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Abstract
The basic reproduction number, R0, and its real-time
analogue, Rt, are summary measures that reflect the
ability of an infectious disease to spread through a pop-
ulation. Estimation methods for Rt have a long history,
have been widely developed and are now enhanced by
application to the COVID-19 pandemic. While retro-
spective analyses of Rt have provided insight into epi-
demic dynamics and the effects of control strategies
in prior outbreaks, misconceptions around the inter-
pretation of Rt have arisen with broader recognition
and near real-time monitoring of this parameter along-
side reported case data during the COVID-19 pandemic.
Here, we discuss some widespread misunderstandings
regarding the use of Rt as a barometer for population
risk and its related use as an ‘on/off’ switch for policy
decisions regarding relaxation of non-pharmaceutical
interventions. Computation of Rt from downstream
data (e.g. hospitalizations) when infection counts are
unreliable exacerbates lags between when transmission
happens and when events are recorded. We also dis-
cuss analyses that have shown various relationships
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between Rt and measures of mobility, vaccination cov-
erage and a test–trace–isolation intervention in different
settings.

K E Y W O R D S

causation, Covid-19, epidemics, infectious disease, reproductive
numbers, SARS-CoV-2

1 INTRODUCTION

Quantification of local transmission patterns is a necessary tool in assessing spread and determin-
ing appropriate intervention strategies during an infectious disease outbreak. During the current
COVID-19 pandemic, reproduction number (R) estimates have been widely used to summarize
transmission dynamics in a community. Generally speaking, reproduction numbers aim to define
the expected number of new infections generated from a single infected individual under var-
ious conditions or assumptions. The basic reproduction number (R0)—likely the most familiar
to scientific and popular audiences alike—is typically taken to indicate the expected number of
infections resulting from an infectious individual encountering a fully susceptible population; this
definition is sometimes further extended to represent conditions at the beginning of an outbreak
before specifically enacted interventions are in play.

However, various other reproductive number parameters are also of value for describing trans-
mission. In some instances, R0 is defined as a mean of individual-specific reproductive numbers
Ri for members of a population, the distribution of which has importance to transmission dynam-
ics and the ease of control but is rarely characterized (Laxminarayan et al., 2020; Lloyd-Smith
et al., 2005; Sun et al., 2021). A value which has gained particular interest is the time-varying
effective reproductive number, Rt, (Wallinga & Teunis, 2004), or instantaneous reproductive num-
ber, which tracks changes over time in the number of secondary infections caused by each case,
owing to build-up of immunity in the population, changes in behaviour and implementation of
new interventions.

Real-time estimates of Rt have been widely reported and often used to compare regions within
countries with regard to progress in stopping or slowing growth in infections. In various set-
tings, such values have also been prioritized as a criterion for the lifting or reintroduction of
non-pharmaceutical interventions. Here, we briefly review the interpretation and estimation of
various reproductive number parameters, and highlight experience with the use of such measures
during the COVID-19 pandemic to inform public health decision-making.

2 REPRODUCTION NUMBERS, THEIR INTERPRETATION
AND FACTORS INFLUENCING THEM

Reproduction numbers depend on several factors, most prominently (a) the intensity of contacts
between susceptible and infectious persons in the population, together with mixing patterns, (b)
the infectivity associated with a contact (i.e. the probability of transmission per contact between
susceptible and infectious person) and (c) the duration of the infectiousness period. In fact, these
multiple components underlie the varied strategies used to reduce transmission (and thus Rt) in a
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community. For example, (a) shelter-in-place policies reduce contact rates, (b) vaccination, masks
and avoidance of close or physical contact reduce infectivity and (c) contact tracing, quarantin-
ing and isolating all potentially reduce the time of exposure between infectious and susceptible
individuals.

Thus, R (defined as either R0 or Rt) summarizes many social and biological effects in a single
measure and thus—while useful—may be subject to overly simplistic interpretations and thereby
limited in its value in driving policy decisions. The simplest such decision for which R estimates
may provide insight is whether the current levels of public health intervention are sufficient to
prevent uncontrolled growth of an epidemic, which may be expected under any scenario resulting
in R > 1. This assessment may be of greatest importance at early stages of an outbreak, especially
when the agent involved is a novel pathogen with unknown transmissibility.

