial tangent vector of the surface, r is the position of interest in the

fluid, and q is the volumetric flow rate through the inclusion. The corresponding

pressure drop across the aperture is δp = 3qµ/d3.

In order to satisfy the equations of force balance we need to calculate the

normal and tangential stress due to not just one pump, but a concentration of in-
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q

(a)

(b) (c)

Figure 4.3: Schematic illustration of membrane deformation by active inclusions:
(a) Active inclusions embedded in the surface; the inclusions induce flow fields
which lead to pressure drop and thus normal stresses acting on the membrane;
(b) Zoomed-in version of the membrane where the size of each inclusion and the
local bending of the membrane are schematically represented; (c) Sketch of the
streamlines for a single circular aperture in a flat surface pumping fluid with flow
rate q; at leading order the molecular length scale, d, is much smaller than the
typical membrane scale, L, and thus the flow is assumed to be unaffected by
membrane curvature.

clusions. Each pump has a preferred direction, and thus we must generally consider

the concentration difference, n = n+ − n−, where n+ and n− are the concentra-

tions of pumps pointing in the positive and negative z directions, respectively. For

convenience we will consider the dimensionless quantity φ = n/n0, where n0 is the

equilibrium concentration difference [115].

The normal stress on the membrane due to a single inclusion is simply

the pressure drop from the fluid, while the tangential stress on the surface of the

membrane decays like 1/ρ2, where ρ =
√
x2 + y2. The length scale d dominates

this contribution, and thus the tangential stress is expected to scale as 1/d2. Lo-

cally this implies that the tangential stress per length is of the same order as the

pressure drop, i.e. t̂ · σ · n̂ ∼ qµ/d3. However, because the stream function is

axisymmetric, the tangential component of the fluid stress integrates to zero over

the entire membrane, and thus does not enter the force balance equations.

A general functional describing the enthalpy of the membrane including
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active pumps is given by

G =

∫
κ

2
(C −H0φ)2dS, (4.12)

where H0 a signed measure of the intrinsic curvature for the active elements, and

we have neglected effects from 2D compressibility in the concentration, as well as

higher order effects coming from gradients in the concentration field [117, 115, 89].

Performing the functional extremization and linearization for the active

pump enthalpy, and including the fluid stresses from pump activity, we now find

the dynamic equations to be

2κ
∂4h(1)

∂x4
− κH0

∂2φ

∂x2
= −p(1) − qµ

d3
φ

−2µ

(
∂2ψ(1)

∂z∂x

)
S

, (4.13a)

τ (1) =

[
∂2ψ(1)

∂z2
− ∂2ψ(1)

∂x2

]
S

. (4.13b)

As in the case addressed in the previous section, the tangential stress balance yields

zero tension at leading order.

Scalings

Here again we use scaling arguments to derive the expect form for the

macroscopic flow pumped by the membrane. In addition to the stiff versus floppy

regimes explained above, we must consider in addition the competition between

by the spontaneous curvature and the deformation induced by the active pumping

mechanism: In one limit the local stiffness introduced by the molecular curvature

of the inclusions overrides the pumping activity, while in the opposite limit the

spontaneous curvature is negligible.

Let us denote by φ0 the typical magnitude of the dimensionless concen-

tration of pumps, and the typical force generated by the pumps as fact = qµ/d.

To measure the competition between the natural curvature of the inclusions and

the one arising from the activity-induced fluid flow, a dimensionless parameter,

A = H0κd
2k2/fact, needs to be introduced.
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For stiff membranes, in the limit where the bending from activity is pre-

dominant, i.e. A � 1, force balance reveals that beff ∼ factφ0/κd
2k4, while in

the opposite limit where the bending arises from molecular curvature, we get

beff ∼ φ0H0/k
2.

In contrast, for floppy membranes, the case of very active inclusions leads

to the scaling beff ∼ factφ0/µω0d
2k, while in the limit where the inclusions pump

a very small amount of fluid transverse to the membrane (A � 1), we obtain

beff ∼ H0φ0κk/µω.

Now, the expected fluid velocities in the four different limits can be found

by again using the analogy with the swimming sheet, U ∼ cb2
effk

2. For stiff active

membranes, we expect U ∼ ω(factφ0)2/κ2d4k7, while stiff inactive membranes

should lead to U ∼ ω(H0φ0)2/k3. In the inactive case we note that the fluid

velocity no longer depends on the membrane stiffness, as the intrinsic curvature

H0 governs the bending penalty at the same order in κ as local deformations in

the height field.

In the case of floppy active membranes, we expect to obtain a relationship

for U ∼ (factφ0)2/µ2d4ωk, while for inactive floppy membranes the pumping flow

should scale like U ∼ (H0φ0κ)2k3/µ2ω. It is notable that even in the inactive case,

the mismatch of curvature between the inclusions and the elastic membrane they

are embedded in can, alone, lead to deformation that gives rise to pumping; even

in the floppy limit consequences of the bending rigidity κ cannot be neglected.

Asymptotics

Using the Fourier decomposition for the concentration of inclusions, φ(x, t) =∑
φne

in(kx−ωt), the linear response of Eq. (4.13) is found to give

n4k4bn +
i2µωnk

κ
bn = −H0n

2k2φn −
fact
κd2

φn. (4.14)

The final linear response for the height takes the form

bn = − fact
κk4d2

1 + An2

n4 + i2a3n
φn. (4.15)
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Plugging Eq. (4.15) into Eq. (4.4) we finally find that the macroscopic

velocity is given by

U (2) =
1

2

∑
n

ωk|nbn|2 =
∑
n

1

8

ωf 2
act

k7d4κ2

[
(1 + An2)2

n8 + 4n2a6

]
|φn|2. (4.16)

In the stiff (a� 1) and floppy (a� 1) limits, as well as the limits where intrinsic

pump curvature dominates (A� 1) or is dominated by (A� 1) deformation from

the active normal stresses, the final asymptotic results in Eq. (4.16) confirm all the

scaling predictions in Sec. 4.3.2.

4.4 Discussion

In summary, although the framework for characterizing fluid transport and

locomotion by a waving sheet has existed since the 50’s, in this work we have at-

tempted to go beyond a prescription of surface deformation by instead prescribing

internal activity (so starting from dynamics instead of kinematics). Both mem-

brane deformation and fluid transport can then be solved by solving a dynamic

balance between activity, passive resistance, and external fluid stresses. We have

used two models to cover a range of possible forcing, a planar distribution of

bending moments that generate normal deformation, and a simple model of active

constituents that produce normal permeative flow, resulting in sheet undulation.

From an experimental standpoint, what is the typical magnitude of the flow

which could be induced by active mechanisms similar to the ones described in this

paper? For lipid bilayers, bending rigidities are on the order of κ ∼ 10−19Nm

[118], and using cross-linked molecular motors as one model microscopic force

generator, a single molecular machine could generate forces on the order of ∼ 1pN

[119]. If these were distributed throughout a membrane, say with a dimensionless

concentration of φ ∼ 10−3,

we could expect a magnitude for the internal moment per unit length of

f0 ∼ 10−15N .

On cellular length scales L ∼ 100µm, with k ∼ 1/L, the range of frequencies

ω ∼ 100 − 102Hz could include both the the stiff and floppy regimes, and as a
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result we could expect macroscopic velocities on the order of U ∼ 1µm/s for low

frequencies (stiff limit) or U ∼ 1−100µm/s for higher frequencies (floppy regime).

For transmembrane proteins capable of inducing a microscopic flow through

a surface, such as aquaporins or proton pumps, the volumetric flow rate is difficult

to estimate, but we can use previous simulation results for guidance [120, 121].

For membrane constituents such as lipids or proteins a typical radius of gyration

gives H0 ∼ 1nm−1 [118]. This yields a value for the parameter A ∼ (10−18N)/f0.

For molecular motors generating fluid flow normal to the membrane with a force

per motor on the order of f0 ∼ 1pN , this makes A � 1, i.e. the active limit; for

aquaporins or other active pores that are not designed specifically to move cellular

structures, A� 1. With a frequency of oscillation of ω ∼ 1Hz, these membranes

are in the stiff limit. With a dimensionless concentration as small as φ0 ∼ 10−3,

the macroscopic pumping velocity can be as large as U ∼ 10 − 100µm/s for the

active case, and U ∼ 1µm/s for inactive membranes.

One possible experimental realization for a self-propelled active membrane

could be in the form of a closed bilayer vesicle with embedded active pumps. For

a spherical vesicle of radius R and wavelength undulations satisfying λ � R, we

can use the above calculations in tandem with the swimming results of Stone and

Samuel [109] to get an estimate of the vesicle swimming speed

U ẑ ≈ − 1

4πR2

∫
S

udS., (4.17)

where u = U (2)t is the local fluid velocity created by the activity-induced mem-

brane deformation; up to a geometric constant, we thus get that the instantaneous

swimming velocity of this active vesicle is the same as that given in our calculations

above. Several previous studies have examined the possibility of self-propelled vesi-

cles [122, 110, 101], and our results connecting the internal stress state to macro-

scopic motion can thus be used as a probe of the activity. One could envision a

situation where the diffusivity of active vesicles is measured. In the presence of

active pumps, this diffusivity would then be enhanced by the propulsion velocity

as Deff ∼ U2/Dr, where Dr is the vesicle rotational diffusion [8], which could

then be directly related to the activity via the results derived in this paper. This
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framework could serve, for example, as a way to rule out specific forms of activity

in a membrane.

4.5 Swimming vesicles

In the same spirit, we consider theoretically in this section a novel swim-

ming mechanism based on prescribed shape transformations of a bilayer vesicle.

