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Towards an Informative Mutant Phenotype for Every Bacterial Gene

Adam Deutschbauer,a Morgan N. Price,a Kelly M. Wetmore,a Daniel R. Tarjan,b,c Zhuchen Xu,d Wenjun Shao,a Dacia Leon,b,c

Adam P. Arkin,a,c,dJeffrey M. Skerkera,c,d

Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USAa; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,
California, USAb; Energy Biosciences Institute, University of California, Berkeley, California, USAc; Department of Bioengineering, University of California, Berkeley, California,
USAd

Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of
sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory
conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions
are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586
genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically sig-
nificant phenotypes for 89% of all assayed genes. Thus, in Z. mobilis, most genes have a functional consequence under labora-
tory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofit-
ness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly
characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific
functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and
in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we
identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set
of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant
fitness.

Assigning function to the millions of hypothetical and unchar-
acterized genes identified by genome sequencing projects is a

substantial challenge in the postgenome era (1, 2). This problem is
compounded in bacteria due to the ease of genome sequencing
and the vast reservoir of genetic diversity contained in pro-
karyotes. Therefore, high-throughput experimental approaches
are necessary to bridge the gap between genome sequencing and
genome characterization (3). One promising strategy is the use of
high-throughput mutagenesis to predict gene function based on
the observation that genes with similar functions tend to have
similar growth phenotypes (4–9). In single-cell organisms, the
most commonly used approach for large-scale mutagenesis and
phenotyping involves pooling thousands of individual mutant
strains and parallel analysis of their abundance using either DNA
microarrays (10, 11) or sequencing (12–14). These approaches are
advantageous because they produce quantitative measures of fit-
ness for all nonessential genes in a single-pot assay. In the single-
cell eukaryote Saccharomyces cerevisiae, assaying mutant fitness
for all nonessential genes under hundreds of laboratory condi-
tions (primarily growth in the presence of drugs and other small-
molecule inhibitors) identified a significant phenotype for nearly
every protein-coding gene (7). However, for bacteria, it remains
unclear what fraction of the genome has a phenotype under labo-
ratory conditions, with estimates ranging from 50% in Escherichia
coli (8) to 70% in Shewanella oneidensis MR-1 (4). In addition, the
number of genes with a pattern of mutant fitness that is biologi-
cally interpretable for predicting gene function and the optimal set
of experimental conditions for maximizing new gene annotations
have yet to be established.

To address these issues, we performed 492 genome-wide mu-
tant fitness assays in Zymomonas mobilis ZM4, a fermentative,
ethanol-producing bacterium (15). We find that 89% of all as-
sayed Z. mobilis genes, including many genes without a specific

annotation, have a statistically significant phenotype when dis-
rupted in the laboratory. However, many genes have subtle phe-
notypes under just a few conditions, and it is not obvious how
these phenotypes relate to each gene’s function. To determine
whether our findings in Z. mobilis are generalizable to other bac-
teria, we calculated the fraction of Shewanella oneidensis MR-1
genes with a detectable phenotype by using the same experimental
strategy. S. oneidensis has diverse respiratory abilities, including
metal reduction, whereas Z. mobilis obtains energy only by fer-
mentation, and the genome of S. oneidensis is substantially larger
than the genome of Z. mobilis (4,467 versus 1,892 protein-coding
genes). S. oneidensis also has a wider range of metabolic abilities:
we have confirmed the growth of S. oneidensis on 25 carbon
sources, compared to just 3 for Z. mobilis (16). By analyzing 296 S.
oneidensis fitness experiments, we found that 75% of assayed
genes exhibited a significant phenotype.

Previous studies have noted that genes with related functions
often have similar fitness patterns (4, 8), and we observed this in
our data as well. Thus, to estimate the fraction of genes that have a
biologically informative phenotype, we identified genes that have
a strong mutant phenotype under at least one condition and also
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have correlated fitness patterns (cofitness) with another gene.
With these criteria, we found that 41% of Z. mobilis genes are
candidates for functional annotation using mutant fitness, includ-
ing 174 genes currently without a specific annotation. For 57 of
these poorly annotated genes, we used a combination of compar-
ative genomics and homology evidence to demonstrate that the
cofitness-derived gene-gene associations are biologically mean-
ingful. Last, many of the 492 experiments were conducted under
similar conditions and thus gave similar results. After removing
redundant experiments, only 79 diverse mutant fitness experi-
ments remained, and these sufficed to identify the majority of
strong phenotypes and biological associations. Similarly, we
found that 296 fitness experiments for S. oneidensis could be re-
duced to 61 experiments. In sum, this work provides a blueprint
for mutant fitness-based gene annotation in a wide range of bac-
teria.

MATERIALS AND METHODS
Strains and media. Zymomonas mobilis ZM4 (ATCC 31821) and She-
wanella oneidensis MR-1 (ATCC 700550) were purchased from ATCC.
For typical culturing, we grew Z. mobilis in rich ZRMG medium (25 g/liter
glucose, 10 g/liter yeast extract, and 2 g/liter KH2PO4) and S. oneidensis in
Luria-Bertani broth (LB). When necessary, we added kanamycin to a final
concentration of 100 �g/ml for Z. mobilis and 50 �g/ml for S. oneidensis.
Unless indicated otherwise, we grew both bacteria aerobically at 30°C. We
used previously described transposon mutant collections for Z. mobilis
(17) and S. oneidensis (4). These transposon mutants contain DNA bar
codes (tags) that enable the pooling and parallel analysis of mutant fitness
(11).

Pooled mutant fitness assays. Pooled mutant fitness assays were per-
formed as previously described for both Z. mobilis (17) and S. oneidensis
(4). Briefly, for each bacterium, we assayed two pools of transposon mu-
tants per experimental condition, before and after growth (usually for six
to eight population doublings). For all experiments, DNA bar code abun-
dance was monitored with an Affymetrix microarray (GenFlex_16K_v2)
containing the tag sequence complements (18). In this study, the majority
of mutant fitness assays were performed in rich media with an inhibitory
but sublethal concentration of a single chemical. For each inhibitor, we
identified the appropriate concentration(s) for the pooled fitness assay by
measuring the growth of the wild-type bacterium in a 96-well microplate.
These prescreen assays were cultured in a microplate reader (either Tecan
Sunrise or Infinite F200) with absorbance (optical density at 600 nm
[OD600]) readings every 15 min. We typically aimed for a concentration of
inhibitor that resulted in a 50% reduction of wild-type growth rate. In
practice, we often profiled the fitness of the mutants at multiple concen-
trations of the same compound. Data sets S1 and S2 in the supplemental
material contain detailed information on all Z. mobilis and S. oneidensis
fitness experiments. All data are available at http://genomics.lbl.gov
/supplemental/phenotypes2013/.

Mutant fitness data analysis. Raw data processing, the calculation of
strain fitness, the calculation of gene fitness, and data normalization were
performed as previously described for Z. mobilis and S. oneidensis (4, 17).
Briefly, for each experiment, we would like to estimate the functional
consequence of disrupting each gene, given the data for various strains
with insertions in that gene. As we will show, independent insertions in
the same gene tend to give similar results, so we believe that most of the
effects that we observe reflect the consequence of disrupting the gene. A
related concern is that insertions in a gene could affect the expression of
downstream genes via polar effects, but we will show that polar effects do
not predominate. Thus, to quantify the functional consequence of dis-
rupting each gene, we calculate the “gene fitness,” which is the average of
each mutant strain for the gene. The fitness of a strain is its change in log2

abundance during the course of an experiment (typically 6 to 8 genera-
tions) and is analogous to a log2 ratio in expression experiments (4).

These fitness values are normalized so that a typical gene or strain has
a fitness of zero. We normalized the fitness values to control for effects
from chromosomal position, artifacts from mutant pool construction,
and scaffold effects (plasmid versus chromosome). Additionally, for the
main chromosome of both bacteria, we set the mode of the strain fitness
distribution to zero. All fitness data for both Z. mobilis and S. oneidensis
are publically available in MicrobesOnline (19) and are available as Data
sets S3 and S4 in the supplemental material.

