
UNIVERSITY OF CALIFORNIA

Los Angeles

Explainable Artificial Intelligence for Graph Data

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Shichang Zhang

2024

© Copyright by

Shichang Zhang

2024

ABSTRACT OF THE DISSERTATION

Explainable Artificial Intelligence for Graph Data

by

Shichang Zhang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Yizhou Sun, Chair

The development of artificial intelligence (AI) has significantly impacted our daily lives

and even driven new scientific discoveries. However, the modern AI models based on deep

learning remain opaque “black boxes” and raise a critical “why question” – why are these AI

models capable of achieving such remarkable outcomes? Answering this question leads to

research on Explainable AI (XAI), which offers numerous benefits, such as enhancing model

performance, establishing user trust, and extracting deeper insights from data. While XAI

has been explored for some data modalities like images and text, relevant research on graph

data, a more complex data modality that represents both entities and their relationships, is

underdeveloped. Given the ubiquity of graph data and their prevalent applications across

main domains including science, business, and healthcare, XAI for graph data becomes a

critical research direction.

This thesis aims to address the gap in XAI for graph data from three complementary and

equally important perspectives: model, user, and data. Accordingly, my research advances

XAI for graph data by developing: (1) Model-oriented explanation techniques that illuminate

the mechanism and enhance the performance of state-of-the-art AI models on graph data. (2)

ii

User-oriented explanation approaches that offer intuitive visualizations and natural language

explanations to establish user trust in graph AI models for real-world applications. (3)

Data-oriented explanation methods that identify key patterns and extract insights from graph

data, potentially leading to new scientific discoveries. By integrating these three perspectives,

this thesis enhances the transparency, trustworthiness, and insightfulness of AI for graph

data across domains and applications.

iii

The dissertation of Shichang Zhang is approved.

Christos Faloutsos

Cho-Jui Hsieh

Wei Wang

Yizhou Sun, Committee Chair

University of California, Los Angeles

2024

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Background . 1

1.2 Thesis Summary . 2

I Explanations Elucidate Model Mechanisms 5

2 Explain GNNs with Structure-aware Cooperative Games 6

2.1 Introduction . 6

2.2 Preliminaries . 8

2.2.1 Graph Neural Networks . 8

2.2.2 Cooperative Game Theory . 9

2.3 GStarX: Graph Structure-aware Explanation 11

2.3.1 GNN Explanation via Feature Importance Scoring 11

2.3.2 Scoring Functions from Cooperative Games 12

2.3.3 The HN Value . 14

2.3.4 GNN Message Passing and The HN Surplus Allocation 17

2.3.5 The GStarX Algorithm . 18

2.3.6 GStarX for Node Classification . 20

2.4 Evaluation . 20

2.4.1 Experiment Settings . 20

2.4.2 Evaluation Results . 24

2.4.3 Ablation Studies and Analysis . 28

v

2.5 Related Work . 30

2.6 Discussion . 32

II Explanations Establish User Trust 33

3 Path-based GNN Explanation for Link Prediction 34

3.1 Introduction . 34

3.2 Related Work . 37

3.3 Preliminaries . 39

3.4 PaGE-Link: Path-based GNN Explanation for Link Prediction 41

3.4.1 Link-Prediction Explanation . 41

3.4.2 K-core Pruning . 44

3.4.3 Heterogeneous Path-Enforcing Mask Learning 45

3.4.4 Mask Optimization and Path Generation 48

3.4.5 Complexity Analysis . 49

3.5 Evaluation . 50

3.5.1 Datasets . 51

3.5.2 Experiment Settings . 53

3.5.3 Algorithmic Evaluation . 54

3.5.4 Human Evaluation . 56

3.6 Discussion . 57

III Explanations Extract Data Insights 58

vi

4 Predicting and Interpreting Energy Barriers of Metallic Glasses with GNNs 59

4.1 Introduction . 59

4.2 Related Work . 63

4.2.1 GNN Explanation . 64

4.3 Problem Setup and Preliminaries . 65

4.3.1 EB Prediction with GNNs . 65

4.3.2 Orthogonality and Invariance . 65

4.3.3 GNNExplainer . 67

4.4 SymGNN: Symmetrized GNNs . 67

4.4.1 Theory of Symmetrization Over O(3) 68

4.4.2 Symmetrized GNN . 69

4.4.3 Computation Time Analysis . 71

4.4.4 Expressiveness Analysis . 72

4.4.5 Explanations for Structure-EB Relationship 73

4.5 Prediction Evaluation . 74

4.5.1 Dataset . 74

4.5.2 Experiment Settings . 76

4.5.3 Prediction Results . 78

4.5.4 Computation Time Comparison . 79

4.5.5 Abalations and Further Comparisons 79

4.6 Explanation Evaluation and Analysis . 82

4.6.1 Explanation Visualization and MRO 82

4.6.2 Edge Importance Explanation and TDA 83

vii

4.7 Discussion . 84

5 Motif Mining via Clustering Representations of Graphs 86

5.1 Introduction . 86

5.2 Related Work . 88

5.3 Micro-Graph: Motif Mining via Clustering Representations of Graphs 90

5.3.1 Probabilistic Modeling . 90

5.3.2 Motif Descriptor Inference . 91

5.3.3 Visualize and Interpret Mined Motifs 92

5.3.4 MICRO-Graph Parameter Learning 93

5.4 Evaluation . 96

5.4.1 Datasets . 97

5.4.2 Model Configuration and Implementation 98

5.4.3 Qualitative Evaluation . 99

5.4.4 Quantitative Evaluation . 101

5.4.5 Ablation Study and Analysis . 103

5.5 Discussion . 104

6 Automated Molecular Concept Generation and Labeling 106

6.1 Introduction . 106

6.2 Related Work . 109

6.3 AutoMolCo: Automated Molecular Concept Generation and Labeling 111

6.3.1 Step 1: Concept Generation . 111

6.3.2 Step 2: Concept Labeling . 112

viii

6.3.3 Step 3: CM Fitting and Concept Selection. 116

6.3.4 Iterative Concepts Refinement . 117

6.4 Evaluation . 117

6.4.1 Experiment Settings . 117

6.4.2 AutoMolCo-induced CM Performance 119

6.4.3 RQ1: Can AutoMolCo Generate Meaningful Molecular Concepts? . . 119

6.4.4 RQ2: Can AutoMolCo Assign Molecules Reasonable Concept Labels

Using Each Strategy? . 120

6.4.5 RQ3: Can AutoMolCo Produced Concepts and Labels Be Utilized To

Build an Effective CM? . 122

6.4.6 RQ4: Does Iterative Refinement Boost The Performance of AutoMolCo-

induced CM? . 123

6.4.7 RQ5: Does The AutoMolCo-induced CM Facilitate Explainable Molec-

ular Science? . 123

6.4.8 Ablation Studies . 126

6.5 Discussion . 131

7 Conclusion . 133

A Appendices . 135

A.1 Chapter 2 Appendices . 135

A.1.1 The Myerson Value, C-Shapley Value, and L-hop Graph Cutoff 135

A.1.2 More Explanation Visualizations . 142

A.2 Chapter 3 Appendices . 142

A.2.1 Proof of Proposition 3.4.1 . 142

ix

A.2.2 Theorem 3.4.3: A Detailed Version 143

A.3 Chapter 4 Appendices . 144

A.3.1 Proof of Lemma 4.4.1 . 144

A.3.2 Proof of Theorem 4.4.3 . 145

A.3.3 More Explanation Visualizations . 146

A.4 Chapter 5 Appendices . 146

A.4.1 Derivations of The Log-likelihood and The Posterior Probability . . . 146

A.4.2 Derivation of The Log-likelihood Lower Bound with Optimal Transport 148

A.5 Chapter 6 Appendices . 150

A.5.1 Decision Tree Visualizations . 150

References . 153

x

LIST OF FIGURES

1.1 Ubiquitous applications of AI on graph data. 2

1.2 Three complementary perspectives of XAI. 3

2.1 Explanations on graphs with structure-aware values 8

2.2 Explanations on sentences from GraphSST2 . 24

2.3 Explanations on a mutagenic molecule in MUTAG 25

2.4 H-Fidelity vs. sparsity for GStarX and baselines 26

3.1 Path-based explanations generated by PaGE-Link 35

3.2 Accuracy and run-time comparison between PaGE-Link and baselines. 37

3.3 Illustration of the PaGE-Link framework. 41

3.4 The proposed augmented graph AugCitation and the synthetic graph UserItemAttr. 50

3.5 Explanation visualization and comparison between PaGE-Link and baselines. . . 52

3.6 Top paths selected by PaGE-Link . 53

4.1 EBs, mobility, and MG physical properties. 60

4.2 Example graphs demonstrating model expressiveness. 61

4.3 Illustration of the SymGNN framework. 70

4.4 Global and local explanation visualizations for SymGNN on MG node 1501. . . 82

4.5 Analysis of explanations for SymGNN prediction. 83

5.1 Difference between the traditional motif definition and our motif definition. . . . 88

5.2 Probabilistic graphical model of the graph generating process in MICRO-Graph. 90

5.3 The MICRO-Graph framework. 91

xi

5.4 Frequent motifs mined from the HIV chemical compound dataset. 100

5.5 Visualization of the top 3 most similar subgraphs corresponding to motifs. . . . 101

5.6 Frequent motifs mined from the DD protein dataset. 102

5.7 MICRO-Graph ablation on K . 105

6.1 The prediction process of molecule properties is greatly illuminated with AutoMolCo.107

6.2 The AutoMolCo framework. 111

6.3 Prompts for concept generation and labeling on FreeSolv. 114

6.4 Prompts for generating concept labeling functions in Python code on FreeSolv. . 114

6.5 Prompts for calling the external tool RDKit to label concepts on FreeSolv. . . . 115

6.6 RQ1: Concepts selected by AutoMolCo in three refinement iterations on FreeSolv. 121

6.7 RQ4: Iterative refinement improves CM performance for classification tasks. . . 123

6.8 RQ5: Coefficients of the logistic regression model on BBBP with concepts refined

by AutoMolCo after three iterations. 125

6.9 RQ5: Coefficients of the linear regression model and the decision tree on FreeSolv.126

6.10 Intervention on logP of diphenylamine for predicting solubility with MLP 127

6.11 Correlation between the ground truth labels and concept labels generated using

molecule names or SMILES strings. 129

A.1 Marginal contribution coefficients comparison 139

A.2 More explanations on mutagenic molecules from the MUTAG 140

A.3 More explanations on sentences from GraphSST2. 141

A.4 Local and global explanation visualizations for SymGNN on more MG nodes. . . 151

A.5 The decision tree for AutoMolCo-induced CM classification on BBBP. 152

A.6 The decision tree for AutoMolCo-induced CM classification on BACE. 152

xii

LIST OF TABLES

2.1 GStarX experiment dataset statistics. 21

2.2 GStarX experiment GCN hyperparameters. 22

2.3 GStarX experiment GIN and GAT hyperparameters 22

2.4 The best H-Fidelity of different Sparsity for each dataset. 27

2.5 Ablation on GNN architectures for GStarX. 28

2.6 Comparison of average running time on 50 graphs in BBBPbetween GStarX and

baselines. 28

2.7 The entropy-based sparsity scores of GStarX . 30

3.1 Methods and desired explanation properties . 39

3.2 PaGE-Link notations. 40

3.3 Time complexity of PaGE-Link and baseline methods. 49

3.4 Hyperparameters for constructing AugCitation and UserItemAttr 52

3.5 Performance comparison in ROC-AUC scores of learned masks between PaGE-Link

and baselines. 54

3.6 Performance comparison in path hit rates between PaGE-Link and baselines. . . 55

4.1 Characteristic comparison of different methods. 62

4.2 Theoretical time complexity of SymGNN and baselines. 72

4.3 Testing scores comparison of SymGNN, the molecular dynamics (MD) method,

and other ML methods. 78

4.4 Training time comparison for one epoch between SymGNN and baselines. 79

xiii

4.5 Inference time comparison on an MG with 3,000 atoms between SymGNN and

baselines. 79

4.6 Performance comparison of the original and new dataset splits between SymGNN

and SchNet. 80

4.7 SymGNN performance ablated on different number of orthogonal transformations. 81

4.8 SymGNN explanation and optimal cycles. 84

5.1 Performance comparison between MICRO-Graph and baselines on chemical com-

pound datasets. 103

5.2 Performance comparison between MICRO-Graph and baselines on protein datasets.103

5.3 MICRO-Graph ablation on Lcut . 104

6.1 Performance comparison of the AutoMolCo-induced CM with baselines. 120

6.2 RQ2: Percentage of concepts with high correlations with the ground-truth. . . . 122

6.3 RQ3: AutoMolCo-induced CM performance with different labeling strategies and

prediction models. 122

6.4 AutoMolCoablation on LLMs (GPT-3.5 vs. Claude-2). 127

6.5 AutoMolCoablation on input formats (SMILES strings vs. molecule names). . . 128

6.6 AutoMolCowith combined labeling strategies. 130

6.7 Performance comparison of the best AutoMolCo-induced CM vs. LLM ICL in

accuracy on BBBP and BACE. 130

6.8 Performance comparison of the AutoMolCo-induced CM with different prediction

models vs. LLM ICL in accuracy on BH and SM. 131

xiv

ACKNOWLEDGMENTS

This thesis represents five years of work with the support of many people along the way,

without their support, the work would not have been possible. The first and foremost among

them is my Ph.D. advisor, Yizhou Sun. I am profoundly grateful to Yizhou for giving me

enough flexibility to explore whatever research topics I got interested in, encouraging me to

ask questions that I did not know how to begin to answer, and providing hands-on guidance

whenever I needed it. Her mentorship has been invaluable. She has been beyond the best

advisor I could have imagined before starting my Ph.D. journey. I thank her for everything.

I also want to extend my gratitude to my committee members: Wei Wang, Cho-Jui Hsieh,

and Christos Faloutsos, for their advice and mentorship. Their thoughtful feedback and

unwavering support have been crucial to my research progress.

I would like to give special thanks to several people to whom I am deeply grateful. The

first is John (Junghoo) Cho, who I consider my unofficial committee member. If John were

still healthy and with us, I would have definitely invited him to join my committee. I can

still recall many enjoyable discussions I had with him in my first year of Ph.D., where John

showed his passion and meticulousness about research. John set a role model for me of what

a true intellectual looks like. I hope in 10 to 20 years, I can become an intellectual like him.

The second is Ziniu Hu, who is my good friend and long-term collaborator. Ziniu taught

me many practical research skills that helped me start my first research project. He has

been continually sharing exciting research ideas with me to date. Our friendship is marked

by countless nights stayed up late together in the ScAI lab until way past midnight, and

numerous intense research discussions happened while studying, eating, and walking together.

Back in the day, we disagreed about 50% of the time, and throughout the past five years,

that percentage has been getting lower and lower.

The third is Chumeng Cheng, who I married during my Ph.D. and will spend the rest

of my life with. Unlike those already mentioned, She has not helped me directly with my

xv

academic research, but she has been supporting and loving me in all other aspects of life.

Her optimism and liveliness have carried me through these years. I would not know how to

live a fulfilling life without her.

This thesis is a joint effort of many collaborators, including Soji Adeshina, Haoyu Li,

Yozen Liu, Neil Shah, Xiang Song, Arjun Subramonian, Fang Sun, Longwen Tang, Qianli Wu,

Botao Xia, Jiani Zhang, Zimin Zhang, Da Zheng, and Yizhou, Christos, and Ziniu mentioned

above. Thanks to their intellectual input and time commitment. Special thanks to Neil for

his mentorship on multiple projects. I truly enjoyed our collaboration and have passed down

the skills he taught me to my mentees. Another special thanks to Jiani for her mentorship

and the joyful activities she organized, which provided a refreshing break from work.

Also, I owe many thanks to the wonderful ScAI lab members. Thanks to Yunsheng Bai,

Xuelu Chen, and Junheng Hao for helping me to embark on my graduate studies. Thanks

to Xiusi Chen, Kewei Cheng, Song Jiang, Ziniu Hu, Zijie Huang, Roshni Iyer, Xiao Luo,

Mingyu Ma, Arjun Subramonian, Zongyue Qin, Yewen Wang, Derek Xu, and Zhiping Xiao

for engaging in daily research and relaxing discussions. Thanks to Yuanzhou Chen, Jingru

Gan, Weikai Li, Zongyu Lin, Fang Sun, Xiaoxuan Wang, Yijia Xiao, Zeyuan Xu, Chenchen

Ye, and Yanqiao Zhu for bringing freshness and joy to my workdays. Thanks to Ling Ding for

the spiritual fellowship; I hope she finds joy and peace in the love of God. Thank everyone for

their friendship and for those nice meals and great adventures we had together. It has been

an incredible journey being part of the ScAI lab. The ScAI lab has truly become a family. A

family that I am so lucky to be a part of, and a family that is so difficult to say goodbye to.

Thanks to the J.P. Morgan Chase AI Fellowship and the Amazon Science Hub Fellowship

for supporting my research. Thanks to Yanlong Ma for being a companion since middle

school, who has attended the same six different schools with me and supported me for the

past 17 years. Thanks to my parents for their faith and support in whatever I choose to do.

Thanks to the brothers and sisters from the Alhambra Christian Fellowship and Peninsula

Church in Christ for their care, support, and for bringing me into God’s love. Glory to God.

xvi

VITA

Expected Ph.D. in Computer Science, University of California, Los Angeles, CA

Apr. 2019 M.S. in Statistics, Stanford University, Stanford, CA

May 2017 B.A. in Statistics, University of California, Berkeley, CA

Honors: Honors in Statistics, High Distinction

PUBLICATIONS

Haoyu Li∗, Shichang Zhang∗, Longwen Tang, Yizhou Sun. “Predicting and Interpreting

Energy Barriers of Metallic Glasses with Graph Neural Networks” (ICML 2024, ∗equal

contribution)

Xiaoxuan Wang∗, Ziniu Hu∗, Pan Lu∗, Yanqiao Zhu∗, Jieyu Zhang, Satyen Subramaniam,

Arjun R Loomba, Shichang Zhang, Yizhou Sun, Wei Wang. “SciBench Evaluating College-

LevelScientific Problem-Solving Abilities of Large Language Models” (ICML 2024, ∗equal

contribution)

Yewen Wang, Shichang Zhang, Junghoo Cho, Yizhou Sun. “Laplacian Score Benefit

Adaptive Filter Selection for Graph Neural Networks” (SDM 2024)

Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh Chawla, Neil Shah, Tong

Zhao. “Linkless Link Prediction via Relational Distillation” (ICML 2023)

xvii

Shichang Zhang, Jiani Zhang, Xiang Song, Soji Adeshina, Da Zheng, Christos Faloutsos,

Yizhou Sun. “PaGE-Link: Graph Neural Network Explanation for Heterogeneous Link

Prediction” (WWW2023)

Shichang Zhang, Yozen Liu, Neil Shah, Yizhou Sun. “Explaining Graph Neural Networks

with Structure-Aware Cooperative Games” (NeurIPS 2022)

Shichang Zhang, Yozen Liu, Yizhou Sun, Neil Shah. “ Graph-less Neural Networks, Teach

Old MLPs New Tricks via Distillation" (ICLR 2022)

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, Neil Shah. “ Graph

Condensation for Graph Neural Networks" (ICLR 2022)

Shichang Zhang∗, Ziniu Hu∗, Arjun Subramonian, Yizhou Sun. “Motif-driven Contrastive

Learning of Graph Representations" (TKDE, ∗equal contribution)

xviii

CHAPTER 1

Introduction

1.1 Background

Artificial Intelligence (AI) has made remarkable advancements and achieved human-level

or even superhuman performance in diverse domains, ranging from image recognition and

chatbots to game-playing and new material structure predictions. These developments have

significantly impacted our daily lives and even driven new scientific discoveries. However, the

impressive AI achievements are largely based on the development of deep learning, which

makes AI models remain opaque and difficult to interpret, often referred to as “black boxes”.

The lack of explainability in these black-box AI models has raised a critical “why question”

that concerns researchers, practitioners, and policymakers – why are these AI models capable

of achieving such remarkable outcomes? As AI models become prevalent and increasingly

influence critical decision-making processes in various domains, understanding them becomes

imperative.

Answering the why question leads to research on Explainable AI (XAI), which offers

numerous benefits, such as enhancing model performance, establishing user trust, and

extracting deeper insights from data. While the field of XAI has gained traction in recent

years, with researchers exploring various techniques to explain AI models, the focus has

predominantly been on data modalities such as images and text. However, the domain of

graph data, which represents not only entities but also their relationships, has received little

attention in the context of XAI. Given the ubiquity of graph data in many domains with

1

Computer
Accessories

Electronics

Recommend

Communities

Mutagenic

Energy = ?

Figure 1.1: Ubiquitous applications of AI on graph data. Detect communities on social
networks. Recommend products to customers. Predict the atom energy of materials. Classify
properties of molecules.

numerous real-world applications, such as analysis of social networks, recommendations on

e-commerce graphs, property prediction of molecule graphs, and many more (Figure 1.1),

XAI for graph data emerges as a critical research direction.

1.2 Thesis Summary

This thesis aims to address the gap in XAI for graph data from three complementary and

equally important perspectives: model, user, and data (Figure 1.2). These perspectives are

integral to the entire AI pipeline and form the foundational pillars of the XAI research. Firstly,

the model serves as the core for prediction, generation, or any other tasks for which it is

designed. Unveiling its mechanism is a key challenge that XAI needs to address, where results

can be used for debugging models and further enhancing model performance. Next, the user,

as the stakeholder of the explanations, must find them comprehensible. A guiding principle

for XAI researchers, akin to “Explain the moon landing to a 6-year-old”, underscores that an

explanation is considered successful only if it is clear enough to establish trust among users,

2

Explanation

DataUser

Model

Figure 1.2: Three complementary perspectives of XAI.

including those without any technical background. Finally, the data underpins the model

and provides the knowledge that the model learns. Upon revealing the model’s underlying

mechanisms, explanations are expected to delve deeper and extract insights from the data,

especially insights that domain experts had not anticipated. This aspect is particularly crucial

for scientific data that often appears as graphs, where such unexpected discoveries could lead

to significant breakthroughs.

My research advances XAI for graph data by developing novel methods and frameworks

regarding these three perspectives:

1. Model-oriented explanation techniques that illuminate the mechanisms and enhance the

performance of AI models on graph data. Particularly, I focus on the state-of-the-art

Graph Neural Network (GNN) models and propose a novel structure-aware approach

based on cooperative game theory to explain the GNN prediction process, especially

how GNN message passing works.

3

2. User-oriented explanation approaches that offer intuitive visualizations and natural

language explanations to establish user trust. A specific application involves recom-

mending items to users as link predictions on e-commerce graphs. My explanations

take the form as intuitive paths connecting the source and target of the predicted link

and can be clearly expressed in natural language for non-technical users.

3. Data-oriented explanation methods that identify key patterns and extract insights from

graph data. For this perspective, I design both post hoc explanation methods as well

as inherently explainable models tailored for scientific graph data. These methods have

been applied to material science and molecular science problems, producing purely

AI-based explanations without any human knowledge inputs besides data but match

domain experts’ knowledge.

By integrating these three complementary perspectives, this thesis contributes to XAI

by enhancing the transparency, trustworthiness, and insightfulness of AI models for graph

data across domains and applications. Moreover, it can facilitate effective model debugging

and error analysis, ensure fairness in the decision-making processes, promote the responsible

deployment of AI systems, and potentially lead to new scientific discoveries.

4

Part I

Explanations Elucidate Model

Mechanisms

5

CHAPTER 2

Explain GNNs with Structure-aware Cooperative Games

2.1 Introduction

Explainability is crucial for complex machine learning (ML) models in sensitive applica-

tions, helping establish user trust and providing insights for potential model improvements.

Many efforts focus on explaining models on images, text, and tabular data. In contrast, the ex-

plainability of models on graph data is yet underexplored. Since explainability can be especially

critical for many graph tasks like drug discovery, and interest in deep graph models is growing

rapidly, further investigation of graph explainability is warranted. In this work, we study

graph ML explanation with GNNs as the target models, given their popularity and widespread

use for graph machine learning tasks [YHC18, SLY21, WSZ20, TLS20, TLH22, ZJS21].

In ML explainability, important features are identified, and the Shapley value [Sha53] has

been deemed as a “fair” scoring function for computing feature importance. Originally from

cooperative game theory, many values, including the Shapley value, have been proposed for

allocating a total payoff to players in a game. When used for scoring the feature importance

of a data instance, the model prediction is treated as the total payoff and the features are

considered as players. In particular, for an instance with n features {x1, . . .xn}, the Shapley

value of its ith feature xi is computed via aggregating m(i, S), which are the marginal

contributions of xi to sets of other features xS ⊆ {x1, . . . ,xn} \ {xi}. Each xS is called a

coalition. Each m(i, S) is computed as the difference between model outputs for xS ∪ {xi}

and xS, e.g., difference of probability belonging to a target class for these two set of features,

6

and it is meant to capture the interaction between xi and xS. The Shapley value is widely

used for explaining ML models on images, text, and tabular data, when the features are

pixels, words, and attributes [LC01, LL17].

The Shapley value has recently been extended to explain GNNs on graphs through feature

importance scoring as above, where features are nodes [DM21] or supernodes [YYW21].

We argue that the Shapley value is a non-ideal choice for (super)node importance scoring

because its contribution aggregation is non-structure-aware. The Shapley value aggregation

assumes no structural relationship between xi and xS even though they are both parts of

the input graph (a review of the Shapley value is in Section 2.2.2). Since the graph structure

generally contains critical information and is crucial to the success of GNNs, we consider

properly leveraging the structure with a better structure-aware scoring function.

We propose Graph Structure-aware eXplanation (GStarX), where we construct a structure-

aware node importance scoring function based on the Hamiache-Navarro (HN) value [HN20]

from cooperative game theory. Recall that GNNs make predictions via message passing,

during which node representations are learned by aggregating messages from neighbors.

Message passing aggregates both feature and structure information, resulting in powerful

structure-aware models [CCV20]. The HN value shares a similar idea to message passing by

allocating the payoff surplus generated from the cooperation between neighboring players

(nodes). When used as a scoring function to explain node importance, the HN value captures

both features and structural interactions between nodes (details in Section 2.3). Figure 2.1(a)

shows an example comparing the Shapley value and the HN value. In this example, their

difference boils down to different aggregation weights of marginal contributions, where the

former is uniform and the latter is structure-aware (details in Section 2.3.2). In summary,

our contributions are:

• Identify the non-structure-aware limitation of the Shapley value for GNN explanation.

• Introduce the structure-aware HN value from cooperative game theory to the graph machine

learning community and connect it to the GNN message passing and GNN explanation.

7

“is still quite good – natured and not
a bad way to spend an hour”

spend

- good

bad

still

natured

and not

hourto an

is quite

a way

1 32

1

1 2

1 3

1 32

2

3

32

1/3

1/6

1/6

1/3

1/2

1/4

0

1/4

HN
weights

Shapley
weights

Marginal Contributions

5

6

4

1

3

2

Figure 2.1: Explanations on graphs with structure-aware values. Explanations on
graphs with structure-aware values (like HN) offer advantages over non-structure-aware values
(like Shapley). (a) Synthetic graph (left): The Shapley value assigns weights to m(i, S)
only based on size of xS, while the HN value assigns weights considering structures and in
particular gives zero weight to the disconnected xS. (b) Text graph (middle): For a
sentence classified as positive, the {"not", "good"} coalition shouldn’t be considered when
they are not connected by "bad". (c) Chemical graph (right): For a chemical graph
with mutagenic functional group -NO2, the importance of the atom N (node 1) is better
recognized if decided locally within the functional group.

• Propose a new HN-value-based GNN explanation method GStarX, and demonstrate the

superiority of GStarX over strong baselines for explaining GNNs on chemical and text

graphs.

2.2 Preliminaries

2.2.1 Graph Neural Networks

Consider a graph G with (feature-enriched) nodes V and edges E. We denote G as

G = (V ,X,A), where X ∈ Rn×d denotes d-dimensional features of n nodes in V, and

A ∈ {0, 1}n×n denotes the adjacency matrix specifying edges in E. GNNs make predictions

on G by learning representations via the message-passing mechanism. During message passing,

the representation of each node u ∈ V is updated by aggregating its own representation and

representations (messages) from its neighbors. We denote the set of neighbors as N (u). This

aggregation is recursively applied, so u can collect messages from its multi-hop neighbors and

8

produce structure-aware representations [CCV20]. With h
(l)
i denotes the representation of

node i at iteration l, and AGGR(·, ·) denotes the aggregation operation, e.g. summation,

the representation update is shown in Equation 2.1.

h(l)
u = AGGR(h(l−1)

u , {h(l−1)
i |i ∈ N (u)}) (2.1)

2.2.2 Cooperative Game Theory

A cooperative game denoted by (N, v), is defined by a set of players N = {1, . . . , n}, and

a characteristic function v : 2N → R. v takes a subset of players S ⊆ N , called a coalition,

and maps it to a payoff v(S), where v(∅) := 0. A solution function ϕ is a function maps

each given game (N, v) to ϕ(N, v) ∈ Rn. The vector ϕ(N, v), called a solution, represents a

certain allocation of the total payoff v(N) generated by all players to each individual, with

the ith coordinate ϕi(N, v) being the payoff attributed to player i. ϕ(N, v) is also called the

“value” of the game when it satisfies certain properties, and different values were proposed to

name solutions with different properties [Sha53, Tel94].

The Shapley value is one popular solution of cooperative games. The main idea is to assign

each player a “fair” share of the total payoff by considering all possible player interactions.

For example, when player i cooperates with a coalition S, the total payoff v(S ∪ {i}) may

be very different from v(S) + v({i}) because of i’s interaction with S. Thus the marginal

contribution of i to S is defined as by m(i, S) = v(S ∪ {i})− v(S). Then the formula of the

Shapley value for i is shown in Equation 2.3, where marginal contributions to all possible

coalitions S ⊆ N\{i} are aggregated. The first identify in Equation 2.3 shows that the

aggregation weights are first uniformly distributed among coalition sizes k (outer average),

9

then uniformly distributed among all coalitions with the same size (inner average).

ϕi(N, v) =

Average over k︷ ︸︸ ︷
1

n

n−1∑
k=0

Average over S s.t. |S| = k︷ ︸︸ ︷
1(

n−1
k

) ∑
S⊆N\{i}
|S|=k

m(i, S) (2.2)

=
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
m(i, S) (2.3)

The Shapley value was proposed as the unique solution of a game (N, v) that satisfies

three properties shown below, i.e. efficiency, symmetry, and additivity [Sha53]. These three

properties together are referred as an axiomatic characterization of the Shapley value. The

associated consistency properties introduced in Section 2.3.3 provides a different axiomatic

characterization.

Property 2.2.1 (Efficiency). ∑
i∈N

ϕi(N, v) = v(N)

Property 2.2.2 (Symmetry). If v(S ∪ {i}) = v(S ∪ {j}) for all S ∈ N\{i, j}, then

ϕi(N, v) = ϕj(N, v)

Property 2.2.3 (Additivity). Given two games (N, v) and (N,w),

ϕ(N, v + w) = ϕ(N, v) + ϕ(N,w)

The efficiency property states that the value should fully distribute the payoff of the game.

The symmetry property states that if two players make equal contributions to all possible

coalitions formed by other players (including the empty coalition), then they should have the

same value. The additivity property states that the value of two independent games should

be added player by player. It is the most useful for a system of independent games.

10

Games with communication structures. Although the Shapley value is widely used

for cooperative games, its assumption of fully flexible cooperation among all players may

not be achievable. Some coalitions may be preferred over others and some may even be

impossible due to limited communication among players. Thus, [Mye77] uses a graph G as

the communication structure of players to represent cooperation preference. A game with

a communication structure is defined by a triple (N, v,G), with N being the node set of G.

This game formulation is more practical than fully flexible cooperation when cooperation

preference is available. Several values with different properties have been proposed for such

games [Mye77, BOT92, Ham99, KKU06] including the HN value [HN20].

2.3 GStarX: Graph Structure-aware Explanation

2.3.1 GNN Explanation via Feature Importance Scoring

A general approach to formalize an ML explanation problem is through feature importance

scoring [LL17, DG17], where features may refer to pixels of images, words of text, or

nodes/edges/subgraphs of graphs. Let f(·) denote a to-be-explained GNN, G = (V ,X,A)

denote an input graph, and 0 < γ < 1 denote a sparsity constraint to enforce concise

explanation. GNN explanation via subgraph scoring is aimed to find a subgraph g that

maximizes a given evaluation metric Eval (·, ·, ·), which measures the faithfulness of g to G

regarding making predictions with f(·), i.e.

g∗ = argmax
g⊆G,|g|≤γ|G|

Eval(f(·),G, g) (2.4)

When the task is graph classification and f(·) outputs a one-sum vector f(G) ∈ [0, 1]C

containing probabilities for G belongs to C classes, an example Eval can be the prediction

probability drop for removing g from G, i.e. Eval(f(·),G, g) = [f(G)]c∗ − [f(G\g)]c∗ with

c∗ = argmaxc[f(G)]c.

11

In practice, since the number of subgraphs is combinatorial in the number of nodes, the

objective is often relaxed to finding a set of important nodes or edges first and then inducing

the subgraph [YBY19, LCX20, DM21]. A more tractable objective of finding the optimal set

of nodes S∗ ⊆ V 1 is given by

S∗ = argmax
S⊆V,|S|≤γ|V|

∑
i∈S

Score(f(·),G, i) (2.5)

Existing methods often boil down to Equation 2.5 with different scoring functions (Score),

and finding a proper Score is non-trivial. One example of Score is to evaluate each node i

directly as Score(f(·),G, i) = [f({i})]c∗ . However, this choice misses interactions between

nodes and corresponds to a trivial case in GNNs where no message-passing is performed for {i}.

Another possibility is to use Eval as Score, e.g., Score(f(·),G, i) = [f(G)]c∗ − [f(G\{i})]c∗ .

However, this again fails to capture interactions between nodes; for example, two nodes i

and j may be both important but also complimentary, so their contribution to G can only be

observed when they are missing simultaneously.

2.3.2 Scoring Functions from Cooperative Games

Given the challenges for defining a proper Score, solutions to cooperative games,

like the Shapley value, have been proposed with f(·) as the characteristic function, i.e.

Score(f(·),G, i) = ϕi(|G|, f(·)) [YYW21, DM21]. However, existing works only use the

non-structure-aware Shapley value. In contrast, values defined on games (N, v,G) with

communication structures G are naturally structure-aware but were never considered GNN

explanation. Below we discuss the non-structure-aware limitation of the Shapley value in

detail and motivating structure-aware values with practical examples in GNN explanation.

1A similar objective can be defined as S over edges E. We define it over nodes as nodes often contain
richer features than edges and are more flexible. One advantage of this choice will be made clear in Section
2.4.2

12

The Shapley value is defined on games (N, v), which by definition takes no graph struc-

tures. It assumes flexible cooperation between players and uniform distribution of coalition

importance that only depends on |S| (see Equation 2.3). Even if a G is given and the game is

defined as (N, v,G), the Shapley value will overlook G when aggregating m(i, S). In contrast,

structure-aware values on (N, v,G) can be interpreted as a weighted aggregation of coalitions

with more reasonable weights. Although different solutions ϕ(N, v,G) have their nuances in

weight adjustments [Ham99, HN20, Mye77, KKU06], they share two key properties: (1) the

weight is zero if i and S are disconnected because they are interpreted as players without

communication channels [Mye77], and (2) the weight is impacted by the nature of connections

between i and S because it is easier for better-connected nodes to communicate.

A synthetic example. We take the HN value (definition in Section 2.3.3) as an example

structure-aware value and compare it to the Shapley value in a simple graph in Figure 2.1(a).

To compute ϕ1(N, v,G), both values aggregates m(1, S) for S ∈ {∅, {2}, {3}, {2, 3}}. The

Shapley value first assigns a uniform weight 1
3

to three different |S|, and then splits weights

uniformly for the |S| = 1 case to be 1
6
. However, the HN value assigns weight zero for S = {3}

because 1 and 3 are disconnected in coalition {1, 3} and are assumed to be two independent

graphs that shouldn’t interact (property (1)). Their interaction is rather captured in the

S = {2, 3} case, when 1 and 3 are connected by the bridging node 2, and this case is also

down-weighted from 1
3

to 1
4
, as 3 is relatively far from 1 (property (2)).

A practical example. The good properties of structure-aware values can help explain graph

tasks. The example in Figure 2.1(b) is from GraphSST2 (dataset description in Section

2.4.1), where the graph for sentiment classification is constructed from the sentence “is still

quite good-natured and not a bad way to spend an hour” with edges generated by the Biaffine

parser [GGN18]. Assuming a model can correctly classify it as positive. Intuitively, “good”

and “not a bad” are central to the human explanation. To compute the Shapley value of the

word “good”, the coalition “not good” will diminish the positive importance of “good”, despite

the two words lacking any direct connection. A structure-aware value can instead eliminate

13

the {“not”, “good”} coalition, and only consider interactions between “not” and “good” (in

fact, “not” and any other word) when the bridging “bad” appears, hence better binding “not”

with “bad” and improving the salience of “good”. In Section 2.4.2, we revisit this example to

observe impacts of structure-awareness empirically.

2.3.3 The HN Value

Let (N, v,G) be a game with a communication structure G and S ⊆ N be a coalition. Let

S̄ = ∪i∈S{N (i)} ∪ S to be the union of S and its neighbors in G. Let S/G be the partition of

S containing connected components in G, i.e.,

S/G = {{i|i = j or i and j are connected in S by E of G}|j ∈ S}. Let G[S] be the induced

subgraph of S in G. For example, in Figure 2.1(b), when S ={“is”, “an”, “hour”}, S̄ will be

{“is”, “good”, “an”, “hour”, “spend”}, S/G will be {{“is”}, {“an”, “hour”}}, and G[S] will be the

subgraph with a two-node component
�� ��an -

�� ��hour and a single node component
�� ��is .