By modulating only its volume and membrane composition, the vesicle can be

made to change shape quasi-statically in thermal equilibrium. For two different

theoretical vesicle models, we determine numerically the vesicle shapes through an

enthalpy minimization, and the fluid-body interactions by solving a boundary in-

tegral formulation of the Stokes equations. When the control parameters are tuned

appropriately to yield periodic but not time-reversible shape changes, we show that

net locomotion can be obtained. Swimming arises either by continuously modulat-

ing fore-aft asymmetric vesicle shapes, or by crossing a continuous shape-transition

region and alternating between fore-aft asymmetric and fore-aft symmetric shapes.

In addition, the calculated hydrodynamic efficiencies are shown to be similar to

that of other common low Reynolds number propulsive mechanisms.

This section is organized as follows: we begin with a general discussion

of the practical realization of controlled shape-changing vesicles, in particular

the relevant time scales, and the possible actuation mechanisms. Two classical

curvature-mediated vesicle models (spontaneous curvature and bilayer coupling)

are presented, and the formulations used for the shape calculation and the numer-

ical fluid-interaction model are introduced. We then discuss examples of vesicle

shape cycles that yield a swimming motion, examine the fluid flow that develops

around the vesicles during their deformation cycles, and compute the correspond-

ing swimming speeds and hydrodynamic efficiencies.
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4.6 A Roadmap to Vesicle Locomotion

A vesicle immersed in a viscous fluid experiences a highly coupled array of

forces, such as those generated by membrane tension, internal pressure, membrane

(bending) elasticity, and the surrounding viscous fluid dynamics. In the micro-

scopic, viscous environments relevant to our consideration, the Reynolds number,

Re, is very small: Re = ρUcLc/µ � 1, where ρ is the fluid density, µ is the fluid

shear viscosity, and Uc and Lc are characteristic velocity and length scales of the

vesicle. The fluid behavior at low Reynolds number is highly dependent upon the

immersed boundary geometry, and the resultant forces include not only local, but

also non-local responses to its motion.

A general study of vesicle dynamics should take non-equilibrium shapes

into account, as even simple liposomes that can be created in situ can interact

relatively quickly with the environment. It is possible to design experiments where

carefully constructed initial conditions and lipid species lead to equilibrated vesicle

shapes that are non-trivial, but in order to apply morphological changes and induce

locomotion, a reversible parameter-changing mechanism is desirable.

For our first approach to vesicle swimming, we consider in this paper a

“stiff membrane” regime. The characteristic time of membrane relaxation in a

viscous fluid is given by trel = µr3
0/κ, where κ is the elastic bending modulus of the

membrane, and r0 is a characteristic radius of curvature. If we choose the maximum

radius of the vesicle for the characteristic length scale Lc, then r0 . Lc. For

parameter variation significantly slower than the membrane relaxation rate, i.e. for

a cycle time scale tcycle � trel, then we operate safely within the decoupled regime.

In this case, we may thus assume that there are no hydrodynamically induced

shape changes, and that the shapes are determined quasi-statically in equilibrium.

Using this time scale trel, we can also set a maximum swimming velocity scale,

Uc = κ/µr2
0. Similar scaling arguments have been made in Refs. [123, 124]. For

biologically relevant systems in water, κ ≈ 100 kBT, µ ≈ 10−3Pa s, ρ = 1 g/cm3,

and r0 . 1− 10 µm, leading to Lc ≈ 1− 10 µm, Uc ≈ 1− 10 µm/s, trel ≈ 0.01− 1s

and Re ≈ 10−4. For a vesicle with length scale Lc = 10 µm, diffusive time scales

are approximately 104s, and thus negligible for the time being. In addition, we
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neglect thermal fluctuations in the determination of the vesicle shape, as they come

in as a perturbation about the mean equilibrium shape of order (kBT/κ)2, which

is very small under most conditions [75].

There are a number of different physical means by which a vesicle shape can

be changed in a controlled fashion, and the methods could be different depending

on the type of vesicle considered. We will consider two such means, internal volume

changes and local membrane compositional changes.

One experimentally feasible example of a possible volume-changing mech-

anism is a light-induced osmotic change. In an ordinary biological membrane the

bilayer is embedded with numerous proteins, many of which are sensitive to me-

chanical forces, chemical gradients, or light. The protein bacteriorhodopsin, for

example, is sensitive to green light, and in response to a signal the protein opens

and closes like a valve [104]. The presence of such ion channels or active proteins

on the surface of a membrane can cause osmotic changes of the fluid volume con-

tained within the vesicle [87]. Recently, vesicle volume control was demonstrated

via pH modulation of block copolymer networks along the surface of membrane

[125]. The vesicles in this study were well separated from regimes associated with

morphological transition, and thus changes in osmotic pressure induced only a

volume change, leading to a “breathing” vesicle.

Adjusting the membrane composition requires a more indirect experimen-

tal approach. Some bilayers are composed of different species of constituent parts,

leading to an inherent mismatch between the intrinsic curvatures. In other words,

there is an intrinsic curvature that would develop across the bilayer in the ab-

sence of other considerations. Because of the inherent difficulty in measuring these

quantities it is likely to be more difficult to specify an exact change from one

value of intrinsic curvature to another. However, the actual process of changing

the intrinsic curvature can be achieved through inducing chemical changes of the

lipid constituents of the membrane [125], or by conformational changes of polymers

grafted to the surface of the vesicle [126].

By combining two shape-changing mechanisms, it would in theory be pos-

sible to achieve a periodic shape cycle which is not time-reversible, yielding a net
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locomotion. One of many possible configurations that could produce a cycle in

shape space is displayed schematically in Fig. 4.4, where we consider a bilayer

vesicle with embedded reactive polymers and with polymers grafted to its surface.

In the first step (Fig. 4.4a→b), a photo-chemical polymerization reaction is cat-

alyzed by green (short wavelength) light, and the polymer chains in the interior

of the vesicle disperse into a solution of particles, thus increasing the available

volume within the vesicle. At a later time, another frequency of light (red, or

longer wavelength) impinges on the vesicle, and the grafted polymers change from

a distended to a coiled conformation, inducing an entropic repulsion and changing

the curvature of the membrane (Fig. 4.4b→c). Over time the dispersed particles

will polymerize and return the vesicle to its original volume (Fig. 4.4c→d), and

finally a third frequency of light (blue or very short wavelength) can be used to

change the conformation of the polymers to distended once more, returning the

vesicle to its original state (Fig. 4.4d→a).

While osmotic volume change or chemical-induced composition alteration

are two possible experimental methods, not only these examples in no way con-

stitute the full set of possibilities, but also they might be difficult to implement

experimentally. Other experimental techniques already exist (see Refs. [125, 87]),

or may be developed in the near future that could be more suited for controlled

two-parameter change.

Rather than suggest specific experimental methodology whose specifics would

depend not only on the particular material of the bilayer vesicles, but also on the

parameter alternation methods, we adopt in this paper a simplified modeling ap-

proach that highlights the qualitative pieces that are required in order to transform

a motionless vesicle into a locomotive cargo-carrier. In parallel to the the various

practical mechanisms that could be used to implement such shape changes experi-

mentally, it is of fundamental interest to ask theoretically the question of prediction

and performance. Would shape change indeed lead to locomotion of the vesicle?

How efficient would it be? Can we quantitatively predict the resulting swimming

speed and the work done against the fluid to achieve it? This is the approach

taken in this paper. Considering two simplified vesicle models, and for slow modu-
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(a) (b)

(c)(d)

Figure 4.4: Schematic illustration of a possible control mechanism for vesicle
shape-change and swimming: Axisymmetric bilayer vesicle with embedded reactive
polymers and polymers grafted to its surface. (a) → (b): Short frequency light
impinges on the vesicle, catalyzing a de-polymerization reaction amidst the particle
chains, and increasing the fluid volume available to the vesicle. (b)→ (c): A second
frequency of light induces the grafted polymers to coil up, inducing an entropic
repulsion from the membrane and changing the macroscopic morphology. (c) →
(d): The dispersed particles begin to polymerize back to their initial configuration,
deflating the vesicle. (d) → (a): A third frequency of light is used to uncoil the
polymers, relaxing the entropically induced curvature and returning the vesicle to
its initial state.

lations of the vesicle shapes, we introduce below a computational framework able

to quantitatively predict swimming kinematics and performance.
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4.7 Dynamics of Coupled Fluid-Body System

4.7.1 Vesicle physics

While real biological membranes have multiple constituents, all interacting

in non-trivial ways, minimal models can still help to illuminate the fundamental

physics of such systems. For length scales on which a membrane is approximately

flat a Monge parameterization can be employed [115, 117, 127], but for a closed

bilayer vesicle the curvatures can become very large and the small geometric gra-

dient assumption may break down. In order to characterize the shapes of such

objects, an enthalpy must be extremized and the full nonlinear shape equations so

generated must be solved. There are many models that could be used to describe

the physics of curvature-mediated vesicle morphology. In this paper we will con-

sider two classical models as case studies. These formulations, known respectively

as the spontaneous curvature and bilayer coupling models, have both been used

in classical work [128] and correspond to different interaction dynamics between

the membrane monolayers. Both of these models also include exactly two free

parameters, which enable us to explore the breaking of the Scallop theorem, and

the generation of locomotion via a change in morphology.