Because the strain fitness values for independent transposon inser-
tions in the same gene are highly correlated (R � 0.86 for strains with
central insertions in the 5 to 80% of coding region, average of 30 un-
amended rich medium fitness experiments for Z. mobilis), our “gene fit-
ness” values reflect the mutant fitness of the individual strains and the
impact of knocking out the gene, which is the focus of this study. As
another test of the agreement of independent insertions in the same gene,
we measured the correlation of fitness for pairs of strains with insertions
in the same gene (strain cofitness) across all 492 experiments in Z. mobilis.
We found a strong correlation (median R � 0.61) for insertions in Z.
mobilis genes with reduced fitness phenotypes (see Fig. S1 in the supple-
mental material).

After the fitness values were normalized, we calculated a test statistic
for each gene in each experiment that takes into account the consistency of
measurements within that experiment, as previously described (4). The
test statistic (t) was calculated as follows:

t � � ⁄ �V ⁄ n

V � {�2 � �(x � �)2} ⁄ n

where x is the measurement(s) for the gene, � is their average, n is the
number of measurements, V is the variance of strain fitness, and � is
median[STD(x)], the median across all genes with more than one mea-
surement of the standard deviation (STD) of that gene’s measurements
(4). This test statistic was transformed to P values using 17 independent
start experiments as a comparison; this was done separately for Z. mobilis
and S. oneidensis. The test statistic was transformed independently for
genes with n � 1, 2, 3, or 4 or more. These P values represent the signifi-
cance of the gene’s fitness within a single experiment.

To increase our sensitivity for detecting more mild phenotypes, we
grouped the fitness experiments (separately for each bacterium) by overall
similarity. Specifically, fitness experiments were grouped using hierarchi-
cal agglomerative clustering with complete linkage (hclust in R) and with
“1 � correlation” as the distance metric. The clustering was cut at a depth
of 0.25 (cutree in R), which corresponds to requiring that each pair of
experiments in a group have a correlation of 0.75 or greater.

After the test statistic was transformed, the P value for a gene in a given
experiment ranges from 0 to 1, with values close to 0 or 1 indicating
confidence that the gene’s fitness was negative or positive, respectively. To
increase the sensitivity for detecting phenotypes, the significance values
for each gene within a group were combined using Fisher’s combined
probability test to give a combined P value (Pcomb). For each gene and
each group of experiments, we used a two-sided test and corrected for the
number of experiment groups. Specifically, a gene’s phenotype was
considered significant if Pcomb � 0.05/(2 � number of groups) or
Pcomb � 1 – [0.05/(2 � number of groups)]. Because of uncertainty in the
normalization of the fitness data, which implies that the typical strain that
has no phenotype might be assigned a fitness slightly below or above zero,
we also required that the average fitness of the gene within a group be
below �0.2 or above 0.2.

As a second method to assess the significance of phenotypes in Z.
mobilis, we used a two-tailed t test that does not depend on the test statistic
or its transformation. For this analysis, we used the 54 Z. mobilis experi-
mental groups with three or more experiments (see Data set S1 in the
supplemental material). The t test was used to generate a P value for the
hypothesis that the average fitness value for a gene within that group is
equal to zero. The source code used for all statistical analyses is available at
http://genomics.lbl.gov/supplemental/phenotypes2013/.

Deutschbauer et al.

3644 jb.asm.org Journal of Bacteriology

http://genomics.lbl.gov/supplemental/phenotypes2013/
http://genomics.lbl.gov/supplemental/phenotypes2013/
http://genomics.lbl.gov/supplemental/phenotypes2013/
http://jb.asm.org


Z. mobilis gene expression. We measured gene expression using high-
density tiling Nimblegen microarrays for Z. mobilis grown in rich ZRMG
and defined ZMMG media (17). We harvested total RNA during expo-
nential growth using the RNeasy kit (Qiagen). For the tiling arrays, en-
richment for mRNA, cDNA synthesis, labeling, and hybridization were
performed as previously described (20). The tiling array data were nor-
malized so that the median probe has a log level of zero (20). As most of
the genome is expressed on one strand or the other, zero will correspond
to the high end of background expression.

Comparative genomics. Orthologs between Z. mobilis ZM4 and Cau-
lobacter crescentus NA1000 were determined using MicrobesOnline tree
orthologs (19). Likewise, the analyses of conserved synteny and of Inter-
Pro hits, including hits to Pfam domains that are annotated as domains of
unknown function (http://pfam.janelia.org/), are taken from Microbe-
sOnline.

Microarray data accession number. The Z. mobilis tiling microarray
data are publically available (GEO accession no. GSE51870).

RESULTS
Eighty-nine percent of assayed Zymomonas mobilis genes have a
phenotype. To determine the fraction of bacterial genes with an
identifiable phenotype, we used the alphaproteobacterium Zy-
momonas mobilis ZM4, which has the advantages of a small ge-
nome size (1,892 protein-coding genes) (21) and the availability of
a DNA bar-coded transposon mutant collection for the quantita-
tive and parallel analysis of mutant fitness (17). Using two previ-
ously described mutant pools of Z. mobilis covering 1,586 genes
(83% of protein-coding genes) and genome-wide fitness data in
202 growth experiments as the starting point (17, 22), we per-
formed an additional 290 pooled fitness assays, including growth
during inhibition with various antibiotics, metals, and salts, and
growth with alternative carbon and nitrogen sources, anaerobic
growth, and survival after UV irradiation (for a full list and anno-
tation of the 492 Z. mobilis experiments, see Data set S1 in the
supplemental material). The 290 additional Z. mobilis fitness ex-
periments were chosen to be diverse, including stresses with dif-
ferent modes of action, to maximize the likelihood of identifying
phenotypes for all genes. The entire Z. mobilis fitness data set is
clustered and summarized as a heat map in Fig. 1A. Gene fitness is
defined as the log2 change in the abundance of strains with inser-
tions in the gene: negative values indicate that the gene is benefi-
cial for fitness and that strains with the mutated gene have reduced
fitness, while positive fitness values indicate that mutating the
gene leads to improved fitness relative to the typical strain in the
pools and that the gene’s activity is detrimental to fitness.

As a representative illustration of the Z. mobilis mutant fitness
data, a genome-wide comparison of “gene fitness” for two condi-
tions, rich medium supplemented with the DNA-damaging agent
cisplatin and rich medium with no supplements, is highlighted in
Fig. 1B. The nucleotide excision repair complex genes uvrABCD
(23) and the RecA-mediated double-strand break repair genes
recFGORX (24) are beneficial for optimal fitness in the presence of
the inhibitor but not in rich medium without cisplatin. In E. coli,
strains with mutations in genes in both the double-strand break
recombination and nucleotide excision repair pathways are also
hypersensitive to cisplatin (25). Z. mobilis recA mutants have re-
duced fitness in both the presence and absence of cisplatin (Fig.
1B), which likely reflects the multiple biochemical roles of RecA
protein in recombination, DNA repair, and regulation (26).

An examination of the Fig. 1A heat map reveals a large block of
481 genes with strongly reduced fitness in nearly all experiments

(blue at the top of the heat map in Fig. 1A). The median gene in
this block has a strongly reduced-fitness phenotype (fitness less
than �1) in 350 experiments (out of a possible 492). This block
includes many ribosomal proteins and other genes that are ex-
pected to be essential. Z. mobilis appears to be polyploid, and
insertions are as likely to occur in essential genes as in other genes
(17). The mutants with insertions in essential genes do not have
segmental duplications; rather, they are unstable heterozygotes
(17), which explains why these strains drop in abundance during
the fitness experiment. The high rate of insertions in essential
genes also implies that the 306 Z. mobilis genes without data are
not significantly enriched for essential genes but rather reflect a
largely random group of genes that by chance we did not map
transposon mutants in (17). Many of these predicted essential
genes are beneficial for fitness in nearly all experiments: 196 of the
481 frequently beneficial genes in the blue block at the top of Fig.
1A are predicted essential genes (based on orthology to essential
Caulobacter genes [27]; for a full list of the genes in this cluster and
whether they are predicted to be essential, see Data set S5 in the
supplemental material). More broadly, genes with strong reduced
fitness phenotypes in many conditions are clearly important for
organismal fitness, and detecting phenotypes for these genes is
straightforward. However, previous work has established that
most bacterial genes do not have such obvious phenotypes (4, 8).
Rather, we expect many phenotypes to be subtle and manifested in
only a subset of our 492 experiments.

