
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Improving the Internet Architecture Through Indirection and Virtualization

Permalink
https://escholarship.org/uc/item/6bg2105h

Author
Sevilla, Spencer

Publication Date
2017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6bg2105h
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

IMPROVING THE INTERNET ARCHITECTURE THROUGH
INDIRECTION AND VIRTUALIZATION

A thesis submitted in partial satisfaction
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Spencer Sevilla

June 2017

The Thesis of Spencer Sevilla
is approved:

————————————————–
Professor J.J. Garcia-Luna-Aceves, Chair

————————————————–
Professor Carlos Maltzahn

————————————————–
Professor Katia Obraczka

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Spencer Sevilla

2017

Table of Contents

List of Figures . viii

List of Tables . x

Abstract . xi

Dedication . xii

Acknowledgments . xiii

1 Introduction 1

2 Related Work 5

2.1 Names, Addresses, and Routes . 5

2.2 Future Internet Architectures . 6

2.3 Internet Mobility and Multihoming 8

2.3.1 Host-Identifier Approaches 8

2.3.2 Host-Locator Approaches . 9

2.3.3 Combined Approaches . 10

2.3.4 Independent Host Namespaces 11

2.4 Information Centric Networking . 11

2.5 Web Content Delivery and Caching 12

3 The Design of Hidden Identifiers 14

3.1 Open and Hidden Identifiers . 15

3.1.1 Open Identifiers . 15

3.1.2 Hidden Identifiers . 16

3.2 The Arguments For Opacity . 17

3.2.1 Identifiers, Locators, and Translation 17

iii

3.2.2 File Descriptors and Opacity 18

3.2.3 Identifiers at Intermediate Systems 19

3.2.4 Identifiers at End Systems . 19

3.3 Hidden Identifier Acquisition and Semantic Binding 20

3.3.1 Semantic Bindings at Applications 20

3.3.2 Peripheral Resolution Functions 21

3.4 Servers and Listening Applications 23

3.5 Hidden Identifiers in the Network Stack 24

3.5.1 Hidden Identifier Multiplexing 24

3.5.2 Demultiplexing and Scoping 25

3.5.3 Connection-Oriented Protocols 26

3.6 Conclusion . 27

4 HIDRA: A Network Architecture Based on Hidden Identifiers 28

4.1 HIDRA Network Protocol Stack . 29

4.1.1 HID, TID, and NID Semantics 29

4.1.2 Connecting, Sending, and Receiving Messages 31

4.1.3 Transport-Layer Changes . 31

4.2 Application-Layer Interface . 32

4.2.1 Existing Semantic Bindings 32

4.2.2 Future Semantic Mappings 33

4.3 HIDRA Control Processes . 34

4.3.1 Basic Table Interface . 34

4.3.2 Mechanism and Policy . 35

4.4 Evaluation And Case Studies . 35

4.4.1 Data-Plane Address and Host Multiplexing 36

4.4.2 Adapting Non-HIDRA Applications 37

4.4.3 Legacy Application Support 38

4.4.4 Multiplexing Overhead . 39

4.5 Conclusion . 39

iv

5 DIME: Lightweight and Deployable Mobility at End Hosts 41

5.1 Protocol Challenges and Requirements 42

5.2 The Internet Host Mobility Protocol 43

5.2.1 End-To-End Host Identification 44

5.2.2 IHMP Hello Exchange . 45

5.2.3 Backpath Probing . 46

5.2.4 Address Up and Down Events 47

5.2.5 Handoffs . 47

5.2.6 Control-Plane Security . 48

5.2.7 Out of Band Signaling . 49

5.3 Additional Considerations and Edge-Cases 49

5.3.1 Simultaneous Mobility . 49

5.3.2 Mistaken Identities . 50

5.3.3 Micro Mobility . 50

5.3.4 NAT Detection and Traversal 51

5.4 Implementation and Evaluation . 52

5.4.1 Deployment and Configuration 53

5.4.2 Handoff Latency . 54

5.4.3 Data Plane Throughput . 56

5.4.4 Multipath Link Bundling . 57

5.4.5 Connections, Hosts, and Scalability 59

5.4.6 Control Message Analysis . 60

5.4.7 Lines of Code . 61

5.4.8 Featureset Comparison . 61

5.5 Conclusion . 62

6 iDNS: Supporting Information Centric Networking Through the

DNS 63

6.1 Goals, Assumptions, and Architecture 63

6.1.1 The Information-Centric Name Resolver 64

6.1.2 The DNS Lookup and HTTP Data Plane 66

v

6.1.3 Layered Mobility Signaling 67

6.2 iDNS and the Content Record . 68

6.2.1 Object and Record Security 69

6.2.2 Address Record Selection . 69

6.3 Content Replication . 70

6.3.1 Long-Lived Content Replication 71

6.3.2 Content Caching . 72

6.4 Comparing iDNS to Prior ICN Proposals 72

6.4.1 Location-Independent Persistent Naming 73

6.4.2 Efficient Content Distribution 73

6.4.3 Object Level Security Model 74

6.4.4 Mobility And Disruption . 75

6.4.5 Differences With Prior ICN Work 75

6.5 Analysis of Scalability . 76

6.5.1 Scalability of the Authoritative DNS 76

6.5.2 Scalability at the Local DNS Server 78

6.6 Experimental Deployment . 79

6.6.1 Name Format Translation . 80

6.6.2 Latency Results . 80

6.7 Conclusion . 81

7 GroupSec: A New Security Model for the Web 83

7.1 Content Group Security . 84

7.1.1 Asymmetric Privacy Model 85

7.1.2 HTTP-Centric Security . 86

7.1.3 Middleboxes and Trust . 87

7.2 HTTP-GroupSec . 87

7.2.1 Object Encryption and Decryption 88

7.2.2 URL Hashing . 88

7.2.3 Hostname Stripping . 90

7.2.4 Transparent Caching . 91

vi

7.2.5 Cross-Domain Linking . 91

7.3 Threat Model Analysis . 91

7.3.1 Unauthorized File Access . 92

7.3.2 Client Requests . 92

7.3.3 Content Spoofing . 93

7.3.4 Cache Poisoning . 93

7.4 Performance Evaluation . 94

7.4.1 Sustainable Load . 94

7.4.2 Latency . 95

7.5 Conclusion . 95

8 Conclusion 97

References . 98

vii

List of Figures

1.1 Traditional name-address resolution and binding 2

3.1 Open and hidden identifiers . 17

3.2 Hidden Identifier Application Pseudocode 21

3.3 Hidden Identifier Acquisition . 21

3.4 Service Registration and Binding . 24

4.1 HIDRA overview . 28

4.2 HIDRA protocol stack . 29

4.3 Testbed topology . 36

4.4 Netcat comparison . 37

4.5 Hidratunnel overhead . 38

4.6 Multiplexing overhead . 39

5.1 IHMP Message Format . 44

5.2 HELLO message exchange . 45

5.3 Address-up signaling . 46

5.4 Address-down signaling . 48

5.5 Micro-Mobility Signaling . 49

5.6 Mobility signaling with NAT . 52

5.7 Testbed topology . 52

5.8 Handoff Signaling Latency . 55

5.9 TCP Handoff Goodput . 57

5.10 Multipath Throughput . 58

5.11 HIDs/Cons PDF . 59

viii

5.12 Connections vs hosts . 59

5.13 Handoff Control Message Scalability 61

6.1 The Information-Centric Name Resolver 67

6.2 Content Record vs Host Record . 68

6.3 Dynamic Record Generation . 71

6.4 Local Record Generation . 72

6.5 Histogram of HTTP Path Components 79

6.6 Prototype Deployment Topology . 79

7.1 Content Group Membership . 84

7.2 HTTP-GS Requests and Responses 88

7.3 HTTP-GS URL Hashing . 89

7.4 Server Load . 94

7.5 Page Load Time . 96

ix

List of Tables

4.1 Peripheral functions . 33

4.2 Hidden-identifier table functions . 34

4.3 Lines of code . 38

5.1 IHMP Messages . 45

5.2 Deployment Requirements . 53

5.3 Handoff control messages . 60

5.4 Lines of Code . 61

5.5 Featureset Comparison . 62

6.1 Example ICNR Variables . 65

6.2 Results . 81

x

Abstract

Improving The Internet Architecture through Indirection and Virtualization

by

Spencer Sevilla

The current Internet architecture requires applications to transparently bind and

manage network addresses and ports. This design creates and exacerbates several

problems for the current Internet as well as its future evolution. These problems

and challenges include (1) network address mobility and multihoming; (2) future

Internet evolution; (3) service- or content-centricity; and (4) adding, subtracting, or

evolving the layers in the network stack.

To address all of these problems, this thesis introduces a novel approach to

Internet naming and addressing, which we call hidden identifiers. Hidden identifiers

enable applications to semantically express the exact network resource they desire,

and allows the operating system to subsequently bind and manage all other network

concerns. In this manner, we provide integrated support for all the problem-cases

enumerated above while simultaneously simplifying the network API presented to

applications.

We introduce, implement, and evaluate HIDRA, the first network stack architec-

ture based on hidden identifiers. We show that this network stack provides integrated

support for features such as network mobility and multihoming, and explain how

the HIDRA architecture can support a wide range of semantic bindings. Finally, we

show how this feature can be leveraged to support the goals of information-centric

networking on top of the existing TCP/IP network stack by slightly modifying DNS

and HTTP.

xi

Dedication

This thesis is dedicated to my late grandfather, Leslie Arthur Welge. He once

told me that graduate school was where you learn more and more about less and less,

and he’d certainly be thrilled to hear that I now know everything about nothing at

all.

xii

Acknowledgements

Much gratitude and acknowledgement goes to Sam. Regardless of what lab,

office, or city we’re in, you’ve been a fantastic coworker, labmate, and friend. I’ve

always been grateful for your insight in networks, protocols, and systems, as well as

the business end of things, and I sincerely look forward optimistically to collaborating

with you in the future.

To the Buena Vista house, both old and new - Ashley, Clio, Kat, Colin, Kate,

Sara, Ben, Kevin, Mike, and Stacey: anyone would be envious of such housemates!

From getting pints to climbing trees, movie nights, and every form of mischief in

between, you provided the emotional bedrock of my time in graduate school.

An equally sincere thank you goes to Will, Kim, Hope, Steve, Mimi, Peter,

Morgan, Dominic, and the entire Bolte family. You’ve all provided me with amazing

friendship, daring adventures, and a much-needed break from the “PhD grind.” My

time with all of you has always left me feeling refreshed, and I look forward to getting

into even more antics post graduation.

Much appreciation goes to to Katia, Carlos, and Hamid for their repeated insight

and advice over the last five years. Your patience and wisdom for my questions on

systems, networks, theses, academia, industry, and careers has been greatly bene-

ficial. I’ve been exceedingly grateful for your presence on the UCSC campus and

hope to remain in touch.

A special thank you goes to JJ: you have been a phenomenal and amazing advisor,

and consistently went above and beyond the call of duty in order to make sure I was

progressing and succeeding in the path that I wanted for myself. I can’t imagine

doing grad school any differently, or getting my PhD advised by anyone else.

Finally, deepest love, gratitude, and appreciation goes to my family. You’ve been

an unwavering rock of support throughout this entire foolhardy endeavor, and I love

you all very much.

xiii

Chapter 1

Introduction

Internet applications today are primarily concerned with content and services. Ap-

plications can be loosely divided into producers and consumers, with producers (i.e.

servers) making content and services available and consumers (i.e. clients) requesting

said content and/or services from a producer’s servers.

Despite the observation that content and services drive Internet traffic, neither

are reflected in the identifiers, names, and routes used by the Internet architecture

today. Instead, the core Internet protocols use IP addresses to indicate the network

attachment point of a host, and port numbers to address a specific application

process running inside a host. These two values, indicated as an {ip:port} tuple, are

then used by applications to uniquely identify a corresponding application process

to the operating system.

This discrepancy between an application or user’s interest (i.e. content or ser-

vices) and the addressing tuple used in the Internet (i.e. addresses and ports) means

that a mapping from the interest to the tuple must be created before the application

can send or receive data.

Figure 1.1 illustrates a well-known example of this process: a client requesting

a webpage. Starting with a user-provided piece of named content, http://www.

example.com/thesis.pdf in Step 1, the application first internally splits the URL

into two components, the hostname and the path (Step 2). The application then

provides this hostname to a Domain Name System (DNS) resolver (Step 3), which

uses the DNS to map the hostname www.example.com to a set of IP addresses (Step

1

http://www.example.com/thesis.pdf
http://www.example.com/thesis.pdf

Figure 1.1: Traditional name-address resolution and binding

4) and returns this set to the application (Step 5). Next, following IANA standard

convention1, the application infers that HTTP traffic must be sent to port tcp80

(Step 6). Finally, in Step 7, the application arbitrarily selects an IP address addr1

from the returned set, opens a socket to addr1:tcp80, and sends a HTTP request

to this socket.

Under this approach, the link-layer addresses and network routes between hosts

are established and maintained in the system based on IP routing tables. How-

ever, the application is still individually responsible managing and mitigating sev-

eral network-related concerns. These concerns include (1) parsing the hostname

from the content name; (2) resolving the hostname to an IP address and binding

it; (3) selecting the best IP address if more than one are returned; (4) discovering

(or assuming) the correct port number and protocol; and (5) inferring that HTTP

is the end-to-end content protocol used.

These existing algorithms for name resolution and address bindings have served

us well since the inception of the traditional TCP/IP Internet [CK74]. However, as

the Internet has become ubiquitous and wireless networks and devices have prolif-

erated, new application requirements make the traditional approach to name reso-

lution and name-address binding untenable. Specifically, supporting multi-homing

and mobility of hosts and processes, seamlessly multiplexing among multiple network

interfaces at each host, using diverse protocols in wireless networks, explicitly nam-

ing content or services, and evolving such identifying layers cannot be accomplished

today under this model.

These problems and challenges are not new, rather, there exists a vast set of

related work on adapting the Internet protocols and stack to better reflect the new

1The IANA port registry [ian] is simply assumed to be known a priori by the application.

2

realities of the Internet. This body of work ranges from abstract analysis on the

nature of names, addresses and binding, to targeted works that focus on one spe-

cific network challenge (e.g. network address mobility or multihoming), to grand-

vision “Future Internet” works that propose rearchitecting or redesigning the entire

network stack and protocol suite. Unfortunately, these works come paired with

a dramatically high adoption cost, generally requiring the complete redesign and

replacement of Internet protocols, end-hosts, switches, and routers in the network.

To address all of these problems, the key contribution of this thesis is a new

approach to the way names, addresses, and routes are bound between layers of the

network stack. This approach enables applications to specify, and then bind, an

identifier that semantically indicates exactly the name or resource requested by the

application. The application then does not manage any other network-related con-

cerns; these concerns include name resolution, address bindings, and routes. What

is novel about our approach is that it specifically avoids introducing, requiring, or

preventing the use of any new identifiers, services, or protocols in the Internet stack.

This achieves support for several new network features (such as network mobility

and content-centric binding) today while maintaining backwards compatibility, sup-

porting future extensibility, and avoiding the roadblocks commonly associated with

Future Internet architectures.

This thesis proceeds as follows. Chapter 2 summarizes and categorizes a vast set

of related work in many different fields. Chapter 3 introduces the abstract concept

of our approach, which we call hidden identifiers, explains the importance of hidden

identifiers, and makes the argument for hidden identifiers in the network stack.

Chapter 4 provides the design, implementation, and evaluation of HIDRA, the first

network stack based entirely on hidden identifiers, and Chapter 5 introduces and

evaluates DIME, a system that leverages the HIDRA architecture to support host

mobility across IP address changes.

Going further, Chapters 6 and 7 show how HIDRA can be leveraged to support

the goals of information-centric networking on top of the current TCP/IP network

stack. Chapter 6 presents iDNS, a location system that extends the DNS infrastruc-

3

ture and protocol to lookup the current address(es) of content objects. Chapter 7

focus on supporting the goals of an information-centric data-plane (i.e. ubiquitous,

opportunistic caching) by providing a method for adapting HTTP to support trans-

parent content caching with blind security. Finally, Section 8 concludes the thesis.

4

Chapter 2

Related Work

The architecture of this thesis spans and integrates many different fields of work - as

such, there exists a vast body of related work that we analyze, evaluate, and compare

against. We divide this related work into several sections, in order: classic works on

Internet identifiers (e.g. names, addresses, and routes), works that propose future

or alternate Internet architectures (excluding Information-Centric Networks), work

on Internet mobility and multihoming, work on information-centric networking, and

work on content delivery and caching in the Web today.

2.1 Names, Addresses, and Routes

Work on the binding of names, addresses, and routes to one another goes back

several decades. Watson [Wat81] provides an excellent summary of early work on

the subject, and Shoch [Sho78] provided a famous characterization of these concepts:

“the name of a resource indicates what we seek, an address indicates where it is,

and a route tells how to get there.” This set of primitives was further discussed by

Saltzer [Sal93], who pointed out that an address is really just the name of a lower-

layer entity, and the binding process connects a name to a particular address. It

is implied that a particular layer in the network maintains and manages its named

bindings to the next layer down.

Crucially, early works on the characterization of bindings among names, ad-

dresses and routes do not advocate how they should be carried out! Later works

5

(i.e. [CK74] and the current TCP/IP network stack) simply assume a model wherein

the names used by lower layers, and the binding of names to addresses enacted within

a layer, are exposed. By exposed, we mean that these identifiers and their bindings

propagate up the stack, and are visible/modifiable by higher layers (i.e. the ap-

plication layer) as well as intermediate network entities (i.e. network routers and

middleboxes).

Notably absent from prior work on names, addresses, and routes are works that

challenge the assumption of exposed bindings or propose alternate models. How-

ever, such prior work can be seen in many other fields of computer science. Prior to

the advent of computer networks, the original UNIX proposal [RT78] introduced file

descriptors as a novel solution to the challenge of file location. Prior to UNIX, appli-

cations had to specify the exact location of a file on the disk or drum; consequently,

any change to the operating system, underlying storage, or file system broke every

application. In turn, file descriptors provided a standardized interface and opaque

layer of abstraction that allowed applications to persist across such modifications by

centralizing file location management in the operating system itself.

2.2 Future Internet Architectures

Several proposals have been made on how to evolve the Internet to address its

current limitations with naming and addressing. FII [ea11b, ea11a] and Plutarch

[et.03] highlight the fact that new solutions cannot be deployed incrementally, and

must be uniformly adopted simultaneously. To address this problem, these proposals

advocate for an Internet framework that allows for heterogeneity between different

network domains (referred to as “contexts” in Plutarch). Both Plutarch and FII

advocate a new network API, and FII suggests some guidelines for its design, but

neither proposal provides a model of what this API should be, its implementation,

or a roadmap for migrating applications to use it. Ghodsi et. al. [ea11a] briefly

propose that a future network API should be based on hostnames, as opposed to

network addresses. However, they describe the network API as something that must

be redone from the ground-up, without specifics.

6

Other proposals [ea02, ea04, ea08, For08, ea12, Han12] advocate the introduction

of new layers of transparent identifiers into the stack as a way of eliminating some of

the naming and addressing problems in the current Internet architecture. In [ea04],

the authors propose that applications start with a service identifier (SID) provided

by the end-user, resolve it to a set of endpoint identifiers (EID), and then choose one

to bind to a socket. EIDs are used only by the transport layer, and are translated

and bound to network addresses in order for routing and communication to occur.

A similar proposal, Serval [ea12], identifies the same problems and proposes the

introduction of a Service Access Layer (SAL) between the network and transport

layers. The SAL redoes the socket API to bind directly to service identifiers (SID)

instead of the traditional tuple based on an IP address and a port number.

Other architectures [IMA10, TP08, DMM08, TGDM11, TBD+11] explore the

concept of recursion between layers of the stack. This model views each layer as

providing an abstract interprocess communication (IPC) service to the layer directly

above it, and thus views the entire stack as a recursive series of services that perform

both transport and routing tasks, as opposed to a model where the entire stack

constitutes one distributed IPC service for applications.

Unfortunately, these future network architectures all come at a very large adop-

tion price. These architectures require the redesign of network applications and

operating systems, and generally also require the replacement of all intermediate

hardware (routers and switches). While some proposals [For08, ea12, et.03] lay out

“deployment roadmaps” or explain how they can be incrementally deployed, many

such proposals are incomplete or frought with concerning or inaccurate assumptions

about what is feasible. As the most concrete example of this, we point to the adop-

tion rate of IPv6: in January 2016, IPv6 reached a 10% connection rate twenty

years after its standardization [ipv]! This rate is untenably slow, especially when

it is taken into account that these future architectures propose much more radical

network changes than the IPv4-v6 transition.

7

2.3 Internet Mobility and Multihoming

The core problem created by openly exposing identifiers and bindings is that higher

layers inevitably ascribe separate and additional meanings to lower layer names. This

problem is most evident in the treatment of IP addresses: higher-layer protocols (i.e.,

TCP and UDP) use IP addresses to consistently identify communicating processes

in hosts, whereas the network layer uses IP addresses to locate host endpoints in the

network. This semantic difference is famously known as the identifier-locator split.

This overloading of semantic meanings poses a significant challenge for persisting

communication sessions across host address changes. Specifically, this challenge

centers around the question of what to do when a host changes network attachment

points: should the host identifier binding at higher layers be broken, should the host

locator binding at lower layers be broken, or should the binding between these two

functions be split? And if so, how should this be accomplished? Moreover, these

problems are compounded by the ossification of each protocol in the network stack

and the fundamental observation that if a name or address is bound, it must not be

subsequently changed - such a change undermines the very purpose of binding!