Second, quantitative estimates of R provide an indication of the level—and possibly, by exten-
sions, pathways—of intervention required to bring transmission under control by achieving
R < 1. During the COVID-19 pandemic, analyses have made assessments of the impacts of var-
ious non-pharmaceutical interventions aimed to reduce interactions in particular settings, both
through analyses of the next-generation matrix (Jarvis et al., 2020; Van Den Driessche & Wat-
mough, 2002) and empirically, based on ecological studies (Li et al., 2020). Estimates of the
proportion of the population that must be protected from infection to achieve R < 1, through
natural immunity in response to infection or vaccination, are among the most valuable insights
of this nature. Issues relating to such ‘herd immunity thresholds’ have become a flashpoint of
controversy during the COVID-19 pandemic, initially focused on levels of natural immunity but
now including population vaccination coverage targets. Whereas early modelling work demon-
strated the potential for severe and protracted outbreaks in the absence of effective vaccination
(Ferguson et al., 2020; Kissler et al., 2020), subsequent theoretical studies suggested that het-
erogeneity in individual risk of acquiring or transmitting infection could lower such thresholds
(Britton et al., 2020), including to implausibly low values in the range of 10–20% (Aguas et al.,
2020). The validity of these conclusions that transmission could be brought under control with
low population immunity has ultimately been brought into question by the persistence of severe
epidemics with R > 1 even amid high population seroprevalence and aggressive vaccine rollout
(Anand et al., 2021; Buss et al., 2021; Malani et al., 2021). Related debate has surrounded the inter-
pretation of early R0 estimates in light of the possibility for immunological cross-recognition of
SARS-CoV-2 among individuals with recent exposure to endemic coronaviruses (Lourenço et al.,
2020). However, it is crucial to note that empirical estimates of reproduction numbers in the set-
ting of SARS-CoV-2-naïve populations implicitly account for the impact of such immunity on
transmission dynamics. This definitional ambiguity is a limitation of R0 and underscores the need
for authors to provide clear descriptions of the interpretation of the reproduction numbers they
report.

Among the most closely monitored parameters of SARS-CoV-2 spread has been Rt. The need
to determine the impact and effectiveness of non-pharmaceutical interventions has resulted in
great interest in monitoring changes over time in Rt in various settings. Some jurisdictions, includ-
ing the United Kingdom, have gone so far as to suggest changes in Rt as a basis for lifting or
reimplementation of interventions (Mahase, 2020). However, this approach conveys undue con-
fidence in the validity of real-time Rt estimates, for which reliable public health data collection
and quantitative estimation strategies present continuing challenges (Gostic et al., 2020)—see
Section 3—and belies a more fundamental misunderstanding in the epidemiologic meaning of
this parameter. Inherent in its definition, Rt conveys information about growth in the number
of infected and does not therefore carry information about the current level or prevalence of
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infection. With that in mind, estimates of Rt are not sufficient as an ‘on/off’ switch regarding
relaxation of social distancing and other measures to restrict contacts such as shuttering cer-
tain kinds of businesses and events. For example, policymakers may be keenly interested in the
impact of indoor restaurant dining depending on epidemiological attributes of what is going on
at that time in the community. What will happen if restrictions are lifted to some degree and
what degree should that be? Naturally, the most important issue at hand is the prevalence of
infection in the community (as that would determine whether going to a restaurant results in a
lower or higher risk of exposure), and not Rt. The social conditions in place in Taiwan or New
Zealand, where infection prevalence is low, could possibly support an Rt ≈ 3 as these popula-
tions are mixing relatively freely; this matters little, however, when there is little or no infection to
circulate.

To be fair, the reliance on Rt as a trigger for policy interventions may be a result of overly
simplistic interpretation of what is often complex and nuanced decision-making. For example,
Mahase (2020) stated that the UK Prime Minister Boris Johnson ‘told the public on 10 May [2020]
that easing lockdown in England would depend on whether the reproduction number could be
kept down’. While Rt was emphasized in the transcript of his remarks, he specifically stated that
‘the Covert Alert Level will be determined primarily by R and the number of coronavirus cases
(emphasis added)’, and that ‘we will be monitoring the R and the number of new infections and
the progress we are making’ (emphasis added)—see Prime Minister’s Statement (2020).