To increase sensitivity for detecting mild phenotypes, we clus-
tered 95% (465 of 492) of the fitness experiments into 79 groups
(Fig. 1A). These groups represent experiments with highly corre-
lated genome-wide fitness (pairwise correlations greater than 0.75
for all members of the group) and are listed in Data set S1 in the
supplemental material. The two largest experimental groups, with
40 and 29 experiments respectively, are rich medium with no
stress and rich medium with little stress (i.e., low concentration of
added inhibitor). The next biggest group (23 experiments) in-
cludes a variety of alcohols and aldehydes and growth at 40°C.
Overall, the groups frequently contain structurally related com-
pounds, compounds with similar modes of action, or the same
compound at different concentrations. For example, group 31
includes two doxycycline and three minocycline experiments
(doxycycline and minocycline are structurally similar tetracycline
antibiotics), group 25 includes six aminoglycoside antibiotic ex-
periments (tobramycin, sisomicin, or gentamicin), and group 73
contains two bacitracin experiments at different concentrations.
Our finding that compounds with similar structures or modes of
actions have correlated genome-wide fitness patterns is consistent
with previous findings in both bacteria (8, 17) and yeast (28).

To systematically determine the fraction of the Z. mobilis ge-
nome with a statistically significant phenotype, we used a test sta-
tistic for each gene under each condition that takes into account
the consistency of measurements for that gene as well as for other
genes in that experiment (4). We converted this test statistic to P
values by using control experiments, we combined these P values
across similar experiments, and we corrected for multiple testing
across 79 groups (see Materials and Methods for details). At a
cutoff of P � 0.05, we found that 1,090 (69%) genes are beneficial
to fitness and 855 (54%) are detrimental to fitness in at least one of
the 79 groups of experiments. Overall, 1,409 genes, or 89% of the
genes we have data for, have either a significant reduced fitness or
enhanced-fitness phenotype based on this analysis. The false dis-
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covery rate for Z. mobilis genes with phenotypes using this analysis
is 5.6% or less than 80 genes.

To illustrate how the grouping of experiments in the above
analysis provides increased statistical power for detecting pheno-
types, we highlight a specific example. Mutations in the dehydro-
genase ZMO0226 have reduced fitness in three experiments with
different concentrations of the uncoupling agent carbonyl cya-
nide-p-trifluoromethoxyphenylhydrazone (FCCP), with fitness
values of �1.4 to �2.1 (average measurement for five different
strains with transposon insertions in ZMO0226). The lowest P
value from any single experiment was 0.0071, but after correcting
for multiple testing across 492 experiments, this is not meaningful
(corrected P � 1). The combined P value from the three FCCP
experiments (which clustered into a single group) was 0.00022, or
0.018 after correcting for multiple testing across 79 groups.

To control for potential bias in the above analysis, we per-
formed a two-tailed t test on the normalized fitness values that is

independent of the test statistic and P value transformation de-
scribed above (see Materials and Methods). With a correction for
multiple testing and a P value cutoff of less than 0.05, 75% of the
genes have a reduced-fitness phenotype and 43% have an en-
hanced fitness phenotype. Based on this t test analysis, 1,492 genes,
or 94% of Z. mobilis genes we have data for, have a significant
phenotype (reduced or enhanced) with a false discovery rate of
5.3%. Therefore, regardless of the statistical test, the vast majority
of Z. mobilis genes assayed (89% or 94%) have a detectable phe-
notype in our large mutant fitness compendium.

Multiple lines of evidence suggest that the statistically signifi-
cant but subtle phenotypes identified by our analyses are bona fide
phenotypes and not artifacts of our experimental strategy or anal-
ysis. First, genes with significant phenotypes tend to have higher
correlations in fitness (cofitness) with genes in the same operon
across all experiments, as expected given that genes in the same
operon often have related functions (Fig. 1C). Even genes with the

FIG 1 Identifying a phenotype for most Z. mobilis genes. (A) Heat map of clustered mutant fitness data for 1,586 genes (y axis) across 492 experiments (x axis).
Reduced fitness values are shown in blue, and enhanced fitness values are shown in yellow (see color key). The experiments are binned into 79 groups (alternating
colors on the x axis) to increase statistical power for detecting subtle phenotypes (see Materials and Methods). Genes are color-coded to the right of the heat map
according to whether they are beneficial for fitness in any group of experiments (red), detrimental to fitness in a group of experiments and never beneficial
(green), or have no statistically significant phenotype in any group of experiments (no color). (B) Scatterplot of gene fitness values in rich medium (ZRMG
medium; x axis) versus rich medium supplemented with an inhibitory concentration of cisplatin (y axis). Negative values are indicative of reduced fitness relative
to the typical strain in the mutant pools. Genes encoding members of the UvrABCD nucleotide excision repair system, RecA, and RecFGORX are highlighted. The
solid black line shows x � y. (C) Correlation of fitness (cofitness on the y axis) for 573 pairs of adjacent genes that are predicted to be cotranscribed in an operon.
The pairs are ranked by the most significant phenotype of the weaker gene in any of the 79 groups of experiments (from weakest to strongest phenotype; x axis).
Cofitness values are colored according to whether both genes in the pair have a significant phenotype (red), only one gene in the pair has a significant phenotype
(black), or neither gene has a significant phenotype (green). The gray hatched region covers 99% of the cofitness distribution from shuffled data (�0.117 to
0.115). The dashed blue line represents the best-fit smooth line through the data (local regression from loess). (D) Comparison of gene fitness in rich medium
(ZRMG medium; y axis) and expression level in the same condition (x axis). Expression was determined using a high-resolution tiling microarray and is plotted
as the log2 level relative to background (bg.) (see Materials and Methods). Genes with significantly reduced (red) or enhanced (green) phenotypes after 1 day (	6
population doublings) of growth in ZRMG medium (P � 0.001 by Fisher test with 30 replicates) are indicated. (E) Comparison of gene fitness for 1,586 genes
after 3 days (	18 population doublings) (x axis) or 7 days (	42 population doublings) (y axis) of batch transfer growth in rich medium (cells were diluted back
in fresh medium each day). The solid black line shows x � y. The vertical gray lines represent fitness of �0.2 and 0.2. Genes with a significant phenotype after 3
days of growth in rich medium (P � 0.05, based on the transformed test statistic for this single experiment) are shown in orange.
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weakest significant phenotypes tend to have higher cofitness
within operons than expected compared to shuffled data (Fig.
1C). Because operon gene pairs can also have unrelated functions
(29–31), there are multiple instances where one or both adjacent
genes have significant phenotypes but have near zero or negative
cofitness (Fig. 1C). Operon cofitness could also be due to polarity
effects in our data set. Polarity occurs when a transposon insertion
in an upstream gene of the operon leads to transcriptional termi-
nation and reduced expression of a downstream gene(s). Polarity
can be detected genome-wide by a significantly higher fraction of
instances where only an upstream gene has a phenotype relative to
instances where only the downstream gene has a phenotype (4).
Applying this test to our fitness data set, we find a moderate in-
crease of upstream-only reduced fitness relative to downstream-
only reduced fitness (5,709 versus 4,345 in individual fitness ex-
periments; P � 10�15 by a binomial test). Therefore, while
polarity influences our data set, it is not an overwhelming effect
and does not substantially change our estimate of the number of
genes in Z. mobilis with a phenotype.