While there exists a vast body of work addressing host mobility in the Internet,

including several surveys [Edd04, PSS04, BP96, LFH06, KSB15, SMMC04, PJ96,

GVK14, IMA10], we found that all approaches can be categorized by how they

handle the identifier-locator split in the data plane. Specifically, we group prior

work into approaches that transmit host identifiers, approaches that transmit host

locators, and approaches that transmit both identifiers and locators.

2.3.1 Host-Identifier Approaches

The first host-mobility proposals, including Mobile IP [NB09, ABH09, Per97, KIUE00],

preserve the identifier bindings made by higher layers, and approach host mobility

entirely within the network layer, typically by updating a node’s location in inter-

mediate routing tables or rendezvous points as it moves, and using this information

to redirect or reroute datagrams.

8

The key benefit of this approach is that by restricting all modifications to the

network layer, they are able to seamlessly maintain the bindings, connections, and

APIs of higher-layer protocols (i.e., TCP and application-layer protocols) while still

supporting host mobility in the network. Unfortunately, restricting host mobility

to the network-layer creates significant problems. First, reliance on intermediate

routers necessarily incurs additional control signaling and routing-table growth: host

addresses cannot be aggregated if they are preserved across moves. Second, these

approaches often increase network bandwidth consumption and end-to-end latency

via triangle routing in the data plane. Finally, all approaches to network-layer

mobility support require an infeasible amount of coordination, standardization, and

replacement of existing infrastructure because they alter network-layer protocols in

both the control- and data-planes.

2.3.2 Host-Locator Approaches

In response to the above problems, later proposals [Edd04, FRH+11, SSII02, BS97,

BB95, FYT97, FZ08, SB00, MB98, KG08, SGLA15] concentrate mobility support

above the network layer at end hosts. These approaches propose addressing data-

grams to the current network location of a host (i.e., the locator), and updating

the IP address bindings made by higher layers (typically at the transport layer) by

way of additional signaling or protocol options exercised when a host experiences

mobility.

Host-locator approaches have seen more success than earlier works, because they

do not require changes to the routing infrastructure and hence can be incrementally

deployed at end hosts. However, these approaches are almost all TCP-specific and

require significant protocol modifications. Additionally, they often introduce incom-

patibilities with NAT boxes and raise significant questions of scalability, because the

migration protocol is enacted for every active connection at the host. Finally, imple-

menting these modifications as kernel-level code renders these approaches remark-

ably non-portable, yet they cannot be implemented in user space without raising

alternate questions of long-term compatibility and deployment [For08].

9

2.3.3 Combined Approaches

The most recent approaches transmit both identifiers and locators in the data plane,

with the intent that higher layers only use identifiers and the network layer only

uses locators. LISP and ILNP [NB09, ABH09] achieve this by splitting the IPv6

identifier space in half, though this raises significant concerns about address space

fragmentation, introduces questions about the appropriate size of each value (lest

one set of values run out), and requires ubiquitous IPv6 adoption.

Other approaches [SCFJ03, WS99, SW00, DVC+01, PPKC06, KP04, ZM02,

OMTT99, ea08, ea02, LCP+05, Rip01, Coh08, CS05] identify hosts at the appli-

cation layer through the use of overlay networks or rendezvous servers, and rely on

application-layer shims for transmitting the identifier over an IP packet addressed

to the locator. However, the reliance on overlay architectures incurs significant

overhead in both the control and data planes, and can increase end-to-end latency

to unacceptable amounts. Additionally, such distributed protocols can exhibit sig-

nificant control message churn when nodes enter and leave the network. Finally,

the increased network communication and resource consumption often renders these

solutions inappropriate for resource- or bandwidth-constrained environments when

compared to other more integrated solutions.

In addition to application-layer overlays, similar overlay networks can also be

deployed by virtualizing and encapsulating either Layer 3 or Layer 2 traffic within

UDP or IP packets [HF10, Mah14, Sri11, XY13, GHJ+09]. When compared to

application-layer approaches, these solutions are more adaptable and deployable,

since they transparently support all existing network applications (e.g. email clients,

web browsers, etc.) without modification.

Unfortunately, these system-based approaches incur even more overhead than

application-layer approaches in multiple ways: (1) the end host must essentially

route each datagram through the network stack twice, (2) doubling the headers

incurs data-plane overhead that can exceed 50 bytes per packet; and (3) control

plane overhead is at least doubled by the need to run virtual discovery and routing

protocols on top of physical ones. These overhead costs, combined with the reliance

10

on a complex virtual routing stack and IPSec encryption, renders these solutions

expensive for traditional hosts (e.g., laptops) and infeasible for resource-limited or

constrained devices.

2.3.4 Independent Host Namespaces

Other works [SB00, FZ08, RPB+12, JSBM02, ea11a, ea10] propose resolving the

identifier-locator split by entirely separating the layers and introducing a new layer

or identifier namespace to uniquely refer to hosts. These protocols observe that

applications typically identify a host through DNS resolution, rather than its IP ad-

dress, and argue for either a socket API or TCP implementation based on hostnames,

as opposed to network addresses. In this style, [ea04, MB98, ea08, KG08] advocate

a similar model based on cryptographic host identifiers in place of hostnames.

Unfortunately, these proposals suffer from the same drawbacks of Section 2.2:

they break backwards compatibility with corresponding hosts, network applications,

and (in some cases) intermediate network hardware. Additionally, they require

agreement on, standardization, and widespread deployment of new identity pro-

tocols.

2.4 Information Centric Networking

The research field of Information-centric networking (ICN) is motivated by the ob-

servation that Internet communication has shifted primarily to content distribution,

Internet content continues to grow exponentially, and a large portion of this content

is user-generated, to be shared with other users. This shift has prompted a substan-

tial research effort [KCC+07, JST+09, FNTP12, ADM+08] that proposes a “clean

slate” redesign of the Internet architecture, shifting the focus from addressing hosts

to denoting content in the form of named-data objects (NDOs). ICN proposals can

generally viewed as future Internet architectures, but represent such a significant

shift in network design and architecture that we consider them separately.

The various ICN proposals generally share a common set of benefits, namely:

persistent and unique naming of data, efficient content-distribution, secure content

11

provenance and authentication, and better support for network mobility, disruption,

and multihoming. By the same token, ICN proposals also share a number of charac-

teristics, including: content-routing based on NDOs, divorcing content names from

location, ubiquitous content-caching at intermediate routers, and nearest-replica-

routing [FLT+13, ADI+12].

Although the shift from addressing hosts to addressing content can provide many

performance benefits in the future, the need to replace today’s TCP/IP stack and

routing infrastructure constitutes a significant obstacle to the adoption and deploy-

ment of ICN, given the ubiquity of IP routers and switches. Moreover, many open

questions remain regarding naming, caching, routing, security, discovery, and scal-

ability that must be solved before any one proposal is mature enough to be imple-

mented at Internet scale.

2.5 Web Content Delivery and Caching

Independently of the ICN clean-slate research thrust, significant changes and im-

provements have been made to Web technologies over the last decade in order to

better support content distribution. These approaches, which include Content De-

livery Networks (CDNs), caches, and proxies, were designed to alleviate some of

the problems associated with content distribution and dissemination, yet they have

evolved in a very ad-hoc, disjointed manner. Though these technologies are not en-

tirely information-centric, they implicitly support location-independent naming in

that they serve the same data object from several locations. In this vein, HTTP

itself can be loosely thought of as information-centric in that URLs name a piece of

content [PGS10].

A recent set of “secure content delegation” proposals [TEH16a, RL16, TEH16b]

that enable publishers to host content at a (presumably untrusted) CDN by provid-

ing clients with keys needed to verify and/or decrypt the content over a separate

(out-of-band) HTTPS session. However, these approaches incur significant overhead

(both in bandwidth and latency) by relying on redirection to obtain the location of

the resource at the CDN. More importantly, by relying on redirection and requiring

12

HTTPS, the approach only supports explicitly configured CDNs and proxies, not

transparent or opportunistic caches.

Meanwhile, policy-based solutions [LMS+14, Peo12, MWNG13] propose leaving

TLS unchanged and “splitting” a TLS session into two separate connections: one

from the client to the middlebox, and another from the middlebox to the server.

However, since these proposals require the caching entities to be trusted either by

root CAs and/or browsers, they completely break end-to-end authentication, and

have thus met widespread resistance by the Web community [expc, expb, expa].

Finally, other works [NSV+15, SLPR15] propose altering TLS itself to support

specific middlebox operations on traffic flows. However, these works appear to

have focused exclusively on adding support for qualitative middlebox features such

as intrusion-detection or content-filtering, and do not support transparent content

caching. This limitation stems from the fact that such works enable middleboxes to

alter existing TLS sessions, whereas the goal of transparent caches is to prevent an

end-to-end flow from ever being established in the first place.

13

Chapter 3

The Design of Hidden Identifiers

As we summarized in Section 2, a large body of work has been aimed at making

naming and addressing more responsive to the new realities of the Internet. From an

abstract perspective, these proposals center around and focus on two key problems:

(1) the “early binding” that must be established between the name of a process and

the address where it can be provided, and (2) the need for applications to monitor

and manage this binding.

Remarkably, all prior approaches address these two problems by introducing ad-

ditional layers of identifiers into the protocol stack. While these proposed solutions

appear attractive and semantically clean, we argue that these are not the correct

approach to solving the naming and addressing problems of the current Internet ar-

chitecture. This is because adding identifying layers to the stack effectively requires

the development, standardization, and deployment of new communication protocols.

Consequently, such approaches introduce significant roadblocks to adoption and de-

ployment, including (1) requiring middlebox support; (2) replacing network-layer

protocols and/or hardware; (3) significantly altering the operating system network

stack; and/or (4) requiring modifications to network applications and the socket

API.

In this chapter, we provide a new take on this old problem by introducing the

concept of open and hidden identifiers and explaining the important difference be-

tween them. We discuss the challenges and problems with open identifiers, provide

the core argument for opacity between layers of the network stack, and show why

14

hidden identifiers are needed in the network stack. Finally, we provide rules and

guidelines that ensure proper hidden identifier behavior, and provide examples that

show what hidden identifier bindings would look like.

3.1 Open and Hidden Identifiers

3.1.1 Open Identifiers

A striking similarity of both today’s Internet architecture and all the proposals in

Section 2 is that they all, without exception, assume that protocols must employ

what we call open identifiers. Open identifiers are transparent values that encode

meaning, are propagated over a network, and are used to name or address1 a network

entity. Formally, we describe open identifiers with the set of three characteristics

below.

• Open identifiers are visible to other network stack layers as well as the end

systems or intermediate systems that employ them.

• Open identifiers are unique and unambiguous within a scope.

• Open identifiers cannot change once bound.

Examples of open identifiers employed today include DNS hostnames, transport

layer ports, and IP and MAC addresses. Examples of transparent identifiers pro-

posed by future Internet architectures include endpoint, host, application, content,

and service identifiers.

The implicit assumption of open identifiers by network protocol designers is so

ubiquitous that it has been argued [ea04] that the only way to break the early

binding between a name and an address is to introduce an additional layer of (open)

identifiers between them. The key drawback of this approach is that it still locks

applications, protocols, and the network API to whatever new open identifiers are

employed! This is a big problem for Internet evolution: just as the designers of the

1In this context, we use ”name” and ”address” interchangeably, since as [Sal93] points out, an
“address” is just the “name” of a lower-level entity.

15

original Internet architecture could not predict today’s problems associated with

early bindings of names to addresses, it is not possible to predict what problems

may result from the use of such new identifiers that must be unambiguous on a

network-wide basis. Furthermore, requiring applications to use new identifiers in the

API forces developers to modify applications and protocols as the Internet evolves.

3.1.2 Hidden Identifiers

In contrast to open identifiers, the primary contribution of this thesis is the ab-

stract concept of hidden identifiers. Hidden identifiers are opaque values that

explicitly encode no meaning and are not propagated among end systems or inter-

mediate systems (hosts or routers) operating in a network. Formally, we describe

the characteristics of hidden identifiers below.

• Hidden identifiers are mapped to one or more hidden or open identifiers via a

table maintained in the operating system.

• Hidden identifiers completely mask the true value(s) and format(s) of the

mapped open identifier from other protocols.

• Hidden identifiers are used internally by a layer or application in place of an

open identifier.

An example of a hidden identifier might be the value 0x1, when paired with a

corresponding binding in the system that maps the hidden identifier 0x1 to the IPv4

address 192.168.0.1.

Figure 3.1 provides a simple comparison between open and hidden identifiers.

Figure 3.1(a) illustrates the Internet protocol stack today, in which TCP must work

directly with open identifiers (the values ip1 and ip2). In contrast, Figure 3.1(b)

shows how TCP would operate using hidden identifiers (the values hidX and hidY)

without any knowledge of the corresponding open identifiers.

16

Figure 3.1: Open and hidden identifiers

3.2 The Arguments For Opacity

3.2.1 Identifiers, Locators, and Translation

[ea08, ea10, NB09, ea13] have each proposed a network stack architecture that uses

a host identifier, such as a DNS hostname or HIP identity, in the socket API in-

stead of an IP address. These works then adapt the socket API and/or transport

layer such that both layers transparently bind the host identifier, and then the host

identifier is translated to the network locator between the transport and network lay-

ers. Such architectures enable network-layer mobility, and have been well-received

in the research community precisely because they leverage existing namespaces and

infrastructure. Consequently, they do not require the development, agreement, stan-

dardization, and deployment of a separate identifier namespace.

However, this entire set of proposals suffers from two key drawbacks. First,

the host identifier is still an open identifier, so the constraints of the chosen host

identifier still apply. For example, DNS-based sockets cannot support environments

where DNS is inappropriate, such as MANETs, and HIP-based sockets cannot sup-

port resource-constrained environments that do not support cryptography, such as

RaspberryPis. Second, the architectural design of adding a new identity layer be-

tween the transport and network layer effectively breaks interoperability with mid-

dleboxes and other intermediate systems, and inhibits backwards compatibility and

gradual adoption [For08]. Finally, since all of these works explicitly propose that

the new namespace be deployed between the transport and network layers, they are

implicitly bound to the TCP/IP stack. As a consequence of this, these proposals

cannot support alternate network stacks that exist today, such as Bluetooth, Zig-

bee, or NFC, and are equally unable to support any future Internet stack proposals,

17

including (1) service-centric proposals, (2) information-centric proposals, or (3) any

other alternate network stack. Thus, we strongly argue against the injection of new

naming layers into the existing data-plane, and argue that the proposals described

here merely substitute one set of problems for another.

3.2.2 File Descriptors and Opacity

While hidden identifiers have not been used in any previous Internet architecture,

they are not new to computing system design. Specifically, the design of hidden

identifiers is very heavily influenced by the introduction of file descriptors in UNIX

[RT78] as a way to provide a standard interface for applications that did not depend

on either the physical location of the file or the underlying addressing scheme. Before

the adoption of file descriptors, applications had to be written for specific hardware

profiles, and this provided a significant roadblock to innovation, given that minor

changes in the hardware broke all the applications. This problem is analogous to the

state of network programming today, where changes in network addresses disrupt

connectivity and changes in network protocols require applications to be rewritten.

By adopting file descriptors, applications remain ignorant of lower-level concerns,

and this has enabled tremendous innovation in both filesystem and hardware design.

Similarly, the use of hidden identifiers in the network stack provides an architectural

solution to the majority of problems in today’s networks by allowing different com-

ponents of the stack to evolve and change independently of each other. In contrast,

an API based on open identifiers is not nearly as modular: by design, an application

using a open identifier must specify both the identifier and its format. This implic-

itly binds the application to whatever values were supplied, and ensures that the

application must deal with any change in either value, such as switching addresses

or protocols.

From the perspective of the application, hidden identifiers enable simple appli-

cations to take advantage of a wide range of network features. More importantly,

applications written using hidden identifiers can automatically “opt-in” to new net-

work features without being re-written. Application developers do not have to, and

18

are specifically prohibited from, make any assumptions about network addresses,

protocols, or stacks being used, or the features provided by the host stack.

3.2.3 Identifiers at Intermediate Systems

In network routing and forwarding, a resource or destination must be consistently de-

noted with the same identifier by all network forwarding devices (e.g., middleboxes,

switches, and routers) in order for data packets to reach their intended destinations.

Hence, from the perspective of the network, only open identifiers are useful.

The very nature of open identifiers (and, correspondingly, the very nature of

forwarding and routing) requires that they be unique, unambiguous, and supported

within the domain and scope in which they are to be used. For example, two hosts on

the same network cannot share the private IP address 192.168.100.1 or multicast

DNS name name 1.local.

Interestingly, open identifiers need not be global. Multiple types of open identi-

fiers may be needed in the network, because globally unique identifiers may not make

sense in certain networks (e.g., Plutarch [et.03]) and may be considered detrimental

in others. For example, a network of things inside a house might prefer to only

use local addresses for purposes of security, and an extremely resource-constrained

sensor network may not be able to afford the overhead of a universal identifying

protocol - even the IPv4 header today is considered overly bloated for sensors!

3.2.4 Identifiers at End Systems

Open identifiers have also been used to identify resources in end systems (hosts) in all

Internet architectures, starting with the original proposal by Cerf and Khan [CK74].

At first glance, this appears to be a trivial choice, given that intermediate systems

(routers, switches and middle boxes) require the use of open identifiers. However,

this choice overlooks the fact that end systems manage resources individually, while

intermediate systems only do so in coordination with other systems. More impor-

tantly, it ties host-centric protocols (i.e. the transport and application layers) to the

specific protocols and formats of identifiers used in the network, which inhibits the

19

deployment of any new networking approach based on new open identifiers.

To allow the applications and the Internet to evolve more freely, a host should

be allowed to internally denote resources by means of hidden identifiers known only

within the host, and translate the hidden identifiers it uses to open values before

packets are sent out over the wire. Given that the actual values of hidden identifiers

are meaningless until translated by the system, such identifiers can easily support

multiple network stacks, protocols, and values simultaneously, as well as switching

between them. Moreover, they can do so without requiring additional overhead,

coordination, or a separate identity layer.

3.3 Hidden Identifier Acquisition and Semantic Binding

For hidden identifiers to be used in the network stack, they must first be created.

Specifically, application processes must create a hidden identifier and semantically

bind the hidden identifier to the exact network entity they desire. In this section we

discuss the scope, concerns, and design of this semantic binding process.

3.3.1 Semantic Bindings at Applications

We started this thesis with the observation that network activity is driven by user

applications, and that these applications typically desire services or content, not just

to communicate with arbitrary {ip:port} tuples. It follows that a better network API

should allow such applications to bind identifiers that represent exactly the resource

desired by the application, yet not shoehorn applications into specific formats or

require dramatic changes to the way such applications are written.

Any identifier that unambiguously encodes meaning is, by definition, an open

identifier. It is, therefore, unavoidable that the identifier used by an application

to identify its desired service or content must be an open identifier. However, the

application need not, and we argue must not, bind any other open identifiers! It

follows that in a hidden identifier architecture, the first step is to translate the exact

open identifier requested by the application to a hidden identifier that the application

can then use to send or receive messages.

20

Figure 3.2: Hidden Identifier Application Pseudocode

Figure 3.3: Hidden Identifier Acquisition

To provide a tangible example of this binding process, we return to the use-

case provided at the beginning of Chapter 1, that of a client loading a webpage.

Semantically speaking, the client wishes to view the content object named http:

//www.example.com/thesis.pdf. Therefore, the client should start by semanti-

cally binding the open identifier http://www.example.com/thesis.pdf to a single

hidden identifier that represents this object, and then open a socket directly to this

hidden identifier. Figure 3.2 illustrates this process in pseudocode.

Figure 3.3 provides an architectural illustration of how such a hidden identifier

can be created by a “helper” or library function. In this particular case, we already

know that (1) the TCP/IP stack is the one to be used; (2) because HTTP is the

named protocol, communication should be sent to port tcp80; and (3) the desti-

nation IP address can be any of the IP addresses returned by querying the DNS

for www.example.com. It follows that all of these inferences and operations can be

centralized in the helper function, and explicitly kept out of the application logic.

3.3.2 Peripheral Resolution Functions

A vital component of a hidden identifier architecture is that the initial mapping and

acquisition of hidden identifiers take place through a peripheral resolution function

and not the socket API itself. This split enables support for a much more diverse set

21

http://www.example.com/thesis.pdf
http://www.example.com/thesis.pdf
http://www.example.com/thesis.pdf
www.example.com

of resolution protocols by specifically avoiding the standardization process inherent

in an API.

In addition to host, service, and content identifiers, future Internet proposals

have proposed attribute-based querying (e.g. type=printer,loc=lab5), implied

scoping (the Bluetooth device currently paired with my computer and labeled as

“My Phone”), or cryptographic identifiers (such as the Host Identity Tags employed

by HIP [ea08]). While it would be exceedingly difficult, if not impossible, to design a

single, unifying socket function that could support such a diverse set of input parame-

ters, each individual protocol can easily be implemented as its own specific resolution

function with its own parameters. Such functions can be written in userspace, can

coexist with each other, and simply need to bind and returns a hidden identifier.

Building on this argument, even more approaches to hidden identifier acquisition

could emerge, such as obtaining a hidden identifier from another application, via an

IPC process or other specifically tailored helper function. These methods could allow

for intricate relationships between applications to emerge, and could also provide

additional security measures, such as providing an application a hidden identifier

from a “black box” function without allowing the application to know what values

the identifier multiplexes to.