Definition 2.3.1 (Surplus). The surplus p(j, S) generated by a coalition S cooperating

with its neighbor j is defined as

p(j, S) = v(S ∪ {j})− v(S)− v({j}) (2.6)

Intuitively, p(j, S) is generated because S is actively cooperating. Thus, when evaluating

a fair payoff to S, a portion of p(j, S) should be added to its own payoff v(S). This idea

leads to the next definition of associated games regarding the original games, where surplus

allocation is performed.

Definition 2.3.2 (HN Associated Game). Given 0 ≤ τ ≤ 1 representing the portion of

surplus that will be allocated to a coalition S for its cooperation with other players. The HN

14

associated game (N, v∗τ ,G) of (N, v,G) is defined as

v∗τ (S) =

v(S) + τ

∑
j∈S̄\S

p(j, S) if |S/G| = 1 (2.7)

∑
T∈S/G

v∗τ (T) otherwise (2.8)

The HN value is a solution on (N, v,G). It is computed by iteratively constructing a series

of HN associated games until it converges to a limit game (N, ṽ,G). In other words, we first

construct v∗τ from v by surplus allocation. Then we construct v∗∗τ from v∗τ by allocating the

surplus generated from the v∗τ and so on. The convergence of the limit game is guaranteed

and the result ṽ is independent of τ under mild conditions as shown in [HN20]. The HN value

of each player is uniquely determined by applying ṽ to that player, i.e. ϕi(N, v,G) = ṽ({i}).

Consistency and associated games. One reason for the Shapley value’s popularity is

its axiomatic characterization, indicating that it is the unique solution that satisfies a set

of desirable properties. Then [Ham01] proposed a new axiomatic characterization of the

Shapley value based on a different associated consistency property. The consistency property

is a common analysis tool used in game theory [HM89, DM65, Sob75, Pel86]. The idea is to

analyze a game (N, v) by defining other reduced games (S, vS) for S ⊆ N , and a solution

function ϕ is called consistent when ϕ(N, v) yields the same payoff as ϕ(S, vS) on each S.

When (S, vS) is defined with desired properties, these good properties can be enforced for a

solution by requiring consistency. The associated consistency in [Ham01] is a special case of

consistency between (N, v) and only one other game (N, v∗), which is called the associated

game. [Ham01] shows that a carefully designed associated game uniquely characterizes the

Shapley value. Associated consistency is also the key idea of the HN value.

Limit game and the axiomatic characterization. The HN value is established on a

special associated game. We can actually write this associated game in a more compact

15

matrix form, where we slightly abuse notation and use v and v∗τ to represent vectors of payoffs

for all S ⊆ N under the original and associated game respectively. In other words, v(S),

which is used to represent evaluating the coalition S using the characteristic function v, now

can also be interpreted as indexing the vector v with index S.

Lemma 2.3.3. A matrix form of the associated game (N, v∗τ ,G) is given by

v∗τ = H{τ,n,G}v (2.9)

The matrix H{τ,n,G} depends on the hyperparameter τ , number of players n, and the

graph G. When these variables are clear from the context, we drop them and write v∗τ = Hv.

Please refer to [HN20] for the proof of Lemma 2.3.3.

With the matrix form, we can define the limit game.

Definition 2.3.4. Given a game (N, v,G), its limit game (N, ṽ,G) is defined by

ṽ = lim
p→∞

Hpv (2.10)

Notice that although the matrix H is constructed from the associated game and depends

on τ , the powers of H actually converge to a limit independent from τ , when τ is sufficiently

small. The general condition depends on the actual graph, but 0 < τ < 2
n

is proven to be

sufficient for the complete graph case [Ham01]. As we discussed in Section 2.3.3, the limit

game can be seen as constructing associated games repeatedly until the characteristic function

converges.

An axiomatic characterization of the HN value regarding its uniqueness is given by the

following theorem based on the limit game. The associated consistency is the core property

related to this work. We encourage the readers to check [HN20] for the other two properties.

Theorem 2.3.5. There exists a unique solution ϕ that verifies the associated consistency,

16

Algorithm 1 The Compute-HN-MC Function
Input: Graph instance G with nodes V = {u1, . . . , un}, characteristic function v, hyperpa-
rameter τ , maximum sample size m, number of samples J
Let ψ1, . . . , ψn be n empty lists
for j = 1 to J do

Sample gSj from G s.t. Sj = {uj1 , . . . , ujl} and l < m
ϕj = Compute-HN(gSj , Sj, v(·), τ)
for k = 1 to l do

Append ϕj
k to ψjk

end for
end for
Set ϕi to be the mean of ψi

Return: ϕ

i.e. ϕi(N, v,G) = ϕi(N, v
∗
τ ,G), inessential game, and continuity. ϕ is given by

ϕi(N, v,G) = ṽ({i}) (2.11)

We show the algorithm for Compute-HN-MC (Algorithm 1), which is a combination of

Equation 2.9, 2.10, and 2.12.

2.3.4 GNN Message Passing and The HN Surplus Allocation

Both the GNN message passing (MP) and the associated game surplus allocation (SA) are

iterative aggregation algorithms, with considerable alignment. In fact, SA on each singular

node set S = {i} is exactly MP: Equation 2.7 becomes an instantiation of Equation 2.1 with

AGGR(a, b) = a+ τ
∑

j bj on a scalar node value a and a neighbor set b. These algorithms

differ in that SA applies more broadly to |S|≥1 cases; it treats S as a supernode when nodes

in S form a connected component in G, and handles disconnected S component-wise via

Equation 2.8.

We illustrate SA using a real chemical graph example. The molecule shown in Figure

2.1(c) is taken from MUTAG (dataset description in Section 2.4.1). It is known to be

17

classified as mutagenic because of the -NO2 group (nodes 1, 2, and 3) [DCD91]. When we

compute v∗τ ({1}), the surplus p(2, {1}), p(3, {1}), and p(4, {1}) are allocated to node 1 (like

messages passed to a central node in GNN). Then surplus are aggregated together with v({1})

following Equation 2.7 to form v∗τ ({1}).

For graphs, the SA approach has two advantages over the uniform aggregation approach

used in the Shapley value: (1) The aggregated payoff in each v∗τ is structure-aware, like

representations learned by GNNs [CCV20], and (2) the iterative computation preserves

locality, which is preserved by GNNs [BZS13]. In other words, these two properties mean

close neighbors heavily influence each other due to cooperation in many iterations, while far

away nodes less influence each other due to little cooperation. In the MUTAG example, since

the local -NO2 generates a high payoff for the mutagenicity classification, locally allocating

the payoff helps us better understand the importance of the nitrogen atom and the oxygen

atoms. Whereas aggregating over many unnecessary coalitions with far-away carbon atoms

can obscure the true contribution of -NO2. We will revisit this example in Section 2.4.2.

2.3.5 The GStarX Algorithm

We now state our algorithm for explaining GNNs with GStarX. Notice that GStarX scores

nodes in a graph but not each dimension of node features. Feature dimension importance

explanation is an orthogonal perspective that can be added on top of GStarX. We leave

this extension as a future work. GStarX formulates the GNN explanation problem as

a feature importance scoring problem, where nodes are scored to find the optimal node-

induced subgraph. It essentially implements and solves the objective in Equation 2.5,

where an HN-value-based Score is used. To use such Score, we need to define the

players and the characteristic function of the game, and then apply the formula in Equation

2.7 and 2.8. Suppose the inputs are a graph G with nodes V = {u1, . . . , un} and label

y ∈ {1, . . . , C}, a GNN f(·) outputs a probability vector f(G) ∈ [0, 1]C , and the predicted

class c∗ = argmaxc[f(G)]c. Let V be players, and let the normalized probability of the

18

Algorithm 2 GStarX: Graph Structure-Aware Explanation
Input: Graph G with nodes V = {u1, . . . , un}, trained GNN f(·), empirical expectation
f 0, hyperparameter τ , max sample size m, number of samples J , sparsity γ.
Get the predicted class c∗ = argmaxc[f(G)]c
Define characteristic function v(S) = [f(gS)]c∗ − f 0

c∗

if n ≤ m then
ϕ = Compute-HN(G,V , v(·), τ)

else
ϕ = Compute-HN-MC(G,V , v(·), τ,m, J)

end if
Sort ϕ in descending order with indices {π1, . . . , πn}
k = ⌊γ|V|⌋
Return: S∗ = {uπ1 , . . . , uπk

}

Algorithm 3 The Compute-HN Function
Input: Graph instance G with nodes V = {u1, . . . , un}, characteristic function v, hyperpa-
rameter τ .
for S in 2N do

Compute payoff v(S) {Eq.(2.12)}
end for
Construct matrix H{τ,n,G}
repeat
H = HH

until H converges
Get the limit game ṽ = Hv
Assign the first n entries of ṽ to ϕ
Return: ϕ

predicted class be the characteristic function v:

v(S) = [f(G[S])]c∗ − f 0
c∗ ∀S ⊆ V (2.12)

Here the normalization term f 0
c∗ = E [[f(G)]c∗] is the expectation over a random variable G

representing a general graph. In practice, we approximate it using the empirical expectation

over all G in the dataset. Score will be the HN value of the game, i.e., Score(f(·),G, i) =

ϕi(V , v,G) = ṽ({i}).

19

Given Score, we solve the objective by first computing the scores ϕ ∈ Rn then selecting

the top ⌊γ|V|⌋ scores greedily as in Algorithm 2. Practically, like other game-theoretic

methods, the exact computation of the HN value is infeasible when the number of players n

is large. We thus do an exact computation for small graphs (the if-branch) and Monte-Carlo

sampling for large graphs (the else-branch). The Compute-HN function is shown in Algorithm

3, where the H stands for a matrix form of the associated game defined in Definition 2.3.2.

Also, even though the algorithm is stated for graph classification, GStarX works for node

classification as well. This can be easily seen since GNNs classify nodes ui by processing an

ego-graph centered at ui, so the task can be converted to graph classification with the label

of ui used as the label of the ego-graph.

2.3.6 GStarX for Node Classification

Even though the GStarX algorithm is stated for graph classification, it works for node

classification as well. This can be easily seen as the GNN node classification can be covert

to classify an ego-graph. Given a graph G with V = {u1, . . . , un}. Node classification on ui

with an L-layer GNN can be converted to a graph classification. The target graph to classify

will be the L-hop ego-graph centered at ui, because this is the receptive field of the GNN for

classifying ui and nodes further away won’t influence the result. The label of the graph will

be the label of ui. In this case, the final readout layer of the GNN will be indexing ui instead

of pooling. Given this kind of conversion, everything we showed above follows.

2.4 Evaluation

2.4.1 Experiment Settings

Datasets. We conduct experiments on datasets from different domains including synthetic

graphs, chemical graphs, and text graphs. A brief description of the datasets is shown below

20

Table 2.1: GStarX experiment dataset statistics.

Dataset #Graphs #Test Graphs #Nodes (avg) #Edges (avg) #Features #Classes

MUTAG 188 20 17.93 19.79 7 2
BACE 1,513 152 34.01 73.72 9 2
BBBP 2,039 200 24.06 25.95 9 2
GraphSST2 70,042 1821 9.20 10.19 768 2
Twitter 6,940 692 21.10 40.20 768 3
BA2Motifs 1,000 100 25 25.48 10 2

with detailed statistics in Table 2.1.

1. Chemical graph property prediction. MUTAG [DCD91], BACE and BBBP

[WRF18] contain chemical molecule graphs for graph classification, with atoms as

nodes, bonds as edges, and chemical properties as graph labels.

2. Text graph sentiment classification. GraphSST2 and Twitter [YYG20] contain

graphs constructed from text. Nodes are words with pre-trained BERT embeddings as

features. Edges are generated by the Biaffine parser [GGN18]. Graphs are labeled as

positive or negative sentiment.

3. Synthetic graph motif detection. BA2Motifs [LCX20] contains graphs with a

Barabasi-Albert (BA) base graph of size 20 and a 5-node motif in each graph. Node

features are 10-dimensional all-one vectors. The motif can be either a house-like

structure or a cycle. Graphs are labelled in two classes based on which motif they

contain.

GNNs and explanation baselines. We evaluate GStarX by explaining GCNs [KW16] on

all datasets in our major experiment in Section 2.4.2. In the ablation study in Section 2.4.3, we

further evaluate on GIN [XHL18] and GAT [VCC17] on certain datasets following [YYW21].

We compare with 5 strong baselines representing the SOTA methods for GNN explanation:

GNNExplainer [YBY19], PGExplainer [LCX20], SubgraphX [YYW21], GraphSVX [DM21],

21

Table 2.2: GStarX experiment GCN hyperparameters.

Dataset #Layers #Hidden Pool Test Acc

BA2Motifs 3 20 mean 0.9800
BACE 3 128 max 0.8026
BBBP 3 128 max 0.8634
MUTAG 3 128 mean 0.8500
GraphSST2 3 128 max 0.8808
Twitter 3 128 max 0.6908

Table 2.3: GStarX experiment GIN and GAT hyperparameters. For GAT, we use 10
attention heads with 10 dimensions each, and thus 100 hidden dimensions.

Dataset #Layers #Hidden Pool Test Acc

GraphSST2(GAT) 3 10 ×10 max 0.8814
MUTAG(GIN) 3 128 max 1.0

and OrphicX [LLW22]. In particular, SubgraphX and GraphSVX use Shapley-value-based

scoring functions.

In Table 2.2, we provided the hyperparameters and test accuracy for the GCN model used

in our major experiments. In Table 2.5, we provided the hyperparameters and test accuracy

for the GIN and GAT model used in our analysis experiment. Most parameters are following

[YYW21], with small changes to further boost the test accuracy.

We run all experiments on a machine with 80 Intel(R) Xeon(R) E5-2698 v4 @ 2.20GHz

CPUs, and a single NVIDIA V100 GPU with 16GB RAM. Our implementations are based

on Python 3.8.10, PyTorch 1.10.0, PyTorch-Geometric 1.7.1 [FL19], and DIG [LLW21]. We

adapt the GNN implementation and most baseline explainer implementation from the DIG

library, except for GraphSVX and OrphicX where we adapt the official implementation. For

the baseline hyperparameters, we closely follow the setting in [YYW21] and [DM21] for a

fair comparison.

Evaluation metrics. Evaluating explanations is non-trivial due to the lack of ground

truth. We follow [YYW21, YYG20] to employ Fidelity, Inverse Fidelity (Inv-Fidelity), and

22

Sparsity as our evaluation metrics. Fidelity and Inv-Fidelity measure whether the prediction is

faithfully important to the model prediction by removing the selected nodes or only keeping

the selected nodes respectively. Sparsity promotes fair comparison by controlling explanations

to have similar sizes, since including more nodes generally improves Fidelity and Inv-Fidelity,

and explanations with different sizes are not directly comparable. Ideal explanations should

have high Fidelity, low Inv-Fidelity, and high Sparsity, indicating relevance and conciseness.

Equations 2.13-2.15 show their formulas.

Fidelity(G, g) = [f(G)]c∗ − [f(G\g)]c∗ (2.13)

Inv-Fidelity(G, g) = [f(G)]c∗ − [f(g)]c∗ (2.14)

Sparsity(G, g) = 1− |g|/|G| (2.15)

Fidelity and Inv-Fidelity are complementary and are both important for a good explanation

g. Fidelity justifies the necessity for g to be included to predict correctly. Inv-Fidelity justifies

the sufficiency of a standalone g to predict correctly. As they are analogous to precision

and recall, we draw an analogy to the F1 score to propose a single-scalar-metric “harmonic

fidelity” (H-Fidelity), where we normalize them by Sparsity and take their harmonic mean.

In Equation 2.16, 2.17, and 2.18, we show formulas for normalized fidelity (N-Fidelity),

normalized inverse fidelity (N-Inv-Fidelity), and harmonic fidelity (H-Fidelity). Both the

N-Fidelity and N-Inv-Fidelity are in [−1, 1]. The H-Fidelity flips N-Inv-Fidelity, rescales both

values to be in [0, 1], and takes their harmonic mean.

N-Fidelity(G, g) = Fidelity(G, g) · (1− |g|
|G|

) (2.16)

N-Inv-Fidelity(G, g) = Inv-Fidelity(G, g) · (|g|
|G|

) (2.17)

23

is

the should

you

lameness

on

bad

in

.how the

title ’s

movie

clue

is

the should

you

lameness

on

bad

in

.how the

title ’s

movie

clue

is

the should

you

lameness

on

bad

in

.how the

title ’s

movie

clue

is

the should

you

lameness

on

bad

in

.how the

title ’s

movie

clue

is

the should

you

lameness

on

bad

in

.how the

title ’s

movie

clue

is

the should

you

lameness

on

bad

in

.how the

title ’s

movie

clue

GNNExplainer PGExplainer SubgraphX GraphSVX

“is still quite good – natured and not a bad way to spend an hour”

“the title 's lameness should clue you in on how bad the movie is.”

OrphicX GStarX

spend

- good

bad

still

natured

and not

hourto an

is quite

a way spend

- good

bad

still

natured

and not

hourto an

is quite

a wayspend

- good

bad

still

natured

and not

hourto an

is quite

a wayspend

- good

bad

still

natured

and not

hourto an

is quite

a way spend

- good

bad

still

natured

and not

hourto an

is quite

a way spend

- good

bad

still

natured

and not

hourto an

is quite

a way

Figure 2.2: Explanations on sentences from GraphSST2. We show the explanation
of one positive sentence (upper) and one negative sentence (lower). Red outlines indicate
the selected nodes/edges as the explanation. GStarX identifies the sentiment words more
accurately compared to baselines.

Let m1 = N-Fidelity(G, g), m2 = N-Inv-Fidelity(G, g)

H-Fidelity(G, g) = 2

(1+m1
2

)−1 + (1−m2
2

)−1
=

(1 +m1) · (1−m2)

(2 +m1−m2)

Hyperparameters. GStarX includes three hyperparameters: τ for the allocated surplus in

the associated game, m as the maximum graph size to perform exact HN value calculation,

and J as the number of samples for the MC approximation. In our experiments, we choose

τ = 0.01 since we need τ < 2
n

for convergence and all graphs in the datasets above have less

than 200 nodes. For m and J , bigger values should be better for the MC approximation, and

we found m = 10 and J = n work well empirically.

2.4.2 Evaluation Results

Quantitative studies. We report averaged test set H-Fidelity in Table 2.4. We conduct 8

different runs to get results with Sparsity ranging from 0.5-0.85 in 0.05 increments (Sparsity

cannot be precisely guaranteed, hence it has minor variations across methods) and report the

24

GNNExplainer PGExplainer SubgraphX

GraphSVX GStarXOrphicX

“Ground Truth”

Figure 2.3: Explanations on a mutagenic molecule in MUTAG. Carbon atoms (C) are
in yellow, nitrogen atoms (N) are in blue, and oxygen atoms are in red (O). Dark outlines
indicate the selected nodes/edges as the explanation. We report the explanation Fidelity (fide),
Inv-Fidelity (inv-fide), and H-Fidelity (h-fide). GStarX gives a significantly better explanation
than other methods in terms of these metrics.

best H-Fidelity for each method. GStarX outperforms others on 4/6 datasets and has the

highest average. We also follow [YYW21] to show the Fidelity vs. Sparsity plots in Figure 2.4

row1. Note that GraphSVX tends to give sparse explanations on some datasets, we still pick

8 different sparsities for it but mostly on the higher end. We also show the 1 - Inv-Fidelity vs.

sparsity plots and the H-Fidelity vs. sparsity plots. Curves in all three plots are the higher

the better.

Qualitative studies. We visualize the explanations of graphs in GraphSST2 in Figure 2.2

and compare them qualitatively. We show explanations selected with high and comparable

Sparsity on a positive (upper) graph and a negative (lower) graph. GStarX concisely captures

the important words for sentiment classification without including extraneous ones for both

sentences. Baseline methods generally select some-but-not-all important sentiment words,

with extra neutral words as well. Among baselines, SubgraphX gives more reasonable results.

However, it cannot cover two groups of important nodes with a limited budget because it

can only select a connected subgraph as the explanation; e.g. to cover the negative word

“lameness” in the lower sentence, SubgraphX needs at least three more nodes along the way,

25

0.6 0.8
sparsity

0.0

0.5

1.0

fid
el

ity

dataset = ba_2motifs

0.6 0.8
sparsity

0.2

0.4

0.6
dataset = bace

0.6 0.8
sparsity

0.0

0.2

0.4

dataset = bbbp

0.6 0.8
sparsity

0.0

0.2

0.4

dataset = graph_sst2

0.6 0.8
sparsity

0.00

0.25

0.50

0.75
dataset = mutag

0.6 0.8
sparsity

0.0

0.2

0.4

dataset = twitter

method
GStarX GraphSVX SubgraphX GNNExplainer PGExplainer OrphicX

0.6 0.8
sparsity

0.0

0.5

1.0

1
- i

nv
-fi

de
lit

y

dataset = ba_2motifs

0.6 0.8
sparsity

0.6

0.8

1.0

dataset = bace

0.6 0.8
sparsity

0.4

0.6

0.8

dataset = bbbp

0.6 0.8
sparsity

0.6

0.8

1.0

dataset = graph_sst2

0.6 0.8
sparsity

0.50

0.75

1.00

dataset = mutag

0.6 0.8
sparsity

0.6

0.8

1.0

1.2
dataset = twitter

0.6 0.8
sparsity

0.5

0.6

h-
fid

el
ity

dataset = ba_2motifs

0.6 0.8
sparsity

0.50

0.55

dataset = bace

0.6 0.8
sparsity

0.45

0.50

0.55
dataset = bbbp

0.6 0.8
sparsity

0.475

0.500

0.525

0.550
dataset = graph_sst2

0.6 0.8
sparsity

0.5

0.6
dataset = mutag

0.6 0.8
sparsity

0.50

0.55

dataset = twitter

Figure 2.4: H-Fidelity vs. sparsity for GStarX and baselines. Fidelity (row1), 1 -
Inv-Fidelity (row2), and H-Fidelity (row3) vs. Sparsity on all datasets corresponding to the
results shown in Table 2.4. All three metrics are the higher the better. We see that GStarX
outperforms the other methods

which will significantly decrease Sparsity while including undesirable, neutral words. Moreover,

we discussed in Section 2.3.2 that the Shapley value will downgrade the positive importance

of the word “good” for the upper sentence. Comparing the normalized contribution scores of

our HN-value-based method GStarX and the Shapley-based method GraphSVX, contribution

of “good” is higher in ours: 0.1152 vs. 0.0371.

We visualize explanations selected with high and comparable Sparsity of a mutagenic

molecule from MUTAG in Figure 2.3. Explanations on chemical graphs are harder to evaluate

than text graphs as they require domain knowledge. MUTAG has been widely used as

a benchmark for evaluating GNN explanations because human experts recognize -NO2 as

mutagenic [DCD91], which makes MUTAG a dataset with “ground truth”2. Surprisingly, we

2Carbon rings were also claimed as mutagenic by human experts, but we found it is not discriminative as
they exist in both mutagenic and non-mutagenic molecules in MUTAG.

26

Table 2.4: The best H-Fidelity (higher is better) of 8 different Sparsity for each dataset.
GStarX shows higher H-Fidelity on average and on 4/6 datasets.

Dataset GNNExplainer PGExplainer SubgraphX GraphSVX OrphicX GStarX

BA2Motifs 0.4841 0.4879 0.6050 0.5017 0.5087 0.5824
BACE 0.5016 0.5127 0.5519 0.5067 0.4960 0.5934
BBBP 0.4735 0.4750 0.5610 0.5345 0.4893 0.5227
GraphSST2 0.4845 0.5196 0.5487 0.5053 0.4924 0.5519
MUTAG 0.4745 0.4714 0.5253 0.5211 0.4925 0.6171
Twitter 0.4838 0.4938 0.5494 0.4989 0.4944 0.5716

Average 0.4837 0.4934 0.5569 0.5114 0.4952 0.5732

found that GStarX generates much better H-Fidelity/Fidelity/Inv-Fidelity than other methods

and even the “ground truth” by only selecting the -O in -NO2 as explanations. In particular,

the -0.234 Inv-Fidelity of GStarX means the selected subgraph has an even better prediction

result than the original whole graph (0 Inv-Fidelity) and the ground truth (-0.143 Inv-Fidelity)

because nodes not significant to the GNN prediction are removed. Fidelity metrics of baselines

are inferior to GStarX because they include other non-discriminative carbon atoms despite

they capture -NO2 to some extent. This suggests that even though human experts identify

-NO2 as the “ground truth” of mutagenicity, the GNN only needs -O to classify mutagenic

molecules. With the goal being understand model behavior, GStarX explanation is better.

Moreover, SubgraphX is the only baseline that has better H-Fidelity than the “ground truth”,

but it can only capture one -NO2 because its search algorithm requires the explanation

to be connected, so its Inv-Fidelity is not optimal. In fact, GNNExplainer, PGExplainer,

and SubgraphX can never generate explanations including only disconnected -O without -N

like GStarX, because the former two solve the explanation problem by optimizing edges (as

opposed to Equation 2.5), and the latter requires connectedness. More MUTAG explanation

visualizations are provided in Appendix A.1.2.

27

Table 2.5: Ablation on GNN architectures for GStarX. GStarX shows higher H-Fidelity
for both GAT on GraphSST2 and GIN on MUTAG.

Dataset GNNExplainer PGExplainer SubgraphX GraphSVX OrphicX GStarX

GraphSST2 0.4951 0.4918 0.5484 0.5132 0.4997 0.5542
MUTAG 0.5042 0.4993 0.5264 0.5592 0.5152 0.6064

Table 2.6: Comparison of average running time on 50 graphs in BBBPbetween GStarX and
baselines.

Method GNNExp PGExp SubgX GraphSVX OrphicX GStarX

Time(s) 11.92 0.03 (train 720) 75.96 3.06 0.15 (train 915) 31.24

2.4.3 Ablation Studies and Analysis

Model-agnostic explanation. GStarX makes no assumptions about the model architecture

and can be applied to explain various GNN backbones. We use GCN for all datasets in the

major experiment above for consistency, and we now further investigate performance on two

more popular GNNs: GIN and GAT. We follow [YYW21] to train GIN on MUTAG and GAT

on GraphSST23, and show results in Table 2.5. For both settings, GStarX outperforms the

baselines, which is consistent with results on GCN.

Efficiency study. The GStarX algorithm scales in O(J) with practical J ∝ |V|. Following

[YYW21], we study the empirical efficiency of GStarX by explaining 50 randomly selected

graphs from BBBP. We report the average run time in Table 2.6. Our results for the baselines

are similar to [YYW21]. GStarX is not the fastest method, but it is more than two times

faster than SubgraphX. Since explanation usually doesn’t have strict efficiency requirements

in real applications, considering GStarX generates higher-quality explanations than the

baselines, we believe the time complexity of GStarX is acceptable.

Explanation sparsity study. To further study whether the obtained scores by GStarX

are sparse, we follow [FKA21] to evaluate an entropy-based sparsity measure on model

3As some baselines take over 24 hours on full GraphSST2, we randomly select 30 graphs for this analysis.

28

output scores. We show the average GStarX entropy-based sparsity on all datasets, and

compare them with three reference score distributions on all n nodes in a graph. 1) An

upper bound: Uniform(n), which represents the least sparse output. 2) A practical lower

bound: Uniform(0.25*n) which represents very sparse outputs with only top 25% of nodes.

3) Poisson(0.25*n), which is a more realistic version of case 2). Results in Table 2.7 show

the average entropy-based sparsity of GStarX is much lower than Uniform(n) and close to

Poisson(0.25*n), which justifies the GStarX outputs are indeed sparse.

The entropy-based sparsity, as defined in Definition 2 in [FKA21], is shown in the Equation

2.18 below. Here ϕ is the model output scores for a data instance, and ϕ̃i =
ϕi∑
i ϕi

represent

normalized scores.

H(ϕ̃) = −
∑
i∈n

ϕ̃i log ϕ̃i (2.18)

The entropy-based sparsity helps us to understand how sparse an explanation is, before

the scores are turned into hard explanation by thresholding or selecting top k. In Table 2.7,

we show the average scores for GStarX on all datasets, and compare them with three reference

cases. 1) The entropy of uniform distribution over all n nodes in a graph, i.e., Uniform(n),

which represents the least sparse output and is an upper bound of entropy-based sparsity. 2)

The entropy of uniform distribution over the top 25% nodes in a graph, i.e., Uniform(0.25*n),

where probabilities of the bottom 75% nodes are set to zero. This case is very sparse since

75% of nodes are deterministically excluded, which can be treated as a practical lower bound

of entropy-based sparsity. 3) The entropy of Poisson distribution with mean 0.25*n, i.e.

Poisson(0.25*n), which is a more realistic version of the sparse output in case 2). Instead of

setting all 75% of nodes to have probability zero, we assume the probabilities for tail nodes

decrease exponentially as a Poisson distribution while the mean is kept the same as in case

2). Results in Table 2.7 show that the average entropy-based sparsity of GStarX is between

Uniform(0.25*n) and Uniform(n) and close to Poisson(0.25*n), which justifies the GStarX

29

Table 2.7: The entropy-based sparsity scores of GStarX vs. three reference distributions,
which shows GStarX outputs are indeed sparse.

Dataset BA2Motifs BACE BBBP GraphSST2 MUTAG Twitter

GStarX 2.1352 2.4481 2.3290 2.3282 2.2434 2.2114
Uniform(n) 3.2189 3.5080 3.0728 2.8698 2.8612 2.9833
Uniform(0.25*n) 1.8326 2.1217 1.6893 1.4855 1.4749 1.5970
Poisson(0.25*n) 2.3204 2.4686 2.2416 2.1336 2.1323 2.1945

outputs are indeed sparse.

2.5 Related Work

GNN explanation aims to produce an explanation for a GNN prediction on a given

graph, usually as a subgraph induced by important nodes or edges. Many existing methods

work by scoring nodes or edges and are thus similar to this work. For example, the scoring

function of GNNExplainer [YBY19] is the mutual information between a masked graph

and the prediction on the original graph, where soft masks on edges and node features are

generated by direct parameter learning. PGExplainer [LCX20] uses the same scoring function

as [YBY19] but generates a discrete mask on edges by training an edge mask predictor.

SubgraphX [YYW21] uses the Shapley value as its scoring function on subgraphs selected by

Monte Carlo Tree Search (MCTS), and GraphSVX [DM21] uses a least-square approximation

to the Shapley value to score nodes and their features. While SubgraphX and GraphSVX

were shown to perform better than prior alternatives, as we show in Section 2.3.1, the Shapley

value they try to approximate is non-ideal as it is non-structure-aware. Although SubgraphX

and GraphSVX use L-hop subgraphs and thus technically they use the graph structure, such

structure usage are very limited in achieving structure-awareness as we show in Appendix

A.1.1.3.

Besides the perturbation-based methods, there are several other types of approaches

for GNN explanation. Gradient-based methods are widely used for explaining ML models

30

on images and text. The key idea is to use the gradients as the approximations of input

importance. Such methods as contrastive gradient-based (CG) saliency maps, Class Activation

Mapping (CAM), and gradient-weighted CAM (Grad-CAM) have been generalized to graph

data in [PKR19]. Decomposition-based methods are a popular way to explain deep NNs for

images. They measure the importance of input features by decomposing the model predictions

and regard the decomposed terms as importance scores. Decomposition methods including

Layer-wise Relevance Propagation (LRP) and Excitation Backpropagation (EB) have also

been extended to graphs [PKR19, BA19]. Surrogate-based methods work by approximating

a complex model using an explainable model locally. Possible options to approximate

GNNs include linear model as in GraphLIME [HYT20], additive feature attribution model

with the Shapley value as in GraphSVX [DM21], and Bayesian networks as in [VT20].

GNN explainability has also been studied from the causal perspective. In [LLL21, LLW22],

generative models were constructed to learn causal factors, and explanations were produced

by analyzing the cause-effect relationship in the causal graph.

Cooperative game theory originally studies how to allocate payoffs among a set of

players in a cooperative game. Recently, certain ideas from this domain have been successfully

used in feature importance scoring for ML model explanation [LC01, SK14, LL17]. When

used for model explanation, data features becomes players in the game, e.g. pixels for images,

and the value of the game gives feature importance scores. The vast majority of works in

this line, like the ones cited above, deem the Shapley value [Sha53] to be the only choice. In

fact, there are many other values with different properties and used in different situations in

cooperative game theory. However, to the best of our knowledge, only [CSW19] mentions the

Myerson value [Mye77] in the context of proposing a connected Shapley (C-Shapley) value

for explaining sequence data, and it is not directly comparable to ours for graph data. A

detailed discussion of the Myerson value and the C-Shapley value can be found in Appendix

A.1.1. Our work follows the cooperative game theory approach to explain models on graph

data using the HN value [HN20], which as we show is a better choice than the Shapley value

31

given its structure-awareness.

2.6 Discussion

In summary, we study GNN explanation on graphs via node importance scoring. We

identify the non-structure-aware challenge of existing Shapley-value-based approaches and

propose GStarX to assign importance scores to each node via a structure-aware HN value.

We also build connections between the HN value surplus allocation and GNN message

passing. GStarX demonstrates its superiority over strong baselines on chemical and text

graph classifications. A limitation of GStarX is that the importance of different node feature

dimensions is not explained. One future work is to add this extension, which could be done

by scoring a subset of nodes together with a subset of features each time. Another future

direction is to exploit the rich cooperative game theory literature. Beyond the Shapley value,

more values are possible for explaining ML models. For graph data, edge-based values like

[BOT92] can potentially be applied to an alternative edge-based objective like Equation 2.5.

Other values may be appropriate to more data types beyond graphs. A relevant discussion of

Myerson values, C-Shapley values, and L-hop graph cut-off for approximating the Shapley

value is provided in Appendix A.1.1.

32

Part II

Explanations Establish User Trust

33

CHAPTER 3

Path-based GNN Explanation for Link Prediction

3.1 Introduction

Transparency and accountability are significant concerns when researchers advance black-

box ML models [SP19, LOL18]. Good explanations of model behavior improve model

transparency. For end users, explanations make them trust the predictions and increase their

engagement and satisfaction [HKR00, BM05]. For researchers and developers, explanations

enable them to understand the decision-making process and create accountable ML models.

GNNs [WPC20, ZCH20] have recently achieved state-of-the-art performance on many graph

ML tasks and attracted increased interest in studying their explainability [YBY19, LCX20,

ZLS22, YYG22]. However, to our knowledge, GNN explanation for link prediction (LP)

is missing in the literature. LP is an essential task of many vital Web applications like

recommendation [ZSZ19, MZX21, WSZ20] and sponsored search [LPL21, HCS21]. GNNs are

widely used to solve LP problems [ZC18, ZZX21], and generating good GNN explanations for

LP will benefit these applications, e.g., increasing user satisfaction with recommended items.

Existing GNN explanation methods have addressed node/graph-level tasks on homoge-

neous graphs. Given a data instance, most methods generate an explanation by learning

a mask to select an edge-induced subgraph [YBY19, LCX20] or searching over the space

of subgraphs [YYW21]. However, explaining GNNs for LP is a new and more challenging

task. Existing node/graph-level explanation methods do not generalize well to LP for three

challenges. 1) Connection Interpretability : LP involves a pair of the source node and the

34

		𝑖!
	𝑎!		𝑢! 		𝑖"

		𝑢" 		𝑖#

		𝑖$

	𝑎"

		𝑖!	𝑎!		𝑢! 		𝑖"

		𝑖!		𝑢! 		𝑢"		𝑖#

user1 bought item2, and item2 shares attribute1 as item1

user1 and user2 both bought item3, and user2 bought item1

Figure 3.1: Path-based explanations generated by PaGE-Link. Given a GNN model
and a predicted link (u1, i1) (dashed red) on a heterogeneous graph of user u, item i, and
attribute a (left). PaGE-Link generates two path explanations (green arrows). We illustrate
the interpretations on the right.

target node rather than a single node or graph. Desired interpretable explanations for a

predicted link should reveal connections between the node pair. Existing methods generate

subgraphs with no format constraints, so they are likely to output subgraphs disconnected

from the source, the target, or both. Without revealing connections between the source and

the target, these subgraph explanations are hard for humans to interpret and investigate. 2)

Scalability : For LP, the number of edges involved in GNN computation almost grows from m

to ∼2m compared to the node prediction task because neighbors of both the source and the

target are involved. Since most existing methods consider all (edge-induced) subgraphs, the

increased edges will scale the number of subgraph candidates by a factor of O(2m), which

makes finding the optimal subgraph explanation much harder. 3) Heterogeneity : Practical

LP is often on heterogeneous graphs with rich node and edge types, e.g., a graph for recom-

mendations can have user->buys->item edges and item->has->attribute edges, but existing

methods only work for homogeneous graphs.

In light of the importance and challenges of GNN explanation for LP, we formulate it

as a post hoc and instance-level explanation problem and generate explanations for it in

the form of important paths connecting the source node and the target node. Paths have

played substantial roles in graph ML and are the core of many non-GNN LP methods [LK07,

Kat53, JW02, SHY11]. Paths as explanations can solve the connection interpretability and

35

scalability challenges. Firstly, paths connecting two nodes naturally explain connections

between them. Figure 3.1 shows an example on a graph for recommendations. Given a GNN

and a predicted link between user u1 and item i1, human-interpretable explanations may be

based on the user’s preference of attributes (e.g., user u1 bought item i2 that shared the same

attribute a1 as item i1) or collaborative filtering (e.g, user u1 had a similar preference as user

u2 because they both bought item i3 and user u2 bought item i1, so that user u1 would like

item i1). Both explanations boil down to paths. Secondly, paths have a considerably smaller

search space than general subgraphs. As we will see in Proposition 3.4.1, compared to the

expected number of edge-induced subgraphs, the expected number of paths grows strictly

slower and becomes negligible. Therefore, path explanations exclude many less-meaningful

subgraph candidates, making the explanation generation much more straightforward and

accurate.