The enthalpy functional, F , in the spontaneous curvature model takes the

following form [128]

F =
κ

2

∫
S(t)

(C1 + C2 − C0)2 dS + ΣA+ P V, (4.18)

where C1 and C2 are the principal membrane curvatures, and Σ and P are La-

grange multipliers which constrain the surface area A and volume V (physically

they correspond to the membrane tension and pressure difference across the inter-

face). In Eq. (4.18), S(t) denotes the time-dependent surface boundary, and C0 is

the spontaneous curvature, which introduces an inherent mismatch in equilibrium

preference of the membrane curvature. This quantity along with a fixed volume and

surface area completely specifies the ensemble. Thus the spontaneous curvature

model has area, volume, and integrated spontaneous curvature constrained, and

we select as the control parameters the volume V and the spontaneous curvature
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C0 (the fixed surface area merely selects the overall size of the vesicle).

In contrast, in the bilayer coupling model, the enthalpy functional G as-

sumes the area difference ∆A between the membrane monolayers to be constant.

One possible representation of this area difference is in terms of the integrated

mean curvature,

M =

∫
S(t)

(C1 + C2) dS. (4.19)

Then the area difference is ∆A = 2hM+O(h2/A), where h is the distance between

monolayers [128]. The enthalpy then takes the form

G =
κ

2

∫
S(t)

(C1 + C2)2 dS + Σ′A+ P V +QM, (4.20)

where Σ′, P , and Q are Lagrange multipliers associated with A (area), V (volume)

and M (integrated mean curvature) respectively. We select as control parameters

the volume V and the integrated mean curvature M .

It is important to note that the functionals F and G are related via a

Legendre transform, (Σ′, Q) → (Σ + κC2
0/2,−2κC0), and thus describe the same

system in a different ensemble. Physically, the spontaneous curvature model cor-

responds to a bilayer in which the monolayer admits stretching or compression

during bending, and thus finds an equilibrium distribution that has a preferred

curvature. If the bilayer is composed of more than one species of lipid, each of

which has a different preferred curvature (i.e. radius of gyration), it is likely that

the membrane will actually prefer to be in a non-flat state. Conversely, the bilayer

coupling model corresponds to a system that enforces that both monolayers are

incompressible. The area difference between monolayers stays approximately con-

stant on the timescales relevant to our consideration, and as long as the distance

between layers remains very small this implies that the integrated mean curvature

also remains constant.

4.7.2 Determination of the vesicle shape

Assuming an axisymmetric vesicle shape, the body surface S(t) is parame-

terized at each time t as illustrated in Fig. 4.5. The arc-length measured along the
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z
n̂

s
(r(s), z(s))

t̂
ψ

Figure 4.5: Parameterization of an axisymmetric bilayer vesicle. We assume
axisymmetry about the z-axis. The surface is described by x = (r(s, t), z(s, t)) in
cylindrical coordinates, with s an arc-length parameter, t̂ the unit tangent vector,
n̂ the outward pointing normal vector, and ψ the angle between the x-axis and t̂.

surface in the x-z plane is denoted by s ∈ [0, L], with t̂ the unit tangent vector,

n̂ the outward pointing normal vector, and ψ the angle between the x-axis and t̂.

The body surface is represented in cylindrical polar coordinates,

x(s, φ, t) = x̃(s, φ, t) + z0(t)ẑ = (r(s, t) cos(φ), r(s, t) sin(φ), z(s, t) + z0(t)),

(4.21)

where φ ∈ [0, 2π) is the azimuthal angle, the surface x̃ is taken to have its center

of volume at the origin, and z0(t) is a translation of that center of volume which

depends upon the fluid interaction. Under this parameterization, the principal

membrane curvatures are C1 = ∂ψ/∂s and C2 = sinψ/r. Upon insertion into either

of the enthalpy functionals F or G, and performing a variational extremization, we

obtain the following system of first-order ordinary differential equations to describe

the energetically stationary vesicle shapes at time t [128]

ψs = K, (4.22)

Ks = −K
r

cosψ +
γ

r
sinψ +

cosψ sinψ

r2
+

1

2
Pr cosψ, (4.23)

γs =
(K − C0)2

2
− sin2 ψ

2r2
+ Pr sinψ + Σ, (4.24)

rs = cosψ. (4.25)
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Here K is an auxiliary function used to make the system of equations first-order

(physically it corresponds to the curvature), γ is the Lagrange multiplier that

enforces the interdependence of ψ and r, and the subscript s denotes a derivative

with respect to the arclength. The vesicle shape at time t is set by Eqs. (4.22-

4.25), subject to the four boundary conditions r(0, t) = r(L, t) = ψ(0, t) = 0 and

ψ(L, t) = π. Once the angle ψ is determined from the above, z(s, t) is set by an

integration of zs = sin(ψ), where the constant of integration is chosen such that

the center of volume of the surface x̃ is at the origin. The vertical position z0(t) has

no bearing on the vesicle shape determination, and we hold off further discussion

on its dynamics until the following section.

For the spontaneous curvature model, constraints on the unknown integra-

tion length L, the surface area A, the volume V , and the two constant Lagrange

multipliers P and Σ are imposed as

As = 2πr, Vs = πr2 sinψ, Ps = 0, (4.26)

Σs = 0, Ls = 0. (4.27)

Defining R0 as the radius of the sphere with surface area A, the boundary condi-

tions for the five constraint equations above are A(0) = V (0) = 0, A(L) = 4πR2
0,

V (L) = 4πR3
0v/3, where v is a dimensionless “reduced volume.” Due to the La-

grange function being independent of the arc-length s, the “Hamiltonian” is a

conserved quantity and we have γ(0) = 0 (see Refs. [128, 129]). Also defining a re-

duced spontaneous curvature c0 = C0R0, we finally obtain the vesicle morphology

as set by the two parameters (v, c0).

In the bilayer coupling model, Eqs. (4.22-4.27) are solved with two addi-

tional constraints. First, the integrated mean curvature M is controlled, Ms =

π(rK + sinψ), and second, a new Lagrangian constraint enters, Qs = 0. The

system is now closed with boundary conditions on the integrated mean curvature:

M(0) = 0 and M(L) = 4πR0∆a, where ∆a is the reduced surface area difference

between monolayers, ∆a = ∆A/8πR0h. In this case the vesicle morphology is set

by the two parameters (v,∆a), and the reduced spontaneous curvature c0 has been

removed from the shape equations via the Legendre transform given above.
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Equations (4.22-4.27) are solved numerically. Due to coordinate singular-

ities in the derivatives of r and z at the poles, the shape is determined on the

contracted interval s ∈ [L δ, L (1− δ)] for (L δ)� 1, and Taylor-expanded versions

of the boundary conditions are applied. For example,

r(L δ, t) = r(0, t) + (L δ) rs(0, t) +O
(
(Lδ)2

)
= (L δ) rs(L δ, t) +O

(
(Lδ)2

)
= (L δ) cos(ψ(L δ)) +O

(
(Lδ)2

)
≈ L δ. (4.28)

To compute the shapes using either model, the arc-length is discretized using m

uniformly spaced grid points, si, with s1 = Lδ and sm = L(1 − δ). A colloca-

tion method is then applied in a formulation and implementation similar to that

recently used by Jiang et al. [129]. We employ a standard continuation scheme

in order to interpolate solutions from one point in the parameter space (v, c0) or

(v,∆a) to neighboring points.

By extremizing the enthalpies F or G, the shape equations give only sta-

tionary solutions, not necessarily the lowest energy solutions. A numerically deter-

mined shape may correspond to an energy saddle point, maximum, or minimum.

Although it is possible that the lowest energy state may not be achievable for a

non-equilibrium shape change, for our purposes we will examine the minimum en-

ergy shapes, and thus a “phase diagram” for the possible shapes is of great use.

Just as in a more conventional phase transition, shape transformations correspond

to transitions between different symmetry states. Since we consider only axisym-

metric shapes here, spherical solutions have the highest symmetry state. For small

perturbations around spherical shapes, the solution can be represented as

r(s, t) = R0

(
1 +

∞∑
`=0

B`0Y
0
` (θ(s), φ = 0, t)

)
, (4.29)

where the functions Y 0
` are the spherical harmonics, and the constants B`0 can

generate symmetry breaking. Because we consider only axisymmetric vesicles,

only the m = 0 spherical harmonics (of the Y m
` ) contribute to the sum, and the

angle θ is given by tan θ = r/z. While it is not possible to produce an analytical

solution using this formulation, it is useful for understanding the morphological

transitions in terms of symmetry breaking. For example, breaking ` = 2 symmetry
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(B20 6= 0) leads to a prolate or oblate shape, while breaking ` > 2 symmetry

can give more complicated shapes, such as the so-called “pear” or “stomatocyte”

shapes [75]. In our numerical investigation, symmetry is frequently exploited in

order to efficiently compute the equilibrium shape. In regions of multiple stability

the solution branches that correspond to lowest energy shapes must be chosen,

and by inserting numerically an initial symmetry breaking the algorithm used can

more readily converge upon the appropriate solution.

4.7.3 Fluid-body interaction

Modulation of the dimensionless parameter set (v, c0) or (v,∆a) generates

quasi-static deformations which in turn lead to motion in the surrounding fluid

medium. Given that the Reynolds number is small, the dynamics of the fluid

surrounding the vesicle is effectively governed by viscous dissipation and is well

modeled by the incompressible Stokes equations,

∇ · σ = 0, ∇ · u = 0, (4.30)

where σ = −pI + 2µE is the Newtonian stress tensor with p the pressure, u the

fluid velocity, and E the symmetric rate-of-strain tensor, E = 1
2
(∇u+(∇u)T ). The

fluid equations are made dimensionless by scaling velocities upon Uc, lengths upon

Lc, and time upon trel = Lc/Uc. Since the surface area A = 4πR2
0 is constant, we

define the characteristic length scale by this radius, i.e. Lc = R0. Henceforth, the

swimming velocity is understood to be dimensionless, and each shape cycle occurs

over a unit in dimensionless time.