The decision of generating hidden identifiers through peripheral resolution func-

tions also draws inspiration from existing resolution functions: DNS resolution

through the getaddrinfo function is implemented as a user-space library function,

as opposed to a kernel-space syscall. This design keeps the complexity of DNS reso-

lution out of the kernel, which contributes to system speed and stability by ensuring

that the “minimal code path” remains lightweight.

By enforcing these restrictions, we achieve the significant benefit of lowering the

bar needed to deploy a new resolution protocol. Creating or updating a function

implemented in a user-space library is far less challenging or risky than a kernel-level

change, and thus allows a vast set of different resolution protocols to be developed

and distributed without compromising or affecting the operating system itself, or

even interacting or depending on one another.

22

type=printer, loc=lab5

This design decision effectively decouples innovation in both resolution protocols

and the network stack itself from network applications. Resolution and discovery

functions can be introduced, modified, and updated without changing any other

part of the socket API, and this minimizes the disruption to both applications and

the system; such a degree of flexibility and extensibility is crucial when considered

in the context of future Internet architectures and evolution. Continuing the exam-

ple of loading a webpage, both the resolution function and the underlying network

stack could undergo massive architectural changes, ranging from replacing the DNS

resolution protocol with a DHT-based alternative to migrating the network protocol

from IPv4 to IPv6, without requiring any modifications to the network application

pseudocode in Figure 3.2!

3.4 Servers and Listening Applications

For an Internet application to receive messages in the traditional Internet archi-

tecture, it must accomplish two tasks: First, it must bind a socket to a particular

network protocol and protocol-specific identifier, such as an IP-port tuple. Second,

it must announce its presence by registering the identifier with a discovery or reso-

lution service. Despite its vital importance, this second step is typically overlooked

or executed in an ad-hoc manner, such as configuring a DNS server, manually dis-

tributing information out-of-band, or relying on a priori knowledge that certain ports

correspond to certain services. The one exception to this claim is the mDNS API,

which formally requires applications to programmatically label their services with

user-friendly names before they can bind a listening socket to the service.

Because a hidden identifier architecture specifically masks the open network iden-

tifiers from applications, it must mandate the use of registration functions that

complement the resolution functions described above. Following the mDNS model,

applications wishing to receive datagrams must first use a peripheral function to

register the resource or service they wish to provide. The application provides the

peripheral function with an open identifier that exactly describes this resource or

service, and receives a hidden identifier in return.

23

Figure 3.4: Service Registration and Binding

Just as in Section 3.3.2, the peripheral function is responsible for executing what-

ever registration or resolution operations are necessary, binding the appropriate open

identifiers to a hidden identifier, and returning that hidden identifier to the applica-

tion. This process is illustrated in Steps 1-4 of Figure 3.4. Once a service is registered

and mapped to a hidden identifier, the application may then use it to bind a socket

through the socket API the same way it binds a socket today, as shown in Step 5.

3.5 Hidden Identifiers in the Network Stack

If applications and protocols at an end host bind hidden identifiers instead of open

ones, then the hidden identifiers must be carefully bound to ensure that they do not

interfere with or disrupt connectivity.

3.5.1 Hidden Identifier Multiplexing

Once an application has acquired a hidden identifier through the acquisition process

in Section 3.3, it uses this identifier to communicate with the standard socket API.

When an application sends messages to a socket by calling sendmsg, instead of

passing an open identifier (i.e. an IP address and port), the application passes the

hidden identifier instead.

In turn, the system must translate the hidden identifier to a complete set of open

identifiers. This is because, as we have discussed in Section 3.2, only open identifiers

are useful for intermediate systems and protocols on the wire. We use the term

complete set to mean a set of one or more open identifiers that is sufficient to suc-

cessfully deliver communication in the data-plane. The number of open identifiers

24

in a complete set, and the values of these identifiers, can and will change dramat-

ically depending on the specific network context and protocol stack employed. An

example of a complete set of open identifiers in the standard TCP/IP network stack

is the {port, ip} tuple. In the case where a hidden identifier is bound to multi-

ple open identifiers, or multiple complete sets, only a single set is to be chosen for

transmission.

This translation occurs at a table maintained by the operating system; we call

such a table the Resource Descriptor Table (RDT). This table must be centralized in

the operating system itself, so that all issues pertaining to hidden identifier binding

and updating can be managed at one specific location. This enables the operating

system, which arguably has the best and most complete view of the state of the

network, to make singular decisions as to what open identifier(s) should be chosen,

and also ensures that application processes do not and cannot make such decisions

on their own.

This design keeps applications simple, yet still enables them to take advantage

of integrated support for features such as mobility and multihoming. It also en-

ables policies to easily be implemented system-wide, such as preferring one protocol

to another, load-balancing, or interface multiplexing. Moving this multiplexing to

the system enables greater optimization and decision-making with a more complete

perspective of the state of the network, and also enables the system to fully mask

recoverable errors (e.g., routes changing, or one network address going down) from

the application.

3.5.2 Demultiplexing and Scoping

For applications and protocols to receive and process messages properly and con-

sistently, the inverse operation must be executed. When an end-host receives a

datagram addressed to and from a complete set of open identifiers, it uses the RDT

to demultiplex the open identifier(s) to the correct hidden identifier before delivering

it to the appropriate application or protocol for processing.

This demultiplexing process must occur successfully, correctly, and unambigu-

25

ously for each received datagram, otherwise datagrams will be incorrectly delivered

to the wrong application process. For this demultiplexing process to work correctly,

we note that the state of the higher layer must be maintained across any lower-layer

changes. Therefore, hidden identifiers may only multiplex lower-layer open identi-

fiers that are equivalent from the perspective of the higher layer. This effectively

means that the state of the higher layer includes any identifiers, open or hidden,

that it binds. As a result, enforcing this simple requirement ensures that the iden-

tifiers used by the higher layer are scoped correctly, and can therefore be resolved

unambiguously by the higher layer.

To illustrate how such scoping influences demultiplexing, consider the case of

transport-layer port numbers. The scope of a port number is the host in which the

process resides; this scoping limitation ensures that the same port may be reused at

every end host. However, this same scoping limitation also requires that a hidden

identifier representing a port number must also be scoped by a host, since a port

number out of such context is clearly insufficient to identify a process.

3.5.3 Connection-Oriented Protocols

Connection-oriented protocols typically provide abstract guarantees, such as reliable

in-order delivery, to higher layers. Dynamically changing the addresses or protocols

used can potentially violate these guarantees unless such a handoff is coordinated

by the protocol itself. Thus, when a connection-oriented socket (indicated by the

SOCK STREAM argument) is bound to a hidden identifier, the system must be very

careful as to if, when, and how it decides to multiplex the hidden identifier to multiple

open identifiers.

Despite this constraint, connection-oriented protocols still benefit from the use of

hidden identifiers, since they ensure that changes to a transport protocol do not prop-

agate up or down the stack. For example, there exist several different proposals for

TCP multihoming and mobility, ranging from opening multiple simultaneous TCP

sessions [FRH+11] to implementing one of many solutions [BS97, FYT97, BB95]

designed for in-flight handovers. These solutions are different architecturally, each

26

has different advantages and disadvantages, and arguably more work will be forth-

coming on transport-layer approaches aimed at handling mobility. However, from

the perspective of the application and the rest of the network stack, all of these

approaches are identical: the hidden identifier remains unchanged, and connectivity

is preserved without application modifications.

3.6 Conclusion

In this chapter, we introduced the concept of hidden identifiers. We explained how

they differ from open identifiers, and why this difference is important. We provided

arguments for the use of hidden identifiers in the network stack, and showed that

such a stack is feasible. Finally, we provided detailed rules that govern how hid-

den identifiers should be created and bound, and provided examples of how hidden

identifiers can be used to replace some of the classic open identifier bindings in the

stack.

27

Chapter 4

HIDRA: A Network Architecture Based on Hid-

den Identifiers

Based on the arguments and analysis in Chapter 3, we designed, implemented, and

evaluated the first concrete network stack based on hidden identifiers; we call this

network stack HIDRA (Hidden Identifiers for Demultiplexing and Resolution Ar-

chitecture). In this chapter we describe the exact details and implementation of

HIDRA, provide a comprehensive evaluation of its functionality as a network stack,

and discuss several important use cases.

Figure 4.1: HIDRA overview

Figure 4.1 illustrates how HIDRA can be organized into three closely-related

and interworking components, detailed in the following three sections. Section 4.1

describes the core design of how the protocol stack uses hidden identifiers between

protocol layers, and how this process works when sending or receiving datagrams.

Section 4.2 describes how network applications use peripheral functions to create an

identifier that exactly represents the network resource they desire, and use this iden-

tifier to communicate through a protocol-agnostic socket API. Finally, Section 4.3

28

Figure 4.2: HIDRA protocol stack

explains how the mapping of hidden to open identifiers is created, maintained, and

updated through control processes to reflect the original semantic binding requested

by the application.

4.1 HIDRA Network Protocol Stack

4.1.1 HID, TID, and NID Semantics

HIDRA employs three sets of hidden identifiers: Host Identifiers (HIDs), Transport

Identifiers (TIDs), and Network Identifiers (NIDs). Figure 4.2 provides examples

and illustrates the position of these three identifiers in the protocol stack, and shows

how all three hidden identifiers are maintained and multiplexed through tables.

A HID is a hidden identifier that sits between the transport and network layers,

and maps to one or more network-layer open identifiers (i.e., IP addresses). Since

the HID must preserve the state and scope of the transport layer, a single HID may

multiplex across different network identifiers owned by the same host, but may not

multiplex across different hosts. In this context, a “host” can refer to a physical

computer, a virtual machine, or any such entity that maintains a transport-layer

state. Additionally, HID multiplexing across hosts can still work if the transport-

layer state is correspondingly migrated from one host to another. However, we leave

such further discussions to future work.

A TID is a hidden identifier that sits above the transport layer and maps to

29

one or more transport layer open identifiers (i.e., ports). Given that transport-layer

identifiers are scoped to a particular host, TIDs are scoped to a particular HID for

table storage and multiplexing. As it is the case with an HID, a single TID may

multiplex across open identifiers just as long as the corresponding application-layer

state is preserved. This enables application-layer services (i.e., a HTTP server) to

dynamically bind and migrate ports.

From the perspective of the socket API, replacing a network address with a HID

and a port with a TID masks the open values of these identifiers from the application

using them. However, simply allowing applications to bind a {TID, HID} tuple is

still problematic. This is because such a tuple still implies and requires certain

restrictions of the underlying networking stack implementation. These restrictions

are: (a) the existence of a transport and a network layer that use open identifiers;

(b) the lack of any other such identifying layers (e.g., layers that identify services,

hosts, or content); and (c) the need by the underlying network stack to use exactly

two hidden identifiers. Furthermore, binding a socket to a {TID, HID} tuple ensures

that the application is bound to exactly one TID and HID.

We address the above restrictions with the use of NIDs. A NID is a hidden

identifier used by applications with the socket API. The NID is agnostic to any

specific protocol stack or protocol, and is designed to mask all network stack logistics

from the application. Thus, the NID can be multiplexed to one or more {TID, HID}

tuples, a traditional {IP, port} tuple, a Bluetooth identifier, another NID, or any

other such value, including but not limited to a set of one or more identifiers used

by a future network architecture. How applications acquire and interact with NIDs

is the subject of Section 4.2.

For organizational simplicity, in the remainder of this section we explicitly assume

that the application has already obtained a NID that multiplexes to a valid TID and

HID, and that the TID and HID correspond to valid open identifiers. The following

two sections elaborate on how both of these points are achieved and maintained.

30

4.1.2 Connecting, Sending, and Receiving Messages

Steps 1-6 of Figure 4.2 illustrate how an application sends a message or connects to

a NID.

First, the application passes a NID to the socket API instead of the traditional

{IP, port} tuple (Step 1). The system multiplexes the NID to a {TID, HID} tuple

(Step 2), translates the TID an open identifier (Step 3), then passes the message to

the appropriate transport protocol. The transport protocol processes the message

and creates a datagram addressed to the HID (Step 4). When the transport protocol

is finished, the HID is translated to a open network address (Step 5), and the network

layer processes the packet normally (Step 6). These same steps are taken whenever

data are sent to the socket, regardless of whether the application calls sendmsg()

to send a datagram to a NID, connect() to open a stream, or send() to send data

to an established stream.

To receive messages, the inverse process occurs. After the network layer is done

processing a packet destined for the host, the source network address is multiplexed

to a HID. If no entry exists in the HID table, as can be the case for an incoming

connection to a server, a new HID is generated. The transport layer then processes

the packet and multiplexes the {port, hid} tuple to a TID. Note that as we discussed

in Section 3.5.2, port numbers must be scoped by HIDs because ports are seman-

tically scoped to a host and reused across machines. Finally, the resulting {TID,

HID} tuple is mapped to a NID, and then the message is queued for delivery to the

appropriate socket.

4.1.3 Transport-Layer Changes

As illustrated in Figure 4.2, the transport layer still uses its own open identifier (i.e.

a port) but replaces the open network identifier with a HID. Thus, transport-layer

protocols must be modified to index connections using HIDs instead of open identi-

fiers. This modification takes place in two different ways. First, the foreign network

address is replaced by a HID when storing or looking up connections. Second, the

local network address is entirely removed from the lookup tuple. This is needed

31

sendmsg()
connect()
send()

because, by definition, all packets received by the transport layer are destined to the

local host, and a HID referring to the local host would by definition be the same

across local network addresses. When exposed to different layers or bound to NIDs,

the local host is denoted as HID 0.

These changes are all that is necessary to ensure successful protocol operation

and datagram delivery. However, if the HID is multiplexed across multiple network

addresses and routes, datagrams from the same HID may arrive out of order; this

is known to negatively affect the performance of certain transport protocols, such

as TCP. We address this problem through the inclusion of a small buffer that sits

between the HID table and TCP to re-order packets when necessary. We do ac-

knowledge that this represents a significant and fundamental problem, and further

discuss the architectural challenge of out-of-order transport layer delivery in both

Chapters 5 and 8.

4.2 Application-Layer Interface

One of the goals of hidden identifiers is to make network applications as simple as

possible. Chapter 3 describes argues for applications to use a cleanly defined two-

step process, as opposed to managing several implicit and explicit identifier bindings

as they do today. HIDRA uses the peripheral function architecture described in

Section 3.3 to map the explicitly named open identifiers provided by an application

to a corresponding NID.

4.2.1 Existing Semantic Bindings

Semantically, the simplest way to assign meaning to a hidden identifier is to create

a one-to-one mapping with an open identifier. Table 4.1 outlines a set of peripheral

functions that provide this basic service, which enables applications to semantically

bind raw IP addresses and ports, just as in the current TCP/IP stack.

These helper functions highlight the important semantic difference between an

application binding an open identifier because it is exactly what the application de-

sires semantically (i.e., a network utility that explicitly wishes to test the reachability

32

Function Comments

generate tid tcp(portno) Creates a TCP TID

generate tid udp(portno) Creates a UDP TID

generate hid ipv4(ip addr) Creates an IPv4 HID

generate hid ipv6(ip6 addr) Creates an IPv6 HID

Table 4.1: Peripheral functions

of a particular IPv4 address) or binding an open identifier because the architecture

provides no other way for the application to express what is actually desired.

4.2.2 Future Semantic Mappings

In addition to the semantic bindings that exist today, hidden identifiers can also be

semantically bound to a wide range of identifiers proposed by researchers. In this

manner, HIDRA provides baked in API support, and a clean deployment roadmap,

for any of the future Internet architectures enumerated in Section 2.2.

Endpoint-centric architectures that support host mobility across network ad-

dresses map very well to the HID table. HIDRA can support such an architecture

by implementing a directory service or discovery protocol that maps the identifier

to a set of network addresses and binds them to an HID.

Alternately, service-centric architectures focus on application mobility and repli-

cation across multiple hosts. While these architectures generally call for the intro-

duction of one or more new naming layers to uniquely identify these services as they

move, we note that the primary function of these layers is not to add end-to-end

or intermediate functionality, but rather to mask mobility through the use of an

unchanging identifier. This distinction is crucial, because hidden identifiers achieve

the same goal by using a peripheral function to locate the service initially, and then

sending control messages as the service migrates.

Because multiple peripheral functions may coexist with each other, HIDRA can

support several diverse approaches to endpoint- and service-centricity simultane-

ously! This enables different approaches to evolve over time, without requiring

significant modifications to applications or requiring agreement or consensus on a

particular protocol or identifier format. Furthermore, it also enables endpoint-centric

33

ID Function Comments

create id(family, addr) returns the hidden ID

delete id(id) delete a hidden ID

add oid(id, open id) add open ID to a hidden
ID’s set

remove oid(id, open id) remove open ID from a hid-
den ID’s set

set policy(id, policy) set ID muxing policy

Table 4.2: Hidden-identifier table functions

applications to use an endpoint-centric architecture, and service-centric applications

a service-centric architecture, in the same system!

4.3 HIDRA Control Processes

HIDRA intentionally and explicitly splits the multiplexing of hidden identifiers in

the data path (described in Section 4.1) from the tasks of populating and main-

taining these values in their respective tables. This architectural split enables two

key benefits. First, diverse control processes that create and modify the bindings

between hidden and open identifiers can coexist and even work together to aggregate

many different forms of information. Second, these control processes can coordinate

with the peripheral functions mentioned in Section 4.2 to support and maintain the

semantic bindings requested by the application.

4.3.1 Basic Table Interface

Control processes interact with the NID, TID, and HID tables through the simple

table-management interface illustrated in Table 4.2. While these functions and their

implementation are largely self-evident, the purpose of the bottommost function,

set_policy, is more abstract. In those cases in which a hidden identifier maps

to more than one open identifier, control processes use set_policy to specify how

the system should select an open identifier when sending data. Such policies in-

clude round-robin, always choosing a particular address or subnet when available,

or weighting certain addresses more than others.

34

set_policy
set_policy

4.3.2 Mechanism and Policy

The table management interface is intentionally kept as simple as possible; this

choice stems from the system design principle of separating mechanism from policy.

In addition to being good engineering practice, this split keeps the table-interface

operations lightweight and fast, and enables control policies to swiftly be designed,

deployed, and automatically integrated into the existing data path.

This roadmap for deployment provides an attractive “third way” when contrasted

with the two standard approaches of (a) breaking compatibility by injecting a new

layer into the network stack, or (b) injecting additional complexity within a layer

by overloading open identifiers or encoding a mapping between them. Rather, with

HIDRA, complex and diverse semantic bindings and policies can be simply repre-

sented using the functions in Table 4.2. For example, current proposals for identifier

mobility or multiplexing generally employ either an end-to-end or a publish-subscribe

architecture, yet either architecture can be adapted to HIDRA by modifying them

to exist as separate application processes that create and receive control messages,

and then express the meaning of these messages through the functions in Table 4.2.

Implementing the control signaling this way enables different approaches to coex-

ist and even integrate with each other! For example, publish-subscribe architectures

[ea10, ea08, P. 02, SMGLA13] must generally provide some mechanism to ensure

that already-established connections are updated as identifiers move. However, given

that hidden-identifier tables provide a unifying point for different control processes,

such a goal could be accomplished through an entirely separate end-to-end signaling

protocol.

4.4 Evaluation And Case Studies

We implemented HIDRA as a Loadable Kernel Module (LKM) for Linux 3.13.x.

Linux 3.13.x was chosen because it is the base distribution for Ubuntu 14.04 LTS,

Mint 17, and the current distribution of Raspbian. Our kernel module consists

of a basic HIDRA socket API, NID, TID, and HID tables, as well as the table-

35

management interface described in Section 4.3.

Building on this LKM, we also implemented several different peripheral functions

to provide robust functionality for HIDRA applications. These functions include one

that maps DNS host names to HIDs, one that maps service-protocol names to TIDs,

and one that maps a cryptographic “shared secret” known by an application to a

particular TID and HID. Finally, we used these tools to run a series of “case stud-

ies” that underscore and evaluate the flexibility, performance, and modularity of the

HIDRA protocol stack, in terms of (a) writing HIDRA applications and control pro-

cesses, (b) porting existing network applications, and (c) supporting new networking

paradigms.

The evaluations in this section focus primarily on the application interface and

performance of the network stack itself in the data plane. The experiments in

this section explicitly do not evaluate the overhead and performance of HIDRA

control processes or peripheral functions - these are the subjects of Chapters 5 and

6, respectively.

Figure 4.3: Testbed topology

4.4.1 Data-Plane Address and Host Multiplexing

For our first case study, we wrote a HIDRA netcat application, called nc-hidra,

which supports both stream- and datagram-based communication. We deployed

this application across one laptop and two Raspberry Pis as shown in Figure 4.3,

and registered the set of network addresses of each computer at a local DNS server.

We then configured the hidden-identifier tables at Host 1, such that an individual

NID (used by nc-hidra) indexed two HIDs (referring to Hosts 2 and 3, respectively),

and the HID referring to Host 2 indexed both of its network addresses. Finally,

we connected a webcam to Host 1, and used nc-hidra to send datagrams from this

36

Figure 4.4: Netcat comparison

webcam to this NID. At time T1, we disconnected Host 2 from the 802.11 ad-hoc

network, and at time T2 we disconnected Host 2 from the ethernet network.

With this configuration in place, we compared the performance of nc-hidra to

unmodified nc, as well as nc-2, which we modified to be more resilient in the face of

disruptions by storing all resolved network addresses for a host and reconnecting if

possible. Figure 4.4 illustrates the performance of all three versions of nc, measured

both in throughput received and total lines of application code.