To this end, we propose Path-based GNN Explanation for heterogeneous Link prediction

(PaGE-Link), which achieves a better explanation AUC and scales linearly in the number

of edges (see Figure 3.2). We first perform k-core pruning [Bol84] to help find paths and

improve scalability. Then we do heterogeneous path-enforcing mask learning to determine

important paths, which handles heterogeneity and enforces the explanation edges to form

paths connecting source to target. In summary, the contributions of our method are:

• Connection Interpretability: PaGE-Link produces more interpretable explanations in path

forms and quantitatively improves explanation AUC over baselines.

• Scalability: PaGE-Link reduces the explanation search space by magnitudes from subgraph

finding to path finding and scales linearly in the number of graph edges.

• Heterogeneity: PaGE-Link works on heterogeneous graphs and leverages edge-type infor-

mation to generate better explanations.

36

0.35
0.09

0 2000 4000 6000
Edges

0

20

40

60

80

100

Ti
m

e
(s

)

Figure 3.2: Accuracy and run-time comparison between PaGE-Link and baselines.
(a) PaGE-Link outperforms GNNExplainer and PGExplainer in terms of explanation AUC
on the citation graph and the user-item graph. (b) The running time of PaGE-Link scales
linearly in the number of graph edges.

3.2 Related Work

We review relevant research on (a) GNNs (b) GNN explanation (c) recommendation expla-

nation and (d) paths for LP. We summarize the properties of PaGE-Link vs. representative

methods in Table 3.1.

GNNs GNNs are a family of ML models on graphs [KW16, VCC17, XHL18]. They take

graph structure and node/edge features as input and output node representations by trans-

forming and aggregating features of nodes’ (multi-hop) neighbors. The node representations

can be used for LP and achieved great results on LP applications [ZLX20, ZC18, ZSZ19,

MZX21, WSZ20, ZLW22, GSZ22]. We review GNN-based LP models in Section 3.3.

GNN explanation GNN explanation was studied for node and graph classification, where

the explanation is defined as an important subgraph. Existing methods majorly differ in

their definition of importance and subgraph selection methods. GNNExplainer [YBY19]

selects edge-induced subgraphs by learning fully parameterized masks on graph edges and

37

node features, where the mutual information (MI) between the masked graph and the

prediction made with the original graph is maximized. PGExplainer [LCX20] adopts the

same MI importance but trains a mask predictor to generate a discrete mask instead. Other

popular importance measures are game theory values. SubgraphX [YYW21] uses the Shapley

value [Sha53] and performs Monte Carlo Tree Search (MCTS) on subgraphs. GStarX [ZLS22]

uses a structure-aware HN value [HN20] to measure the importance of nodes and generates

the important-node-induced subgraph. There are more studies from other perspectives

that are less related to this work, i.e., surrogate models [HYT20, VT20], counterfactual

explanations [LTT22], and causality [LLL21, LLW22], for which [YYG20] provides a good

review. While these methods produce subgraphs as explanations, what makes a good

explanation is a complex topic, especially how to meet “stakeholders’ desiderata” [LOS21].

Our work differs from all above since we focus on a new task of explaining heterogeneous LP,

and we generate paths instead of unrestricted subgraphs as explanations. The interpretability

of paths makes our method advantaged especially when stakeholders have less ML background.

Recommendation explanation This line of works explains why a recommendation is made

[ZC20]. J-RECS [PKF20] generates recommendation explanations on product graphs using a

justification score that balances item relevance and diversity. PRINCE [GBS20] produces end-

user explanations as a set of minimal actions performed by the user on graphs with users, items,

reviews, and categories. The set of actions is selected using counterfactual evidence. Typically,

recommendations on graphs can be formalized as an LP task. However, the recommendation

explanation problem differs from explaining GNNs for LP because the recommendation data

may not be graphs, and the models to be explained are primarily not GNN-based [WWX19].

GNNs have their unique message passing procedure, and GNN-based LP corresponds to more

general applications beyond recommendation, e.g., drug repurposing [IZK20], and knowledge

graph completion [NMT15, CYZ21]. Thus, recommendation explanation is related to but

not directly comparable to GNN explanation.

38

Table 3.1: Methods and desired explanation properties. A question mark (?) means
“unclear”, or “maybe, after non-trivial extensions”. "Rec. Exp." stands for the general
recommendation explanation methods.

Methods G
N
N
Ex

p
[Y

B
Y
19

]

PG
Ex

p
[L

C
X
20

]

Su
bg

ra
ph

X
[Y

Y
W

21
]

J-
R
EC

S
[P

K
F2

0]

PR
IN

CE
[G

B
S2

0]

R
ec

. E
xp

. [
ZC

20
]

Pa
G

E-
Li

nk

On Graphs ✓ ✓ ✓ ✓ ✓ ? ✓
Explains GNN ✓ ✓ ✓ ✓
Explains LP ? ? ? ✓ ✓ ✓ ✓
Connection ? ? ? ✓
Scalability ✓ ✓ ✓ ? ? ✓
Heterogeneity ✓ ✓ ✓ ? ✓

Paths Paths are important in graph ML, and many LP methods are path-based, such as

graph distance [LK07], Katz index [Kat53], SimRank [JW02], and PathSim [SHY11]. Paths

have also been used to capture the relationship between a pair of nodes. For example, the

“connection subgraphs” [FMT04] find paths between the source and the target based on

electricity analogs. In general, although black-box GNNs recently outperform path-based

methods in LP accuracy, we embrace paths for their interpretability for LP explanation.

3.3 Preliminaries

In this section, we define necessary notations, summarize them in Table 3.2, and review

the GNN-based LP models.

Definition 3.3.1. A heterogeneous graph is defined as a directed graph G = (V ,E) associated

with a node type mapping function ϕ : V → A and an edge type mapping function τ : E → R.

Each node v ∈ V belongs to one node type ϕ(v) ∈ A and each edge e ∈ E belongs to one

edge type τ(e) ∈ R.

Let Φ(·, ·) denote a trained GNN-based model for predicting the missing links in G, where

39

Table 3.2: PaGE-Link notations.

Notation Definition and description

G = (V,E) a heterogeneous graph G, node set V, and edge set E
ϕ : V → A a node type mapping function
τ : E → R an edge type mapping function
Dv the degree of node v ∈ V
Er edges with type r ∈ R, i.e., Er = {e ∈ E|τ(e) = r}
Φ(·, ·) the GNN-based LP model to explain
(s, t) the source and target node for the predicted link
hs & ht the node representations for s & t
Y = Φ(G, (s, t)) the link prediction of the node pair (s, t)
Gc = (Vc,Ec) the computation graph, i.e., L-hop ego-graph of (s, t)

a prediction Y = Φ(G, (s, t)) denotes the predicted link between a source node s and a target

node t. The model Φ learns a conditional distribution PΦ(Y |G, (s, t)) of the binary random

variable Y . The commonly used GNN-based LP models [ZC18, ZZX21, ZLW22] involve two

steps. The first step is to generate node representations (hs,ht) of (s, t) with an L-hop GNN

encoder. The second step is to apply a prediction head on (hs,ht) to get the prediction of Y .

An example prediction head is an inner product.

To explain Φ(G, (s, t)) with an L-Layer GNN encoder, we restrict to the computation

graph Gc = (Vc,Ec). Gc is the L-hop ego-graph of the predicted pair (s, t), i.e., the subgraph

with node set Vc = {v ∈ V |dist(v, s) ≤ L or dist(v, t) ≤ L}. It is called a computation

graph because the L-layer GNN only collects messages from the L-hop neighbors of s and

t to compute hs and ht. The LP result is thus fully determined by Gc, i.e., Φ(G, (s, t)) ≡

Φ(Gc, (s, t)). Figure 3.3b shows a 2-hop ego-graph of u1 and i1, where u3 and a13 are excluded

since they are more than 2 hops away from either u1 or i1.

40

		𝑖!
	𝑎!!		𝑢! 		𝑖"

		𝑢" 		𝑖#

		𝑖$		𝑢# 	𝑎#!

		𝑖%

	𝑎"!

	𝑎""

	𝑎!"

(a) A GNN predicted
link (u1, i1) (dashed
red) that needs expla-
nation.

K-core pruning

Ego-graph
extraction

		𝑖!
	𝑎!!		𝑢! 		𝑖"

		𝑢" 		𝑖#

		𝑖$

		𝑖%

	𝑎"!

	𝑎""

	𝑎!"

(b) Extract 2-hop ego-graph of (u1, i1)
excluding u3 and a13 (black box). Then
prune it to get the k-core excluding i5, a21,
and a22 (orange box).

Path-enforcing
mask learning

		𝑖!
	𝑎!!		𝑢! 		𝑖"

		𝑢" 		𝑖#

		𝑖$

	𝑎"!

(c) Human-interpretable path
explanations (u1, i2, a

1
1, i1) and

(u1, i3, u2, i1) (green arrows) that
capture the connection between
u1 and i1.

Figure 3.3: Illustration of the PaGE-Link framework. PaGE-Link on a graph with user
nodes u, item nodes i, and two attribute types a1 and a2.

3.4 PaGE-Link: Path-based GNN Explanation for Link Prediction

3.4.1 Link-Prediction Explanation

In this work, we address a post hoc and instance-level GNN explanation problem. The

post hoc means the model Φ(·, ·) has been trained. To generate explanations, we won’t change

its architecture or parameters. The instance level means we generate an explanation for the

prediction of each instance (s, t). Specifically, the explanation method answers the question

of why a missing link is predicted by Φ(·, ·). In a practical web recommendation system, this

question can be “why an item is recommended to a user by the model ”.

An explanation for a GNN prediction should be some substructure in Gc, and it should

also be concise, i.e., limited by a size budget B. This is because an explanation with a large

size is often neither informative nor interpretable, for example, an extreme case is that Gc

could be a non-informative explanation for itself. Also, a fair comparison between different

explanations should consume the same budget. In the following, we define budget B as the

maximum number of edges included in the explanation.

We list three desirable properties for a GNN explanation method on heterogeneous

LP: capturing the connection between the source node and the target node, scalable to

41

large graphs, and addressing graph heterogeneity. Using a path-based method inherently

possesses all the properties. Paths capture the connection between a pair of nodes and can be

transferred to human-interpretable explanations. Besides, the search space of paths with the

fixed source node and the target node is greatly reduced compared to edge-induced subgraphs.

Given the ego-graph Gc of s and t, the number of paths between s and t and the number

of edge-induced subgraphs in Gc both rely on the structure of Gc. However, they can be

estimated using random graph approximations. The next proposition on random graphs

shows that the expected number of paths grows strictly slower than the expected number of

edge-induced subgraphs as the random graph grows. Also, the expected number of paths

becomes insignificant for large graphs.

Proposition 3.4.1. Let G(n, d) be a random graph with n nodes and density d, i.e., there

are m = d
(
n
2

)
edges chosen uniformly randomly from all node pairs. Let Zn,d be the expected

number of paths between any pair of nodes. Let Sn,d be the expected number of edge-induced

subgraphs. Then Zn,d = o(Sn,d), i.e., limn→∞
Zn,d

Sn,d
= 0.

Proof. In Appendix A.2.1.

Paths are also a natural choice for LP explanations on heterogeneous graphs. On

homogeneous graphs, features are important for prediction and explanation. A s-t link

may be predicted because of the feature similarity of node s and node t. However, the

heterogeneous graphs we focus on, as defined in Definition 3.3.1, often do not store feature

information but explicitly model it using new node and edge types. For example, for the

heterogeneous graph in Figure 3.3a, instead of making it a user-item graph and assigning

each item node a two-dimensional feature with attributes a1 and a2, the attribute nodes are

explicitly created and connected to the item nodes. Then an explanation like “i1 and i2 share

node feature a11” on a homogeneous graph is transferred to “i1 and i2 are connected through

the attribute node a11” on a heterogeneous graph.

Given the advantages of paths over general subgraphs on connection interpretability,

42

scalability, and their capability to capture feature similarity on heterogeneous graphs, we use

paths to explain GNNs for heterogeneous LP. Our design principle is that a good explanation

should be concise and informative, so we define the explanation to contain only short paths

without high-degree nodes. Long paths are less desirable since they could correspond to

unnecessarily complicated connections, making the explanation neither concise nor convincing.

For example, in Figure 3.3c, the long path (u1, i3, a
1
2, i2, a

1
1, i1) is not ideal since it takes four

hops to go from item i3 to the item i1, making it less persuasive to be interpreted as “item1

and item3 are similar so item1 should be recommended”. Paths containing high-degree nodes

are also less desirable because high-degree nodes are often generic, and a path going through

them is not as informative. In the same figure, all paths containing node a12 are less desirable

because a12 has a high degree and connects to all the items in the graph. A real example of a

generic attribute is the attribute “grocery” connecting to both “vanilla ice cream” and “vanilla

cookie”. When “vanilla ice cream” is recommended to a person who bought “vanilla cookie”,

explaining this recommendation with a path going through “grocery” is not very informative

since “grocery” connects many items. In contrast, a good informative path explanation should

go through the attribute “vanilla”, which only connects to vanilla-flavored items and has a

much lower degree.

We formalize the GNN explanation for heterogeneous LP as:

Problem 3.4.2. Generating path-based explanations for a predicted link between node s

and t:

• Given

– a trained GNN-based LP model Φ(·, ·),

– a heterogeneous computation graph Gc of s and t,

– a budget B of the maximum number of edges in the explanation,

• Find an explanation P = { p|p is a s-t path with maximum length lmax and degree of

each node less than Dmax }, |P|lmax ≤ B,

43

• By optimizing p ∈ P to be influential to the prediction, concise, and informative.

3.4.2 K-core Pruning

The k-core pruning module of PaGE-Link reduces the complexity of Gc. The k-core of a

graph is defined as the unique maximal subgraph with a minimum node degree k [Bol84].

We use the superscript k to denote the k-core, i.e., Gk
c = (Ek

c ,Vk
c) for the k-core of Gc. The

k-core pruning is a recursive algorithm that removes nodes v ∈ V such that their degrees

Dv < k, until the remaining subgraph only has nodes with Dv ≥ k, which gives the k-core.

The difference in nodes between a (k + 1)-core and a k-core is called the k-shell. The nodes

in the orange box of Figure 3.3b is an example of a 2-core pruned from the 2-hop ego-graph,

where node a21 and a22 are pruned in the first iteration because they are degree one. Node

i5 is recursively pruned because it becomes degree one after node a22 is pruned. All those

three nodes belong to the 1-shell. We perform k-core pruning to help path finding because

the pruned k-shell nodes are unlikely to be part of meaningful paths when k is small. For

example, the 1-shell nodes are either leaf nodes or will become leaf nodes during the recursive

pruning, which will never be part of a path unless s or t are one of these 1-shell nodes. The

k-core pruning module in PaGE-Link is modified from the standard k-core pruning by adding

a condition of never pruning s and t.

The following theorem shows that for a random graph G(n, d), k-core will reduce the

expected number of nodes by a factor of δV(n, d, k) and reduce the expected number of edges

by a factor of δE(n, d, k). Both factors are functions of n, d, and k. We defer the exact

expressions of these two factors in Appendix A.2.2, since they are only implicitly defined

based on Poisson distribution. Numerically, for a random G(n, d) with average node degree

d(n− 1) = 7, its 5-core has δV(n, d, 5) and δE(n, d, 5) both ≈ 0.69.

Theorem 3.4.3 (Pittel, Spencer and Wormald [PSW96]). Let G(n, d) be a random graph

with m edges as in Proposition 3.4.1. Let Gk(n, d) = (Vk(n, d),Ek(n, d)) be the nonempty

44

k-core of G(n, d). Then Gk(n, d) contain δV(n, d, k)n nodes and δE(n, d, k)m edges with high

probability for large n, i.e., |Vk(n, d)|/n p−→ δV(n, d, k) and |Ek(n, d)|/m p−→ δE(n, d, k) (p−→

stands for convergence in probability).

Proof. Please refer to Appendix A.2.2 and [PSW96].

The k-core pruning helps reduce the graph complexity and accelerates path finding. One

concern is whether it prunes too much and disconnects s and t. We found that such a

situation is very unlikely to happen in practice. To be specific, we focus on explaining

positively predicted links, e.g. why an item is recommended to a user by the model. Negative

predictions, e.g., why an arbitrary item is not recommended to a user by the model, are

less useful in practice and thus not in the scope of our explanation. (s, t) node pairs are

usually connected by many paths in a practical G [WS98], and positive link predictions are

rarely made between disconnected or weakly-connected (s, t). Empirically, we observe that

there are usually too many paths connecting a positively predicted (s, t) instead of no paths,

even in the k-core. Therefore, an optional step to enhance pruning is to remove nodes with

super-high degrees. As we discussed in Section 3.4.1, high-degree nodes are often generic and

less informative. Removing them can be a complement to k-core to further reduce complexity

and improve path quality.

3.4.3 Heterogeneous Path-Enforcing Mask Learning

The second module of PaGE-Link learns heterogeneous masks to find important path-

forming edges. We perform mask learning to select edges from the k-core-pruned computation

graph. For notation simplicity in this section, we use G = (V ,E) to denote the graph for

mask learning to save superscripts and subscripts, and Gk
c is the actual graph in the complete

version of our algorithm.

The idea is to learn a mask over all edges of all edge types to select the important edges.

Let Er = {e ∈ E|τ(e) = r} be edges with type r ∈ R. Let M = {Mr}|R|
r=1 be learnable

45

masks of all edge types, with Mr ∈ R|Er| corresponds type r. We denote applying Mr on

its corresponding edge type by Er ⊙ σ(Mr), where σ is the sigmoid function, and ⊙ is the

element-wise product. Similarly, we also overload the notation ⊙ to indicate applying the set

of masks on all types of edges, i.e., E⊙ σ(M) = ∪r∈R{Er ⊙ σ(Mr)}. We call the graph with

the edge set E ⊙ σ(M) a masked graph. Applying a mask on graph edges will change the

edge weights, which makes GNNs pass more information between nodes connected by highly-

weighted edges and less on others. The general idea of mask learning is to learn an M that

produces high weights for important edges and low weights for others. To learn an M that

better fits the LP explanation, we measure edge importance from two perspectives: important

edges should be both influential for the model prediction and form meaningful paths. Below,

we introduce two loss terms Lpred and Lpath for achieving these two measurements.

Lpred is to learn to select influential edges for model prediction. The idea is to do

a perturbation-based explanation, where parts of the input are considered important if

perturbing them changes the model prediction significantly. In the graph sense, if removing

an edge e significantly influences the prediction, then e is a critical counterfactual edge

that should be part of the explanation. This idea can be formalized as maximizing the

mutual information between the masked graph and the original graph prediction Y , which is

equivalent to minimizing the prediction loss

Lpred(M) = − logPΦ(Y = 1|G = (V ,E⊙ σ(M)), (s, t)). (3.1)

Lpred(M) has a straightforward meaning, which says the masked subgraph should provide

enough information for predicting the missing link (s, t) as the whole graph. Since the original

prediction is a constant, Lpred(M) can also be interpreted as the performance drop after the

mask is applied to the graph. A well-masked graph should give a minimum performance

drop. Regularizations of the mask entropy and mask norm are often included in Lpred(M) to

encourage the mask to be discrete and sparse.

46

Lpath is the loss term for M to learn to select path-forming edges. The idea is to first

identify a set of candidate edges denoted by Epath (specified below), where these edges can

form concise and informative paths, and then optimize Lpath(M) to enforce the mask weights

for e ∈ Epath to increase and mask weights for e /∈ Epath to decrease. We considered a weighted

average of these two forces balanced by hyperparameters α and β,

Lpath(M) = −
∑
r∈R

(α
∑

e∈Epath

τ(e)=r

Mr
e − β

∑
e∈E,e/∈Epath

τ(e)=r

Mr
e). (3.2)

The key question for computing Lpath(M) is to find a good Epath containing edges of

concise and informative paths. As in Section 3.4.1, paths with these two desired properties

should be short and without high-degree generic nodes. We thus define a score function of a

path p reflecting these two properties as below

Score(p) = log
∏
e∈p

e=(u,v)

P (e)

Dv

=
∑
e∈p

e=(u,v)

Score(e), (3.3)

Score(e) = log σ(Mτ(e)
e)− log(Dv). (3.4)

In this score function, M gives the probability of e to be included in the explanation, i.e.,

P (e) = σ(Mτ(e)
e). To get the importance of a path, we first use a mean-field approximation

for the joint probability by multiplying P (e) together, and we normalize each P (e) for edge

e = (u, v) by its target node degree Dv. Then, we perform log transformation, which improves

numerical stability for multiplying many edges with small P (e) or large Dv and break down

a path score to a summation of edge scores Score(e) that are easier to work with. This path

score function captures both desired properties mentioned above. A path score will be high if

the edges on it have high probabilities and these edges are linked to nodes with low degrees.

Finding paths with the highest Score(p) can be implemented using Dijkstra’s shortest path

algorithm [Dij59], where the distance represented by each edge is set to be the negative score

47

Algorithm 4 PaGE-Link
Input: heterogeneous graph G, trained GNN-based LP model Φ(·, ·), predicted link (s, t),
size budget B, k for k-core, hyperparameters α and β, learning rate η, maximum iterations
T .
Output: Explanation as a set of paths P.
Extract the computation graph Gc;
Prune Gc for the k-core Gk

c ;
Initialize M(0);
t = 0;
while M(t) not converge and t < T do

Compute Lpred(M(t)); { Eq.(3.1)}
Compute Score(e) for each edge e; { Eq.(3.4)}
Construct Epath by finding shortest paths on Gk

c with edge distance −Score(e);
Compute Lpath(M(t)) according to Epath; { Eq.(3.2)}
M(t+1) = M(t) − η∇(Lpred(M(t)) + Lpath(M(t)));
t += 1;

end while
P = Under budget B, the top shortest paths on Gk

c with edge distance −Score(e);
Return: P.

of the edge, i.e., −Score(e). We let Epath be the set of edges in the top five shortest paths

found by Dijkstra’s algorithm.

3.4.4 Mask Optimization and Path Generation

We optimize M with both Lpred and Lpath. Lpred will increase the weights of the prediction-

influential edges. Lpath will further increase the weights of the path-forming edges that are

also highly weighted by the current M and decrease other weights. Finally, after the mask

learning converges, we run one more shortest-path algorithm to generate paths from the

final M and select the top paths according to budget B to get the explanation P defined in

Section 3.4.1. A pseudo-code of PaGE-Link is shown in Algorithm 4.

48

Table 3.3: Time complexity of PaGE-Link and baseline methods.

GNNExp [YBY19] PGExp [LCX20] SubgraphX [YYW21] PaGE-Link (ours)

O(|Ec|T) O(|E|T)
/
O(|Ec|) Θ(|Vc|D̂2Bnode−2) O(|Ec|+ |Ek

c |T)

3.4.5 Complexity Analysis

In Table 3.3, we summarize the time complexity of PaGE-Link and representative existing

methods for explaining a prediction with computation graph Gc = (Vc,Ec) on a full graph

G = (V ,E). Let T be the mask learning epochs. GNNExplainer has complexity |Ec|T as it

learns a mask on Ec. PGExplainer has a training stage and an inference stage (separated

by / in the table). The inference stage is linear in |Ec|, but the training stage covers

edges in the entire graph and thus scales in O(|E|T). SubgraphX has a much higher time

complexity exponential in |Vc|, so a size budget of Bnode nodes is forced to replace |Vc|, and

D̂ = maxv∈V Dv denotes the maximum degree (derivation in next paragraph). For PaGE-Link,

the k-core pruning step is linear in |Ec|. The mask learning with Dijkstra’s algorithm has

complexity |Ek
c |T . PaGE-Link has a better complexity than existing methods since |Ek

c | is

usually smaller than |Ec| (see Theorem 3.4.3), and PaGE-Link often converges faster, i.e.,

has a smaller T , as the space of candidate explanations is smaller (see Proposition 3.4.1) and

noisy nodes are pruned.

The search-based methods often have much higher time complexity exponential in the

number of nodes or edges. Thus, a budget is forced instead of searching subgraphs with

all sizes. For example, SubgraphX finds all connected subgraphs with at most Bnode nodes,

which has complexity Θ(|Vc|D̂2Bnode−2) for a graph with maximum degree D̂ = maxv∈V Dv.

This complexity can be shown using the following two lemmas.

Lemma 3.4.4. For a graph G with n vertices, the number of the connected subgraph of G

having Bnode nodes is bounded below by the number of trees in G having Bnode nodes.

Proof. Each connected subgraph has a spanning tree.

49

likes

𝐚𝐮𝐭𝐡𝐨𝐫 	𝐩𝐚𝐩𝐞𝐫

𝐟𝐨𝐬

	𝐫𝐞𝐟writes
cites

in

(a) Schema of AugCita-
tion. “writes”, “cites”,
and “in” edges are original.
The “likes” edges (dashed
red) are augmented for
prediction.

		𝑖!
	𝑎!		𝑢!

		𝑖"
		𝑢"

		𝑖#

		𝑖$
		𝑢# 𝑎#

𝑎"

		𝑖!
𝑎!		𝑢!

		𝑖"
		𝑢"

		𝑖#

		𝑖$
		𝑢# 𝑎#

𝑎"

Prediction
edge

Explanation
patterns

likeshas

buys

hidden
prefers

likes

𝐮𝐬𝐞𝐫

	𝐢𝐭𝐞𝐦

𝐚𝐭𝐭𝐫

buys

has

(b) Schema of UserItemAttr (the left box) and its generation process
(the right box). Three types of base edges are generated first, i.e., “has”
(black), “hidden prefers” (dashed gray), and “buys” (blue). The solid “has”
and “buys” edges are then used to generate “likes” edges (dashed red) for
prediction and the ground truth explanation patterns (green arrows).

Figure 3.4: The proposed augmented graph AugCitation and the synthetic graph UserItem-
Attr.

Lemma 3.4.5. For a graph G with node set V, the number of trees in G having Bnode tree

nodes is Θ(|V|D̂2Bnode−2).

Proof. See [fil18] for proof using an encoding procedure.

3.5 Evaluation

In this section, we conduct empirical studies to evaluate explanations generated by

PaGE-Link. Evaluation is a general challenge when studying model explainability since

standard datasets do not have ground truth explanations. Many works [YBY19, LCX20] use

synthetic benchmarks, but no benchmarks are available for evaluating GNN explanations

for heterogeneous LP. Therefore, we generate an augmented graph and a synthetic graph

to evaluate explanations. They allow us to generate ground truth explanation patterns and

evaluate explainers quantitatively.

50

3.5.1 Datasets

The augmented graph AugCitation is constructed by augmenting the AMiner citation

network [TZY08]. A graph schema is shown in Figure 3.4a. The original AMiner graph

contains four node types: author, paper, reference (ref), and field of study (fos), and edge

types “cites”, “writes”, and “in”. We construct AugCitation by augmenting the original graph

with new (author, paper) edges typed “likes” and define a paper recommendation task on

AugCitation for predicting the “like” edges. A new edge (s, t) is augmented if there is at

least one concise and informative path p between them. In our augmentation process, we

require the paths p to have lengths shorter than a hyperparameter lmax and with degrees

of nodes on p (excluding s & t) bounded by a hyperparameter Dmax. We highlight these

two hyperparameters because of the conciseness and informativeness principles discussed in

Section 3.4.1. The augmented edge (s, t) is used for prediction. The ground truth explanation

is the set of paths satisfying the two hyperparameter requirements. We only take the top

Pmax paths with the smallest degree sums if there are many qualified paths. We train a

GNN-based LP model to predict these new “likes” edges and evaluate explainers by comparing

their output explanations with these path patterns as ground truth.

The synthetic graph UserItemAttr is generated to mimic graphs with users, items, and

attributes for recommendations. Figure 3.4b shows the graph schema and illustrates the

generation process. We include three node types: “user”, “item”, and item attributes (“attr”)

in the synthetic graph, and we build different types of edges step by step. Firstly, the “has”

edges are created by randomly connecting items to attrs, and the “hidden prefers” edges are

created by randomly connecting users to attrs. These edges represent items having attributes

and user preferences for these attributes. Next, we randomly sample a set of items for each

user, and we connect a (user, item) pair by a “buys” edge, if the user “hidden prefers” any attr

the item “has”. The “hidden prefers” edges correspond to an intermediate step for generating

the observable “buys” edges. We remove the “hidden prefers” edges after “buys” edges are

51

Figure 3.5: Explanations visualization and comparison between PaGE-Link and
baselines. Explanations (green arrows) by different explainers for the predicted link
(a2367, p16200) (dashed red). The explanation generated by PaGE-Link explains the recom-
mendation by co-authorship, whereas baseline explanations are less interpretable.

generated since we cannot observe ‘hidden prefers” information in reality. An example of

the rationale behind this generation step is that items have certain attributes, like the item

“ice cream” with the attribute “vanilla”. Then given that a user likes the attribute “vanilla”

as hidden information, we observe that the user buys “vanilla ice cream”. The next step is

to generate more ‘buys” edges between randomly picked (user, item) pairs if a similar user

(two users with many shared item neighbors) buys this item. The idea is like collaborative

filtering, which says similar users tend to buy similar items. The final step is generating

edges for prediction and their corresponding ground truth explanations, which follows the

same augmentation process described above for AugCitation. For UserItemAttr, we have

“has” and “buys” as base edges to construct the ground truth, and we create “likes” edges

between users and items for prediction.

We show the hyperparameters for constructing the datasets in Table 3.4.

Table 3.4: Hyperparameters for constructing AugCitation and UserItemAttr

lmax Dmax Pmax

AugCitation 3 30 5
UserItemAttr 3 15 5

52

Figure 3.6: Top paths selected by PaGE-Link. Top three paths (green arrows) for
explaining the predicted link (a328, p5670) (dashed red). The selected paths are short and
do not go through a generic field of study like “Computer Science”.

3.5.2 Experiment Settings

The GNN-based LP model As described in Section 3.3, the LP model involves a

GNN encoder and a prediction head. We use RGCN [SKB18] as the encoder to learn node

representations on heterogeneous graphs and the inner product as the prediction head. We

train the model using the cross-entropy loss. On each dataset, our prediction task covers one

edge type r. We randomly split the observed edges of type r into train:validation:test = 7:1:2

as positive samples and draw negative samples from the unobserved edges of type r. Edges

of other types are used for GNN message passing but not prediction.

Explainer baselines. Existing GNN explanation methods cannot be directly applied to

heterogeneous LP. Thus, we extend the popular GNNExplainer [YBY19] and PGExplainer

[LCX20] as our baselines. We re-implement a heterogeneous version of their mask matrix

and mask predictor similar to the heterogeneous mask learning module in PaGE-Link. For

these baselines, we perform mask learning using their original objectives, and we generate

53

Table 3.5: Performance comparison in ROC-AUC scores of learned masks. PaGE-
Link outperforms baselines.

GNNExp-Link PGExp-Link PaGE-Link (ours)

AugCitation 0.829 0.586 0.928
UserItemAttr 0.608 0.578 0.954

edge-induced subgraph explanations from their learned mask. We refer to these two adapted

explainers as GNNExp-Link and PGExp-Link below. We do not compare to other search-

based explainers like SubgraphX [YYW21] because of their high computational complexity

(see Section 3.4.5). They work well on small graphs as in the original papers, but they are

hard to scale to large and dense graphs we consider for LP.

3.5.3 Algorithmic Evaluation

Quantitative evaluation. Both the ground truth and the final explanation output of

PaGE-Link are sets of paths. In contrast, the baseline explainers generate edge masks M. For

a fair comparison, we take the intermediate result PaGE-Link learned, also the mask M, and

we follow [LCX20] to compare explainers by their masks. Specifically for each computation

graph, edges in the ground truth paths are treated as positive, and other edges are treated as

negative. Then weights in M are treated as the prediction scores of edges and are evaluated

with the ROC-AUC metric. A high ROC-AUC score reflects that edges in ground truth

are precisely captured by the mask. The results are shown in Table 3.5, where PaGE-Link

outperforms both baseline explainers.

For scalability, we showed PaGE-Link scales linearly in O(|Ek
c |) in Section 3.4.5. Here we

evaluate its scalability empirically by generating ten synthetic graphs with various sizes from

20 to 5,500 edges in Gc. The results are shown in Figure 3.2b, which suggests the computation

time scales linearly in the number of edges.

Besides ROC-AUC scores, another way to evaluate the explanations is through the path

54

Table 3.6: Performance comparison in path hit rates (HR) between PaGE-Link and
baselines. GStarXhas high HR with a small budget B. Baselines achieve nonzero HR for
large B.

B GNNExp-Link PGExp-Link GStarX(ours)

AugCitation

10 0.000 0.000 0.007
50 0.002 0.000 0.194

100 0.019 0.000 0.425
200 0.064 0.002 0.645

UserItemAttr

10 0.000 0.000 0.163
50 0.008 0.032 0.705

100 0.016 0.039 0.790
200 0.046 0.101 0.907

hit rate (HR). Specifically, we fix the budget of B edges and evaluate whether an explanation

can hit any complete path in the ground truth. Note that the ground truth for each link

(s, t) only has the top Pmax shortest paths with the smallest degree sums, so hitting a long

path or a less informative path with high-degree generic nodes will not count.

For a fair comparison with baselines, we take the generated explanation mask M for each

method, select the top B weighted edges to compare against the ground truth. We show

results with different budget B in Table 3.6. Explanations generated by GStarXhave higher

path HR than baselines on both datasets. In contrast, GNNExp-Link and PGExp-Link can

barely hit any path in the ground truth for B less than 50.

Note that the actual explanation output of GStarXis a set of paths P. If we evaluate P

instead of the top cut of the intermediate output mask M. Then GStarXcan achieve perfect

path HR (=1) when the budget |P| gets large.

Qualitative evaluation. A critical advantage of PaGE-Link is that it generates path

explanations, which can capture the connections between node pairs and enjoy better

interpretability. In contrast, the top important edges found by baseline methods are often

disconnected from the source, the target, or both, which makes their explanations hard

55

for humans to interpret and investigate. We conduct case studies to visualize explanations

generated by PaGE-Link on the paper recommendation task on AugCitation.

Figure 3.5 shows a case in which the model recommends the source author “Vipin Kumar”

the recommended target paper titled “Fast and exact network trajectory similarity compu-

tation: a case-study on bicycle corridor planning”. The top path explanation generated by

PaGE-Link goes through the coauthor “Shashi Shekhar”, which explains the recommendation

as Vipin Kumar and Shashi Shekhar coauthored the paper “Correlation analysis of spatial time

series datasets: a filter-and-refine approach”, and Shashi Shekhar wrote the recommended

paper. Given the same budget of three edges, explanations generated by baselines are less

interpretable.

Figure 3.6 shows another example with the source author “Huan Liu” and the recommended

target paper titled “Using association rules to solve the cold-start problem in recommender

systems”. PaGE-Link generates paths going through the common fos of the recommended

paper and three other papers written by Huan Liu: p22646, p25160, and p35294. We

show the PaGE-Link explanation with the top three paths in green. We also show other

unselected fos shared by the p22646, p25160, and p35294 and the target paper. Note that the

explanation paths all have length three, even though there are many paths with length five or

longer, e.g., (a328, p22646, f4, p25260, f4134, p5670). Also, the explanation paths go through

the fos “Redundancy (engineering)” and “User profile” instead of generic fos like “Artificial

intelligence” and “Computer science”. This case demonstrates that explanation paths selected

by PaGE-Link are more concise and informative.

3.5.4 Human Evaluation

The ultimate goal of model explanation is to improve model transparency and help human

decision-making. Human evaluation is thus the best way to evaluate the effectiveness of an

explainer, which has been a standard evaluation approach in previous works [SCD17, RSG16,

GBS20]. We conduct a human evaluation by randomly picking 100 predicted links from

56

the test set of AugCitation and generate explanations for each link using GNNExp-Link,

PGExp-Link, and PaGE-Link. We design a survey with single-choice questions. In each

question, we show respondents the predicted link and those three explanations with both the

graph structure and the node/edge type information, similarly as in Figure 3.5 but excluding

method names. The survey is sent to people across graduate students, postdocs, engineers,

research scientists, and professors, including people with and without background knowledge

about GNNs. We ask respondents to “please select the best explanation of ‘why the model

predicts this author will like the recommended paper?’ ”. At least three answers from different

people are collected for each question. In total, 340 evaluations are collected and 78.79% of

them selected explanations by PaGE-Link as the best.

3.6 Discussion

In this work, we study model transparency and accountability on graphs. We investigate

a new task: GNN explanation for heterogeneous LP. We identify three challenges for the

task and propose a new path-based method, i.e. PaGE-Link, that produces explanations

with interpretable connections, is scalable, and handles graph heterogeneity. PaGE-Link

explanations quantitatively improve ROC-AUC by 9 - 35% over baselines and are chosen by

78.79% responses as qualitatively more interpretable in human evaluation.

57

Part III

Explanations Extract Data Insights

58

CHAPTER 4

Predicting and Interpreting Energy Barriers of Metallic

Glasses with GNNs

4.1 Introduction

Metallic glasses (MGs) combine good properties of metals and plastics in one material,

making them stronger than steel while being shapeable as plastic [SHK11]. Their extensive

applications span various industries including aerospace, sports equipment, luxury goods,

biomedical devices, and many more [TT10]. The unique properties of MGs lie in their

non-crystalline amorphous atomic structure, which sets them apart from the crystalline

structure found in traditional metals [TT10, BD13]. Despite extensive research on MGs, the

details of their structure-property relationship are still not well understood [SSD02, DPF14,

PVF16, CLK18].

One promising approach for studying the structure-property relationship of MGs is through

a special property called Energy Barrier (EB). EBs describe the local roughness of the energy

landscape by comparing the average energy difference around an atom’s local neighbors.

Many studies have shown that understanding EBs can act as an important intermediary step

for studying the MG physical properties [DS01, YSW12, TLM21]. As shown in Figure 4.1,

EBs represent mobility, which can influence the MG dynamics and further their physical

properties like glass transition and ductility [BB11, KCZ22]. However, the precise simulation

of EBs is challenging and often requires time-consuming computation [BM96, MBB12, JGS22].