A no-slip condition is applied on the body surface. For a given path through

the parameter space (v, c0) or (v,∆a), the resulting sequence of instantaneously de-

termined shapes set uniquely the “surface deformation velocity” ud(x, t); namely,

ud(x(s, φ, t), t) =
∂x̃

∂t
(s, φ, t). (4.31)

In addition, the surface moves as a rigid body along the ẑ direction due to axisym-

metry, with velocity U = U ẑ = z′0(t)ẑ. The no-slip condition is thus written as

u(x, t) = U ẑ + ud(x, t).
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To close the system of equations describing the fluid-body interaction, we

assume that no external forces are acting upon the vesicle, and thus force and

torque balance give∫
S(t)

σ(x) · n̂(x) dS = 0,

∫
S(t)

x× [σ(x) · n̂(x)] dS = 0. (4.32)

The computation of the swimming velocity is performed using a standard

double-layer boundary integral formulation of the Stokes equations. The details of

this formulation and numerical method are presented in the appendix.

In addition to computing the swimming velocity, we consider a possibly

more important quantity, the hydrodynamic efficiency. This swimming efficiency

is defined as (see Ref. [47])

ηH =

〈
U · F

〉
〈∫

S(t)

(U + ud) · f dS
〉 =

〈
U · F

〉
〈∫

S(t)

ud · f dS
〉 , (4.33)

where f = −σ · n̂ is the force density acting on the fluid at the body surface, 〈·〉
denotes a time-average over a full shape cycle, and F = 6πµ aU ẑ is the force

required to move a sphere of radius a at a speed U . At each time we use the

maximum vesicle radius, a(t) = ‖r(s, t)‖∞. The first term in the denominator of

Eq. (4.33) integrates to zero due to the zero-net force condition (Eq. (4.32)). The

computation of the fluid stress σ is significantly more involved than the compu-

tation of the swimming velocity. We employ a numerical method for computing

σ based on the evaluation of a hypersingular integral which may be derived from

the double-layer formulation of the fluid velocity. The framework and numerical

approach are described in the appendix, and a more detailed description of the

method and examples of its use will be featured in a subsequent paper.

Physically, ηH measures the proportion of work done by the vesicle against

the surrounding fluid which is used for swimming purposes, and is typically on the

order of 1% for biological cells. Note that the swimming efficiency only measures

the hydrodynamic efficiency, not a total efficiency. For example, the bending energy

of the vesicle is not captured in this measure. The inclusion of bending costs

into swimming efficiency measures has recently been proposed to study optimal
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locomotion strategies in flagellated cells, but presents an avenue of inquiry beyond

the scope of this paper [130].

4.8 Vesicle locomotion by shape-change

As stated in the introduction, due to the linearity and time-reversibility of

Eqs. (4.30), any time-reversible geometrical surface deformations cannot result in

a net locomotion. This result is known as the Scallop theorem, in reference to the

sole, time-reversible motions available to a small scallop (opening and closing) [72].

As a consequence of this constraint, a single degree of freedom is insufficient for

swimming. Two degrees of freedom are however sufficient to generate a swimming

motion, as first described in Ref. [72], and as we shall show presently for the

systems of interest.

4.8.1 Spontaneous curvature model

We begin by presenting a characteristic shape cycle that can be generated

by adjusting the reduced volume and spontaneous curvature, (v, c0), in a peri-

odic fashion. By selecting a specific elliptical path in the (v, c0) parameter space,

namely v(t) = 0.425 + 0.125 cos(2πt), c0(t) = −0.1 + 0.3 sin(2πt), the resulting

shape cycle is not time-reversible; hence, the constraints of the Scallop theorem

are bypassed, and locomotion may be achieved. For these parameters the vesicle

shapes are always stomatocytes, and the neck separating the internal sphere of

fluid from the external fluid is very small. Figure 4.6 shows the corresponding

minimal energy vesicle shapes at four times, along with the vorticity generated in

the surrounding fluid by the body deformation, ω = ∇×u. Positive vorticity, cor-

responding to counter-clockwise rotation, is shown in red, and negative vorticity,

corresponding to clockwise rotation, is shown in blue. Hollow arrows indicate the

instantaneous swimming velocity of the vesicle, while the plain arrows indicate the

direction of time. At zero Reynolds number the swimming velocity, external flow,

and swimming efficiency are determined uniquely by the time-dependent surface

geometry and surface deformation velocity, so we need not consider the internal
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flow dynamics (which may in general depend upon the means of modulating the

parameters (v, c0)).

From t = 0 to t = 1/4 the vesicle volume is decreasing while the spontaneous

curvature is increasing. The decrease in volume draws fluid into the stomatocyte

cavity, while the surface material near the opening to the cavity moves inward

nearly tangentially to the surface itself. While the deformation velocity is normal

to the surface near the north and south poles (s = 0 and s = π), the deformations

are elsewhere primarily tangential, and vorticity is created as the fluid is sheared

accordingly. At t = 1/2 the vesicle volume is minimal, and the fluid volume inside

the stomatocyte cavity is beginning to decrease. From t = 1/2 to t = 3/4, the

vesicle volume increases while the spontaneous curvature continues to decrease to

its minimum value. This can best be understood by observing that when c0 < 0

the membrane prefers a total negative curvature, and as can be seen at t = 3/4,

the internal cavity of the vesicle takes its smallest value, maximizing negative

curvature. The increasing volume expels fluid from the cavity, and leads to a

reversing of the sign of the vorticity. The overall sequence of asymmetric shapes

is not time-reversible, leading to a net swimming velocity taking place in the −ẑ

direction.

A phase diagram for the minimal energy shapes using the spontaneous

curvature model is presented in Fig. 4.7a. The limit lines correspond to discontin-

uous morphological transitions, and therefore cannot be crossed in our quasi-static

shape-change approach. One critical line corresponds to vesicles whose north and

south poles self-intersect, and a second line corresponds to stomatocyte shapes that

have a vanishing opening between the external fluid and the cavity within (i.e. the

shapes are two spheres, one contained entirely within the other). A third line

marks the discontinuous phase transition between stomatocyte and oblate shapes.

More details may be found in Ref. [128].

Beyond the symmetry constraints imposed by the Scallop theorem, other

symmetry breaking is necessary in order for a body to achieve a net motion from

a periodic shape cycle. Namely, the body surface must express fore-aft asymmetry

in order to swim preferentially in any direction. Hence, parameter paths in the
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Figure 4.6: (color online) Stomatocyte shapes and vorticity profiles produced
using the spontaneous curvature model, with v(t) = 0.425 + 0.125 cos(2πt),
c0(t) = −0.1 + 0.3 sin(2πt). Positive vorticity, corresponding to counter-clockwise
rotation, is shown in red, and negative vorticity, corresponding to clockwise rota-
tion, is shown in blue. Hollow arrows indicate the instantaneous swimming velocity.
During one cycle, the vesicle experience net locomotion in the −ẑ direction.
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Figure 4.7: (color online) (a) Phase diagram for the spontaneous curvature model
in the (v, c0) parameter space. Solid lines are our numerically-calculated lines
that denote morphological transitions, while the dashed lines are qualitative, and
adapted from Ref. [128]. (b) Three velocity profiles, corresponding to the elliptic
paths through parameter space indicated in (a), with the largest velocities achieved
along the elliptic path enclosing the greatest area.



89

regions of phase space corresponding to prolate or oblate vesicle shapes cannot yield

a net motion. However, paths which correspond to stomatocyte or pear shapes are

fore/aft asymmetric and can swim. Since the area in phase space that contains

pear shapes is very small, we will only examine the swimming stomatocytes. The

largest elliptic path shown in Fig. 4.7a corresponds to the shape cycle shown in

Fig 4.6. The associated time-evolution of the vesicle center of mass velocity is

shown in Fig. 4.7b, along with two other velocities corresponding to elliptic paths

enclosing smaller areas in Fig. 4.7a.

We see in Fig. 4.7 that the larger the area of the cycle in parameter space,

the faster the vesicle swims. In fact, the mean velocity roughly scales as the square-

root of the area enclosed by the elliptic path of phase space. Drawing on an analogy

with thermodynamics, cycles with larger area in the appropriate ensemble space do

more work, and thus we might expect that the transduction of shape deformation

into mechanical work would exhibit similar behavior. Although our equivalent

to an equation of state is too complicated to show a simple relationship between

swimming velocity and the area enclosed in this phase space, the basic idea appears

to remain valid.

We finally note that the net translation during each shape cycle in each

case is small compared to the amplitude of the motion, and even smaller when

compared to the maximum vesicle radius. The swimming velocities and hydro-

dynamic efficiencies of shape cycles in the spontaneous curvature model are also

small. The maximum velocity achieved for the cycles shown is 〈U〉 = −0.008,

while we calculate an efficiency of ηH = 0.4%.