At time T1, standard nc fails, but nc-2 shows that extra application code can

mitigate this failure with minimal disruption. However, because each host has a dif-

ferent local DNS entry, even nc-2 is unable to multiplex across hosts and mitigate

the complete disconnect seen at time T2. In contrast, nc-hidra uses HID multi-

plexing to mitigate the first disconnection without any loss in throughput, and NID

multiplexing to mitigate the second disconnection just as easily.

4.4.2 Adapting Non-HIDRA Applications

In addition to being the only version of the application to persist across all forms of

identifier changes, Figure 4.4 also reveals that nc-hidra requires the least lines of

code! This is because all network-related handling is baked into the system itself,

as opposed to the network application.

Exploring this point further, we adapted several traditional network applications

to use HIDRA and measured the lines of code changed and the total number of lines

of code. Our results are shown in Table 4.3, and show that adapting traditional

applications to use HIDRA can be accomplished with minimal changes, which typi-

37

Figure 4.5: Hidratunnel overhead

cally required between 45 minutes and one hour. In addition, these results also show

that in all cases, the HIDRA application is simpler and requires fewer lines of code

overall.

Program Lines Changed Time Needed Total Difference

nc 135 0:45 -91

iperf 333 1:15 -288

tftp 119 0:55 -73

Table 4.3: Lines of code

4.4.3 Legacy Application Support

Building on the above study, we also explored what is possible when the source code

of an application cannot be made HIDRA-aware. This may be the case for many

proprietary applications, especially those that are not frequently updated or those

that have been completely abandoned.

To support these applications, we wrote a simple tunneling proxy application,

which we call hidratunnel. hidratunnel supports datagram- and stream-based

communication, both client- and server-mode, and works by tunneling a locally-

bound INET socket to a foreign-bound HIDRA socket. Thus, by redirecting the

unmodified traffic from the application through hidratunnel, the local connection

is mapped to a HIDRA NID, and correspondingly receives all the benefits of the

HIDRA protocol stack.

After developing hidratunnel, we deployed it with unmodified Firefox on Host 1,

unmodified Apache on Host 2, and then timed a 1MB HTTP file transfer 4 separate

38

Figure 4.6: Multiplexing overhead

times: once over regular IP, once with hidratunnel at either side, and once with

hidratunnel at both sides. Figure 4.5 provides these results, which show that

hidratunnel does not incur significant overhead when compared to an un-tunneled

connection.

4.4.4 Multiplexing Overhead

The per-datagram identifier multiplexing in HIDRA naturally incurs some perfor-

mance overhead. To measure this overhead, we ran hidra-iperf over the loopback

interface - this test effectively measures the performance and speed of the network

stack itself. We tested three different socket API calls: write() requires the socket to

have already been connected, sendmsg() requires an unconnected socket (therefore

TCP does not support it), and recv() supports both states.

The results of our tests are summarized in Figure 4.6, and show that across

all experiments the difference between HIDRA and IPv4 was consistently small,

typically within 10 percent of the base stack. More importantly, the speed of the

HIDRA protocol stack is still much higher than most network links, so it does not

constitute a bottleneck when compared to other parts of the network.

4.5 Conclusion

In this chapter, we showed how the abstract design philosophy in Chapter 3 can

be translated to an actual network stack implementation, which we call HIDRA.

We introduced the three-part HIDRA architecture, and described how the combina-

39

hidra-iperf

tion of hidden identifiers, control processes, and peripheral functions works together

to create a powerful and modular network stack architecture. Finally, evaluations

of this network stack architecture show that (1) HIDRA-based applications are re-

markably simpler than traditional network stack applications; (2) existing network

applications can be easily adapted to HIDRA; (3) multiplexing hidden to open iden-

tifiers in the network stack does not incur a significant performance penalty; and

(4) even a simple round-robin link multiplexing policy results in increased aggregate

throughput at network links.

40

Chapter 5

DIME: Lightweight and Deployable Mobility at

End Hosts

The HIDRA architecture described in Chapter 4 is a radically new approach to

the way identifiers are bound, transmitted, and updated within the network stack.

HIDRA provides a strong foundation for features such as network mobility and mul-

tihoming to be implemented as out-of-band control processes. However, HIDRA

itself does not support these features, and such a mobility protocol must be care-

fully constructed in order to ensure proper operation in all network scenarios while

avoiding edge-cases and deadlocks.

Building on our implemented HIDRA architecture, we constructed the first out-

of-band mobility signaling protocol that leverages hidden identifiers in the network

stack. We call this protocol IHMP (Internet Host Mobility Protocol), and call the

combination of HIDRA and IHMP DIME (Deployable Internet Mobility and End-

hosts). DIME is the first solution to Internet host mobility that can be seamlessly

deployed at end hosts - that is to say, DIME consists entirely of userspace processes

and does not depend on any further kernel-level or system-specific modifications

beyond the HIDRA network stack. In this chapter, we explain the factors moti-

vating and driving the design of DIME, identify key requirements that a mobility

solution must exhibit in order to be deployable, explain the IHMP protocol design,

and provide the results of extensive evaluations that compare DIME to all other

implemented host mobility solutions.

41

5.1 Protocol Challenges and Requirements

Despite the relative maturity of many mobility proposals (more than 10 years old), no

one proposal has seen much traction towards deployment. We analyzed the reasons

why this prior work has failed and identified the following three key requirements

that a mobility solution must exhibit in order to be feasible, implementable, and

adoptable in the Internet today.

R1 - Unmodified Routing Infrastructure: Solutions that require modifica-

tions to intermediate network-layer hardware (i.e., switches, routers, or middleboxes)

or protocols (e.g., IP, ARP, or BGP) will necessarily incur massive upgrade costs,

and as such be met with widespread resistance by network operators. This creates

an insurmountable hurdle, since any network-layer solution will also require adop-

tion by a majority of operators before it could be reliably workable. It follows that

a deployable host mobility architecture must run over existing routers and switches

without requiring their modification or replacement.

R2 - Unmodified OS and Applications: The end-host mobility solutions in

Section 2.3.2 all require substantial modifications to the system kernel. However,

both proprietary and open-source system developers and maintainers consistently

oppose such proposals [For08]. This opposition is grounded in the observation that

these proposals dramatically increase code complexity, yet host mobility support

is not a pressing or “tentpole” feature. Moreover, since such a feature will not be

compatible with other systems that have not yet implemented it, the incentive to

be the first to implement and support a mobility protocol is very low. In light of

this opposition, the path to deployment for any mobility solution must be incremen-

tally deployable, and specifically not depend upon buy-in from or modifications to

applications, the host OS, or other system components.

R3 - No New Namespace: Many mobility solutions The majority of the

proposals in Section 2.3.3 require the convergence on, and standardization of, a new

host identifier namespace to be inserted into the network stack.1 This represents a

1While many works propose leveraging the DNS as an existing namespace; [STU+14] makes a
strong argument for why the DNS is fundamentally unable to support host address mobility.

42

massive adoption hurdle, and would essentially require the redesign and replacement

of network applications, operating systems, and middleboxes. Second, if adopted,

any of these proposals would “lock in” a new set of endpoint identifiers as part of the

new Internet architecture, which raises significant concerns about the tenability or

evolvability of said approaches. The improbability of such an event is combined with

our significant concerns regarding identifier lock-in and incremental evolvability. It

follows that for a host mobility solution to evolve organically and incrementally,

it must not depend on the development and standardization of a new identifier

namespace.

Interestingly, the above three requirements loosely map to the architectural cate-

gorization provided in Section 2.3. Host-identifier approaches for host-mobility sup-

port typically satisfy requirements R2 and R3 at the expense of R1. Host-locator

approaches satisfy R1 and R3 at the expense of R2, and combined approaches (Sec-

tion 2.3.3) satisfy R1 and (sometimes) R2 at the expense of R3.

5.2 The Internet Host Mobility Protocol

HIDRA enables connections to be dynamically readdressed at end hosts without

requiring modifications to the network stack or data plane. In turn, this design

allows host mobility signaling to be taken out of the network layer and enacted as

a simple end-to-end signaling protocol, which we call IHMP. Similar to a routing

protocol with respect to the forwarding plane, IHMP runs out-of-band with respect

to the data plane of end-to-end protocols.

IHMP listens for network address events at the local host (e.g., a network inter-

face going up or down) and communicates these changes to foreign hosts via UDP

messages. We use UDP over TCP in order to stay lightweight; this also allows IHMP

to interpret dropped messages as a sign that a path may not be sufficiently reliable.

We use UDP instead of network-layer ICMP to enable NAT detection and traversal.

When IHMP receives a message from a foreign host, it updates the HID Table to

reflect the changes, at which point the HIDRA stack immediately incorporates them

into the data path.

43

Figure 5.1: IHMP Message Format

Figure 5.1 illustrates the IHMP message format, and Table 5.1 lists the different

IHMP message types. The control field corresponds to the message type in Fig-

ure 5.1, and the Message Nonce is a randomly-generated 16-bit value echoed by a

responding ACK. A sending host may elect to append a digital signature to the mes-

sage, but always identifies itself to the receiver via a local IP address stored in the

Host ID field.

5.2.1 End-To-End Host Identification

The Host ID field in IHMP represents a major departure from all other proposals

[NB09, ABH09, ea08, ea10, MB98] that use end-to-end updates. Whereas all prior

proposals rely on a separate host identifier namespace (e.g., a DNS hostname or HIT)

to consistently identify a host across network address changes, IHMP is specifically

designed not to rely on or assume any such namespace.

This lack of namespace reliance or lock-in makes IHMP much more lightweight

and deployable across a wider range of networks, however, it also means that the

only way for a receiving host to identify a sender is by the IP address stored in the

Host ID field. The sender populates this field with an IP address chosen from the

set of Local Addresses bound to the receiver’s HID; this process ensures that the

IP address will multiplex to the correct HID at the receiver, and is the reason for

storing the local addresses reachable by a foreign host.

Crucially, this solution does not require globally unique IP addresses! Rather, it

44

Control Code Message Type

0 HELLO

1 PATH PROBE

2 ADDR UP

3 ADDR UP UNREACHABLE

4 ADDR DOWN

5 ADDR DOWN UNREACHABLE

6 HANDOFF

7 HANDOFF UNREACHABLE

8 ACK

9 ROUTER ACK

Table 5.1: IHMP Messages

Figure 5.2: HELLO message exchange

only requires that an IP address uniquely refer to the sender from the perspective of

the receiver - fortunately, this is a valid assumption that underpins all network-layer

protocols and routing. This point is important, because it enables IHMP to support

many challenging edge-cases where reachability is not flat or uniform, including com-

munication within reusable (i.e. private) address spaces or communication through

multiple NATs. This highlights the strength of IHMP over rendezvous or DHT ar-

chitectures, as these designs implicitly require uniform, flat reachability between all

nodes.

5.2.2 IHMP Hello Exchange

When an active host creates a new HID table entry, it must test the foreign host

for (1) IHMP support and (2) the presence of other network addresses; it must also

advertise its set of local addresses to the foreign host. The active host accomplishes

this via a simple two-way HELLO message exchange, illustrated in Steps 1 and 2 of

Figure 5.2. The first HELLO message contains all the network addresses the active

45

Figure 5.3: Address-up signaling

host wishes to advertise to the foreign host, including the source network address

used to transmit the HELLO message.

When the foreign host receives a HELLO message, it creates an entry in its HID

table for the active host, adds the source address of the message to the HID’s set of

active addresses, the destination address of the message to the set of local addresses,

and every other address in the HELLO message to the set of unreachable addresses.

Next, it sends an ACK back to the active host at the same address used to send the

HELLO; this ACK also contains all other addresses the foreign host wishes to advertise

to the active host. Upon receipt of the ACK, the active host adds the destination

address to the set of local addresses, and all other advertised addresses to the set of

unreachable addresses.

5.2.3 Backpath Probing

From the perspective of the foreign host, the other addresses included in a HELLO

message are either (1) guaranteed reachable (e.g., a publicly reachable IP address),

(2) guaranteed unreachable (e.g., in a network that the host cannot reach), or (3)

potentially reachable (e.g., a private network that the host also has an address in).

The foreign host sorts the addresses in cases (1) and (2) into active and unreach-

able addresses, respectively, and manages the addresses in case (3) by sending a

PATH PROBE message as illustrated in Step 3 of Figure 5.2.

In our example, the active host initially reaches the foreign host over the pub-

lic Internet, and indicates (in the HELLO message) that it also has addresses in

the 192.168.0.0/16 and 10.0.0.0/8 networks. Subsequently, the foreign host sends

46

PATH PROBE messages out over the 192.168.0.0/16 and 10.0.0.0/8 networks to which

it is connected. When the active host receives a PATH PROBE message, it updates the

HID’s set of active and local addresses to reflect reachability, and replies along the

same path with an ACK (Step 4 of Figure 5.2); upon receipt of the ACK the foreign

host does the same.

5.2.4 Address Up and Down Events

When a host gains a network address, it sends an ADDR UP message from this address

to the foreign host; this message explicitly encodes the new address in the IHMP

message. This explicit address encoding allows us to detect and mitigate NATs; we

discuss this process further in Section 5.3.4. When the foreign host receives and

ADDR UP message, it adapts its HID table and responds with an ACK.

If the active host does not receive an ACK in an acceptable amount of time, it

determines that the foreign host is not reachable from the new network address.

In this case, the active host sends an ADDR UP UNREACHABLE message with the new

address to the foreign host on any available network address; the intent of this

address is to ensure that the foreign host’s HID table is accurately updated. As

above, the foreign host must respond to such a message with an ACK.

When a host loses a network address, it checks the local address set for each HID

to determine if it is still reachable, and sends an ADDR DOWN or ADDR DOWN UNREACHABLE

message as appropriate. In both cases, the foreign host must respond with an ACK.

In the case where a lost address effectively disconnects the active host from the

foreign host, it can wait for an amount of time before removing the HID entry and

reporting an error to network applications.

5.2.5 Handoffs

Handoff events effectively combine ADDR UP and ADDR DOWN events into one. The

network addresses gained and lost do not have to be bound to the same network

interface, because there is no difference from the perspective of the network layer and

above. As with address-up events, the active host sends a HANDOFF message from

47

Figure 5.4: Address-down signaling

the new network address to probe reachability, and encodes both the new and old

network addresses in the payload. In the cases where the foreign host is not reachable

by the new network address, a HANDOFF UNREACHABLE message is sent in its place.

For clarity and consistency, handoff messages use an OU (OLDADDR UNREACHABLE) flag

in the options filed to indicate whether the old address was reachable by the passive

host or not.

5.2.6 Control-Plane Security

Since spoofed IHMP messages have the potential to disrupt and redirect communi-

cation, IHMP uses optional digital signatures to ensure message integrity without

confidentiality. This decision reduces computational overhead and allows interme-

diate nodes (i.e., middleboxes) to (1) read the content of IHMP messages and (2)

generate control messages signed with their own key without violating the security

model; we discuss these optimizations further in Section 5.3.3.

The IHMP daemon signs outgoing messages with its private key, and can validate

inbound messages by binding the correct public key to a HID. There exist several

different methods for obtaining the public key for a host, just as there exist several

different security policies regarding which keys and messages a host will accept.

However, such discussions are well outside the scope of this work, except to mention

that (1) IHMP is compatible with all public-key solutions and (2) IHMP explicitly

does not depend on such a solution and is deployable even in network scenarios that

do not require or support security protocols.

48

Figure 5.5: Micro-Mobility Signaling

5.2.7 Out of Band Signaling

The key differentiator of IHMP, when compared to other mobility signaling protocols,

is that IHMP is the first and only protocol that exists completely independently of

both the routing infrastructure as well as the communication data-plane. We have

argued that the first point is vital for incremental deployment at end hosts, yet

the second point is equally important. By removing mobility signaling from data-

plane headers and protocols, we avoid the implementation problems of [For08] and

enable seamless backwards compatibility with legacy hosts. Additionally, we achieve

an architecturally pure identifier/locator split without requiring an extra layer of

identifier headers in the stack or scaling with each active connection in the system.

Finally, such a separation is the only way to consistently identify hosts across IP

address changes without requiring the standardization and deployment of a separate

host identifier namespace.

5.3 Additional Considerations and Edge-Cases

5.3.1 Simultaneous Mobility

DIME’s lack of rendezvous nodes or integration with a name-resolution service poses

a problem for simultaneous mobility cases, wherein both nodes change network ad-

dresses before the end to end signaling can converge. We note that this case is

remarkably uncommon in the client-server communication paradigm that underpins

the vast majority of network communication, but still merits attention. Depend-

ing on the severity of the alteration to the address set, we describe communication

49

between the hosts as either partially disrupted or fully disrupted, depending on

whether at least one of the hosts has kept at least one of its network addresses.

DIME automatically recovers from partial disruption and converges without diffi-

culty. Upon not receiving an ACK, the fully-mobile host will re-send the same mobility

message to the host’s other addresses until it receives an ACK from the address that

was maintained; the partially-mobile host will then transmit its other network ad-

dresses in a subsequent exchange. DIME is unable to recover from fully disrupted

simultaneous mobility, wherein neither host maintains any addresses, because both

address-sets are completely incorrect; in this case, the client must discover the new

IP address of the server through some other service.

5.3.2 Mistaken Identities

Since DIME does not rely on a unique or separate host namespace, it is vulnerable

to the following mistaken identity scenario: (1) host A is using address a1 to com-

municate with host X; (2) A moves from a1 to a2 but is unable to tell X; (3) host

B gains A’s old address a1, and (4) B sends a message from a1 to host X.

DIME guards against this scenario by verifying that the sequence number is cor-

rect before processing the update, and sending an ACK with the IS (INCORRECT SEQNO)

bit set if this is not the case. This supports end-to-end recovery of dropped packets,

but also allows the non-mobile host (X in this example) to create a new HID entry

in the event that a host ungracefully departed. Note that this approach guards

only against accidental scenarios and is clearly vulnerable to replay attacks; if the

network environment is considered insecure or hostile, digital signatures should be

used.

5.3.3 Micro Mobility

While DIME is an end host solution, it is not necessarily end-to-end. DIME-aware

network entities such as middleboxes and routers can intercept IHMP messages that

add a new address (either an ADDR UP or HANDOFF message) and respond with a

ROUTER ACK message. Depending on topology or policy, the middlebox can either

50

(1) enact micro-mobility by updating or installing a new routing-table entry, as in

Figure 5.5, or (2) indicate that the update is to be rejected.

Designating a separate ROUTER ACK message type acknowledges middleboxes and

routers as first-class citizens in the Internet, and provides them with an architectural

location to integrate with DIME. This enables DIME to support micro-mobility

without any end-to-end signaling, and supports proper security policy by allowing

the ROUTER ACK message to be signed with a separate key. Finally, by explicitly

informing the mobile host that its update was processed by an intermediate router

and not the end-host, the mobile host knows that the foreign host’s HID table still

contains the old address. This is illustrated at the bottom of Figure 5.5, where the

host loses newip but sends an ADDR DOWN message containing oldip.

5.3.4 NAT Detection and Traversal

While ROUTER ACK messages support mobility within subnetworks and behind NATs,

they are insufficient to support mobility into or out of NATs, specifically because

NATs enact a many-to-one address mapping through L4 port renumbering. Since

NATs are remarkably present in the Internet today and expected to be “here to

stay” for the foreseeable future [For07], DIME must provide a mechanism for NAT

detection and traversal in all cases, even those where the NAT is DIME-unaware.

DIME detects NATs by explicitly encoding the source address in the DIME mes-

sage body itself, and stores NAT addresses in the HID table as a nat addr:host addr

tuple; this enables correct end-to-end signaling as hosts move in and out of NATs.

NATs that support DIME indicate this by setting a NS (NAT SUPPORTED) flag in all

IHMP messages that traverse the NAT; these NATs send a NAT ENTRY message to

the public host as they create new port-mappings for each connection as illustrated

in Figure 5.6. This mapping is stored at the end-host and used to map the NATed

port back to the original source port for delivery.

DIME handles legacy NATs that do not support DIME by setting a ND (NAT DETECTED)

flag in the ACK. Since DIME cannot migrate connections into DIME-unaware NATs,

it stores them as unreachable addresses unless a connection must be initiated be-

51

Figure 5.6: Mobility signaling with NAT

hind a NAT. This case is indicated via a NF (NAT FORCED) flag in the initial HELLO

exchange, at which point the HID is marked as such, and no further signaling occurs

(i.e., communication falls-back to normal operation without StackTrans).2

Figure 5.7: Testbed topology

5.4 Implementation and Evaluation

DIME exists as a combination of a userspace IHMP daemon and the HIDRA Load-

able Kernel Module (LKM). We deployed this code on two laptops running Ubuntu,

the Mobile Host (MH) and the Corresponding Host (CH), and connected them with

a switch and two routers to create the topology shown in Figure 5.7. In the topology,

each node has a globally-reachable address, each router advertises a different subnet,

and we used the netem utility to introduce 60ms of latency on all traffic that flows

across the switch [PB15, ver, att, pin].

To evaluate and compare performance, we conducted a standard mobility exper-

iment in which the Mobile Host hands off a TCP3 connection from R1 to R2 while

2There potentially exist other techniques to mitigate the ID/Locator split across NATs. For
brevity and focus, we omit further discussion in this paper and leave it as a promising topic for
future work.

3While DIME supports UDP, we provide only TCP results (unless otherwise noted) in order to
provide a fair comparison with MPTCP.

52

Requirement MIPv6 MPTCP HIP DIME

Daemons 3 0 1 1

Config. Files 3 0 2 1

App Mods. X
System Configs X X
Custom Kernel X X
Router Mods. X

Table 5.2: Deployment Requirements

conducting a throughput test to the Corresponding Host. To provide more consistent

results and remove variance, we induced address up and down events programmati-

cally via the ip command with a five-second gap between each event. We compared

DIME against three protocols, Mobile IP (MIPv6), Multipath TCP (MPTCP), and

the Host Identity Protocol (HIP), which we chose as “flagship” examples to represent

each of the three categories listed in Section 2.3.

