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Abstract: Investigation of social influence dynamics requires mathematical models that are
“simple” enough to admit rigorous analysis, and yet sufficiently “rich” to capture salient features
of social groups. Thus, the mechanism of iterative opinion pooling from (DeGroot, 1974),
which can explain the generation of consensus, was elaborated in (Friedkin and Johnsen, 1999)
to take into account individuals’ ongoing attachments to their initial opinions, or prejudices.
The “anchorage” of individuals to their prejudices may disable reaching consensus and cause
disagreement in a social influence network. Further elaboration of this model may be achieved
by relaxing its restrictive assumption of a time-invariant influence network. During opinion
dynamics on an issue, arcs of interpersonal influence may be added or subtracted from the
network, and the influence weights assigned by an individual to his/her neighbors may alter. In
this paper, we establish new important properties of the (Friedkin and Johnsen, 1999) opinion
formation model, and also examine its extension to time-varying social influence networks.

1. INTRODUCTION

During the past decades, there has been a substantial
growth of interest in dynamics of social influence networks
and opinion formation mechanisms in them. In contrast to
the recent research emphasis on multi-agent consensus and
coordination, models are being advanced that explain ob-
served behaviors of social groups such as disagreement, po-
larization, and conflict (Friedkin, 2015; Proskurnikov and
Tempo, 2017). An explanatory network science is advanc-
ing on the structural properties of social networks (Wasser-
man and Faust, 1994; Easley and Kleinberg, 2010) and
some special dynamical processes over these networks, e.g.
epidemic spread (Newman, 2003). At the same time, there
is a growing recognition that systems and control theories
may substantially broaden the scope of our understanding
of the definitional problem of sociology—the coordination
and control of social systems (Friedkin, 2015).

System-theoretic examination of social dynamics requires
mathematical models that are capable of capturing the
complex behavior of a social group yet simple enough to
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be rigorously examined. In this paper, we deal with one
such model, proposed by Friedkin and Johnsen (Friedkin
and Johnsen, 1999, 2011; Friedkin, 2015) and henceforth
referred to as the FJ model. The FJ model extends the
idea of iterative “opinion pooling” (DeGroot, 1974) by
assuming that some agents are prejudiced. These agents
have some level of “anchorage” on their initial opinions
(prejudices) and factor them into any iteration of their
opinions. Similar to continuous-time clustering protocols
with “informed” leaders (Xia and Cao, 2011), the hetero-
geneity of the prejudices and its linkage to individuals’
susceptibilities to interpersonal influence may lead to per-
sistent disagreement of opinions and outcomes such as po-
larization and clustering. With the FJ model, the cluster-
ing of opinions does not require the existence of repulsive
couplings, or “negative ties” among individuals (Fläche
and Macy, 2011; Altafini, 2013; Proskurnikov et al., 2016a;
Xia et al., 2016) whose ubiquity in interpersonal inter-
actions is still waiting for supporting experimental evi-
dence (Takács et al., 2016). Unlike models with discrete
opinions (Castellano et al., 2009) and bounded confidence
models (Hegselmann and Krause, 2002; Weisbuch et al.,
2005; Blondel et al., 2009), the FJ model describes the
opinion evolution by linear discrete-time equations, and
is thus much simpler for mathematical analysis. At the
same time, the FJ model has been confirmed by exper-
iments with real social groups (Friedkin and Johnsen,
2011; Friedkin et al., 2016a). The FJ model is closely
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related to the PageRank algorithm (Friedkin and Johnsen,
2014; Proskurnikov et al., 2016b) and has been given some
elegant game-theoretic and electric interpretations (Bindel
et al., 2011; Ghaderi and Srikant, 2014; Frasca et al., 2015).
In the recent works (Parsegov et al., 2017; Proskurnikov
and Tempo, 2017) necessary and sufficient conditions for
the stability of the FJ model has been established; these
conditions also provide convergence “on average” of its
decentralized gossip-based counterpart (Frasca et al., 2013;
Ravazzi et al., 2015; Frasca et al., 2015). A multidimen-
sional extension of the FJ model has been used to describe
the evolution of belief systems (Parsegov et al., 2017;
Friedkin et al., 2016b), representing invidiuals’ positions
on several mutually dependent issues.