For example, even with a high-performance computing (HPC) cluster and the advanced

59

Low energy barrier

Energy landscape viewpoint

High energy barrier

Dynamics
Dynamic arrest
Brittle fracture

…
Ductile fracture

Physical properties

Low mobility

High mobility
 Glass transition

Viscosity
…

Ductility

Figure 4.1: EBs, mobility, and MG physical properties. EBs represent mobility, which
can further influence the MG dynamics and their physical properties.

Activation-Relaxation Technique nouveau (ARTn) [CLM09], calculating EBs for an MG

system with 3,000 atoms can take 41 days.

Given the usefulness and computational difficulty of EBs, we explore machine learning

(ML) approaches to efficiently predict them from MG atomic structures. Similar to recent

ML investigations on glassy systems [BKG20, RNE22], we phrase the EB prediction problem

as a graph ML problem and solve it using GNNs. Under this formalization, atoms become

nodes in a graph, and edges are constructed between nearby nodes to represent the atomic

structure. Atom types are used as node features. Displacement vectors constructed from 3D

node coordinates are used as edge features. Then EB prediction becomes a node regression

task on graphs.

We simulate MG systems and employ ARTn to calculate some EBs as training labels.

Given the challenge of collecting data, a more data-efficient model with a stronger inductive

bias is desired. In particular, the EB prediction problem exhibits E(3)-invariance, i.e.,

invariance to graph structure transformations including translations, rotations, reflections,

and their combinations. We aim for a GNN that can handle such invariance, but general

message-passing-based GNNs like GCN [KW17] cannot. Some specially designed models are

60

21 3
[0,0,0] [2,0,0][-2,0,0]

2
1 3[0,0,0]

[2, 2,0][- 2, 2,0]

Isosceles triangle graph Flat line graph

Figure 4.2: Example graphs demonstrating model expressiveness. SchNet cannot
distinguish the embeddings of node 1 in these two graphs but SymGNN can.

E(3)-invariant [SKS17, LLW19, GGG20, TD22, LS22, BKS22, BMS22], but, to the best of

our knowledge, none of the existing methods can achieve invariance, expressiveness, and

scalability at the same time as we show in Table 4.1.

To achieve an invariant model that is both expressive and scalable, we propose a simple

but effective Symmetrized GNN (SymGNN), which is E(3)-invariant in expectation. SymGNN

achieves E(3) invariance by introducing a symmetrization module to aggregate embeddings

produced under different orthogonal transformations of the graph structure. It is expressive

as there is no higher-order information loss caused by “feature scalarization” as in models like

SchNet [SKS17]. For example, for the two graphs in Figure 4.2, SchNet will pass the same

message to the central node of an isosceles triangle as if the middle node of a flat line, but

SymGNN will easily distinguish between these two configurations (details in Section 4.4.4).

Also, SymGNN does not involve complex equivariant calculation, so it is much more scalable

than methods relying on equivariant feature extraction [LS22, BKS22, BMS22]. In our

experiments, we demonstrate that when applied to MG graphs, SymGNN outperforms a

variety of widely used GNNs.

Moreover, to better understand the EB prediction and benefit MG research, we also

generate explanations along with the model prediction. Our proposed explanation method

extends GNNExplainer [YBY19] to the node regression task to generate edge-based structure

explanations. It helps us to identify and visualize the importance of each edge in predicting

61

Table 4.1: Characteristic comparison of different methods. ✓ means the model
performs well evaluated by the corresponding category, ✗ means not, and ? means “unclear”,
or “possible after non-trivial extensions”. The E indicates that the model satisfies the property
in expectation.

Methods Invariance Expressiveness Scalability

GCN ✗ ✓ ✓

EGNN ? ✓ ✓

SchNet ✓ ✗ ✓

MGCN ✓ ✗ ✓

FAENet ✓ ✗ ✓

DimeNet ✓ ✓ ✗

Torch-MD Net ✓ ✓ ✗

Equiformer ✓ ✓ ✗

SymGNN (ours) E ✓ ✓

an EB. We also show that the generated explanations match the medium-range order (MRO)

hypothesis of MGs and possess unique topological properties that correlate with the optimal-

volume cycles in a persistent diagram [Oba18]. Our findings provide further insights into the

understanding of EBs, and our explanations can potentially benefit new scientific discoveries.

We summarize our contributions as the following:

1. We formulate a material science research problem of predicting MG EBs as an ML

problem of node regression on graphs.

2. We collect MG data for ML research, with precisely simulated EBs using ARTn.

3. We propose a simple but effective SymGNN model that exhibits E(3)-invariance in

expectation and predicts MG EBs accurately and fast.

4. We generate explanations for EB predictions that match the MRO hypothesis, express

unique topological properties, and provide insights for scientific discoveries.

62

4.2 Related Work

ML in Material Science. The application of ML in materials science has seen significant

advancements recently, with various models to tackle different aspects of material science

problems. Among these, GNNs have emerged as a powerful tool for representing and

analyzing materials at the atomic level, owing to their ability to capture the complex

relationships and interactions between atoms in a material. For example, estimating the

propensity of individual atoms [BKG20], potential energy exhibited by a system of atoms

[SKS17]. In these settings, inductive bias of equivariance and invariance often plays a

key role in the generalizability of network. For example, in our problem the EB only

depends on local molecule configuration and thus are invariant on translation, rotation,

and reflection of graphs. To incorporate this physical inductive bias, various invariant and

equivariant GNNs have been proposed. Invariant GNNs often restrict graph features to be

rotationally invariant, such as edge distances and angles, or reducing the inputs by projecting

it onto PCA frames [SKS17, GGG20, GGM20, DSH23], whereas equivariant networks are

proposed to leverage tensorial transformation that can extract equivariant node features

[SUG21, LS22, BKS22, BMS22, TD22]. Several evaluation benchmarks for equivariant ML

models on molecular dynamics [BMP24] and solid-state materials systems [CGR20, LGN23]

have been proposed. EGRaffBench [BMP24] provides insights into the performance of

various equivariant architectures in predicting forces in molecular systems, highlighting

their potentials in simulating atomistic interactions. Moreover, JARVIS [CGR20] and the

MatSciML benchmark [LGN23] represent significant efforts in benchmarking MLs to solid-

state materials systems. These works demonstrate the potential of ML models, including

various GNNs, in predicting properties and behaviors of solid-state materials, thereby aiding

in materials design and discovery. Furthermore, a comprehensive overview of geometric GNNs

for 3D atomic systems is provided by Duval et al. in their recent review [DMJ23]. This guide

offers valuable insights into the development and application of GNNs in materials science,

emphasizing the importance of geometric considerations in modeling atomic systems.

63

MGs and EBs. Understanding the relationship between the atomic structure and physical

properties of MGs is one of the greatest challenges for both material science and condensed

matter physics [FL11, SW15, NFM18]. However, the structure-property relationship of

MGs is often challenging to characterize directly due to the complexity of the physical

properties [CIS17, BKG20]. EBs describe the local roughness of the energy landscape

by comparing the average energy difference around an atom’s local neighbors. They are

influential in MG dynamics and their physical properties [BB11, KCZ22], for example,

the degree of ductility during fracture [TLM21]. Therefore, EBs can act as an important

intermediary step when predicting the physical properties with the atomic structures as

inputs [DS01, YSW12, WDM20, TLM21]. ML methods have been applied to investigate the

relationship between the atomic structures and physical properties in MG [BKG20]. For

EBs in particular, [WDM20] explored using XGBoost to classify nodes with the highest 5

percent activation energy. Our work furthers the investigation of [WDM20] by leveraging the

natural graph structure using GNNs to perform a regression for EBs and generating insightful

explanations.

4.2.1 GNN Explanation

Model explainability is crucial for complex modern ML models. Specifically for explaining

GNNs, a wide range of explanation methods are proposed to select the most influential edges,

nodes, features, and even subgraphs [YBY19, LCX20, YYW21, ZLS22, LLW22], for the

prediction of one node in the sense that the most message passing happens. GNNExplainer is

the pioneering work that achieves this goal by learning edge masks to maximize the mutual

information between perturbed output and the original model output [YBY19]. These works

including GNNExplainer focus on explaining classification problems, whereas we focus on

explaining node regression. To the best of our knowledge, the only work that targets GNN

explanation for regression tasks is [ZCM23], but it is very different from ours because it

focuses on graph-level regression, and it does not consider any invariance explanation nor

64

any application to material science.

4.3 Problem Setup and Preliminaries

4.3.1 EB Prediction with GNNs

The problem of predicting EBs of MGs can be formalized as a node regression problem on

graphs. Under this formulation, atoms become nodes in a graph, and edges are constructed

between nearby nodes. The MG data thus becomes a graph with n nodes and m edges. We

represent the graph structure with G, which indicates all the edges and is normally represented

in the form of an adjacency matrix. The node features are the atom types, which we represent

with Z = {z1, z2, . . . ,zn}. The edge features are the displacement vectors constructed

from 3D node coordinates, which we represent with X = {x1,x2, . . . ,xm |xi ∈ R3}. The

regression task is to predict the EB label y ∈ R of each node with the graph structure

and features as inputs, i.e., a model that maximizes P (y|G,Z,X). We further break down

the prediction process into two steps. The first step encodes node and edge features to

embeddings H. The second step predicts y with G and H as inputs. The objective to

maximize becomes the following,

P (y|G,Z,X) =

∫
H

P (y|G,H)P (H|G,Z,X)dH (4.1)

We solve this problem with the state-of-the-art graph ML models - GNNs.

4.3.2 Orthogonality and Invariance

EB is invariant to Euclidean transformations of the atomic graph structure, for exam-

ple, rotations, reflections, and translations, because it is the average energy needed for a

node to hop between its current and nearby energy subbasins. Given that the graph is

described with displacement vectors of relative positions, translations will be canceled, and

65

the invariance to Euclidean transformations can be reduced to the invariance to orthogonal

transformations [HH13], which is defined as the following,

Definition 4.3.1 (Orthogonal Transformation). A linear transformation T : Rd → Rd

is called an orthogonal transformation if it preserves the inner produce ⟨·, ·⟩ on Rd, i.e.,

∀x1,x2 ∈ Rd, ⟨T (x1), T (x2)⟩ = ⟨x1,x2⟩. Then, the matrix form of T has | det(T)| = 1. The

orthogonal group in dimension d is the group of all such orthogonal transformations on Rd

and is denoted as O(d).

We also state a well-known lemma in group theory [HH13] and a theorem by Euler [Sla99]

for decomposing the orthogonal group and rotations respectively. They will be useful for

modeling invariance.

Lemma 4.3.2 (O(3) Decomposition). The orthogonal group O(3) can be decomposed into

rotations and non-rotations. The rotations also form a group denoted as SO(3), and it

contains all transformations R whose matrix forms have det(R) = 1. The non-rotations

contain all the reflections and roto-reflections (also called improper rotation) R̃, whose matrix

form have det(R̃) = −1. Non-rotations can be denoted as P · SO(3), with P being any

reflection transformation through the origin.

Theorem 4.3.3. (Euler) Define the rotations around the three coordinate axes x1, x2, and x3

in R3 by

Ox1(α) =

1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

Ox2(β) =

cos(β) 0 − sin(β)

0 1 0

sin(β) 0 cos(β)

66

Ox3(γ) =

cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

Then any rotation R ∈ SO(3) can be written as Rα,β,γ = Ox1(α)Ox2(β)Ox3(γ) for some angles

[α, β, γ] ∈ [−π, π]3. These angles are called the Euler angles.

Then we formally introduce the invariant/equivariant transformation.

Definition 4.3.4 (Invariant/Equivariant Transformation). Given a group K acts on Rd. A

transformation T : Rd → Rd is invariant to K if T (x) = T (k · x) and equivariant to K if

k · T (x) = T (k · x) for all k ∈ K and for all x ∈ Rd.

4.3.3 GNNExplainer

As a representative GNN explanation method, GNNExplainer seeks to explain GNN

classifications by selecting an important edge-induced subgraph GS that minimizes the entropy

H(·) of the label Y . Since GS is discrete, GNNExplainer learns a continuous distribution G

over GS that gives the minimal expected entropy, where G can be implemented as a learnable

edge mask M ∈ R|G| applied on edges of G after a sigmoid function σ. Mathematically, the

optimization objective is

min
G

EGS∼GH(Y |G = GS) = min
M

H(Y |G = σ(M)⊙G) (4.2)

4.4 SymGNN: Symmetrized GNNs

In this section, we present SymGNN for solving the EB prediction problem we formalized

in Section 4.3.1. We first introduce the theory behind the core symmetrization module for

capturing O(3) invariance in Section 4.4.1, then the full SymGNN model in Section 4.4.2, and

finally how we apply explanation algorithms to SymGNN to reveal the connection between

67

the atomic structures and EBs in Section 4.4.5.

4.4.1 Theory of Symmetrization Over O(3)

Although EB is invariant to Euclidean transformations of the atomic graph structure,

most GNNs are not designed to automatically capture such invariance. There are existing

GNNs specialized for molecular graphs that can handle such invariance, but they either

utilize scalarization that cannot handle higher-order information, or cannot scale up to graphs

with thousands of nodes like MGs. We thus propose a symmetrization module that can

better capture invariance and efficiently scale up. This section presents the theory behind

the symmetrization.

For the node regression problem formalized in Section 4.3.1, X only represents one set of

displacement vectors under one particular coordinate system. To achieve O(3)-invariant (and

thus E(3)-invariant as explained in Section 4.3.2) predictions, we propose a symmetrization

over all orthogonal transformations of X, denoted as X = {T (X) | ∀T ∈ O(3)}. Under

symmetrization, we reformulate the feature encoding step in Equation 4.1, i.e.,P (H |G,Z,X),

as a probability integrated over X , i.e.,

P (H |G,Z,X) =

∫
T∈O(3)

P (H |G,Z, T (X))P (T) dT (4.3)

Notice that a truly O(3)-invariant model will give the same result for P (H |G,Z,X) and

P (H |G,Z,X). In the new formulation, when maximizing P (H |G,Z,X), the model will

learn the desired invariance by foreseeing and aggregating different transformed graphs. To

model such an integral, we first define the distribution of T on O(3) through the following

two lemmas.

Lemma 4.4.1. Any non-rotation R̃ ∈ P ·SO(3) can be written as R̃α,β,γ = −Ox1(α)Ox2(β)Ox3(γ)

for some parameters [α, β, γ] ∈ [−π, π]3.

68

Proof. Please refer to Appendix A.3.1.

Intuitively, Theorem 4.3.3 says that any rotation in 3D can be decomposed into a

combination of rotations that rotate only around the x1-axis, x2-axis, and x3-axis and

parameterized with the Euler angels. Similarly, Lemma 4.4.1 says a similar decomposition

and parameterization can be achieved for non-rotations as well. Bring these two results

together gives the following lemma for decomposing any orthogonal transformation T ∈ O(3).

Lemma 4.4.2. Any orthogonal transformation T ∈ O(3) can be written as Tλ,α,β,γ =

(−1)λOx1(α)Ox2(β)Ox3(γ) for some parameters λ ∈ {0, 1} and [α, β, γ] ∈ [−π, π]3.

Proof. Follow from Lemma 4.3.2, Theorem 4.3.3, and Lemma 4.4.1.

Lemma 4.4.2 allows the integral in Equation 4.3 to be reduced into an integral over λ and

[α, β, γ] in Equation 4.4, which is the objective our GNN will model.

P (H |G,Z,X) =

∫
λ,α,β,γ

P (H |G,Z, Tλ,α,β,γ(X))P (Tλ,α,β,γ) dλdαdβdγ

4.4.2 Symmetrized GNN

We now present the full SymGNN model with an illustration shown in Figure 4.3. SymGNN

consists of two sub-modules. The first is the symmetrization module mentioned above for

producing O(3)-invariant embeddings H , which we indicate with H = Sym(G,Z,X). The

second is a prediction module that takes the symmetrized H and G to perform message

passing with attention and then node regression.

The Sym module produces embeddings following the objective in Equation 4.4 with a

learnable encoder Enc, i.e.,

H = Sym(G,Z,X) =

∫
λ,α,β,γ

Enc(G,Z, Tλ,α,β,γ(X))P (Tλ,α,β,γ)dλdαdβdγ (4.4)

69

Symmetrization Module
Graph with 3D

Edge Features X

21

3
4𝒙!

(𝒙"", 𝒙!", 𝒙#")
(𝒙"!, 𝒙!!, 𝒙#!)
(𝒙"#, 𝒙!#, 𝒙##)
(𝒙"$, 𝒙!$, 𝒙#$)

Learnable
Distribution of
Transformation

T ∈ O(3)

2 1

3
4

Prediction Module

y2

Invariant
Embeddings

Rotations (𝑅)

Non-Rotations (𝑅#)

𝒙" 𝒙#

𝒙$

2
1

3 4

2
1

34

…

2
1

3

4

21

3
4

Predict

Message Passing with Attention

Figure 4.3: Illustration of the SymGNN framework. Given an input graph with
node features being atom types and edge feature the relative distance, the symmetrization
module of SymGNN aggregates encoding results on various orthogonally transformed graphs
sampled from a learnable distribution to achieve O(3)-invariant in expectation. The invariant
embeddings are then passed to message-passing layers with attention to aggregate information
and predict label.

However, one challenge is that there are infinitely many T ∈ O(3), which makes the

integral intractable. To model such an integral, we generate transformations T1, . . . , Tk from

O(3) by sampling λ and [α, β, γ] to approximate the Sym in Equation 4.4, which gives the

SymT1,...,Tk
we use in practice.

SymT1,...,Tk
(G,Z,X) =

1

k

k∑
i=1

Enc(G,Z, Ti(X)) (4.5)

We show that SymT1,...,Tk
is O(3)-invariant in expectation under assumptions of uniform

distributions.

Theorem 4.4.3. Assume T1, . . . , Tk are random transformations that follow a uniform

distribution over all T ∈ O(3). Then, Sym is O(3)-invariant in expectation in the sense that

ET1,...,Tk
[SymT1,...,Tk

(G,Z,X)] = ET1,...,Tk
[SymT1,...,Tk

(G,Z, T0X)] for any T0 ∈ O(3).

Proof. Please refer to Appendix A.3.2.

70

Sym can learn from a variety of orthogonal transformations and achieve invariance. In

practice, we fix λ to be Bern(0.5) to balance rotations and non-rotations uniformly, but

we parametrize α, β, γ with learnable von Mises (Tikhonov) distributions [MZ75] instead of

uniform. Learnable distributions help Sym more efficiently sample orthogonal transformation

that benefits the prediction. The von Mises parameterization indeed leads to better empirical

performance than uniform, since these distributions closely approximate the wrapped normal

distribution on [−π, π].

The second prediction module takes the invariant embeddings H produced by Sym to

perform message passing and predict y. Given the complexity of the prediction problem and

to enhance model expressiveness, we also compute attention of edge features and add skip

connections during message passing. Specifically, we build up on the Edge Graph Attention

Network (EGAT) [KLJ21] model to add edge features to the attention calculation in addition

to the regular GAT.

Specifically, after the message from each node is computed, we first calculate an attention

score aij over the edge between nodes i and j. Then the representation of node i in the l+1-th

layer (el+1
i) is constructed as the attention-weighted average of the neighbor representations

from the l-th layer. We show the formula in the following, where σ represents the non-linear

activation function and N (i) represents the set of neighbors of node i.

alij =
expxlij∑

k∈N (i) expx
l
ik

, el+1
i = σ(

∑
j∈N (i)

aije
l
j)

4.4.3 Computation Time Analysis

We provide a theoretical analysis of the time complexity of SymGNN against three other

baselines including SchNet, DimeNet, and Equiformer. For SymGNN, the time complexity is

O(kn+ nd2), where k denotes the number of sampled orthogonal transformation, n denotes

the number of nodes, and d denotes the average number of neighbors a node has. The first kn

71

Table 4.2: Theoretical time complexity of SymGNN and baselines.

SymGNN SchNet Equiformer DimeNet

Complexity O(kn+ nd2) O(nd) Ω(nd2) O(n4)

term comes from the symmetrization of k orthogonal transformations, the second nd2 term

comes from the attention operation among a node’s neighbors. Add these two terms together

we essentially get O(nd2) (empirically we set k = 6). In comparison, SchNet is faster as it is

O(nd). But for DimeNet, since it considers pairwise edge interaction, the time complexity

grows at least as O(m2) = O(n4), which makes it prohibitively slow for our graphs with

thousands of nodes. For Equiformer, its exact time complexity is unknown to us. It is a

transformer-based method where they change attention to equivariant attention and linear

layer to equivariant linear layer using complex tensor operations, which implies that its big-O

time complexity is lower bounded by O(nd2). Empirically, we found that training Equiformer

is excessively slow for our large-scale graphs. A list of analyzed time complexity can be found

in Table 4.2.

4.4.4 Expressiveness Analysis

In this section, we show by examples that SymGNN can capture more complex interactions

between molecules compared to SchNet-like methods. Consider two three-molecule systems

that have the following configurations where the atom type for node 2 is two whereas the

atom type for node 1 and node 3 is one (Figure 4.1):

(a) 1: (−2, 0, 0), 2: (0, 0, 0), 3:(2, 0, 0)

(b) 1: (−
√
2,
√
2, 0), 2: (0, 0, 0), 3:(

√
2,
√
2, 0)

Notice that the edge distance between node 2 to each of node 1 and node 3 are two in both

of these configurations, so SchNet cannot distinguish these two configurations based on the

embedding of node 2, as it only takes into account the distance information. However, we

72

shall see that SymGNN can differentiate these configurations based on node 2’s embedding as

it considers also higher-order information. To ease the computation, we consider a minimal

setting of SymGNN where the encoder is the identity function, and each time two orthogonal

transformations will be applied to the graph and then aggregated. Finally, node 2’s embedding

is calculated by simply summing up the message passed between node 2 and node 1 and

between node 2 and node 3. Suppose the two orthogonal transformations sampled are

a counterclockwise rotation in xy-plane by 45 degrees and a reflection around y-axis. It

can be calculated that SymGNN will give the embedding (0, 0, 0) for node two in the first

configuration, but the second configuration gives (2, 2+2
√
2, 0). Similar example can be given

to show that SymGNN can also detect configurations that have equivalent angle structure,

and thus we know SymGNN truly considers higher-level information compared to those

invariant methods that are based on scalerization.

4.4.5 Explanations for Structure-EB Relationship

ML models have emerged as powerful tools in scientific research, and their utility can

extend beyond mere predictions to explanations. This explanatory aspect is crucial because

it aligns with the fundamental objective of ML for science: identifying patterns that can

elude human analysis and understanding the underlying mechanisms that govern phenomena.

To make the best use of the SymGNN model and truly bolster the scientific research of

MGs, we generate explanations to better reveal the structure-EB relationship. We choose

GNNExplainer as a starting point for selecting a subgraph GS with important edges. Since

GNNExplainer was developed for classification problems, the cross-entropy-based objective

does not apply to the regression problem of EB prediction. Therefore, we still learn an edge

mask M on all edges, but modify the objective in Equation 4.2 by replacing entropy with

73

mean squared error (MSE) as below, with f representing the SymGNN model.

min
G

EGS∼GMSE(f(GS)) = min
M

MSE(f(σ(M)⊙G)) (4.6)

This regression explainer considers all edges involved in the prediction of EB for one node

and assigns a score to each edge. These scores represent the importance of their corresponding

edges for making the prediction. In Section 4.6, we demonstrate that the important edges

identified by our explainer match the MRO insights mentioned in previous material research

and possess unique topological properties.

4.5 Prediction Evaluation

We conduct experiments by first constructing an MG dataset with energy barriers simulated

by molecular dynamics. Then we apply SymGNN to this dataset and compare its performance

with other baseline models. We also perform ablation studies of the symmetrization module

to show its effectiveness.

4.5.1 Dataset

The proposed Cu64Zr36 dataset. We employ molecular dynamics to simulate the

behavior of a representative Cu64Zr36 MG subjected to shear deformation. The simulated

MG system comprises 8000 atoms, generated through the conventional melting-quenching

procedure. To evaluate the influence of system size, we also simulate small systems with

3000 atoms. To ensure the statistical robustness of our findings, 9 independent metallic glass

samples are generated. To obtain the energy barriers of atoms, we employ the activation-

relaxation technique nouveau (ARTn) [BM96, CLM09] to calculate the energy barriers. The

simulated results are used to construct a dataset consisting of nine graphs. Among them, six

graphs are used for training, one graph is for validation, and two graphs are for testing. Each

74

training/validation graph has 8,000 nodes and roughly 260,000 edges, and each test graph

has 3,000 nodes and roughly 100,000 edges.

A Detailed Dataset Construction Process The simulated MG system comprises

8000 atoms, generated through the conventional melting-quenching procedure with varied

cooling rates spanning from 1014 to 1010 K/s. To evaluate the influence of system size,

we also simulate small system (i.e., 3000 atoms). To initiate the simulation, the sample

is initially melted at 2000K under zero pressure for 1ns, facilitating the erasure of its

initial configuration memory. Temperature and pressure control are maintained through the

isothermal-isobaric (NPT) ensemble, employing a Nosé-Hoover thermostat [Nos84, Hoo85].

Subsequently, the liquified state is rapidly quenched to 1K, with cooling rates ranging

from 1014 to 1010 K/s. The resulting glassy structure is further relaxed to its local energy

minimum through energy minimization, utilizing the conjugate gradient algorithm. The

interatomic interactions within the system are described using the embedded-atom method

(EAM) potential [MKO09]. To ensure the statistical robustness of our findings, 9 independent

metallic glass samples are generated for each cooling rate. A timestep of 1fs is adopted

for all simulations, and the entire set of simulations is carried out using the LAMMPS

package [Pli95]. To obtain the energy barriers of atoms, we employ the activation-relaxation

technique nouveau (ARTn) [BM96, CLM09] to calculate the energy barriers within MGs.

Specifically, starting from a local energy minimum in the landscape, initial perturbations are

introduced to a chosen atom and its nearest neighbors. This perturbation allows exploration

along a direction of negative curvature, increasing the likelihood of locating a saddle point in

the energy landscape. The Lanczos algorithm [BM96] is then applied to guide the system

to the saddle point by following the direction of negative curvature. A force tolerance of

0.05eV/Å−2 is chosen to ensure convergence of the saddle points. In accordance with previous

investigations [FIE14, FIE17, XFL18], 20 searches for saddle points are conducted for each

atom. Consequently, the ARTn exploration focuses on determining the average energy barrier

75

associated with atoms. This parameter is recognized as a key factor influencing the propensity

for plastic rearrangement in disordered materials [TML20, TLM21]. The simulated raw

dataset initially only contains nodes (atoms) along with their types and 3D coordinates. We

construct edges between two nodes if their Euclidean distance is smaller than a threshold,

which is chosen to be 5Å = 10−10m.

CuZr-Based MGs as Representative Examples We choose the CuZr-based MGs as

representative examples in our experiments. First, Cu-Zr-based metallic glass is one of the most

widely investigated MGs due to its outstanding mechanical properties and good glass-forming

ability [CM11]. Many well-known studies on MGs, such as those focusing on mechanical

properties and ductility [LLL12, PGW10], are centered on Cu-Zr. Additionally, Cu-Zr has

been used as a standard MG example in ML research to study β processes [WDM20] and

perform hierarchical structure analysis [HNH16]. Cu64Zr36 is known as the best glass former

in this class of MGs and is commonly used as the archetype model in MD simulations [WDM20].

While other MGs are not included in this study, some common dynamic behaviors (e.g.,

relaxation, dynamical heterogeneity, shear band formation) are believed to be controlled by

energy barriers, with structure-property relationships transferable between different MGs.

Cu-Zr MGs from [WDM20] We also tested our method on other metallic glass dataset.

We adopted the dataset proposed in one of the previous work [WDM20], which includes two

additional Cu-Zr type metallic glasses Cu80Zr80 and Cu50Zr50. For each type of material

the dataset contains two graphs each with 5000 nodes and around 650000 edges. We picked

one as training graph and the other one for testing.

4.5.2 Experiment Settings

Baselines: We evaluate our model against a variety of other ML models including Graph

Convolutional Network (GCN) [KW17] withe edge features, E(n) Equivariant GNN (EGNN)

76

[SHW22] that are designed to handle equivariant features, a non-graph based multi-layer

perceptron (MLP) model, and various invariant baselines that are proposed to handle

molecular data including SchNet [SKS17], MGCN [LLW19], DimeNet [GGG20], Torch-MD

Net [TD22], Equiformer [LS22], and FAENet [DSH23],. Furthermore, we perform two ablation

studies named SymGNN w/o symmetrization where we remove the symmtrization layer and

Data Augmentation where we only aggregated the embedding from three fixed orthogonal

transformation instead of a learned one. In addition we have include a simple baseline in

which we use the absolute length of edge instead of its 3D coordinates as an input edge

feature to achieve invariance. We also compared to MD based local sampling approximation

that is widely used by material scientists [KWY17, SDS98].

Evaluation: The predicted energy barriers are evaluated by the Pearson product-moment

correlation coefficient against the true values following from previous work in material science

literature [BKG20]. We run each experiment 4 times with different random initializations.

On our Cu64Zr36 dataset, we use the validation set to determine the best model and compute

the score with the best model on the test set. For the other Cu-Zr MGs dataset, we compute

the test accuracy on the final epoch since there is no validation set.

Implementation: For our proposed Cu64Zr36 dataset, we train 4-layer GNNs for 20,000

epochs using an Amsgrad optimizer [RKK19] with a learning rate of 0.0001. We adopt an

early stopping scheme if the model’s prediction score on the validation set did not improve

for 1000 epochs. For the other Cu-Zr MGs dataset, we train each model to a fixed number

of epochs as there is no validation set. For those models that have smaller scale and faster

convergence, i.e., MLP, GCN, EGNN, EGAT, SchNet, and MGCN, we train to 5000 epochs.

For SymGNN, we trained the model to 10000 epochs for better convergence. In all the

datasets for SymGNN, the distribution over the angles α, β, and γ is parameterized by the

von Mises (Tikhonov) distribution.

77

Table 4.3: Testing scores comparison of SymGNN, the molecular dynamics (MD)
method, and other ML methods. Test results are with the best model on the validation
set. Our SymGNN significantly outperforms the MD method and achieves the best among
all the ML methods.

Methods Cu64Zr36 Cu80Zr20 Cu50Zr50

MD Local Sampling [SDS98] 0.3614 − −

Non-Invariant ML MLP 0.0575± 0.0127 0.0727 ± 0.0154 -0.0652 ± 0.0099
GCN with Edge Features 0.5123± 0.0507 0.2478 ± 0.0051 0.1395 ± 0.0068

Invariant ML

E(n) Equivariant GNN 0.2588± 0.0077 0.1382 ± 0.0113 0.1381 ± 0.0098
EGAT (Edge Length as 1D Feature) 0.7264± 0.0063 0.5489 ± 0.0218 0.1571 ± 0.0095
SchNet 0.7588± 0.0088 0.2505 ± 0.0128 0.1808 ± 0.0106
MGCN 0.7352± 0.0066 0.1793 ± 0.0133 0.1596 ± 0.0033
FAENet 0.6603 ± 0.0218 0.2947 ± 0.0171 0.2214 ± 0.0160

Ours
SymGNN 0.7859 ± 0.0056 0.6084 ± 0.0167 0.5862 ± 0.0277
SymGNN w/o symmetrization 0.2669± 0.0371 0.2283 ± 0.0256 0.1135 ± 0.0129
Data Augmentation 0.6614 ± 0.0285 0.3304 ± 0.0201 0.2135 ± 0.0337

4.5.3 Prediction Results

We report the results of SymGNN and other baselines in Table 4.3. It can be seen from the

table that SymGNN outperforms the baselines by a large amount and exhibits a much stronger

generalization power. When we remove the symmetrization module, (i.e. SymGNN w/o

symmetrization), the ablated model cannot generalize well, and a similar performance drops

is observed when we only aggregates embedding from three fixed orthogonal transformations.

This demonstrates the effectiveness of the symmetrization module. Also we observe that

models capable of handling invariance can lead to much better result compared to the ones

that cannot, which again highlights the importance of symmetrization module in achieving

good prediction performance. In addition, we also ran Equiformer, Torch-MD Net, and

DimeNet as our baselines. However, we noticed that the training time for these methods are

prohibitively long (i.e longer than 2 days) on our dataset.

78

Table 4.4: Training time comparison for one epoch between SymGNN and baselines.

Method SymGNN SchNet Equiformer DimeNet

Time 3 secs 1 sec 82 mins -

Table 4.5: Inference time comparison on an MG with 3,000 atoms between SymGNN and
baselines.

SymGNN ARTn MD local sampling

Time 0.26 seconds 41 days 150 mins

4.5.4 Computation Time Comparison

We notice that SymGNN reaches high performance without dramatically increase both

the training cost or the inference cost. Table 4.4 provides an empirical time comparison for

the time needed to train the model for one epoch. We observe that DimeNet would run

indefinitely for our larger graph, and the time taken by Equiformer is also prohibitively long.

Table 4.5 shows an inference time comparison. Compared to traditional MD simulation, our

ML-based approach needs much fewer computation resources and is much more efficient. For

precise MD simulation with ARTn, the calculation of the energy barrier for each atom takes

around 20 minutes in a supercomputer with 16 parallel threads. Therefore, for a MG system

that has the size of our test graph, i.e., 3,000 atoms, the computation will take 20×3000
60×24

≈ 41

days. Even for the much faster and less inaccurate local sampling method, the inference time

for this MG system can take 150 minutes. In contrast, SymGNN’s inference time on the test

graph is almost negligible.

4.5.5 Abalations and Further Comparisons

Abalations on Dataset Splits To check our method’s robustness under different dataset

configurations, we performed an ablation study with two more random dataset splits. These

79

Table 4.6: Performance comparison of the original and new dataset splits between SymGNN
and SchNet.

Model Train Test

Original SymGNN 0.8368 0.7859
SchNet 0.7858 0.7588

New Split 1 SymGNN 0.8600 0.7613
SchNet 0.7778 0.7583

New Split 2 SymGNN 0.8362 0.7645
SchNet 0.7070 0.6948

splits use different sets of randomly sampled training graphs, one randomly sampled graph for

validation, and rest for testing. The result can be found on Table 4.6. We see that SymGNN

consistently outperforms SchNet in all the dataset splits we considered.

Ablation on Number of Orthogonal Transformations In our experiments, we found

that the model performance is relatively stable with respect to the number of transformations.

We performed an ablation study with different number of aggregated orthogonal transfor-

mations. We presented experiments results with 2, 4, 6, and 12 transformations. Although

using 12 transformations led to out-of-memory (OOM) issues, we found that both 2 and 4

transformations yielded effective results, with the performance using 2 transformations even

being slightly better than our reported results. We hypothesize that as long as we are sampling

various orthogonal transformations from a reasonable distribution, the framework can benefit

from the symmetrization module and achieve good results. The number of transformations

mostly influences the convergence time rather than the performance. For example, using 2

transformations required 3000 epochs for convergence, while 4 transformations required 2300

epochs. This observation aligns with our expectations, as fewer transformations necessitate

more iterations for the model to capture the necessary information from the data. The results

can be found in Table 4.7.

80

Table 4.7: SymGNN performance ablated on different number of orthogonal transformations.

Number of Transformations 0 2 4 6 12

Train 0.8736 0.8302 0.8072 0.8368 OOM
Test 0.2669 0.7901 0.7778 0.7858 OOM

Comparison with Data Augmentation Empirically, we find that our symmetrization

module can learn a condensed subspace of the orthogonal transformations corresponding to

the task, which allows more effective aggregations. In this section, we provide an analysis

with the subspace learned by SymGNN. We report the mean and concentration for each

distribution that controlled one Euler angle after the training. For rotations, we have

(µi, κi) = (−0.3414, 0.2985), (0.7023, 0.9146), (−1.5622, 1.3543)

and

(µi, κi) = (−0.4102, 3.0350), (−0.4946, 3.0645), (−0.7043, 0.1533)

for the rest. We perform an estimation of how much volume we need in order to capture 80

percent of the whole probability density. We notice that Von Mises distribution with a bigger

κ is approximately a Gaussian distribution with variance 1
κ
, and a Von Mises distribution

with a smaller κ is approximately a uniform distribution. Therefore, we approximate the

estimation using a similar density-volume estimation with four Gaussian random variables

N (−1.5622, 1
1.3543

),N (−0.4102, 1
3
),N (−0.4946, 1

3
),N (0.7023, 1

0.9146
), and two uniform distri-

butions between [−π, π]. We found that for these four Gaussian distributions, intervals of

length 2.21, 3.37, 3.37, 4.01 around the mean can approximately yield 94.5 percent of density.

Therefore, in total it will yield 0.9454 ≈ 0.8 of density. By picking all the uniform distribution,

we know that at least 80 percent of the density can be included by less than 7 percent of

the density. This analysis implies the effectiveness of the learning. We should note that

this estimation is rough and an overestimation, since in reality the distributions that are

approximated as uniform are also more centered.

81

Figure 4.4: Global and local explanation visualizations for SymGNN on MG node 1501.

4.6 Explanation Evaluation and Analysis

We produce explanations using the method in Section 4.4.5. We first provide visualizations

to qualitatively show our explanation, and then we do a quantitative evaluation by connecting

of our explanation to the MRO hypothesis and the topological data analysis (TDA) to reveal

more insights.

4.6.1 Explanation Visualization and MRO

We visualize our explanation for a randomly sampled node. We provide both the global

and the local version. All atoms are plotted in their actual 3D coordinates. The explanation

is presented in Figure 4.4. For the global version, we visualize the top 50 important edges.

For the local version, we zoom in to the top 10 closet nodes. From the visualizations, we see

that edges close to the central node or far away from the central node may both be selected.

Also, as we can see from the local version of the explanation, few edges within the top 10

closet edges is selected by our explanation.

82

Figure 4.5: Analysis of explanations for SymGNN prediction. (a) Distribution
of distance to the prediction target (central node) of important atoms identified by our
explanation vs. all atoms. (b) Distribution of the number of cycles involved in important
edges identified in our explanation vs. randomly selected edges.