4.8.2 Bilayer coupling model

We now consider the bilayer coupling model, for which a schematic phase

diagram is shown in Fig. 4.8a. Although in the spontaneous curvature model

there are no continuous transitions between oblate and stomatocyte shapes, the

interesting feature of the bilayer coupling model is the presence of a continuous

stomatocyte-oblate transition. The upper (solid) line in Fig. 4.8a denotes a limit

line between oblate and prolate shapes, while the lower (dashed) line represents a
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Figure 4.8: (color online) (a) Phase diagram for the bilayer coupling model in
the (v,∆a) parameter space, adapted from Ref. [128]. The dashed line indicates a
continuous transition, while the solid line indicates a limit shape. Both lines are
shown schematically in order to exaggerate the difference between the shape cycles.
The two elliptical cycles considered enclose the same area in phase space, but one
crosses the transition line. (b) Swimming velocity of the vesicle as a function of
time, for the two shape cycles shown in (a). The squares denote the continuously
varying velocity of the lower cycle in (a), which is similar to what we observed for
the spontaneous curvature model. The circles correspond to the upper cycle in (a)
and involves a shape transition, and there is a portion of the cycle during which
the vesicle has zero swimming velocity due to fore-aft symmetry.

continuous transition between stomatocyte and oblate shapes.

In order to examine how breaking or restoring oblate (` = 2) symmetry

relates to swimming, we now consider two shape cycles with equal enclosed area

in phase space, as shown in Fig. 4.8a. The upper cycle crosses the continuous

transition line, while the lower cycle remains in the stomatocyte region.

The vesicle shapes in the lower cycle of Fig. 4.8a are displayed in Fig. 4.9.

They correspond to a modulation of the volume and surface area difference between

monolayers for the vesicle as v(t) = 0.775+0.075 sin(2πt), ∆a(t) = −0.14 cos(2πt)+

0.86. From t = 0 to t = 1/4 the vesicle volume is increasing, expelling fluid from

the cavity and pushing fluid away from the surface of the membrane. Due to the

larger amount of surface area facing the aft end of the vesicle, the net motion during

this quarter-cycle is forward. From t = 1/4 to t = 1/2, the “lobes” of the vesicle

move downwards, propelling the vesicle upwards, albeit at a decreasing rate. This

portion of the motion resembles the characteristic undulatory shape of a jellyfish,

albeit one at zero Reynolds number. Between t = 1/2 and t = 3/4, the vesicle
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Figure 4.9: (color online) Vesicle shape cycle using the bilayer coupling model,
with v(t) = 0.775+0.075 sin(2πt), ∆a(t) = −0.14 cos(2πt)+0.89, corresponding to
the lower cycle of Fig. 4.8a. This vesicle does not change morphological symmetry
states during the swimming cycle and remains within the stomatocyte domain.
Hollow arrows denote the instantaneous swimming velocity.

deflates and the lobes begin to move upwards again, with the material points of

the lobes moving almost completely tangentially to the surface. This creates a

vortex dipole at the lobes, leading to the stagnation point that can be seen in the

figure. Finally, in the last quarter cycle, the vesicle encloses itself and returns to

the starting position. We calculate a mean swimming velocity of 〈U〉 = −0.048,

and a hydrodynamic efficiency of ηH = 0.6%.

The upper elliptical cycle of Fig. 4.8a, with shapes illustrated in Fig. 4.10,
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Figure 4.10: (color online) Vesicle shape cycle using the bilayer coupling model
across a continuous phase transition, with v(t) = 0.775 − 0.075 sin(2πt), ∆a(t) =
0.14 cos(2πt)+0.89, and corresponding to the upper cycle of Fig. 4.8a. This vesicle
is oblate for a small part of the cycle, precluding swimming by symmetry, but a
net locomotion occurs over the entire cycle. Hollow arrows denote instantaneous
swimming velocity.

follows the parameter path v(t) = 0.775+0.075 sin(2πt), ∆a(t) = −0.14 cos(2πt)+

0.89, which lies above the continuous stomatocyte-oblate phase transition line from

t ≈ 0.45 to t ≈ 0.55. During this portion of the cycle the vesicle has exactly

zero swimming velocity due to the fore/aft symmetry of oblate shapes. Between

t = 0 and t = 1/4, the volume and area difference are decreasing, leading the

nearly oblate shape into a clearly stomatocyte configuration. For our purposes,
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we will not address the spontaneous symmetry breaking that is associated with

crossing a transition line, but simply assume that once broken, the cycle will break

the symmetry in the same way during each cycle. In the example shown, the

stomatocyte inflates as it assumes a more oblate shape, expelling fluid from the

cavity and producing vorticity along the lobes. As the vesicle continues to deflate

from t = 1/4 to t = 1/2, the lobes sweep downwards, moving the stomatocyte

upwards as it assumes a perfectly oblate shape. At t ≈ 0.42 the shape transitions

into an oblate shape, precluding any net swimming by symmetry. The swimming

velocity as a function of time is shown in Fig. 4.8b. As the oblate vesicle deflates,

at t ≈ 0.58 the stomatocyte symmetry state is entered once more, the lobes sweep

upwards, and the vesicle moves downwards. Despite the presence of a becalmed

period during the vesicle does not move, the cycle that involves the shape transition

yields a larger mean velocity than the lower cycle, 〈U〉 = −0.055, and an increased

hydrodynamic efficiency, ηH = 0.7%.

As previously noted, crossing the shape transition line between stomatocyte

and oblate shapes indicated in Fig. 4.8a yields a continuous shape change. However,

if we exploit the analogy with phase transitions, we note that some quantities

must be discontinuous across the transition. Without exploring the details of a

dynamic phase transition in the context of vesicle locomotion, although the order

parameter is continuous, derivatives of the order parameter need not be so. In

other words, the material at a given point s along the boundary experiences a

continuous positional change, but a discontinuous velocity relative to the center of

mass of the body as the parameters are varied continuously through the transition

line. The discontinuous relative material velocity then generates the discontinuous

swimming velocity seen in Fig. 4.8b for the body which exhibits the oblate shapes

for part of its periodic cycle.

Interestingly, even though the area enclosed in phase space by the two

cycles illustrated in Fig. 4.8a is the same, the relationship between parameter

space, efficiency, and swimming velocity is not evident. The upper cycle shown in

Fig. 4.10 has a larger mean swimming speed and is more efficient than the cycle

shown Fig. 4.9, suggesting that the vesicle can increase its efficiency by passing



94

through a phase transition.

4.9 Discussion

In this paper, we have shown computationally that it is possible for a bilayer

vesicle to swim under a prescribed shape change using two different vesicle models.

By modulating the vesicle volume and either its preferred curvature (spontaneous

curvature model) or the surface area difference between membrane monolayers

(bilayer coupling model), the vesicle can be made to undergo deformations which

are not time-reversible, yielding therefore a net swimming motion. Net locomotion

can be obtained either by continuously modulating fore-aft asymmetric vesicle

shapes (stomatocytes), or by crossing a continuous shape-transition region with

fore-aft symmetric shapes, and alternating therefore between fore-aft asymmetric

and fore-aft symmetric shapes.

At first sight, the swimming efficiencies obtained in this paper appear to

be low. For the swimming stomatocyte shown in Fig. 4.7, the efficiency is on the

order of 0.4%, while for the bilayer coupling model we calculate an efficiency of 0.6%

for a non-transitioning vesicle, and 0.7% for a vesicle that undergoes a transition

from stomatocyte to oblate. However, it is known from many theoretical studies

that the hydrodynamic efficiency of swimming microorganisms, such as flagellated

bacteria or spermatozoa, is on the order of 1 to 2% (see Ref. [10] and references

therein). Our results indicated therefore that the equilibrium morphologies of

bilayer vesicles, together with their appropriate modulations as is done in this

paper, lead to locomotion means which are almost as efficient as those displayed by

biological cells, and might therefore provide an interesting alternative to flagella-

based synthetic micro-swimmers. Further optimization of the size and shape of

cycle in parameter space will likely lead to swimming vesicle outperforming the

efficiency of flagellated cells. In addition, a swimming vesicle has the advantage

that the swimmer and the cargo can be one and the same.

Let us now discuss the typical time and velocity scales obtained in our simu-

lations. A typical vesicle size is approximately 10 µm, and for liposomes κ ≈ 10−19
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Nm. Except for very curved vesicles, the typical radius of curvature r0 is approxi-

mately 10 µm as well, leading to a velocity scale of 10 µm/s. This gives calculated

mean velocities on the order of 0.1 µm/s for the spontaneous curvature model,

and 0.5 µm/s for the bilayer coupling model. Translational and rotational diffu-

sion constants for vesicles this size at room temperature are D ≈ 10−14 m2/s and

Dr ≈ 10−3 s−1, respectively. This implies a time scale for translational diffusion of

approximately 104 s, and a time scale for diffusive reorientation of approximately

103 s. Since the actuation proposed in this paper can be implemented faster than

both of these time scales, significant diffusion will take place only after many actu-

ation cycles. For time scales much larger than D−1
r , the effective vesicle diffusion

will then be given by Deff ≈ U2/Dr [8], which accounts for both swimming and

orientation loss. The ratio Deff/D ≈ 103 is large, which implies that locomotion

will lead to a substantially enhanced diffusion of the vesicles over long time scales.

We have considered only two minimal models for vesicle shape change,

and many possible avenues exist to expand upon this basic model, including a

study non-axisymmetric vesicles, more advanced curvature models, and arc length-

dependent spontaneous curvature. Since we have assumed a quasi-static deforma-

tion, non-equilibrium effects would also have to be taken into account for fast

deformations, and the shape should be fully determined as a balance between elas-

tic and fluid forces. In addition, swimming is just one example of behavior that

could be exhibited by a membrane that is actively deformed. It is perhaps the

simplest transduction of geometrical deformation into mechanical work, and one

that we hope provides further inspiration for the combined study of membrane

physics and low Reynolds number fluid mechanics.
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5.1 Introduction

Recent experiments on motile particles, from collections of microorganisms

[131, 132, 133] to self-propelled colloids [101], exhibit pattern forming behavior

and enhanced transport characteristics that pose fundamental questions for the

nonequilibrium statistical mechanics of active systems [103], and have implications

in bio- and nano-engineering. One area of interest concerns the hydrodynamics of

microorganisms swimming in viscous fluids at zero Reynolds number [10].