5.4.1 Deployment and Configuration

We found that the different protocols varied wildly in terms of how much effort it

took to configure even the basic testbed in Figure 5.7. Table 5.2 provides a rough

summary of these protocols, and shows that MIPv6 stands out by far as the most

fragile and ossified approach. MIPv6’s reliance on deep kernel integration requires

a custom kernel and a userspace daemon at all end hosts, however: both codebases

have been abandoned for several years, do not support 64-bit architectures, and

are no longer compatible with any current Linux distribution. Additionally, MIPv6

was the only protocol to require a purely IPv6 testbed as well as multiple daemons

(mip6d, radvd, and hostapd) running on routers R1 and R2.

Installing and configuring MPTCP was much easier: while MPTCP requires

a custom kernel at end hosts, it does not require any userspace daemons or con-

figuration files, and is still actively maintained by a small developer community4.

However, MPTCP’s reliance on link selection by source address binding forces an

unorthodox system configuration, wherein separate routing tables are maintained

for each interface - while a minor point in our testbed, this raised the question of

4http://mptcp.org

53

MPTCP’s ability to support more unorthodox or dynamic network configurations,

such as those that rely on virtual network interfaces.

HIP deployment was even easier, in that the current HIP implementation is sta-

ble and deployable as a standalone userspace daemon that encapsulates packets via

TUN/TAP. However, proper HIP configuration relies heavily on manually encoding

static, preconfigured Host Identity Tag (HIT) bindings at both end hosts. Addition-

ally, HIP’s use of the 1.0.0.0/8 block for LSI bindings raised questions about HIP’s

support for other applications that depend on dynamically resolved or hard-coded

IP addresses, as opposed to those that transparently take IP addresses as input.

Finally, we found that DIME “simply works.” Similar to HIP, DIME exists as a

standalone userspace daemon deployable on top of a stock kernel. DIME requires no

network layer hardware or protocol modifications, and supports precompiled appli-

cation binaries without modification. DIME’s use of existing IP address bindings en-

ables it to work without the need for specific configuration files, namespace bindings,

or “pseudo” IP addresses, and DIME’s use of translation instead of encapsulation

makes it the only approach that can dynamically support preexisting connections.

5.4.2 Handoff Latency

After configuring the testbed, we evaluated the latency needed to complete a handoff,

measured in two metrics: the time it takes the protocol to identify and respond to the

network event (i.e., the time elapsed from the network event to the first transmitted

control message), which we call Control Latency, and the time it takes the protocol to

successfully handoff the connection (i.e., the duration from the first control message

to the first correctly addressed datagram), which we call Dataplane Latency. For

brevity, and to enable a clear comparison with MPTCP, Figure 5.8 presents only

TCP results collected over a hard handoff. However, we note that soft handoff results

were effectively identical in all cases, and UDP results were comparable for every

protocol that supported it.

54

Figure 5.8: Handoff Signaling Latency

Control Latency

The results in Figure 5.8 show that in both types of latency, DIME dramatically

outperforms all other approaches. With regards to control latency, despite signifi-

cant examination, it was unclear exactly why both MPTCP and HIP wait so long

(approximately one second) to start the mobility process, but it appears that the

waiting period stems from a combination of code complexity as well as sending the

first message too soon (i.e., before the interface is actually ready) followed by waiting

before retransmission. DIME avoids such problems by existing in userspace - as such,

it only receives address notifications once the local interface has been completely

configured, and the datagram transmission itself buffers and triggers any necessary

control messages, (e.g., ARP resolution). Additionally, by failing gracefully in the

event of incorrect network configuration or incomplete signaling exchange, DIME

can be more aggressive with its signaling.

The asterisk in Figure 5.8 indicates that the control latency of MIPv6 varied

dramatically based on abstract timing as well as router configuration, since the

mobility process is triggered not by when the host acquires a new network address,

but by when the host receives a router advertisement (RA) message from the new

router. In the interest of providing a competitive comparison we used the minimum

RA interval of one second, and provided the best observed value instead of the

average, but we stress that these conditions are (1) remarkably noisy and (2) very

unlikely to be used in an actual network scenario.

55

Dataplane Latency

Since dataplane latency is calculated from the moment the first message is sent

over the network (i.e., the end of control latency) to the first correctly-addressed

datagram, it is not influenced by control latency. We found that our results for

dataplane latency in Figure 5.8 are relatively self-explanatory, in that they very

closely tracked the expected RTTs needed for the mobility signaling protocol to

complete - this highlights the simpler handshake of DIME, as well as the relative

lack of cryptographic operations needed to migrate the connection.

Connection Establishment Latency

We also examined the additional latency (if any) required by the protocol to setup a

mobile connection versus a traditional one. This measurement, typically dominated

by RTTs, has quickly become an important performance consideration as bandwidth

increases and network traffic is increasingly driven by small communication sessions

[RCC+11]. We found that in all cases except HIP, the connection establishment

latency was minimal (<4ms), whereas HIP incurred dramatic connection establish-

ment latency (400+ms for UDP and 800+ms for TCP). This comparison stems from

the observation that all other proposals initialize mobility support either via out-

of-band signaling or by piggybacking options in the TCP handshake, whereas HIP

effectively requires a four-way-handshake to establish the HIP session before data-

grams can be sent or received. Moreover, this session establishment process does not

optimize with TCP and requires yet another three-way-handshake to be enacted for

TCP sessions.

5.4.3 Data Plane Throughput

Since a mobility solution must not negatively impact the data-plane, Figure 5.9

provides the application-layer goodput seen over a fifteen second throughput test.

We examine goodput, instead of link throughput, in order to provide a singly unifying

metric that accurately reflects the performance seen by network applications and

accounts for the many factors that affect different mobility solutions.

56

Figure 5.9: TCP Handoff Goodput

Figure 5.9 shows that each protocol provides almost identical results over a soft

handoff. This is because despite the different architectures and handoff signaling

needed, each protocol has enough time to compete the handover signaling and main-

tain a constant data-rate (bound by the physical links) when the first address is lost.

Since the disconnection lasts five seconds and the total transfer lasts fifteen, it is

intuitive that the maximum possible goodput value for the hard handoff scenario will

be approximately 2/3 of the soft handoff. Figure 5.9 shows that DIME achieves this

value almost exactly, and noticeably outperforms all other proposals; we attribute

this to a combination of DIME’s faster control message exchange and transparency

with respect to TCP. In contrast, we found that MPTCP’s performance suffered from

the additional latency studied in Section 5.4.2, as well as the slow-start algorithm

- while MIPv6 has a longer handoff procedure, it mitigates this with respect to

goodput by migrating the existing TCP connection without triggering congestion-

control. Finally, we found that HIP’s remarkable decrease in goodput was the result

of “buffer bloat” at the HIP daemon during the disconnection, which in turn created

erratic and unfavorable interactions with TCP’s congestion control algorithms for

the remainder of the connection.

5.4.4 Multipath Link Bundling

When a HID has multiple active addresses, it is feasible for HIDRA to select a differ-

ent address for each outgoing datagram; this feature effectively achieves multipath

link-bundling. We explored the performance impacts of this approach by altering

HIDRA to iterate through the set of active addresses for a HID in a round-robin

fashion, and then conducted a simple experiment by starting a throughput test over

57

Figure 5.10: Multipath Throughput

one interface and bringing up the second interface.

Figure 5.10 shows the aggregate throughput (not goodput) of both links, collected

over the course of the interface addition. The results clearly show that (1) DIME

responds much faster to address-up events, as expected, and (2) DIME-UDP takes

almost full advantage of all available bandwidth. However, the performance of both

TCP approaches requires more analysis.

Closer inspection found that, consistent with the results in Sections 5.4.2 and

5.4.3, MPTCP took significantly longer than DIME to establish the new connec-

tion. Additionally, the cautious MPTCP slow-start algorithm is clearly visible in

Figure 5.10, whereas DIME immediately starts transmitting over both interfaces

without hesitation. However, we also found that DIME-TCP’s actual application

goodput varied wildly, and was consistently below that of MPTCP. We attribute

this drop in goodput to TCP’s architectural incompatibility with multipath routing,

specifically with regards to out-of-order packet delivery.

Abstractly, these results reveal a fundamental challenge facing the Identifier/Locator

Split: If transport layer protocols use singular host identifiers that mask locators,

then they cannot rely on or optimize for specific network-layer characteristics such

as the number of paths. There exist multiple solutions to this challenge, including

(1) enacting the above HID address multiplexing on a per-connection basis, (2) inte-

grating MPTCP with DIME to achieve the benefits of both, or (3) adapting TCP’s

congestion-control algorithm to be more forgiving of multiple routes.

58

Figure 5.11: HIDs/Cons PDF Figure 5.12: Connections vs hosts

The heart of the comparison between DIME and MPTCP across all metrics also

raises fundamental and yet-unanswered questions on the nature of routes, end-host

addresses, and the relationship between the two with respect to issues such as in-

order delivery and congestion-control. However, such a study is well outside of the

scope of this paper, and we leave it to future work.

5.4.5 Connections, Hosts, and Scalability

Despite their popularity, a subtle problem of transport-layer mobility solutions is

that they must be executed on a per-connection basis. This introduces a remarkable

scalability factor, because a mobile host with N active TCP connections must repeat

the same migration process N times.

To explore the relationship between hosts and connections and provide a good

estimate of N , we wrote a small traffic analyzing tool that logs both the number of

active connections and number of unique foreign addresses every five minutes. We

then ran this tool across several different network clients as they performed normal

network activity. With these results, Figure 5.11 provides a histogram showing that

the average value of nAddrs
numCons is roughly 1

4 (with mean µ = 0.242, and variance

σ = 0.04).

Figure 5.12 provides a scatter-plot of the collected data points themselves. This

plot reveals that, while the observed mean numbers are 37.2 connections and 8.5

hosts, the number of hosts grows much more slowly than the number of connections.

At the rightmost part of the plot, we find 165 connections across only 14 hosts! From

these plots, we conclude that nConns can be approximated as 4 ∗ nAddrs, but for

59

purposes of scalability, this comparison should really be considered as a lower-bound

on nConns.

5.4.6 Control Message Analysis

With the results of the above study, we mathematically analyzed the number of con-

trol messages sent in response to a network handoff (soft or hard) and the factors

that affect this number; Table 5.3 presents a formula for each protocol. This analysis

shows that IHMP outperforms its competitors, but also reveals three key aspects

of how IHMP compares to other approaches: First, the simplicity of the IHMP ex-

change results in a two-message handshake, as opposed to the four-message exchange

used by HIP and MPTCP or the 8-message exchange of MIPv6 with RO. Second,

the nAddrshost factor illustrates that both MPTCP and HIP do address-pairwise

exchanges, wherein if hosts A and B both have two addresses, four exchanges are

attempted: A1-B1, A1-B2, A2-B1, and A2-B2. In contrast, since IHMP stores ad-

dresses for a host and identifies reachability based on routing-table information, it

is able to accomplish the same example with two exchanges: A1-B1 and A2-B2.

Figure 5.13 illustrates control message growth for a single handoff as we vary the

number of corresponding hosts from 1 to 100. To be least favorable to DIME, the

graph assumes that both hosts just have a single address, and makes a conservative

estimate of nConns = 4. Even with these assumptions, we find that DIME signif-

icantly outperforms all existing approaches, and that MPTCP in particular incurs

much control signaling than other approaches.

Protocol Messages Sent

IHMP 2 * max(nAddrslocal, nAddrshost)

MPTCP 4 * nAddrslocal * nAddrshost * nConns

HIP 4 * nAddrslocal * nAddrshost
MIPv6 [2 (to HA) + 6 (to CH)] * nAddrslocal

Table 5.3: Handoff control messages

60

Figure 5.13: Handoff Control Message Scalability

5.4.7 Lines of Code

Table 5.4 provides the lines-of-code (LOC) of each of the different mobility solutions.

While LOC is not a conclusive metric in and of itself, it enables a quantitative

comparison between mobility solutions in terms of relative complexity. The results

highlight the simplicity of DIME, both in terms of total LOC and DIME’s avoidance

of kernel-level modifications.

Protocol Kernel LOC User LOC Total LOC

MIPv6 XXX XXX XXX

MPTCP 10,400 0 10,400

HIP 0 28,770 28,770

DIME 200 2,400 2,600

Table 5.4: Lines of Code

5.4.8 Featureset Comparison

Another important consideration for any mobility solution is the diversity of mobility

cases it supports. Assuming that developers will eventually converge on a single

mobility proposal, this proposal must be robust enough to support a wide range of

mobility events. Table 5.5 compares the different mobility proposals with respect to

many address mobility events that fall outside of our simple testbed scenario, and

shows that while different proposals support different features, DIME is clearly the

most adaptable and flexible proposal.

61

Feature MIPv6 MPTCP HIP DIME

IPv4 Support X X X
UDP Support X X X
IPv4/v6 Handover X X
Private/Link Addrs X X
Simultaneous Mob. X X X
Preexisting Conns. X X
NAT Traversal X X *

Micro-mobility X *

Multipath X X
RaspberryPi X

*with middlebox support

Table 5.5: Featureset Comparison

5.5 Conclusion

In this chapter, we introduced DIME, a new system for Internet host mobility. DIME

combines the HIDRA network stack of Chapter 4 with the Internet Host Mobility

Protocol (IHMP); IHMP is an out-of-band end-to-end mobility protocol that updates

the address tables of end hosts when they exhibit mobility. We extensively evalu-

ated DIME, and showed that DIME outperforms all existing implemented mobility

solutions across a wide range of metrics.

62

Chapter 6

iDNS: Supporting Information Centric Network-

ing Through the DNS

Chapter 4 introduced the HIDRA network stack in the data-plane, and Chapter

5 shows how a simple control process can be used to augment HIDRA to support

network mobility and multihoming. So far, the evaluations in both chapters focus

exclusively on the TCP/IP data-plane, and therefore assume the basic (and familiar)

case wherein applications use an {ip:port} tuple to identify the service they desire to

communicate with. However, this need not be the case! The HIDRA architecture,

specifically its introduction of peripheral functions, enables applications to bind a

wide range of identifiers to a NID.

In the following two chapters, we show how applications can leverage the HIDRA

network stack to support the key goals of Information Centric Networking (ICN)

without requring a pure ICN architecture or data plane. This chapter focuses on the

network application API and content resolution/lookup services, and the following

chapter focuses on the in-network content data plane.

6.1 Goals, Assumptions, and Architecture

The key motivator of our approach lies in the observation that the goals of information-

centricity lie in the set of benefits attained, not in the methods by which they are at-

tained. Therefore, we seek to distinguish between the common set of benefits claimed

by ICN proposals and the characteristics of these proposals [FLT+13, ADI+12].

63

Specifically, we enumerate the benefits of ICN proposals as:

• Persistent and unique naming of data.

• Efficient content-distribution.

• Secure content provenance and authentication.

• Better support for network mobility, disruption, and multihoming.

Correspondingly, we enumerate the shared characteristics of ICN proposals as:

• Routing based on content names.

• Divorcing content names from location.

• Ubiquitous content-caching at intermediate routers.

• Nearest-replica-routing.

Distinguishing between the common benefits of ICN proposals and their common

characteristics is crucial to our work, because the architecture we propose is a depar-

ture from prior ICN proposals - specifically, whereas almost every ICN architecture

seeks to replace the entire HTTP/TCP/IP stack entirely, our goal is to preserve the

existing network stack in the data plane while still achieving the benefits of ICN.

6.1.1 The Information-Centric Name Resolver

The Information-Centric Name Resolver (ICNR) is a peripheral function that maps

a content name to a NID that refers to the content’s location in the network, as

referenced in Section 4.2.2. In this context, we use location to mean a set of one or

more open identifiers, specifically {ip:port} tuples. After locating the content object,

the ICNR binds all these tuples to a hidden identifier and return this identifier to

the application.

Just as there exist several different approaches and proposals for information cen-

tric networking, there can exist several different ICNRs. Fortunately, the HIDRA

stack is designed to accommodate such diversity and flexibility: since peripheral

64

Decision Sample Values

ICNR Input (Step One)
CCN
Self-Cert
HTTP

ICNR Resolution (Step Two)
DNS
Hash Table
ICN Routing

Data Plane (Step 3)

HTTP
FTP
BitTorrent
Pure ICN

NID Value (Step 4)
File Contents
Exposed Protocol Header

Table 6.1: Example ICNR Variables

functions exist as userspace libraries, we anticipate multiple ICNRs to coexist simul-

taneously and applications to simply link the appropriate library and make function

calls accordingly. Table 6.1 provides a non-exhaustive set of possible choices when

designing an ICNR, loosely grouped into (1) the name format accepted by the ICNR,

(2) the process used by the ICNR to locate/resolve an NDO, (3) the data plane used

to transmit the ICNR, and (4) how the NID is to be read by the application.

In this thesis, we describe a single, specific ICNR that (1) uses a NDN-style

name scheme, (2) uses an adapted form of DNS in the location/resolution plane, (3)

uses HTTP/TCP/IP (with HIDRA) in the data plane, and (4) exposes the entire

HTTP object response to the requesting application for parsing. These decisions

stem primarily from ease of development and evaluation in our prototype - aside

from the simplicity of deployment, we make no claims as to the value or benefit of

these choices over other ones, and invite future work that explores alternate ICNR

architectures. We discuss our alterations to the DNS lookup process in the remainder

of this chapter, starting with Section 6.2, and our alterations to the HTTP data plane

in Chapter 7.

The architecture and data flow of our specific ICNR is illustrated in Figure 6.1.

First, the application provides a request for a NDN-style name (e.g. /ucsc/spencer/

thesis.pdf) to the ICNR as input (Step 1). In Step 2, the ICNR uses the DNS

to map this name to a set of n IP addresses that locate different hosts with a copy

65

/ucsc/spencer/thesis.pdf
/ucsc/spencer/thesis.pdf

of the content object. In Step 3, the ICNR creates n separate HID entries (one for

each returned IP address), creates n {hid:tcp80} tuples (one for each created HID),

and then binds all n tuples to a single NID, which it returns to the application (Step

4). Finally, the application opens a socket to the NID, sends a HTTP request, and

processes the response (Step 5).

This two-step approach is a radical departure from existing ICN architectures

(e.g. [KCC+07, JST+09, FNTP12, ADM+08]) that propose a single request-response

(or publish-subscribe) API. However, this design decision is not made idly: the two-

step approach effectively splits the identifiers requested by the application (i.e. the

NDO names provided to the ICNR in Step 1) from the locators used in the data

plane (i.e. the NID in Step 3 and its corresponding open identifier bindings). This

split is crucial, because only by moving NDO resolution and binding into a separate

step can we enable the existing HTTP/TCP/IP stack to be preserved in the data

plane.

6.1.2 The DNS Lookup and HTTP Data Plane

Our approach effectively uses DNS to locate content objects and HTTP to retrieve

them. Thus, when we examine this system through the lens of ICN architecture and

protocol design, we can say that it uses DNS for the routing or control plane and

HTTP for the data plane. We discuss modifications to and design of the data-plane

in this section, and discuss the control plane in Section 6.2.

We use HTTP in the data plane because HTTP is the de facto protocol for

Internet content delivery today. In addition to the robust ecosystem of browsers

and servers deployed at end-to-end systems, we note that HTTP already supports

transparent caching at intermediate entities. Additionally, HTTP exists entirely

as a data plane protocol. This means that aside from using the DNS to resolve a

hostname to the address of a publisher’s servers, HTTP employs no content location

or lookup services: HTTP clients simply send content requests, which publishers

answer affirmatively (with the content) or negatively (with an error code).

This combination of factors leads us to conclude that HTTP is the most information-

66

Figure 6.1: The Information-Centric Name Resolver

centric content delivery protocol today, and the best candidate to be adapted towards

an information-centric TCP/IP architecture. Specifically, to move from HTTP to-

wards an information centric data plane, only two things are needed. First, a content

location or lookup service must be deployed at per-object granularity, such that (1)

different web objects under the same domain have different content lookup records

and (2) non-publisher network nodes can indicate that they have a copy of the

object. Second, HTTP must be altered in a manner that supports transparent or

opportunistic caching while still maintaining object security and client privacy. We

discuss the first task, that of a lookup service, in Section 6.2. We discuss the second

task, that of opportunistic caching in the data plane, in Chapter 7.

6.1.3 Layered Mobility Signaling

The multiple layers of hidden identifiers first illustrated in Figure 4.2 provide many

places where open identifier multiplexing can occur in order to mask network disrup-

tions, mobility, and multihoming. Having multiple locations to enact such multiplex-

ing is by design, and illustrates the strength of HIDRA as a modular architecture:

rather than concentrating mobility at a single layer, we use identifier multiplexing

at different layers to combat different forms of mobility!

Assuming a mobility signaling and mitigating technique such as DIME is em-

ployed, the creation of these HIDs is all that is necessary to ensure support for

host mobility. Each HID will resolve itself to the host’s entire set of IP addresses

and use end-to-end updates to preserve connectivity across network address changes

automatically.

Correspondingly, the set of tuples bound to a single NID supports content mo-

67

Figure 6.2: Content Record vs Host Record

bility. If a piece of content is located at or replicated across multiple hosts, each

content location will have its own tuple bound to the NID. As such, if a specific host

becomes unreachable, or the content request fails (regardless of reason), the content

request can be multiplexed at the NID and sent to a different host.