In this paper, we further develop the mathematical theory
of the FJ model, obtaining explicit estimates for its conver-
gence speed. We also examine an extension of the classical
FJ model, describing a natural time-varying social influ-
ence process. Such an extension is important since during
opinion dynamics on an issue, arcs of interpersonal influ-
ence may be added or subtracted from the network, and
the influence weights assigned by an individual to his/her
neighbors may alter. An example of such an evolution is
the dynamics of individuals’ reflected appraisals (Jia et al.,
2015; Friedkin et al., 2016a; Chen et al., 2016).

2. PRELIMINARIES AND NOTATION

We denote matrices with capital letters A = (aij), us-
ing lower case letters for their scalar entries and vec-
tors. The symbol 1n denotes the column vector of ones
(1, 1, . . . , 1)⊤ ∈ R

n, and In is the identity n × n matrix.
For two vectors x, y ∈ R

n we write x ≤ y if xi ≤ yi∀i.
The spectral radius of a square matrix A is denoted by
ρ(A), the matrix is Schur stable if ρ(A) < 1. A non-
negative matrix A is substochastic if

∑

j aij ≤ 1 for any

i. Any such matrix has ρ(A) ≤ 1 due to the Gershgorin
disk theorem (Horn and Johnson, 1985). A substochastic
matrix A is stochastic if

∑

j aij = 1 ∀i; when A is sized n×

n, the stochasticity implies that A1n = 1n and ρ(A) = 1.

A (weighted directed) graph is a triple G = (V , E ,W ),
where V = {v1, . . . , vn} stands for the set of nodes, E ⊆ V×
V is the set of arcs, and W is a (weighted) n×n adjacency
matrix, i.e. wij > 0 when (i, j) ∈ E and otherwise wij = 0.
Henceforth we assume that V = {1, 2, . . . , n} and thus
the graph G = G(W ) is uniquely defined by its adjacency
matrix W . We denote an arc (i, j) ∈ E by i 7→ j and call
the value wij its weight. A chain of arcs i0 7→ i1 7→ . . . 7→
ir−1 7→ ir is a walk of length r from node i0 to node ir.

3. THE FRIEDKIN-JOHNSEN MODEL

The FJ model describes a network of social influ-
ence (Friedkin and Johnsen, 2011), consisting of n indi-
viduals, or social agents indexed 1 through n. The agents
opinions are represented by scalars xi ∈ R, constituting
the vector of opinions x = (x1, . . . , xn)

⊤. The process of
social influence is described by two matrices: a stochas-
tic matrix of interpersonal influences W ∈ R

n×n and
a diagonal matrix Λ = diag(λ11, . . . , λnn) of individual
susceptibilities λii ∈ [0; 1] to the interpersonal influence.
At each step, the vector of opinions changes as follows

x(k + 1) = ΛWx(k) + (In − Λ)u, k = 0, 1, . . . . (1)

The elements ui of the constant vector u stand for the
agents’ prejudices ; the original FJ model (Friedkin and
Johnsen, 1999; Friedkin, 2015) assumed that ui = xi(0).

In the special case where Λ = In the model (1) reduces
to DeGroot’s iterative “opinion pooling” (DeGroot, 1974),
providing a discrete-time consensus algorithm (Ren and
Beard, 2008). At each step, an agent sets its new opinion to
be the convex combination of its own and others’ opinions

xi(k + 1) =

n
∑

j=1

wijxj(k)∀i ⇐⇒ x(k + 1) = Wx(k). (2)

The influence weight wij shows the contribution of jth
opinion on each stage to the ith opinion on the next stage.

The FJ model (1) also employs the mechanism of convex
combination, allowing some agents to be prejudiced. If
λii < 1 then agent i is “attached” to its prejudice ui and
factors it into any opinion iteration, replacing (2) by

xi(k + 1) = λii

n
∑

j=1

wijxj(k) + (1 − λii)ui ∀i. (3)

When λii = 1, the ith agent’s opinion is formed by the
DeGroot mechanism (2), otherwise its prejudice influences
each stage of the opinion iteration. Agent i with λii = 0 is
“totally prejudiced” and its opinion is static xi(k) ≡ ui.

Under the assumption ui = xi(0), adopted in the FJ
model, any agent with wii = 1 (and thus wij = 0 ∀j 6= i)
retains its opinion constant xi(k) = ui independent of λii,
and one may suppose, without loss of generality, that

wii = 1 ⇐⇒ λii = 0. (4)

In the original model from (Friedkin and Johnsen, 1999)
an even stronger coupling condition wii = 1 − λii ∀i was
adopted for parsimony in the model’s empirical applica-
tions. In this paper, we do not assume this condition to
hold, so Λ and W are independent except for the non-
degeneracy condition (4). Notice that each FJ model cor-
responds to the substochastic matrix A = ΛW ; for the
models satisfying (4) this correspondence is one-to-one. A
substochastic matrix A is decomposed as A = ΛW , where

λii =
∑

j

aij and wij =







aij/λii, λii > 0,

1, i = j andλii = 0,

0, i 6= j andλii = 0.