This raises a second issue regarding over-reliance on Rt as a summary measure, namely that
it is necessarily estimated in a delayed fashion by all available methods. We briefly discuss both
this below and, as noted above, the complexity that transmission depends differently on the dis-
tinct factors that influence Rt. The need to implement appropriate policies with considerable
speed (to the extent possible), and often before many cases have been detected by surveillance sys-
tems, is counter-intuitive to many policymakers and the media, but critical to stop spread during
an exponential growth phase. Using a mathematical transmission model, Pei et al. (2020) esti-
mate that 56% (95% CI: 44–64%) of reported deaths in the United States as of 3 May 2020 could
have been avoided had observed control measures been implemented 1 week earlier, reinforcing
the earlier and simpler calculations of Jewell & Jewell (2020) that estimated an approximately
60% reduction in US COVID-19 deaths associated with a similar 1 week advance in mitigation
measures in early spring 2020. This significantly limits the value of a necessarily time-delayed
estimate of Rt as a trigger for intervention even when supplemented by estimates of population
prevalence of active infection. The combination of exponential growth and considerable levels
of asymptomatic transmission allowed the rapid growth of SARS-CoV-2 infections before action
was taken even on second or subsequent waves of infection; a similar problem occurred with the
rapid asymptomatic spread of HIV infections in the 1980s albeit on a quite different timescale
(Jewell & Jewell, 2021).

Given this lag in estimation of Rt and difficulties associated with obtaining data of sufficient
quality to support accurate and timely calculations, it is natural to seek precursors of Rt using
more available and reliable information, ‘predictive correlates’, or ‘surrogates’, for Rt if you will.
We discuss some examples briefly in Section 4, again with cautions about interpretation.

3 ESTIMATION OF RT

We do not discuss here detailed estimation strategies for reproduction numbers, and the neces-
sary underlying data requirements and assumptions, but refer to recent reviews by Gostic et al.
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(2020), O’Driscoll, Harry, et al. (2020). Both analyses consider various statistical approaches to
estimation of Rt and discuss comparative performance on simulated epidemics with due atten-
tion paid to practical considerations for implementing differing estimation strategies. See also
Parag et al. (2022) who discuss use of epidemic growth rates as an alternative to reproduction
numbers.

It goes without saying that estimates of R critically depend on the nature of available data on
infection counts and their sequelae. As is widely acknowledged, a critical issue at the beginning
of an epidemic is the paucity of high-quality information that allows precise statistical estimation
under any approach. An intuitive strategy, direct counting of secondary cases linked to each index
infected, is especially prone to undercounting in such circumstances, especially before investi-
gations can be informed by detailed understanding of transmission pathways and the clinical
spectrum of infection. Ecological methods for analysis of time series of case numbers are therefore
a mainstay of estimation approaches (Cori et al., 2013; Dietz, 1993; Gostic et al., 2020; Wallinga &
Teunis, 2004). While incomplete ascertainment will not introduce bias if the proportion of infec-
tions ascertained (and the clinical stage at which they are ascertained) remains constant from one
generation of infection to the next (Lipsitch et al., 2003), this circumstance is unlikely to be met
as enhanced clinical awareness, testing effort and public health surveillance capacity contribute
to improvements in ascertainment over time (Pitzer et al., 2020).

Using observed infection numbers may be highly misleading as a basis for estimating Rt when
infection testing has been so variable not only over time but also geographically and demograph-
ically. Given the inadequacy of surveillance for monitoring population prevalence of infection, it
is attractive to exploit data that may be less subject to inaccurate and unreliable reporting, such
as deaths or hospitalizations due to COVID-19. Unfortunately, deaths are also subject to inaccu-
racies with considerable evidence of both underreporting and variable reporting delays (Jewell
et al., 2020), while clinical criteria for hospitalization may also change as hospitals approach
capacity limits or as clinical management strategies improve in ambulatory and other care set-
tings. Furthermore, the use of COVID-19 deaths or hospitalizations inevitably introduces a longer
lag after infection so that ‘real-time estimation’ reflects transmission patterns as long as a month
previously. Differentiating genuine reductions in transmission intensity from biases similar to
censoring, due to the delayed presentation of cases that were recently infected, poses further dif-
ficulty for which statistical deconvolution approaches remain underdeveloped (Miller, Hannah,
et al., 2020). As discussed below, this challenge limits the value of transmission intensity estimates
in informing real-time public health policy changes.