Several methodologies have been developed to address the emergence of col-

lective locomotion, basically corresponding to either microscopic or macroscopic

formulations. Active hydrodynamic equations developed from a non-equilibrium

kinetic theory has been the prevailing microscopic approach to the system [134,

11, 135, 136]. By modeling microswimmers as force-dipoles, these kinetic theories

build continuum dynamical equations for fields quantifying the long-wavelength

properties (density, orientation...) of suspensions of self-propelled particles. Ob-

vious benefits of this approach parallel the advantages of statistical mechanics, in

that large scale phenomena can be predicted by the proper construction of a sys-

tem of microscopic evolution equations. The difficulty in dealing with interacting

particles, however, leads to the necessity of a dilute assumption, and the lack of any

specified structure to the microswimmers (self-propelled particles are represented

as oriented point singularities).

At the other end of the spectrum, thermodynamic models of active media

postulate the existence of phase separation due to relevant (allowed) terms in a

dynamical equation, and as a result nonlinearities and coupled modes that cannot

be derived from a dilute formulation are accessible [137, 138]. Coarse-grained

models, while not specifying hydrodynamic interactions, implicitly include near-

field effects that are not disallowed by symmetry. These “flocking” models include

many possibilities for ordered states that cannot be captured by the microscopic

models, at the expense of introducing phenomenological parameters that may be

difficult to explain physically and derive from microscopic considerations [103].

In this paper we use a specific model microswimmer (usually referred to

as a “squirmer” [139]) to address global orientational and spatial order compu-
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tationally. With our approach both semi-dilute and concentrated suspensions of

spherical swimmers can be considered, allowing both to probe dynamics beyond

the dilute regime and to compare results with continuum theories made. Contrary

to predictions from dilute continuum theories, we find that isotropic suspensions

of spherical swimmers are unstable, and evolve dynamically to take on a long-time

state of global order. This state of polar order exists in phenomenological flock-

ing models, and is thus shown here to arise from hydrodynamic interactions. A

marked asymmetry between pusher and puller swimmers is further shown, which

is interpreted to be due to the short-range details of the flow field induced by the

active particle. After proposing a physical mechanism behind the polar ordering,

we finally examine the behavior of close-packed suspensions.

5.2 Model system

We simulate a system of N squirmer in a cubic box of volume L3, where the

size of the box L is determined from the number of swimmers and preset volume

fraction v. The details of the modeling approach can be found in Ishikawa et

al. (2006) [139]. The infinite extent of the system is expressed by applying periodic

boundary conditions. A squirmer, as defined originally by Lighthill [140] and used

subsequently by Blake to model ciliary propulsion [141] is a spherical particle that

has a prescribed axisymmetric velocity distribution on its surface. In the case of the

swimmer that is used in our model, we impose uθ(θ) = B1P1(cos θ) +B2P2(cos θ),

where Pn is the nth Legendre polynomial. The angle θ = 0 defines the direction,

denoted e, in which the squirmer swims, with swimming speed (for a solitary

squirmer) U ∼ B1 [141].

Fluid disturbances in the far field are governed by the “stresslet” (or force-

dipole) of the organisms, quantified by the dimensionless quantity β = B2/B1.

Indeed, the stresslet of a swimmer governs not only the far field decay of velocity

fluctuations, but also the physical characteristics of the thrust generation. Some

organisms, like the algae Chlamydomonas, generate thrust in front of their bodies

using a pair of flagella, pulling themselves therefore through the fluid. On the
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d) e) f)

Figure 5.1: Flow streamlines of isolated squirmers for various values of β. Flow
streamlines in the swimming frame (top; a to c) and lab frame (bottom; d to f).
Left (a and d): Pusher with a negative stresslet (β = −5), generating thrust at the
aft region. Center (b and e): Potential flow developed by a squirmer with β = 0.
Right (c and f): Puller with a positive stresslet (β = +5) generate thrust at the
fore area. In the lab frame, squirmers with β 6= 0 develop a stagnation point off
the body; for pushers (d) this point leads the swimmer, while for pullers (f) this
point trails.

other hand, most flagellated cells such the bacteria E. coli, or spermatozoa, gener-

ate thrust behind them, and instead push themselves through the fluid. Using our

modeling approach, “pullers” are characterized by β > 0, while “pushers” corre-

spond to β < 0. The flow field decays as β/r2 far from the swimmer, and – in the

absence of thermal fluctuations [142] – the stresslet dominates the long-range in-

teractions. This difference in hydrodynamic signature between pushers and pullers

has been addressed at length by dilute theories [11, 134, 10, 136].

The velocity of an isolated microswimmer is fixed, dimensions are scaled

such that U = 1; the only free parameter characterizing isolated swimmers is

therefore the dimensionless stresslet β. In the presence of multiple swimmers,

their instantaneous velocities and rotation rates are calculated by enforcing the

condition of force- and torque-free swimming. The computational approach is
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Figure 5.2: A snapshot of a simulation with v = 0.1, β = 1 (pullers), and
N = 64 squirmers. The figure shown has the computational cell in the middle,
with identical copies surrounding this periodic box. Dark dots on the squirmers
represent the rear (i.e. θ = π), while light dots represent the swimming direction,
θ = 0.

based on Stokesian dynamics, with an analytical treatment of lubrication forces

for closely separated swimmers, as well as additional short-range repulsive forces

to prevent particle overlap, as described in detail in Refs. [139, 143].

The two parameters characterizing the collective swimming dynamics are

thus the swimmer volume fraction, v, and the swimmer stresslet, β. In order to

probe, as function of both v and β, the development of order in our system, we

define an order parameter, P , based on the orientation vector e of the particles,

namely P (t) = |∑N
i ei(t)|/N . If every particle is swimming in the same direction

(polar order) then P = 1, while for isotropic orientation we expect P ∼ 1/
√
N .
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Figure 5.3: Global order of semi-dilute and concentrated suspensions of push-
ers and pullers starting from polar (aligned) state. (a): Representative evolution
in time for the order parameter, P (t), for pushers (β = −1), pullers (β = 1),
and potential swimmers (β = 0). Each simulation starts from an initially aligned
state (with random positions) and decays to a finite order, P∞, after a character-
istic decay time that depends on the stresslet coefficient β. (b): Long-time order
parameter, P∞, for initially aligned suspensions. Each data point represents an
average not only over an ensemble (in this case five separate realizations), but also
over time. The time-averaging was performed during the period after the initial
decay from alignment until the end of the simulation. Error bars represent stan-
dard deviations of the ensemble averaging process. We observe a decrease order
with increasing value of β, and an asymmetry between pushers and pullers. The
order is only weakly affected by the volume fraction up to v ∼ 0.5.

5.3 Stability and long-time order: Aligned sus-

pensions

We will first inquire whether certain pathological conditions persist over

time. Namely, beginning from a state of order, will the system be driven to



102

disorder? In contrast, can the activity of a suspension cause an initially disor-

dered system to spontaneously generate orientational order? In the dilute limit,

continuum theories for slender self-propelled rods have predicted that aligned sus-

pensions are always unstable, while isotropic states are only unstable for pushers

(β < 0) [11, 135]. The physical nature of this instability is described as resulting

from long-range hydrodynamic extensional disturbances that cause reorientation

of anisotropic particles, but to which spherical swimmers are immune. In the dilute

limit, no instability due to long-range hydrodynamic interactions is thus expected

to occur for spherical particles [11, 134].

In Fig. 5.3a we plot the time-evolution of the polar order P (t) for aligned

suspensions with three different stresslet values, β = −1 (pusher), 0 (potential

swimmer) and +1 (puller). The initial positions of the swimmers are taken to

be random. Over the semi-dilute to concentrated range of volume fractions, v =

0.1 − 0.5 (the results in Fig. 5.3a are shown for v = 0.1), we observe the system

to systematically decay from perfect order (P = 1) to some finite long-time value

(0 < P∞ < 1). The decay time over which the suspension is driven to this new

ordered state depends on the stresslet value β, and larger values of the stresslet

disturb the fluid more violently, causing reorientation, and loss of polar order, more

quickly; β can thus be interpreted as the speed at which orientation decorrelation

propagates throughout the suspension.

To further characterize long-time order, we perform ensemble averages on

five realizations of our simulation, starting with an aligned orientations and random

positions, for volume fractions in the range v = 0.1 to 0.5 and stresslets varying

from β = −2 to +2. Upon doing ensemble averages, we define a long-time order

parameter P∞. The results are shown in Fig. 5.3b. In the range of volume fractions

studied, we observe that the long-time order is independent of the value of v, but

it strongly depends on the value of the stresslet β. Larger values of |β| lead to

increased swimmer-swimmer reorientations due hydrodynamic interactions, and

thus lead to decreased values of P∞. In addition, we observe a marked asymmetry

between pushers and pullers, and for a given value of |β|, pullers are systematically

more ordered. This is in contrast with analytical predictions in the dilute limit
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where suspensions of pullers are expected to be driven to isotropy [11].

What governs the emergence of long-time global order, and why is there

an asymmetry between pushers and pullers? It has been suggested in the past

that near-field interactions are the dominant mechanism for global ordering [143].