The stability criteria for FJ models may thus be reformu-
lated for substochastic matrices, and vice versa.

For us it will be convenient to discard the standard
assumption x(0) = u and consider u as some constant
external “input”, independent of the initial opinion 1 x(0).

A central question concerned with the FJ dynamics (1) is
its convergence of opinion vectors to a finite limit

x∞ = lim
k→∞

x(k). (5)

1 Individuals prejudices may be explained (Friedkin and Johnsen,
1999) by the system “history”, e.g. the effect of some exogenous
factors, which influenced the community in the past. This motivates
to introduce the explicit relation between the prejudice and initial
condition of the social system u = x(0). However, the prejudices
can also be some non-trivial functions of the initial conditions
u = u(x(0)) or be caused by external factors that are not related to
the system’s history, e.g. some information spread in social media.



A sufficient condition for convergence is the Schur stabil-
ity: if ρ(ΛW ) < 1 then the opinions converge to

x∞ = V u, V = (I − ΛW )−1(I − Λ). (6)

It is known (Friedkin, 2015) that for any Schur stable
FJ model the matrix V is stochastic and, obviously, x∞

from (6) is the only equilibrium of the system (1). Gen-
erally, the Schur stability is not necessary for conver-
gence, e.g. the DeGroot model (2) is never stable but
converges when e.g. W is primitive (i.e. irreducible and
aperiodic) (DeGroot, 1974; Gantmacher, 2000).

Henceforth we are primarily interested in Schur stable
FJ models, where the steady opinion is unique and given
by (6). The Schur stability is a “generic” condition if at
least one prejudiced agent exists, and holds, for instance,
for a strongly connected influence networks 2 , as implied
by the following lemma (Parsegov et al., 2017).

Lemma 1. The matrix ΛW is Schur stable if and only if
each node in the graph G(W ) either belongs to the set

SΛ = {i : λii < 1} (7)

or connected to a node from SΛ by a walk, i.e. any agent is
either prejudiced or influenced by a prejudiced individual.

4. SCHUR STABLE FJ MODELS: OPINION
CLUSTERING AND CONVERGENCE SPEED

In this section, we derive some advanced properties of
Schur stable FJ models (1), satisfying the condition from
Lemma 1. We answer the following two questions, related
to such models’ dynamics:

• do the final opinions x∞ reach consensus or disagree?
• what is the convergence speed in (5)?

4.1 Consensus and disagreement in the FJ model

One can expect that for a general FJ model the consensus
of the steady opinions x∞

1 , . . . , x∞
n typically should dis-

agree, whereas their consensus is an exceptional situation.
This is confirmed by the following consensus criterion.

Theorem 2. Let the FJ model (1) be stable. Then the
consensus of final opinions x∞

1 = . . . = x∞
n is reached

if and only if ui = u0 for some u0 ∈ R and any i ∈ SΛ. In
this case x∞

i = u0 ∀i. This holds e.g. when SΛ = {i} has
only one element, i.e. only one agent is prejudiced.

The values ui, where i 6∈ SΛ and thus 1−λii = 0, obviously
do not influence the value of x∞ and may be arbitrary.
Note that when consensus is not established, the number
of “clusters” in the vectors u and x∞ do not correlate. For
instance, if u1 = 1 and ui = 0 ∀i > 1 then x∞ is the first
row of V and its elements are usually all different.

4.2 Convergence speed of the FJ model

In this subsection we give an explicit estimate of the
spectral radius ρ = ρ(ΛW ), which also determines the
convergence speed in (5): |x(k) − x∗| = O(ρk) as k → ∞.
We start with introducing some definitions and notation.

2 This property can be also reformulated as follows: an irreducible
substochastic matrix is Schur stable (Meyer, 2000, Exercise 8.3.7).

Definition 3. An arc i 7→ j in G(W ) with the weight
wij ≥ ε is said to be an ε-arc. An ε-walk in the graph is a
walk constituted by ε-arcs. Given a set S ⊆ {1, . . . , n} and
node i, let dε(i, S,W ) stand for the length of the shortest
ε-walk from i to S. By definition, dε(i, S,W ) = 0 for any
i ∈ S and dε(i, S,W ) = ∞ if no ε-walk from i to S exists.