6.2 iDNS and the Content Record

Our approach to content location, which we call the Information-Centric DNS

(iDNS), extends the DNS to denote content in addition to hosts, and adapts content

delivery protocols to reflect this change. While such a shift clearly achieves location-

independent content naming, we argue that this shift also achieves the other ICN

benefits detailed in Section 6.1.

At the core of iDNS is a Content Record (CR), which is a new type of DNS

resource record that refers to a particular NDO or name prefix. Clients desiring

an NDO or name prefix must first resolve the corresponding CR through the DNS,

which contains the address of one or more servers hosting the content, along with

associated metadata necessary to fetch the content and verify its authenticity.

The Content Record format is illustrated in Figure 6.2 and contains, in addition

to the standard DNS resource record fields, a field stating whether the content can be

cached, fields for object and record security, a field identifying the content delivery

protocol and any protocol-specific values, and a list of one or more addresses where

the content can be found. The addresses are included in the response as individual

DNS A{AAA} Records. Note that the addresses included are not necessarily those

68

of the publisher or origin, but could potentially be a CDN node, alternate mirrors,

or even a nearby cache.

6.2.1 Object and Record Security

The object security field in a CR can take several forms. One example is a hash

value calculated over the content. Another is the public-key of the publisher, used

by the client to verify a signature provided with the content object. The CR object

security field enables the content record to secure the content object. However, for

such a scheme to work, the CR itself must be secured. Given that the CR is just

another type of DNS record, the CR may be secured through any one of several

existing security approaches proposed to date, such as DNSSEC [WB13].

The process of creating a new CR must also be secured, and potentially on a

much finer-grain basis than the DNS is today. For example, only Spencer should

be allowed to publish CRs under the prefix /ucsc/spencer, and only J.J. under

the prefix /ucsc/jj. This fine-grained security can be accomplished through any

of the current access-control techniques used by content servers supporting multiple

publishers today, such as HTTP and FTP servers. These servers provide each regis-

tered user with their own directory, typically protected by a username and password,

which corresponds to a particular prefix or subtree. Given that a particular DNS

zone manages the records under the zone, different domains may handle security,

registration, and scalability differently without heavily impacting the DNS itself.

6.2.2 Address Record Selection

When a client successfully resolves an iDNS query for an NDO, it receives the CR

and one or more address records. In the event that the client receives several address

records, it must assume that the records have been ranked by the DNS for locality,

availability, or some other metric, and thus should request the NDO from the first

address first. Policies may arise and be standardized for address record ranking

and ordering, similar to the rules specified in [Dra03] for host IP address selection.

However, the logic and considerations involved in such a ranking process is a complex

69

/ucsc/spencer
/ucsc/jj

discussion well outside the scope of the iDNS design in this paper.

A crucial part of ICN is directing clients to nearby copies of NDOs. For iDNS to

support this functionality, the address of a local content server must be included in

the address set, and the address set must be properly ranked to reflect this locality

by the time the response reaches the client. Thus, in iDNS we allow any node along

the DNS response path to add address records or reorder the records in the set, with

the understanding that DNS servers closer to the client have a better understanding

of the client’s environment.

Though there could be several DNS servers along the return path, in practice

there are typically only two: the authoritative DNS server for the record, and the

local DNS server for the client. Thus, in iDNS we anticipate the same relationship,

and expect that the local DNS server will be largely responsible for directing clients

to nearby caches. This approach has an added benefit of fine-grained localization,

because the local DNS server sees the address of the client itself. In contrast, the

authoritative DNS server sees only the address of the local DNS server, and multiple

studies [MCD+02, STA01] have shown that this address is only useful for coarse-

grained localization, thereby limiting the effectiveness of CDNs powered by DNS

redirection.

6.3 Content Replication

Depending on the address provided to the client in the CR, the client may request

the original NDO from the publisher or a replica from a nearby cache. We divide

content replicas into two forms, long-lived and short-lived, with the difference being

that long-lived replicas can generally be relied upon to provide the content, whereas

short-lived replicas make no such guarantees. This split is designed to represent the

logistical and important difference between hosting entities volunteering to mirror

content and caching entities that work opportunistically. Caches typically provide

“best-effort” reliability, given that the requested content may be available, may have

been evicted, or may never have been cached before.

70

Figure 6.3: Dynamic Record Generation

6.3.1 Long-Lived Content Replication

A publisher may add servers, use mirroring sites, or deploy a CDN to replicate

content. In contrast to the ad-hoc methods employed by content delivery protocols

today, iDNS provides integrated support for such long-lived replication of content:

the publisher simply contacts the authoritative DNS server for the CR and adds an

address record referring to the new server hosting that content.

The authoritative DNS server for the CR may order the addresses in a certain

way, or only return a subset of the addresses, based on the address of the local

DNS server issuing the request. This process is illustrated in Figure 6.3, where the

publisher registers the CR (step one), and then two clients using different local DNS

servers query the same authoritative DNS server (step two) and receive different

address-set orderings. Accordingly, they then request the same NDO from two

different content servers (step three).

Distinguishing between publishing content (creating new CRs) and mirroring

or serving content is important from a security standpoint. Only the owner of

a prefix should be allowed to create a new CR under that prefix. However, this

same restriction need not apply to parties wishing to mirror or re-host a piece of

content. Content mirrors often arise out of immediate necessity [dig], and sometimes

the content publisher is either unaware, cannot be contacted, or does not have the

necessary resources to scale up content delivery. Thus, other parties may be allowed

to append their address to an existing CR without the explicit permission of the

71

Figure 6.4: Local Record Generation

publisher. However, as long as these parties are not allowed to change the metadata

in the CR, including the object security field, clients can easily identify malicious

or illegitimate content. Such a restriction can be enacted through the access-control

policies mentioned in Section 6.2.1.

6.3.2 Content Caching

Caching is an equally important part of scalable content distribution. Any DNS

server on the return path may be aware of a nearby content-cache, and can direct

the client to this cache by simply adding the address of the cache to the address set.

This process has the potential to be most effective when performed at the local DNS

server, since the local DNS server knows the exact network address of the client

itself. Figure 6.4 illustrates this process, where after a content cache receives an

NDO (step one), the local DNS server directs the client (step two) to request the

NDO from this cache (step three).

6.4 Comparing iDNS to Prior ICN Proposals

Having provided a technical overview of iDNS, we return to the previously stated

goals and benefits of ICN with the intent of showing that we achieve all of the

benefits of prior ICN proposals.

72

6.4.1 Location-Independent Persistent Naming

iDNS ensures that content names are persistent and unique through the hierarchical

nature of the DNS. It also decouples names from locations by separating the CR

from its set of addresses, and maintains a namespace that is not fragmented, even

when content is moved or mirrored across different content servers.

There exists ongoing debate [GKR+11, BC12] on whether content names should

be drawn from hierarchical or flat name spaces. Interestingly, flat-name proposals

necessitate a peripheral name resolution service (NRS) to translate between user-

readable names and routable ones, and various works within this space argue whether

this NRS itself should be flat or hierarchical.

In this debate, iDNS does not advocate a particular approach over another: the

CR provides a natural point of convergence for either approach! Though the DNS

itself is hierarchical, architecturally flat name resolution protocols exist [KFV+12,

RS04, VBZ+12] and other protocols can be designed as necessary: they must simply

map a name to a CR. Powered by the modular design of HIDRA, the ICNR provides

a location to easily adapt and extend information-centric name resolution however

necessary. Moreover, the DNS itself can be easily adapted to a flat naming scheme,

as is proposed by NetInf [ADM+08].

6.4.2 Efficient Content Distribution

The primary motivation for ICN is to relieve network congestion and improve con-

tent distribution through a combination of caching and nearest-replica-routing. The

iDNS content location process accomplishes this goal by enabling servers along the

DNS response path to change the cached address-set via the guidelines in Sec-

tion 6.2.2, and supporting already-existing opportunistic Web caching techniques

in the HTTP data-plane.

This brings us to another ongoing debate in the ICN community [FLT+13,

GSK+11, XVT+12, CHPP12, DBGLA14] regarding the effectiveness of different

caching policies; this debate typically compares ubiquitous caching in the core of the

network to edge caching. Again, without claiming either side in such a debate, iDNS

73

can enable any caching policy, depending only on the topology of intermediate DNS

servers appending cache addresses. This provides a systematic answer to the debate,

because network operators will only place additional DNS servers at locations that

they deem most effective - therefore, the caching topology will naturally evolve and

converge on the most ideal model.

6.4.3 Object Level Security Model

An important ICN design primitive is the concept that content can come from any

location in the network. Thus, the traditional security model, which focuses on se-

curing and authenticating hosts, must be changed to authenticate and secure content

instead. iDNS preserves the concept that content may come from anywhere, and

accomplishes object-level security through the security field in the CR.

Compared to other ICN proposals, an advantage of iDNS is that its integrity

model depends only on the DNS. As long as the base CR is secured, via DNSSEC

or some other protocol, then the client can easily verify the integrity of the received

content object. Furthermore, iDNS does not require any intermediate routers to

verify the authenticity of the content. This technique avoids an open problem in the

ICN community, where many questions exist regarding the trust and feasibility of

a universal PKI (or other such security protocol) deployed at intermediate routers,

as well as the feasibility and scalability of performing content verification at each

router.

Finally, we note that security also refers to other concerns, most importantly

client privacy. Preserving the privacy of content objects and consumer requests is

an open and major problem in ICN, with recent works [GTW16] arguing that strong

privacy guarantees are fundamentally untenable in ICN. In contrast, when HTTP

is used in the data-plane, there exist several techniques and approaches that can

be used to mitigate this problem in different forms; we discuss data-plane security

further in Chapter 7.

74

6.4.4 Mobility And Disruption

iDNS provides natural support for many different forms of mobility. Client local-

ization can be enacted by leveraging DHCP to provide clients with the address of

a nearby local DNS server when they join a new network. Content mobility can be

supported by (1) updating the address set in a CR to reflect new replicas and (2) us-

ing NID multiplexing in the data plane to persist a single HTTP session across host

failures or disconnections. Finally, by means of the HIDRA architecture, seamless

host mobility can be supported via techniques such as DIME.

6.4.5 Differences With Prior ICN Work

Architecturally, iDNS differs from other ICN proposals in two key fashions: First and

foremost, it preserves the HTTP/TCP/IP data plane by augmenting it with DNS

resolution. Second, it uses two request-response pairs, one to locate the content

and the other to fetch it. This approach contrasts with other ICN proposals, which

typically employ a single request-response pairing. Conceptually, this separates the

act of locating content from the act of distributing it, and this split enables two

separate topologies to coexist: one for content-location and the other for content-

distribution. This design is a key strength of iDNS, because it effectively supports

“near-replica routing” without relying on large content tables or a content-routing

protocol. DNS names are routed swiftly without any localization or fragmentation,

and then the content-request itself is routed over IP.

This split has another important ramification, in that it enables both steps in

the system (content location and distribution) to evolve independently of each other,

bridged only by the format of the CR. Hence, iDNS can support multiple different

approaches to naming and caching, as well as a large suite of alternative content

delivery protocols, including FTP, BitTorrent, and Gnutella, among others.

75

6.5 Analysis of Scalability

Supporting NDO resolution through the DNS increases the number of records in

the DNS by several orders of magnitude, roughly from 106 to at least 109 [PV11,

big]. Though the DNS is known to be a highly scalable distributed system, such a

significant increase in scale merits further examination. In particular, we examine

the scalability of two key parts of the system: the authoritative DNS servers in

charge of storing and serving the records; and the local DNS servers in charge of

forwarding queries, caching entries, and returning records to clients.

6.5.1 Scalability of the Authoritative DNS

By increasing the number of records served by the DNS, we implicitly increase the

amount of (a) storage and (b) processing power necessary to serve these records.

Additionally, if we increase the average name length (a likely assumption), we po-

tentially incur additional DNS referrals.

Storage and Processing Power

Increasing the number of records in the DNS correspondingly increases the work

necessary to store and serve these records. However, it can be qualitatively argued

that a comparable amount of work is already performed today by HTTP servers.

Given that today’s DNS resolves nothing more than a hostname, an HTTP server

must manage an entire directory tree, parse the HTTP path accordingly, and return

the necessary piece of content. In contrast, DNS servers must only return a corre-

sponding CR, not the content object itself. Even today, the performance of TLD

servers (e.g., com or org) shows that a particular DNS zone can support thousands

of entries.

Fortunately, the DNS is a well-designed, hierarchically distributed system. This

design ensures that if an organization struggles to serve or update their CRs, this

inadequacy is contained to the CRs of this organization and does not slow down or

create problems elsewhere in the DNS. Thus, there exists a powerful and natural mo-

76

tive for an organization to successfully manage the publication of their content and

provision adequate resources to do so. Additionally, the impact and consequences

of negligence or failure to provision resources accordingly is limited to the offend-

ing organization(s) and does not negatively impact CR resolution under alternate

namespaces.

Latency and Referrals

DNS requests start at the root and descend the hierarchy as necessary. For example,

with no cached information, DNS resolution for bsoe.ucsc.edu consists of three

requests: the first to the root name-server, the second to the authoritative server for

edu, and the last to the authoritative server for ucsc.edu. Thus, as names contain

more components, they necessarily result in more requests and referrals.

This design means that the behavior of DNS, in particular referrals, depends on

the structure of the content name: the same set of records may result in different

behavior, depending on how their names are structured. Accordingly, to provide

a meaningful analysis, we had to make assumptions about the distribution and

structure of content names. In particular, we assume that the structure of content

names in a DNS-based system mirrors the structure of HTTP names used today:

for example, the URL bsoe.ucsc.edu/index.html would correspond to four iDNS

zones, with the zone bsoe being in charge of the CR for index.html. Such an

assumption is safe and useful: safe because HTTP does not mandate the format

of the path component, and useful because it enables us to draw conclusions from

existing HTTP names and traffic.

Building on this assumption, we analyzed a large set of HTTP GETs1. In our

analysis, we stripped out the hostname and then examined the rest of the HTTP path

for the number of components. For example, a GET for bsoe.ucsc.edu/index.html

would have a value of 1, whereas bsoe.ucsc.edu/videos/index.html a value of 2.

Our results are shown as a histogram in Figure 6.5, with a mean value of 3.9 and

standard deviation of 2.89.

1One day (2012-11-01 00:00∼23:59) of HTTP traffic initiated by hosts at POSTECH University
in South Korea, approximately 25 million requests

77

bsoe.ucsc.edu
edu
ucsc.edu
bsoe.ucsc.edu/index.html
bsoe.ucsc.edu/index.html
bsoe.ucsc.edu/videos/index.html

Notably, prior analysis of DNS traffic has shown that DNS requests and referrals

are largely mitigated through local DNS caching. Jung et al [JSBM02] observe that

the average DNS query results in 1.2 referrals and a latency of approximately 60ms,

despite the fact that the average DNS name has 3.3 components. These results are

encouraging, because they illustrate the effectiveness of caching in improving DNS

performance.

Based on the above results, we believe that caching and other optimizations used

for host-name resolution with the DNS will be equally successful when extended to

content objects. When deployed at a large scale, we therefore expect the average

name to consist of ∼ 6.8 components, and to result in ∼ 2.4 referrals and an average

latency of ∼ 100ms, all of which are acceptable values.

6.5.2 Scalability at the Local DNS Server

iDNS increases the work required by the local DNS server, because it must direct

clients to nearby content-caches. In its simplest form, redirection is accomplished by

appending an address to the address set of each DNS response. This operation, which

must happen for each request/response pair, constitutes less work than a transparent

cache carries out today when it inspects HTTP headers. More complex schemes for

cache load balancing may evolve, but such schemes represent a fundamental tradeoff

between additional complexity at the local DNS server or decreased efficiency at the

content cache. This tradeoff is important to highlight, because such a tradeoff can

only be examined and optimized for a particular local topology and set of hardware,

yet we show that iDNS provides support for such optimizations.

Given that local DNS servers often cache records to improve DNS performance,

increasing the number of DNS records can have an adverse affect on the local cache.

However, multiple studies [JSBM02, CK03] indicate that the DNS cache size is not a

limiting factor on performance, because the distribution of DNS objects is Zipf, and

the individual record objects are quite small. In fact, DNS objects are so small that

the common DNS caching utility dnscache provides a default cache size of 1MB

and a maximum cache size of 16MB! Thus, there is ample room for DNS caching to

78

Figure 6.5: Histogram of HTTP Path Components

Figure 6.6: Prototype Deployment Topology

expand by several orders of magnitude before an impact on performance is felt.

6.6 Experimental Deployment

To explore a common deployment scenario, we built a prototype iDNS system that

employs hierarchical CCN-style naming, edge-caching through local DNS servers,

and HTTP for content delivery. We wrote a simple iDNS client, local DNS resolver,

and content cache in Java, and deployed the code (approximately 2000 lines, of

which only 200 are unique to iDNS) across three servers and four clients at PARC

configured in the topology shown in Figure 6.6. Both subnets use the same local

DNS server, which directs clients to their closest cache based on their address; the

primary difference between the two subnets is that the cache in Subnet 1 is directly

along the network-path from the clients to the Internet, whereas this is not the case

for Subnet 2. To avoid changing the authoritative DNS server, we elected to encode

CRs as a TXT record starting with "CR:".

79

6.6.1 Name Format Translation

We start with a hierarchical content name (e.g., /ucsc/ccrg/papers/idns.pdf),

which is translated to a DNS-resolvable name through a simple algorithm: First,

reverse the order of all names broken by the / character to create the string idns.

pdf/papers/ccrg/ucsc/. Next, swap each / character for a ., and each . for a /, to

create the valid2 DNS name idns/pdf.papers.ccrg.ucsc. This simple translation

is one-to-one and reversible, which allows the DNS name to later be reconstructed

into the original hierarchical content name.

To support the HTTP data-plane, we define a hostname length number (HLN) to

be included with the CR. The HLN is used to translate the content name from DNS

to HTTP; this is necessary, given that HTTP URLs contain two hierarchical compo-

nents, the hostname and the path. Thus, the HLN is needed to denote the number

of components in the hostname, with the assumption that the remainder of the

name is the content path. For example, when HLN = 2, the DNS name idns/pdf.

papers.bsoe.ucsc.edu translates to ucsc.edu/bsoe/papers/idns.pdf, whereas

HLN = 3 would create bsoe.ucsc.edu/papers/idns.pdf. Once translated, the

client then issues an HTTP GET request for the constructed URL.

6.6.2 Latency Results

We hosted a 456KB file on a server at UCSC, and created a CR naming it as

edu/ucsc/soe/ccrg/idns.pdf. We then had each client in our test topology request

the file 10 times, using three different caching schemes: first without caching, second

only using transparent caching along the network path, and third using iDNS cache

location to explicitly address the same cache.

The first row of Table 6.2 shows the average latency (µ) and variance (σ) of

the HTTP transfer, as perceived by the end client. As expected, these results show

that a cache-hit reduces latency as compared to fetching the object from the origin;

however, they also show that there is minimal performance difference between trans-

2DNS explicitly prohibits use of the “/” character in hostnames, but allows it in other record
types, such as TXT or our CR.

80

/ucsc/ccrg/papers/idns.pdf
idns.pdf/papers/ccrg/ucsc/
idns.pdf/papers/ccrg/ucsc/
idns/pdf.papers.ccrg.ucsc
idns/pdf.papers.bsoe.ucsc.edu
idns/pdf.papers.bsoe.ucsc.edu
ucsc.edu/bsoe/papers/idns.pdf
bsoe.ucsc.edu/papers/idns.pdf
edu/ucsc/soe/ccrg/idns.pdf

Cache Policy None Transparent iDNS

Client Latency
µ = 45ms µ = 26ms µ = 29ms
σ = 5.03ms σ = 2.71ms σ = 3.45ms

Cache Latency N/A
µ = 52ms µ = 61ms/32ms
σ = 4.47ms σ = 4.67ms/2.94ms

Table 6.2: Results

parent in-line caching and our method, which directly addresses the cache itself and

includes the origin addresses as an HTTP header option. This result is important

to our design because it enables clients to take advantage of caches existing outside

of the direct network-layer path to the server.

The second row contains the average time needed to populate the cache itself

the first time the file is requested. When requesting a file from the origin, iDNS

exhibits slightly more overhead compared to transparent caching (61ms to 52ms);

this overhead is the natural result of coordinating two separate HTTP requests as

opposed to simply sniffing and copying data. However, the second entry under iDNS

(32ms) shows an interesting observed behavior: the first time an iDNS cache requests

the file, it must be served from the origin server at UCSC, yet when the second cache

requests the same file, it can locate and request it directly from the first iDNS cache.

This behavior results in lower latency as well as distributing the load off the origin

server.

6.7 Conclusion

In this chapter, we introduced, explained, and evaluated iDNS, a novel approach

to Information Centric Networking. iDNS shows how the hidden identifier architec-

ture in Chapter 4 can easily be extended to semantically bind named data objects

instead of hostnames. We introduced the concept of an Information Centric Name

Resolver (ICNR), showed how different ICNRs can support different information

centric paradigms, and showed how a specific ICNR can be used to leverage the

existing DNS and HTTP protocols.

To support our specific ICNR, we proposed extending the DNS to resolve content

names as well as hostnames; we call this system iDNS. We show that iDNS maintains

81

compatibility with existing approaches to routing and content-delivery, and requires

only minuscule changes to end clients. This compatibility means that iDNS can

be deployed today, yet can still be extended to support future developments (e.g.,

content routing and content security) in other ICN architectures as they mature. Our

analysis of DNS and HTTP shows that iDNS can feasibly be deployed at Internet

scale, and our prototype deployment shows that iDNS achieves the benefits of ICN

without incurring significant processing or control overhead.