Material scientists proposed an MRO hypothesis, which basically says the atoms that

lie in a range of medium distance (5 - 10 Å) from the central atom play a more important

role in determining its MG properties [MSW09, SLA06, NCG21, EDR23]. We aggregate our

selected edges to nodes (atoms) and plot the atom importance against their distance to the

central node in Figure 4.5 (a). We see there are two modes of the important atoms, one for

the closest ones and one for the medium-range ones, which matches the MRO hypothesis.

4.6.2 Edge Importance Explanation and TDA

We perform TDA to further understand our edge importance explanations and see if the

results recover meaningful topological structures.

Persistent Homology (PH) PH is a widely used TDA method, a field of study that

applies concepts from algebraic topology to data analysis [Bar94, ZC04, EH08]. PH examines

how topological features such as connected components, holes, or voids, emerge and disappear

as one moves through different scales in a dataset. The persistence of certain topological

features across scales can reveal important insights about the underlying structure of the

data, making PH a powerful tool for material science. This method has also been applied

to metallic glass to uncover important topological structures [SBB20]. In PH, the concepts

83

Table 4.8: SymGNN explanation and optimal cycles. Average number of optimal
cycles participated by edges with high/medium/low importance according to the SymGNN
explanation and randomly selected edges.

Edge Importance High Medium Low Random

Avg # Optimal Cycles 4.130 1.202 0.874 1.148

of “birth” and “death” are the essential quantities we would like to study, which visually

represent the lifespan of topological features in a dataset. “Birth” refers to the scale at which

a feature, like a connected component or a hole, first appears during the filtration process,

while “death” denotes the scale at which this feature disappears or merges.

Explanation Results In our case, we apply PH to study the emergence and death of

1D hole as we increase the radius of a ball surrounding each atom. We perform the inverse

analysis to pair the hole with a representative optimal cycle [Oba18]. In this way, each edge

in the graph can be associated with a sequence of births and deaths of the cycles that it

has participated in. We perform statistical analysis to see if there is significant difference

between selected edges by our explanation and other edges. We plot and compare the

distribution of the number of optimal cycles involved in the highest importance edges selected

by our explanation versus randomly selected edges over multiple central nodes that are being

explained in Figure 4.5 (b). We found that on average the importance edges participates

in much more cycles compared to others, and there is a clear trend in the decrease in cycle

number as the importance of edges decrease. The mean of the number of cycles involved in

by edges in the four different group can be found in Table 4.8.

4.7 Discussion

In this paper, we study the connection between the local atomic structures of MGs

and their EBs of the energy landscape. We formalize this problem as node regression on

84

graphs and propose SymGNN to solve the problem by effectively capturing the invariance of

orthogonal transformations of the graph. We compare SymGNN with several baseline models

and demonstrate that SymGNN performs the best. In addition, we extend the GNNExplainer

to regression tasks and generate explanations. We further investigate the explanations with

MRO and PH. We show a strong correlation between the importance of edge and the number

of optimal cycles they involved in. Our work enables effective prediction and interpretation

of MG EBs, bolstering material science research.

85

CHAPTER 5

Motif Mining via Clustering Representations of Graphs

5.1 Introduction

Graph-structured data is ubiquitous in scientific research and real-world applications.

Especially in biochemistry, small chemical compounds and proteins can both be modeled via

graphs with atoms and helix/sheet as nodes, respectively. Graph motifs, defined as frequent

and significant subgraph patterns [MSI02], are the building blocks of graph data. They

usually represent important graph characteristics and help uncover the properties of complex

graphs. For example, important motifs can determine molecule properties. Like hydroxide

(–OH), which is a chemical functional group, usually implies higher water solubility for

chemical compounds, and Zif268, which is a protein structure, can mediate protein-protein

interactions in sequence-specific DNA-binding proteins [PPG01]. Graph motif mining is

a classic data mining problem with many important applications like quantum chemistry

calculation and drug discovery [REW19]. When a set of motifs are mined from a graph dataset,

a bag-of-motifs vector representation, which we call a motif descriptor, can be generated as

an interpretable feature to describe the graph property [DKW05]. Thus, a model utilizing

such motif descriptor is capable to make interpretable predictions for downstream graph

tasks, e.g. which functional group in a molecule plays a decisive role in toxicity classification.

However, mining motifs from large graph datasets remains a challenging question and

requires a proper definition of motifs. Traditional motif mining methods define motifs as

discrete subgraph structures and use subgraph isomorphism test to perform exact pattern

86

match [MSI02, KIM04, CHL06, Wer06]. This definition can sometimes be too restrictive to

capture the semantic meanings of motifs and ignore the cases where structurally different

motifs have similar properties. For example, sulfate (−SO−2
4) and chloride (Cl−) are two

very different subgraphs when measured with structure similarity. However, their chemical

properties are actually very similar in many cases as they correspond to two strong acids, i.e.

sulfuric acid (H2SO4) and hydrochloric acid (HCl) respectively. In view of this, a desirable

definition of motifs should be able to capture the semantic similarity between these two

functional groups and group them to the same motif. We thus propose to define motifs using

continuous embedding vectors rather than discrete structure patterns. As is illustrated in

Figure 5.1, such a definition is more expressive and flexible to enable structurally different

subgraphs that share similar semantic properties, e.g. −CF3 and −CCl3, to be grouped into

the same motif.

Our novel reformulation of the motif definition converts the NP-hard subgraph isomorphism

test problem into a feasible clustering-based representation learning problem. To learn such

motif embedding, it’s required to properly encode different subgraphs. Recently, GNNs have

shown expressive power for learning representations of graph data [KW16, HYL17, VCC17,

XHL18]. The problem of GNNs is that they are black-box models lacking interpretability.

Combining the less-interpretable GNNs with motif mining brings the best of two worlds

together.

Leveraging the reformulated graph motifs and expressive GNN encoder, we propose Motif

mIning via Clustering RepresentatiOns of Graphs (MICRO-Graph). MICRO-Graph sets up

a probabilistic model on graph data. We treat each graph as a set of nodes, represented by

continuous GNN embedding vectors that are consistent with the graph topology. Each motif

is represented by a vector distribution, e.g. a multivariate Gaussian distribution. For each

node, we first sample its hidden motif, then sample a node vector from the corresponding

motif distribution. For each given graph G, a motif descriptor, which describes G as a bag of

motifs, can be inferred by the MICRO-Graph via first encoding G and then computing the

87

Motif Embeddings

…

TFAA BTC Cresol

Figure 5.1: Difference between the traditional motif definition and our motif
definition. Given three chemical compounds, the traditional definition based on discrete
structures can only mine the benzene rings in blue circle. In contrast, our definition using
continuous embedding vectors can mine the benzene ring as one motif and also the semantically
similar −CF3 and −CCl3 as another motif.

dot product between node embeddings and motif embeddings. Also, as the whole framework

is differentiable with respect to both the generative model parameters and GNN encoder

parameters, they thus can be learned jointly with gradient updates.

We show that MICRO-Graph can mine the ground truth motifs from synthetic graphs

and interpretable motifs from chemical compound graphs. The mined motifs from the HIV

chemical dataset [HFZ20] correspond to meaningful functional groups including benzene

rings, amine, carboxylic acid, etc. Meanwhile, the interpretable motif descriptors generated

by MICRO-Graph serve as discriminative graph features and outperform graph features

extracted by other unsupervised learning baselines on downstream supervised tasks.

5.2 Related Work

Clustering-Based Representation Learning. Clustering algorithms are classical unsu-

pervised learning techniques and they have been used for representation learning recently

88

[CBJ18, YCA20, CMM20, LZX20]. The clustering-based representation learning methods

usually iterate between two steps to jointly learn data representations and cluster assignments

of the representations. Specifically, the first step fixes the data representations and computes

the cluster assignment of each data representation by a clustering algorithm, e.g. K-Means in

[CBJ18]. The second step fixes the cluster assignments from the first step and uses them as

labels to update data representations. Following this iterative paradigm, [CBJ18] shows that

a simple K-means clustering can help to learn meaningful image representations. However,

such a paradigm has a degenerate solution where all clusters collapse into a single one,

so the sEM algorithm [MNV20, GDV19] was proposed as a better optimization paradigm.

[YCA20, CMM20] shows that the sEM with the equal-cluster-size constraint can learn better

representations and scale on large datasets. In our case, learning motif embedding vectors

can be interpreted as clustering node embeddings, where the motif embeddings correspond to

the cluster centers.

Interpretable Graph Machine Learning Interpretability is an important research topic

for modern machine learning models including the GNNs on graph data [DM21, YBY19,

LCX20, VT20, HYT20, ZLS22]. The goal for interpreting a graph model is formalized as

identifying the import subgraph for the model to make its prediction. From this perspective,

the motif-based graph machine learning models [DKW05, WWK08] are thus naturally

interpretable, including the motif descriptor generated by MICRO-Graph. Our case of motif

mining via GNNs thus adds interpretability to the powerful but less interpretable GNNs.

89

Figure 5.2: Probabilistic graphical model of the graph generating process in MICRO-Graph.

5.3 Micro-Graph: Motif Mining via Clustering Representations of

Graphs

5.3.1 Probabilistic Modeling

Our goal is to mine graph motifs through representation learning. Unlike the traditional

motif mining methods which define motifs by discrete subgraph patterns, we represent

motifs as multivariant Gaussian distributions, with the motif embedding vectors M =

{m1, . . . ,mK |mk ∈ Rd} as means. We then set up a probabilistic model for generating

graphs from K motif clusters. If we could learn a set of motifs to reconstruct each graph in

the dataset, then these motifs could capture the important properties of these graphs.

Model setup. Let {c1, . . . , cN} be N latent index random variables corresponding to K

motifs, and each ci follows a categorical distribution Cat(θ) such that P (ci = k) = θk for

k ∈ [1, K]. Given a graph G with the number of nodes |V| = N , we generate all the nodes in

graph G from motifs. Specifically, for each node vi ∈ V, we first sample its motif index ci.

Then, conditioned on ci, we sample a vector hi which represents the information of node vi

from the multivariate Gaussian as in Equation 5.1.

hi|ci = k ∼ N (mk, σ
2I) (5.1)

The hi ∈ Rd is a contextualized node embedding encoded with an L-layer GNN fϕ. It contains

both feature and structural information corresponding to an L-hop subgraph. Considering

the challenges of generating the discrete graph structure, we propose to generate hi instead

90

GNN
Encoder

…

Graph Batch

Motif Embeddings
Discrete
Patterns

Visualization

Contextualized
Node

Embeddings
Posterior

Probabilities
Motif

Descriptors

Figure 5.3: The MICRO-Graph framework. MICRO-Graph infers motif descriptors and
visualizes mined motifs via two example chemical graphs follow the yellow and green flows
respectively. For each graph, it is first encoded by GNN to get node embeddings hi. Then
the posterior probabilities (soft assignments) P are computed (Equation 5.4). Averaging P
column-wise gives the motif descriptor z (Equation 5.5). Meanwhile, we group nodes and
visualize their induced subgraph patterns by turning soft assignments to hard assignments
(Equation 5.6 & 5.7).

of the discrete vi. hi approximates the structural role of vi, and we also add regularization to

encourage hi encodes more structure information as elaborated later in Section 5.3.4. The

overall log-likelihood of the probabilistic model is shown in Equation 5.2.

ℓ(M ,θ, ϕ) = log
N∏
i=1

(
K∑
k=1

P (ci = k,hi)) (5.2)

∝
N∑
i=1

log
K∑
k=1

exp(
hT

i mk

σ2
)θk (5.3)

We show the graphical model of the generating process in Figure 5.2. An analogy can be

drawn between our model and the PLSA topic model with nodes corresponding to words and

motifs to topics.

5.3.2 Motif Descriptor Inference

The motifs M and GNN fϕ(·) can be used to infer the semantic motif descriptors z ∈ RK

as K-dimensional feature vectors of both seen and new graphs. We show an example of the

inference process in Figure 5.3 and illustrate the detailed inference steps below.

91

Compute soft node-to-motif assignments. For a given graph G, we first perform

GNN encoding to get all the contextualized node embeddings {h1, . . . ,hN} = fϕ(G). Then

we calculate the posterior probability of latent variable ci = k conditioned on hi and denote

all such probabilities using a matrix P ∈ RK×N
+ as in Equation 5.4

Pk,i = P (ci = k|hi) =
exp(m⊤

k hi/σ
2)θk∑

k′ exp(m
⊤
k′hi/σ2)θk′

(5.4)

Thus, each column P:,i can be interpreted as a soft assignment for clustering node embedding

hi to motif k, and the average of over all N nodes gives the motif descriptor z as in Equation

5.5

z =
1

N

N∑
i=1

P:,i (5.5)

The descriptor z specifies G as a normalized bag of motifs, and it can be used as the graph

feature for downstream supervised tasks. We show that the descriptor z inferred by our

MICRO-Graph learned through unsupervised learning could achieve competitive results to

SOTA supervised GNNs.

5.3.3 Visualize and Interpret Mined Motifs

Besides the descriptors, the learned motifs M can also be visualized and interpreted as

discrete patterns by grouping nodes assigned to the same motif. We show an example of the

visualization process in Figure 5.3 and illustrate the detailed steps below.

Node selection for motif k. To get the discrete pattern corresponding to a continuous

motif embedding, we first get the most likely motif cluster that each node is assigned to. We

turn the soft assignment P:,i to a hard assignment P̂:,i via the indicator function I(·) as in

Equation 5.6.

P̂k,i = I(k = argmax
k′

Pk′,i) (5.6)

Induced subgraph generation Then we group nodes assigned to motif k and visualize

92

Algorithm 5 MICRO-Graph Learning Loop

Input: Graph dataset, GNN encoder fϕ(·), random initialized M ∈ RK×d and θ ∈ RK ,
hyperparameter λ and σ.
for A graph batch {G1, . . . ,GB} do

Encode all Gb with fϕ(·) to get node embeddings H ∈ RB×N,d.
P = (log θk)

⊤MH⊤/σ2 // proportional to log joint prob
Q∗ = Sinkhorn(P) // sEM E-step, no gradient
LOT = (Q∗ ∗ ∗ logP).mean() // sEM M-step, ** means element-wise product
Lcut = 0
for Gb ∈ {G1, . . . ,GB} do

Select P b from P correspond to Gb

Db = Diag(
∑

i A
b
i,:) with Ab corresponds to Gb

Lcut+ = Tr(P bAbP
b⊤)/Tr(P bDbP

b⊤) // Equation 5.10
end for
L = αLOT + (1− α)Lcut/B
Back propagate gradient from L to update M , θ, and ϕ.

end for

their induced subgraph as a discrete correspondence of mk. In practice, there can be multiple

subgraph patterns corresponding to the same mk from different graphs. Like in Figure 5.3,

both chemical compounds contain the amino acid (−NH2COOH) motif. For such cases, we

get the subgraph-level representation sk by averaging node embeddings as in Equation 5.7.

sk =

∑
i P̂k,ihi∑
i P̂k,i

(5.7)

Subgraph selection via dot product. In practice, there will be multiple subgraphs from

different graphs corresponding to each motif k. We thus pick the subgraph with the largest

m⊤
k sk to visualize. As we will see, the discrete patterns corresponding to mined motifs often

uncover the characteristics of the graph G and match the real motifs from domain knowledge.

5.3.4 MICRO-Graph Parameter Learning

For MICRO-Graph, parameters that we need to learn include both the clustering param-

eters M and θ in the probabilistic model and the GNN parameters ϕ for representation

93

learning. A straightforward choice is to optimize these parameters regarding the log-likelihood

function in Equation 5.2. However, several previous works have demonstrated that learning

both the clustering parameters and encoder parameters can lead to a degenerate solution

where all clusters collapse to one [YCA20, GDV19].

Objective prevents cluster collapse. We consider another objective based on entropic

optimal transport (OT), which is slightly different from the log-likelihood, but shares the

same global optimum and help prevent cluster collapse as shown in [MNV20]. We show the

objective in Equation 5.8 and explain it below.

LOT (M ,θ, ϕ) = max
Q∈U(r,c)

N∑
i=1

K∑
k=1

Qk,i logP (ci = k,hi) +
1

λ
H(Q) (5.8)

U(r, c) = {Q ∈ RK×N
+ |Q1N = r,Q⊤1K = c} in LOT is the transport polytope of two

probability vectors r = 1K

K
and c = 1N

N
with 1K(1N) stands for the K(N)-dimensional

all-one vector. Q is a K ×N matrix in U(r, c) where the summation over columns and rows

equals r and c respectively. Q can be interpreted as the joint distribution of two random

variables where their marginal distributions are r and c. Also, H(Q) = −
∑

k,iQk,i logQk,i is

the entropy of Q, with a hyperparameter factor 1
λ
. LOT is actually equivalent to the evidence

lower bound of the log-likelihood, with a restricted searching space for Q ∈ U(r, c) and an

extra entropy term controlling the smoothness of Q. These two restrictions work together to

make sure the parameters for each cluster are optimized in balance.

OT objective optimization. We use the Sinkhorn expectation-maximization (sEM)

algorithm [MNV20] to optimize LOT , because the Sinkhorn algorithm can solve the maxi-

mization problem over Q ∈ U(r, c) in LOT very fast [Cut13] and has been shown to enjoy

good convergence [MNV20]. Specifically, the E-step of sEM solves maximization problem

over Q ∈ U(r, c) and finds the optimal Q∗. Then the M-step of sEM as takes Q∗ as the

reference distribution like the standard EM [DLR77] and optimizes LOT over M , θ and ϕ.

94

After dropping the terms independent of M , θ and ϕ, the M-step reduces to Equation 5.9

LOT (M ,θ, ϕ) ∝
N∑
i=1

K∑
k=1

Q∗
k,i logPk,i (5.9)

Enhance structure coherence. In the probabilistic model, we used hi to approximate

the structural role of vi. To further improve this approximation and increase the structural

coherence of learned motifs, we add an extra term Lcut to M-step objective in Equation 5.9.

The Lcut is defined in terms of the posterior probability matrix P in Equation 5.4, graph

adjacency matrix A, and graph degree matrix D as in Equation 5.10.

Lcut(M ,θ, ϕ) =
Tr(PAP⊤)

Tr(PDP⊤)
(5.10)

The cut loss Lcut is deduced from the K-way normalized min-cut problem. Maximizing it

regarding a given cluster assignment is meant to increase the number of intra-cluster edges

and decrease inter-cluster edges, which helps clustering nodes based on their structure roles

as a complement to the node embedding h.

The intuition behind the cut loss is the following. Graph motif mining in general

is considered a hard frequent pattern mining problem, say harder than mining set data,

because of the topological structure between graph nodes. The graph structure is the main

distinguishing factor between graph and non-graph data. It describes dependencies between

nodes and contains critical information for learning motifs. According to the definition of

motifs, nodes forming a frequent and significant structure should be considered as from one

motif. For example, the benzene ring as an important and commonly seen functional group

in chemical compounds is a motif we want to learn. It requires the method to capture the

hexagon structure and assign all those six nodes to the same motif. The LOT loss is designed

with no special structure information considered. Although GNN message-passing has been

show to be able to capture some graph structural information in the node embeddings

[CCV20]. However, most GNNs used in practice lack the ability to fully capturing the

95

structural information through message passing [XHL18, DBY19, GJJ20, BFZ21].

The Lcut is based on the classic spectral clustering algorithm on the graph structure. For

nodes clustered into the same spectral cluster, we increase their probability of being assigned

to the same motif. Another interpretation is that we regularize the assignment result of our

probabilistic model, so it is not too different from the spectral clustering result. Note the

consistency with spectral clustering is a regularization rather than strictly forced. We don’t

directly use the spectral clustering result as our assignment because it is solely based on the

graph structure, which ignores the rich node features and won’t give us the ideal motifs with

semantic meanings. Spectral clustering is non-differentiable and has O(N3) time complexity.

An in-depth discussion of this approximation can be found in [BGA20].

The overall objective. L in Equation 5.11 combines the LOT and Lcut together with

a weight parameter α. L is differentiable and is optimized regarding the M , θ, and ϕ via

gradients.

L(M ,θ, ϕ) = αLOT (M ,θ, ϕ) + (1− α)Lcut(M ,θ, ϕ) (5.11)

We also summarize the motif mining procedure and show the learning loop of MICRO-

Graph in Algorithm 2. We assume the graph dataset has been padded with N nodes for each

graph, and we use Sinkhorn to denote the fast iterative algorithm in [Cut13] and ∗∗ to

denote element-wise matrix multiplication.

5.4 Evaluation

In this section, we evaluate both the mined motifs and motif descriptors by MICRO-Graph

on graph datasets from different domains. We first do a qualitative analysis of the mined

motifs by visualization and interpretation, where we compare mined motifs to ground truth

motifs from domain knowledge for chemical datasets. Then we do a quantitative analysis of

96

motif descriptors by treating them as graph features and evaluating them on downstream

supervised tasks.

5.4.1 Datasets

We consider three types of datasets including synthetic graphs with known ground truth

motifs, chemical compounds, and proteins. We introduce each dataset below.

Synthetic Dataset. Evaluating mined motifs is non-trivial for real datasets because

the ground truth relies on domain knowledge and is sometimes even unknown. We thus

follow [LCX20] to generate synthetic MOTIF-BA graphs with known ground truth motifs.

Each MOTIF-BA graph is created by first generating a 10-node base Barabási–Albert (BA)

graph, and then attaching synthetic motifs selected from five pre-defined motifs to randomly

selected nodes in the base graph. In our experiment, the MOTIF-BA dataset contains all

2-motif-combination and 3-motif-combination graphs, each with 30 different instances, which

leads to 20 different labels y and 600 graphs in total. We assign all nodes in all graphs a

10-dimensional all-one vector as the feature.

Chemical Compounds. We consider seven chemical compound datasets: BACE,

BBBP, CLINTOX, HIV, SIDER, TOX21, and TOXCAST [WRF18, HFZ20]. Graphs in

these datasets are small molecules where nodes are atoms and edges are chemical bonds. The

tasks for these datasets are graph classification with chemical properties as labels, and we

follow [HFZ20] to use ROC-AUC score as the evaluation metric.

We provide a synopsis of each downstream task dataset taken verbatim from [HLG20]

below:

• BBBP: Blood-brain barrier penetration (membrane permeability).

• Tox21: Toxicity data on 12 biological targets, including nuclear receptors and stress

response pathways.

• ToxCast: Toxicology measurements based on over 600 in vitro high-throughput

97

screenings.

• SIDER: Database of marketed drugs and adverse drug reactions (ADR), grouped into

27 system organ classes.

• ClinTox: Qualitative data classifying drugs approved by the FDA and those that have

failed clinical trials for toxicity reasons.

• MUV Subset of PubChem BioAssay by applying a refined nearest neighbor analysis,

designed for validation of virtual screening techniques.

• HIV: Experimentally measured abilities to inhibit HIV replication.

• BACE: Qualitative binding results for a set of inhibitors of human β-secretase 1.

Proteins. We consider the PROTEIN, ENZYME, and DD datasets containing proteins

[MKB20]. Different from the chemical compounds, graphs in these datasets are macro-

molecules where nodes are secondary structure elements like helixes, and edges represent

the spatial relationship between nodes. The task of ENZYME is to classify each graph into

6 different enzyme classes. The task of PROTEIN and DD is a binary classification that

predicts whether a graph is an enzyme. We follow [HK20] to use the average classification

accuracy as the evaluation metric. For further information on the protein datasets, please

refer to [MKB20].

5.4.2 Model Configuration and Implementation

We use the Graph Isomorphism Network (GIN) as the GNN encoder in MICRO-Graph

[XHL18]. We follow the same model hyperparameters from previous works [HLG20, SHV20],

which are different from datasets to datasets, where we majorly follow the same setting as

previous works for fair comparison [HLG20, YCS20, SHV20, HK20]. The GIN is trained

with the Adam optimizer [KB17]. We run all experiments on a machine with 80 Intel(R)

Xeon(R) E5-2698 v4 @ 2.20GHz CPUs, and a single NVIDIA V100 GPU with 16GB RAM.

Our implementations are based on Python 3.8.10, PyTorch 1.10.0, and PyTorch-Geometric

1.7.1 [FL19].

98

Chemical Compounds Following [HLG20, YCS20], we use five convolutional layers with

300 hidden dimension (embedding dimension) for the GNN. We pre-train our model using

Adam optimizer for 100 epochs, with batch size (number of graphs per batch) 512, and we

fine-tune the pre-trained model for 100 epochs with batch size 32.

Proteins For proteins, we adopt the encoder and SVM evaluation implementation from

[YCS20], and thus follow all their default hyperparameters for a fair comparison. The result

we show in table 5.2 is based on GIN with 3 convolutional layers, 32 hidden dimension, and

128 batch size. However, in [SHV20, HK20], the reported results are based on a grid search

over hyperparameters over number of convolutional layers from {2, 4, 8, 12}, number of

training epochs from {10, 20, 40, 100}, batch size from {32, 64, 128, 256} as in [HK20].

5.4.3 Qualitative Evaluation

As we discussed in Section 5.3.2, motif embedding mk can be interpreted by visualizing

subgraph patterns with s close to mk. We thus evaluate the mined motifs by visualization

and compare them to the ground truth motifs justified by the domain knowledge on real

datasets.

Mined motifs on HIV matches real functional groups. We then visualize motifs

we mined with MICRO-Graph K = 100 on the HIV dataset. We show ten example motifs

ordered in increasing graph size in Figure 5.4. Even though our motifs are mined without any

human annotation or prior knowledge, we find that the learned chemical compound motifs

match the real-world functional groups. Motif 1 matches the propane 1. Motif 2 matches the

Amine 2. Motif 3 matches the Carboxylic acid3. Motif 6 matches the benzene ring 4, and

1https://en.wikipedia.org/wiki/Propane

2https://en.wikipedia.org/wiki/Amine

3https://en.wikipedia.org/wiki/Carboxylic_acid

4https://en.wikipedia.org/wiki/Benzene

99

https://en.wikipedia.org/wiki/Propane
https://en.wikipedia.org/wiki/Amine
https://en.wikipedia.org/wiki/Carboxylic_acid
https://en.wikipedia.org/wiki/Benzene

Figure 5.4: Frequent motifs mined from the HIV chemical compound dataset. Motifs
are ordered with their sizes in increasing order. The mined motifs match real-world functional
groups.

etc. This shows that our motif learning can really capture the semantic property of molecule

subgraphs, which benefits model interpretability.

Mined motifs on HIV are diverse. Also, we show that the learned motif can capture

different levels of properties, though we didn’t add explicit hierarchical modeling. We see

that the simple motifs tend to model some frequently occurring building blocks such as small

propane with three carbon atoms in Motif 1, benzene ring with 6 carbon atoms in Motif 3,

and the double carbon ring with 10 atoms in Motif 10. Such hierarchy shows the diversity of

our mined motif, which makes the corresponding motif descriptors powerful graph features as

shown in Section 5.4.4 via supervised downstream tasks.

Mined motifs on HIV allow small variants while keeping the core part. We

visualize the top 3 subgraph patterns corresponding to Motif 7, 8, and 9 from HIV in Figure

5.5. We observe that these patterns allow small variants but keep the core part unchanged.

Mined Motifs on DD are visualized in Figure 5.6

100

Figure 5.5: Visualization of the top 3 most similar subgraphs corresponding to
motifs. Showing examples for Motifs 7, 8, and 9 in Figure 5.4. the embedding definition of
motifs allows small structure variants while keeping the core part unchanged.

5.4.4 Quantitative Evaluation

The motif descriptors generated by MICRO-Graph can be used as graph-level features

for downstream supervised graph prediction tasks. The task of each dataset is described in

Section 5.4.1. We evaluate the motif descriptors by comparing them to graph-level features

generated by other unsupervised learning methods on these tasks. We follow the standard

evaluation paradigm used in the literature for these chemical compound and protein datasets.

For each chemical compound dataset, we generate the graph-level features and evaluate them

by training a one-layer NN on them. For protein datasets, we also generate the graph-level

features but plug them into an SVM classifier following [SHV20]. For all datasets, we follow

the standard train-valid-test split for each dataset and report the result on the test set for

the best model selected on the validation set.

101

Figure 5.6: Frequent motifs mined from the DD protein dataset. Five frequent motifs
learned by GStarXrepresented by their closest subgraphs.

Baselines. Following the previous literature, we use baselines [SHV20, HDW20, RBX20,

YCS20] for the chemical compound datasets, and baselines [SHV20, HK20, YCS20] for protein

datasets. We summarize these baselines below.

• InfoGraph [SHV20] maximizes the mutual information between the representations of the

whole graphs and the representations of its substructures.

• GPT-GNN [HDW20] predicts masked edges and masked node attributes. The edge

prediction makes node representations to be close when there are edges between them. The

attribute prediction captures how node attributes are distributed over all graphs.

• GROVER [RBX20] first uses professional software, e.g. RDKit[Lan10], to extract mo-

tifs from the data and create a motif descriptor for each graph. Then it learns graph

representations by predicting the motif descriptor.

• GraphCL [YCS20] performs contrastive learning and construct views with four types of

augmentations methods including node dropping, edge perturbation, attribute masking,

and subgraph sampling. In our experiments, we adopt the default setting, i.e., randomly

choose two out of four methods to construct views.

• MVGRL [HK20] performs contrastive multi-view learning to learn graph level representa-

tions.

Evaluation Results The evaluation result of chemical compounds is illustrated in Table

5.1. We see that MICRO-Graph performs the best on 5/7 datasets and is the highest on

102

Table 5.1: Performance comparison between MICRO-Graph and baselines on chemi-
cal compound datasets. ROC-AUC of evaluating motif descriptors generated by MICRO-
Graph and graph-level features generated by other unsupervised baselines on chemical
compound property prediction datasets. We report the mean and std of 5 experiments.
Highest results are in bold.

Methods bace bbbp clintox hiv sider tox21 toxcast Average

InfoGraph 66.06 ± 0.82 75.34 ± 0.51 75.71 ± 0.53 61.45 ± 0.74 54.70 ± 0.24 63.95 ± 0.24 52.69 ± 0.07 64.27
GPT-GNN 66.43 ± 0.66 71.58 ± 0.54 66.78 ± 0.58 67.08 ± 0.36 54.67 ± 0.16 68.20 ± 0.14 57.06 ± 0.13 64.53
GROVER 65.67 ± 0.38 78.47 ± 0.36 53.19 ± 0.68 69.03 ± 0.23 54.94 ± 0.12 67.63 ± 0.13 57.28 ± 0.05 63.74
GraphCL 60.93 ± 1.72 76.91 ± 0.85 73.79 ± 2.13 70.52 ± 1.22 55.01 ± 1.43 72.14 ± 0.78 58.51 ± 0.39 66.83

MICRO-Graph 70.83 ± 2.06 82.97 ± 1.53 73.49 ± 2.16 73.34 ± 1.27 57.32 ± 0.62 71.82 ± 0.82 59.46 ± 0.25 69.73

Table 5.2: Performance comparison between MICRO-Graph and baselines on protein
datasets. Accuracy of evaluating motif descriptors generated by MICRO-Graph and graph-
level features generated by other unsupervised baselines on protein classification datasets.
We report the mean and std of 5 experiments. Results with * are from the previous papers
under the same experiment setting. Highest results are in bold.

Methods ENZYMES PROTEINS DD Average

InfoGraph 51.4 ± 0.8 74.4 ± 0.3* 72.9 ± 1.8* 66.2
GraphCL 55.5 ± 1.8 74.4 ± 0.5* 78.6 ± 0.4* 69.5
MVGRL 43.7 ± 4.6 72.2 ± 0.8 73.2 ± 0.6 63.0

MICRO-Graph 58.1 ± 1.3 75.6 ± 0.5 79.5 ± 0.7 71.07

average. The evaluation result of proteins is illustrated in Table 5.2. MICRO-Graph shows

the best performance over the baselines on all three datasets. Both tables show the motif

descriptors generated by MICRO-Graph have good discriminative power, which shows the

motifs capture rich information about the graph.

5.4.5 Ablation Study and Analysis

We conduct ablation studies to analyze the influence of the cut loss Lcut and the number

of motifs K in our model. The experiment setting follows Section 5.4.4.

Dropping Lcut. The Lcut is a critical part of our learning objective to enhance motif

structure coherence. We conduct our qualitative experiments on the chemical datasets without

103

Table 5.3: MICRO-Graph ablation on Lcut. Average performance of evaluating motif
descriptors generated by MICRO-Graph on chemical compound property prediction datasets
and protein classification datasets with and without Lcut. Experiment settings follow Section
5.4.4.

Methods Compound Average Protein Average

MICRO-Graph 69.73 71.1
MICRO-Graph w/o Lcut 61.33 64.3

Lcut and keep other settings the same. The result is shown in Table 5.3, we see that removing

Lcut causes significant performance drop. This study shows that the graph structure is

significant in learning good graph representations. GNNs, although have been shown with the

ability to capture structural information [CCV20], still have room for improvement. Using

more expressive GNN architectures may alleviate such problems, which we leave as future

work.

Number of Motifs. The number of motifs, K, is an important hyperparameter of

MICRO-Graph. We conduct our qualitative experiments on the chemical datasets with 6

different K values, i.e. 10, 20, 50, 100, 200, and 300, and report the average ROC-AUC

score for each K in Figure 5.7. We observe that as K gets larger from 10, the average

performance increases until K > 100. Also, MICRO-Graph consistently outperforms other

baseline methods as long as K ≥ 50. We found the performance of an intermediate value 100

gives the best result and report it in Table 5.1.

5.5 Discussion

The existing graph motif mining methods are based on subgraph isomorphism tests and

cannot mine motifs based on their semantic meanings. We thus propose MICRO-Graph to

mined graph motifs as embedding vectors corresponding to semantically similar subgraph

patterns. We show that MICRO-Graph can mine the ground truth motifs from synthetic

104

10 20 50 100 200 300
Number of Motifs (K)

50.0
52.5
55.0
57.5
60.0
62.5
65.0
67.5
70.0

RO
C-

AU
C

64.31
65.87

68.34
69.73 69.21 69.33

Figure 5.7: MICRO-Graph Ablation on K. Average performance of MICRO-Graph on the
chemical datasets with different K. Experiment settings follow Section 5.4.4.

graphs, and motifs mined from chemical compound graphs match real-world functional groups.

Evaluation of the motif descriptors generated by MICRO-Graph shows that they capture

useful information of the graph and thus are good features for downstream supervised tasks.

One limitation of our framework is the relationship between motifs is not explicitly modeled.

We assume including a combination of motifs or hierarchy of motifs will further improve the

mined motif quality and generate even more expressive motif descriptors, which we left as

future work.

105

CHAPTER 6

Automated Molecular Concept Generation and Labeling

6.1 Introduction

AI has been a driving force behind several groundbreaking scientific discoveries, par-

ticularly in the domain of molecular science. A prime example is the utilization of deep

learning by the MIT Jameel Clinic, leading to the identification of halicin – the first antibiotic

discovered in three decades that is effective against a broad spectrum of 35 bacteria [SYS20].

In molecular science, deep learning models like GNNs have shown promising capabilities for

learning complex atomic structures and making accurate predictions of molecular proper-

ties [WRF18]. However, a major challenge with such deep-learning-based models like GNNs

is their “black boxes” nature and lack of explainability [YYG22]. Despite their high predictive

performance, black-box models fail to provide insights into the underlying reasoning behind

their predictions, making it difficult for scientists to interpret and intervene in the model’s

decision-making process, which hinders scientific understanding and limits the potential for

knowledge discovery.

In contrast, concept-based models (CMs) [LNH09, KNT20, YKA20, WDG23] have

emerged as a promising explainable AI (XAI) solution for scientific problems, whose explain-

ability can provide valuable insights and increase the chance of new scientific discoveries.

Unlike other black-box models, CMs first predict labels of human-interpretable concepts from

the data and then use these concept labels as features to predict the actual task label. For

example, in computer vision, CMs are applied for predicting the species of birds from their

106

LLM

nitrogen atoms: 0

TPSA: 0.0

electronegative atoms: 6

Concepts c Label y
(Solubility)

1.07
(Insoluble)

-16.43
(Soluble)

nitrogen atoms: 3

TPSA: 60.91

electronegative atoms: 6

Prediction
Model

A

B

Figure 6.1: The prediction process of molecule properties is greatly illuminated with
AutoMolCo. First, concepts are generated and labeled with an LLM. Afterward, a simple
prediction model (e.g., linear regression) can be fitted to achieve explainable predictions. LLM-
relevant pieces are highlighted in green, and specifically, green arrows indicate prompting.

images by identifying the relevant concepts like “wing color”, which greatly increases the

prediction explainability [KNT20]. In molecular science, CMs can be especially beneficial as

they can break down the prediction of complex molecular properties into more interpretable

molecular concepts like functional groups and molecular descriptors. For instance, Figure 6.1

demonstrates the prediction process of a CM for molecules A and B. The CM first elucidates

the relevant molecular descriptors as concepts, such as the # of nitrogen atoms and the

topological polar surface area (TPSA), which are further employed to predict the molecule’s

solubility. This process not only yields a prediction but also provides a rationale that can

be scrutinized and built upon. Like molecule B is predicted to be soluble based on its high

TPSA, researchers can explore similar molecules with slight variations in these key concepts

to hypothesize and test solubility-enhancing modifications. In contrast, black-box models,

while potentially accurate, offer no such explanatory power.

Despite being a promising XAI approach, CMs have not been widely applied to molecular

science problems, primarily due to their limitations in concept generation and labeling. Extant

CM approaches either require predefined concepts and manual labels generated by domain

experts [KNT20] or can only utilize simple and qualitative concepts that are insufficient

107

for molecular problems [ODN23]. Collecting such concepts and their labels is feasible and

adequate for some computer vision tasks [KNT20, ODN23]. However, the desired concepts

for molecules are sophisticated and nuanced, which require a depth of chemical knowledge

and accurate quantitative labels. For example, TPSA in Figure 6.1 is a molecule descriptor

relevant to the solubility prediction. It provides insight into a molecule’s absorption and

permeability characteristics, representing a quantitative concept pivotal for understanding the

pharmacokinetics of potential drug compounds. Identifying and quantifying such a concept

often demands domain knowledge and computational methods that extant CM approaches

cannot achieve, thereby highlighting the challenge in effective CMs for molecular sciences.