For any diagonal matrix Λ = diag(λ11, . . . , λnn) with
0 ≤ Λ ≤ In and δ > 0, we introduce the set of indices

Sδ
Λ = {i : λii ≤ 1− δ} ⊆ SΛ. (8)

Definition 4. The FJ model (or the pair (Λ,W )) belongs
to the class FJ[δ, ε, s] if dε(i, S

δ
Λ,W ) ≤ s for any node

i = 1, . . . , n. Here δ, ε > 0 are real and s ≥ 0 is an integer.

Any FJ model, belonging to FJ[δ, ε, s] with δ, ε > 0, is
Schur stable due to Lemma 1. On the other hand, any
Schur stable FJ model belongs to FJ[δ0, ε0, n− 1], where

ε0
∆
= min{wij : wij > 0}, δ0

∆
= 1−max

i∈SΛ

λii, (9)

since Sδ0
Λ = SΛ and any walk in G(W ) is an ε0-walk.

The following theorem gives an explicit estimate for the
spectral radius ρ(ΛW ) of a Schur stable FJ model (1).

Theorem 5. For any FJ model (1) from the class FJ[δ, ε, s]

one has ρ(ΛW ) ≤ ρ∗(δ, ε, s)
∆
= [1− δεs]

1/(1+s)
.

For the case of undirected graph G(W ) and special influ-
ence weights of arcs a similar estimate for the convergence
speed has been obtained in (Ghaderi and Srikant, 2014).
Unlike this paper, Theorem 5 deals with a general FJ
model, where the matrix W can be arbitrary.

Corollary 6. For a stable FJ model (1), let ε0, δ0 be defined

by (9). Then ρ(ΛW ) ≤
[

1− δ0ε
n−1
0

]1/n
.

Although the estimate from Theorem 5 is just an upper
bound for ρ(ΛW ), this bound proves to be tight for special
types of graphs. For instance, if Λ = (1 − δ)In then
Sδ
Λ = {1, . . . , n}, s = 0 and hence ρ(ΛW ) = (1 − δ) for

any W . Another example is the cycle graph 1 7→ 2 7→ 3 7→
. . . 7→ n 7→ 1, where the weights of arcs are equal to ε = 1.
If λ11 = 1− δ and λ22 = . . . = λnn = 1 then s = n− 1 and

ΛW =











0 · · · 0 1− δ

In−1

0
...

0











, ρ(ΛW ) = (1− δ)1/n.

5. TIME-VARYING FJ MODEL

A principal limitation of the standard FJ model (1) is the
time invariance of social influence: the matrices Λ and W
remain constant. In real social groups the structures of
social influence may evolve over time as the interpersonal
ties may emerge and disappear; even if their graph remains
constant, the influence weights wij and susceptibilities λii

may change. One of the models, describing the evolution of
the matrix W , is the dynamics of reflected appraisals (Jia
et al., 2015; Chen et al., 2016; Friedkin et al., 2016a), where
the self-confidence of a person depends on how he/she is
evaluated by the others. In this section we consider a time-
varying extension of the FJ model and study its properties.



The time-varying FJ model (TVFJ) is as follows

x(k + 1) = Λ(k)W (k)x(k) + [In − Λ(k)]u. (10)

We assume that the matrices Λ(k),W (k) on each stage
of the opinion evolution are known and have the same
structure, as for the classical model (1), i.e. Λ(k) is
diagonal, 0 ≤ Λ(k) ≤ In and W (k) is stochastic. Given
the initial condition x(0) = x0 and the prejudice vector u,
let x(k|x0, u) stand for the solution of (10). The averaging
mechanism of (10) provides several useful properties.

Lemma 7. Any model (10) has the following properties:

(1) if x0 = u = u∗1n, then x(k|x0, u) = u∗1n ∀k;
(2) if x0, u ∈ [m,M ]n, then x(k|x0, u) ∈ [m,M ]n ∀k;
(3) more generally, if x0 ≤ x1 and u ≤ u1, then

x(k|x0, u) ≤ x(k|x1, u1)∀k;
(4) for any “perturbations” δx0, δu ∈ [m,M ]n one has

x(k|x0 + δx0, u+ δu)− x(k|x0, u) ∈ [m,M ]n.

Here m,M, u∗ stand for some real scalars.