82

Chapter 7

GroupSec: A New Security Model for the Web

Chapters 3 to 5 of this thesis combine to paint a compelling picture of a future In-

ternet, wherein identity layers are cleanly separated and mobility within a layer

does not interfere with other layers. Building on this architectural framework,

Chapter 6 showed how the goals of ICN can be attained over the present-day

HTTP/TCP/IP. This design is exceedingly important, because the initial ICN pro-

posals [KCC+07, JST+09, FNTP12, ADM+08] correctly observe that the single

dominant purpose and function of Internet communication today is content deliv-

ery.

Chapter 6 showed that the goals of ICN can be attained over HTTP/TCP/IP

provided that (1) a fine-grained and lightweight content lookup service (i.e. iDNS)

is deployed and (2) HTTP itself is altered to support the content-centric security

model. Digging deeper into Point (2), we argue that the key challenge of adapting

HTTP today to a purely information-centric protocol lies in two facts. First, a

content-centric security model must support transparent, ubiquitous, opportunistic

content caching, wherein individual content objects can come from anywhere in

the network. Second, secure HTTP (HTTPS) uses a session-based security model

wherein clients authenticate endpoints (i.e. a publisher’s server) and then rely on

end-to-end encryption to ensure content integrity and privacy.

HTTPS is currently used for slightly over half of all traffic flows, [NFL+14] and

its adoption is on the rise as a response to growing concerns of Web privacy and

security [htta]. Unfortunately, the session-based security model clearly interferes

83

Figure 7.1: Content Group Membership

with all forms of Web caching. It follows that the single most pressing obstacle

facing content publication and dissemination on the Web today is the question of

how to integrate Web security and privacy with transparent content caching; this

chapter focuses on this challenge.

7.1 Content Group Security

The key innovation of GroupSec is a new security model based on group membership.

In this model, clients are defined as being in a “content group” together if they are

authorized by the publisher to view the same content object. Content groups exist

separately for each content object, and may overlap. Figure 7.1 provides a simple

example, where users a and b are in two content groups together (groups f1 and

f2), and user b is also in a third content group (f3) with user c.

Compared to TLS, GroupSec relaxes the security restraints on content groups in

two key ways. First, nodes within the same content group are allowed to infer each

other’s membership with respect to that particular group (i.e. if a node is authorized

to view a content object, it can also deduce when other clients are viewing the same

content object). Second, nodes outside the group may see that clients are in a unique

group together, but cannot deduce anything about the nature of the group.

Continuing the example in Figure 7.1, user a can see that user b is able to access

files f1 and f2. Likewise, user c can see that users a and b are in two distinct content

groups together, but cannot access either file or its filename.

84

7.1.1 Asymmetric Privacy Model

The group membership security model is carefully designed to meet the concerns of

publishers distributing a file to multiple clients. Specifically, GroupSec is designed

around the observation that in this scenario, publishers and clients have asymmetric

privacy concerns! From the perspective of content publishers, privacy refers to the

nature of the file itself (i.e. its name and contents) that the publisher is serving.

Conversely, from the perspective of clients, privacy refers to the nature of the file,

but also the fact that the client requested that specific file.

Subdividing privacy in this manner is a crucial part of the GroupSec design,

because it enables minimal leaking of information while still supporting transparent

caching: for a transparent cache to operate, it must know when multiple clients

request the same content object. It follows that the core goal of the GroupSec

privacy model is to expose this information, and only this information, while still

protecting the name and content of the cached files even from the caches themselves!

Publisher Privacy

From the specific perspective of content publishers, GroupSec achieves a level of

security equivalent to HTTPS. First, since only clients in a content group are able to

decrypt and view the relevant content object, publishers are assured that knowledge

of a file’s name and contents is restricted only to those clients the publisher has

authorized. Second, in GroupSec the identity of the publisher (i.e. its hostname) is

known to all the clients in the group, and the IP address of the publisher is known

even to nodes outside the content group, but this is already the case today for any

publisher serving content over HTTPS.

Client Privacy

In contrast to the perspective of publishers, GroupSec clients see a significant down-

grade in terms of privacy when compared to HTTPS. Whereas HTTPS offers clients

assurance that no one but the publisher knows anything at all about their content

request, GroupSec relaxes this restriction such that (1) other nodes in a client’s con-

85

tent group can see that the client has requested the file, and (2) nodes outside the

content group can identify the members of a unique content group by IP address.

This relaxation raises significant privacy concerns, because a client may not

necessarily trust every other client in a content group, and may not wish other

network nodes to identify that it is requesting the same content as other nodes.

Because of these concerns, GroupSec represents itself to clients as a completely non-

private connection. That is to say, end clients using GroupSec can be assured of

the authenticity and integrity of the content, yet are given no assurances about the

confidentiality of their request.

Defining a connection as authenticated, yet non-private from the perspective of a

single side of the connection is a significant departure from all prior security models.

However, such a definition is not only a good fit for the Web, it is also remarkably

easy to convey. GroupSec leverages the observation that Web users most often use

“secure” to mean “private” [TZY01, KHY12], and simply uses the browser lock icon

to identify GroupSec content as “insecure”.

7.1.2 HTTP-Centric Security

Instead of layering HTTP traffic on top of a TLS session, GroupSec enacts security

within HTTP itself. GroupSec accomplishes this by encrypting the filename and

contents separately though an out-of-band process similar to [Tho16], and then

transmitting HTTP requests and responses over plaintext. Figure 7.2 illustrates

this process and shows which specific fields of the HTTP request and response are

encrypted.

This shift is incredibly important: while GroupSec ensures equivalent security

to TLS with respect to the Request-URL and Message Body fields, intermediate

nodes may view and modify all other HTTP header fields. While this decision can

be seen as “relaxing” the traditional security model by exposing more information

to intermediate network entities, we argue that this shift actually comes with sev-

eral important benefits and minimal drawbacks. First, even when TLS is used, an

attacker can still infer that two nodes are exchanging HTTP traffic simply by ob-

86

serving the IP addresses, ports, and communication pattern between the client and

publisher. Second, we note that HTTP header modification is a common bandwidth-

saving technique employed by transparent caches to encourage content reencoding

for mobile devices [NFL+14].

7.1.3 Middleboxes and Trust

A remarkable drawback of prior work [NSV+15, SLPR15] is that they explicitly

authorize certain middleboxes to view and/or modify content. This design is funda-

mentally at odds with the observation that middleboxes are not necessarily trust-

worthy, and in some cases (e.g. ISPs injecting additional advertisements) should be

considered malicious. Thus, rather than opening debate or proposing mechanisms

to separate “good” middleboxes from “bad” ones, we assume a simpler trust model

wherein clients trust content publishers and no one else.

7.2 HTTP-GroupSec

For the GroupSec model to be feasibly deployable in the Internet today, it must be

implementable with minimal changes to browsers and servers, and must not depend

on alterations to middleboxes themselves.

In applying the abstract security model of group membership to HTTP, we found

that four key requirements dictated our protocol design. Formally, a content object

must (1) be decryptable by the intended clients, (2) not be decryptable by other

nodes, (3) be cacheable by intermediate entities, and (4) fully mask the name of the

object.

Our solution, which we call HTTP-GroupSec (HTTP-GS), starts with the as-

sumption that a HTTPS session exists between a client and publisher, and that this

session was used to load a preexisting page, which we call the linking page. Through

the use of two new HTML attributes, http-gs-key and http-gs-salt, the linking

page indicates to the browser that certain elements (either embedded or linked) are

HTTP-GS enabled. The browser then retrieves these specific elements over HTTP,

decrypts them, and renders them in the page accordingly.

87

Figure 7.2: HTTP-GS Requests and Responses

7.2.1 Object Encryption and Decryption

Before they are linked or served, HTTP-GS content objects are encrypted with their

own public-private keypair. In keeping with current recommended best practices

[rsa, cer, sta, ope, BBB+06, BR11, FP] we use a 2048-bit RSA key, but stress that

the HTTP-GS design can support any form of asymmetric encryption. To support

fine-grained object-level security and enable different content groups to emerge for

each individual object, each HTTP-GS content object is encrypted with a separate

key. The public key itself is transmitted over HTTPS as a part of the linking page

under the http-gs-key link attribute; this enables clients to be assured of both

the integrity and confidentiality of the key itself. Once encrypted, the HTTP-GS

content object itself is simply served as any other HTTP object - the only difference

being that the Message Body of the HTTP response is encrypted.

7.2.2 URL Hashing

HTTP URLs are comprised of two parts: the Hostname (e.g. www.example.com) and

the Path (e.g. /videos/v1.mpg). Since both fields are transmitted in cleartext as

part of the client’s request, they must both be sufficiently masked to ensure privacy.

We use two different techniques to encrypt each component separately.

The Path requested by the client is generated by hashing the URL provided by

the linking page; we call this value the name-hash. In generating this hash, we have

two goals: First, nodes that are not members of the content group must not be

able to reverse the name-hash to the original URL. Second, to leverage transparent

caching, the name-hash must be consistent, so that multiple clients requesting the

same content object refer to it by the same name-hash.

88

Figure 7.3: HTTP-GS URL Hashing

The name-hash is generated by including another attribute, http-gs-salt, in

the HTML of the linking page. This attribute has two values, the salt itself (a

randomly-generated number provided by the publisher) and an expiration date.1

The browser verifies that the salt is within the expiration date, and then creates the

name-hash by adding the salt, the key, and the URL together, and then calculating

an md5 hash of this value as in Equation 7.1.

name hash = md5(url + key + salt) (7.1)

Hashing the URL in this manner ensures request consistency: since every client

receives the same URL, key, and salt from the publisher, every client recreates the

same name hash. Additionally, the salt serves to place an expiration date on a

HTTP-GS link: even if an eavesdropper manages to possess the content object’s

key, either by compromising a HTTPS session or by having been authorized to

receive this content in the past, just owning the key is insufficient to generate a

request URL or decrypt a name-hash. This has broad-reaching implications for

client privacy, performance optimization, as well as DRM and key revocation.

1Choosing a good expiration time, or refresh-rate, is left to the discretion of the publisher, since
it dictates a tradeoff between privacy and cache efficiency. We strongly recommend that this value
be closely coordinated with the Cache-Control: expires header.

89

7.2.3 Hostname Stripping

HTTP-GS requests effectively remove the Hostname field entirely, and simply name

the host by IP address. This decision to replace the hostname with an IP address

comes from several motives. First, hashing the hostname separately for each web

object, the way the name-hash is generated, risks a cross-domain hash collision at

intermediate caches (e.g. domain1.com/fileX and domain2.com/fileY both hash

to the same value). Such a collision poses a serious problem, because it could disrupt

client access to the content (i.e. a client requests one file and the cache delivers the

other), yet this behavior would be completely undetectable (and therefore uncor-

rectable) by content publishers.

To prevent such collisions from occurring at transparent caches, each domain

must be given a unique and consistent namespace to generate hashes in. This makes

hash-collisions within a domain easy to identify (e.g. a publisher can immediately

detect if domain1.com/fileX and domain1.com/fileY map to the same hash), yet

this poses an equally important security leak: if a hash used to mask a domain

name must be consistent for every object named under the domain, an attacker

could discover the Hostname hash by simply visiting any public-facing page in the

domain.

By replacing a publisher’s hostname with it’s IP address, we resolve both prob-

lems at once. The consistent value of the IP address removes the threat of hash

collisions at transparent caches, and does not expose any new information not al-

ready visible in the IP header. In the case of CDNs or other facilities that host

multiple domain names at a single physical IP address, potential collisions are just

as trivial to identify and correct, and actually serve to further obfuscate the name

of the content object requested: a request of the form ip:content hash leaks no

information at all if ip is the address of a server known to host several different

websites.

90

7.2.4 Transparent Caching

Transmitting requests and responses over plaintext HTTP enables Web caches to

consistently identify, store, and serve HTTP-GS content in response to future re-

quests. Additionally, leaving the HTTP headers unprotected allows these same

caches to (1) read and act on relevant cache-specific HTTP headers such as Cache-Control

and (2) add specific headers to outgoing HTTP requests, such as requesting a mobile-

specific version of the object if one exists.

7.2.5 Cross-Domain Linking

One of the key motives in our choice to use public-private keypairs, as opposed

to symmetric keys, is to support HTTP-GS linking across domains. By adding

the http-gs-salt and http-gs-key attributes to a link tag, a page loaded over

HTTPS can securely embed or link to elements outside of its domain. This enables

integrated support for personalized content or aggregator sites (e.g. Reddit or Google

News) and highlights the strength of HTTP-GS. While the initial personalized or

aggregated site must be loaded over HTTPS, every subsequent linked or embedded

object can be loaded over plaintext and cacheable HTTP! We anticipate this specific

use model to account for a large portion of the network benefits of HTTP-GS.

For such a design to work, the http-gs-salt attribute must either be (1) set

to a sufficiently large value or (2) updated by the publisher every time it changes.

However, we anticipate that a simple protocol could support this feature automat-

ically. More importantly, similar to key revocation for clients, this design puts an

“expiration date” on cross-linking websites, since a publisher can revoke access by

simply denying a linker’s request for the current salt.

7.3 Threat Model Analysis

In this section, we examine GroupSec and compare it to HTTPS with respect to a

large range of common attack vectors. We primarily consider two attacker models:

an attacker that is not part of a client’s content group, and an attacker that is part

91

of the client’s content group (i.e. the attacker possesses the current salt and key).

We explicitly do not consider attack vectors that lie orthogonally or out-of-band

with respect to HTTP-GS and HTTPS (e.g. an attacker gaining physical access to

a server or breaking public-key cryptography) since such vectors are out of the scope

of this paper.

7.3.1 Unauthorized File Access

The primary privacy concern of publishers is that unauthorized clients will gain

access to their content. However, since content is encrypted with the publisher’s

private key prior to distribution, and the public key is only distributed over HTTPS,

an attacker will be unable to decrypt HTTP-GS content. To claim otherwise is to

say that either (1) the attacker was able to obtain the key by hijacking an HTTPS

session or (2) the attacker was able to break public key encryption.

7.3.2 Client Requests

Other attackers, such as surveillance organizations, may simply wish to learn that a

client requested a specific file. In these cases, the attacker’s ability to do so hinges

on membership in the content group.

In cases where the attacker is not a member of the content group, we assume that

the attacker is not in possession of the filename, key, or salt. It follows that without

at least two of these values, the process of reversing a name hash to a {filename, salt,

key} tuple is fundamentally impossible, even if the hash function used is reversed!

This is because even if the attacker is able to break the hash function, the attacker

will simply obtain the sum of these three variables, without any further information

as to which value is which.

In those cases where the attacker is a member of the content group, the process

of identifying the file requested by the client is trivial: by simply recreating the

current name hash, an on-path attacker can immediately detect whenever the file

in question is requested by a client. However, this case is explicitly allowed by the

security model, and thus is not a violation.

92

More abstractly, GroupSec addresses this threat by portraying GroupSec content

to clients as non-private: [LR07, RLC05, ERB03] have found that Web users alter

their behavior based on privacy indicators and perceived privacy. This ties in to

our anticipated use model, that HTTP-GS will be primarily used by publishers to

“upgrade” the security of relatively non-private content (e.g. movies, news articles,

etc.) in a way that protects the publisher’s interests (i.e. DRM and client authen-

tication). We stress that HTTP-GS is a poor fit and not intended for private or

sensitive communication (e.g. email), both in that it does not guarantee the same

client privacy as TLS and that this content is most likely not cacheable.

7.3.3 Content Spoofing

In a content spoofing attack, on-path attackers respond to intercepted content re-

quests with a fake piece of content. However, for such an attack to work on HTTP-GS

content, the fake content must have been encrypted with the correct key - other-

wise, client-side deencryption will fail. Since HTTP-GS uses asymmetric keys, and

the publisher’s private key is never even transmitted over the network, this attack

cannot succeed unless the attacker either breaks public-key encryption or obtains

the publisher’s private key through some form of offline attack.

7.3.4 Cache Poisoning

A cache poisoning attack is similar to a content spoofing attack, except that the goal

of the attacker is simply to disrupt client access to content by populating a cache

with incorrect or false objects. Even if clients detect that the content is spoofed,

cache poisoning can still occur because if a cache stores this incorrect object, it will

respond to all subsequent requests with the same incorrect content.

HTTP-GS protects against cache poisoning attacks that seek to disrupt access

to a specific content object by ensuring that attackers cannot generate the name-

hash for a specific content object; without access to the name-hash, attackers cannot

pick out the specific piece of content to attack. Wide-range cache poisoning attacks

(wherein an on-path attacker replies to every HTTP request with a fake content

93

Figure 7.4: Server Load

object) are still possible, yet unlikely - attackers in such a position can simply execute

a DoS attack by silently dropping the HTTP request packets.

7.4 Performance Evaluation

We implemented a GroupSec prototype in Javascript and deployed it on a simple

testbed consisting of two laptop computers connected over ethernet: a client run-

ning Firefox and a server running Apache. We then used this testbed to evaluate

GroupSec performance in two key metrics: sustainable load at the content server

and page load latency at the client. We chose these specific metrics and topology

because (1) load and latency are the two metrics most important to Web publishers

and (2) they compare GroupSec at its absolute worst (i.e. no transparent caching).

7.4.1 Sustainable Load

The key benefit of GroupSec is that it enables transparent content caching; such

caching will clearly serve to decrease the load on a publisher’s servers. However,

since transparent caches are not ubiquitously deployed, GroupSec must not incur

additional load when caches are not on the path. We recorded the sustainable load at

the server, measured in requests-per-second, by running an Apache Benchmark test

from the client to the server; this test repeatedly requests the same URL over HTTP,

HTTPS, or HTTP-GS. Figure 7.4 contains our results for two filesizes: the Apache2

default page (∼10 KB), and a larger file (∼2 MB) chosen to reflect the current

average Web object size [httb]. To provide a platform- and filesize-independent

94

comparison metric, we normalized the results by the collected HTTP values (8084

RPS for the 10K file and 1161 RPS for the 2M file).

These results show that the load of serving a HTTP-GS object is roughly equiv-

alent to serving a regular HTTP object; this is unsurprising, given that HTTP-GS

objects are transmitted over regular HTTP. More importantly, Figure 7.4 also shows

that HTTP (and HTTP-GS) both vastly outperform HTTPS, by 20x and 10x, re-

spectively! These results show that HTTP-GS helps to dramatically increase the

sustainable load on a publisher’s server even when transparent caching is not em-

ployed.

7.4.2 Latency

Client-perceived latency is arguably the most important metric for content publishers

[Ham]. We explored the effects of HTTP-GS on page load latency by creating

a webpage with ten separate images, hosting it on the server, and migrating the

images one-by-one from HTTPS to HTTP-GS. Figure 7.5 compares these results to

the “flat” cases where the same page was loaded entirely over HTTPS or HTTP.

Unsurprisingly, the downward trend of HTTP-GS content is explained by the

fact that the initial HTML (and therefore all non-migrated elements) is served over

HTTPS; as a result, migrating an element to HTTP-GS decreases the latency at the

client. Notably, after all elements on a page are migrated from HTTPS to HTTP-

GS, the end page load latency closely resembles the latency of loading the entire page

over HTTP! As above, this shows that migrating content from HTTPS to HTTP-

GS results in substantial performance benefits even when transparent caching is not

accounted for.

7.5 Conclusion

In this chapter, we introduced a new security model for Web content delivery,

GroupSec. GroupSec redefines the Web security model from session-based to group-

based, and is the first security model to separate the privacy needs of clients from

those of publishers. We provided strong arguments for why the GroupSec model

95

Figure 7.5: Page Load Time

better fits Web content delivery today, and enables transparent caching while still

meeting the privacy needs of both clients and publishers. We also showed how HTTP

can be easily adapted to GroupSec with minimal protocol changes.

GroupSec has the potential to redefine Web content delivery in a wide range

of cases. More importantly, it represents a fundamental shift in how Web security

is perceived. This shift invites future work and debate on a wide range of topics,

including additional analysis on GroupSec-specific threats, GroupSec-related per-

formance optimizations and integration within HTTP(S), and additional security

models inspired by the GroupSec approach.

96

Chapter 8

Conclusion

In this thesis, we have proposed a new approach to an old problem, that of binding

names, addresses, and routes. Our proposal, which is primarily based on indirec-

tion, breaks the early-bindings within the network stack and allows for dynamic and

modular addressing at end hosts. We discussed how leveraging indirection between

layers of the stack creates a powerful tool for solving many challenges facing net-

worked environments today, and showed how such indirection creates a powerful tool

that paves the way for future Internet architectures.

In Chapter 3, we laid the architectural framework for this proposal, and explained

the design, benefits, and importance of hidden identifiers in the network stack. In

Chapter 4 we implemented and evaluated HIDRA, the first network stack based

on hidden identifiers, and in Chapter 5 we designed, implemented, and evaluated

DIME, a new approach that leverages hidden identifier multiplexing to support IP

address mobility.

Building on this foundation, we then showed how a hidden-identifier based net-

work stack can be leveraged to support the goals of information centric networking

by reusing the existing protocol stack in novel ways. In Chapter 6 we introduced a

content location service that achieves the benefits of an information-centric control

plane, and in Chapter 7 we introduced a new technique for secure, opportunistic

blind-caching in the HTTP data plane.

