Future Lithium Demand for a Carbon Free Transportation System in The United States

By

## KRISTI DAYEMO THESIS

Submitted in partial satisfaction of the requirements for the degree of

# MASTER OF SCIENCE

in

Energy Systems

in the

## OFFICE OF GRADUATE STUDIES

of the

## UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

| Alissa Kendall |
|----------------|
| Xinfan Lin     |
| GITTERS        |

Gil Tal

Committee in Charge

2023

## Abstract

Electric vehicle adoption is increasing rapidly in the United States, driven by policies aimed at mitigating climate change. Lithium-ion batteries are the key enabling technology for EVs. The production and refining of lithium is thus essential to electric vehicle manufacturing. Lithium is considered a critical mineral in the United States because its use is linked to national security, energy and transportation needs and its ease of availability in the future is not guaranteed. Understanding how much lithium is required for a clean transportation future is important to mitigate risks associated with lithium depletion and potential barriers to achieving climate mitigation targets. For this reason, the following thesis models lithium demand and recycling in the United States from 2020 to 2050 under a variety of scenarios that examine vehicle battery size, vehicle ownership rates, and recycling rates to determine the quantity of virgin lithium required for complete electrification of the on-road US fleet by 2050. The model shows that with no significant changes in battery size or mode share US lithium demand will be 300 million kg in 2050 exceeding current global lithium production by 200% and recycled material will not be able to close the gap between future demand and current production. Reducing only battery size can result in up to a 29% decrease in lithium demand while shifting mode shares only can result in a 67% decrease in lithium demand in 2050.

## **Table of Contents**

| Abstract                            |                              |
|-------------------------------------|------------------------------|
| Table of Contents                   |                              |
| Introduction                        |                              |
| Review of Literature                |                              |
| Lithium                             | 5                            |
| Effects of Mining                   |                              |
| Lithium-Ion Battery Technology      |                              |
| EVs in the US                       |                              |
| Existing Lithium Demand Forecasting |                              |
| Methods                             |                              |
| EV Sales Forecast                   |                              |
| Battery Capacity                    |                              |
| Battery Cathode Chemistry           |                              |
| Bus modeling                        |                              |
| Recycling                           |                              |
| Modeled Scenarios                   |                              |
| Results                             |                              |
| Lithium Demand                      |                              |
| Recycling                           |                              |
| Discussion & Recommendations        |                              |
| Appendix                            |                              |
| References                          | Error! Bookmark not defined. |

## Introduction

In 2021 President Biden set a target to achieve 50%-52% reduction of 2005 level greenhouse gas pollution by 2030. The White House explored multiple pathways to achieve this goal, including decarbonizing transportation. While there are a variety of ways to decarbonize transportation, batteries are an essential component to most viable alternatives to internal combustion engine vehicles like fuel cell, electric and hybrid vehicles. The dominant battery type, lithium-ion batteries (LIB), require lithium as the name suggests. As the United States (US) transitions to a decarbonized transportation future, the demand for lithium will increase. It is important to understand what that future demand of lithium is, in order to prepare for externalities of deploying a relatively new technology. For example, while electric vehicles may achieve reductions in greenhouse gas emissions on a life cycle basis, the high mineral intensity of LIBs means additional mining, which causes additional impacts for frontline communities and ecosystems near mining sites. These communities are often not those that benefit from new technologies both at global and local scales. The US has the opportunity to not repeat the history of extractive relationships between high-income countries and lower- and middle-income countries, and the disproportionate impact on low-income and indigenous communities from mining in the US [cite the climate and community report and maybe some other good research here about the inequities in impact and access, could even do our UNEP report]. .

Given the urgent need to decarbonize the transport sector, this thesis starts from the assumption that vehicle electrification will occur. What is explored is how much lithium is required for a fully decarbonized transportation future. Thus, it is not a matter of whether vehicle electrification will happen, but how it will occur in the US. This thesis explores the lithium footprint of different pathways for achieving complete electrification of the on-road passenger vehicle fleet by 2050 to understand the policy levers that may be best used to achieve electrification in the US context with the lowest impact to people and planet This thesis constitutes the contributions of the author to the publication More Mobility, Less Mining written with Thea Riofrancos, Alissa Kendall, Matthew Haugen, Batul Hassan, Kira McDonald, and Margaret Slattery.

## **Review of Literature**

#### Lithium

Lithium is a soft, silver metal that was initially discovered from a mineral. Lithium is used in a variety of products including batteries, ceramics, and pharmaceuticals.<sup>1</sup> Historically, greases, glasses, ceramics made up 40-50% of global lithium consumption.<sup>2</sup> In 2000 global lithium production was less than 20,000 tons, a majority of which went to ceramics, glass and other end uses.<sup>24</sup> By 2021 global lithium production was 100,000 tons, with LIBs making up 81% of demand. The 400% increase in lithium production over the last 2 decades was driven by increasing LIB demand, and as demand for EVs powered by LIBs rises in the coming years and decades, demand for lithium will rise accordingly.

Lithium deposits are typically found in 2 forms, hard rock and brines. A majority of the world's lithium production in 2019 was from 6 hard rock operations in Australia, 1 hard rock operation in China, and 2 brine operations in each in Argentina and Chile.<sup>3</sup> The process of extracting lithium from hard rock deposits and brines varies significantly. Historically, extracting lithium from high-quality brines was more economically feasible due to its low energy requirements. However, as lithium demand and price has increased, the operating cost gap has become less of a concern. Both processes produce lithium-carbonate, the chemical needed in batteries. In order to convert lithium bearing minerals into lithium carbonate, the mineral is crushed, ground and roasted multiple times. The crushed mineral then goes through acid leaching using sulfuric acid before it is polished to remove calcium and magnesium. In order to convert the brine to lithium carbonate, the brine is pumped from underground salt lakes to engineered ponds on the surface. Using solar evaporation, the brine is further concentrated to increase lithium content and decrease water content. Lastly, the concentrated brine undergoes chemical processing to remove impurities.

Lithium resources, rock or brine, are developed through tectonic activity, the presence of Li-bearing rocks (magmatic or sediment), and exposure to moisture (typically ground water or spring water circulation). It is unclear how long these supplies take to replenish. Brines deposits derive from quaternary rock structures, that can be up to 2.5 million years old. Hard rock deposits range in age from the Miocene to Precambrian, and therefore are significantly older. While Li is found in over 100 minerals, 5 are used for commercial hard rock production. These 5 minerals are spodumene, lepidolite, petalite, amblygonite and eucryptite, with spodumene being the most abundant

due to its high lithium content (8.1% Li2O).<sup>4</sup> Hard rock deposits are found in several orogenic phases located in various geographies.<sup>5</sup> Parameters that lead to economically viable hard rock lithium deposits are pre-existing Li source, lithospheric thickening, and the existence of fractures to allow for weathering. Unlike hard rock lithium deposits that are found in various geographies, brines are located in arid climates in tectonically affected basins that interact with Li rich rocks (Gutierrez, 2019). The maximum Li concentration found in a brine deposit globally is in the Atacama desert in Chile, where the average Li concentration ranges from 1000 and 6400 mg/L.<sup>6</sup> The minimum concentration of Li in brines considered to have commercial value is 10–20 mg/L.

### Effects of Mining

Lithium production raises equity concerns related to land use, water sovereignty and mineral resource distribution. The mining phase, both hard rock mining and brine, require high land use. As lithium demand has increased, so has the pressure to locate new sources of lithium on historically indigenous and rural land in the global south. <sup>7</sup> This land grab can destabilize the social and economic order of already vulnerable communities.<sup>8</sup> Almost 60% of lithium demand is supplied from brines.<sup>9</sup> Lithium production from brine is water intensive, because it requires water to be pumped from the earth and evaporated in pools. The evaporation process decreases local water supply, infringing on the water sovereignty of local communities. In hard rock methods, tailings can spread to local water sources impacting local water chemistry.<sup>10</sup> These water practices can exacerbate existing fractures in indigenous communities. The distribution of lithium resources is unbalanced and extracted minerals from the global south, typically are traded as finished product to mostly global north countries to meet global south and the impacts of mining listed above, there are distributive justice concerns concerning burdens and benefits that need to be explored. Furthermore, countries with critical mineral resources do not typically follow formal regulations regarding resource extraction, inviting foreign private mining for easier, low-cost operations.<sup>12</sup>

#### Lithium-Ion Battery Technology

LIBs are the most common energy storage technology for EVs due to their high energy density, cycle stability and robustness.<sup>13</sup> The main components of LIBs are the cathode, anode, electrolyte solution and the separator; each component requires a different critical mineral depending on the chemistry of the battery.

Commercially viable LIB anodes typically use graphite, but some battery chemistries use silicon or lithium titanate.<sup>14</sup> Cathodes can use a wider variety of minerals including manganese, cobalt, nickel, aluminum and lithium.<sup>15</sup> LIBs are often distinguished by their chemistry, which refers to the active materials in the cathode. The most common cathode chemistries for EVs are NMC (Nickel Manganese Cobalt), NCA (Nickel Cobalt Aluminum Oxide), LFP (Lithium Iron Phosphate), and LMO (Lithium Manganese Oxide). NMC batteries are further differentiated by the ratio of nickel, manganese, and cobalt in the cathode respectively; for example, NMC 111 refers to a battery cathode with an equal weight of nickel, manganese, and cobalt. The most common NMC chemistries are NMC 111, 523, 622, and 811, with the market trending toward higher nickel concentrations (e.g., NMC 622 or NMC 811) to reduce the amount of cobalt and lithium required. While the combination of many minerals in LIBs varies depending on the chemistry of the battery, lithium is considered not substitutable as it is present in all current chemistries. For example, the battery industry is moving towards cobalt free batteries due to the criticality of the mineral.<sup>14</sup> This has led to the resurgence of LFP and LMO battery chemistries which require no cobalt, but do require lithium. The common battery chemistry types and their mineral weight percent are shown in table 1.

| Cathode | Lithium | Nickel | Cobalt | Manganese | Aluminum | Copper | Graphite |
|---------|---------|--------|--------|-----------|----------|--------|----------|
| NMC111  | 2.40%   | 5.90%  | 5.90%  | 5.50%     | 52.40%   | 11.40% | 16.50%   |
| NMC523  | 2.30%   | 8.70%  | 3.50%  | 4.90%     | 52.50%   | 11.30% | 16.80%   |
| NMC622  | 2.10%   | 9.50%  | 3.20%  | 3.00%     | 54.10%   | 10.80% | 17.20%   |
| NMC811  | 1.90%   | 11.40% | 1.40%  | 1.30%     | 55.40%   | 10.40% | 18.20%   |
| NCA     | 1.90%   | 12.50% | 2.40%  | 0.00%     | 54.40%   | 10.50% | 18.20%   |
| LMO     | 1.60%   | 0.00%  | 0.00%  | 21.00%    | 50.70%   | 13.00% | 13.70%   |
| LFP     | 1.70%   | 0.00%  | 0.00%  | 0.00%     | 62.40%   | 16.70% | 19.20%   |

Table 1: Lithium-Ion Battery Pack Composition by Weight (kg/kWh) from Table 2. Dunn et al.

A key issue for LIBs is declining performance over time, largely driven by cycling but also by calendar aging and environmental conditions. Battery condition is represented by the concept of state-of-health (SOH). SOH is a value that "compares the current state of the battery with the state of the battery at the beginning of life."<sup>16</sup> It is calculated by dividing the EV's maximum battery charge by the rated capacity. SOH is difficult to predict because it cannot be measured directly and changes in SOH are the result of complex interactions among factors and processes within the battery. These factors are user-dependent like charging and e/discharging habits, environment-dependent like temperature, or battery-dependent like the initial design capacity.<sup>17</sup> A lower depth of discharge allows batteries to last longer. Keeping the state of charge (SOC), the amount of power available in the battery, high without reaching the maximum battery capacity also allows the battery to last longer. From the perspective of LIBs used in EVs, this indicates that an environment that allows for short driving distances and abundant charging infrastructure is ideal for battery SOH. Because depth of discharge is a function of capacity, capacity also influences the SOH. Theoretically, larger batteries will have a longer lifetime if they undergo the same charging and discharging cycles of a smaller battery. Temperature influences the performance of a LIB. The optimal temperature range for a LIB is 15–35 °C.<sup>18</sup> Temperatures below this range decrease performance by causing loss of conductivity and increase in internal resistance. Higher temperatures accelerate aging and increase the risk of thermal runaway.