A second line of evidence in support of our estimate of genes
with phenotypes is that, for a single condition, even those genes
with subtle phenotypes tend to be well expressed (Fig. 1D). The
fact that many genes with mild phenotypes are well expressed
supports the results of our global analysis, as expression should be
a prerequisite for a gene to exert a phenotypic effect.

Last, we validated the genes with weak but significant pheno-
types by performing a long-term growth experiment in rich me-
dium with batch transfer of the mutant libraries once per day. If
weak phenotypes are real, then the fitness defects of strains with
mutations in these genes should become more pronounced at
later transfers. For weakly beneficial genes, there is a clear bias for
reduced fitness phenotypes to become more severe after 7 days of
growth relative to 3 days of growth (Fig. 1E). Taken together, the
results of our analysis and experimental validation strongly sup-
port our estimate that 89% of the Z. mobilis genome has a detect-
able phenotype under laboratory conditions.

To determine whether a similar fraction of genes have a detect-
able phenotype in a second bacterium, we supplemented our pre-
viously reported 219 genome-wide Shewanella oneidensis fitness
experiments (4, 22, 32) by performing an additional 77 experi-
ments. Combined, the data from the 296 S. oneidensis fitness ex-
periments represent a diverse range of metabolic and stress con-
ditions that are comparable in size and diversity to the Z. mobilis
data set. A subset of the fitness experiments is very similar (pri-
marily the same stresses in rich medium) in both bacteria, while
most experiments are unique to either Z. mobilis or S. oneidensis.
Using the same test statistic, combined P value analysis, and
thresholds for significance as applied to the Z. mobilis data set, we
grouped 243 of the S. oneidensis fitness experiments into 61 groups
by hierarchical clustering and identified 1,805 beneficial genes
(out of 3,355 total genes with data, or 54%) with reduced fitness
phenotypes and 1,895 (56%) detrimental genes with enhanced
fitness phenotypes in at least one group of experiments. For the
complete list of S. oneidensis mutant fitness experiments, medium
compositions, and groups of experiments, see Data set S2 in the
supplemental material. In total, 2,507 or 75% of the S. oneidensis
genes that we have data for have a significant phenotype. The
fraction of genes with a phenotype in S. oneidensis is only moder-
ately less than that of Z. mobilis and may be explained by the larger
size of the Z. mobilis fitness data set or the larger size of the S.

oneidensis genome. Thus, our finding that the vast majority of
genes in bacterial genomes have a detectable phenotype under
laboratory conditions is likely generalizable.

Characteristics of Z. mobilis phenotypes. To uncover broader
trends in the identified Z. mobilis phenotypes, we characterized
the phenotypes based on their strength, directionality, occurrence
in multiple conditions (pleiotropy), and the functional category of
the genes. Overall, reduced-fitness phenotypes are much stronger
than enhanced-fitness phenotypes, which fits the expectation that
most mutations are detrimental to fitness (Fig. 2A). For example,
880 genes have significantly reduced fitness under �1 (in one or
more of the 79 groups of experiments), but just 345 genes have
significantly enhanced fitness above 
1. Indeed, many of the sig-
nificant enhanced-fitness phenotypes are weak: 201 of the 855
detrimental genes have a maximum fitness across groups of exper-
iments less than 0.4. While not as pronounced, some of the re-
duced-fitness phenotypes are also weak; 77 of the 1,090 beneficial
genes have a minimal fitness greater than �0.4. Assuming a large
effective population size, a significant number of bacterial genes
with weak reduced-fitness phenotypes should be expected (33). In
this view, selection will maintain genes with very small beneficial
effects that are difficult to measure in the laboratory. Alternatively,
genes with no or only subtle phenotypes in our laboratory-based
fitness compendium may play a crucial role under natural condi-
tions, such as mediating interactions with other microorganisms.
In this view, performing fitness assays under more-ecological con-
ditions would uncover strong phenotypes for those genes with no
or weak phenotypes in our laboratory data set.

Surprisingly, we found that 54% (855 of 1,586) of the Z. mobilis
genes had a significant enhanced-fitness phenotype, and for 319 of
these 855 genes, we identified an increase in fitness only for inser-
tions in these genes. For a list of these 319 genes with only en-
hanced-fitness phenotypes, see Data set S6 in the supplemental
material. Although these findings are consistent with recent re-
ports that selection for increased laboratory fitness can drive gene
loss in bacteria (34, 35), the extent and scale to which loss-of-
function mutations lead to increased fitness in bacteria are only
starting to be appreciated at the genome-wide level (36). In a study
of E. coli mutant fitness data, Hottes and colleagues found that
beneficial mutations were identified in nearly all conditions and
that these mutations were enriched in genes encoding enzymes
and regulatory proteins, suggesting that metabolic and regulatory
rewiring via loss of function is a prevalent mechanism for fitness
increases in the absence of new genes (36). However, in contrast to
the recent E. coli results, Z. mobilis regulators, which are defined as
transcription factors in the DNA-binding domain (DBD) data-
base (37), are not significantly enriched among the detrimental
gene set (odds ratio, 1.17; P � 0.5 by Fisher exact test). Further-
more, we find that Z. mobilis enzymes (defined as genes with an EC
[Enzyme Commission] number assigned) are significantly less
likely to be detrimental to fitness in the laboratory (odds ratio,
0.69; P � 0.0005). Rather, genes associated with amino acid trans-
port and metabolism (COG [clusters of orthologous groups of
proteins] function code E; false discovery rate � 0.04, after cor-
recting for testing 20 functional categories) are significantly more
likely to be detrimental to fitness in Z. mobilis. In S. oneidensis,
genes with enhanced fitness phenotypes are significantly enriched
for motility genes (COG function code N [cell motility]; false dis-
covery rate of 3 � 10�5) but not for regulators or enzymes (P �
0.05). Overall, among E. coli, S. oneidensis, and Z. mobilis, there
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was no clear consistency as to which gene classes are more likely to
be detrimental to laboratory fitness. However, the observation
that over half of the genes we assayed in Z. mobilis, representing all
functional categories, were detrimental in some condition
strongly suggests that many mechanisms can lead to an enhanced-
fitness phenotype in the laboratory (see Data set S6). For example,
we found that a number of flagellar genes were detrimental to
fitness only in our laboratory conditions. Increased fitness of mo-
tility mutants has been previously observed in other bacteria (12,
34), and may reflect an energetic advantage of being nonmotile in
well-shaken laboratory experiments. As a second example, the pu-
tative metal ion transporter ZMO0230 only has significant en-
hanced-fitness phenotypes, including in the presence of cobalt
stress.

Given the diversity of experimental conditions we assayed, it is
expected that some genes will exhibit pleiotropy in our large-scale
fitness data set, as previously observed in yeast (5). Because many
of our experiments are biological replicates or otherwise similar
(structurally similar compounds or compounds with similar
modes of actions), we investigated pleiotropy in Z. mobilis using
the 79 groups of clustered experiments described above. We find
that the mean Z. mobilis gene has a significant phenotype in 20 of
the 79 experimental groups (Fig. 2B), with significant reduced-
and enhanced-fitness phenotypes in 17 and 3 groups of condi-
tions, respectively (Fig. 2B). Only 141 genes have a significant

phenotype in just one experiment group, demonstrating that
pleiotropy in bacteria under laboratory conditions is common if
enough experimental conditions are assayed and that many bac-
terial genes have multiple functions or have a single functional
role of key importance to multiple processes. One caveat of this
analysis is that groups with more experiments will contain more
genes with significant phenotypes (due to increased statistical
power). To illustrate this point, we find that a relatively large per-
centage of all assayed Z. mobilis genes (43% [676 of 1,586 genes
with data]) have a significant phenotype across 30 experiments in
rich medium with no supplements (P � 0.01 by the combined P
value test).