Gostic et al. (2020) provide a detailed discussion of additional sources of bias in estimation of
Rt. Reconstructing ‘true’ infection counts over time requires an accurate description of the delay
distribution between infection and detection and an allowance for (right) truncation at time t.
Furthermore, Rt fundamentally depends on the generation interval distribution that describes
the time between infection of an index case and a subsequent transmission event to a suscep-
tible. This is often approximated by the serial distribution, which measures the time between
onset of symptoms of the index case and infected susceptible. The latter is observable, in princi-
ple, whereas the former is usually not directly calculable. While these two distributions have the
same mean, their variance (and form) is different, and this misspecification introduces bias in
estimation of Rt (typically away from the null value of Rt = 1, and increasing with more extreme
values of Rt). Smoothing of observed infection counts is usually needed to accommodate stochas-
ticity in surveillance patterns and this introduces further potential for bias. We emphasize that the
best estimation strategy in the world cannot overcome inadequate infection surveillance systems
whose sampling and delay characteristics vary over space and time.
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4 CORRELATES FOR CHANGES IN RT

A major complexity in understanding the association between population characteristics/policies
and changes in Rt is the multifactorial nature of the measure, as noted in Section 1. Quite dif-
ferent ‘correlates’ may exist that reflect their impact on (a) mixing patterns, (b) susceptibility
measures and (c) the duration of infectiousness, in some instances in near-real time. We con-
sider each of these potential associations here. Note that there has been significant work done on
each of these questions by exploiting various dynamic mathematical models of disease spread.
Here, however, we focus on the effect of correlate changes in the field, where it is much harder
to obtain high-quality evidence, and interpret what is observed causally. There is insufficient
space to comment on each of these illustrations in detail and each has their individual
strengths and weaknesses. We make some brief remarks regarding inference associated with
each approach.

The first association is illustrated by analyses that exploit Apple Maps routing-based mobility
data to show quite varied relationships between Rt and mobility measures in different locales. As
one example, Miller, Foti, et al. (2020) examined the association of mobility with estimates of Rt
across various states in the United States during the early stages of the pandemic in early 2020.
Here, mobility was captured through a measure of relative routing volume (RRV) that captures
relative changes in requests for directions in Apple Maps as compared to a baseline date of 13
January 2020, prior to the onset of the pandemic in the United States.

Miller et al.’s Figure 2 (2020b) is a version of a ubiquitous plot—seen in many sources—of
changes in estimated Rt over time in various US states in the early stages of the pandemic. Of
more interest, their Figure 3 (reproduced here, in part, as Figure 1) compares these Rt estimates
with RRV for four specific states. The association between estimated Rt and reduction in RRV
varies considerably across the states, with the estimated Rt falling below one at different lev-
els of RRV depending on the state. For Louisiana, Rt is reduced to one when RRV falls to 65%
(58–75%) of baseline levels. New York’s Rt falls below one only when RRV is reduced to 48%
(43–56%) of baseline. Reductions in RRV below 80% of baseline delivered diminishing returns in
reducing Rt in Louisiana, while the slope in Massachusetts was maximized at RRV around 50% of
baseline.

F I G U R E 1 Miller, Foti, et al. (2020). Left: Inferred relationship between the reproduction number and
mobility volume change, for four US states. Right: The multiplier effect on initial reproductive number estimates
as a function of relative change in mobility from baseline for the same four US states. In both figures, baseline
refers to 13 January 2020. Relative mobility after that date is based on this baseline.
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In chronological time, Figure 1 should be read from right to left as March 2020 was a period of
decreasing mobility over that month. The observed relationships may not be a reasonable descrip-
tion of what may happen to Rt ‘in reverse’, that is, in periods where mobility increases as social
restrictions are lifted. Clearly, an important goal is to understand the ‘left to right’ relationship
sufficiently well to develop strategies for easing restrictions that increase mobility while at the
same time minimizing increases in Rt.