Determining SOH accurately is important for battery safety management. Direct measurement methods are precise, but they are difficult to obtain due to the need for special equipment and experiment conditions. Therefore, most methods to determine SOH are through indirect measurement techniques using health indicators (HI). HIs are historical charging data that are mathematically manipulated to reflect the internal electrochemical reaction indicating the level of battery degradation.<sup>19</sup> Commonly used HIs to determine SOH are internal resistance (IR), temperature, voltage drop, and constant current (CC) charging time. Using IR as the health factor to determine SOH gives accurate early-stage predictions.<sup>20</sup> There is a strong linear relationship between CC charging time and SOH and CC charging time is used as a health factor to determine SOH.<sup>21,22</sup> Voltage drop is also used as a health factor in model-based estimations of SOH.<sup>23</sup>

LIBS are recommended to be replaced in EVs at 80% SOH. There are no federal laws in the US that directly address battery degradation and warranty requirements. However, in August 2022 the California Air and Resources Board (CARB) approved the Advanced Clean Cars II rule, making California the first state in the US to implement a battery EV warranty period. The regulation requires batteries in EVs to maintain at least 75 percent of the rated capacity for 8 years or 100,000 miles for model year vehicles 2031 and later. Related to battery durability over time, this regulation also requires vehicles to maintain at least 80 percent of their electric range for 10 years or 150,000 miles. To reach this goal, the California policy uses a phased approach that requires warranties to cover 70 percent of the rated capacity for 2026 through 2030 model year vehicles. Despite the lack of legal incentive, most original equipment manufacturers (OEMs) today provide warranties that cover LIBs for 8 years or 100,000 miles.

#### EVs in the US

EV sales and registrations have steadily grown each year, barring 2020, in the US.<sup>24</sup> Policy and industry trends indicate that this growth will continue. For example, the Inflation Reduction Act of 2022 gives tax credits to EV consumers and car companies like General Motors and Mercedes are promising to sell only electric cars in the near future. The International Energy Agency (IEA) estimates 6.8 million EV sales in the US in 2030 compared to 800,000 in 2022. EVs are also estimated to be 48% to 61% of total car sales by 2030.<sup>25</sup> An increase in EVs, which require some of the biggest batteries, will cause an increase in lithium demand. Another driving factor for lithium demand is increasing battery sizes. Range anxiety is one of the biggest barriers to EV adoption.<sup>26</sup> In response, car manufacturers have made bigger batteries since the early 2010s. For example, the Nissan Leaf was the most popular EV in the early 2010s and came with a 24 or 30 kWh battery.<sup>27</sup> Now, popular models have bigger batteries driving the sales-weighted average battery capacity of a new EV in the US from 35 kWh in 2012 to just over 70 kWh in 2021. Considering lithium is an essential material in LIBs, bigger batteries will result in a higher lithium demand.

### Existing Lithium Demand Forecasting

Previous material flow analyses of lithium are not easy to compare to one another because they represent values for different end uses with different temporal and spatial boundaries. Most MFAs conducted were for historical lithium flows.<sup>28,29,30,31</sup> MFAs that assessed future lithium flows were often limited to LIBs in EVs.<sup>32, 33</sup> Furthermore these studies focused on waste flows from LIBs for recycling potential. In one of these MFAs 20 kt of lithium is the expected waste flow for LIBs in EVs in 2040 cumulatively. In the other MFA 60 kt of lithium can be recovered from LIBs in 2040.<sup>33</sup> MFAs that are future oriented had similar methods for determining lithium demand and recyclability. Future EV sales, battery and/or vehicle lifespan, and lithium content in LIBs were important inputs to the models.

## Methods

The lithium demand model uses principles of material flow analysis to estimate the amount of lithium in EV LIBs accumulating and retiring in the United States. The temporal boundaries for this lithium demand model are 2020-2050. Only LIBs in pure EVs, are accounted for since they require the biggest batteries and therefore the most lithium. This means that plug-in hybrid EVs, fuel cell vehicles, and hybrid electric vehicles are omitted from the analysis.

The model estimated lithium demand as a function of EV sales and considered four parameters that shape EV LIB demand: vehicle ownership rates as a function of transportation futures, described in more detail below; battery capacity demand as a function of vehicle design and consumer choices; battery warranty alternatives; and recycling rates. The four transportation futures scenarios were developed by a collaborator on the Climate and Community report which also included the work described in this thesis.<sup>34</sup> The transportation futures scenarios are:

Scenario 1 (S1): This scenario represents the status quo. It models a future with the same vehicle ownership rates as today. In this scenario population growth is the only driver for the change in total vehicle demand.

Scenario 2 (S2): This scenario assumed policy and infrastructure investments to increase the use of active modes of transportation and public transit to reduce the level of car dependence in US cities to the equivalent of comparable cities in the European Union. Mode shares and car ownership rates do not change in rural areas.

Scenario 3 (S3): This scenario builds on scenario two, but assume that more change occurs to land use like denser cities, better infrastructure for active and public transport, and less subsidies for private vehicle ownership like parking. It also accounts for policy and cultural changes that reduce car ownership. Public transit also reduces its lithium intensity per trip by shifting to electrified rail rather than buses.

Scenario 4 (S4): This scenario builds on the shifts described in S2 and S3 in a more ambitious manner. Mode shares reflect the achievement of goals set by cities like Vienna. This means less car use and ownership. Reliance on buses in favor of other transit also decreases in this scenario.

These futures provided a vehicle ownership rate in 2050 that could then be translated into the total US fleet size for on-road passenger vehicles (light duty passenger vehicles and buses). This fleet size was then combined with vehicle retirement rates to infer new vehicle car sales from 2020 to 2050. In order to do this, vehicle retirement rates (i.e. vehicle failures) were estimated using a Weibull distribution assuming an average lifetime of 15 years and using a shape parameter of 7, a method that is used to show increasing wear and failure with time.<sup>35</sup> The Weibull shape parameter was chosen because values over 1 indicate wear out failure.<sup>36</sup> The scale parameter is defined as the

time it takes for 63.2 percent of the components analyzed to fail. The scale parameter was calculated using the following equation:

$$\eta = \frac{t}{e^{\Gamma(1+\frac{1}{\beta})}}$$
Eq 1.

Where t is the average lifetime of a battery,  $\beta$  is the shape parameter and  $\eta$  is the scale parameter. Table A1 in the appendix provides the probability of battery failure over time given by the Weibull distribution. Then, for each new EV sold, material demand is calculated based on the battery size, lifetime, and chemistry.

Figure 1 illustrates the approach to estimate cumulative lithium demand, and the following sections explain the model, data, and assumptions.

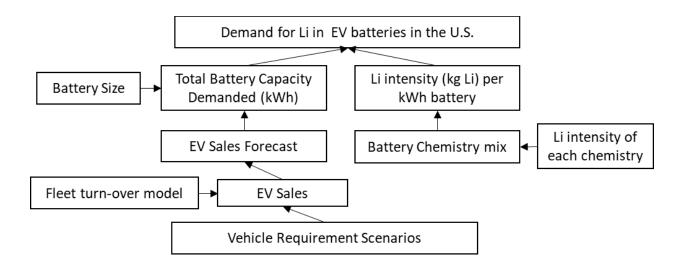



Figure 1: Modeling approach for estimating lithium demand from EVs in the US from Figure 9. Riofrancos et al.

### EV Sales Forecast

The first step in estimating future EV sales is understanding the future vehicle stock requirements. In this model, historical EV stock and sales were drawn from the IEA Global EV Outlook, the Bureau of Transportation Statistics and the School Bus Fleet website.<sup>24,37,38</sup> The future vehicle requirement estimates were calculated based on the 2050 vehicle requirements from the decarbonized transportation scenarios. The historical and future projections were then used to estimate total EV requirements between 2021 and 2049. We combine these vehicle

requirements with estimates of vehicle retirements over time to infer demand for EVs, which we assume to be equal to new vehicle sales.

To translate the stock turnover model to new vehicle sales, the following equation was used:

Eq 2. New EV Sales = VSt(t) - VSt(t-1) + VRet(t)

Where VSt is the vehicle stock in a given year t and VRet is the number of vehicles retired in a given year t. VRet is calculated based on the fleet turn-over model and is thus a function of sales in previous years. The time series data of stock, sales, and retirements for passenger EVs are provided in tables A8 and A9 in the appendix.

For this model, we assume an average vehicle lifetime of 15 years for privately owned passenger cars. Some batteries fail during their warranty period, meaning they are replaced before the vehicle is retired and contribute to increased demand for new batteries. Based on recent measures to standardize and guarantee battery warranty periods, the model assumes as a base case that a failed battery will be replaced up to 8 years after a vehicle is sold. Scenarios for longer warranty periods of 10 and 12 years were also tested, but had a very small effect on cumulative lithium demand and thus are not a focus of analysis.

#### Battery Capacity

Once vehicle sales over time are modeled, information on the size and chemistry of the battery packs in those vehicles is required to estimate lithium demand. The sales-weighted average battery capacity of a new EV in the US has increased from about 35 kWh in 2012 to just over 70 kWh in 2021. This means that the average new vehicle has significantly more energy storage capacity than earlier EV models. This average has remained nearly constant since 2018, indicating that average battery capacity may be leveling off somewhere between 70 and 75 kWh. There are 3 different scenarios for modeling the future sales-weighted average battery capacity are modeled based on these values:

- Small Scenario: A future dominated by 35 kWh batteries resulting in a sales-weighted average of 53.5 kWh
- Medium Scenario: A future dominated by 70 kWh batteries with a sales-weighted average of 76.75 kWh
- Large Scenario: A future dominated by 150 kWh batteries with a sales-weighted average of 122.5 kWh.

The small battery capacity was chosen based on early EV battery capacities like the first-generation Nissan Leaf and the large battery capacity was chosen based on recent electric light trucks like the Ford F-150 Lightning, Rivian R1T, and the e-Hummer. Because the current battery capacity has held constant at just above 70 kWh, the medium battery scenario is treated as the most likely case. The capacity of battery packs alone, however, cannot determine their material intensity. Understanding the particular lithium- ion chemistry is also required.

### Battery Cathode Chemistry

Since 2018, NCA has represented more than half of the share of batteries in new EV sales in the US, a larger share compared to other countries. This is mainly because Tesla has the highest EV sales in the US and uses almost exclusively NCA batteries. In this study we assume that passenger EV batteries will be 50 percent NCA and 50 percent NMC811 into the future, and E-bus batteries will be 50 percent LFP and 50 percent NMC811, reflecting two popular E-Bus models from makers BYD and Proterra.<sup>3940</sup>

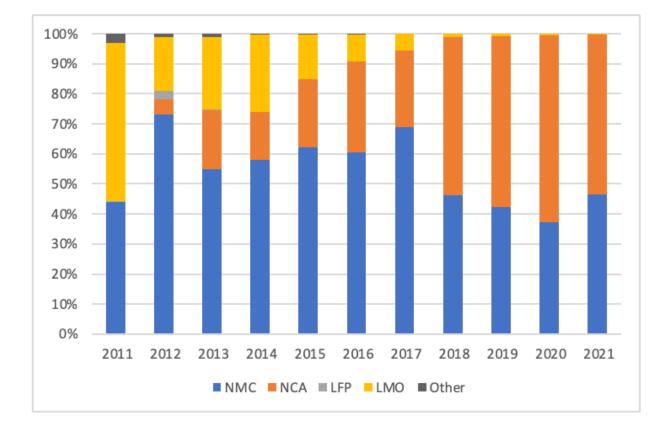



Figure 2. Battery chemistry types in new light duty EV sales in the US (2011-2021)

#### Bus modeling

In addition to the light duty vehicle sector, battery-electric buses (e-buses) will be an important part of battery demand for future transportation scenarios. There are two types of buses are widely used in the US: school buses and transit buses. The same approach for determining bus sales is used as in light duty vehicles, whereby the final bus requirement estimated in the different scenarios for transportation futures is used along with historical bus stock data to estimate the US bus stock between 2010 and 2050. A fleet turnover model is used to estimate bus retirement. Transit and school bus fleets are modeled separately with respect to fleet size and fleet turnover. Transit buses are typically purchased and overhauled based on available federal funding provided in seven year cycles. Transit buses also accrue mileage much faster than school buses and undergo what is known as a "7-vear midlife overhaul" during which a bus's battery pack is assumed to need replacement<sup>41</sup>. Thus the fleet turn-over model assumes a fixed 14-year transit bus lifetime with a 7-year midlife overhaul that includes full battery replacement. Unlike light duty vehicles, we do not model lifetime stochastically, or statistically determined, due to a lack of data on bus survival rates. We assume all e-bus include a 450 kWh hour battery pack based on popular e-bus models from Proterra and BYD<sup>n</sup>. School buses are, on average, much older than transit buses and are used for many more years. Because they operate few routes per day, they accrue mileage more slowly than active transit buses and, as such, their lifetime in years is longer. Based on personal communication with a school bus manufacturer, we assume a bus lifetime of 20 years. Given the low mileage accrual, no battery replacements are modeled for school buses.