In response to the effectiveness of CMs and the challenges of applying them to molecular

science, we propose Automated Molecular Concept (AutoMolCo) generation and labeling.

AutoMolCo leverages Large Language Models (LLMs) to generate molecular concepts that

are predictive for the task and label these concepts for each molecule instance. AutoMolCo

also repeats these procedures through iterative interactions with LLMs to refine concepts,

enabling simple linear models on the refined concepts to outperform GNNs and LLM in-

context learning (ICL) on several molecular benchmarks. The whole AutoMolCo framework

is automated and does not require human knowledge inputs in either concept generation,

labeling, or refinement, thus surpassing the limitations of extant CMs.

The motivation of AutoMolCo is founded on the idea that LLMs can be treated as

extensive and integrated knowledge bases [PRL19, ALC22], and their effectiveness for solving

molecular science problems has been benchmarked in [GGN23] through ICL. In our work,

we exploit the potential of LLMs for XAI through CMs. For concept generation, we prompt

LLMs with the task description and ask LLMs to suggest relevant concepts. For concept

labeling, since it is particularly challenging, we explore three different approaches: direct LLM

prompting, function code generation, and external tool calling. The concept generation and

labeling process form the foundation of our framework. Afterward, we fit simple prediction

models on the concepts to achieve an explainable CM. Moreover, we also do an iterative

108

refinement of the concepts by running feature selection algorithms of the prediction model

and prompting LLMs again with the feature selection results. This allows LLMs to generate

new concepts to replace the less useful ones from the previous iteration, which ensures the

CM remains up-to-date with the most relevant concepts thus boosting its performance.

In this work, we first show that AutoMolCo can produce meaningful concepts and

accurate labels, which lead to CMs with simple prediction models to achieve surprisingly

good performance for molecular science problems. Then we perform a systematic study via

experiments on MoleculeNet [WRF18] and High-Throughput Experimentation (HTE) [AEL18,

RWB16] datasets to show the strengths and weaknesses of AutoMolCoand answer five research

questions. In summary, our contribution includes:

• Automated framework: We propose AutoMolCo, which leverages LLMs for automated

concept generation and labeling, eliminating the need for human domain knowledge and

labor-intensive data collection, thereby streamlining the development of CMs.

• Accuracy and explainability: AutoMolCo produces meaningful molecular concepts that,

when combined with simple prediction models for CMs, can achieve superior or comparable

accuracy to powerful black-box models while providing greater explainability.

• LLM-driven XAI for science: Our work highlights the potential of LLMs in addressing

complex problems in molecular science, introduces a novel perspective on CMs with LLMs,

and paves the way for future research to further exploit the capabilities of LLMs in molecular

science and beyond.

6.2 Related Work

Concept-based Models. A popular example of CMs is the Concept Bottleneck Model

(CBM) [KNT20]. CBMs make predictions through an intermediate layer of human-specified

concepts, such as “wing color” in specious classification from bird images. While CBMs

offer more transparent predictions, they are often constrained by the predefined concepts

109

and label demands. Several follow-up CBMs with predefined concepts targeting different

tasks [DLR18, YWG18, BHJ19, LFS19, CBR20]. One particular follow-up that is more

relevant to this work, label-free CBM [ODN23], tries to bypass the need for predefined

concepts and labels by generation and similarity matching. Unlike the other CBMs, this

model identifies concepts using GPT-3 for concept set creation and CLIP-Dissect for matching

text concepts with images. However, label-free CBM only focuses on vision tasks, and the

generated concepts are often simple and qualitative, e.g., “yellow” is a concept, with similarity

as the label, e.g., how similar a “lemon” image is to the text “yellow”. Such concepts and

labels are insufficient for molecules, where a depth of chemical knowledge is required for

meaningful concepts and accurate qualitative labels.

Concept Learning in Graphs/Molecule. Several lines of research study concept

learning from graph data, particularly for molecules. One line identifies graph motifs

as concepts through counting or sampling [MSI02, Wer06] and builds GNNs on top of

them [ZHS20, YG22]. However, motif identification cannot be comprehensive as it is NP-

complete. Another line tries to use concept-based explanations for GNNs with human-

in-the-loop, e.g., GCExplainer [MKS21]. Subsequent works have refined this idea with k-

means clustering and similarity scoring algorithms to neuron-level grouping within activation

layers [MBK22, XBG23]. These methods exemplify the attempt to extract and interpret

salient features in graph data, yet they often face challenges in fully capturing the nuanced

complexity of molecular structures.

LLMs for Molecular Science. GPT4Graph [GDL23] prompts LLMs to explain the

format or to summarize a raw molecule graph input, where the graph is represented by the

Graph Modelling Language (GML) [Him97] or Graph Markup Language (GraphML) [BEL13].

Graph-ToolFormer [Zha23] lets LLMs generate API calls to use external graph reasoning

tools, which can be applied to molecule function reasoning problems. [GGN23] studies solving

molecular problems with LLMs ICL. We show our AutoMolCo outperforms ICL and enjoys

better explainability. Some other survey papers discussing the potential of LLMs for molecular

110

I.

II.

III.

Labeling
Strategies

Concept Selection3

Iterative Refinement
Concept
Labels

Data
Instance

1
Concept Generation

Prediction
Model

LLMTask Info Concepts Concept Labeling
2

Concepts

Concepts

Concepts

LLM

Function Code

LLM

Concept
Labels

LLM

Tool API Code
Refined Meaningful Concepts

Concept
Labels

Figure 6.2: The AutoMolCo framework. Step 1: concept generation. Step 2: concept
labeling with three different strategies. Step 3: fitting a prediction model and perform concept
selection. These three steps are repeated for multiple iterations to achieve a refined list of
meaningful concepts, where the selected concepts in each iteration are feedback to the LLM
through prompting. LLM outputs are highlighted as green boxes.

science include: [ZWH23] from a scientific research perspective and [JLH23] from an LLM

for graph perspective, and [YBC24] for fine-tuning LLMs.

6.3 AutoMolCo: Automated Molecular Concept Generation and

Labeling

In this section, we describe AutoMolCo for concept generation, labeling, and refinement,

where the concepts are used to build an explainable CM. Figure 6.2 depicts the three major

steps of AutoMolCo: 1) concept generation, 2) concept labeling, and 3) CM fitting and

concept selection.

6.3.1 Step 1: Concept Generation

Given a particular task on molecules, e.g., predicting the hydration-free energy of small

molecules in water, the first step is to prompt LLMs to propose a diverse list of concepts

that are potentially relevant to the task. This step is analogous to a brainstorming process.

111

Concepts range from counting-based ones, like # nitrogen atoms, to more complicated ones

that require precise calculation, like TPSA. Without LLMs, coming up with meaningful

concepts requires domain experts. The underlying intuition for concept generation is founded

on the idea that LLMs can be treated as extensive and integrated knowledge bases. Their

capacity to comprehend and output meaningful concepts is pivotal in this phase, yielding a

wide spectrum of potentially relevant concepts for our analysis. The prompt for this step is

shown in Figure 6.3 Step 1. The LLM-suggested concepts might be less relevant initially, but

they will be refined later.

6.3.2 Step 2: Concept Labeling

Following the concept generation step, we then label the generated concepts for each

data instance. Compared to human labeling, which requires domain knowledge and can be

labor-intensive. Labeling with LLMs is streamlined to a process of interaction with a single

LLM interface, which can be easily scaled and minimizes human error. This automation

with LLMs is crucial for efficiently processing large volumes of data encountered in molecular

studies. In this step, we consider three different labeling strategies to enhance labeling quality.

Labeling Strategy 1: Direct LLM prompting We prompt LLMs directly to assign

each data instance numerical or categorical labels for the generated concepts from Step 1.

Similar to concept generation, this strategy builds up on the idea that LLMs can be treated

as integrated knowledge bases for retrieving useful information. For each data instance,

we provide LLMs with the molecule names or SMILES strings. The prompt is shown in

Figure 6.3 Step 2.

Labeling Strategy 2: Function code generation with LLMs Since LLMs are particu-

larly skilled in code generation, we explore a second approach for concept labeling: generate

functions in Python code for computing the concept labels. The function generation approach

112

has two advantages. Firstly, it greatly reduces the need for repeated LLM API calls. Only

a single API call is required for each concept to obtain the function code, as opposed to

making a separate call for each data instance in the direct label prompting case. Secondly,

the generated functions can utilize preprocessed dataset features as function arguments, such

as atom types in terms of node features and molecule structures in terms of adjacency matrix.

These features provide more direct information beyond molecule names or SMILES strings.

Leveraging these features, the LLM-generated functions can offer more nuanced and accurate

concept labels, enhancing the effectiveness of AutoMolCo. The prompt is shown in Figure 6.4.

Labeling Strategy 3: External tool calling with LLMs We also utilize LLMs to call

external tools like RDKit [Lan10] for labeling, combining the generation ability of LLMs with

the reliability of specialized tools. This strategy enjoys the same efficiency advantage as the

function generation approach, meaning it requires only a single API call of the LLM per

concept to get the API code for calling the tool. Moreover, the use of labeling tools ensures

that labels for all the tool-calculable concepts are accurate and reliable. One disadvantage of

this strategy is that not all generated concepts are calculable by the external tool, in which

case we can only turn to the first two strategies. The prompt is shown in Figure 6.5.

There are also some issues we overcame for each of these three labeling strategies. Below

we discuss the challenges and our solutions in detail

Challenges and solutions for direct LLM prompting. For labeling with direct LLM

prompting, we encountered two key issues: missing labels and unit inconsistency.

One issue we found for concept labeling with direct LLM prompting is that it is challenging

to have LLMs generate some concept labels for certain molecules. For instance, LLMs identified

acid dissociation constant (pKa) as a crucial concept for predicting water solubility. However,

pKa is a quantity only apply to acids, and thus the model will output “Unknown” for the

label. For the ESOL dataset, this results in a 13.03% missing rate for this concept. The

113

Identify {num_concepts} molecular concepts relevant for determining a molecule's
hydration free energy in water. Output only the concepts, each on a new line.

Step 1 Prompt

For the compound “{molecule_name / SMILES}”, provide numerical estimates for the
following properties: {concepts}

Step 2 Strategy 1 Prompt

After training a Linear Model on the FreeSolv dataset and performing feature
selection using the AIC information criterion, the following features were found to be
important for predicting a molecule's hydration free energy in water:
{selected_concepts}. Could you please suggest {num_concepts} new properties that
are likely to be important for determining a molecule's hydration free energy in water?

Iterative Refine Prompt

LLM

- Number of nitrogen atoms
- TPSA
......

Concepts

- Number of nitrogen atoms: 3
- TPSA: 60.91
......

Concept Labels

- Number of lone pairs
- Number of sp2 hybridized
carbons
- Isoelectric point
......

New Concepts

Figure 6.3: Prompts for concept generation and labeling on FreeSolv. Hyperparameters,
molecule instance information, and re-used LLM responses from a previous step are in blue.

Describe in detail how to calculate the value of the {concept = “molecular
weight”} for a molecule, taking into consideration the following specifics:
* The dataset includes multiple atom types {atom_types}. Consider the
diversity of atom types when discussing atom-specific properties or behaviors.
* You have access to the molecule’s adjacency matrix, node features
{node_feature_names}, and edge features {edge_feature_names}.
Based on these specifics, please provide a thorough explanation for computing
the molecular weight in natural language.

Strategy 2 Prompt 1

Given your detailed description for calculating the {concept = “molecular
weight”}, please create a comprehensive Python function. This function should:
* Accept the adjacency matrix, node features (especially considering the
“Number of Hydrogen Atoms”), and edge features as input.
* Ensure the function accounts for a variety of atom types, and not just the
common ones like O, N, and H.
* Output a floating-point value representing the {concept = “molecular
weight”} for the molecule.
Make sure the function is generalized enough to handle diverse molecules and
atom types present in the dataset.
{example adjacency matrix} {example node features} {example edge features}.

Strategy 2 Prompt 2 LLM

To calculate the molecular weight of a molecule, you need to sum the
atomic weights of all the atoms that make up the molecule. The steps are:
1. Identify the Atoms: Use the node features to identify all the atoms in the
molecule. The Atomic Number will tell you which element each atom is.
......
By following these steps, you will be able to calculate the molecular
weight of the molecule accurately

Natural Language Description

Function Code

Figure 6.4: Prompts for generating concept labeling functions in Python code on FreeSolv.

missing-label issue underscores AutoMolCo’s limitation in recognizing concept applicability

across molecules. To mitigate this, we apply various imputation methods, including mean

value imputation and domain-knowledge-driven imputation. For the latter, we set missing

pKa labels to 100—significantly above water’s pKa of 14—to denote weak or non-acidity,

which enhances the CM’s performance.

114

Given the properties:
{concepts}. Identify which
can be calculated using
RDKit. For those that can,
provide the code in this
format:
- [property name]:
`[code]`.
For those that can't, write:
- [property name]: ``
Assume RDKit libraries is
imported as `import rdkit`
and molecule variable
'mol' is given.
Ensure the code stores
result in variable 'val' and
all library calls to RDKit
exists.

Strategy 3 Prompt

LLM

Tool API

Figure 6.5: Prompts for calling the external tool RDKit to label concepts on FreeSolv.

We observe that for concepts with multiple possible units, labels generated by LLMs for

these concepts may exhibit inconsistent units across different molecules. Take our experiments

on the ESOL dataset as an example. The LLM suggest melting point as the relevant concept

for predicting water solubility. When we call LLM API to generate values for melting point,

it randomly chooses from Celsius (◦C), Fahrenheit (F), or Kelvin (K) as melting point ’s unit,

which resulted in inconsistent scales for melting point ’s labels. Similar issues also show up in

other concepts, e.g. molecular Volume and molecular surface area. The inconsistency is due

to the randomness in LLM context generation as we plug in different data instances into the

prompt template. We first tried to fix the problem by specifying with LLM what unit should

be used for each concept in the prompt, it was not every effective. Therefore, we added an

intermediate step between Step 1 and Step 2, which lets LLM generate a concept-to-unit

dictionary for each concept it proposed in Step 1. Then, we merged the resulting dictionary

into Step 2’s prompt, so LLM can generate labels with consistent units based on the unit

specified in the dictionary.

Challenges and solutions for function code generation with LLMs. When generating

labeling functions in Python code, we find it is non-trivial to prompt LLMs for executable

functions with no errors. We made two efforts to increase the likelihood of producing

115

executable functions with LLMs. We first perform prompt engineering to clearly specify

atom types, adjacency matrices, and node and edge features, which enhances the function

quality. Through careful prompt engineering, most generated functions for simpler concepts

become executable. However, functions for labeling complex concepts like “number of rings”

are still unlikely to be error-free due to their intricate nature. We thus adopt a chain of

thought (CoT) approach to generate functions. For the CoT prompt, we first ask the LLM

to describe the function in natural language, which can best leverage the LLM’s strength

in generating natural language. Then, the CoT prompt asks the LLM to turn the natural

language description of the function into Python code, which we found increases the likelihood

of generating accurate and executable functions. An example of the CoT function-generation

prompt is shown in Figure 6.4.

Challenges and solutions for external tool calling with LLMs. Given there are

external tools for molecular science with API access, we prompt LLMs to generate code

snippets for calling the tool API. We observe that LLMs are adept at obtaining callable

APIs for a majority of our generated concepts from step 1, which we successfully employed

to calculate the concept labels for each molecule in our dataset. The example prompts

and generated API calls can be found in Figure 6.5. The drawback of this strategy is that

the external tool cannot cover all the concepts generated by the LLM, especially for those

measured concepts like melting point. For these cases, we turn to the first two strategies for

labeling.

6.3.3 Step 3: CM Fitting and Concept Selection.

After getting the generated concepts and their labels, we utilize them to fit prediction

models for the molecular task. Since the concept labels can be treated as tabular data, any

model from the off-the-shelf ones in Scikit-learn [PVG11] to sophisticated deep learning models

can be applied. However, we found that explainable models like linear models and decision

116

trees or simple two-layer MLPs are often sufficient for achieving competitive performance. We

attribute the credit to the high-quality concepts and their labels. We will discuss our model

choice and perform a systematic study of different prediction models in Section 6.4. While

fitting the model, we also run feature selection methods like Akaike Information Criterion

(AIC) [Aka73, Aka74] and Recursive Feature Elimination (RFE) [GWB02] to determine the

useful concepts. Feature selection not only boosts the model performance but also leads to

automated iterative refinement for identifying a list of the most useful concepts.

6.3.4 Iterative Concepts Refinement

After all three steps. We do an iterative refinement of the generated concepts by prompting

LLMs again with the empirical performance of our prediction model and the concept selection

results from Step 3. We include such information in an updated prompt to make LLMs

generate new concepts to replace the less useful ones from the previous iteration. Using

the empirical results as feedback, we ensure that our CM remains adaptable and up-to-date

with the most relevant molecular concepts. Through this iterative refinement process, we

guarantee that the model performance improves over iterations and prune the irrelevant

concepts generated in previous iterations. The prompt for this step is shown in Figure 6.3.

6.4 Evaluation

6.4.1 Experiment Settings

Datasets We include four datasets from MoleculeNet [WRF18]. Two regression datasets,

e.g., FreeSolv and ESOL, and two classification datasets, e.g., BBBP and BACE. FreeSolv

provides hydration-free energy (which induces solubility) for 642 molecules, while ESOL

contains water solubility data for 1128 organic small molecules. BBBP contains 2,039 molecules

and assesses compounds’ blood-brain barrier penetration. BACE has 1,513 molecules and

117

predicts β-secretase 1 inhibitors, relevant for Alzheimer’s research. For all datasets, we

employed the same scaffold splits as the Open Graph Benchmark (OGB) [HFZ20]. We

also include two HTE datasets, e.g., Buchwald-Hartwig (BH) [AEL18] and Suzuki-Miyaura

(SM) [RWB16] for chemical reaction yield prediction. BH provides the yields of the Buchwald-

Hartwig reaction for 3957 molecules, and SM provides the yield of the Suzuki reaction for

5650 molecules. We employed the same data splits as used in [GGN23].

Metrics We follow the standard evaluation metrics for these datasets. For FreeSolv and

ESOL, results are measured with Root Mean Square Error (RMSE). For BBBP and BACE,

we mainly evaluate these datasets using AUC-ROC and report results in our main Table 6.1.

Since [GGN23] evaluates BBBP and BACE with accuracy, we also report a comparison in

accuracy in Table 6.7. For BH and SM, we evaluate with accuracy.

Baselines Our baselines include GNNs, LLM ICL, and GNN + CBM. Specifically, we

use the GIN and GCN. For LLM ICL, we reference the findings from [GGN23] and use their

prompts. For GNN + CBM, we use GIN and use GPT-3.5 Turbo for generating concept

labels for CBM. For HTE datasets, we only consider LLM ICL baselines as graphs are not

provided for the test set.

Models We employ GPT-3.5 Turbo as our primary LLMs for generating concepts and

directly labeling. Additionally, we utilize GPT-4 for labeling strategy 2: function code

generation, and strategy 3: external tool calling. For strategy 3, the LLM will create code

snippets for invoking RDKit [Lan10]. We don’t use GPT-4 for direct labeling due to the

high cost of per-instance labeling. After collecting the concept labels, we explore four types

of prediction models to cover a broad spectrum of tasks and performance levels. As a basic

setting, we use linear models like linear regression and logistic regression, we also consider

more advanced models including decision trees and 2-layer MLPs. We use off-the-shelf

prediction models from sklearn [PVG11]. We do ablation on LLMs with Claude-2. Since we

call LLMs through their APIs and the prediction models are light and off-the-shelf, there is

no specially requirements, like GPUs, for our framework.

118

Concept Selection We employ AIC [Aka73, Aka74] for regression and RFE [GWB02]

for classification. These selection methods are specifically applied to linear models. For

multi-iteration performance with decision trees and MLPs, we use the selection results from

the linear models.

6.4.2 AutoMolCo-induced CM Performance

In Table 6.1, we compare the performance of the AutoMolCo-induced CM to baselines.

Compared to GNNs, our CM achieves better results on MoleculeNet regression tasks and

HTE tasks and competitive results on MoleculeNet classification tasks. In comparison to the

results presented by ICL, our models have demonstrated a substantial performance advantage

on all tasks. Our best-performing model is the culmination of multiple iterations of refinement

and a combination of labeling strategies. Specifically, the results presented in Table 6.1 are

achieved using the following approaches: 1. A combination of all three labeling strategies

for concept labeling 2. The optimal CMs from linear models, decision trees, and MLPs

3. Concepts refinement over three iterations, as discussed in Section 6.4.6. An in-depth

exposition of these techniques is discussed in detail in the RQs below through experiments

on MoleculeNet datasets.

6.4.3 RQ1: Can AutoMolCo Generate Meaningful Molecular Concepts?

The effectiveness of the CM is built on meaningful concepts, which used to rely on domain

experts [KNT20]. In this RQ1, we examine the concepts generated by AutoMolCo in each

refinement iteration and consult with domain experts for their rationality. Figure 6.6 shows

the concepts selected by a linear regression model for predicting solubility (FreeSolv), evolving

from an initial broad set to a more focused and chemically relevant set. According to our

consultation with domain experts, the eliminated concepts such as the counts of specific atoms

and rotatable bonds, while informative, may not have significantly contributed to the model’s

119

Table 6.1: Performance comparison of the AutoMolCo-induced CM with baselines.
MoleculeNet regression tasks (FreeSolv and ESOL) are measured in RMSE (↓). MoleculeNet
classification tasks (BBBP and BACE) are measured in AUC-ROC (↑). HTE datasets (BH
and SM) are measured in accuracy (↑). Ours achieve better results on MoleculeNet regression
and HTE tasks and competitive results on MoleculeNet classification tasks.

FreeSolv (↓) ESOL (↓) BBBP (↑) BACE (↑) BH (↑) SM (↑)

GIN 2.151 0.998 69.710 73.460 - -
GCN 2.186 1.015 67.800 68.930 - -

GIN + CBM 2.412 1.373 54.500 68.457 - -

GPT-3.5 Turbo (zero-shot) 5.450 2.039 49.256 48.765 0.320 0.473
GPT-3.5 Turbo (4-shot) 4.852 1.161 51.580 41.871 0.640 0.630
GPT-3.5 Turbo (8-shot) 4.491 1.128 56.632 47.757 0.706 0.693

AutoMolCo-CM (ours) 2.065 0.843 65.278 70.744 0.810 0.800

predictive power or may have been correlated with other concepts. The retained concepts,

like molecular weight, # hydrogen bond donors, and TPSA, are fundamental properties that

influence molecular interaction and behavior in a solvent. For instance, hydrogen bond donors

directly relate to a molecule’s ability to engage in hydrogen bonding, a key interaction for

solubility. The TPSA measures the molecule’s surface that can engage in polar interactions,

which is crucial for solubility in polar solvents [PL05]. Thus, the final selected concepts are

indeed more chemically meaningful for the task and align with domain knowledge.

6.4.4 RQ2: Can AutoMolCo Assign Molecules Reasonable Concept Labels Using

Each Strategy?

Accurate concept labels are another critical component of CM performance. In this RQ2,

we evaluate AutoMolCo labeling results. we collect ground truth labels for concepts where

labels are available, either through calculation (e.g., for molecular weights), or manual lookup

(e.g., for melting points). We evaluate labels produced by our direct prompting strategy

and function generation labeling strategy using the Pearson correlation coefficient (r) with

the ground truth, due to the scale-invariant nature of the metric. The external tool calling

120

molecular weight
hydrophobicity

solubility
lipophilicity

hydrogen bond
donors

hydrogen bond
acceptors

rotatable bonds
topological polar

surface area
aromatic rings
halogen atoms
nitrogen atoms
oxygen atoms
sulfur atoms
carbon atoms
double bonds
triple bonds

chiral centers
rings

heteroatoms
electronegative

atoms

Iter 1 Concepts
molecular weight
hydrogen bond

donors
hydrogen bond

acceptors
rotatable bonds
topological polar

surface area
nitrogen atoms

Iter 1 Selected Concepts
molecular weight
h-bond donors
rotatable bonds

topological polar surface
area

nitrogen atoms
lone pairs

sp2 hybrid. carbons

Iter 2 Selected Concepts

molecular volume
pi bonds

aliphatic rings
aliphatic atoms
aromatic atoms

sp hybrid. carbons
non-bonding electrons

valence electrons
positive formal charges
negative formal charges

radical electrons
stereo centers

unsaturated bonds

Iter 3 New Concepts

molecular weight
h bond donors
rotatable bonds

TPSA
nitrogen atoms

lone pairs
sp2 hybridized carbons

Iter 3 Selected Concepts

VDW surface area
partial charge

dipole moment
conformational entropy

sp3 hybri. carbons
electronegativity

pi electrons
lone pairs

metal atoms
isoelectric point

sp2 hybri. carbons
sigma bonds

frequency
mol. orbital energies

Iter 2 New Concepts

Figure 6.6: RQ1: Concepts selected by AutoMolCo in three refinement iterations on FreeSolv.

strategy is excluded from this evaluation as tools will always provide correct labels, and

the downside of this strategy is that not all the concepts are tool-calculable (e.g., melting

points). Results in Table 6.2 show strong correlations can be achieved on most datasets

with AutoMolCo labeling. Nonetheless, variations in correlation underscore the potential

for method improvement. In addition to this benchmarking effort, we also discuss several

challenges we encountered and overcame in the labeling step, including imputation for missing

values, dictionary for unit inconsistency, and Chain-of-Thoughts (CoT) prompts for syntax

errors in function code.

121

Table 6.2: RQ2: Percentage of concepts with high correlations (r score ≥ 0.7) with the
ground-truth.

Labeling Strategy LLM Molecule Format FreeSolv ESOL BBBP BACE

Str-1 Direct Prompt GPT-3.5 Name 0.82 0.63 0.06 -
Str-1 Direct Prompt GPT-3.5 SMILES 0.82 0.75 0.69 0.22
Str-2 Function GPT-4 - 1.00 0.79 0.69 0.67

Table 6.3: RQ3: AutoMolCo-induced CM performance with different labeling strategies and
prediction models.

Labeling Strategy Prediction Model FreeSolv(↓) ESOL (↓) BBBP (↑) BACE (↑)

Str-1 Direct Prompt Linear/Logistic 2.685 1.250 52.836 56.894
Str-1 Direct Prompt Decision Tree 2.791 1.272 56.887 68.632
Str-1 Direct Prompt MLP 2.338 1.194 51.794 60.059
Str-2 Function Linear/Logistic 3.284 1.254 55.671 56.624
Str-2 Function Decision Tree 2.569 1.238 54.167 55.573
Str-2 Function MLP 2.805 1.034 58.738 56.894
Str-3 Tool Linear/Logistic 3.142 1.011 57.350 63.154
Str-3 Tool Decision Tree 3.750 1.027 55.903 65.658
Str-3 Tool MLP 1.981 0.911 58.449 60.772

6.4.5 RQ3: Can AutoMolCo Produced Concepts and Labels Be Utilized To Build

an Effective CM?

In RQ1, we have verified that the generated concepts are meaningful according to domain

experts. In RQ2, we have shown that concept labels are relatively accurately assigned after

properly handling potential issues like missing labels and unit inconsistency. In this RQ3, we

compare the performance of the AutoMolCo-induced CMs when different predictions models

and labeling strategies are adopted. Results in Table 6.3 show that AutoMolCo can give

reasonable performance even with the most basic direct prompting labeling strategy and the

simplest linear model. The good performance of different prediction models demonstrates

the quality of the concepts and the effectiveness of AutoMolCo.

122

Figure 6.7: RQ4: Iterative refinement improves CM performance for classification tasks.

6.4.6 RQ4: Does Iterative Refinement Boost The Performance of AutoMolCo-

induced CM?

As one of the most important designs of our AutoMolCo framework, concept refinement

helps to identify meaningful important concepts through iterative interactions with LLMs.

The concept relevance has been shown to improve in RQ1, but that does not necessarily mean

CM performance will also improve. In this RQ4, we run AutoMolCo with three iterative

concept refinements on the MoleculeNet datasets with linear prediction models. We show the

results in Figure 6.7, and we observe that the CM prediction performance indeed improved

through concept refinement, especially for classification tasks. The improvement for regression

tasks is marginal, partially because the performance is already good for regression.

6.4.7 RQ5: Does The AutoMolCo-induced CM Facilitate Explainable Molecular

Science?

One of the key advantages of CMs over black-box models is their explainability. In this

section, we evaluate this aspect of AutoMolCo-induced CMs through three experiments

on all three types of prediction models: coefficient interpretation of linear models, split

interpretation of decision trees, and concept label intervention of MLPs.

123

Coefficient Interpretation of Linear Models Using linear model in the AutoMolCo-

induced CM offers excellent explainability through direct interpretation of the model coeffi-

cients. We plot the coefficients of the linear model on FreeSolv for predicting hydration free

energy in Figure 6.9 (a), highlighting three significant concepts: # hydrogen bond donors,

TPSA, and # rotatable bonds. According to domain experts, the # hydrogen bond donors

relates to a molecule’s ability in hydrogen bonding, reflecting its potential to interact with

solvents and other molecules. Therefore, its increment typically leads to a more favorable

(more negative) hydration free energy [CP15]. TPSA quantifies the surface area of a molecule

that can engage in polar interactions, providing insights into a molecule’s permeability char-

acteristics. Thus, higher TPSA also leads to more favorable (more negative) hydration free

energy [PL05]. Conversely, the # rotatable bonds positively correlated with hydration free

energy. More rotatable bonds increase molecular flexibility, allowing the molecule to adopt

conformations that enhance interactions with water molecules. This increased flexibility can

lead to less favorable hydration free energy (less negative), as it reduces the stability of the

solvation shell around the molecule [GC08]. Our linear model interpretation aligns with

domain knowledge without requiring any human knowledge input into the model.

We show the linear model on the BBBP dataset. We focused on the top positive

coefficient lipophilicity (logP) and the top negative coefficient hydrogen bond acceptors

shown in Figure 6.8. Notably, logP has a coefficient of 1.97, and hydrogen bond acceptors

has a coefficient of -4.36. These findings align with domain knowledge, as higher logP

enhances a molecule’s ability to cross lipid-rich biological membranes. Conversely, a lower

number of hydrogen bond acceptors generally enhances a molecule’s permeability through

the BBB. These findings validate the CM’s alignment with established biochemical principles,

demonstrating its potential utility in predictive modeling for molecular properties.

Splits Interpretation of Decision Trees Complementing to the coefficients of the linear

model, decision tree enhances the understanding of model’s decision process. In Figure 6.9

124

Figure 6.8: RQ5: Coefficients of the logistic regression model on BBBP with concepts refined
by AutoMolCo after three iterations.

(b), we show the 3-layer decision tree for BBBP dataset. In the first two layers, the model

uses TPSA to categorize the molecules into four categories, where molecules with TPSA less

than 26.99 are likely to penetrate the BBB while molecules with TPSA greater than 176.22

are rarely penetrative. The decision tree further differentiates molecules with TPSA between

26.99 and 107.1 by whether or not it contains a hydrogen bond in its ring structure, where

molecules without this property are more likely to penetrate the BBB. On the other hand,

the model splits molecules with TPSA between 107.1 and 176.22 using the number of carbon

atoms, illustrating that molecules containing more than 23 carbon atoms are very likely to

be penetrative. Figure A.5 shows the impurity details of the decision tree.

Concept Label Intervention Besides analyzing interpretable prediction models like

linear models and decision trees, we also conduct a case study of concept label interven-

tions with MLPs. Our goal is to identify molecules with similar concept labels except

for the one we intend to intervene on (e.g., similar molecular weights, # aromatic rings,

etc., except logP) but different task labels (e.g., soluble vs. insoluble). Two examples

we identify from the ESOL dataset are: Diphenylamine (N(c1ccccc1)c2ccccc2) and RTI

125

Figure 6.9: RQ5: Coefficients of the linear regression model and the decision tree
on FreeSolv. Both with concepts refined by AutoMolCo after three iterations

17 (CCN2c1ccccc1N(C)C(=S)c3cccnc23). After three iterations of refinement these two

molecules have the same labels for three out of the four remaining concepts, except for their

logP labels, which differ by 0.275 (standardized to have mean 0 and standard deviation 1).

Diphenylamine is predicted to be insoluble (-3.648), whereas RTI 17 is predicted to be soluble

(-4.079), based on a conventional solubility threshold of -4 [SKE19]. These predictions proved

to be quite accurate, with the ground truth solubility of these two molecules being -3.857 and

-4.227, respectively. By intervening on diphenylamine’s logP value (0.209) to match RTI 17’s

logP value (0.484) through interpolation, we observe a linear change in solubility. This study

highlights the significant impact of logP on solubility predictions, which is consistent with

expert conclusions [LLD97, Avd12], providing insights beyond traditional black-box models.

We show the intervention plot in 6.10.

6.4.8 Ablation Studies

We conduct ablation studies of AutoMolCoto test its performance with different LLMs,

molecule input formats, and combinations of labeling strategies. We found that AutoMolCo

can perform consistently with different LLMs and is robust to molecule input formats. Also,

properly combining the labeling strategies can enhance model performance.

126

Figure 6.10: Intervention on logP of diphenylamine for predicting solubility with MLP

Table 6.4: AutoMolCoablation on LLMs (GPT-3.5 vs. Claude-2).

LLM FreeSolv(↓) ESOL (↓) BBBP (↑) BACE (↑)

GPT-3.5 2.685 1.250 52.84 56.89
Claude-2 2.804 1.327 52.78 56.11

Different LLMs We study the performance of AutoMolCo with different LLMs. Table 6.4

compares the performance of GPT-3.5 Turbo and Claude-2 using the direct LLM prompting

labeling strategy with linear prediction models. While both GPT-3.5 Turbo and Claude-2

exhibit slightly inferior performance compared to GNNs across four datasets, they maintain

competitive results, emphasizing simplicity and interpretability. Specifically, Claude-2 un-

derperforms GPT-3.5 Turbo after first iteration, potentially due to its less consistent and

accurate response. This inconsistency, partly attributed to more frequent issues with missing

values and unit inconsistencies observed in Claude-2, suggests GPT-3.5 Turbo’s superior

ability to generate reliable ground truth knowledge. Additionally, GPT-3.5 Turbo’s better

prompt comprehension and domain knowledge in chemistry might contribute to its enhanced

performance in predicting target concepts.

127

Table 6.5: AutoMolCoablation on input formats (SMILES strings vs. molecule names).

FreeSolv (↓) ESOL (↓) BBBP (↑) BACE (↑)
Input Format SMILES Names SMILES Names SMILES Names SMILES

GPT-3.5 iter 1 2.854 2.685 1.401 1.250 53.88 52.84 56.89
GPT-3.5 iter 2 2.662 2.520 1.262 1.250 56.08 54.05 57.60
GPT-3.5 iter 3 2.763 2.520 1.262 1.255 60.41 56.08 58.38

Direct LLM prompting with molecule names vs. with SMILES strings Building

on insights from [GGN23] regarding LLMs’ challenges with long molecular representations,

we examined LLM’s capability in labeling concepts using SMILES strings and molecule names

across our datasets. Our findings indicate that LLMs perform reasonably well in identifying

basic concepts like molecular weight and atom counts using either molecule names or SMILES

strings, with a strong correlation to ground truth labels (r > 0.9). However, LLMs struggle

with complex concepts requiring detailed structural knowledge, such as the number of chiral

centers. Moreover, our analysis reveals a notable decline in LLM’s performance with molecule

names in larger datasets like BBBP, suggesting LLM’s familiarity with common molecular

names improves its performance on smaller datasets, but this advantage diminishes with

less familiar names in larger datasets. In contrast, the structural specificity of SMILES

strings maintains more consistent performance across dataset sizes, highlighting their utility

in representing unique molecular concepts. Furthermore, we compared the performance

difference between the two representations over 3 iterations. As demonstrated in Table 6.5,

the model performance using SMILES strings matched the model performance using molecule

names on most datasets, but a notable improvement in performance with SMILES strings is

observed on the BBBP dataset.

We also present a comparative analysis of the quality of concept labels generated using

molecular names vs. SMILES strings. The comparison is visualized through a series of

heatmaps, as illustrated in Figure 6.11.

128

FreeSolv BBBPESOL

Figure 6.11: Correlation (r score) between the ground truth labels and concept
labels generated using molecule names or SMILES strings. Red indicates a higher
correlation.

Combine different labeling strategies The AutoMolCo framework includes three la-

beling strategies and allows easy extension to new ones. We consider combinations of the

labeling strategies and study their impact on model performance, where we adopt a simple

priority heuristic where strategy 3 > strategy 2 = strategy 1. Specifically, whenever the

external tool is available for a suggested concept, we get the accurate concept labels by calling

it. Otherwise, two concept labels are derived from both direct prompting and function code

generation, and they are both considered in step 3 for the selection. This combined-strategy

129

Table 6.6: AutoMolCowith combined labeling strategies.

Labeling Strategy Model FreeSolv(↓) ESOL (↓) BBBP (↑) BACE (↑)

Direct Prompt Linear/Logistic 2.685 1.250 52.836 56.894
Direct Prompt Tree Model 2.791 1.272 56.887 68.632
Direct Prompt MLP 2.338 1.194 51.794 60.059
Direct Prompt + Function Linear/Logistic 2.697 1.254 56.134 56.712
Direct Prompt + Function Tree Model 2.540 1.364 55.150 59.998
Direct Prompt + Function MLP 2.211 0.971 57.697 65.797
Direct Prompt + Function + Tool Linear/Logistic 3.002 1.136 55.845 64.032
Direct Prompt + Function + Tool Tree Model 3.752 1.107 56.250 65.658
Direct Prompt + Function + Tool MLP 2.122 0.791 58.391 62.624

Table 6.7: Performance comparison of the best AutoMolCo-induced CM vs. LLM
ICL in accuracy on BBBP and BACE (↑). (GPT results are taken from [GGN23]).