To identify classes of genes that are more or less likely to exhibit
phenotypes, we calculated the fraction of genes with a significant
phenotype among different categories (Fig. 2C). We find that
nearly all of the Z. mobilis genes that have an ortholog in Caulo-
bacter crescentus, also an alphaproteobacterium, have a phenotype
in our compendium (95% [630 of 664]). Conversely, ORFans
(genes without identifiable homologs in other bacteria) and hy-
pothetical genes (with or without InterPro domains) are less likely
to have significant phenotypes (Fig. 2C). However, even though
ORFans and other hypothetical genes are less likely to have phe-
notypes relative to evolutionarily conserved genes, we still identi-
fied significant phenotypes for 80% of ORFans and 81% of do-
main-free proteins (Fig. 2C). Among functional categories, genes

FIG 2 Characteristics of Z. mobilis phenotypes. (A) Comparison of the number of genes with a significant phenotype at different absolute fitness thresholds for
genes with reduced fitness phenotypes (red), enhanced fitness phenotypes (green), or any phenotype (either; black). For example, at a fitness threshold of less
than �1.0 in any of the 79 experimental groups, there are 880 beneficial genes (reduced fitness). Similarly, at a fitness threshold of greater than 1.0, there are 345
detrimental genes (enhanced fitness). The gray horizontal line marks 1,586, the total number of Z. mobilis genes we have data for. (B) Histogram of the number
of genes (y axis) and their frequency of significant phenotypes among the 79 groups of experiments (x axis). (C) The fraction of Z. mobilis genes (x axis) with a
significant phenotype among different categories (y axis). Genes are categorized as follows: “ORFan,” no close homologs in any other bacterial genome;
“nodom,” no significant InterPro domain; “incaulo,” presence of an ortholog in Caulobacter crescentus; “domain,” other genes that contain an InterPro domain.
The single letters indicate the COG (clusters of orthologous groups of proteins) categories: C (energy production and conversion), D (cell cycle control, cell
division, and chromosome partitioning), E (amino acid transport and metabolism), F (nucleotide transport and metabolism), G (carbohydrate transport and
metabolism), H (coenzyme transport and metabolism), I (lipid transport and metabolism), J (translation, ribosomal structure, and biogenesis), K (transcrip-
tion), L (replication, recombination, and repair), M (cell wall/membrane/envelope biogenesis), N (cell motility), O (posttranslational modification, protein
turnover, chaperones), P (inorganic ion transport and metabolism), Q (secondary metabolite biosynthesis, transport, and catabolism), R (general function
prediction only), S (function unknown), T (signal transduction mechanisms), U (intracellular trafficking, secretion, and vesicular transport), and V (defense
mechanisms). The vertical blue line represents the fraction of all Z. mobilis genes with a phenotype (0.89). The error bars show the 95% confidence intervals.
Categories marked in green are significantly enriched for phenotypes (Fisher exact test, false discovery rate of �0.05), while those in red are significantly less likely
to have phenotypes relative to the entire genome.
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associated with amino acid metabolism, translation, and the cell
wall are significantly more likely to have a phenotype. Conversely,
genes associated with inorganic ion transport/metabolism and
motility, and genes with only a general function prediction are
somewhat less likely to have a phenotype (Fig. 2C). The relative
lack of phenotypes for motility-related genes might be attributable
to the loss (or reduction) of this activity in the parental Z. mobilis
ZM4 strain used in this study. Despite a myriad of motility exper-
iments with the Z. mobilis ZM4 mutant pools, we identified clear
phenotypes for only a fraction of the expected motility genes, and
these phenotypes were typically less severe than those identified
for motility genes in S. oneidensis MR-1 using similar assays (4). In
addition to reduced motility of the parental strain [potentially due
to an unknown mutation(s)], it is also possible that we did not
identify the ideal conditions to induce motility in Z. mobilis.

To more systematically explore the properties of genes without
a phenotype, we manually examined the 157 chromosomal, pro-
tein-coding Z. mobilis genes with no significant phenotypes (for a
list of these genes, see Data set S7 in the supplemental material).
Forty-seven of these genes are adjacent to another gene without a
phenotype, a fraction significantly greater than expected by
chance (P � 1.7 � 10�6 by Fisher exact test). Of these 47 genes, 19
are involved in either secretion (ZMO0799 to ZMO0801,
ZMO1482, and ZMO1483), antibiotic synthesis (ZMO1779 and
ZMO1780), or phage defense (ZMO0680, ZMO0681, and
ZMO0683 to ZMO0685) or encode components of prophage
(ZMO0387 to ZMO0390 and ZMO0397 to ZMO0399). Given that
we did not challenge the Z. mobilis mutant libraries with viral
infection or microbial competitors, it is not surprising that we did
not identify significant phenotypes for these genes.

We considered several other reasons why these 157 genes may
lack a phenotype in our data set. One possibility is that we do not
have insertions in the central part of each gene and hence are not
inactivating its function, or we have only a single transposon mu-
tant and hence have insufficient data. Only 13 of the genes with no
phenotype lack insertions in the central part of the gene, and an-
other 13 have a single transposon mutant in our pools, so these
explanations cannot explain the majority of the cases. Of these 157
genes with no phenotype, only 9 are ORFans, so incorrect gene
calls contribute minimally. A related possibility is that the genes
without phenotypes are recent pseudogenes and not functional.
To address this issue, we analyzed tiling microarray gene expres-
sion data for Z. mobilis and compared the expression of genes with
and without phenotypes under the expectation that pseudogenes
are less likely to be expressed on the correct strand (defined as
twofold-greater expression on the sense strand relative to the an-
tisense strand). We find that chromosomal genes without pheno-
types are only slightly less likely to be significantly expressed on the
correct strand in either rich or minimal medium (86% [135 of
157]) than protein-coding genes on the chromosome with a phe-
notype (95% [1,292 of 1,362]). An additional explanation is ge-
netic or functional redundancy at the gene or pathway level,
whereby a single gene mutation would be expected to have no
fitness consequence. One outcome of this hypothesis is that the
percentage of duplicated genes (paralogs) among these 157 genes
without phenotypes should be larger than for the genes with sig-
nificant phenotypes. While the number of paralogs (21 of 157) is
enriched among the no-phenotype class (P � 0.0053 by Fisher
exact test), it accounts for few of the genes without phenotypes.
Therefore, it is unlikely that the absence of phenotypes for these

157 protein-coding genes is solely due to insufficient data, pseu-
dogenes, lack of expression, or functional redundancy. Alterna-
tively, we did not profile conditions that would lead to a detectable
phenotype for these genes. Last, the phenotypes for these genes
may not be detectable by our competitive growth assay, which
were typically run for 6 generations. For example, a gene fitness
value of �0.1 (which would not match our significance criteria),
corresponds to a selection coefficient (s) of 0.01 � 0.1 � ln(2)/6.
Given the effective population size of bacteria, an s of 0.01 may
correspond to very strong selection in the wild.

Forty-one percent of Z. mobilis genes have biologically infor-
mative patterns of fitness. Previous work has established the util-
ity of genome-wide mutant fitness data to annotate the functions
of poorly characterized genes in bacteria and yeast using gene-
gene associations (4–6, 8). For example, using a large S. oneidensis
fitness data set, we previously proposed specific functional anno-
tations for 40 genes or operons with poor or incomplete annota-
tions (4). Here, we estimate the fraction of all bacterial genes that
are amenable to informative gene-gene associations using high-
throughput genetics. To determine the number of genes with bi-
ologically meaningful gene-gene associations using mutant fit-
ness, it is important to differentiate between whether a gene has a
significant phenotype at all (as discussed above) and whether a
gene’s pattern of phenotypes is sufficiently strong to be biologi-
cally informative to predict function (4). To address the latter, we
examined two factors that influence gene function prediction, sig-
nificant fitness correlations between gene pairs across all experi-
ments (cofitness) and the detection of a strong phenotype in at
least one condition. Using stringent criteria for both parameters,
cofitness with another gene greater than 0.75 and a strong pheno-
type (�fitness� � 1) in at least one experimental group, we find that
41% (651 of 1,586) of Z. mobilis genes are attractive targets for
associative annotation using large-scale mutant fitness profiling
(Fig. 3A). In contrast, 21% (691 of 3,355) of Shewanella oneidensis
MR-1 genes meet the same two criteria across the 296 fitness ex-
periments. The smaller percentage of S. oneidensis genes with high
cofitness and a strong phenotype relative to Z. mobilis may reflect
the larger genome size of S. oneidensis MR-1, the fact that we
performed fewer experiments with this bacterium, that the S. one-
idensis experiments were done under less-informative conditions,
or the fact that we were able to interrogate essential genes in Z.
mobilis. Of the 651 Z. mobilis genes with strong cofitness to an-
other gene and a strong phenotype, 187 are predicted to be essen-
tial. Subtracting these essential genes, 464 Z. mobilis genes (35% of
the nonessential genes that we have data for) are attractive candi-
dates for functional annotation, which is still greater than the 21%
we observed for S. oneidensis.