#### Recycling

This report explores the potential for recycling to meet future material demand under a future where 100 percent of EV batteries are collected for recycling, and recycling processes achieve 98 percent recovery of target materials, including lithium. This represents a best-case scenario for recycling; in reality, the collection and recycling rates of EV batteries are not well-characterized, which presents a challenge for both estimating the current and future rates of recycling and material recovery. In addition, recycling processes do not necessarily recover all materials. The choice of which materials to recover and at what level is an economic one, and is driven by the value of each material. For example, historically, it has been cheaper to mine new lithium than recycle it, making the recovery of lithium less attractive to recyclers.

Given the projected growth in EV sales and the long lives of vehicles, it will be decades until recycling can meet a substantial fraction of global demand. Additionally, used EV batteries can be repurposed for energy grid storage as they still have significant capacity even when retired from their first use in a vehicle. On a life cycle basis, reuse reduces burdens relative to recycling and production of new batteries, even considering the deteriorating performance of batteries over time.<sup>42</sup> However, extending a battery's use phase via repurposing may be somewhat in tension with goals for generating recycled material, given that an EV battery that is repurposed for another use is one that is not being recycled for new battery production.

#### Modeled Scenarios

To understand the range of possible demand for lithium we use a scenario analysis approach that combines possible decarbonization pathways (transportation futures), possible vehicle design choices, possible battery warranty requirements, and worst and best-case recycling futures. For buses, only the decarbonization and recycling scenarios apply since battery size is fixed and replacement rates are independent of warranty periods. Figure 3 describes the scenarios modeled.

| Decarbonization Pathway               | B: Base Case L: Lite M: Moderate A: Ambitious |
|---------------------------------------|-----------------------------------------------|
| Light-Duty EV Average<br>Battery Size | S: Small M: Medium L: Large                   |
| Light-Duty EV Warranty<br>Period      | 8: 8 Year 10: 10 Year 12: 12 Year             |
| Recycling                             | R: Recycling credit N: No recycling credit    |

Figure 3. Scenarios included in the assessment.

In the absence of intervention, the most likely scenario seems to be the base case with medium battery capacity and an 8 year warranty period. For recycling, there is significant uncertainty in the rate of battery collection for recycling; moreover, there is significant uncertainty in whether lithium will be recovered. Historically, only high value metals like cobalt and nickel were targeted for recovery, with lithium retained in the slag generated from the process. However, with increasing lithium prices and improved recycling technology, high rates of recovery could

occur. As such, we explore two scenarios at the extreme; one where no lithium recovery occurs, and another with 98 percent recovery of lithium assuming 100 percent collection of retired batteries. Complete scenario results are shown in tables A2 through A6 of the appendix.

### Results

### Lithium Demand

Results show that under the base case conditions, cumulative lithium demand by 2050 will be 3,458 Mt. To put this into context, global annual lithium production in 2020 totaled only .082 Mt. Results are very sensitive to scenario choices. For example, when comparing medium batteries in scenario 1 to small batteries in the same scenario, there is a 29% decrease in cumulative and 2050 lithium demand (Figure 5). Conversely, when medium batteries in scenario 1 are compared to large batteries there is a 56% increase in cumulative lithium demand and 58% increase in annual 2050 demand. When comparing the lithium demand of different transportation futures to the base case there is an 18 percent, 41 percent, and 66 percent reduction for Scenarios 2, 3, and 4 respectively. The results also show a smaller change in demand from extending the warranty period from the standard 8 year to 10 or 12 years. When comparing the cumulative lithium requirement of the medium battery scenario and the common 8 year battery warranty to a 10 and 12 year warranty, there is a 1.3 percent and 4.1 percent increase in lithium requirement, respectively.

|                   | 8 year battery warranty<br>and an average battery capacity<br>of 35 kWh<br>35 kWh battery |     |     |    | and an a<br>70 kWh | verage ba | • • | 8 year battery<br>warranty and an average<br>battery capacity of 135 kWh<br>150 kWh battery |     |     |     |     |
|-------------------|-------------------------------------------------------------------------------------------|-----|-----|----|--------------------|-----------|-----|---------------------------------------------------------------------------------------------|-----|-----|-----|-----|
|                   | 1 2 3 4                                                                                   |     |     | 1  | 1 2 3 4            |           |     | 1                                                                                           | 2   | 3   | 4   |     |
| asseng<br>er cars | 394                                                                                       | 931 | 389 | 76 | 394                | 704       | 941 | 061                                                                                         | 363 | 225 | 027 | 621 |
| ransit<br>Buses   | 5                                                                                         | 26  | 2   | 8  | 5                  | 26        | 2   | 8                                                                                           | 5   | 26  | 2   | 8   |
| chool<br>Buses    | 7                                                                                         | 7   | 7   | 3  | 7                  | 7         | 7   | 3                                                                                           | 7   | 7   | 7   | 3   |

Table 2: Cumulative lithium demand in 2050 measured in megatons

Passenger cars comprised the greatest demand for lithium because more cars than buses are required in every transportation future scenario modeled. Lithium demand from transit buses for the scenarios with the lowest demand (S1) is calculated to be 1.9 million kg and 16 million kg for the highest (S4). School busses require 2.2 million kg of lithium for scenario 1 and 1.7 million kg for scenario 4. Although buses have much larger batteries in each vehicle, their vehicle numbers are low enough that they still contribute only a small amount of demand. For context, private passenger vehicle demand in scenario 1 with an 8 year warranty and medium batteries (301 million kg) is 72 times larger than scenario 1 transit and school busses combined (4.1 million kg). When comparing these same values for scenario 4 the lithium demand for private passenger vehicles is closer to 4 times larger than the demand for busses. These results suggest that reducing demand for private passenger vehicles and maintaining or reducing battery capacity are the most effective pathways to reducing future lithium demand.

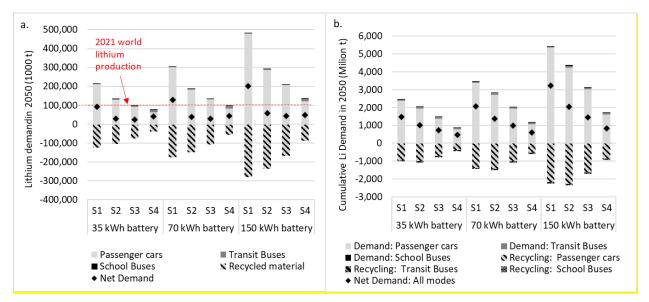



Figure 4. a) US EV battery lithium demand, recycled material potential, and potential net demand in 2050 for scenarios (S1, S2, S3 and S4) with an 8-year battery warranty period in the year 2050. b) US EV Cumulative lithium demand, cumulative recycled material potential, and potential net demand 2010-2050.

|                      |          | Percent    | Percent   |  |  |
|----------------------|----------|------------|-----------|--|--|
| Battery              | Future   | Change in  | Change in |  |  |
| Capacity<br>Scenario | Scenario | Cumulative | 2050 Li   |  |  |
| Scenario             |          | Li Demand  | Demand    |  |  |
|                      | S1       | -29%       | -29%      |  |  |
| Small                | S2       | -40%       | -56%      |  |  |
| Small                | S3       | -57%       | -68%      |  |  |
|                      | S4       | -74%       | -74%      |  |  |
|                      | S1       | 0%         | 0%        |  |  |
| Madium               | S2       | -18%       | -38%      |  |  |
| Medium               | S3       | -41%       | -55%      |  |  |
|                      | S4       | -66%       | -67%      |  |  |
|                      | S1       | 56%        | 58%       |  |  |
| Lavas                | S2       | 26%        | -4%       |  |  |
| Large                | S3       | -10%       | -31%      |  |  |
|                      | S4       | -50%       | -55%      |  |  |

Figure 5. Percent change in cumulative Lithium demand as a function of battery size and decarbonized

transportation future

| Pattory             |          | Percent    | Percent   |  |  |
|---------------------|----------|------------|-----------|--|--|
| Battery<br>Warranty | Future   | Change in  | Change in |  |  |
| Period              | Scenario | Cumulative | 2050 Li   |  |  |
| Fenou               |          | Li Demand  | Demand    |  |  |
|                     | S1       | 0%         | 0%        |  |  |
| 0.voor              | S2       | -18%       | -38%      |  |  |
| 8 year              | S3       | -41%       | -55%      |  |  |
|                     | S4       | -66%       | -67%      |  |  |
|                     | S1       | 1%         | 2%        |  |  |
| 10                  | S2       | -17%       | -37%      |  |  |
| 10 year             | S3       | -40%       | -54%      |  |  |
|                     | S4       | -66%       | -67%      |  |  |
|                     | S1       | 4%         | 6%        |  |  |
| 12                  | S2       | -14%       | -34%      |  |  |
| 12 year             | S3       | -38%       | -52%      |  |  |
|                     | S4       | -64%       | -66%      |  |  |

Figure 6. Percent change in Lithium demand as a function of warranty period and decarbonized transportation future

### Recycling

Model results show that cumulatively by 2050 38% of new lithium demand can come from recycled LIBs. However, this is under ideal conditions meaning that 98% of lithium is recovered from every LIB retired. This is an unlikely scenario considering current lithium recycling is not widespread. Even under these optimistic assumptions, recycling cannot meet 50 percent of the demand modeled in 2050. Therefore, recycling cannot in the coming decades solve the problem of lithium demand for EV batteries. This is especially true because of the delay of recycled material entering the lithium supply chain due to the 15 year average use phase of an EV. Though recycling will not provide an immediate or sufficient supply of lithium for EV demand, it should be pursued regardless of the decarbonized transportation scenario because at any level of EV deployment, recycling reduces the demand for new lithium extraction.

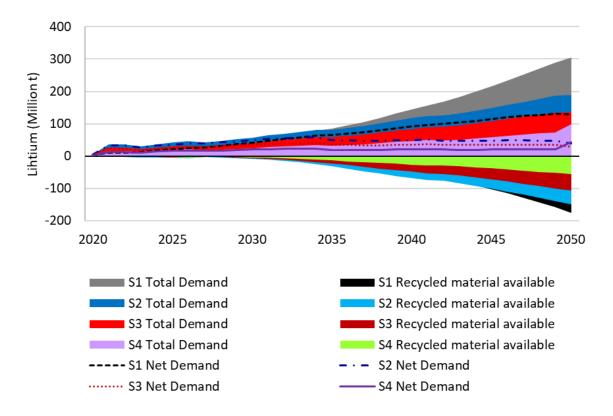



Figure 7. Lithium demand under decarbonized transportation futures assuming medium battery capacity, 8 year warranty period and 98 percent recovery of all lithium from retired batteries in the year in which they retire.

Table 2 shows the cumulative demand for lithium in 2050 required to meet US passenger transportation demand in personal vehicles and buses while reaching a fully decarbonized transportation future. In every scenario except S4, US demand will exceed current global production. Continuing business as usual will result in a demand that is 3 times the current global market. For reference, the US comprised 12% of the global EV market in 2021. If the ideal recycling and recovery is achieved, 27% of lithium demand in 2050 could be met with recovered materials. This would substantially reduce demand, but would still mean that US EV demand would need more than double the total amount of lithium produced annually in the world today.

## **Discussion & Recommendations**

Reducing US lithium demand requires policy action similar to federal emissions and fuel economy standards for combustion engine vehicles. One of these policies, the Safer Affordable Fuel Efficient (SAFE) Vehicles sets a required average fuel economy for the auto industry. A similar policy for EVs should be created that addresses battery performance standards to ease consumer's range anxiety and reduce lithium demand. A policy of this nature would require batteries to be covered under warranty for up to 12 years and cap rated battery capacity for private passenger vehicles. A battery standard policy is only effective at reducing lithium demand if private car demand stays the same or decreases because unlike combustion vehicles and gasoline, cutting lithium demand is more an issue of vehicle demand rather than a vehicle miles traveled issue. Therefore, in addition to policies for battery standards, incentives for public electric busses should be made available to the transportation industry and its consumers. Investing in public transportation will shift the American cultural norm that requires individuals to own private vehicles thereby reducing the demand of LIBs and lithium. Furthermore, this investment will make transportation more accessible and equitable. LIB recycling also requires investment from the auto industry and government as it is a viable source of lithium for future demand. The investment required for recycling to be considered a reliable source of lithium in the future moves beyond the creation of recycling facilities. A system for tracking batteries from creation to disposal is necessary for regulators to ensure battery recycling is happening at a vehicle's end-of-life. While recycling does not reduce demand for lithium, it can prevent unnecessary new mining that is harmful to people and planet.