To address the pusher-puller asymmetry, we take a detailed look at the flow field

near the swimmers. The difference between a pusher and a puller, which in the

far-field leads to a change of sign in the hydrodynamic perturbation to the environ-

ment, leads in the near-field to a change in the location of the flow stagnation point.

This is illustrated in Fig. 5.1: for a pusher this stagnation point leads the swimmer,

while for a puller it trails it. This hydrodynamic asymmetry causes the different

collisional situations (head to head, head to tail, and tail to tail) to produce dif-

ferent reorientations between pushers and pullers. From previous numerical work,

it is known that head-to-head interactions are far more likely to occur [144]. For

pushers the head-to-head orientation is stable to near-field torques. This can be

understood from the sign of the vorticity in the near-field flow around the squirmer

(see Fig. 5.1d and f): the presence of a stagnation point establishes vortices near

the surface of the swimmer, and in a head to head collision both pairs of vortices

will interact in a manner as to maintain this orientation. Pullers, on the other

hand, are unstable in this configuration, as their vortices trail in such a collision.

In terms of contributing to order, head to head orientations yields P ∼ 0, and

thus any instability of this configuration, as expected for pullers, will lead to an

increase of global order.

5.4 Stability and long-time order: Isotropic sus-

pensions

While it is not surprising to find that aligned states of swimmers are un-

stable, the dynamics of isotropic suspensions remain to be evaluated. Instability

in isotropic suspensions is predicted to exist only for pushers, and only then when

the swimmers have an elongated shape [11]. Instability of isotropic suspensions

has been observed previously in simulations of semi-dilute systems [143], but it
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v = 0.01
β = 1

P (t)

t

Figure 5.4: Representative data comparing initially aligned and isotropic suspen-
sions. Aligned initial conditions have random spatial positions of the swimmers,
while isotropic has randomized position as well as orientation. For v = 0.01, both
aligned and isotropic states are unstable (data shown for β = 1). Over time both
systems approach the same final state.

is not immediately obvious whether this behavior is purely due to volume frac-

tion considerations or the inclusion of specific near-field interactions. Squirmers

may have a particular orientation behavior in the near-field, but in dilute suspen-

sions the long-range hydrodynamics should dominate the dynamics. Figure 5.4

shows a representative time series for suspensions of pullers at low volume fraction

(v=0.01), for both aligned and isotropic initial conditions (similar results exist for

pushers). Both sets of initial conditions are unstable, as the hydrodynamic inter-

actions drive the system to an intermediate value of the order parameter. The

time scale over which the instability takes place is very long compared to more

concentrated suspensions, and it is certainly the case that in the limit that v → 0

the instability would disappear. More interesting than the mere presence of the

instability, however, is the existence of a shared state of global order at long times.

If the near field interactions are indeed responsible for the order that devel-

ops, even in dilute suspensions, how does increasing the volume fraction affect this

order? In dispersions of colloidal particles, novel phase behavior and dynamics are

observed as the volume fraction of the system is increased [145, 146, 147]. Particles

have less room to maneuver, restricting their ability to sample all of phase space,

and possibly complicating any kind of thermodynamic phenomena exhibited by
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Figure 5.5: Polar order as function of volume fraction. a) Samples of order decay
for pullers (β = 1). As the volume fraction increases, the magnitude of fluctuations
increases dramatically. b) Long-time order as a function of volume fraction, for
pullers (β = 1). For relatively dilute suspensions there is only a weak dependence
on the volume fraction. At larger volume fractions the order drops sharply to
isotropy (indicated by dashed line). Error bars are standard deviation over many
realizations.

the suspension. By simulating a system of particles that both occupy space and

have an active direction of locomotion we can probe the specifics of how increasing

volume fraction destabilizes orientational order of the suspension.

Figure 5.5a displays representative time series for different volume frac-

tions of pullers. As the volume fraction increases the long-time order only changes

weakly, but as the simple cubic packing limit is approached (vsc ∼ 0.52) fluctu-

ations in the order get larger, until finally the order disappears (see Fig. 5.5b).

Pushers display a similar dependence, although with decreased magnitude due to

the asymmetry noted earlier.



106

The average value of P∞ changes only slightly over a wide range of volume

fractions, but the magnitude of the fluctuations in the order increases enormously.

Given that near-field interactions are the likely culprit for causing the order to

develop in the first place, why is it that above a certain volume fraction the order

vanishes? What significance does close-packing have on the orientation of the

particles?

At low volume fractions the rate of collisions between swimmers, and thus

the frequency of near-field interactions, is much lower than in the concentrated

limit. The physical asymmetry between pushers and pullers, combined with the

statistical likelihood of certain collisions combine to yield the long-time asymmetry

between the two species of swimmers. For close-packed suspensions, however, the

frequency of near-field interactions increases dramatically, and collisions from all

angles become more likely.

5.5 Orientation distribution

Quantifying the global order in the system may show that a particular

direction is preferred, but there is no information in the value of P or P∞ that

characterizes the spatial distribution of swimmers; in a continuum model we could

define a director field n that varied throughout space. As it is, the spatial dis-

tribution of the order in our system can be measured by defining the correlation

function C(r) =
∑

i 6=j ei · ej where the ith particle is a distance r from the jth

particle. Figure 5.6 displays this correlation for several volume fraction values,

contrasting the semi-dilute case with the highly concentrated, for both pushers

and pullers.

Pullers show stronger correlations than pushers at all distances, as could

perhaps be expected from comparing the value of the order parameter. For pullers

there is also a distinctive similarity with the radial distribution function of the

suspension, indicating that there is a strong connection between the density of the

particles and their orientation correlation. Strangely, pushers indicate no strong

dependence on spatial distribution, but show an isotropic preference for slight
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Figure 5.6: Correlation functions for pushers and pullers as a function of distance,
at concentrated volume fraction. a) At low volume fractions there is an isotropic
tendency for correlation at several particle radii away (r > 3a), with pullers more
correlated everywhere as compared to pushers. b) At high volume fractions, pullers
are correlated most strongly with their nearest neighbors, followed by a peak at
r ∼ 3.5. There is, then, a spatial structure to the orientational order that is
not completely dictated by the radial distribution function, possibly implying that
hexagonally arranged squirmers have a higher correlation. Pushers on the other
hand, while having minor variations in space, appear to have no strong spatial
links to the correlation.

correlation. The slight peak for pullers at r ∼ 3.5 is puzzling in that it does

not correspond to short-range order, which for molecular liquids occur at integral

spacings with regard to the particle size (i.e. r = 2a,r = 4a,etc.). A peak at r =

2
√

3 would indicate a next-nearest neighbor correlation in the case of a hexagonally

close-packed system, but for a suspension lacking long-range order it is surprising.

The best explanation once again probably lies in the presence of vortices near the

surface of the squirmers; there will be a preferred angle at which the squirmers

will align more strongly, and the bias that this angle gives will set up a structure
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to the order in the suspension. It cannot be overstated how interesting it is to

have a fluid-ordered suspension, displaying isotropic distribution in the far-field,

yet containing ordered spatial structure in the orientation.

The existence of spatial structure demands further exploration of the prop-

erties of high volume fraction dynamics, and the avenues of research are far too

numerous to be included here in any comprehensive fashion. However, in granular

media there is the ever-present specter of ergodicity-breaking, jamming, and glassy

dynamics that are all associated with an increasing volume fraction of particles.

While our suspensions of squirmers may be athermal, is there any link that we

can provide between these very different kinds of systems? There is evidence in

jammed systems that above a certain external stress/strain the particles can flow,

exhibiting fluidized behavior only in the presence of this external source. Our sys-

tem contains active particles each of which has it’s own ability to generate motion.

Is there an analogy between the global effect of an external field and the local

effects of internal stress states?

Lacking the room to maneuver unhindered throughout the system, individ-

ual particles at high concentration have restricted access to phase space; as a direct

result, transient behavior becomes more important than in the semi-dilute case.

Although there is an average value of P∞ that is achieved for certain values of v

and β, there are large fluctuations in this average value at high volume fractions

(Fig. 5.7a). Frequent reorientations of individual squirmers due to the proximity

of many neighbors means that there is the potential for orientational correlation to

propagate very rapidly throughout the system. In Fig. 5.7b, different initial con-

ditions for the same suspension (v = 0.6, β = 0) yield results that are drastically

different over the time scale considered. While the decay time for the system is

unaltered, lending credence to the idea that this decay time is β-dependent, the

finite delay time indicates that particles are “trapped” in their initial conditions

before finally escaping to the isotropic steady state.
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v = 0.6

β = 0

β = 0
v = 0.5

t

a) b)

P

t

Figure 5.7: High volume fraction shows large fluctuations and transient behavior.
a) Although the long-time average over many ensembles converges to a single value,
the fluctuations about this average become very large with high volume fraction.
Shown here is an example of two suspensions, both at v = 0.5 and β = 0, but
with different initial positions. The order fluctuates around the average value near
P = 1, but there are large jumps down to near isotropic orientation. b) Above
v ∼ 0.55, the order is eventually driven to isotropy, no matter the magnitude of the
stresslet, but this transition has an associated delay time. Individual swimmers
have difficulty negotiating their surroundings, and thus there is a transient period
before the system is driven out of the aligned state. Note that the decay time
does not change, as it is dependent on the value of β, but the delay is most likely
associated with an inability to sample all of phase space.

5.6 Discussion

While our results for instabilities are by no means a general statement about

microswimmers, there are several key points to note. Firstly, even lacking thermal

fluctuations, and without the anisotropic geometry inherent in slender swimmers,

the spherical squirmers of our simulations develop polar order due to interactions.