To systematically verify the biological significance of our se-
lected cofitness threshold, we examined the capacity of cofitness to
group genes into functional categories (as defined by The Institute
for Genomic Research [TIGR] [now the J. Craig Venter Institute
{JCVI}] subroles [38]). TIGR/JCVI subroles provide a reasonable
level of functional specificity, for example the main role “amino
acid biosynthesis” is further divided into seven subroles for the
aromatic amino acid family, aspartate family, glutamate family,
pyruvate family, serine family, histidine family, and other amino
acid biosynthesis (38). For this analysis, we focused on cofitness
and not strong phenotypes, as the vast majority of genes with high
cofitness with another gene also have a strong phenotype (�fitness�
� 1) in at least one group of experiments (Fig. 3A). Looking only
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at pairs of Z. mobilis genes not nearby in the genome (to avoid
operon bias), we find that genes with the same TIGR/JCVI subrole
are more likely to have significant cofitness (above 0.75) versus
other gene pairs (Fig. 3B, 11% versus 2%, P � 10�15 by Fisher
exact test). This suggests that cofitness above 0.75 is a strong indi-
cator of functional relatedness and that high cofitness may be a
useful tool for inferring the function of poorly characterized
genes, particularly if one or more genes with high cofitness have an
informative annotation (4–6). When we look at all 1,586 Z. mobilis
genes for which we have fitness data, we find that 39% (623 genes)
have high cofitness (over 0.75) with another, nonnearby gene (Fig.
3B). These results suggest that a substantial number of bacterial
genes are amenable to a cofitness-based function prediction. It is
important to note that these cofitness-based gene annotations are
broad (i.e., a pair of genes have shared phenotypes under a set of
conditions) but nevertheless are an advance over the existing,
purely computational annotations for these genes (see below for
details). Furthermore, these broad annotations can lead to specific
hypotheses and proposals for the biochemical and physiological
roles of genes, as described below.

Annotation of poorly characterized Z. mobilis genes using
cofitness. A key challenge in microbiology is the functional anno-
tation of poorly annotated and hypothetical genes. To objectively
identify poorly annotated genes, we made a list of Z. mobilis pro-
teins that have no gene name and whose description matches “hy-
pothetical,” “family,” “domain protein,” “fold protein,” or “re-
lated protein.” This analysis identified 652 proteins without
specific annotations, and we have fitness data for 502 (77%) of

these 652 proteins. Of these 502 poorly annotated Z. mobilis genes,
35% (174 of 502) have high cofitness with another gene (cofitness
� 0.75). Among these poorly annotated genes with strong cofit-
ness to another gene, 79% (137 of 174) have cofitness above 0.75
with a well-annotated gene, demonstrating that mutant fitness-
enabled gene-gene associations can be obtained for a significant
number of genes with the poorest computational annotations. For
a complete list of these 174 genes and the genes that they have high
cofitness with, see Data set S8 in the supplemental material.

While determining the precise molecular function and bio-
chemical activity of these poorly annotated proteins requires ad-
ditional experimentation, gene-gene associations from cofitness
can be used to generate more-specific annotations, including cor-
recting misannotated genes, identifying additional evidence to
support the broad cofitness-based annotation, and proposing spe-
cific physiological roles. To illustrate these points, we manually
examined the gene-gene associations in Data set S8 in the supple-
mental material and found additional evidence, based on con-
served proximity or functionally related domains, to support the
functional relatedness for 57 of the poorly annotated genes and
their genes with high cofitness (for details, see Text S1 in the sup-
plemental material).

Of the 57 newly annotated genes, we proposed specific molec-
ular functions for 33 of them (Table 1). Two of the specific anno-
tations are for genes that were, in hindsight, annotated errone-
ously (ZMO1997 and ZMO1510). More often, we obtained a
specific prediction by comparing the gene’s phenotypes with the
domain content of the gene or of surrounding genes. For instance,

FIG 3 Utility of mutant fitness for annotating gene function in bacteria. (A) For each Z. mobilis gene, a scatterplot of the strongest absolute phenotype (x axis,
either fitness reduced or enhanced) versus the strongest cofitness to another gene (y axis). Genes shown in red are putatively essential, and those shown in green
are poorly annotated and do not have a specific annotation (no function) (see main text). The horizontal gray line marks cofitness of 0.75, and the vertical gray
line marks absolute fitness of 1.0. (B) Distribution of fitness correlations (cofitness) for different classes of Z. mobilis gene pairs across all 492 experiments. All
pairs of genes that we have data for (All Pairs), gene pairs that have the same TIGR/JCVI subrole (38) and are not within 20 kbp of each other on the chromosome
(Same Subrole, Not Nearby), and genes with maximum cofitness for each gene excluding nearby hits within 20 kbp (Top Hits, Not Nearby) are shown. The
distributions were estimated from the discrete data using kernel density. The vertical gray line marks cofitness of 0.75. (C) Increase in the fraction of genes with
a strong reduced-fitness phenotype (fitness less than �2 [y axis]) in any experiment as a function of the number of mutant fitness experiments performed (x axis),
plotted for all Z. mobilis genes for which we have data (n � 1,586), poorly annotated Z. mobilis genes (n � 502 [see text for criteria]), or all S. oneidensis MR-1
genes with fitness data (n � 3,355). Experiments are in random order. The red control (dashed) line is derived from the number of fitness values less than �2
among 17 control experiments (independent samples of start) for S. oneidensis MR-1. To calculate the number of Z. mobilis ZM4 genes expected to have fitness
less than �2 by chance, we used the observed standard deviation in 17 control experiments (independent samples of start; this standard deviation was 0.40) and
the theoretical probability of a normal distribution with this standard deviation and a mean of 0 giving a value below �2 (2.8 � 10�7 per gene per experiment).
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eight of the newly annotated genes are putative transcriptional
regulators that have cofitness with specific genes, so we propose
that they activate the expression of those genes. As a specific ex-
ample, ZMO1733 belongs to the LysR family of regulators and has
cofitness with several genes that are important for resisting oxida-
tive stresses, including an adjacent alkyl hydroperoxide reductase
(ZMO1732), which suggests that ZMO1733 is involved in re-
sponding to oxidative stresses. Indeed, the ortholog of ZMO1733

in Caulobacter crescentus was recently shown to be the redox-sen-
sitive regulator OxyR (39). Furthermore, three of these transcrip-
tion factors contain response regulator domains, and all three of
these have high cofitness with nearby histidine kinases, which pre-
sumably regulate the activity of these transcription factors.