## Appendix

# Table A1. Battery failure calculated from Weibull distribution

| years since car sold | probability of failure |
|----------------------|------------------------|
| 0                    | 0                      |
| 1                    | 0.006                  |
| 2                    | 0.013                  |
| 3                    | 0.019                  |
| 4                    | 0.029                  |
| 5                    | 0.045                  |
| 6                    | 0.062                  |
| 7                    | 0.086                  |
| 8                    | 0.114                  |
| 9                    | 0.146                  |
| 10                   | 0.182                  |
| 11                   | 0.222                  |
| 12                   | 0.263                  |
| 13                   | 0.320                  |
| 14                   | 0.392                  |
| 15                   | 0.466                  |
| 16                   | 0.536                  |
| 17                   | 0.600                  |
| 18                   | 0.657                  |
| 19                   | 0.707                  |
| 20                   | 0.750                  |
| 21                   | 0.786                  |
| 22                   | 0.817                  |
| 23                   | 0.843                  |
| 24                   | 0.866                  |
| 25                   | 0.885                  |
| 26                   | 0.901                  |
| 27                   | 0.915                  |
| 28                   | 0.929                  |

Table A2. Lithium demand (kg) for US passenger vehicles assuming an 8 year warranty period.

|      | battery was |         | ) demand assu<br>hall battery sc |           | battery wa |         | ) demand assu<br>edium battery |           | total Li(kg) demand assuming 8 year<br>battery warranty and large battery scenario |         |          |           |  |
|------|-------------|---------|----------------------------------|-----------|------------|---------|--------------------------------|-----------|------------------------------------------------------------------------------------|---------|----------|-----------|--|
| Year | base case   | lite    | moderate                         | ambitious | base case  | lite    | moderate                       | ambitious | base case                                                                          | lite    | moderate | ambitious |  |
| 2020 | .71E+06     | .68E+06 | .06E+06                          | .02E+06   | .32E+06    | .29E+06 | .66E+06                        | .63E+06   | .51E+06                                                                            | .48E+06 | .86E+06  | .82E+06   |  |
| 2021 | .02E+06     | .42E+07 | .72E+07                          | .69E+06   | .07E+07    | .33E+07 | .37E+07                        | .29E+07   | .59E+07                                                                            | .13E+07 | .64E+07  | .92E+07   |  |
| 2022 | .84E+06     | .43E+07 | .71E+07                          | .60E+06   | .05E+07    | .35E+07 | .37E+07                        | .28E+07   | .58E+07                                                                            | .17E+07 | .65E+07  | .92E+07   |  |
| 2023 | .93E+06     | .03E+07 | .45E+07                          | .77E+06   | .35E+07    | .76E+07 | .98E+07                        | .16E+07   | .05E+07                                                                            | .21E+07 | .02E+07  | .71E+07   |  |
| 2024 | .32E+07     | .38E+07 | .72E+07                          | .07E+07   | .77E+07    | .21E+07 | .32E+07                        | .39E+07   | .65E+07                                                                            | .85E+07 | .50E+07  | .01E+07   |  |
| 2025 | .57E+07     | .68E+07 | .92E+07                          | .19E+07   | .13E+07    | .61E+07 | .59E+07                        | .54E+07   | .22E+07                                                                            | .44E+07 | .91E+07  | .24E+07   |  |
| 2026 | .87E+07     | .98E+07 | .12E+07                          | .31E+07   | .55E+07    | .02E+07 | .87E+07                        | .70E+07   | .89E+07                                                                            | .06E+07 | .33E+07  | .47E+07   |  |
| 2027 | .02E+07     | .87E+07 | .08E+07                          | .17E+07   | .83E+07    | .02E+07 | .90E+07                        | .60E+07   | .43E+07                                                                            | .28E+07 | .52E+07  | .45E+07   |  |
| 2028 | .36E+07     | .17E+07 | .29E+07                          | .29E+07   | .32E+07    | .44E+07 | .19E+07                        | .76E+07   | .19E+07                                                                            | .92E+07 | .98E+07  | .70E+07   |  |
| 2029 | .74E+07     | .49E+07 | .51E+07                          | .41E+07   | .86E+07    | .88E+07 | .50E+07                        | .93E+07   | .05E+07                                                                            | .61E+07 | .46E+07  | .95E+07   |  |
| 2030 | .17E+07     | .82E+07 | .74E+07                          | .54E+07   | .46E+07    | .33E+07 | .83E+07                        | .11E+07   | .00E+07                                                                            | .31E+07 | .96E+07  | .22E+07   |  |
| 2031 | .75E+07     | .25E+07 | .07E+07                          | .77E+07   | .25E+07    | .89E+07 | .25E+07                        | .38E+07   | .20E+07                                                                            | .11E+07 | .56E+07  | .58E+07   |  |
| 2032 | .24E+07     | .63E+07 | .33E+07                          | .92E+07   | .95E+07    | .40E+07 | .60E+07                        | .58E+07   | .31E+07                                                                            | .89E+07 | .10E+07  | .88E+07   |  |
| 2033 | .77E+07     | .01E+07 | .59E+07                          | .07E+07   | .69E+07    | .93E+07 | .96E+07                        | .78E+07   | .05E+08                                                                            | .07E+08 | .66E+07  | .19E+07   |  |
| 2034 | .36E+07     | .44E+07 | .88E+07                          | .23E+07   | .54E+07    | .51E+07 | .36E+07                        | .00E+07   | .18E+08                                                                            | .16E+08 | .28E+07  | .52E+07   |  |

| 2035           | .84E+07 | .48E+07 | .95E+07 | .15E+07 | .29E+07 | .72E+07 | .55E+07 | .98E+07 | .31E+08 | .21E+08 | .71E+07 | .61E+07 |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2036           | .52E+07 | .92E+07 | .26E+07 | .31E+07 | .25E+07 | .35E+07 | .99E+07 | .21E+07 | .46E+08 | .31E+08 | .40E+07 | .97E+07 |
| 2037           | .25E+07 | .37E+07 | .57E+07 | .48E+07 | .03E+08 | .97E+07 | .43E+07 | .44E+07 | .63E+08 | .41E+08 | .01E+08 | .32E+07 |
| 2038           | .04E+07 | .83E+07 | .89E+07 | .65E+07 | .14E+08 | .61E+07 | .88E+07 | .67E+07 | .81E+08 | .51E+08 | .08E+08 | .68E+07 |
| 2039           | .99E+07 | .39E+07 | .31E+07 | .92E+07 | .27E+08 | .04E+08 | .43E+07 | .01E+07 | .01E+08 | .62E+08 | .16E+08 | .15E+07 |
| 2040           | .85E+07 | .89E+07 | .66E+07 | .11E+07 | .40E+08 | .10E+08 | .91E+07 | .27E+07 | .21E+08 | .72E+08 | .23E+08 | .55E+07 |
| 2041           | .08E+08 | .40E+07 | .01E+07 | .30E+07 | .53E+08 | .17E+08 | .40E+07 | .53E+07 | .41E+08 | .83E+08 | .31E+08 | .94E+07 |
| 2042           | .16E+08 | .55E+07 | .18E+07 | .29E+07 | .65E+08 | .21E+08 | .70E+07 | .59E+07 | .62E+08 | .91E+08 | .37E+08 | .15E+07 |
| 2043           | .26E+08 | .03E+07 | .50E+07 | .45E+07 | .80E+08 | .28E+08 | .17E+07 | .82E+07 | .86E+08 | .01E+08 | .44E+08 | .52E+07 |
| 2044           | .38E+08 | .55E+07 | .87E+07 | .65E+07 | .96E+08 | .35E+08 | .69E+07 | .09E+07 | .12E+08 | .13E+08 | .52E+08 | .94E+07 |
| 2045           | .49E+08 | .01E+08 | .28E+07 | .87E+07 | .13E+08 | .43E+08 | .02E+08 | .40E+07 | .37E+08 | .25E+08 | .61E+08 | .39E+07 |
| 2046           | .62E+08 | .08E+08 | .77E+07 | .18E+07 | .30E+08 | .52E+08 | .09E+08 | .78E+07 | .64E+08 | .38E+08 | .70E+08 | .93E+07 |
| 2047           | .73E+08 | .14E+08 | .19E+07 | .41E+07 | .47E+08 | .60E+08 | .15E+08 | .09E+07 | .91E+08 | .50E+08 | .79E+08 | .40E+07 |
| 2048           | .86E+08 | .20E+08 | .62E+07 | .64E+07 | .65E+08 | .68E+08 | .21E+08 | .40E+07 | .19E+08 | .63E+08 | .88E+08 | .88E+07 |
| 2049           | .99E+08 | .26E+08 | .06E+07 | .88E+07 | .83E+08 | .77E+08 | .27E+08 | .73E+07 | .49E+08 | .77E+08 | .98E+08 | .04E+08 |
| 2050           | .11E+08 | .29E+08 | .30E+07 | .25E+07 | .01E+08 | .82E+08 | .31E+08 | .19E+07 | .79E+08 | .88E+08 | .06E+08 | .20E+08 |
| Cumu<br>lative | .39E+09 | .93E+09 | .39E+09 | .76E+08 | .39E+09 | .70E+09 | .94E+09 | .06E+09 | .36E+09 | .23E+09 | .03E+09 | .62E+09 |