BBBP (↑) BACE (↑)

GPT-4 (zero-shot) 0.476 0.499
GPT-4 (Scaffold, k= 8) 0.614 0.679
GPT-3.5 (Scaffold, k= 8) 0.463 0.496

AutoMolCo 0.657 0.704

labeling turns out to outperform most of the standalone strategies as shown in Table 6.6.

These findings demonstrate that the three labeling strategies have their own strengths and

weaknesses for different concepts, and they can complement each other to maximize the model

performance. We leave the exploration of new strategies and more sophisticated strategy

combinations as future work.

Accuracy comparison with LLM ICL on BBBP and BACE In our main experiments,

we follow the standard and widely-used evaluation metrics for all datasets. For classification

tasks on BBBP and BACE, we mainly evaluate these datasets using the AUC-ROC metric and

report results in our main Table 6.1. Since [GGN23] provides the ICL prompts but evaluates

BBBP and BACE with accuracy, we also report a comparison in accuracy in Table 6.7 for a

fair comparison.

130

Table 6.8: Performance comparison of the AutoMolCo-induced CM with different
prediction models vs. LLM ICL in accuracy on BH and SM (↑). (GPT results are
taken from [GGN23]).

BH (↑) SM (↑)

GPT-4 (random, k = 8) 0.800 0.764

GPT-3.5 + logistic (200 samples) 0.800 0.770
GPT-3.5 + MLP (200 samples) 0.800 0.780
GPT-3.5 + logistic (500 samples) 0.790 0.780
GPT-3.5 + MLP (500 samples) 0.810 0.800

More results on Buchwald-Hartwig and Suzuki-Miyaura The GPT ICL performance

from [GGN23] are measured on 100 data samples. To compare AutoMolCo’s performance

with their numbers, for each dataset we picked the best model performance from the logistic

regression models or MLP models trained on either 200 or 500 sampled training data. The

performance details are presented in Table 6.8 with best performance reported in Table 6.1.

6.5 Discussion

We propose the AutoMolCo framework that automates the generation and labeling of

molecular concepts, overcoming challenges of existing CMs and enhancing explainability

through iterative refinement of useful concepts. We demonstrate that, for molecular property

prediction tasks, simple linear models on our generated concepts can perform competitively

or even better than GNNs and LLM ICL. Our work paves the way for future research to

further exploit the capabilities of LLMs for XAI in molecular science and beyond.

The framework also has limitations that can inspire future work. One limitation is that

LLMs can sometimes hallucinate, generating inaccurate concepts and labels. This affects the

accuracy and reliability of the outputs. Using more powerful LLMs could improve this issue.

Another limitation is that the evaluation of the generated concepts and labels often requires

validation by human experts, introducing subjectivity and dependency on domain knowledge.

131

Developing automated evaluation methods is another potential direction for improvement.

132

CHAPTER 7

Conclusion

The pursuit of XAI for graph data is a critical endeavor that has far-reaching implica-

tions for the responsible and ethical deployment of AI systems across numerous domains.

Throughout this thesis, I have explored three complementary perspectives – model-oriented,

user-oriented, and data-oriented – to advance the explainability of AI models on graph data.

The model-oriented approaches apply post hoc techniques to explain the decision-making

processes of black-box GNNs. These methods demonstrate how AI models reason about

and infer on graph data. They pave the way for a deeper understanding of AI models and

show the potential to debug and enhance model design. Complementing the model-oriented

perspective, the user-oriented techniques developed in this thesis have focused on providing

intuitive visualizations and natural language explanations tailored to human understanding.

By bridging the gap between complex AI models and end-users, who likely have no technical

background, these approaches foster user trust and satisfaction in the deployed AI systems

for graph-based applications. Furthermore, the data-oriented perspective covers both post

hoc explanations and inherently explainable models. These approaches leverage the inherent

structure and properties of graph data to enhance explainability, with the help of mask

learning, motif embedding learning, and LLM-based concept learning. The insight extracted

through explanations from scientific data like material atomic graphs and molecule graphs

can not only match domain knowledge but potentially lead to new scientific discoveries. The

synergistic combination of these three perspectives has yielded a comprehensive framework

for explainable AI for graph data, addressing the critical challenges of interpretability,

133

accountability, and alignment.

As AI continues to evolve and make new breakthroughs, the demand for explainable and

trustworthy AI systems will intensify. The methods and insights derived from this research

lay a foundation for future endeavors in XAI for graphs, fostering a deeper understanding of

AI decision-making processes and promoting the responsible deployment of these powerful

models in graph-based applications that shape our world.

134

APPENDIX A

Appendices

A.1 Chapter 2 Appendices

A.1.1 The Myerson Value, C-Shapley Value, and L-hop Graph Cutoff

A.1.1.1 The Myerson value

In the study of cooperative games, [Mye77] proposed to characterize the cooperation

possibilities between players using a graph structure G, which leads to the communication

structure introduced in Section 2.2.2 and the Myerson value as a solution for this special type

of games (N, v,G). The Myerson value is closely related to the Shapley value. In fact, it is

the Shapley value on a transformed game where players are partitioned by the graph. We

now formally introduce the partition and the transformed game.

Definition A.1.1 (Partition). Given a set of players N and a graph G. For any coalition

S ⊆ N , the partition of S is denoted by S/G and defined by

S/G = {{i|i and j are connected in S by G}|j ∈ S}

and a member of the set S/G is called a component of S.

Definition A.1.2 (Transformed Game). Given a game (N, v,G), we can transform it to a

135

new game v/G such that for all S ⊆ N

(v/G)(S) =
∑

T∈S/G

v(T)

Intuitively, given a coalition S, the transformed game treats each connected component

of S as independent, evaluates them separately, and sums their payoff as the payoff of S.

The Shapley value has an axiomatic characterization that uniquely determines it. Likewise,

the Myerson value was proposed to be a unique solution that satisfies the component efficiency

and the fairness property defined below.

Property A.1.3 (Component Efficiency). For a game (N, v,G) and any connected

component S ∈ N/G, a solution is component efficient if

∑
i∈S

ϕi(N, v,G) = v(S)

Property A.1.4 (Fairness). For a game (N, v,G) and any edge (i, j) in G, let G̃ be G with

the edge (i, j) removed, a solution is fair if

ϕi(N, v,G)− ϕi(N, v, G̃) = ϕj(N, v,G)− ϕj(N, v, G̃)

The component efficiency property is an extension of the regular efficiency property to

games with a communication structure. It requires efficiency to hold for each disconnected

piece because these pieces are assumed as independent from each other. The fairness property

states that if breaking an edge (i, j) changes the value of player i, then the value of player j

should be changed by the same amount.

Theorem A.1.5 (Myerson Value). There exists a unique solution ϕ of game (N, v,G)

satisfying component efficiency and fairness. With ϕ̃ represents the Shapley value, the solution

136

is given by the formula

ϕ(N, v,G) = ϕ̃(N, (v/G))

For games with a communication structure, the Myerson value is a better choice than the

Shapley value as it uses the graph structure. However, it also suffers from some criticisms.

For example, the fairness assumption may not be realistic. When an existing edge is broken,

the value changes for players on the two edge ends can be asymmetric. Intuitively, if the edge

connects a popular hub player i to a leaf player j, then the change of i can be less significant

than j since j becomes isolated when (i, j) is removed. This is also the case when the game

value is used for model explanation. For example in Figure 2.1 (b), when the edge ("good",

"quite") is broken, the value of "quite" should change a lot. It used to contribute positively

together with "good", and thus gets some payoff allocation, but it now becomes an isolated

node, which is neutral by itself. On the other hand, the word "good" can still contribute

positively by itself and interact with other nodes through its other edges, and thus its value

shouldn’t change too much. Because of such criticisms, we choose to use the HN value as our

scoring function, which characterizes the value by associated consistency rather than fairness.

A.1.1.2 The C-Shapley value

The Myerson value was also mentioned in [CSW19] for the model explanation on text,

where the C-Shapley value was proposed as an approximation of the Shapley value, and

it was claimed to be equal to the Myerson value. We have discussed why Shapley value

and Myerson are not-ideal choices for explaining graph data in Section 2.3.1 and Appendix

A.1.1.1. These are partially the reason why our HN-value-based method is better than the

C-Shapley value. However, the major reason why we don’t do a direct comparison to the

C-Shapley value as a baseline is that its formula only works for line graphs like sequence

data, and not even all nodes in line graphs. In contrast, our target task is general graph

prediction for graphs with possibly complicated topological structures.

137

We now clarify a mistake of the C-Shapley value formula and explain why it won’t work

for general graphs. The notations are following the [CSW19], where d is the number of players

corresponding to n in our notation, and [d] corresponding to N .

The formula for the C-Shapley value is given in Equation 6 in Definition 2 in [CSW19],

and it is stated for "a graph G" without mentioning any assumptions of the graph. However,

from the proof of this formula in Appendix B.2 of [CSW19], the line graph assumption can

be seen in two places. The first place is Equation 20, where the set C is explicitly defined

only for subsequences. The second place is Equation 22, the first line converts
∑

A:US(A)=U

to
∑d−|U |−2

i=0 , which is implicitly saying VS(A) can be picked from all d but |U | − 2 nodes.

However, this conversion is only possible when there are exactly 2 edges between U and

[d]\U , i.e. the middle part of a line graph. If there are l edges between U and [d]\U , then the

summation should go up to d−|U |−l. When l = 0, i.e. U equals [d] or a connected component

of [d], no partition is needed and the coefficient simply evaluates to 1. By correcting all these

cases, the final formula for the C-Shapley value coefficients of marginal contributions thus

becomes

d−|U |−l∑
i=0

1(
d−1

i+|U |−1

)(d− |U | − l

i

)
(A.1)

=
d

(|U |+ l)
(|U |+l−1

|U |−1

) (A.2)

=
dl

(|U |+ l)(|U |+ l − 1) · · · |U |
(A.3)

for l > 0, and 1 for l = 0.

138

0 21

0 1

2

0 21

0

2

20

1

1

0 21

0

0 1

0 2

0 21

1

2

21

Shapley C_Shapley Myerson HN

1/3 1/3 1/3 1/2

1/6 1/12 1/6 0

1/6 1/12 1/6 0

1/3 1/30 1/3 1/2

Shapley C_Shapley Myerson HN

1/3 1/3 1/2 1/2

1/6 1/12 1/6 1/4

1/6 0 0 0

1/3 1/30 1/3 1/4

Figure A.1: Marginal contribution coefficients comparison. A toy 3-node graph example
for comparing the marginal contribution coefficients between the Shapley, the C-Shapley, and
the Myerson value. (a) Value computation for node 0 (left). (b) Value computation for node
1 (right).

The correct formula for the C-Shapley value of general graphs will be

ϕX(i) =

∑

U∈C
l

(|U |+l)···|U |mX(U, i) if l > 0

1
d

if l = 0

(A.4)

with l represents the edges between U and [d]\U and C represents all connected subgraphs in

[d] containing i.

To verify this formula with the 3-node toy graph in Figure A.1. When computing the value

of node 0 (left), the three connected components containing 0 are C = {{0}, {0, 1}, {0, 1, 2}}.

Since 0 is an end node and has no leaf nodes to its left, l for these three components will be 1,

1, and 0 respectively. According to our new formula in Equation A.4, the coefficients will be
1
2
, 1
6
, and 1

3
respectively, with the disconnected {0, 2} case removed. This matches the original

idea of Myerson value, where the {0, 2}−{2} case is reduced to the {0}−∅ case, which turns

the Shapley coefficients from [1
3
, 1
6
, 1
6
, 1
3
] to [1

3
+ 1

6
, 1
6
, 1
6
− 1

6
, 1
3
], which is [1

2
, 1
6
, 0, 1

3
]. However,

the original C-Shapley formula from Equation 6 in the [CSW19] evaluates to [1
3
, 1
12
, 0, 1

30
],

which doesn’t match the Myerson value and not even sum up to 1. Another example of

139

GNNExplainer PGExplainer SubgraphX GraphSVX GStarXOrphicX

Figure A.2: More explanations on mutagenic molecules from MUTAG. Carbon atoms
(C) are in yellow, nitrogen atoms (N) are in blue, and oxygen atoms (O) are in red. We use
dark outlines to indicate the selected subgraph explanation and report the Fidelity (fide),
Inv-Fidelity (inv-fide), and H-Fidelity (h-fide) of each explanation. GStarX gives a significant
better explanation than other methods in terms of these metrics.

computing the value of node 1 is shown in Figure A.1 right.

The C-Shapley, even with the correct formula, eventually boils down to an approximation

of the Shapley value or the Myerson value, which as we discussed are less ideal than the HN

value. Also, the correct formula in Equation A.4 requires generating all possible subgraphs U

containing the node i and specify the edges between U and [d]\U . This makes the computation

very complicated, we thus skip the comparison to the C-Shapley value.

140

in

always colorful

overblown

funny

very

enjoyably

.

styletraditional almodóvar

occasionally ,

the

and

in

always colorful

overblown

funny

very

enjoyably

.

styletraditional almodóvar

occasionally ,

the

and

in

always colorful

overblown

funny

very

enjoyably

.

styletraditional almodóvar

occasionally ,

the

and

in

always colorful

overblown

funny

very

enjoyably

.

styletraditional almodóvar

occasionally ,

the

and

in

always colorful

overblown

funny

very

enjoyably

.

styletraditional almodóvar

occasionally ,

the

and

in

always colorful

overblown

funny

very

enjoyably

.

styletraditional almodóvar

occasionally ,

the

and

GNNExplainer PGExplainer SubgraphX GraphSVX

“occasionally funny , always very colorful and enjoyably overblown in the traditional almodóvar style.”

OrphicX GStarX

Figure A.3: More explanations on sentences from GraphSST2. The sentence is predicted
to be positive sentiment. Red outlines indicate the selected nodes/edges as the explanation.
GStarX identifies the sentiment words more accurately compared to baselines.

A.1.1.3 Use The Graph Structure via an L-hop Cutoff

Although the Shapley value itself is not structure-aware, there are existing Shapley-value-

based GNN explanation methods besides the Myerson value and C-Shapley value that use

an L-hop cutoff to help approximate the Shapley value [YYW21, DM21]. Technically, this

operation uses the graph structure, so we can’t strictly refer to these explanation methods as

not structure-aware. However, we argue that the L-hop cutoff is a naive way of utilizing the

graph structure. It has several concerns, and it is not the same structure-awareness as the

HN value.

The L-hop cutoff approximates the Shapley value of node i by considering only the L-hop

neighbors of i when explaining an L-layer GNN. The rationale of this operation is that an

L-layer GNNs only propagate messages within L-hops so a node more than L-hop away from

i has never passed any messages to i which means no interactions are possible. In existing

Shapley-value-based GNN explanation methods, this L-hop cutoff operation was meant to

reduce the exponentially growing computations of the Shapley value, and the ultimate goal is

still to compute the Shapley value. The L-hop cutoff operation has several issues making

it a less desirable choice. 1) Even meant to save computation, there are still many nodes

involved in the computation after applying the L-hop cutoff since the number of nodes grows

exponentially as L grows. For advanced GNNs, the L can be large. When L is larger than the

141

diameter of the graph, which is actually the case for many recent deep GNNs, the L-hop cutoff

is not effective anymore. 2) When constructing coalitions of nodes within the local graph of

L-hops, the computation still follows the Shapley value formula. This means the useful graph

structure information among these nodes is forfeited which causes the structure-awareness

concern of Shapley value as we discussed in Section 2.3.1,

A.1.2 More Explanation Visualizations

We visualize more explanations in Figure A.2 and Figure A.3.

A.2 Chapter 3 Appendices

A.2.1 Proof of Proposition 3.4.1

Proof. We prove Zn,d = o(Sn,d) by definition, where we show limn→∞
Zn,d

Sn,d
= 0. As we

can permute the indices of nodes in G(n, d), without loss of generality, we assume Zn,d

is the expected number of paths between nodes indexed 1 and n. Our proof is mainly

based on the result in [RK07], which computes the expected number of all 1-n paths, i.e.,

Zn,d = (n− 2)!dn−1e(1 + o(1)). On the other hand, the number of edge-induced subgraphs

considered in [YBY19, LCX20] equals the size of the power set of all edges, i.e., Sn,d = 2d(
n
2).

We thus have

142

logZn,d = log
[
(n− 2)!dn−1e(1 + o(1))

]
(A.1)

< log

[√
2π(n− 2)(

n− 2

e
)(n−2)e

1
12(n−2)dn−1e(1 + o(1))

]
(A.2)

=
1

2
log(2π(n− 2)) + (n− 2) log(

n− 2

e
) + log

1

12(n− 2)

+ (n− 1) log d+ 1 + log(1 + o(1)) (A.3)

= O(log n) +O(n log n) +O(log
1

n
) +O(n log d) (A.4)

+ log(1 + o(1)) (A.5)

= O(n log n) + log(1 + o(1)) (A.6)

logSn,d = log 2d(
n
2) = d

(
n

2

)
log 2 = O(n2) (A.7)

lim
n→∞

Zn,d

Sn,d

= lim
n→∞

exp(log
Zn,d

Sn,d

) (A.8)

= exp(lim
n→∞

log
Zn,d

Sn,d

) (A.9)

= exp(lim
n→∞

logZn,d − logSn,d) (A.10)

= exp(lim
n→∞

O(n log n) + log(1 + o(1))−O(n2)) (A.11)

= 0 (A.12)

Step (1) to (2) is Stirling’s formula. Step (8) to (9) is because exp is continuous.

A.2.2 Theorem 3.4.3: A Detailed Version

We now state a more detailed version of Theorem 3.4.3. This theorem gives the exact

formula of δV(n, d, k) and δE(n, d, k), which are built upon a Poisson random variable. The

argument is adapted from [JL08, PSW96]. Readers can refer to [JL08, PSW96] for the proof.

For µ > 0, let Po(µ) denote a Poisson distribution with mean µ. Let ψk(dn) = P (Po(dn) ≥

143

k) be the tail probability of Po(dn). Let ck = infµ>0 µ/ϕk−1(µ). When dn > ck, the equation

µ/ψk−1(µ) = dn will have two roots for µ. Let µ(dn, k) be the larger root. Then we have the

following more detailed version of Theorem 3.4.3 with δV(n, d, k) and δE(n, d, k) as functions

of µ(dn, k).

Theorem A.2.1 (Pittel, Spencer and Wormald). Let G(n, d) be a random graph with m

edges as in Proposition 3.4.1. Let Gk(n, d) = (Vk(n, d),Ek(n, d)) be the k-core of G(n, d).

When dn > ck, Gk(n, d) will be nonempty with high probability (w.h.p.) for large n. Also,

Gk(n, d) will contain ψk(µ(dn, k))n nodes and [µ(dn, k)2/(d2n(n − 1))]m edges w.h.p. for

large n, i.e., |Vk(n, d)|/n p−→ ψk(µ(dn, k)) and |Ek(n, d)|/m p−→ µ(dn, k)2/(d2n(n − 1)) (p−→

stands for convergence in probability).

A.3 Chapter 4 Appendices

A.3.1 Proof of Lemma 4.4.1

In this section, we prove the non-rotation decomposition Lemma 4.4.1 stated in Sec-

tion 4.4.1.

Proof. From Lemma 4.3.2, we know any non-rotation R̃ ∈ P · SO(3) has det R̃ = −1. By

linearity of R̃ we know that

⟨−R̃(x1),−R̃(x2)⟩ = ⟨R̃(−x1), R̃(−x2)⟩ = ⟨−x1,−x2⟩ = ⟨x1,x2⟩

which shows hat −R̃ is also orthogonal according to Definition 4.3.1. As we know that −R̃ will

have det−R̃ = (−1)3 ·−1 = 1, by Lemma 4.3.2 again we know that −R̃ is a rotation. By Euler

Theorem 4.3.3, we know there exists [α, β, γ] ∈ [0, 2π]3 such that −R̃ = Ox1(α)Ox2(β)Ox3(γ),

which implies that R̃ = −Ox1(α)Ox2(β)Ox3(γ).

144

A.3.2 Proof of Theorem 4.4.3

In this section, we prove the invariance in expectation Theorem 4.4.3 stated in Section 4.4.2.

Theorem A.3.1. Assume T1, . . . , Tk are random transformations that follow a uniform

distribution over all T ∈ O(3). Then, Sym is O(3)-invariant in expectation in the sense that

ET1,...,Tk
[SymT1,...,Tk

(G,Z,X)] = ET1,...,Tk
[SymT1,...,Tk

(G,Z, T0X)] for any T0 ∈ O(3).

Proof. From Lemma 4.4.2, we know that all T ∈ O(3) have the form of T = (−1)λOx1(α)Ox2(β)Ox3(γ)

for λ ∈ {0, 1} and [α, β, γ] ∈ [−π, π]3. A uniform distribution over all T ∈ O(3) implies

λ ∼ Bern(0.5) and [α, β, γ] ∼ Unif([−π, π]3).

Now consider a specific orthogonal transformation T0 = (−1)λ0Ox1(α0)Ox2(β0)Ox3(γ0).

Then its composition with the uniformed distributed T is

T ◦ T0 = (−1)λ+λ0Ox1(α + α0)Ox2(β + β0)Ox3(γ + γ0)

By the Bernoulli assumption, we get (−1)λ ∼ (−1)λ+λ0 as they both follow a discrete

distribution on {−1, 1} with probability 0.5 of each value. Moreover, α ∼ Unif[−π, π] implies

α+ α0 ∼ Unif[−π + α0, π + α0]. Since this only shifts the interval that supports the uniform

distribution, the joint distribution of (cos(α), sin(α)) ∼ (cos(α + α0), sin(α + α0)) due to

periodicity, which further implies Ox1(α) ∼ Ox1(α + α0). Similarly for Ox2(β) and Ox3(γ).

Given the random variables (matrices) (−1)λ, Ox1(α), Ox2(β), and Ox3(γ) are independent,

we concluded that T ∼ T ◦ T0.

Now consider SymT1,...,Tk
(G,Z,X) = 1

k

∑k
i=1Enc(G,Z, Ti(X)). For each i, Ti ∼ Ti ◦ T0

implies Ti(X) ∼ Ti ◦ T0(X), and thus Enc(G,Z, Ti(X)) ∼ Enc(G,Z, Ti ◦ T0(X)) by

transformation of random variables [Bil17]. Therefore, we also get ETi
[Enc(G,Z, Ti(X))] =

ETi
[Enc(G,Z, Ti◦T0(X))]. Finally, by linearity of expectation, ET1,...,Tk

[SymT1,...,Tk
(G,Z,X)] =

ET1,...,Tk
[SymT1,...,Tk

(G,Z, T0X)].

145

A.3.3 More Explanation Visualizations

We provide more visualizations of the explanation generated by SymGNN. We note that

none of the edges within the top 10 closest nodes are being selected as important edges by our

explanation. Visualizations of more nodes are shown in Figure A.4. In the figures, the left

column presents the global version plot whereas the right column presents the local version.

A.4 Chapter 5 Appendices

A.4.1 Derivations of The Log-likelihood and The Posterior Probability

We derive the log-likelihood in Equation 5.2 and and the posterior probability in Equation

5.4. Through our derivation, for simplicity, we assume h and m are both unit vectors in

Rd. In practice, h and m don’t need to be equal in dimension or unit length. In this case,

we apply an extra step to project them into the same space and normalize them to be unit

vectors before the calculation. As this transformation only involves learnable free parameters

for projection and normalization, we omit it for now.

Recall that the model assumes P (hi|ci = k) ∼ N (mk, σ
2I). Therefore,

P (hi|ci = k) =
1√

(2π)d|σ2I|
exp(−1

2
(hi −mk)

T (σ2I)−1(hi −mk))

=
1√

(2π)dσd
exp(− 1

2σ2
∥hi −mk∥2)

=
1√

(2π)dσd
exp(− 1

2σ2
(2− 2hT

i mk))

=
1√

(2π)dσd
exp(

1

σ2
(hT

i mk − 1))

=
1√

(2π)dσd
exp(− 1

σ2
) exp(

hT
i mk

σ2
)

= g(σ) exp(
hT

i mk

σ2
)

146

Here we use g(σ) to denote the part that only depends on σ. Then the joint probability is

P (hi, ci = k) = g(σ) exp(
hT

i mk

σ2
)θk

and the posterior probability is

Pk,i = P (ci = k|hi) =
P (hi, ci = k)∑
k′ P (hi, ci = k′)

=
g(σ) exp(hT

i mk/σ
2)θk∑

k′ g(σ) exp(h
T
i mk′/σ2)θk′

=
exp(mT

khi/σ
2)θk∑

k′ exp(m
T
k′hi/σ2)θk′

The log-likelihood thus becomes

ℓ(M ,θ, ϕ) = log
N∏
i=1

(
K∑
k=1

P (hi, ci = k))

=
N∑
i=1

log
K∑
k=1

g(σ) exp(
hT

i mk

σ2
)θk

∝
N∑
i=1

log
K∑
k=1

exp(
hT

i mk

σ2
)θk

Then we derive Equation 5.9. Note that Q∗ becomes a constant independent from M , θ,

147

and ϕ after we plug it in Equation 5.8.

LOT (M ,θ, ϕ) = max
Q∈U(r,c)

N∑
i=1

K∑
k=1

Qk,i log
Pk,i

N
+

1

λ
H(Q)

=
N∑
i=1

K∑
k=1

Q∗
k,i log

Pk,i

N
+

1

λ
H(Q∗)

∝
N∑
i=1

K∑
k=1

Q∗
k,i log

Pk,i

N

∝
N∑
i=1

K∑
k=1

Q∗
k,i logPk,i

A.4.2 Derivation of The Log-likelihood Lower Bound with Optimal Transport

The log-likelihood objective is

ℓ(M ,θ, ϕ) = log
N∏
i=1

(
K∑
k=1

P (hi, ci = k))

Let Q̃(ci) be a arbitrary reference distribution on ci, i.e.
∑K

k=1 Q̃(ci = k) = 1. We then use the

Jensen’s inequality to derive the evidence lower bound, which is commonly used the objective

148

since the likelihood is hard to optimize directly. Consider 1/N times the log-likelihood,

1

N
ℓ(M ,θ, ϕ)

=
1

N
log

N∏
i=1

(
K∑
k=1

P (hi, ci = k))

=
1

N

N∑
i=1

log(
K∑
k=1

P (hi, ci = k))

=
1

N

N∑
i=1

log(
K∑
k=1

Q̃(ci = k)
P (hi, ci = k)

Q̃(ci = k)
)

≥ 1

N

N∑
i=1

K∑
k=1

Q̃(ci = k) log
P (hi, ci = k)

Q̃(ci = k)

=
∑
i,k

Q̃(ci = k)

N
log

P (hi, ci = k)

Q̃(ci = k)

=
∑
i,k

Q̃(ci = k)

N
logP (hi, ci = k)−

∑
i,k

Q̃(ci = k)

N
log Q̃(ci = k)

=
∑
i,k

Q̃(ci = k)

N
logP (hi, ci = k)−

∑
i,k

Q̃(ci = k)

N
log

Q̃(ci = k)

N

− logN

To proceed, we ignore the constant logN , and let Qk,i =
Q̃(ci=k)

N
. Observe that

∑N
i=1Qk,i =

Q̃(ci = k) and
∑K

k=1 Qk,i =
1
N

, which gives Qk,i a probabilistic interpretation as a joint

distribution on ci and hi, where the marginal distribution equals Q̃(ci) and the empirical

distribution on {h1, ...,hN} respectively. We thus get

1

N
ℓ(M ,θ, ϕ) ∝

∑
i,k

Qk,i logP (hi, ci = k)−
∑
i,k

Qk,i logQk,i

=
∑
i,k

Qk,i logP (hi, ci = k) +H(Q)

149

Equation 5.8 is the same objective with a restricted search space U(r, c) and an extra

parameter λ controlling the entropy. Both terms work together to prevent cluster collapse

[GDV19, YCA20].

A.5 Chapter 6 Appendices

A.5.1 Decision Tree Visualizations

We visualize the decision tree which makes the prediction process explainable. Figure A.5

shows the impurity details of the decision tree shown in Figure 6.9 (b) and Figure A.6 shows

a sample decision tree for the BACE dataset.

150

Figure A.4: Local and global explanation visualizations for SymGNN on more MG nodes.

151

Figure A.5: The decision tree for AutoMolCo-induced CM classification on BBBP.

Figure A.6: The decision tree for AutoMolCo-induced CM classification on BACE.

152

REFERENCES

[AEL18] DT Ahneman, JG Estrada, S Lin, SD Dreher, and AG Doyle. “Predicting reaction
performance in c–n cross-coupling using machine learning.” Science, 2018.

[Aka73] Hirotugu Akaike. “Information theory and an extension of the maximum likelihood
principle.” In 2nd International Symposium on Information Theory, pp. 267–281.
Akademiai Kiado, 1973.

[Aka74] Hirotugu Akaike. “A new look at the statistical model identification.” IEEE
Transactions on Automatic Control, 19(6):716–723, 1974.

[ALC22] Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona Diab, and Marjan
Ghazvininejad. “A review on language models as knowledge bases.” arXiv preprint
arXiv:2204.06031, 2022.

[Avd12] Alex Avdeef. Absorption and drug development: solubility, permeability, and
charge state. John Wiley & Sons, 2012.

[BA19] Federico Baldassarre and Hossein Azizpour. “Explainability Techniques for Graph
Convolutional Networks.”, 2019.

[Bar94] Serguei Barannikov. “The framed Morse complex and its invariants.” Advances
in Soviet Mathematics, 21:93–116, 1994.

[BB11] Ludovic Berthier and Giulio Biroli. “Theoretical perspective on the glass transition
and amorphous materials.” Reviews of modern physics, 83(2):587, 2011.

[BD13] Narottam P Bansal and Robert H Doremus. Handbook of glass properties. Else-
vier, 2013.

[BEL13] Ulrik Brandes, Markus Eiglsperger, Jürgen Lerner, and Christian Pich. “Graph
markup language (GraphML).”, 2013.

[BFZ21] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bron-
stein. “Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting.”, 2021.

[BGA20] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. “Spectral clustering
with graph neural networks for graph pooling.” In International Conference on
Machine Learning, pp. 874–883. PMLR, 2020.

[BHJ19] Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. “Semantic bottleneck for
computer vision tasks.” In Computer Vision–ACCV 2018: 14th Asian Conference
on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected
Papers, Part II 14, pp. 695–712. Springer, 2019.

153

[Bil17] Patrick Billingsley. Probability and measure. John Wiley & Sons, 2017.

[BKG20] V. Bapst, T. Keck, A. Grabska-Barwińska, C. Donner, E. D. Cubuk, S. S. Schoen-
holz, A. Obika, A. W. R. Nelson, T. Back, D. Hassabis, and P. Kohli. “Unveiling
the predictive power of static structure in glassy systems.” Nature Physics,
16(4):448–454, April 2020.

[BKS22] Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor
Csányi. “MACE: Higher order equivariant message passing neural networks
for fast and accurate force fields.” Advances in Neural Information Processing
Systems, 35:11423–11436, 2022.

[BM96] GT Barkema and Normand Mousseau. “Event-based relaxation of continuous
disordered systems.” Physical review letters, 77(21):4358, 1996.

[BM05] Mustafa Bilgic and Raymond J Mooney. “Explaining recommendations: Satisfac-
tion vs. promotion.” In Beyond personalization workshop, IUI, volume 5, p. 153,
2005.

[BMP24] Vaibhav Bihani, Sajid Mannan, Utkarsh Pratiush, Tao Du, Zhimin Chen, Santiago
Miret, Matthieu Micoulaut, Morten M Smedskjaer, Sayan Ranu, and NM Anoop
Krishnan. “EGraFFBench: evaluation of equivariant graph neural network force
fields for atomistic simulations.” Digital Discovery, 3(4):759–768, 2024.

[BMS22] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa,
Mordechai Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. “E
(3)-equivariant graph neural networks for data-efficient and accurate interatomic
potentials.” Nature communications, 13(1):2453, 2022.

[Bol84] Béla Bollobás. “The evolution of sparse graphs, Graph theory and combinatorics
(Cambridge, 1983).”, 1984.

[BOT92] Peter Borm, Guillerom Owen, and Stif Tijs. “On the position value for com-
munication situations.” SIAM Journal on Discrete Mathematics, 5(3):305–320,
1992.

[BZS13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spectral net-
works and locally connected networks on graphs.” arXiv preprint arXiv:1312.6203,
2013.

[CBJ18] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. “Deep
Clustering for Unsupervised Learning of Visual Features.”, 2018.

[CBR20] Zhi Chen, Yijie Bei, and Cynthia Rudin. “Concept whitening for interpretable
image recognition.” Nature Machine Intelligence, 2(12):772–782, 2020.

154

[CCV20] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. “Can graph neural
networks count substructures?” arXiv preprint arXiv:2002.04025, 2020.

[CGR20] Kamal Choudhary, Kevin F Garrity, Andrew CE Reid, Brian DeCost, Adam J
Biacchi, Angela R Hight Walker, Zachary Trautt, Jason Hattrick-Simpers, A Gilad
Kusne, Andrea Centrone, et al. “The joint automated repository for various inte-
grated simulations (JARVIS) for data-driven materials design.” npj computational
materials, 6(1):173, 2020.

[CHL06] Jin Chen, Wynne Hsu, Mong Li Lee, and See-Kiong Ng. “Nemofinder: Dissecting
genome-wide protein-protein interactions with meso-scale network motifs.” In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 106–115, 2006.

[CIS17] Ekin Dogus Cubuk, RJS Ivancic, Samuel S Schoenholz, DJ Strickland, Anin-
dita Basu, ZS Davidson, Julien Fontaine, Jyo Lyn Hor, Y-R Huang, Y Jiang,
et al. “Structure-property relationships from universal signatures of plasticity in
disordered solids.” Science, 358(6366):1033–1037, 2017.

[CLK18] Yixin Cao, Jindong Li, Binquan Kou, Chengjie Xia, Zhifeng Li, Rongchang Chen,
Honglan Xie, Tiqiao Xiao, Walter Kob, Liang Hong, et al. “Structural and topolog-
ical nature of plasticity in sheared granular materials.” Nature communications,
9(1):2911, 2018.

[CLM09] E Cances, Frédéric Legoll, M-C Marinica, K Minoukadeh, and F Willaime. “Some
improvements of the activation-relaxation technique method for finding transition
pathways on potential energy surfaces.” The Journal of chemical physics, 130(11),
2009.

[CM11] YQ Cheng and E Ma. “Atomic-level structure and structure–property relationship
in metallic glasses.” Progress in materials science, 56(4):379–473, 2011.

[CMM20] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski,
and Armand Joulin. “Unsupervised Learning of Visual Features by Contrasting
Cluster Assignments.” In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pp. 9912–9924. Curran Associates, Inc., 2020.

[CP15] Kee-Choo Chung and Hwangseo Park. “Accuracy enhancement in the estimation
of molecular hydration free energies by implementing the intramolecular hydrogen
bond effects.” Journal of Cheminformatics, 7:1–12, 2015.

[CSW19] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. “L-
Shapley and C-Shapley: Efficient Model Interpretation for Structured Data.”
In International Conference on Learning Representations, 2019.

155

[Cut13] Marco Cuturi. “Sinkhorn Distances: Lightspeed Computation of Optimal Trans-
port.” In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, vol-
ume 26. Curran Associates, Inc., 2013.

[CYZ21] Kewei Cheng, Ziqing Yang, Ming Zhang, and Yizhou Sun. “UniKER: A Unified
Framework for Combining Embedding and Definite Horn Rule Reasoning for
Knowledge Graph Inference.” In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 9753–9771, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics.

[DBY19] Nima Dehmamy, Albert-László Barabási, and Rose Yu. “Understanding the
representation power of graph neural networks in learning graph topology.” arXiv
preprint arXiv:1907.05008, 2019.

[DCD91] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J
Shusterman, and Corwin Hansch. “Structure-activity relationship of mutagenic
aromatic and heteroaromatic nitro compounds. correlation with molecular orbital
energies and hydrophobicity.” Journal of medicinal chemistry, 34(2):786–797,
1991.

[DG17] Piotr Dabkowski and Yarin Gal. “Real time image saliency for black box classifiers.”
arXiv preprint arXiv:1705.07857, 2017.

[Dij59] Edsger W Dijkstra. “A note on two problems in connexion with graphs.”
Numerische mathematik, 1(1):269–271, 1959.

[DKW05] Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis.
“Frequent substructure-based approaches for classifying chemical compounds.”
IEEE Transactions on Knowledge and Data Engineering, 17(8):1036–1050, 2005.

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood
from incomplete data via the EM algorithm.” Journal of the Royal Statistical
Society: Series B (Methodological), 39(1):1–22, 1977.

[DLR18] Jeffrey De Fauw, Joseph R Ledsam, Bernardino Romera-Paredes, Stanislav
Nikolov, Nenad Tomasev, Sam Blackwell, Harry Askham, Xavier Glorot, Bren-
dan O’Donoghue, Daniel Visentin, et al. “Clinically applicable deep learning for
diagnosis and referral in retinal disease.” Nature medicine, 24(9):1342–1350, 2018.

[DM65] Morton Davis and Michael Maschler. “The kernel of a cooperative game.” Naval
Research Logistics Quarterly, 12(3):223–259, 1965.

[DM21] Alexandre Duval and Fragkiskos D Malliaros. “GraphSVX: Shapley Value Expla-
nations for Graph Neural Networks.” arXiv preprint arXiv:2104.10482, 2021.

156

[DMJ23] Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago
Miret, Fragkiskos D Malliaros, Taco Cohen, Pietro Liò, Yoshua Bengio, and
Michael Bronstein. “A Hitchhiker’s Guide to Geometric GNNs for 3D Atomic
Systems.” arXiv preprint arXiv:2312.07511, 2023.