Another 18 of the genes are components of putative ABC trans-
porters or efflux pumps. For example, ZMO0981 lies within a
putative ABC transporter operon (ZMO02008-ZMO0982-

TABLE 1 Summary of new Z. mobilis gene annotations

Category and gene(s) Brief annotation(s)a

Transcriptional regulators
ZMO0100 Activates ZMO0101
ZMO0116 Regulates response to oxidative stress
ZMO0478 TF/RR with HK ZMO0480; affects the cell wall
ZMO1206 Regulates secretion-related protein ZliE (ZMO0934)
ZMO1322 TF/RR with HK ZMO1323 involved in acid stress resistance
ZMO1336 TF; activates ZMO1337
ZMO1733 OxyR (as in Caulobacter; see reference 39)
ZMO1738 TF/RR with HK ZMO1739; regulates essential processes

Transporters and pumps
ZMO0285 Efflux pump component; substrate unclear
ZMO0780, ZMO0779 Efflux pump with ZMO0778; substrate unclear
ZMO0910 Component of polysaccharide export ABC transporter (with ZMO0911 and ZMO1467)
ZMO0964 Efflux pump component
ZMO0981 Component of ABC transporter, likely involved in the export of cell wall components
ZMO1018, ZMO1017, ZMO1016, ZMO1015 ABC transporter exporting component of cell envelope
ZMO1431, ZMO1430 Efflux pump, possibly for aromatic acids
ZMO1529, ZMO1525 Efflux pump components; substrate unclear
ZMO1591, ZMO1590 Efflux pump for aromatic compounds
ZMO1628, ZMO1630 Siderophore system acts as efflux system for catechol/protocatechualdehyde

Annotation correction
ZMO1510 Misannotated as HemK family protein; actually a methyltransferase-modifying release factor
ZMO1997 Novel form of hemJ (as in Acinetobacter; see reference 47)

Other specific functions
ZMO0112 Putative substrate of glutamine cyclotransferase
ZMO0803, ZMO1892 Regulate peptidoglycan recycling and attachment to outer membrane
ZMO1808 RnfH
ZMO1916 BioH (computational prediction, supported by fitness data)

Pathway-level prediction
ZMO0055 Permease related to sulfate assimilation
ZMO0107 NDP-sugar transferase related to glycolipid synthesis
ZMO0132, ZMO0133 Outer membrane-associated acid tolerance proteins
ZMO0331 Peptidase related to the outer membrane
ZMO0444, ZMO0445, ZMO0447 Lipid-related enzymes affecting the cell envelope
ZMO0495 Outer membrane biogenesis protein
ZMO0767, ZMO1319 Outer membrane-related proteins
ZMO0934 ZliE secretion-related protein
ZMO0947, ZMO0502 Synthesis and export of a cell wall component
ZMO1317 Nucleotide kinase-like enzyme affecting the cell wall
ZMO1337 Hydroquinone resistance protein
ZMO1530 Capsular polysaccharide synthesis protein
ZMO1573 Peroxidase regulated by ZMO0116
ZMO1717, ZMO1718 Part of an outer membrane integrity system
ZMO1723 Laccase involved in oxidative stress resistance
ZMO1734 UDP glycosyltransferase-like enzyme in cell wall synthesis
ZMO1790 Heme-related transporter
ZMO1875 FeS cluster repair with bolA (previously published in reference 17)

a Abbreviations: TF, transcription factor; RR, response regulator; HK, histidine kinase; NDP, nucleotide diphosphate.
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ZMO0981), and close homologs of this operon are sometimes
annotated as dipeptide or oligopeptide transporters. However,
this system was important for growth in defined medium with no
added peptides, which seems inconsistent with that annotation.
This operon was detrimental to fitness in the presence of beta-
lactam antibiotics, and some homologous operons include puta-
tive cell wall remodeling genes or beta-lactamases, so we propose
that this operon is involved in the export of a component of the
cell envelope. Although the ZMO0981 protein contains recogniz-
able ABC-like ATPase domains, we also identified phenotypes for
uncharacterized proteins that do not contain recognized trans-
porter domains but lie within a conserved operon with putative
transporter components and have cofitness with them. For exam-
ple, the hypothetical gene ZMO1630 does not contain any recog-
nizable domains (it has no InterPro hits) and has cofitness with
ZMO1628 (r � 0.81) and with other genes in the operon
(ZMO1631-ZMO1628). The ZMO1631 protein is annotated as a
TonB-like siderophore receptor protein, and ZMO1630 has a sig-
nal peptide and three transmembrane helices (as predicted by
TMHMM) and could be a component of a transporter. In Z. mo-
bilis, ZMO1631-ZMO1628 mutants are sensitive to catechol or
protocatechualdehyde, which are similar compounds (both have
benzene rings with two adjacent hydroxyl groups) and are sidero-
phores. Our prediction is that the Z. mobilis system naturally pro-
motes the uptake of a ferric siderophore, while in our experi-
ments, the proteins encoded by ZMO1631-ZMO1628 act as an
efflux pump for catechol and protocatechualdehyde. By similar
logic, we predict that ZMO1015 (which contains a Pfam domain
of unknown function) (DUF330), ZMO1591 (DUF140), and
ZMO1431 (DUF1656) encode components of transporters.

We also predicted specific functions for five other proteins. For
example, we used cofitness to identify the RnfH (ZMO1808; an-
notated as hypothetical) and RnfF (ZMO1842; misannotated as
nosX) components of the ion-pumping electron transport com-
plex Rnf (40, 41). We found that this complex is required for
optimal growth of Z. mobilis under anaerobic conditions (Fig.
4A). To our knowledge, this is the first demonstration that RnfH,
which is not always present in bacterial genomes with the Rnf
complex (42), is required for its activity. Furthermore, we show

that rseC (ZMO1841), which is cotranscribed with rnfF, is func-
tionally associated with the Rnf complex during anaerobic growth
but not during organic acid or beta-lactam antibiotic stress (Fig.
4B). As another example, the hypothetical gene ZMO1916 has
cofitness with biotin synthase (ZMO0094; r � 0.95) and dethio-
biotin synthase (ZMO0095; r � 0.8), which suggests that
ZMO1916 has a role in biotin synthesis. Indeed, an ortholog of
ZMO1916 in cyanobacteria was annotated as bioK (43) and is
proposed to be a pimeloyl-acyl carrier protein methyl ester es-
terase. In E. coli, this activity is performed by BioH, but bioH is not
present in cyanobacteria, and it is absent from Z. mobilis as well. As
far as we know, this is the first experimental support for the in-
volvement of these genes in biotin synthesis. In many of the cases
discussed above, where we have a phenotype for an uncharacter-
ized protein family that lies in a conserved operon, another inter-
pretation might be that the novel protein has an unrelated func-
tion and that the phenotypes are due to polar effects. We cannot
rule out this possibility, but given that these are conserved operons
and that we found a moderate rate of polar effects, we think this is
unlikely. Overall, we were able to make or improve specific anno-
tations for 33 hypothetical proteins and make pathway-level pre-
dictions for 24 others (Table 1).

Seventy-nine diverse mutant fitness experiments are nearly
as informative as 492 experiments. Given that technologies are
rapidly advancing to the point that large-scale mutant phenotype
data sets in bacteria will proliferate (12–14), we asked whether
hundreds of laboratory experiments with a single bacterial species
are worth the investment if the goal is to globally annotate gene
function (and not to detect statistically significant but subtle phe-
notypes). To investigate this, we looked at the rate at which new
genes with strongly reduced fitness phenotypes (fitness less than
�2) appear as a function of increasing the number of experiments
(selected at random) for both Z. mobilis and S. oneidensis. For this
analysis, counting genes with strong phenotypes is the simplest
way to show the impact of adding more experiments, because it
avoids complicated issues around experiment grouping or statis-
tical significance. We find that while each additional experiment
provides an increase in the number of genes with a strong pheno-
type below �2, there is diminishing return after 	100 experi-

FIG 4 Function of Rnf/RseC in Z. mobilis. (A) Heat map of gene fitness values in rich medium in experiments for mutants in components of the Rnf complex
and RseC. The experiments marked in red (x axis) were performed under aerobic conditions, and those marked in orange were performed under anaerobic
conditions. Fitness values are color-coded as described in the legend to Fig. 1A. (B) Comparison of gene fitness values for the Rnf complex (averaged across all
eight genes encoding components of the complex) versus RseC in different categories of experiments.

Deutschbauer et al.