|      |           | ithium dema<br>total Li (kg<br>y warranty an | g) demand as: | suming 8      |               | <u> </u>      | g) demand assu | uming 8 year  | total Li (kg) demand assuming 8<br>year battery warranty and large battery scenario |               |               |               |  |
|------|-----------|----------------------------------------------|---------------|---------------|---------------|---------------|----------------|---------------|-------------------------------------------------------------------------------------|---------------|---------------|---------------|--|
| Year | Scenaro 1 | Scenario<br>2                                | Scenario<br>3 | Scenario<br>4 | Scenario<br>1 | Scenario<br>2 | Scenario<br>3  | Scenario<br>4 | Scenario<br>1                                                                       | Scenario<br>2 | Scenario<br>3 | Scenario<br>4 |  |
| 2020 | .71E+06   | .68E+06                                      | .06E+06       | .02E+06       | .32E+06       | .29E+06       | .66E+06        | .63E+06       | .51E+06                                                                             | .49E+06       | .86E+06       | .83E+06       |  |
| 2021 | .02E+06   | .42E+07                                      | .72E+07       | .69E+06       | .07E+07       | .33E+07       | .37E+07        | .29E+07       | .59E+07                                                                             | .13E+07       | .64E+07       | .92E+07       |  |
| 2022 | .84E+06   | .43E+07                                      | .71E+07       | .60E+06       | .05E+07       | .35E+07       | .37E+07        | .28E+07       | .58E+07                                                                             | .17E+07       | .65E+07       | .92E+07       |  |
| 2023 | .94E+06   | .03E+07                                      | .45E+07       | .78E+06       | .35E+07       | .76E+07       | .98E+07        | .16E+07       | .06E+07                                                                             | .21E+07       | .02E+07       | .71E+07       |  |
| 2024 | .32E+07   | .38E+07                                      | .72E+07       | .08E+07       | .77E+07       | .22E+07       | .32E+07        | .39E+07       | .66E+07                                                                             | .85E+07       | .50E+07       | .02E+07       |  |
| 2025 | .57E+07   | .68E+07                                      | .92E+07       | .19E+07       | .13E+07       | .61E+07       | .59E+07        | .55E+07       | .23E+07                                                                             | .44E+07       | .91E+07       | .24E+07       |  |
| 2026 | .87E+07   | .98E+07                                      | .13E+07       | .31E+07       | .55E+07       | .02E+07       | .87E+07        | .71E+07       | .89E+07                                                                             | .07E+07       | .34E+07       | .48E+07       |  |
| 2027 | .03E+07   | .88E+07                                      | .08E+07       | .18E+07       | .84E+07       | .02E+07       | .91E+07        | .61E+07       | .44E+07                                                                             | .28E+07       | .53E+07       | .46E+07       |  |
| 2028 | .37E+07   | .18E+07                                      | .29E+07       | .29E+07       | .32E+07       | .44E+07       | .20E+07        | .77E+07       | .21E+07                                                                             | .94E+07       | .99E+07       | .71E+07       |  |
| 2029 | .75E+07   | .50E+07                                      | .51E+07       | .41E+07       | .86E+07       | .89E+07       | .51E+07        | .93E+07       | .07E+07                                                                             | .62E+07       | .47E+07       | .96E+07       |  |
| 2030 | .18E+07   | .85E+07                                      | .77E+07       | .56E+07       | .48E+07       | .38E+07       | .86E+07        | .13E+07       | .03E+07                                                                             | .38E+07       | .01E+07       | .25E+07       |  |
| 2031 | .78E+07   | .33E+07                                      | .13E+07       | .80E+07       | .28E+07       | .00E+07       | .33E+07        | .42E+07       | .25E+07                                                                             | .30E+07       | .69E+07       | .65E+07       |  |
| 2032 | .27E+07   | .70E+07                                      | .38E+07       | .94E+07       | .99E+07       | .51E+07       | .68E+07        | .62E+07       | .37E+07                                                                             | .01E+08       | .22E+07       | .94E+07       |  |
| 2033 | .80E+07   | .08E+07                                      | .64E+07       | .09E+07       | .74E+07       | .03E+07       | .03E+07        | .82E+07       | .06E+08                                                                             | .09E+08       | .77E+07       | .24E+07       |  |
| 2034 | .40E+07   | .52E+07                                      | .94E+07       | .26E+07       | .60E+07       | .62E+07       | .44E+07        | .04E+07       | .19E+08                                                                             | .18E+08       | .41E+07       | .58E+07       |  |
| 2035 | .90E+07   | .56E+07                                      | .01E+07       | .18E+07       | .37E+07       | .85E+07       | .64E+07        | .02E+07       | .32E+08                                                                             | .23E+08       | .85E+07       | .69E+07       |  |
| 2036 | .58E+07   | .02E+07                                      | .33E+07       | .35E+07       | .34E+07       | .48E+07       | .09E+07        | .26E+07       | .48E+08                                                                             | .33E+08       | .55E+07       | .05E+07       |  |
| 2037 | .32E+07   | .48E+07                                      | .65E+07       | .52E+07       | .04E+08       | .12E+07       | .54E+07        | .49E+07       | .65E+08                                                                             | .43E+08       | .03E+08       | .41E+07       |  |
| 2038 | .13E+07   | .94E+07                                      | .97E+07       | .69E+07       | .16E+08       | .77E+07       | .99E+07        | .73E+07       | .83E+08                                                                             | .53E+08       | .10E+08       | .78E+07       |  |
| 2039 | .09E+07   | .51E+07                                      | .40E+07       | .97E+07       | .29E+08       | .05E+08       | .56E+07        | .08E+07       | .04E+08                                                                             | .65E+08       | .18E+08       | .26E+07       |  |
| 2040 | .97E+07   | .03E+07                                      | .76E+07       | .16E+07       | .41E+08       | .12E+08       | .05E+07        | .34E+07       | .24E+08                                                                             | .76E+08       | .26E+08       | .66E+07       |  |
| 2041 | .09E+08   | .55E+07                                      | .12E+07       | .36E+07       | .55E+08       | .20E+08       | .55E+07        | .61E+07       | .45E+08                                                                             | .87E+08       | .33E+08       | .07E+07       |  |

Table A3. Lithium demand (kg) for US passenger vehicles assuming a 10 year warranty period.

| 2042           | .18E+08 | .71E+07 | .29E+07 | .35E+07 | .67E+08 | .23E+08 | .87E+07 | .68E+07 | .65E+08 | .94E+08 | .39E+08 | .28E+07 |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2043           | .28E+08 | .20E+07 | .63E+07 | .52E+07 | .83E+08 | .30E+08 | .35E+07 | .92E+07 | .90E+08 | .05E+08 | .47E+08 | .67E+07 |
| 2044           | .40E+08 | .74E+07 | .00E+07 | .72E+07 | .99E+08 | .38E+08 | .88E+07 | .19E+07 | .16E+08 | .17E+08 | .55E+08 | .10E+07 |
| 2045           | .51E+08 | .03E+08 | .42E+07 | .95E+07 | .16E+08 | .46E+08 | .05E+08 | .50E+07 | .42E+08 | .29E+08 | .64E+08 | .56E+07 |
| 2046           | .64E+08 | .10E+08 | .93E+07 | .26E+07 | .33E+08 | .55E+08 | .11E+08 | .90E+07 | .70E+08 | .43E+08 | .74E+08 | .12E+07 |
| 047            | .76E+08 | .16E+08 | .35E+07 | .49E+07 | .51E+08 | .63E+08 | .17E+08 | .21E+07 | .97E+08 | .56E+08 | .83E+08 | .59E+07 |
| 2048           | .89E+08 | .22E+08 | .79E+07 | .73E+07 | .69E+08 | .72E+08 | .23E+08 | .54E+07 | .26E+08 | .69E+08 | .93E+08 | .01E+08 |
| 2049           | .02E+08 | .29E+08 | .25E+07 | .98E+07 | .88E+08 | .81E+08 | .29E+08 | .87E+07 | .57E+08 | .83E+08 | .02E+08 | .06E+08 |
| 2050           | .15E+08 | .32E+08 | .51E+07 | .35E+07 | .07E+08 | .86E+08 | .34E+08 | .34E+07 | .87E+08 | .94E+08 | .11E+08 | .23E+08 |
| Cumulat<br>ive | .42E+09 | .96E+09 | .41E+09 | .88E+08 | .44E+09 | .75E+09 | .97E+09 | .08E+09 | .43E+09 | .30E+09 | .08E+09 | .65E+09 |

Table A4. Lithium demand (kg) for US passenger vehicles assuming a 12 year warranty period.

|      | year batter   | total Li (kş<br>ywarranty an | g) demand as:<br>d small batte |               | total Li (kg) demand assuming 8 year<br>battery warranty and medium battery scenario |               |               |               | total Li (kg) demand assuming 8<br>year battery warranty and large battery scenario |               |               |               |
|------|---------------|------------------------------|--------------------------------|---------------|--------------------------------------------------------------------------------------|---------------|---------------|---------------|-------------------------------------------------------------------------------------|---------------|---------------|---------------|
| Year | Scenario<br>1 | Scenario<br>2                | Scenario<br>3                  | Scenario<br>4 | Scenario<br>1                                                                        | Scenario<br>2 | Scenario<br>3 | Scenario<br>4 | Scenario<br>1                                                                       | Scenario<br>2 | Scenario<br>3 | Scenario<br>4 |
| 2020 | .71E+06       | .68E+06                      | .06E+06                        | .02E+06       | .32E+06                                                                              | .29E+06       | .66E+06       | .63E+06       | .51E+06                                                                             | .49E+06       | .86E+06       | .83E+06       |
| 2021 | .03E+06       | .42E+07                      | .72E+07                        | .69E+06       | .07E+07                                                                              | .33E+07       | .37E+07       | .29E+07       | .59E+07                                                                             | .13E+07       | .64E+07       | .92E+07       |
| 2022 | .85E+06       | .43E+07                      | .72E+07                        | .61E+06       | .05E+07                                                                              | .35E+07       | .37E+07       | .29E+07       | .58E+07                                                                             | .17E+07       | .65E+07       | .92E+07       |
| 2023 | .95E+06       | .03E+07                      | .45E+07                        | .79E+06       | .35E+07                                                                              | .76E+07       | .98E+07       | .16E+07       | .06E+07                                                                             | .21E+07       | .02E+07       | .72E+07       |
| 2024 | .32E+07       | .39E+07                      | .73E+07                        | .08E+07       | .77E+07                                                                              | .22E+07       | .33E+07       | .40E+07       | .66E+07                                                                             | .85E+07       | .50E+07       | .02E+07       |
| 2025 | .58E+07       | .68E+07                      | .92E+07                        | .20E+07       | .14E+07                                                                              | .62E+07       | .60E+07       | .55E+07       | .24E+07                                                                             | .45E+07       | .92E+07       | .25E+07       |
| 2026 | .88E+07       | .99E+07                      | .13E+07                        | .32E+07       | .56E+07                                                                              | .03E+07       | .88E+07       | .71E+07       | .90E+07                                                                             | .08E+07       | .35E+07       | .49E+07       |
| 2027 | .03E+07       | .88E+07                      | .09E+07                        | .18E+07       | .85E+07                                                                              | .03E+07       | .92E+07       | .62E+07       | .45E+07                                                                             | .30E+07       | .54E+07       | .47E+07       |
| 2028 | .37E+07       | .18E+07                      | .30E+07                        | .30E+07       | .33E+07                                                                              | .45E+07       | .21E+07       | .78E+07       | .22E+07                                                                             | .95E+07       | .01E+07       | .72E+07       |
| 2029 | .76E+07       | .51E+07                      | .52E+07                        | .42E+07       | .88E+07                                                                              | .90E+07       | .53E+07       | .95E+07       | .09E+07                                                                             | .64E+07       | .50E+07       | .99E+07       |
| 2030 | .20E+07       | .87E+07                      | .78E+07                        | .57E+07       | .50E+07                                                                              | .40E+07       | .88E+07       | .15E+07       | .06E+07                                                                             | .41E+07       | .05E+07       | .29E+07       |

| 2031           | .79E+07 | .35E+07 | .14E+07 | .81E+07 | .31E+07 | .03E+07 | .35E+07 | .44E+07 | .29E+07 | .33E+07 | .72E+07 | .69E+07 |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 2032           | .31E+07 | .80E+07 | .45E+07 | .98E+07 | .04E+07 | .65E+07 | .78E+07 | .68E+07 | .45E+07 | .03E+08 | .39E+07 | .04E+07 |
| 2033           | .87E+07 | .31E+07 | .80E+07 | .18E+07 | .84E+07 | .36E+07 | .27E+07 | .94E+07 | .07E+08 | .14E+08 | .15E+07 | .43E+07 |
| 2034           | .48E+07 | .73E+07 | .09E+07 | .34E+07 | .71E+07 | .93E+07 | .66E+07 | .15E+07 | .21E+08 | .23E+08 | .75E+07 | .76E+07 |
| 2035           | .00E+07 | .76E+07 | .15E+07 | .25E+07 | .51E+07 | .12E+07 | .84E+07 | .13E+07 | .35E+08 | .28E+08 | .17E+07 | .86E+07 |
| 2036           | .70E+07 | .24E+07 | .48E+07 | .43E+07 | .52E+07 | .80E+07 | .31E+07 | .38E+07 | .51E+08 | .38E+08 | .91E+07 | .24E+07 |
| 2037           | .48E+07 | .72E+07 | .82E+07 | .61E+07 | .06E+08 | .48E+07 | .79E+07 | .63E+07 | .68E+08 | .49E+08 | .07E+08 | .63E+07 |
| 2038           | .31E+07 | .21E+07 | .17E+07 | .79E+07 | .18E+08 | .02E+08 | .27E+07 | .88E+07 | .87E+08 | .60E+08 | .14E+08 | .02E+07 |
| 2039           | .31E+07 | .81E+07 | .62E+07 | .08E+07 | .32E+08 | .10E+08 | .87E+07 | .24E+07 | .09E+08 | .72E+08 | .23E+08 | .52E+07 |
| 2040           | .02E+08 | .36E+07 | .99E+07 | .28E+07 | .45E+08 | .17E+08 | .39E+07 | .52E+07 | .29E+08 | .83E+08 | .31E+08 | .94E+07 |
| 2041           | .12E+08 | .91E+07 | .38E+07 | .49E+07 | .59E+08 | .25E+08 | .92E+07 | .80E+07 | .51E+08 | .95E+08 | .39E+08 | .38E+07 |
| 2042           | .21E+08 | .10E+07 | .57E+07 | .50E+07 | .72E+08 | .29E+08 | .27E+07 | .89E+07 | .73E+08 | .03E+08 | .46E+08 | .62E+07 |
| 2043           | .32E+08 | .63E+07 | .93E+07 | .67E+07 | .88E+08 | .36E+08 | .79E+07 | .14E+07 | .99E+08 | .15E+08 | .54E+08 | .03E+07 |
| 2044           | .44E+08 | .02E+08 | .33E+07 | .89E+07 | .06E+08 | .44E+08 | .04E+08 | .44E+07 | .27E+08 | .28E+08 | .63E+08 | .49E+07 |
| 2045           | .57E+08 | .08E+08 | .78E+07 | .13E+07 | .23E+08 | .53E+08 | .10E+08 | .77E+07 | .54E+08 | .41E+08 | .72E+08 | .98E+07 |
| 2046           | .70E+08 | .15E+08 | .31E+07 | .46E+07 | .42E+08 | .62E+08 | .17E+08 | .18E+07 | .83E+08 | .55E+08 | .83E+08 | .57E+07 |
| 2047           | .83E+08 | .22E+08 | .77E+07 | .71E+07 | .60E+08 | .71E+08 | .23E+08 | .52E+07 | .12E+08 | .69E+08 | .93E+08 | .01E+08 |
| 2048           | .96E+08 | .28E+08 | .24E+07 | .96E+07 | .79E+08 | .81E+08 | .30E+08 | .87E+07 | .43E+08 | .83E+08 | .03E+08 | .06E+08 |
| 2049           | .10E+08 | .35E+08 | .73E+07 | .23E+07 | .00E+08 | .90E+08 | .36E+08 | .23E+07 | .75E+08 | .98E+08 | .13E+08 | .12E+08 |
| 2050           | .24E+08 | .39E+08 | .00E+08 | .61E+07 | .19E+08 | .97E+08 | .41E+08 | .72E+07 | .07E+08 | .10E+08 | .22E+08 | .29E+08 |
| Cum-<br>lative | .49E+09 | .04E+09 | .46E+09 | .16E+08 | .54E+09 | .86E+09 | .05E+09 | .12E+09 | .59E+09 | .47E+09 | .20E+09 | .71E+09 |