Applied for M = −m = ε, statement 4) in Lemma 7
implies robustness of the trajectories against small per-
turbations in x0 and u. Note that this property does
not depend on the asymptotical (Schur) stability of the
system (10). For a general neutrally stable system, such
a robustness does not hold as illustrated by the simplest
counterexample x(k + 1) = x(k) + u.

Henceforth we are primarily interested in asymptoti-
cally stable TVFJ models, which means, as usual, that
x(k|x0, 0) −−−−→

k→∞
0 for any initial condition x0, i.e.

Λ(k)W (k)Λ(k − 1)W (k − 1) . . .Λ(0)W (0) −−−−→
k→∞

0. (11)

Unlike the stationary case, the asymptotical stability in
general does not imply the convergence (5). For instance,
let two stationary Schur stable FJ models with matrices
(Λ1,W1) and (Λ2,W2) corresponding to different matrices
V1, V2 (defined by (6)). Due to (6), when (Λ(k),W (k))
switches between (Λ1,W1) and (Λ2,W2) with sufficiently
large dwell time, x(k) oscillates between V1u and V2u. Nev-
ertheless, two “relaxed” versions of the convergence con-
dition remain valid for asymptotically stable models (10).

Lemma 8. The following conditions are equivalent:

(1) (stability) the system (10) is asymptotically stable;
(2) (containment) for any x(0), u ∈ R

n one has

min
j

uj ≤ lim inf
k→∞

xi(k) ≤ lim sup
k→∞

xi(k) ≤ max
j

uj ;

(3) (consensus) if u = u∗1n, then x(k) −−−−→
k→∞

u ∀x(0).

Lemma 8 establishes an important relation between
the TVFJ model and algorithms of multi-agent control,
namely, protocols for leader-following consensus (Ren and
Beard, 2008) and containment control (Ren and Cao,
2011). Adding a “virtual” agent n + 1 whose opinion is
static xn+1(k) ≡ xn+1(0) and the “augmented” opinion
vector x̂(k) = (x1(k), . . . , xn(k), xn+1(k)), the system (10)
with u = xn+1(0)1n can be rewritten as follows

x̂(k+1) = Â(k)x̂(k), Â(k) =

[

Λ(k)W (k) (1n − Λ(k)1n)
01×n 1

]

.

(12)
Lemma 8 states that stability of the model (10) is
equivalent to establishing consensus in (12) xi(k) −−−−→

k→∞

xn+1(0)∀i = 1, . . . , n for any initial condition x̂(0) (i =
1, . . . , n). This implies the following stability condition.

Lemma 9. Suppose that ε > 0 exists such that the matrix
Â(k) = (âij(k)) at any time k ≥ 0 satisfies the conditions
âij(k) ∈ {0} ∪ [ε, 1] for any i, j and âii(k) ≥ ε for any i.
Then the model (10) is stable if a period T ≥ 1 exists such

that in the graph G[Â(k) + . . .+ Â(k + T − 1)] each node
is connected to node n+1 by a walk. This holds e.g. if the
condition from Lemma 1 is valid at any time.

Proof. Thanks to the standard consensus criterion for
time-varying directed graphs (Blondel et al., 2005; Ren
and Beard, 2008), the assumption of Lemma 9 entail
consensus in the augmented network (12), which, in turn,
is equivalent to stability of the model (10) due to Lemma 8.

The assumptions of Lemma 9, typically adopted to
prove the convergence of multi-agent coordination algo-
rithms (Ren and Beard, 2008; Ren and Cao, 2011), are
however very restrictive for networks of social influence.
Lemma 9, in particular, is not applicable to TVFJ mod-
els where some agents have zero levels of self-confidence
wii = 0 or “totally prejudiced” λii = 0. Unlike multi-
agent control algorithms that are usually designed to
have uniformly positive influence weights, such a positiv-
ity condition cannot be guaranteed for opinion dynamics.
In particular, the process of reflected appraisal (Friedkin
et al., 2016a) often leads to the situation where some self-
confidence weights wii asymptotically vanish.

The following two counterexamples demonstrate that in
presence of agents with λii(k)wii(k) = 0 Lemma 9 is
not valid, in particular, Schur stability of any matrix
Λ(k)W (k) does not imply the stability of the model (10).
We start with two simple counterexamples: in one of them,
the matrix Λ is fixed while W is switching, in the other
one the matrix W is fixed and Λ switching.

Example 1. Consider n = 3 agents with Λ(k) ≡
diag(0, 1, 1) and let the matrix W (k) switch as follows

W (2m) =
[

1 0 0
1 0 0
0 1 0

]

, W (2m+ 1) =
[

1 0 0
0 0 1
1 0 0

]

, m = 0, 1, . . . .