It goes without saying that Figure 1 represents associations rather than establishing a for-
mal causal relationship. It is important not to ignore cautionary lessons learned regarding the
difficulty of causal inference from observational, indeed here ecological, associations. There
have been other analogous efforts to establish links between various population mixing factors
associated with transmission and estimates of Rt. For example, Unwin et al. (2020) model a
relationship between infection transmission and mobility measures in the United States from
Google’s COVID-19 Mobility Report using both COVID-19 infection and mortality counts. Here,
mobility is similarly measured as a percentage change (from an appropriate baseline) in the num-
ber of visits to various venues including grocery markets, retailers, parks, transit stations, work
sites, etc. Mobility, infection and mortality data were aggregated at the US state level. The authors
ultimately claim, for example, that ‘if mobility stopped entirely (100% reduction in average mobil-
ity), then Rt would be reduced by 55.1% [26.5%–77.0%]’. However, such an estimate cannot be
interpreted causally due to the role of other factors. Any such estimate and related uncertainty in
inference are sensitive to model selection in a variety of ways.

Several researchers have provided more sophisticated analyses of this kind that use simi-
lar proxies for population mobility. Specifically, Brooks-Pollock et al. (2021) use data from the
2010 UK Social Contact Survey, coupled with Google community mobility reports, to estimate Rt,
exploiting UK death data in March 2020 for calibration. This approach is then used to quantify the
impact of various social distancing policies by allowing the latter to modify the rate of social con-
tacts. These kinds of analyses are essentially retrospective in nature and remain subject to causal
inference challenges.

The second kind of correlate relationship is illustrated by examining the impact of vaccina-
tion programmes on transmission. Figure 2 reproduces a graphic of Segal (2021) that compares
the trajectory of Rt for 40 days in two distinct periods in Israel. The second wave reflects the
changes in Rt after October 2020 when shelter-in-place restrictions were lifted, a period that
saw Rt increase from about 0.7 to 1.2 in about 6 weeks. The third wave curves show analogous
changes in Rt after exiting ‘lockdown’ in early Spring 2021. A critical difference between these
two periods is that vaccinations were being administered around and after the peak of the third
wave whereas there were no available vaccines in October and November 2020. Of course, vac-
cine administration did not occur overnight to the same extent as easing restrictions did; other
data (from the Israel Ministry of Health website, not shown here) indicate that about 5% of the
Israeli population had received one vaccination dose by the beginning of January 2021, rising to
between 50% and 60% by mid-March (for two doses, the analogous figures are close to 0% at the
beginning of 2021, rising to about 45% by mid-March), with both increases relatively linear in
time; during this period, about 65% of the population was eligible for vaccination due to age and
prior SARS-CoV-2 restrictions. This period essentially covers the 40-day period associated with
the third wave in Figure 2. In principle, one can attempt to quantify the pattern of reduction in
Rt corresponding to increases in population vaccination percentages, in a manner analogous to
Figure 1 for a mobility measure. However, such a strategy is fraught with difficulty, at least when
applied to a single example: (a) The levels of natural immunity were naturally higher as the third
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F I G U R E 2 Israel reproductive number estimates per Segal (2021) for two periods where lockdown
restrictions were eased: October 2020 forward (second wave) and mid-January 2021 forward (third wave).

wave progressed as compared to the second wave, (b) policy and population responses to lock-
down easing may have differed across the two waves (particularly given the experience of the
second wave leading to large outbreaks) and (c) the possibility that mixing grew faster after the
third wave as compared to the second because of awareness of increasing vaccine administration.
Nevertheless, the impact of increasing vaccination coverage, essentially by reducing suscepti-
bles, appears dramatic and encouraging, but quantifying the ‘vaccination effect’ on Rt remains
challenging.

There have been fewer field investigations of the third influence on Rt, namely interven-
tions that shorten the effective period of infectiousness. One such approach is evidenced by
attempts to capture the impact of imposing contact tracing, community testing and case iso-
lation on transmission. For example, Kendall et al. (2020) examine the effect of the roll out
of the National Health Service Test and Trace programme on the Isle of Wight in May 2020.
Their analysis estimated a greater than 50% reduction in Rt which may be attributable, in
part at least, to the intervention effort. However, this differs from the two previous examples
in that the intervention, or putative correlate for changes in Rt, is binary—it is a compari-
son of a test and trace programme versus the status quo. There is no continuous ‘dial’ of how
levels of contact tracing and testing modulate the value of Rt in a community quantitatively,
and thus, no information on what might be important targets for community test and trace
efforts.