#### Recycled Material and Circularity Potential

Table A5. Material demand, recycled material available, and net demand (Material demand - recycled material available) assuming a medium battery capacity future and an 8 year warranty period.

|  | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | 1 |
|--|------------|------------|------------|------------|---|
|--|------------|------------|------------|------------|---|

| Year | Demand | Decycled<br>material<br>available | Net<br>demand | Demand | Recycled<br>material<br>available | Net<br>demand | Demand | Recycled<br>material<br>available | Net<br>demand | Demand | Recycled<br>material<br>available | Net<br>demand |
|------|--------|-----------------------------------|---------------|--------|-----------------------------------|---------------|--------|-----------------------------------|---------------|--------|-----------------------------------|---------------|
| 2020 | .6E+06 | .3E+06                            | .3E+06        | .6E+06 | .3E+06                            | .3E+06        | .3E+06 | .7E+06                            | .7E+06        | .3E+06 | .7E+06                            | .6E+06        |
| 2021 | .2E+07 | .5E+06                            | .1E+07        | .6E+07 | .8E+06                            | .3E+07        | .2E+07 | .0E+06                            | .0E+07        | .8E+07 | .9E+06                            | .6E+07        |
| 2022 | .2E+07 | .6E+06                            | .1E+07        | .7E+07 | .3E+06                            | .4E+07        | .0E+07 | .3E+06                            | .7E+07        | .2E+07 | .2E+06                            | .0E+07        |
| 2023 | .5E+07 | .8E+06                            | .3E+07        | .1E+07 | .8E+06                            | .7E+07        | .2E+07 | .6E+06                            | .9E+07        | .4E+07 | .4E+06                            | .1E+07        |
| 2024 | .0E+07 | .1E+06                            | .8E+07        | .7E+07 | .5E+06                            | .2E+07        | .7E+07 | .0E+06                            | .4E+07        | .7E+07 | .8E+06                            | .5E+07        |
| 2025 | .4E+07 | .6E+06                            | .2E+07        | .1E+07 | .3E+06                            | .6E+07        | .0E+07 | .6E+06                            | .6E+07        | .9E+07 | .2E+06                            | .6E+07        |
| 2026 | .9E+07 | .0E+06                            | .6E+07        | .6E+07 | .3E+06                            | .0E+07        | .3E+07 | .2E+06                            | .9E+07        | .1E+07 | .6E+06                            | .8E+07        |
| 2027 | .0E+07 | .0E+06                            | .8E+07        | .3E+07 | .4E+06                            | .9E+07        | .1E+07 | .6E+06                            | .8E+07        | .8E+07 | .6E+06                            | .6E+07        |
| 2028 | .5E+07 | .8E+06                            | .2E+07        | .7E+07 | .5E+06                            | .3E+07        | .4E+07 | .4E+06                            | .1E+07        | .0E+07 | .1E+06                            | .7E+07        |
| 2029 | .0E+07 | .8E+06                            | .7E+07        | .2E+07 | .9E+06                            | .6E+07        | .7E+07 | .5E+06                            | .3E+07        | .1E+07 | .8E+06                            | .9E+07        |
| 2030 | .7E+07 | .5E+06                            | .1E+07        | .7E+07 | .7E+06                            | .9E+07        | .1E+07 | .9E+06                            | .5E+07        | .4E+07 | .6E+06                            | .0E+07        |
| 2031 | .6E+07 | .0E+06                            | .8E+07        | .4E+07 | .1E+07                            | .3E+07        | .6E+07 | .6E+06                            | .8E+07        | .7E+07 | .6E+06                            | .2E+07        |
| 2032 | .3E+07 | .9E+06                            | .3E+07        | .9E+07 | .4E+07                            | .5E+07        | .0E+07 | .1E+07                            | .9E+07        | .0E+07 | .9E+06                            | .3E+07        |
| 2033 | .0E+07 | .3E+07                            | .8E+07        | .5E+07 | .9E+07                            | .6E+07        | .4E+07 | .4E+07                            | .0E+07        | .2E+07 | .7E+06                            | .3E+07        |
| 2034 | .9E+07 | .6E+07                            | .3E+07        | .2E+07 | .5E+07                            | .7E+07        | .8E+07 | .8E+07                            | .0E+07        | .5E+07 | .1E+07                            | .4E+07        |
| 2035 | .5E+07 | .0E+07                            | .5E+07        | .1E+07 | .1E+07                            | .9E+07        | .8E+07 | .3E+07                            | .5E+07        | .2E+07 | .3E+07                            | .9E+07        |
| 2036 | .5E+07 | .5E+07                            | .0E+07        | .7E+07 | .9E+07                            | .8E+07        | .3E+07 | .8E+07                            | .5E+07        | .5E+07 | .6E+07                            | .9E+07        |
| 2037 | .1E+08 | .1E+07                            | .4E+07        | .4E+07 | .6E+07                            | .7E+07        | .7E+07 | .3E+07                            | .4E+07        | .7E+07 | .9E+07                            | .9E+07        |
| 2038 | .2E+08 | .8E+07                            | .9E+07        | .0E+08 | .4E+07                            | .7E+07        | .2E+07 | .8E+07                            | .4E+07        | .0E+07 | .1E+07                            | .8E+07        |
| 2039 | .3E+08 | .4E+07                            | .6E+07        | .1E+08 | .0E+07                            | .9E+07        | .9E+07 | .3E+07                            | .6E+07        | .4E+07 | .4E+07                            | .1E+07        |
| 2040 | .4E+08 | .2E+07                            | .2E+07        | .2E+08 | .7E+07                            | .0E+07        | .4E+07 | .8E+07                            | .6E+07        | .7E+07 | .6E+07                            | .1E+07        |
| 2041 | .6E+08 | .0E+07                            | .6E+07        | .2E+08 | .4E+07                            | .1E+07        | .9E+07 | .3E+07                            | .6E+07        | .0E+07 | .9E+07                            | .1E+07        |
| 2042 | .7E+08 | .9E+07                            | .9E+07        | .2E+08 | .7E+07                            | .8E+07        | .1E+07 | .5E+07                            | .6E+07        | .9E+07 | .9E+07                            | .0E+07        |

| 2043           | .8E+08 | .0E+07 | .0E+08 | .3E+08 | .4E+07 | .8E+07 | .5E+07 | .0E+07 | .5E+07 | .1E+07 | .2E+07 | .0E+07 |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 2044           | .0E+08 | .0E+07 | .1E+08 | .4E+08 | .2E+07 | .8E+07 | .0E+08 | .6E+07 | .5E+07 | .4E+07 | .4E+07 | .0E+07 |
| 2045           | .2E+08 | .0E+08 | .1E+08 | .5E+08 | .0E+08 | .8E+07 | .1E+08 | .2E+07 | .5E+07 | .8E+07 | .7E+07 | .0E+07 |
| 2046           | .3E+08 | .1E+08 | .2E+08 | .6E+08 | .1E+08 | .9E+07 | .1E+08 | .9E+07 | .6E+07 | .3E+07 | .2E+07 | .1E+07 |
| 2047           | .5E+08 | .3E+08 | .2E+08 | .7E+08 | .2E+08 | .9E+07 | .2E+08 | .5E+07 | .6E+07 | .6E+07 | .5E+07 | .1E+07 |
| 2048           | .7E+08 | .4E+08 | .3E+08 | .8E+08 | .3E+08 | .8E+07 | .3E+08 | .2E+07 | .5E+07 | .0E+07 | .9E+07 | .1E+07 |
| 2049           | .9E+08 | .6E+08 | .3E+08 | .9E+08 | .4E+08 | .8E+07 | .3E+08 | .9E+07 | .5E+07 | .4E+07 | .2E+07 | .1E+07 |
| 2050           | .1E+08 | .3E+07 | .2E+08 | .9E+08 | .6E+07 | .1E+08 | .4E+08 | .5E+07 | .2E+07 | .0E+08 | .9E+07 | .0E+07 |
| Cum-<br>lative | .5E+09 | .3E+09 | .2E+09 | .9E+09 | .4E+09 | .4E+09 | .1E+09 | .0E+09 | .0E+09 | .2E+09 | .6E+08 | .3E+08 |

## Table A6. Lithium demand (kg) by year for US school and transit buses

|      | S          | chool bus lithium ( | kg) demand by trans | port future scenario | Tr         | ansit bus lithium ( | kg) demand by tran | sport future scenario |
|------|------------|---------------------|---------------------|----------------------|------------|---------------------|--------------------|-----------------------|
| Year | Scenario 1 | Scenario 2          | Scenario 3          | Scenario 4           | Scenario 1 | Scenario 2          | Scenario 3         | Scenario 4            |
| 2020 | 1.42E+04   | 1.42E+04            | 1.42E+04            | 1.42E+04             | 1.30E+06   | 2.27E+06            | 1.64E+06           | 1.61E+0               |
| 2021 | 5.29E+05   | 5.29E+05            | 5.29E+05            | 5.40E+05             | 1.36E+06   | 2.57E+06            | 1.79E+06           | 1.76E+06              |
| 2022 | 2.30E+05   | 2.30E+05            | 2.30E+05            | 2.35E+05             | 1.41E+06   | 2.87E+06            | 1.93E+06           | 1.91E+06              |
| 2023 | 2.40E+05   | 2.40E+05            | 2.40E+05            | 2.46E+05             | 1.47E+06   | 3.17E+06            | 2.07E+06           | 2.06E+06              |
| 2024 | 2.51E+05   | 2.51E+05            | 2.51E+05            | 2.57E+05             | 2.53E+06   | 4.48E+06            | 3.23E+06           | 3.21E+06              |
| 2025 | 2.63E+05   | 2.63E+05            | 2.63E+05            | 2.69E+05             | 2.64E+06   | 5.08E+06            | 3.52E+06           | 3.51E+06              |
| 2026 | 2.77E+05   | 2.77E+05            | 2.77E+05            | 2.82E+05             | 2.76E+06   | 5.68E+06            | 3.80E+06           | 3.80E+06              |
| 2027 | 2.91E+05   | 2.91E+05            | 2.91E+05            | 2.95E+05             | 1.29E+06   | 2.03E+06            | 1.57E+06           | 1.49E+06              |
| 2028 | 3.07E+05   | 3.07E+05            | 3.07E+05            | 3.09E+05             | 1.35E+06   | 2.34E+06            | 1.71E+06           | 1.64E+06              |
| 2029 | 3.25E+05   | 3.25E+05            | 3.25E+05            | 3.24E+05             | 1.40E+06   | 2.64E+06            | 1.86E+06           | 1.79E+06              |
| 2030 | 4.80E+05   | 4.80E+05            | 4.80E+05            | 4.78E+05             | 1.48E+06   | 2.97E+06            | 2.04E+06           | 1.96E+06              |
| 2031 | 5.05E+05   | 5.05E+05            | 5.05E+05            | 4.98E+05             | 2.55E+06   | 4.29E+06            | 3.20E+06           | 3.12E+06              |
| 2032 | 5.34E+05   | 5.34E+05            | 5.34E+05            | 5.21E+05             | 2.66E+06   | 4.90E+06            | 3.50E+06           | 3.42E+06              |
| 2033 | 5.68E+05   | 5.68E+05            | 5.68E+05            | 5.48E+05             | 2.77E+06   | 5.51E+06            | 3.80E+06           | 3.72E+06              |
| 2034 | 6.04E+05   | 6.04E+05            | 6.04E+05            | 5.76E+05             | 2.89E+06   | 6.12E+06            | 4.10E+06           | 4.02E+06              |
| 2035 | 6.43E+05   | 6.43E+05            | 6.43E+05            | 6.04E+05             | 1.42E+06   | 2.49E+06            | 1.88E+06           | 1.72E+06              |
| 2036 | 6.84E+05   | 6.84E+05            | 6.84E+05            | 6.34E+05             | 1.48E+06   | 2.81E+06            | 2.05E+06           | 1.87E+06              |