The dynamics (10) implies that x1(k) ≡ u1 and

(x2(k + 1), x3(k + 1)) =

{

(u1, x2(k)), k = 2m,

(x3(k), u1), k = 2m+ 1.

Therefore, we have x2(0) = x2(2) = . . . = x2(2m)∀m and
x2(k) 6→ 0 as k → ∞ when u1 = 0 and x2(0) 6= 0.

Example 2. Consider the TVFJ model with n = 2 and

W (k) ≡ [ 0 1
1 0 ] , Λ(2m) = [ 0 0

0 1 ] ,Λ(2m+ 1) = [ 1 0
0 0 ] .

The dynamics (10) can then be rewritten as follows

(x1(k + 1), x2(k + 1)) =

{

(u1, x2(k)), k = 2m,

(x1(k), u2), k = 2m+ 1,

entailing that x1(0) = x1(2) = . . . = x1(2m)∀m, and thus
x1(k) 6→ 0 as k → ∞ when u = 0 and x1(0) 6= 0.

In Examples 1 and 2 the switching model (10) appears to
be not asymptotically stable in spite of the Schur stability
of the two possible values Λ(k)W (k): the joint spectral
radius (Lin and Antsaklis, 2009) of these matrices equals
to 1. This critical situation, where the results of classical
switching systems theory (Lin and Antsaklis, 2009) are not



applicable, is typical for the TVFJ model. To guarantee its
stability, special criteria are needed; one of such criteria,
extending Theorem 5, is offered in this section.

We start with introducing a class CFJ[δ, ε, s], where δ, ε >
0 are real and s ≥ 0 is an integer (acronym CFJ stands for
“Chain of FJ models”). Unlike FJ[δ, ε, s], constituted by
pairs (Λ,W ), the class CFJ[δ, ε, s] consists of sequences
{(Λ(k),W (k))}sk=0. For such a sequence and δ, ε > 0, we
introduce the sets

J0
∆
= Sδ

Λ(0) , Jk
∆
= Sδ

Λ(k) ∪ {i : w
(k)
ij ≥ ε for some j ∈ Jk−1}.

When Λ(k) = Λ and W (k) = W for any k = 0, . . . , s, the
set Jj contains all such indices i that dε(i, S

δ
Λ,W ) ≤ j.

Definition 10. The class CFJ[δ, ε, s] consists of all se-
quences {(Λ(k),W (k))}sk=0 such that Js = {1, 2, . . . , n}.

The following result is proved similarly to Theorem 5.

Lemma 11. For any sequence {(Λ(k),W (k))}sk=0 from the

set CFJ[δ, ε, s] the matrix P
∆
=

∏s
k=0 Λ

(k)W (k) has row
sums ≤ 1− δεs, that is, P1n ≤ (1− δεs)1n.

Using Lemma 11, the following sufficient condition for
asymptotic stability is immediate.

Theorem 12. Let real δ, ε > 0 and an integer s ≥ 0
exist such that the sequence {(Λ(k),W (k))}∞k=0 contains
infinitely many subsequences {(Λ(k),W (k))}m+s

k=m from
CFJ[δ, ε, s]. Then the model (10) is asymptotically stable.

The condition of Theorem 12 can, evidently, be refor-
mulated as follows: any infinite “tail” {(Λ(k),W (k))}∞k=r
(where r ≥ 1) contains a subsequence from CFJ[δ, ε, s].
This condition does not require stability of any matrix
Λ(k)W (k) and allows e.g. to have Λ(k) = In for some k.

6. PROOFS

In this section, we prove our main results.

6.1 Proof of Theorem 2

We start with the sufficiency part. Suppose that ui =
u0 ∀i ∈ SΛ. One may assume that ui = u0 ∀i since for
i 6∈ SΛ the value of ui has no effect on x∞. Since V is row-
stochastic (Friedkin, 2015), x∞ = V (u01n) = u01n, which
proves consensus. To prove necessity, assume that x∞ =
u01n for some u0 ∈ R. Using (6), (In − Λ)u = u0(In −
ΛW )1n = u0(In − Λ)1n. In view of (7), ui = u0 ∀i ∈ SΛ.
�

6.2 Proofs of Theorems 5,12, Lemma 11 and Corollary 6

We start with a useful technical lemma. Given a sub-
stochastic matrixA, the number âi = 1−

∑

j aij ≥ 0 is said
to be the deficiency of the ith row. From the Gershgorin
disk theorem (Horn and Johnson, 1985) it is obvious that
ρ(A) ≤ max

1≤i≤n
[1− âi].