[DPF14] Jun Ding, Sylvain Patinet, Michael L Falk, Yongqiang Cheng, and Evan Ma.
“Soft spots and their structural signature in a metallic glass.” Proceedings of the
National Academy of Sciences, 111(39):14052–14056, 2014.

[DS01] Pablo G Debenedetti and Frank H Stillinger. “Supercooled liquids and the glass
transition.” Nature, 410(6825):259–267, 2001.

[DSH23] Alexandre Agm Duval, Victor Schmidt, Alex Hernández-Garcıa, Santiago Miret,
Fragkiskos D Malliaros, Yoshua Bengio, and David Rolnick. “Faenet: Frame
averaging equivariant gnn for materials modeling.” In International Conference
on Machine Learning, pp. 9013–9033. PMLR, 2023.

[EDR23] Takeshi Egami, Wojciech Dmowski, and Chae Woo Ryu. “Medium-range order
resists deformation in metallic liquids and glasses.” Metals, 13(3):442, 2023.

[EH08] Herbert Edelsbrunner, John Harer, et al. “Persistent homology-a survey.”
Contemporary mathematics, 453(26):257–282, 2008.

[FIE14] Yue Fan, Takuya Iwashita, and Takeshi Egami. “How thermally activated defor-
mation starts in metallic glass.” Nature communications, 5(1):5083, 2014.

[FIE17] Yue Fan, Takuya Iwashita, and Takeshi Egami. “Energy landscape-driven non-
equilibrium evolution of inherent structure in disordered material.” Nature
communications, 8(1):15417, 2017.

[fil18] Yuval Filmus (https://cs.stackexchange.com/users/683/yuval filmus). “number of
connected subgraphs of G with at most k > 0 vertices.” stackexchange, 2018.

[FKA21] Thorben Funke, Megha Khosla, and Avishek Anand. “Zorro: Valid, sparse, and
stable explanations in graph neural networks.” arXiv preprint arXiv:2105.08621,
2021.

[FL11] Michael L Falk and James S Langer. “Deformation and failure of amorphous,
solidlike materials.” Annu. Rev. Condens. Matter Phys., 2(1):353–373, 2011.

[FL19] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning with
PyTorch Geometric.” In ICLR Workshop on Representation Learning on Graphs
and Manifolds, 2019.

[FMT04] Christos Faloutsos, Kevin S McCurley, and Andrew Tomkins. “Fast discovery of
connection subgraphs.” In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 118–127, 2004.

157

[GBS20] Azin Ghazimatin, Oana Balalau, Rishiraj Saha Roy, and Gerhard Weikum.
“PRINCE: Provider-side interpretability with counterfactual explanations in rec-
ommender systems.” In Proceedings of the 13th International Conference on Web
Search and Data Mining, pp. 196–204, 2020.

[GC08] Cristiano RW Guimarães and Mario Cardozo. “MM-GB/SA rescoring of docking
poses in structure-based lead optimization.” Journal of chemical information and
modeling, 48(5):958–970, 2008.

[GDL23] Jiayan Guo, Lun Du, and Hengyu Liu. “GPT4Graph: Can Large Language Models
Understand Graph Structured Data? An Empirical Evaluation and Benchmarking.”
arXiv preprint arXiv:2305.15066, 2023.

[GDV19] Aude Genevay, Gabriel Dulac-Arnold, and Jean-Philippe Vert. “Differentiable
deep clustering with cluster size constraints.” arXiv preprint arXiv:1910.09036,
2019.

[GGG20] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. “Directional message
passing for molecular graphs.” arXiv preprint arXiv:2003.03123, 2020.

[GGM20] Johannes Gasteiger, Shankari Giri, Johannes T Margraf, and Stephan Günne-
mann. “Fast and uncertainty-aware directional message passing for non-equilibrium
molecules.” arXiv preprint arXiv:2011.14115, 2020.

[GGN18] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson
Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer. “Allennlp: A deep
semantic natural language processing platform.” arXiv preprint arXiv:1803.07640,
2018.

[GGN23] Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V
Chawla, Olaf Wiest, and Xiangliang Zhang. “What can Large Language Models
do in chemistry? A comprehensive benchmark on eight tasks.” arXiv preprint
arXiv:2305.18365, 2023.

[GJJ20] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. “Generalization and represen-
tational limits of graph neural networks.” In International Conference on Machine
Learning, pp. 3419–3430. PMLR, 2020.

[GSZ22] Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh Chawla, Neil
Shah, and Tong Zhao. “Linkless Link Prediction via Relational Distillation.” arXiv
preprint arXiv:2210.05801, 2022.

[GWB02] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. “Gene se-
lection for cancer classification using support vector machines.” Machine learning,
46:389–422, 2002.

158

[Ham99] Gérard Hamiache. “A value with incomplete communication.” Games and
Economic Behavior, 26(1):59–78, 1999.

[Ham01] Gérard Hamiache. “Associated consistency and Shapley value.” International
Journal of Game Theory, 30(2):279–289, 2001.

[HCS21] Yu Hao, Xin Cao, Yufan Sheng, Yixiang Fang, and Wei Wang. “Ks-gnn: Keywords
search over incomplete graphs via graphs neural network.” Advances in Neural
Information Processing Systems, 34:1700–1712, 2021.

[HDW20] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. “GPT-
GNN: Generative Pre-Training of Graph Neural Networks.” In Proceedings of
the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2020.

[HFZ20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. “Open Graph Benchmark: Datasets for
Machine Learning on Graphs.”, 2020.

[HH13] Brian C Hall and Brian C Hall. Lie groups, Lie algebras, and representations.
Springer, 2013.

[Him97] Michael Himsolt. “GML: Graph modelling language.” University of Passau, 1997.

[HK20] Kaveh Hassani and Amir Hosein Khasahmadi. “Contrastive multi-view represen-
tation learning on graphs.” In International Conference on Machine Learning, pp.
4116–4126. PMLR, 2020.

[HKR00] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. “Explaining collabora-
tive filtering recommendations.” In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pp. 241–250, 2000.

[HLG20] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. “Strategies for Pre-training Graph Neural Networks.” In
International Conference on Learning Representations, 2020.

[HM89] S Hart and A Mas-Colell. “Potential, value, and consistency.” Econometrica,
57(3):589–614, 1989.

[HN20] Gérard Hamiache and Florian Navarro. “Associated consistency, value and graphs.”
International Journal of Game Theory, 49(1):227–249, 2020.

[HNH16] Yasuaki Hiraoka, Takenobu Nakamura, Akihiko Hirata, Emerson G Escolar,
Kaname Matsue, and Yasumasa Nishiura. “Hierarchical structures of amor-
phous solids characterized by persistent homology.” Proceedings of the National
Academy of Sciences, 113(26):7035–7040, 2016.

159

[Hoo85] William G Hoover. “Canonical dynamics: Equilibrium phase-space distributions.”
Physical review A, 31(3):1695, 1985.

[HYL17] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning
on large graphs.” In Advances in neural information processing systems, pp. 1024–
1034, 2017.

[HYT20] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and
Yi Chang. “GraphLIME: Local Interpretable Model Explanations for Graph
Neural Networks.”, 2020.

[IZK20] Vassilis N Ioannidis, Da Zheng, and George Karypis. “Few-shot link predic-
tion via graph neural networks for covid-19 drug-repurposing.” arXiv preprint
arXiv:2007.10261, 2020.

[JGS22] Antoine Jay, Miha Gunde, Nicolas Salles, Matic Poberžnik, Layla Martin-
Samos, Nicolas Richard, Stefano de Gironcoli, Normand Mousseau, and Anne
Hémeryck. “Activation–Relaxation Technique: An efficient way to find minima
and saddle points of potential energy surfaces.” Computational Materials Science,
209:111363, 2022.

[JL08] Svante Janson and Malwina J Luczak. “Asymptotic normality of the k-core in
random graphs.” The annals of applied probability, 18(3):1085–1137, 2008.

[JLH23] Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. “Large
Language Models on Graphs: A Comprehensive Survey.” arXiv preprint
arXiv:2312.02783, 2023.

[JW02] Glen Jeh and Jennifer Widom. “Simrank: a measure of structural-context simi-
larity.” In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 538–543, 2002.

[Kat53] Leo Katz. “A new status index derived from sociometric analysis.” Psychometrika,
18(1):39–43, 1953.

[KB17] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion.”, 2017.

[KCZ22] Katelyn A Kirchner, Daniel R Cassar, Edgar D Zanotto, Madoka Ono, Seong H
Kim, Karan Doss, Mikkel L Bødker, Morten M Smedskjaer, Shinji Kohara,
Longwen Tang, et al. “Beyond the average: spatial and temporal fluctuations in
oxide glass-forming systems.” Chemical reviews, 123(4):1774–1840, 2022.

[KIM04] Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. “Efficient sampling
algorithm for estimating subgraph concentrations and detecting network motifs.”
Bioinformatics, 20(11):1746–1758, 2004.

160

[KKU06] Atsushi Kajii, Hiroyuki Kojima, and Takashi Ui. “A refinement of the Myerson
value.” IMS Preprint Series, 25, 2006.

[KLJ21] Kamil Kamiński, Jan Ludwiczak, Maciej Jasiński, Adriana Bukala, Rafal Madaj,
Krzysztof Szczepaniak, and Stanisław Dunin-Horkawicz. “Rossmann-toolbox: a
deep learning-based protocol for the prediction and design of cofactor specificity
in Rossmann fold proteins.” Briefings in Bioinformatics, 23(1):bbab371, 09 2021.

[KNT20] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson,
Been Kim, and Percy Liang. “Concept bottleneck models.” In International
conference on machine learning, pp. 5338–5348. PMLR, 2020.

[KW16] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph
convolutional networks.” arXiv preprint arXiv:1609.02907, 2016.

[KW17] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph
Convolutional Networks.”, 2017.

[KWY17] NM Anoop Krishnan, Bu Wang, Yingtian Yu, Yann Le Pape, Gaurav Sant, and
Mathieu Bauchy. “Enthalpy landscape dictates the irradiation-induced disordering
of quartz.” Physical Review X, 7(3):031019, 2017.

[Lan10] Greg Landrum. “RDKit: Open-source cheminformatics.” https://www.rdkit.
org, 2010. Accessed: Nov 22, 2023.

[LC01] Stan Lipovetsky and Michael Conklin. “Analysis of regression in game theory
approach.” Applied Stochastic Models in Business and Industry, 17(4):319–330,
2001.

[LCX20] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng
Chen, and Xiang Zhang. “Parameterized Explainer for Graph Neural Network.”
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pp. 19620–19631.
Curran Associates, Inc., 2020.

[LFS19] Max Losch, Mario Fritz, and Bernt Schiele. “Interpretability beyond classification
output: Semantic bottleneck networks.” arXiv preprint arXiv:1907.10882, 2019.

[LGN23] Kin Long Kelvin Lee, Carmelo Gonzales, Marcel Nassar, Matthew Spellings,
Mikhail Galkin, and Santiago Miret. “Matsciml: A broad, multi-task benchmark
for solid-state materials modeling.” arXiv preprint arXiv:2309.05934, 2023.

[LK07] David Liben-Nowell and Jon Kleinberg. “The link-prediction problem for social net-
works.” Journal of the American society for information science and technology,
58(7):1019–1031, 2007.

161

https://www.rdkit.org
https://www.rdkit.org

[LL17] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Pre-
dictions.” In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pp. 4765–4774. Curran Associates, Inc., 2017.

[LLD97] Christopher A Lipinski, Franco Lombardo, Beryl W Dominy, and Paul J Feeney.
“Experimental and computational approaches to estimate solubility and permeabil-
ity in drug discovery and development settings.” Advanced drug delivery reviews,
23(1-3):3–25, 1997.

[LLL12] Zengqian Liu, Ran Li, Gang Liu, Wenhuang Su, Hui Wang, Yan Li, Minjie
Shi, Xuekun Luo, Guojuan Wu, and Tao Zhang. “Microstructural tailoring
and improvement of mechanical properties in CuZr-based bulk metallic glass
composites.” Acta Materialia, 60(6-7):3128–3139, 2012.

[LLL21] Wanyu Lin, Hao Lan, and Baochun Li. “Generative causal explanations for
graph neural networks.” In International Conference on Machine Learning, pp.
6666–6679. PMLR, 2021.

[LLW19] Chengqiang Lu, Qi Liu, Chao Wang, Zhenya Huang, Peize Lin, and Lixin He.
“Molecular property prediction: A multilevel quantum interactions modeling
perspective.” In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 1052–1060, 2019.

[LLW21] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang
Yu, Zhao Xu, Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora M
Oztekin, Xuan Zhang, and Shuiwang Ji. “DIG: A Turnkey Library for Diving
into Graph Deep Learning Research.” Journal of Machine Learning Research,
22(240):1–9, 2021.

[LLW22] Wanyu Lin, Hao Lan, Hao Wang, and Baochun Li. “OrphicX: A Causality-Inspired
Latent Variable Model for Interpreting Graph Neural Networks.” arXiv preprint
arXiv:2203.15209, 2022.

[LNH09] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. “Learning to
detect unseen object classes by between-class attribute transfer.” In 2009 IEEE
conference on computer vision and pattern recognition, pp. 951–958. IEEE, 2009.

[LOL18] Bruno Lepri, Nuria Oliver, Emmanuel Letouzé, Alex Pentland, and Patrick
Vinck. “Fair, transparent, and accountable algorithmic decision-making processes.”
Philosophy & Technology, 31(4):611–627, 2018.

[LOS21] Markus Langer, Daniel Oster, Timo Speith, Holger Hermanns, Lena Kästner, Eva
Schmidt, Andreas Sesing, and Kevin Baum. “What do we want from Explainable
Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual

162

model guiding interdisciplinary XAI research.” Artificial Intelligence, 296:103473,
2021.

[LPL21] Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tianqi
Yang, Yanling Cui, Liangjie Zhang, and Qi Zhang. “Adsgnn: Behavior-graph
augmented relevance modeling in sponsored search.” In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 223–232, 2021.

[LS22] Yi-Lun Liao and Tess Smidt. “Equiformer: Equivariant graph attention trans-
former for 3d atomistic graphs.” arXiv preprint arXiv:2206.11990, 2022.

[LTT22] Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and
Fabrizio Silvestri. “Cf-gnnexplainer: Counterfactual explanations for graph neural
networks.” In International Conference on Artificial Intelligence and Statistics,
pp. 4499–4511. PMLR, 2022.

[LZX20] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and Steven C.H. Hoi.
“Prototypical Contrastive Learning of Unsupervised Representations.” arXiv
preprint arXiv:2005.04966, 2020.

[MBB12] Normand Mousseau, Laurent Karim Béland, Peter Brommer, Jean-François Joly,
Fedwa El-Mellouhi, Eduardo Machado-Charry, Mihai-Cosmin Marinica, and Pascal
Pochet. “The activation-relaxation technique: Art nouveau and kinetic art.”
Journal of Atomic and Molecular Physics, 2012, 2012.

[MBK22] Lucie Charlotte Magister, Pietro Barbiero, Dmitry Kazhdan, Federico Siciliano,
Gabriele Ciravegna, Fabrizio Silvestri, Mateja Jamnik, and Pietro Lio. “Encoding
concepts in graph neural networks.” arXiv preprint arXiv:2207.13586, 2022.

[MKB20] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra
Mutzel, and Marion Neumann. “TUDataset: A collection of benchmark datasets
for learning with graphs.”, 2020.

[MKO09] MI Mendelev, MJ Kramer, RT Ott, DJ Sordelet, D Yagodin, and PJPM Popel.
“Development of suitable interatomic potentials for simulation of liquid and amor-
phous Cu–Zr alloys.” Philosophical Magazine, 89(11):967–987, 2009.

[MKS21] Lucie Charlotte Magister, Dmitry Kazhdan, Vikash Singh, and Pietro Liò. “Gcex-
plainer: Human-in-the-loop concept-based explanations for graph neural networks.”
arXiv preprint arXiv:2107.11889, 2021.

[MNV20] Gonzalo Mena, Amin Nejatbakhsh, Erdem Varol, and Jonathan Niles-Weed.
“Sinkhorn EM: an expectation-maximization algorithm based on entropic optimal
transport.” arXiv preprint arXiv:2006.16548, 2020.

163

[MSI02] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. “Network motifs: simple building blocks of complex networks.”
Science, 298(5594):824–827, 2002.

[MSW09] Dong Ma, Alexandru Dan Stoica, and X-L Wang. “Power-law scaling and fractal
nature of medium-range order in metallic glasses.” Nature materials, 8(1):30–34,
2009.

[Mye77] Roger B Myerson. “Graphs and cooperation in games.” Mathematics of operations
research, 2(3):225–229, 1977.

[MZ75] KV Mardia and PJ Zemroch. “Algorithm AS 86: The von Mises distribution
function.” Journal of the Royal Statistical Society. Series C (Applied Statistics),
24(2):268–272, 1975.

[MZX21] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.
“UltraGCN: ultra simplification of graph convolutional networks for recommenda-
tion.” In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pp. 1253–1262, 2021.

[NCG21] Keita Nomoto, Anna V Ceguerra, Christoph Gammer, Bosong Li, Huma Bilal,
Anton Hohenwarter, Bernd Gludovatz, Jürgen Eckert, Simon P Ringer, and
Jamie J Kruzic. “Medium-range order dictates local hardness in bulk metallic
glasses

.” Materials today, 44:48–57, 2021.

[NFM18] Alexandre Nicolas, Ezequiel E Ferrero, Kirsten Martens, and Jean-Louis Barrat.
“Deformation and flow of amorphous solids: Insights from elastoplastic models.”
Reviews of Modern Physics, 90(4):045006, 2018.

[NMT15] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. “A
review of relational machine learning for knowledge graphs.” Proceedings of the
IEEE, 104(1):11–33, 2015.

[Nos84] Shuichi Nosé. “A unified formulation of the constant temperature molecular
dynamics methods.” The Journal of chemical physics, 81(1):511–519, 1984.

[Oba18] Ippei Obayashi. “Volume-optimal cycle: Tightest representative cycle of a gener-
ator in persistent homology.” SIAM Journal on Applied Algebra and Geometry,
2(4):508–534, 2018.

[ODN23] Tuomas Oikarinen, Subhro Das, Lam Nguyen, and Lily Weng. “Label-free Concept
Bottleneck Models.” In International Conference on Learning Representations,
2023.

164

[Pel86] Bezalel Peleg. “On the reduced game property and its converse.” International
Journal of Game Theory, 15(3):187–200, 1986.

[PGW10] S Pauly, S Gorantla, G Wang, U Kühn, and J Eckert. “Transformation-mediated
ductility in CuZr-based bulk metallic glasses.” Nature materials, 9(6):473–477,
2010.

[PKF20] Namyong Park, Andrey Kan, Christos Faloutsos, and Xin Luna Dong. “J-
Recs: Principled and Scalable Recommendation Justification.” In 2020 IEEE
International Conference on Data Mining (ICDM), pp. 1208–1213. IEEE, 2020.

[PKR19] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko
Hoffmann. “Explainability methods for graph convolutional neural networks.”
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10772–10781, 2019.

[PL05] H. Pajouhesh and G.R. Lenz. “Medicinal Chemical Properties of Successful Central
Nervous System Drugs.” NeuroRx, 2(4):541–553, 2005.

[Pli95] Steve Plimpton. “Fast parallel algorithms for short-range molecular dynamics.”
Journal of computational physics, 117(1):1–19, 1995.

[PPG01] Carl O Pabo, Ezra Peisach, and Robert A Grant. “Design and selection of novel
Cys2His2 zinc finger proteins.” Annual review of biochemistry, 70(1):313–340,
2001.

[PRL19] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
Alexander H Miller, and Sebastian Riedel. “Language models as knowledge bases?”
arXiv preprint arXiv:1909.01066, 2019.

[PSW96] Boris Pittel, Joel Spencer, and Nicholas Wormald. “Sudden emergence of a
giantk-core in a random graph.” Journal of Combinatorial Theory, Series B,
67(1):111–151, 1996.

[PVF16] Sylvain Patinet, Damien Vandembroucq, and Michael L Falk. “Connecting local
yield stresses with plastic activity in amorphous solids.” Physical review letters,
117(4):045501, 2016.

[PVG11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine
Learning in Python.” Journal of Machine Learning Research, 12:2825–2830, 2011.

[RBX20] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, and
Junzhou Huang. “Self-Supervised Graph Transformer on Large-Scale Molecular
Data.” In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,

165

Advances in Neural Information Processing Systems, volume 33, pp. 12559–12571.
Curran Associates, Inc., 2020.

[REW19] Bharath Ramsundar, Peter Eastman, Patrick Walters, Vijay Pande, Karl Leswing,
and Zhenqin Wu. Deep Learning for the Life Sciences. O’Reilly Media, 2019.
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/
1492039837.

[RK07] Ben Roberts and Dirk P Kroese. “Estimating the Number of st Paths in a Graph.”
J. Graph Algorithms Appl., 11(1):195–214, 2007.

[RKK19] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. “On the convergence of adam
and beyond.” arXiv preprint arXiv:1904.09237, 2019.

[RNE22] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen
Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al.
“Graph neural networks for materials science and chemistry.” Communications
Materials, 3(1):93, 2022.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i trust
you?" Explaining the predictions of any classifier.” In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining,
pp. 1135–1144, 2016.

[RWB16] Brandon J. Reizman, Yi-Ming Wang, Stephen L. Buchwald, and Klavs F. Jensen.
“Suzuki–Miyaura cross-coupling optimization enabled by automated feedback.”
React. Chem. Eng., 1:658–666, 2016.

[SBB20] Søren S Sørensen, Christophe AN Biscio, Mathieu Bauchy, Lisbeth Fajstrup, and
Morten M Smedskjaer. “Revealing hidden medium-range order in amorphous
materials using topological data analysis.” Science Advances, 6(37):eabc2320,
2020.

[SCD17] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. “Grad-cam: Visual explanations from
deep networks via gradient-based localization.” In Proceedings of the IEEE
international conference on computer vision, pp. 618–626, 2017.

[SDS98] Srikanth Sastry, Pablo G Debenedetti, and Frank H Stillinger. “Signatures of
distinct dynamical regimes in the energy landscape of a glass-forming liquid.”
Nature, 393(6685):554–557, 1998.

[Sha53] Lloyd Shapley. “A value fo n-person Games.” Ann. Math. Study28, Contributions
to the Theory of Games, ed. by HW Kuhn, and AW Tucker, pp. 307–317, 1953.

166

https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837

[SHK11] Jan Schroers, Thomas M. Hodges, Golden Kumar, Hari Raman, Anthony J.
Barnes, Quoc Pham, and Theodore A. Waniuk. “Thermoplastic blow molding of
metals.” Materials Today, 14(1):14–19, 2011.

[SHV20] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. “InfoGraph: Unsuper-
vised and Semi-supervised Graph-Level Representation Learning via Mutual Infor-
mation Maximization.” In International Conference on Learning Representations,
2020.

[SHW22] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivariant
Graph Neural Networks.”, 2022.

[SHY11] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. “Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.”
Proceedings of the VLDB Endowment, 4(11):992–1003, 2011.

[SK14] Erik Štrumbelj and Igor Kononenko. “Explaining prediction models and individual
predictions with feature contributions.” Knowledge and information systems,
41(3):647–665, 2014.

[SKB18] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. “Modeling relational data with graph convolutional
networks.” In European semantic web conference, pp. 593–607. Springer, 2018.

[SKE19] Murat Cihan Sorkun, Abhishek Khetan, and Süleyman Er. “AqSolDB, a cu-
rated reference set of aqueous solubility and 2D descriptors for a diverse set of
compounds.” Scientific data, 6(1):143, 2019.

[SKS17] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela,
Alexandre Tkatchenko, and Klaus-Robert Müller. “Schnet: A continuous-filter
convolutional neural network for modeling quantum interactions.” Advances in
neural information processing systems, 30, 2017.

[Sla99] Gregory G Slabaugh. “Computing Euler angles from a rotation matrix.” Retrieved
on August, 6(2000):39–63, 1999.

[SLA06] HW Sheng, WK Luo, FM Alamgir, JM Bai, and E Ma. “Atomic packing and
short-to-medium-range order in metallic glasses.” Nature, 439(7075):419–425,
2006.

[SLY21] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. “Graph neural networks
for friend ranking in large-scale social platforms.” In Proceedings of the Web
Conference 2021, pp. 2535–2546, 2021.

[Sob75] AI Sobolev. “Characterization of the principle of optimality for cooperative games
through functional equations.” Mathematical Methods in the Social Sciences,
Vipusk, 6:92–151, 1975.

167

[SP19] Donghee Shin and Yong Jin Park. “Role of fairness, accountability, and trans-
parency in algorithmic affordance.” Computers in Human Behavior, 98:277–284,
2019.

[SSD02] Francis W Starr, Srikanth Sastry, Jack F Douglas, and Sharon C Glotzer. “What
do we learn from the local geometry of glass-forming liquids?” Physical review
letters, 89(12):125501, 2002.

[SUG21] Kristof Schütt, Oliver Unke, and Michael Gastegger. “Equivariant message passing
for the prediction of tensorial properties and molecular spectra.” In International
Conference on Machine Learning, pp. 9377–9388. PMLR, 2021.

[SW15] BA Sun and WH Wang. “The fracture of bulk metallic glasses.” Progress in
Materials Science, 74:211–307, 2015.

[SYS20] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-
Ruiz, Nina M Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae,
Zohar Bloom-Ackermann, et al. “A deep learning approach to antibiotic discovery.”
Cell, 180(4):688–702, 2020.

[TD22] Philipp Thölke and Gianni De Fabritiis. “Torchmd-net: Equivariant transformers
for neural network based molecular potentials.” arXiv preprint arXiv:2202.02541,
2022.

[Tel94] Lester G Telser. “The usefulness of core theory in economics.” Journal of Economic
Perspectives, 8(2):151–164, 1994.

[TLH22] Xianfeng Tang, Yozen Liu, Xinran He, Suhang Wang, and Neil Shah. “Friend
Story Ranking with Edge-Contextual Local Graph Convolutions.” In Proceedings
of the Fifteenth ACM International Conference on Web Search and Data Mining,
pp. 1007–1015, 2022.

[TLM21] Longwen Tang, Han Liu, Gang Ma, Tao Du, Normand Mousseau, Wei Zhou, and
Mathieu Bauchy. “The energy landscape governs ductility in disordered materials.”
Materials Horizons, 8(4):1242–1252, 2021.

[TLS20] Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang
Wang. “Knowing your fate: Friendship, action and temporal explanations for user
engagement prediction on social apps.” In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 2269–2279,
2020.

[TML20] Longwen Tang, Gang Ma, Han Liu, Wei Zhou, and Mathieu Bauchy. “Bulk
metallic glasses’ response to oscillatory stress is governed by the topography of the
energy landscape.” The Journal of Physical Chemistry B, 124(49):11294–11298,
2020.

168

[TT10] Morgana Martin Trexler and Naresh N Thadhani. “Mechanical properties of bulk
metallic glasses.” Progress in Materials Science, 55(8):759–839, 2010.

[TZY08] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. “Arnetminer:
extraction and mining of academic social networks.” In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 990–998, 2008.

[VCC17] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. “Graph attention networks.” arXiv preprint
arXiv:1710.10903, 2017.

[VT20] Minh Vu and My T. Thai. “PGM-Explainer: Probabilistic Graphical Model Ex-
planations for Graph Neural Networks.” In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pp. 12225–12235. Curran Associates, Inc., 2020.

[WDG23] Zhengxuan Wu, Karel D’Oosterlinck, Atticus Geiger, Amir Zur, and Christo-
pher Potts. “Causal proxy models for concept-based model explanations.” In
International conference on machine learning, pp. 37313–37334. PMLR, 2023.

[WDM20] Qi Wang, Jun Ding, and Evan Ma. “Predicting the propensity for thermally
activated β events in metallic glasses via interpretable machine learning.”, 2020.

[Wer06] Sebastian Wernicke. “Efficient detection of network motifs.” IEEE/ACM
transactions on computational biology and bioinformatics, 3(4):347–359, 2006.

[WPC20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. “A comprehensive survey on graph neural networks.” IEEE transactions
on neural networks and learning systems, 32(1):4–24, 2020.

[WRF18] Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb
Geniesse, Aneesh S. Pappu, Karl Leswing, and Vijay Pande. “MoleculeNet: A
Benchmark for Molecular Machine Learning.”, 2018.

[WS98] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-
world’networks.” nature, 393(6684):440–442, 1998.

[WSZ20] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. “Graph neural networks
in recommender systems: a survey.” ACM Computing Surveys (CSUR), 2020.

[WWK08] Nikil Wale, Ian A Watson, and George Karypis. “Comparison of descriptor spaces
for chemical compound retrieval and classification.” Knowledge and Information
Systems, 14(3):347–375, 2008.

[WWX19] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-
Seng Chua. “Explainable reasoning over knowledge graphs for recommendation.”

169

In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp.
5329–5336, 2019.

[XBG23] Han Xuanyuan, Pietro Barbiero, Dobrik Georgiev, Lucie Charlotte Magister, and
Pietro Liò. “Global concept-based interpretability for graph neural networks via
neuron analysis.” In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 10675–10683, 2023.

[XFL18] Bin Xu, Michael L Falk, JF Li, and LT Kong. “Predicting shear transformation
events in metallic glasses.” Physical review letters, 120(12):125503, 2018.

[XHL18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How powerful are
graph neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[YBC24] Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and Huan Sun. “LlaSMol: Ad-
vancing Large Language Models for Chemistry with a Large-Scale, Comprehensive,
High-Quality Instruction Tuning Dataset.”, 2024.

[YBY19] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
“Gnnexplainer: Generating explanations for graph neural networks.” Advances in
neural information processing systems, 32:9240, 2019.

[YCA20] Asano YM., Rupprecht C., and Vedaldi A. “Self-labelling via simultaneous
clustering and representation learning.” In International Conference on Learning
Representations (ICLR), 2020.

[YCS20] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. “Graph contrastive learning with augmentations.” Advances in Neural
Information Processing Systems, 33, 2020.

[YG22] Zhaoning Yu and Hongyang Gao. “Molecular representation learning via hetero-
geneous motif graph neural networks.” In International Conference on Machine
Learning, pp. 25581–25594. PMLR, 2022.

[YHC18] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamil-
ton, and Jure Leskovec. “Graph convolutional neural networks for web-scale
recommender systems.” In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 974–983, 2018.

[YKA20] Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and
Pradeep Ravikumar. “On completeness-aware concept-based explanations in deep
neural networks.” Advances in neural information processing systems, 33:20554–
20565, 2020.

[YSW12] Hai-Bin Yu, Konrad Samwer, Y Wu, and Wei Hua Wang. “Correlation between β
relaxation and self-diffusion of the smallest constituting atoms in metallic glasses.”
Physical review letters, 109(9):095508, 2012.

170

[YWG18] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and
Josh Tenenbaum. “Neural-symbolic vqa: Disentangling reasoning from vision and
language understanding.” Advances in neural information processing systems, 31,
2018.

[YYG20] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. “Explainability in graph
neural networks: A taxonomic survey.” arXiv preprint arXiv:2012.15445, 2020.

[YYG22] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. “Explainability in graph
neural networks: A taxonomic survey.” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[YYW21] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. “On Explainability of
Graph Neural Networks via Subgraph Explorations.” In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 12241–
12252. PMLR, 18–24 Jul 2021.

[ZC04] Afra Zomorodian and Gunnar Carlsson. “Computing persistent homology.” In
Proceedings of the twentieth annual symposium on Computational geometry, pp.
347–356, 2004.

[ZC18] Muhan Zhang and Yixin Chen. “Link prediction based on graph neural networks.”
Advances in neural information processing systems, 31, 2018.

[ZC20] Yongfeng Zhang and Xu Chen. “Explainable Recommendation: A Survey and New
Perspectives.” Foundations and Trends® in Information Retrieval, 14(1):1–101,
2020.

[ZCH20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. “Graph neural networks: A
review of methods and applications.” AI Open, 1:57–81, 2020.

[ZCM23] Jiaxing Zhang, Zhuomin Chen, Hao Mei, Dongsheng Luo, and Hua Wei. “RegEx-
plainer: Generating Explanations for Graph Neural Networks in Regression Task.”
arXiv preprint arXiv:2307.07840, 2023.

[Zha23] Jiawei Zhang. “Graph-ToolFormer: To Empower LLMs with Graph Reasoning
Ability via Prompt Augmented by ChatGPT.” arXiv preprint arXiv:2304.11116,
2023.

[ZHS20] Shichang Zhang, Ziniu Hu, Arjun Subramonian, and Yizhou Sun. “Motif-driven
contrastive learning of graph representations.” arXiv preprint arXiv:2012.12533,
2020.

171

[ZJS21] Tong Zhao, Tianwen Jiang, Neil Shah, and Meng Jiang. “A synergistic approach
for graph anomaly detection with pattern mining and feature learning.” IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[ZLS22] Shichang Zhang, Yozen Liu, Neil Shah, and Yizhou Sun. “GStarX: Explaining
Graph Neural Networks with Structure-Aware Cooperative Games.”, 2022.

[ZLW22] Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. “Learning
from Counterfactual Links for Link Prediction.” In International Conference on
Machine Learning, pp. 26911–26926. PMLR, 2022.

[ZLX20] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. “Revisiting graph
neural networks for link prediction.” Openreview, 2020.

[ZSZ19] Jiani Zhang, Xingjian Shi, Shenglin Zhao, and Irwin King. “Star-gcn: Stacked
and reconstructed graph convolutional networks for recommender systems.” arXiv
preprint arXiv:1905.13129, 2019.

[ZWH23] Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng
Liu, Yuchao Lin, Zhao Xu, Keqiang Yan, et al. “Artificial intelligence for science in
quantum, atomistic, and continuum systems.” arXiv preprint arXiv:2307.08423,
2023.

[ZZX21] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. “Neural
bellman-ford networks: A general graph neural network framework for link pre-
diction.” Advances in Neural Information Processing Systems, 34:29476–29490,
2021.

172

	Introduction
	Background
	Thesis Summary

	I Explanations Elucidate Model Mechanisms
	Explain GNNs with Structure-aware Cooperative Games
	Introduction
	Preliminaries
	Graph Neural Networks
	Cooperative Game Theory

	GStarX: Graph Structure-aware Explanation
	GNN Explanation via Feature Importance Scoring
	Scoring Functions from Cooperative Games
	The HN Value
	GNN Message Passing and The HN Surplus Allocation
	The GStarX Algorithm
	GStarX for Node Classification

	Evaluation
	Experiment Settings
	Evaluation Results
	Ablation Studies and Analysis

	Related Work
	Discussion

	II Explanations Establish User Trust
	Path-based GNN Explanation for Link Prediction
	Introduction
	Related Work
	Preliminaries
	PaGE-Link: Path-based GNN Explanation for Link Prediction
	Link-Prediction Explanation
	K-core Pruning
	Heterogeneous Path-Enforcing Mask Learning
	Mask Optimization and Path Generation
	Complexity Analysis

	Evaluation
	Datasets
	Experiment Settings
	Algorithmic Evaluation
	Human Evaluation

	Discussion

	III Explanations Extract Data Insights
	Predicting and Interpreting Energy Barriers of Metallic Glasses with GNNs
	Introduction
	Related Work
	GNN Explanation

	Problem Setup and Preliminaries
	EB Prediction with GNNs
	Orthogonality and Invariance
	GNNExplainer

	SymGNN: Symmetrized GNNs
	Theory of Symmetrization Over O(3)
	Symmetrized GNN
	Computation Time Analysis
	Expressiveness Analysis
	Explanations for Structure-EB Relationship

	Prediction Evaluation
	Dataset
	Experiment Settings
	Prediction Results
	Computation Time Comparison
	Abalations and Further Comparisons

	Explanation Evaluation and Analysis
	Explanation Visualization and MRO
	Edge Importance Explanation and TDA

	Discussion

	Motif Mining via Clustering Representations of Graphs
	Introduction
	Related Work
	Micro-Graph: Motif Mining via Clustering Representations of Graphs
	Probabilistic Modeling
	Motif Descriptor Inference
	Visualize and Interpret Mined Motifs
	MICRO-Graph Parameter Learning

	Evaluation
	Datasets
	Model Configuration and Implementation
	Qualitative Evaluation
	Quantitative Evaluation
	Ablation Study and Analysis

	Discussion

	Automated Molecular Concept Generation and Labeling
	Introduction
	Related Work
	AutoMolCo: Automated Molecular Concept Generation and Labeling
	Step 1: Concept Generation
	Step 2: Concept Labeling
	Step 3: CM Fitting and Concept Selection.
	Iterative Concepts Refinement

	Evaluation
	Experiment Settings
	AutoMolCo-induced CM Performance
	RQ1: Can AutoMolCo Generate Meaningful Molecular Concepts?
	RQ2: Can AutoMolCo Assign Molecules Reasonable Concept Labels Using Each Strategy?
	RQ3: Can AutoMolCo Produced Concepts and Labels Be Utilized To Build an Effective CM?
	RQ4: Does Iterative Refinement Boost The Performance of AutoMolCo-induced CM?
	RQ5: Does The AutoMolCo-induced CM Facilitate Explainable Molecular Science?
	Ablation Studies

	Discussion

	Conclusion
	Appendices
	Chapter 2 Appendices
	The Myerson Value, C-Shapley Value, and L-hop Graph Cutoff
	More Explanation Visualizations

	Chapter 3 Appendices
	Proof of Proposition 3.4.1
	Theorem 3.4.3: A Detailed Version

	Chapter 4 Appendices
	Proof of Lemma 4.4.1
	Proof of Theorem 4.4.3
	More Explanation Visualizations

	Chapter 5 Appendices
	Derivations of The Log-likelihood and The Posterior Probability
	Derivation of The Log-likelihood Lower Bound with Optimal Transport

	Chapter 6 Appendices
	Decision Tree Visualizations

	References