| 2037             | 7.28E+05 | 7.28E+05 | 7.28E+05 | 6.64E+05 | 1.57E+06 | 3.16E+06 | 2.25E+06 | 2.05E+06 |
|------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| 2038             | 7.76E+05 | 7.76E+05 | 7.76E+05 | 6.96E+05 | 1.63E+06 | 3.49E+06 | 2.42E+06 | 2.21E+06 |
| 2039             | 8.26E+05 | 8.26E+05 | 8.26E+05 | 7.29E+05 | 2.70E+06 | 4.83E+06 | 3.62E+06 | 3.38E+06 |
| 2040             | 8.80E+05 | 8.80E+05 | 8.80E+05 | 7.62E+05 | 2.83E+06 | 5.47E+06 | 3.95E+06 | 3.69E+06 |
| 2041             | 9.33E+05 | 9.33E+05 | 9.33E+05 | 7.93E+05 | 2.95E+06 | 6.11E+06 | 4.28E+06 | 4.01E+06 |
| 2042             | 1.51E+06 | 1.51E+06 | 1.51E+06 | 1.35E+06 | 1.50E+06 | 2.51E+06 | 2.10E+06 | 1.72E+06 |
| 2043             | 1.27E+06 | 1.27E+06 | 1.27E+06 | 1.09E+06 | 1.57E+06 | 2.87E+06 | 2.31E+06 | 1.89E+06 |
| 2044             | 1.35E+06 | 1.35E+06 | 1.35E+06 | 1.13E+06 | 1.65E+06 | 3.23E+06 | 2.52E+06 | 2.07E+06 |
| 2045             | 1.64E+06 | 1.64E+06 | 1.64E+06 | 1.37E+06 | 1.79E+06 | 3.69E+06 | 2.84E+06 | 2.32E+06 |
| 2046             | 1.74E+06 | 1.74E+06 | 1.74E+06 | 1.43E+06 | 2.88E+06 | 5.09E+06 | 4.09E+06 | 3.53E+06 |
| 2047             | 1.85E+06 | 1.85E+06 | 1.85E+06 | 1.50E+06 | 3.03E+06 | 5.79E+06 | 4.49E+06 | 3.88E+06 |
| 2048             | 1.97E+06 | 1.97E+06 | 1.97E+06 | 1.56E+06 | 3.18E+06 | 6.49E+06 | 4.90E+06 | 4.24E+06 |
| 2049             | 2.09E+06 | 2.09E+06 | 2.09E+06 | 1.63E+06 | 3.34E+06 | 7.21E+06 | 5.32E+06 | 4.61E+06 |
| 2050             | 2.22E+06 | 2.22E+06 | 2.22E+06 | 1.71E+06 | 1.92E+06 | 3.70E+06 | 3.23E+06 | 1.60E+07 |
| Cumulative (2050 | 2.65E+07 | 2.65E+07 | 2.65E+07 | 2.30E+07 | 6.53E+07 | 1.26E+08 | 9.20E+07 | 9.82E+07 |

Table A7. Cumulative lithium circularity potential in 2050 assuming medium battery scenario and 8 year warranty period

| Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
|------------|------------|------------|------------|
| 38%        | 49%        | 49%        | 47%        |

| Table A | 8 US EV | passenger car stock, | sales, and | l retirements for | r Scenarios 1 and 2 |
|---------|---------|----------------------|------------|-------------------|---------------------|
|         |         |                      |            |                   |                     |

|      | Scenario 1 |          |             | Scenario 2 |          |             |
|------|------------|----------|-------------|------------|----------|-------------|
| Year | EV Stock   | EVs Sold | EVs retired | EV Stock   | EVs Sold | EVs retired |
| 2010 | 3774       | 3774     | 24          | 3774       | 3774     | 24          |
| 2011 | 13524      | 9750     | 86          | 13524      | 9750     | 86          |
| 2012 | 28174      | 14650    | 179         | 28174      | 14650    | 179         |
| 2013 | 75864      | 47690    | 498         | 75864      | 47690    | 498         |
| 2014 | 139284     | 63420    | 958         | 139284     | 63420    | 958         |
| 2015 | 210328     | 71044    | 1525        | 210328     | 71044    | 1525        |
| 2016 | 297059     | 86731    | 2388        | 297059     | 86731    | 2388        |
| 2017 | 401546     | 104487   | 3645        | 401546     | 104487   | 3645        |
| 2018 | 640369     | 238823   | 6027        | 640369     | 238823   | 6027        |
| 2019 | 882281     | 241912   | 8830        | 882281     | 241912   | 8830        |
| 2020 | 1138654    | 231088   | 12003       | 1138654    | 231088   | 12003       |
| 2021 | 2142551    | 1015900  | 21131       | 4612519    | 3485867  | 36840       |
| 2022 | 3146449    | 1025028  | 31404       | 8086384    | 3510705  | 62922       |

| 2023 | 4475789   | 1360745  | 44740    | 10817357  | 2793896  | 85373   |
|------|-----------|----------|----------|-----------|----------|---------|
| 2024 | 6148270   | 1717221  | 64699    | 13893446  | 3161461  | 124397  |
| 2025 | 8202734   | 2119163  | 114355   | 17314649  | 3545601  | 182427  |
| 2026 | 10678022  | 2589643  | 149939   | 21080968  | 3948746  | 251430  |
| 2027 | 13612976  | 3084893  | 197300   | 25192402  | 4362864  | 341680  |
| 2028 | 17046439  | 3630762  | 269970   | 29648951  | 4798229  | 448285  |
| 2029 | 21017251  | 4240783  | 359578   | 34450615  | 5249949  | 572835  |
| 2030 | 25564255  | 4906582  | 528400   | 39597394  | 5719614  | 717876  |
| 2031 | 30726293  | 5690438  | 661331   | 45089288  | 6209770  | 887475  |
| 2032 | 36542205  | 6477244  | 804955   | 50926297  | 6724484  | 1072747 |
| 2033 | 43050835  | 7313585  | 1026321  | 57108422  | 7254872  | 1318539 |
| 2034 | 50291024  | 8266509  | 1286826  | 63635661  | 7845779  | 1630369 |
| 2035 | 58301613  | 9297416  | 1565781  | 70508016  | 8502723  | 1957937 |
| 2036 | 67121445  | 10385613 | 1901342  | 77725486  | 9175406  | 2285793 |
| 2037 | 76789361  | 11569258 | 2297227  | 85288071  | 9848377  | 2622326 |
| 2038 | 87344203  | 12852069 | 2744290  | 93195771  | 10530026 | 2973095 |
| 2039 | 98824813  | 14224900 | 3178780  | 101448586 | 11225910 | 3338547 |
| 2040 | 111270032 | 15623999 | 3646176  | 110046516 | 11936477 | 3720043 |
| 2041 | 124718704 | 17094848 | 4121221  | 118989561 | 12663088 | 4119320 |
| 2042 | 139209668 | 18612185 | 4789970  | 128277721 | 13407480 | 4536470 |
| 2043 | 154781767 | 20362069 | 5514287  | 137910997 | 14169745 | 4974776 |
| 2044 | 171473844 | 22206363 | 6159107  | 147889388 | 14953166 | 5433270 |
| 2045 | 189324739 | 24010002 | 6793200  | 158212893 | 15756775 | 5911080 |
| 2046 | 208373294 | 25841756 | 7463396  | 168881514 | 16579701 | 6409245 |
| 2047 | 228658352 | 27748453 | 8195278  | 179895250 | 17422980 | 6931755 |
| 2048 | 250218754 | 29755680 | 8992740  | 191254101 | 18290606 | 7484663 |
| 2049 | 273093342 | 31867328 | 9858715  | 202958067 | 19188629 | 8051033 |
| 2050 | 297320957 | 34086330 | 11018026 | 215118347 | 20211313 | 8638164 |
|      |           |          |          |           |          |         |

Table A9. US EV passenger car stock, sales, and retirements for Scenarios 3 and 4.

|      | Scenario 3 | Scenario 3 |             |          |          |             |
|------|------------|------------|-------------|----------|----------|-------------|
|      | EV Stock   | EVs Sold   | EVs retired | EV Stock | EVs Sold | EVs retired |
| Year | 3774       | 3774       | 24          | 3774     | 3774     | 24          |
| 2010 | 13524      | 9750       | 86          | 13524    | 9750     | 86          |
| 2011 | 28174      | 14650      | 179         | 28174    | 14650    | 179         |
| 2012 | 75864      | 47690      | 498         | 75864    | 47690    | 498         |

| 2013 | 139284    | 63420    | 958     | 139284   | 63420   | 958     |
|------|-----------|----------|---------|----------|---------|---------|
| 2014 | 210328    | 71044    | 1525    | 210328   | 71044   | 1525    |
| 2015 | 297059    | 86731    | 2388    | 297059   | 86731   | 2388    |
| 2016 | 401546    | 104487   | 3645    | 401546   | 104487  | 3645    |
| 2017 | 640369    | 238823   | 6027    | 640369   | 238823  | 6027    |
| 2018 | 882281    | 241912   | 8830    | 882281   | 241912  | 8830    |
| 2019 | 1138654   | 231088   | 12003   | 1138654  | 231088  | 12003   |
| 2020 | 3588676   | 2462025  | 30328   | 2350164  | 1223512 | 22452   |
| 2021 | 6038698   | 2480351  | 49858   | 3561674  | 1233961 | 34054   |
| 2022 | 8002505   | 2013664  | 67346   | 4597462  | 1069842 | 45539   |
| 2023 | 10210648  | 2275489  | 96640   | 5755676  | 1203753 | 63063   |
| 2024 | 12663126  | 2549119  | 139420  | 7036316  | 1343703 | 87394   |
| 2025 | 15359940  | 2836234  | 190333  | 8439382  | 1490461 | 116424  |
| 2026 | 18301090  | 3131483  | 256321  | 9964874  | 1641917 | 153065  |
| 2027 | 21486576  | 3441807  | 334000  | 11612793 | 1800984 | 195751  |
| 2028 | 24916398  | 3763821  | 424431  | 13383138 | 1966096 | 244910  |
| 2029 | 28590556  | 4098588  | 529850  | 15275908 | 2137681 | 302400  |
| 2030 | 32509049  | 4448343  | 653033  | 17291105 | 2317597 | 369435  |
| 2031 | 36671878  | 4815862  | 787290  | 19428728 | 2507058 | 441982  |
| 2032 | 41079043  | 5194456  | 963138  | 21688778 | 2702031 | 533220  |
| 2033 | 45730544  | 5614639  | 1184312 | 24071253 | 2915695 | 644729  |
| 2034 | 50626381  | 6080148  | 1416725 | 26576154 | 3149631 | 762036  |
| 2035 | 55766554  | 6556897  | 1649959 | 29203482 | 3389364 | 880809  |
| 2036 | 61151062  | 7034467  | 1889660 | 31953236 | 3630563 | 1003375 |
| 2037 | 66779906  | 7518504  | 2139585 | 34825415 | 3875555 | 1131312 |
| 2038 | 72653086  | 8012765  | 2400025 | 37820021 | 4125918 | 1264723 |
| 2039 | 78770602  | 8517541  | 2671983 | 40937053 | 4381755 | 1404175 |
| 2040 | 85132454  | 9033834  | 2956604 | 44176512 | 4643634 | 1550100 |
| 2041 | 91738642  | 9562791  | 3253912 | 47538396 | 4911984 | 1702439 |
| 2042 | 98589165  | 10104435 | 3566428 | 51022706 | 5186750 | 1862792 |
| 2043 | 105684024 | 10661288 | 3893192 | 54629443 | 5469529 | 2030206 |
| 2044 | 113023219 | 11232387 | 4233544 | 58358606 | 5759369 | 2204278 |
| 2045 | 120606750 | 11817075 | 4588281 | 62210195 | 6055866 | 2385516 |
| 2046 | 128434617 | 12416148 | 4960223 | 66184210 | 6359531 | 2575320 |
| 2047 | 136506820 | 13032426 | 5354538 | 70280651 | 6671761 | 2777788 |
|      | •         |          |         |          |         |         |

| 2048 | 144823358 | 13671076 | 5757673 | 74499518 | 6996655 | 2983463 |
|------|-----------|----------|---------|----------|---------|---------|
| 2049 | 153459847 | 14394162 | 6174782 | 78873382 | 7357327 | 3194901 |
| 2050 | 153459847 | 14394162 | 6174782 | 78873382 | 7357327 | 3194901 |