Lemma 13. Let A and B be substochastic n×n matrices,

C = AB and âi, b̂i, ĉi stand for the respective deficiencies.
Then the following statements hold for any i = 1, . . . , n

ĉi = âi +

n
∑

j=1

aij b̂j . (13)

Proof. Denote the ith row of B and C with respectively
bi• and ci•, we have ci•1n =

∑

j aijbi•1n =
∑

j aij(1 −

b̂j) = 1− âi −
∑

j aij b̂j , which entails (13).

Proof of Theorem 5. For brevity, we denote A
∆
= ΛW

and put d(i)
∆
= dε(i, S

δ
Λ,W ). We are going to prove the

following statement via induction on m: if d(i) ≤ m and
C = A1+m, then ĉi ≥ δεd(i). For m = 0 the claim
is obvious: when d(i) = 0 one has i ∈ Sδ

Λ and hence
ĉi = âi ≥ δ. Assuming that the statement has been proved
form−1 ≥ 0, we have to prove it form. Denoting B = Am,

one has C = BA. If d(i) ≤ m − 1 then ĉi ≥ b̂i ≥ δεd(i)

thanks to (13). If d(i) = m, there exists j such that
d(j) ≤ m − 1 and wij ≥ ε. Denoting C′ = WB, (13)

implies that ĉ′i ≥ εb̂i ≥ δεm. Since C = ΛC′, we have
ĉi ≥ ĉ′i which proves our statement for m. Substitution
m = s yields ρ(A1+s) = ρ(A)1+s ≤ 1 − δεs by definition
of FJ(δ, ε, s).�

Corollary 6 is immediate from Theorem 5 since a stable
FJ model belongs to FJ[δ0, ε0, n− 1].�

Proof of Lemma 11. Similarly to proof of Theorem 5,
one proves via induction on m = 0, 1, . . . , s that for any

i ∈ Jm the ith row of the matrix Pm
∆
=

∏m
k=0 Λ

(k)W (k) has
deficiency ≥ δ(1 − δ)mεm. For m = 0 the claim is trivial.
Assuming that it holds for m− 1, let A = Λ(m)W (m) and
B = Pm−1. If i ∈ Jm then either i ∈ Sδ

Λ(m) and hence

âi ≥ δ or such j exists for which w
(m)
ij ≥ ε and b̂j ≥ δεm−1.

Using (13), one now proves the claim for m in the same
way as in Theorem 5.�

Proof of Theorem 12 is immediate from Lemma 11. Let

P (m)
∆
=

∏m
k=0 Λ(k)W (k). Notice that if P (m − 1)1n ≤

θ1n and {(Λ(k),W (k))}m+s
k=m belongs to CFJ[δ, ε, s], then

P (m + s)1n ≤ θ(1 − δεs)1n due to Lemma 11. This
implies, via induction on r = 0, 1, . . ., that if the se-
quence {(Λ(k),W (k))}mk=0 contains r non-intersecting sub-
sequences from CFJ[δ, ε, s], then one has P (m)1n ≤ (1 −
δεs)r. Therefore P (m) → 0 as m → ∞.�

6.3 Proofs of Lemmas 7 and 8

Proof of Lemma 7. Statements 1)-3) are proved using
induction on k. For instance, if xi(0) ≤ M and ui ≤ M for
any i, then xi(1) ≤ M ∀i due to (10). Therefore, xi(2) ≤ M
and so on. Statement 4) follows from 2) due to the linearity
of (10): x(·|x0 + δx, u + δu) = x(·|x0, u) + x(·|δx, δu).�

Proof of Lemma 8. Implications 2)=⇒3) and 3)=⇒1) are
obvious (the first of them is proved by putting ui = u∗ and
the second one by taking u∗ = 0). To prove the implication
1)=⇒2), note that the limits lim supx(k), lim inf x(k) do
not depend on x(0) due to stability. Assuming that x(0) =
0, the claim follows now from statement 2) in Lemma 7 by
substituting m = mini ui and M = maxi ui.�

7. CONCLUSIONS

In this paper, important system-theoretic properties of the
Friedkin-Johnsen (FJ) model of opinion dynamics (Fried-
kin and Johnsen, 1999) are considered such as stability



and convergence speed. We also examine the extension of
the FJ model to the case of time-varying social influence
and give sufficient conditions for its stability. The time-
varying FJ model can be further extended to the case
of multidimensional opinions, representing the agents’ po-
sitions on several interrelated issues (belief systems); for
static FJ model such an extension is discussed in (Parsegov
et al., 2017; Friedkin et al., 2016b). In our future works we
are going to validate the applicability of the FJ model to
opinion dynamics in large-scale online social networks.
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Fläche, A. and Macy, M. (2011). Small worlds and cultural
polarization. J. Math. Sociology, 35(1–3), 146–176.