The Isle of Wight example further reflects significant challenges to attempts to ascertain
markers for Rt and changes thereof. First, quantification of the association between community
measures and estimates of Rt is rarely simple, as reflected by both the mobility and vaccination
examples. Relationships are unlikely to be linear and are potentially influenced by other local
characteristics, making it difficult to isolate the impact of a single putative marker for disease
transmission. Second, as noted above, associations are often made ecologically in large groups,
thereby making causal inferences much harder to support, and transportability of effects likely
less successful. Effect modification of relationships between a community marker and Rt may be
even harder to quantify but are no less important for policy decisions.
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5 SUMMARY

A primary lesson of the pandemic has been the need to move extremely rapidly in times of early
exponential growth—even a few days can make a substantial difference in averting infections.
This raises a concern as to whether calculation of Rt, which at best reflects infection patterns some
weeks in the past, is of value to policymakers who may find themselves always chasing the curve.
In addition, outbreaks are often geographically variable and the locality of an Rt estimate may
not match the area where interventions are targeted. Perhaps, it is the detection and quantifica-
tion of local changes in Rt instead of, or at least in addition to, absolute levels, that may be more
useful in influencing policy decisions. Many comparisons of locations with apparently similar lev-
els of estimated Rt exhibit different transmission patterns subsequently. In many cases, attempts
to infer signals from such comparisons often do not allow for the role of chance in epidemic
spread.

Despite valiant attempts, estimation of Rt based on observed case numbers is always likely to
be subject to substantial error, particularly in situations where asymptomatic transmission plays
a major role. To be fair, the reservations expressed in these paragraphs apply similar to the use
of other quantitative measures of transmission—based on inadequate, and likely inaccurate, epi-
demiologic data—to respond to rapidly changing conditions. A fundamental lesson from almost
all infectious disease outbreaks is that public health responses must be mounted before any sig-
nificant evidence of transmission is evident. It is unclear whether policymakers, and the public,
are willing to accept such actions in the absence of immediate evidence of overt disease spread,
but the consequences of inaction have been demonstrated time and again.

With the strong emphasis on Rt among policymakers and the public, valid and direct epi-
demiologic measures of community SARS-CoV-2 infection rates received less emphasis than
might be ideal, at least early in the epidemic. Estimates of community transmission and sero-
prevalence were often initially based on convenience sampling rather than population-based
strategies. It is challenging to interpret estimates of infection intensity when the latter neces-
sarily were based on testing data in circumstances where testing strategies varied significantly
over time and locale depending on a host of factors, not the least the availability of tests in the
early stages of the pandemic. Similar considerations affected ad hoc approaches to seropreva-
lence. The use of population sampling methods has been the exception rather than the norm.
It is remarkable that this was not necessarily the case in earlier pandemics when resources,
technology and understanding of survey methodology were much less advanced, and the nature
of the infectious agent was less well characterized. For example, in the winter of 1918–1919,
the US Public Health Service carried out a large door-to-door survey, with a sample size that
exceeded 145,000, to measure the morbidity and mortality of the 1918–1919 influenza pan-
demic (Morabia, 2020). With the exception of the UK REACT study (Riley et al., 2020), few
countries have launched comprehensive, systematic surveillance of SARS-CoV-2 active infec-
tion (or seroprevalence) to obtain an unbiased view of transmission intensity, and thus the
need for non-pharmaceutical interventions to mitigate risk. Of note, provided study procedures
achieve a fast turnaround in processing specimens, changes in infection prevalence can be
detected in near real-time, affording an earlier view into transmission dynamics than Rt esti-
mates that must inherently be delayed by at least one generation of infection; downward changes
in prevalence of active infection necessarily indicate R < 1, whereas increases indicate R > 1.
Information on seroprevalence is also of great importance to other aspects of epidemiologic stud-
ies and public health response, for instance providing a denominator to enable estimation of
infection-to-hospitalization and infection-to-fatality ratios (O’Driscoll, Dos Santos, et al., 2020).
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A fundamental approach to future outbreak responses must surely stress the enormous value
of basic—but high quality—epidemiological surveillance data that effectively captures ‘how,
when, and why’ infections are occurring, rather than remaining ‘blind’ and overly dependent on
predictive models.
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