## References

<sup>1</sup> Miatto, A., Reck, B. K., West, J., & Graedel, T. E. (2020). The rise and fall of American lithium. *Resources, Conservation and Recycling*, *162*, 105034. https://doi.org/10.1016/j.resconrec.2020.105034

<sup>2</sup> Sun, X., Hao, H., Zhao, F., & Liu, Z. (2017). Tracing Global Lithium Flow: A tradelinked material flow analysis. *Resources, Conservation and Recycling*, *124*, 50–61. https://doi.org/10.1016/j.resconrec.2017.04.012

<sup>3</sup> Jaskula, B. W. (2020, January). *Lithium data sheet - mineral commodity summaries* 2020. USGS. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-lithium.pdf

<sup>4</sup> Kundu, T., Rath, S. S., Das, S. K., Parhi, P. K., & Angadi, S. I. (2023). Recovery of lithium from spodumene-bearing pegmatites: A comprehensive review on geological reserves, beneficiation, and extraction. *Powder Technology*, *415*, 118142. https://doi.org/10.1016/j.powtec.2022.118142

<sup>5</sup> Gourcerol, B., Gloaguen, E., Melleton, J., Tuduri, J., & Galiegue, X. (2019). Re-assessing the European Lithium Resource Potential – a review of hard-rock resources and Metallogeny. *Ore Geology Reviews*, *109*, 494–519. https://doi.org/10.1016/j.oregeorev.2019.04.015

<sup>6</sup> Rezaei, M., Zarasvandi, A., Azhdari, A., & Heidari, M. (2021). Geology and hydrochemistry of Brine Springs in the zagros fold and Thrust Belt (ZFTB), Iran: A review on origin, environmental aspects, and economic potentials. *Applied Geochemistry*, *130*, 104985. https://doi.org/10.1016/j.apgeochem.2021.104985

7 Jerez, B., Garcés, I., & Torres, R. (2021). Lithium extractivism and water injustices in the Salar de Atacama, chile: The Colonial Shadow of Green electromobility. Political Geography, 87, 102382. https://doi.org/10.1016/j.polgeo.2021.102382

8 Forget, M., & Bos, V. (2022). Harvesting Lithium and sun in the Andes: Exploring energy justice and the new materialities of Energy Transitions. Energy Research & Social Science, 87, 102477. https://doi.org/10.1016/j.erss.2021.102477

<sup>9</sup> Talens Peiró, L., Villalba Méndez, G., & Ayres, R. U. (2013). Lithium: Sources, production, uses, and Recovery Outlook. *JOM*, 65(8), 986–996. https://doi.org/10.1007/s11837-013-0666-4

10 Toupal, J., & Gieré, R. (2021). Geochemistry of surface waters around four hard-rock lithium deposits in Central Europe. Goldschmidt2021 Abstracts. https://doi.org/10.7185/gold2021.3528 11 Yang, P., Gao, X., Zhao, Y., Jia, N., & Dong, X. (2021). Lithium Resource Allocation Optimization of the lithium trading network based on Material Flow. Resources Policy, 74, 102356. https://doi.org/10.1016/j.resourpol.2021.102356

<sup>12</sup> Marmolejo Cervantes, M. Á., & Garduño-Rivera, R. (2022). Mining-energy public policy of lithium in Mexico: Tension between nationalism and globalism. Resources Policy, 77, 102686. https://doi.org/10.1016/j.resourpol.2022.102686

<sup>13</sup> Maisel, F., Neef, C., Marscheider-Weidemann, F., & Nissen, N. F. (2023). A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles. *Resources, Conservation and Recycling*, *192*, 106920. https://doi.org/10.1016/j.resconrec.2023.106920

<sup>14</sup> Manjong, N. B., Bach, V., Usai, L., Marinova, S., Burheim, O. S., Finkbeiner, M., & Strømman, A. H. (2023). A comparative assessment of value chain criticality of lithium-ion battery cells. *Sustainable Materials and Technologies*, *36*. https://doi.org/10.1016/j.susmat.2023.e00614

<sup>15</sup> Jung, J. C.-Y., Sui, P.-C., & Zhang, J. (2021). A review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments. *Journal of Energy Storage*, *35*, 102217. https://doi.org/10.1016/j.est.2020.102217

<sup>16</sup> von Bülow, F., Wassermann, M., & Meisen, T. (2023). State of health forecasting of lithium-ion batteries operated in A Battery Electric Vehicle Fleet. *Journal of Energy Storage*, 72, 108271. https://doi.org/10.1016/j.est.2023.108271

<sup>17</sup> Sui, X., He, S., Vilsen, S. B., Meng, J., Teodorescu, R., & Stroe, D.-I. (2021). A review of non-probabilistic machine learning-based state of health estimation techniques for lithium-ion battery. *Applied Energy*, *300*, 117346. https://doi.org/10.1016/j.apenergy.2021.117346

<sup>18</sup> Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., Deng, T., & Shang, W. (2018). Temperature effect and thermal impact in lithium-ion batteries: A Review. *Progress in Natural Science: Materials International*, *28*(6), 653–666. https://doi.org/10.1016/j.pnsc.2018.11.002

<sup>19</sup> Guo, Y., Huang, K., Yu, X., & Wang, Y. (2022a). State-of-health estimation for lithium-ion batteries based on historical dependency of charging data and ensemble SVR. *Electrochimica Acta*, *428*, 140940. https://doi.org/10.1016/j.electacta.2022.140940

<sup>20</sup> AbdelRaheem, M., Hassan, M., Mohammed, U. S., & Nassr, A. A. (2022). Design and implementation of a synchronized IOT-based Structural Health Monitoring System. *Internet of Things*, *20*, 100639. https://doi.org/10.1016/j.iot.2022.100639

<sup>21</sup> Zhu, X., Wang, W., Zou, G., Zhou, C., & Zou, H. (2022). State of health estimation of lithium-ion battery by removing model redundancy through aging mechanism. *Journal of Energy Storage*, *52*, 105018. https://doi.org/10.1016/j.est.2022.105018

<sup>22</sup> Gong, D., Gao, Y., Kou, Y., & Wang, Y. (2022). State of Health Estimation for lithium-ion battery based on energy features. *Energy*, 257, 124812. https://doi.org/10.1016/j.energy.2022.124812

<sup>23</sup> Chen, Z., Zhang, S., Shi, N., Li, F., Wang, Y., & Cui, J. (2022). Online state-of-health estimation of lithium-ion battery based on relevance vector machine with Dynamic Integration. *Applied Soft Computing*, *129*, 109615. https://doi.org/10.1016/j.asoc.2022.109615

<sup>24</sup> IEA (2023), Global EV Outlook 2023, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2023, License: CC BY 4.0

<sup>25</sup> Slowik, P., Searle, S., Basma, H., Miller, J., Zhou, Y., Rodríguez, F., Buysse, C., Kelly, S., Minjares, R., & Pierce, L. (n.d.). Analyzing the impact of the Inflation Reduction Act on electric vehicle ... https://theicct.org/wp-content/uploads/2023/01/ira-impact-evs-us-jan23.pdf

<sup>26</sup> Debnath, R., Bardhan, R., Reiner, D. M., & Miller, J. R. (2021). Political, economic, social, technological, legal and environmental dimensions of electric vehicle adoption in the United States: A social-media interaction analysis. *Renewable and Sustainable Energy Reviews*, *152*, 111707. https://doi.org/10.1016/j.rser.2021.111707

<sup>27</sup> Ruffo, G. H. (2020, October 28). *Check out how EV sales have evolved in the U.S.*. *since 2010*. InsideEVs. https://insideevs.com/news/451368/ev-sales-evolved-us-since-2010/

<sup>28</sup> Sun, X., Hao, H., Zhao, F., & Liu, Z. (2017a). Tracing Global Lithium Flow: A tradelinked material flow analysis. *Resources, Conservation and Recycling*, *124*, 50–61. https://doi.org/10.1016/j.resconrec.2017.04.012

<sup>29</sup> Miatto, A., Reck, B. K., West, J., & Graedel, T. E. (2020). The rise and fall of American lithium. *Resources, Conservation and Recycling*, *162*, 105034. https://doi.org/10.1016/j.resconrec.2020.105034

<sup>30</sup> Yang, P., Gao, X., Zhao, Y., Jia, N., & Dong, X. (2021). Lithium Resource Allocation Optimization of the lithium trading network based on Material Flow. *Resources Policy*, *74*, 102356. https://doi.org/10.1016/j.resourpol.2021.102356

<sup>31</sup> Ziemann, S., Weil, M., & Schebek, L. (2012). Tracing the fate of lithium—the development of a material flow model. *Resources, Conservation and Recycling*, *63*, 26–34. https://doi.org/10.1016/j.resconrec.2012.04.002

<sup>32</sup> Richa, K., Babbitt, C. W., Gaustad, G., & Wang, X. (2014). A future perspective on lithium-ion battery waste flows from Electric Vehicles. *Resources, Conservation and Recycling*, *83*, 63–76. https://doi.org/10.1016/j.resconrec.2013.11.008

<sup>33</sup> Dunn, J., Slattery, M., Kendall, A., Ambrose, H., & Shen, S. (2021). Circularity of lithium-ion battery materials in Electric Vehicles. *Environmental Science & amp; Technology*, *55*(8), 5189–5198. https://doi.org/10.1021/acs.est.0c07030

<sup>34</sup> Riofrancos, T., Kendall, A., Dayemo, K., Haugen, M., Hassan, B., McDonald, K., & Slattery, M. (2023, January). *More Mobility Less Mining*. Climate and Community. https://www.climateandcommunity.org/more-mobility-less-mining

<sup>35</sup> Strickler, C. (2021, July 8). Using the weibull distribution to understand component reliability. Freya Systems, LLC. https://freyasystems.com/using-the-weibull-distribution-to-understand-component-

reliability/#:~:text=Weibull%20Distribution%20and%20Failure%20Rates%20Over%20Time&text=The%20shape%20parameter%20describes%20how,wearing%20out%20after%20longer%20u sage.

<sup>36</sup> Amirsaman Arabali et al., "Optimum Sizing and Siting of Renewable-Energy-Based DG Units in Distribution Systems," Optimization in Renewable Energy Systems, 2017, pp. 233-277, https://doi.org/10.1016/b978-0-08-101041-9.00007-7.

<sup>37</sup> U.S. State by State Transportation Statistics 2018-19. School Bus Fleet. (n.d.). https://www.schoolbusfleet.com/research

<sup>38</sup> U.S. Department of Tranportation, B. of T. S. (2023, August 23). *Monthly Transportation Statistics: Tyler Data & Insights*. https://data.bts.gov/Research-and-Statistics/Monthly-Transportation-Statistics/crem-w557

<sup>39</sup> Bus: K9m. BYD USA. (n.d.). https://en.byd.com/bus/k9m/

<sup>40</sup> Hawkins, C. (2021, August 11). *Proterra and LG Energy Solution to partner on longterm supply agreement for EV Battery Cells*. Proterra. https://www.proterra.com/pressrelease/proterra-lg-partner-on-ev-battery-cells/

<sup>41</sup> Ambrose, H., Pappas, N., & Kendall, A. (2017). Exploring the Costs of Electrification for California's Transit Agencies. *University of California Institute of Transportation Studies*.

<sup>42</sup> Dunn, J., Ritter, K., Velázquez, J. M., & Kendall, A. (2023). Should high-cobalt EV batteries be repurposed? using LCA to assess the impact of technological innovation on the waste hierarchy. *Journal of Industrial Ecology*. https://doi.org/10.1111/jiec.13414