3652 jb.asm.org Journal of Bacteriology

http://jb.asm.org


ments in both bacteria (Fig. 3C). In Z. mobilis, an increase from
the average set of 100 random experiments to all 492 experiments
only moderately increases the number of genes with a strong re-
duced-fitness phenotype (from 801 to 959). Similarly, 296 S. one-
idensis experiments identify 1,379 genes with fitness below �2,
compared to 1,046 genes from the average of 100 random exper-
iments. Among the 502 genes without a specific function anno-
tated in Z. mobilis, a similar trend of diminishing return is ob-
served around 100 random experiments; moving from 100 to 492
experiments only moderately increases the number of these
poorly annotated genes with fitness less than �2 from 197 to 245
(Fig. 3C).

Finally, we examined whether a rational approach for selecting
the conditions would enable the same level of biological discovery
while reducing cost and effort. With one experiment from each of
the 79 nonredundant groups of Z. mobilis fitness experiments (for
a list of conditions, see Data set S1 in the supplemental material),
146 of the 174 (84%) poorly characterized genes have high cofit-
ness with one of the original genes (cofitness � 0.78). We used a
higher cofitness threshold for this analysis (0.78 versus 0.75) to
keep the fraction of random gene pairs with cofitness above 0.75
fixed at 0.37%, despite having fewer experiments (79 versus 492).
Therefore, 79 diverse, laboratory-based mutant fitness experi-
ments (rather than 	500) are sufficient for identifying most cofit-
ness-based gene-gene associations in Z. mobilis. If we pick a ran-
dom exemplar of each of the 61 nonredundant groups of S.
oneidensis MR-1 fitness experiments (Data set S2), 1,130 genes,
including 355 poorly characterized genes, have a reasonably
strong phenotype (�fitness� � 0.75) and significant cofitness above
0.8. Of the 65 genes we previously annotated using mutant fitness
in S. oneidensis (4), 46 (71%) are above these thresholds in the
reduced data set.

DISCUSSION
Phenotypes for almost all genes in bacteria. To our knowledge,
our finding that 89% of assayed Z. mobilis genes have a detectable
phenotype is the highest fraction for a bacterium thus far. In E.
coli, despite decades of extensive single-gene and genome-wide
studies, a significant fraction of the genome does not have an
identified phenotype (and hence function) (44). For instance, a
genome-wide analysis of mutant fitness of single-gene knockout
strains of E. coli across hundreds of conditions identified a signif-
icant phenotype for only half of the genome (8). Furthermore,
deletion of approximately 10% of the genes within a single strain
of E. coli, primarily targeting hypothetical and selfish genes, did
not substantially impact the growth rate in a defined medium
(45). There are a number of potential reasons why we detected
such a high percentage of genes with a phenotype in Z. mobilis,
including the sensitivity of our competitive fitness assay (11), the
small genome size of Z. mobilis, and our grouping of similar ex-
periments to increase statistical power for detecting subtle pheno-
types. Furthermore, we confirmed that these subtle phenotypes
are genuine by showing that detrimental mutations continued to
decrease in abundance when we continued the experiment for
more generations (Fig. 1E), by showing that virtually all of the
genes with phenotypes in rich medium are expressed in rich me-
dium (Fig. 1D), and by showing that even operons that have only
subtle phenotypes tend to have high cofitness (Fig. 1C).

Utility of more phenotypes. Given that 79 fitness experiments
suffice to find phenotypes for most genes in Z. mobilis, it is not

surprising that doing hundreds of additional assays failed to find
many additional significant phenotypes. However, measuring fit-
ness in additional conditions did not make the phenotypes more
interpretable, which surprised us. Intuitively, more fitness exper-
iments allow many genes to show more-complex fitness patterns
that contain more information about gene function, but we were
not able to take advantage of this. We believe that this is partly
because most of these additional experiments were stresses by
small molecules, which are difficult to interpret, so we relied on
cofitness. Also, genes with significant but only weak phenotypes
tended to have lower cofitness (Fig. 3A), which limited our ability
to predict the functions of these genes. It is possible that better
statistical methods or complementary data of other types (e.g.,
protein-protein interactions or double mutants) would increase
the utility of the additional conditions. A related issue is that doing
more-similar experiments (e.g., different concentrations of an in-
hibitor) allows for increased confidence in subtle phenotypes (re-
ducing fitness by just 3% per generation), but we do not see how to
use subtle phenotypes for annotation. In an organism with a
broader range of metabolic or respiratory capabilities, such as S.
oneidensis, many genes have specific phenotypes relating to me-
tabolism or respiration that are readily interpretable (4). For ex-
ample, doing an additional fitness experiment with a new carbon
source might yield a specific phenotype for one or two operons
involved in the transport or catabolism of that compound. In
terms of the genome-wide numbers of genes with phenotypes, this
is not impressive, but it does lead to specific annotations.

Implications for annotating gene function in bacteria. Given
the ease of bacterial genome sequencing, it is imperative that high-
throughput approaches for elucidating gene function are devel-
oped to determine gene function in a wide range of bacteria. In
addition to demonstrating that nearly all genes in bacteria have an
identifiable phenotype, our results and methods suggest that scal-
ing mutant fitness-based gene annotation to many bacteria is fea-
sible. First, the majority of our Z. mobilis experiments (316 of 492)
were performed in microplates, demonstrating that bacterial mu-
tant fitness assays can be performed in a miniaturized, high-
throughput growth format. Second, switching from microarrays
to sequencing DNA bar codes will enable greater throughput and
lower cost (13, 46).

Our genome-wide fitness results and analysis do not mean that
we have completely validated the function(s) of the genes dis-
cussed. Rather, our work flow provides a data-driven, high-
throughput approach to generate many gene function predictions
of different specificities using gene-gene fitness correlations. In
fact, we view our genome-wide data sets as a starting point for
generating specific hypotheses on the functions of poorly charac-
terized genes, which could be followed up with more-traditional,
single-gene investigations. However, given the sheer number of
uncharacterized proteins, this will be possible only for the most
interesting genes. We hope that other high-throughput ap-
proaches will provide complementary information so that we can
make reliable claims about the functions of most of the other
uncharacterized proteins.

Although this study focused on poorly annotated genes, fitness
data could also be used to test the more-specific functional anno-
tations. We noted several erroneous annotations during the anal-
ysis of hypothetical proteins (e.g., ZMO1842 was misannotated as
nosX instead of as rnfF, and a soxR-like regulator was omitted from
the annotation, see Text S1 in the supplemental material). To
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illustrate this issue more broadly, we considered the protein-cod-
ing genes of Z. mobilis that have specific annotations and signifi-
cant beneficial phenotypes and are strongly beneficial in at least
one group of experiments (average fitness under �1). There are
491 such proteins, and we examined a random subset of 20 of
them (Text S2). We confirmed the annotations for nine of these
genes and found two erroneous annotations. For the remaining
nine genes, we could not make a clear determination; this in-
cluded four genes that were important for fitness in most condi-
tions, which confirms the gene’s importance but does not link it to
a biological process. If scaled up to the 491 candidate proteins, this
approach could probably be used to confirm hundreds of anno-
tations and identify dozens of erroneous annotations.

Last, our results show that less than 100 experiments, instead of
492, suffice to find phenotypes and informative cofitness for many
genes. Although these experiments were selected in hindsight, we
expect that most of the redundancy of the fitness experiments
could be avoided in future studies with other organisms. Most of
the experiments grouped into clusters that comprised replicate
experiments, near-replicate experiments, such as different con-
centrations of the same inhibitor, or experiments that involved
structurally similar compounds, such as antibiotics of the same
class.

What fitness experiments should be conducted for another
bacterium? We recommend selecting conditions based on the
organism’s energetic or metabolic capabilities, i.e., different
sources of carbon and nitrogen, or combinations of electron do-
nors and acceptors. We recommend that a few dozen dissimilar
stresses be performed as well; our clustering should help to select
these conditions (see Data sets S1 and S2 in the supplemental
material). In conclusion, this work provides a general approach to
discover the functions of many genes in diverse bacteria by using
mutant fitness.
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