Frasca, P., Ishii, H., Ravazzi, C., and Tempo, R. (2015).
Distributed randomized algorithms for opinion forma-
tion, centrality computation and power systems estima-
tion: A tutorial overview. Europ. J. Control, 24(7), 2–13.

Frasca, P., Ravazzi, C., Tempo, R., and Ishii, H. (2013).
Gossips and prejudices: Ergodic randomized dynamics
in social networks. In Proc. of IFAC NecSys 2013
Workshop, 212–219. Koblenz, Germany.

Friedkin, N. (2015). The problem of social control and
coordination of complex systems in sociology: A look at
the community cleavage problem. IEEE Control Syst.
Mag., 35(3), 40–51.

Friedkin, N., Jia, P., and Bullo, F. (2016a). A theory
of the evolution of social power: natural trajectories of
interpersonal influence systems along issue sequences.
Soc. Science, 3, 444–472.

Friedkin, N. and Johnsen, E. (1999). Social influence
networks and opinion change. In Advances in Group
Processes, volume 16, 1–29.

Friedkin, N. and Johnsen, E. (2011). Social Influence
Network Theory. Cambridge Univ. Press, New York.

Friedkin, N. and Johnsen, E. (2014). Two steps to
obfuscation. Social Networks, 39, 12–13.

Friedkin, N., Proskurnikov, A., Tempo, R., and Parsegov,
S. (2016b). Network science on belief system dynamics
under logic constraints. Science, 354(6310), 321–326.

Gantmacher, F. (2000). The Theory of Matrices, volume 2.
AMS Chelsea Publishing.

Ghaderi, J. and Srikant, R. (2014). Opinion dynamics in
social networks with stubborn agents: Equilibrium and
convergence rate. Automatica, 50(12), 3209–3215.

Hegselmann, R. and Krause, U. (2002). Opinion dynamics
and bounded confidence models, analysis, and simula-
tion. J. Artifical Societies and Social Simulation, 5(3),
2.

Horn, R. and Johnson, C. (1985). Matrix Analysis.
Cambridge Univ. Press.

Jia, P., Mirtabatabaei, A., Friedkin, N., and Bullo, F.
(2015). Opinion dynamics and the evolution of social
power in influence networks. SIAM Rev., 57(3), 367–
397.

Lin, H. and Antsaklis, P. (2009). Stability and stabiliz-
ability of switched linear systems: A survey of recent
results. IEEE Trans. Autom. Control, 54(2), 308–322.

Meyer, C. (2000). Matrix Analysis and Applied Linear
Algebra. SIAM.

Newman, M. (2003). The structure and function of
complex networks. SIAM Rev., 45(2), 167–256.

Parsegov, S., Proskurnikov, A., Tempo, R., and Friedkin,
N. (2017). Novel multidimensional models of opinion
dynamics in social networks (publ. online). IEEE Trans.
Autom. Control.

Proskurnikov, A., Matveev, A., and Cao, M. (2016a).
Opinion dynamics in social networks with hostile camps:
Consensus vs. polarization. IEEE Trans. Autom. Con-
trol, 61(6), 1524–1536.

Proskurnikov, A. and Tempo, R. (2017). A tuto-
rial on modeling and analysis of dynamic social net-
works. Part I. Annual Rev. Control, 43, (accepted).

Proskurnikov, A., Tempo, R., and Cao, M. (2016b).
PageRank and opinion dynamics: Missing links and ex-
tensions. In Proc. of IEEE Conf. Norbert Wiener in the
21st Century, 12–17. Melbourne.

Ravazzi, C., Frasca, P., Tempo, R., and Ishii, H. (2015).
Ergodic randomized algorithms and dynamics over net-
works. IEEE Trans. Control of Network Syst., 2(1), 78–
87.

Ren, W. and Beard, R. (2008). Distributed Consensus in
Multi-Vehicle Cooperative Control: Theory and Applica-
tions. Springer-Verlag, London.

Ren, W. and Cao, Y. (2011). Distributed Coordination of
Multi-agent Networks. Springer.
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