Secondly, these interactions depend on the nature of the swimmer, i.e. pusher vs.

puller. It is entirely possible that the near-field interactions dominate the system

dynamics, but even if this is the case, real swimmers have near-field interactions,

and although a squirmer is only a simple model it is the next step beyond a

pure dipole. Having taken this next step, we see that there is indeed non-trivial

differences with the dilute, dipole continuum models, and that there are similarities

in the computational results with the phenomenological flocking models.

There is much to be gained from knitting together the disparate theories
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for collective locomotion of microorganisms. A general theory for non-equilibrium

statistical mechanics is elusive, and by utilizing systems of living fluids as a case

study for exploring order in active suspensions we can fill in the many gaps in

our understanding. Even suspensions of colloidal particles in thermal equilibrium

display complicated behavior when the granularity and packing of the system be-

comes relevant; by including activity at the level of single particles, this system

becomes even more complex. Using our computational model we hope that we

can form a bridge to discuss in detail the separate regimes of validity of differing

models, illuminate how hydrodynamics influences global order, and further pursue

the consequences involved with collective interactions.
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The swimming velocity is computed at each time by solving a standard

boundary integral formulation of the Stokes equations. As an application of the

Lorentz reciprocal identity, the solution to Eqs. (4.30) may be written as integra-

tions upon the surface velocity and the fluid stress,

u(x) =
1

8πµ

∫
S(t)

G(x,y) · (σ(y) · n̂(y)) dSy +
1

8π

∫
S(t)

u(y) ·T(x,y) · n̂(y) dSy

(A.1)

where

Gij(x,y) =
δij
|x− y| +

(xi − yi)(xj − yj)
|x− y|3 , (A.2)

Tijk(x,y) = −6
(xi − yi)(xj − yj)(xk − yk)

|x− y|5 , (A.3)

are the singular Stokeslet and Stresslet tensors, respectively (see Ref. [148]). By

introducing a complementary flow u′ which has the same values of the surface force

σ · n̂ as the flow u on the surface S(t), Eq. (A.1) may be written solely in terms

of the second, double-layer integral,

u(x) =

∫
S(t)

q(y) ·T(x,y) · n̂(y) dSy, (A.4)

where q(x) is an unknown density of the singular Stresslet tensor. In the limit

as the x approaches the body surface S(t), inserting the no-slip condition for the

surface velocity there, we find the expression

U + ud(x) =

∫
S(t)

(q(y)− q(x)) ·T(x,y) · n̂(y) dSy. (A.5)

The vertical swimming velocity U = U · ẑ is related to the Stresslet density as

U = −4π

A

∫
S(t)

ẑ · q(x) dS (A.6)

(recall that A is the vesicle surface area). Equation (A.5) is a well-posed Fredholm

integral equation of the second kind for the unknown density q(x), and has a

unique solution. This approach is numerically better conditioned than those based

on first-kind equations.
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The Stresslet integral operator in Eq. (A.5) has a six-dimensional nullspace

corresponding to rigid body motion, and in the presence of external body forces or

torques this representation must be closed by a range completion technique (see

Ref. [149]). However, in the swimming problem where the deformation velocity

ud(x) is specified and there are no body forces or torques, Eqs. (A.5-A.6) are

closed and prescribe uniquely the swimming velocity U .

The integrand in Eq. (A.5) is discontinuous at the singularity but finite, so

that the integrals are computed to second-order in the surface mesh element size

using a standard trapezoidal quadrature (setting the quadrature weight to zero at

the singularity). The axisymmetry of the problem is inserted into the definition of

the body surface as well as the density q(x). The number of gridpoints is chosen

to be sufficiently large such that further resolution does not significantly alter the

density q(x) or the swimming velocity U .

At each time, the curve (r(s, t), z(s, t)) is discretized uniformly in s. Appli-

cation of a Nyström collocation method produces a linear system of equations for

the density q(x) at the gridpoints, which is then solved iteratively using the method

GMRES [150], with an inversion error tolerance such that the only errors are due

to discritization. Finally, the body position z0(t) is updated at each time using a

second-order Runge-Kutta method. Both convergence tests and comparison with

known exact solutions were used to validate the code [151, 116, 152, 109].

Computing the hydrodynamic or swimming efficiency (which requires point-

wise information about the stress σ) is more difficult. Here we compute σ(x) using

the approach outlined below, though a more detailed description of the method

and examples of its use will be featured in a subsequent paper.

Many common methods for computing the stress are developed using a

first-kind boundary integral formulation of the Stokes equations, and hence can

suffer from the ill-posedness of the underlying equations [148]. Instead, we solve

for the surface stress by evaluating a hypersingular integral which may be derived

from the second-kind integral equation for the velocity (see Ref. [148]),

1

µ
σim(x) =

∫
S

qj(y)Lijkm(x,y)n̂k(y) dSy, (A.7)
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where

Lijkm(x,y) = −4
δimδjk
|x− y|3 − 6

(xk − yk)[δjm(xi − yi) + δij(xm − ym)]

|x− y|5

−6
(xj − yj)[δmk(xi − yi) + δik(xm − ym)]

|x− y|5 +60
(xi − yi)(xj − yj)(xk − yk)(xm − ym)

|x− y|7 ,

(A.8)

and we have set S(t) = S for clarity. The expression L(x,y) is achieved by

differentiating the double-layer integral for the fluid velocity and including the

pressure term which may also be written as an integration against q(x), with

σ = −pI + µ
(
∇u +∇uT

)
(see Ref. [148]). The stress is determined on the same

spatial grid as used to determine the swimming velocity, a uniform discritization

in s of the curve (r(s, t), z(s, t)) (with polar angle φ = 0). The integration of

Eqn (A.7) is performed in local polar coordinates, and the singular contributions

are handled analytically as follows. The procedure follows the work of Guiggiani

et al. [153].

The integration of Eq. (A.7) is performed on a modified surface S̃ = sε +

(S − eε) and is taken in two parts: the portion of a sphere of radius ε centered at

the singular point x which is internal to the body surface (sε) and intersects the

surface S at its boundary, and the body surface punctured by the sphere (S − eε).
The modified surface limits to the body surface S as ε → 0. For a point x ∈ S,

Eq. (A.7) is written as a small ε limit,

1

µ
σim(x) = lim

ε→0

{∫
S−eε

qj(y)Lijkm(x,y)n̂k(y) dSy +

∫
sε

qj(y)Lijkm(x,y)n̂k(y) dSy

}
·

(A.9)

Under the assumption that q(x) is differentiable, with a derivative which is Hölder

continuous, we subtract and add the density q(x) and its gradient at the singular
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point in the second integral of Eq. (A.9),

1

µ
σim(x) = lim

ε→0

{∫
S−eε

qj(y)Lijkm(x,y)n̂k(y) dSy (A.10)

+

∫
sε

(
qj(y)− qj(x)− (xh − yh)qj,h(x)

)
Lijkm(x,y)n̂k(y) dSy

(A.11)

+ qj,h(x)

∫
sε

(xh − yh)Lijkm(x,y)n̂k(y) dSy (A.12)

+ qj(x)

∫
sε

Lijkm(x,y)n̂k(y) dSy,
}

(A.13)

where qj,h = ∂qj/∂xh. As shown in Ref. [153], the above integration may be reduced

to a final formula upon the introduction of a local polar coordinate system (ρ, η)

about the target point x(s, φ), with

φ′ = φ+ ρ cos(η), s′ = s+ ρ sin(η), (A.14)

where η ∈ [0, 2π), ρ ∈ [0, ρ̄(η)], and

dSy = J(s′)ds′ dφ′ = J(s′(ρ, η))ρ dρ dη, (A.15)

with J(s′) = |x′s × xφ| the surface Jacobian. ρ = ρ̄(η) is the equation in the

local polar coordinate system of the edge of the semi-periodic domain, (s, φ) ∈
([0, L]× [0, 2π]). The integration is assisted by the extra factor of ρ in the surface

area element, and the final expression for the fluid stress may be reduced to

1

µ
σim(x) =

∫ 2π

0

∫ ρ̄(η)

0

{
Fijk(ρ, η)−

[F (−2)
ijk (η)

ρ2
+
F

(−1)
ijk (η)

ρ

]}
dρ dη (A.16)

+

∫ 2π

0

{
F

(−1)
ijk (η) ln |ρ̄(η)| − F (−2)

ijk (η)
[ 1

ρ̄(η)

]}
dη, (A.17)

where Fijk(x,y) = qi(x)Lijk(x,y)n̂k(y) [153]. The functions F
(−1)
ijk (η) and F

(−2)
ijk (η)

are the singular parts of an expansion of Fijk(ρ, η) about ρ = 0. The integrals above

all have finite integrands, and are treated using adaptive quadrature methods.

Convergence tests and comparisons with known exact solutions were used

to validate the code. In particular, we have checked to ensure that the surface

deformation relation of Samuel & Stone (1996) is satisfied [116, 109]. With the
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stress σ in hand, the efficiency ηH (Eq. (4.33)) is determined to second-order in the

grid-spacing by a simple trapezoidal quadrature. The stress need only be computed

for φ = 0 due to axisymmetry.

As a final note, at zero Reynolds number the swimming velocity and ef-

ficiency are entirely determined by the surface deformation velocity. Other more

general measures of energetic expenditure and total efficiency have been considered

for other swimming systems (see Ref. [130]), but in this case the total efficiency

will depend significantly upon the means used to produce the vesicle shape-change.

In addition, should there be a fluid internal to the vesicle, for example, internal

dissipation costs would be relevant in a more general measure of energetic expen-

diture.
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