In each and every chapter, we have shown that approaches based on hidden iden-

tifiers are feasible, scalable, and do not introduce significant or notable overhead

97

at end or intermediate systems. Additionally, by concentrating our modifications

at end-hosts and carefully considering the impact on intermediate systems such as

routers and middleboxes, we have shown that hidden-identifier based approaches are

remarkably more deployable than alternate proposals. Finally, the results of exten-

sive experiments in many different systems show that hidden identifier approaches

tend to outperform their competitors in a wide range of metrics, including latency,

scalability, data-plane overhead, and control signaling, among others.

In addition to the benefits and results presented in this thesis, hidden identifier

networking opens the door and paves the way for a wide range of future work. This

work includes future work on the HIDRA architecture itself, such as further ex-

amination of connection-oriented protocols, network address multihoming, porting

HIDRA to alternate system architectures (e.g. sensor network platforms and/or vir-

tual machines), further optimizing network protocols to leverage hidden identifiers,

extending and standardizing the HIDRA-ICN architecture, or adapting HIDRA to

support service-centric networking. Additionally, there exists room for future work

on integrating HIDRA-based networking as a solution to many of the challenges fac-

ing virtual networks such as V(X)LANs and other large datacenter and cloud-based

network environments. Finally, the HIDRA architecture can provide a “spring-

board” or launching pad for other related work and projects in future network ar-

chitectures, including the information- and service-centric architectures discussed

throughout this thesis.

98

Bibliography

[ABH09] R. Atkinson, S. Bhatti, and S. Hailes. ILNP: mobility, multi-homing,

localised addressing and security through naming. Telecommunication

Systems, 42(3-4):273–291, 2009.

[ADI+12] B Ahlgren, C Dannewitz, C Imbrenda, D Kutscher, and B Ohlman. A

survey of information-centric networking. Communications Magazine,

IEEE, 50(7):26–36, 2012.

[ADM+08] Bengt Ahlgren, Matteo D’Ambrosio, Marco Marchisio, Ian Marsh,

Christian Dannewitz, Börje Ohlman, Kostas Pentikousis, Ove Strand-

berg, René Rembarz, and Vinicio Vercellone. Design considerations for

a network of information. In Proceedings of the 2008 ACM CoNEXT

Conference, 2008.

[att] Global IP network latency. http://ipnetwork.bgtmo.ip.att.net/

pws/network_delay.html.

[BB95] A. Bakre and B.R. Badrinath. I-TCP: Indirect TCP for mobile hosts.

Proc. International Conference on Distributed Computing Systems,

pages 136–143, 1995.

[BBB+06] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommen-

dation for key management part 1: General. NIST Special Publication,

2006.

[BC12] M F Bari and S Rahman Chowdhury. A survey of naming and routing

in information-centric networks. Communications . . . , 2012.

99

http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html

[big] We Knew The Web Was Big... http://googleblog.blogspot.com/

2008/07/we-knew-web-was-big.html.

[BP96] P. Bhagwat and C. Perkins. Network layer mobility: an architecture

and survey. Personal Communications, 1996.

[BR11] E. Barker and A. Roginsky. Transitions: Recommendation for tran-

sitioning the use of cryptographic algorithms and key lengths. NIST

Special Publication, 2011.

[BS97] K. Brown and S. Singh. M-tcp: Tcp for mobile cellular networks. ACM

SIGCOMM Computer Communication Review, pages 19–43, 1997.

[cer] So you’re making an RSA key for an SSL certificate. What

key size do you use? https://certsimple.com/blog/

measuring-ssl-rsa-keys.

[CHPP12] W.K. Chai, D. He, I. Psaras, and G. Pavlou. Cache “less for more” in

information-centric networks. Proc. International Conference on Re-

search in Networking, 2012.

[CK74] V. Cerf and R. Kahn. A Protocol for Packet Network Interconnection.

IEEE Trans. Commun., pages 637–648, 1974.

[CK03] Edith Cohen and Haim Kaplan. Proactive caching of DNS records:

addressing a performance bottleneck. Computer Networks, 41(6):707–

726, April 2003.

[Coh08] B. Cohen. The bittorrent protocol specification, 2008.

[CS05] S. Cheshire and D. Steinberg. Zero configuration networking: The

definitive guide. O’Reilly Media, Inc., 2005.

[DBGLA14] A. Dabirmoghaddam, M. M. Barijough, and J.J. Garcia-Luna-Aceves.

Understanding optimal caching and opportunistic caching at the edge of

information-centric networks. Proc. ACM Conference on Information-

Centric Networking (ICN), 2014.

100

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
https://certsimple.com/blog/measuring-ssl-rsa-keys
https://certsimple.com/blog/measuring-ssl-rsa-keys

[dig] The Slashdot Effect. http://en.wikipedia.org/wiki/Slashdot_

effect.

[DMM08] J. Day, I. Matta, and K. Mattar. Networking is IPC: a guiding principle

to a better internet. Proc. ACM CoNEXT, 2008.

[Dra03] R. Draves. Default Address Selection for Internet Protocol version 6

(IPv6). IETF Standards-Track RFC 6724, 2003.

[DVC+01] A. Dutta, F. Vakil, J. Chen, M. Tauil, S. Baba, N. Nakajima, and

H. Schulzrinne. Application layer mobility management scheme for

wireless internet. Proc. IEEE 3G Wireless, 2001.

[ea02] I. Stoica et al. Internet Indirection Infrastructure. Proc. ACM SIG-

COMM, 2002.

[ea04] H. Balakrishnan et. al. A Layered Naming Architecture for The Inter-

net. Proc. ACM SIGCOMM, pages 343–352, 2004.

[ea08] R. Moskowitz et. al. Host identity protocol. IETF Standards-Track

RFC 6724, 2008.

[ea10] J. Ubillos et al. Name-based sockets architecture. IETF Draft, 2010.

[ea11a] A. Ghodsi et. al. Intelligent Design Enables Architectural Evolution.

ACM HotNets, page 3, 2011.

[ea11b] T. Koponen et. al. Architecting for innovation. ACM SIGCOMM

Computer Communication Review, 41(3):24–36, 2011.

[ea12] E. Nordstrom et. al. Serval: An end-host stack for service-centric net-

working. Proc. 9th USENIX NSDI, 2012.

[ea13] D. Farinacci et. al. The locator/ID separation protocol (LISP). IETF

Standards-Track RFC 6830, 2013.

[Edd04] W.M. Eddy. At what layer does mobility belong? IEEE Communica-

tions Magazine, 42(10):155–159, 2004.

101

http://en.wikipedia.org/wiki/Slashdot_effect
http://en.wikipedia.org/wiki/Slashdot_effect

[ERB03] M. Eltoweissy, A. Rezgui, and A. Bouguettaya. Privacy on the web:

Facts, challenges, and solutions. IEEE Security and Privacy, 2003.

[et.03] J. Crowcroft et.al. Plutarch: an argument for network pluralism. ACM

FDNA ’03, 2003.

[expa] Evil or benign? ‘Trusted proxy’ draft debate rages on.

http://www.theregister.co.uk/2014/02/25/evil_or_benign_

trusted_proxy_draft_debate_rages_on.

[expb] Explicit trusted proxy in HTTP/2.0 or... not so much.

https://isc.sans.edu/forums/diary/Explicit+Trusted+Proxy+

in+HTTP20+ornot+so+much/17708/.

[expc] HackerNews discussion: explicit trusted proxy in HTTP/2.0. https:

//news.ycombinator.com/item?id=7296128.

[FLT+13] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi,

Teemu Koponen, Bruce M Maggs, K C Ng, Vyas Sekar, and Scott

Shenker. Less Pain, Most of the Gain: Incrementally Deployable ICN.

In Proceedings of SIGCOMM 2013, page 1. ACM, 2013.

[FNTP12] N Fotiou, P. Nikander, D Trossen, and G C Polyzos. Developing in-

formation networking further: From PSIRP to PURSUIT. Broadband

Communications, Networks, and Systems, pages 1–13, 2012.

[For07] B. Ford. Directions in Internet transport evolution. IETF Journal,

2007.

[For08] B. Ford. Breaking Up The Transport Logjam. Proc. ACM HotNets,

2008.

[FP] W. Ford and Y. Poeluev. An efficient certificate format

for ECC. http://csrc.nist.gov/groups/ST/ecc-workshop-2015/

presentations/session2-ford-warwick.pdf.

102

http://www.theregister.co.uk/2014/02/25/evil_or_benign_trusted_proxy_draft_debate_rages_on
http://www.theregister.co.uk/2014/02/25/evil_or_benign_trusted_proxy_draft_debate_rages_on
https://isc.sans.edu/forums/diary/Explicit+Trusted+Proxy+in+HTTP20+ornot+so+much/17708/
https://isc.sans.edu/forums/diary/Explicit+Trusted+Proxy+in+HTTP20+ornot+so+much/17708/
https://news.ycombinator.com/item?id=7296128
https://news.ycombinator.com/item?id=7296128
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/presentations/session2-ford-warwick.pdf
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/presentations/session2-ford-warwick.pdf

[FRH+11] Alan Ford, Costin Raiciu, Mark Handley, Sebastien Barre, and Janard-

han Iyengar. Architectural guidelines for multipath tcp development.

RFC6182 (March 2011), www. ietf. ort/rfc/6182, 2011.

[FYT97] D. Funato, K. Yasuda, and H. Tokuda. TCP-R: TCP mobility support

for continuous operation. Proc. International Conference on Network

Protocols, pages 229–236, 1997.

[FZ08] S. Freire and A. Zúquete. A tcp-layer name service for tcp ports. Proc.

USENIX Annual Technical Conference, pages 275–280, 2008.

[GHJ+09] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,

D.A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible

data center network. In ACM SIGCOMM Computer Communication

Review, volume 39, pages 51–62. ACM, 2009.

[GKR+11] A Ghodsi, T Koponen, J Rajahalme, P Sarolahti, and S. Shenker. Nam-

ing in content-oriented architectures. Proc. ACM SIGCOMM Work-

shop on Information-Centric Networking, 2011.

[GSK+11] Ali Ghodsi, Scott Shenker, Teemu Koponen, Ankit Singla, Barath

Raghavan, and James Wilcox. Information-centric networking: see-

ing the forest for the trees. In Proceedings of the 10th ACM Workshop

on Hot Topics in Networks, page 1. ACM, 2011.

[GTW16] C. Ghali, G. Tsudik, and C.A. Wood. (the futility of) data privacy in

content-centric networking. Proc ACM CCS Workshop on Privacy in

the Electronic Society, 2016.

[GVK14] Z. Gao, A. Venkataramani, and J.F. Kurose. Towards a quantitative

comparison of location-independent network architectures. In ACM

SIGCOMM Computer Communication Review, 2014.

[Ham] J. Hamilton. The Cost of Latency. http://perspectives.mvdirona.

com/2009/10/the-cost-of-latency/.

103

http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/
http://perspectives.mvdirona.com/2009/10/the-cost-of-latency/

[Han12] D. et al. Han. XIA: Efficient Support for Evolvable Internetworking.

Proc. USENIX NSDI, 2012.

[HF10] S. HomChaudhuri and M. Foschiano. Cisco Systems’ private VLANs:

scalable security in a multi-client environment, 2010.

[htta] HTTPS everywhere. https://www.eff.org/https-everywhere.

[httb] The HTTP Archive. http://httparchive.org.

[ian] Service name and transport protocol port number reg-

istry. http://www.iana.org/assignments/service-names-port-

numbers/service-names-port-numbers.xhtml.

[IMA10] V. Ishakian, I. Matta, and J. Akinwumi. On the cost of supporting

mobility and multihoming. Proc. GLOBECOM Workshops, 2010.

[ipv] Ipv6 celebrates its 20th birthday by reaching 10 percent de-

ployment. http://arstechnica.com/business/2016/01/

ipv6-celebrates-its-20th-birthday-by-reaching-10-percent-deployment/.

[JSBM02] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS Performance and

the Effectiveness of Caching. IEEE/ACM Transactions on Networking,

10(5):589–603, 2002.

[JST+09] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs,

and R.L. Braynard. Networking named content. Proceedings of the

5th international conference on Emerging networking experiments and

technologies, pages 1–12, 2009.

[KCC+07] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolin-

skiy, Kye Hyun Kim, Scott Shenker, and Ion Stoica. A data-oriented

(and beyond) network architecture. In ACM SIGCOMM Computer

Communication Review, 2007.

[KFV+12] K Katsaros, N Fotiou, X Vasilakos, C Ververidis, C Tsilopoulos,

G Xylomenos, and G Polyzos. On inter-domain name resolution for

104

https://www.eff.org/https-everywhere
http://httparchive.org
http://arstechnica.com/business/2016/01/ipv6-celebrates-its-20th-birthday-by-reaching-10-percent-deployment/
http://arstechnica.com/business/2016/01/ipv6-celebrates-its-20th-birthday-by-reaching-10-percent-deployment/

information-centric networks. NETWORKING 2012, pages 13–26,

2012.

[KG08] B.Y.L. Kimura and H.C. Guardia. TIPS: wrapping the sockets API for

seamless IP mobility. Proc. ACM Symposium on Applied Computing,

2008.

[KHY12] D.M. Kline, L. He, and U. Yaylacicegi. User perceptions of security

technologies. Privacy Solutions and Security Frameworks in Informa-

tion Protection, 2012.

[KIUE00] M. Kunishi, M. Ishiyama, K. Uehara, and H. Esaki. LIN6: A new

approach to mobility support in IPv6. Proc. International Symposium

on Wireless Personal Multimedia Communications, 2000.

[KP04] J. Kristiansson and P. Parnes. Application-layer mobility support for

streaming real-time media. Proc. IEEE WCNC, 2004.

[KSB15] M. Komu, M. Sethi, and N. Beijar. A survey of identifier-locator split

addressing architectures. Computer Science Review, 2015.

[LCP+05] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and

comparison of peer-to-peer overlay network schemes. Communications

Surveys & Tutorials, IEEE, 7(2):72–93, 2005.

[LFH06] D. Le, X. Fu, and D. Hogrefe. A review of mobility support paradigms

for the internet. IEEE Communications Surveys & Tutorials, 8(1):38–

51, 2006.

[LMS+14] S. Loreto, J. Mattsson, R. Skog, H. Spaak, G. Gus, D. Druta, and

M. Hafeez. Explicit trusted proxy in HTTP/2.0. IETF Standards-

Track Internet-Draft, 2014.

[LR07] R. LaRose and N. Rifon. Promoting i-safety: effects of privacy warn-

ings and privacy seals on risk assessment and online privacy behavior.

Journal of Consumer Affairs, 2007.

105

[Mah14] M. et al. Mahalingam. VXLAN: A framework for overlaying virtualized

layer 2 networks over layer 3 networks. IETF Draft, 2014.

[MB98] D.A. Maltz and P. Bhagwat. MSOCKS: An architecture for transport

layer mobility. Proc. INFOCOM, pages 1037–1045, 1998.

[MCD+02] Z.M. Mao, C.D. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and

J. Wang. A precise and efficient evaluation of the proximity between

web clients and their local DNS servers. USENIX Annual Technical

Conference, pages 229–242, 2002.

[MWNG13] D. McGrew, D. Wing, Y. Nir, and P. Gladstone. TLS proxy server

extension. IETF Informational Internet-Draft, 2013.

[NB09] Erik Nordmark and Marcelo Bagnulo. Shim6: Level 3 multihoming

shim protocol for IPv6. IETF Standards-Track RFC 5533, 2009.

[NFL+14] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,

M. Munafò, K. Papagiannaki, and P. Steenkiste. The cost of the S in

HTTPS. Proc. ACM CoNEXT, 2014.

[NSV+15] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn,

D. López, K. Papagiannaki, P. Rodriguez, and P. Steenkiste. multi-

context TLS (mcTLS): Enabling secure in-network functionality in

TLS. Proc. ACM SIGCOMM, 2015.

[OMTT99] T. Okoshi, M. Mochizuki, Y. Tobe, and H. Tokuda. MobileSocket: To-

ward continuous operation for Java applications. Proc. IEEE ICCCN,

1999.

[ope] OpenSSL. https://www.openssl.org/.

[P. 02] P. Vixie et. al. Dynamic Updates in the Domain Name System. IETF

RFC 2136, March 2002.

106

https://www.openssl.org/

[PB15] D. Phoomikiattisak and S. Bhatti. Mobility as a first class function.

Proc. IEEE International Conference on Wireless and Mobile Comput-

ing, Networking and Communications, 2015.

[Peo12] R. Peon. Explicit proxies for HTTP/2.0. IETF Informational Internet-

Draft, 2012.

[Per97] C. Perkins. Mobile IP. IEEE Communications Magazine, 35(5):84–99,

1997.

[PGS10] L Popa, A Ghodsi, and I Stoica. HTTP as the Narrow Waist of the

Future Internet. Proc. ACM SIGCOMM Workshop on Hot Topics in

Networks, 2010.

[pin] Pingman: What’s normal for latency?

https://www.pingman.com/kb/article/what-s-normal-for-latency-

and-packet-loss-42.html.

[PJ96] C. Perkins and D.B. Johnson. Mobility support in IPv6. Proc. 2nd

International Conference on Mobile Computing and Networking, pages

27–37, 1996.

[PPKC06] S. Pack, K. Park, T. Kwon, and Y. Choi. SAMP: scalable application-

layer mobility protocol. IEEE Communications Magazine, 44(6):86–92,

2006.

[PSS04] E. Perera, V. Sivaraman, and A. Seneviratne. Survey on network mo-

bility support. Proc. ACM SIGMOBILE, 2004.

[PV11] Diego Perino and Matteo Varvello. A reality check for content centric

networking. Proc. ACM SIGCOMM Workshop on Information-Centric

Networking, 2011.

[RCC+11] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan. Tcp

fast open. Proc. Conference on Emerging Networking Experiments and

Technologies (CONEXT), 2011.

107

[Rip01] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network.

Proc. International Conference on Peer-to-Peer Computing, pages 99–

100, 2001.

[RL16] J. Reschke and S. Loreto. ’Out-Of-Band’ content coding for HTTP.

IETF Standards Track Internet-Draft, 2016.

[RLC05] N. Rifon, R. LaRose, and S. Choi. Your privacy is sealed: Effects of web

privacy seals on trust and personal disclosures. Journal of Consumer

Affairs, 2005.

[RPB+12] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,

O. Bonaventure, and M. Handley. How hard can it be? designing

and implementing a deployable multipath TCP. Proc. USENIX NSDI,

pages 29–29, 2012.

[RS04] V. Ramasubramanian and E.G. Sirer. The design and implementation

of a next generation name service for the Internet. ACM SIGCOMM

Computer Communication Review, 34(4):331–342, 2004.

[rsa] RSA laboratories: What key size should be used? http://www.emc.

com/emc-plus/rsa-labs/standards-initiatives/key-size.htm.

[RT78] D. Ritchie and K. Thompson. The unix time-sharing system. The Bell

Systems Technical Journal, 1978.

[Sal93] J. Saltzer. On The Naming and Binding of Network Destinations. RFC

1498, August 1993.

[SB00] A.C. Snoeren and H. Balakrishnan. An end-to-end approach to host

mobility. Proc. 6th International Conference on Mobile Computing and

Networking, pages 155–166, 2000.

[SCFJ03] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a

transport protocol for real-time applications. RFC 3550, July 2003.

108

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/key-size.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/key-size.htm

[SGLA15] S. Sevilla and J.J. Garcia-Luna-Aceves. freeing the IP internet archi-

tecture from fixed IP addresses. Proc. IEEE International Conference

on Network Protocols, 2015.

[Sho78] J. Shoch. Inter-Network Naming, Addressing, and Routing. 17th IEEE

Computer Society Conference (COMPCON 78), 1978.

[SLPR15] J. Sherry, C. Lan, R. Popa, and S. Ratnasamy. Blindbox: Deep packet

inspection over encrypted traffic. Proc. ACM SIGCOMM, 2015.

[SMGLA13] S. Sevilla, P. Mahadevan, and J.J. Garcia-Luna-Aceves. FERN: A

unifying framework for name resolution across heterogeneous architec-

tures. Proc. IFIP NETWORKING, 2013.

[SMMC04] D. Saha, A. Mukherjee, I.S. Misra, and M. Chakraborty. Mobility

support in IP: a survey of related protocols. IEEE Network, 18(6):34–

40, 2004.

[Sri11] M. et al. Sridharan. NVGRE: Network virtualization using generic

routing encapsulation. IETF Draft, 2011.

[SSII02] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory TCP: Highly

available internet services using connection migration. Proc. Inter-

national Conference on Distributed Computing Systems, pages 17–26,

2002.

[sta] How big an RSA key is considered secure today?

http://crypto.stackexchange.com/questions/1978/

how-big-an-rsa-key-is-considered-secure-today.

[STA01] Anees Shaikh, Renu Tewari, and Mukesh Agrawal. On the effectiveness

of dns-based server selection. In INFOCOM 2001. Twentieth Annual

Joint Conference of the IEEE Computer and Communications Soci-

eties. Proceedings. IEEE, volume 3, pages 1801–1810. IEEE, 2001.

109

http://crypto.stackexchange.com/questions/1978/how-big-an-rsa-key-is-considered-secure-today
http://crypto.stackexchange.com/questions/1978/how-big-an-rsa-key-is-considered-secure-today

[STU+14] A. Sharma, X. Tie, H. Uppal, A. Venkataramani, D. Westbrook, and

A. Yadav. A global name service for a highly mobile internetwork.

Proc. ACM SIGCOMM, 2014.

[SW00] H. Schulzrinne and E. Wedlund. Application-layer mobility using SIP.

Mobile Computing and Communications Review, 4(3):47–57, 2000.

[TBD+11] J. Touch, I. Baldine, R. Dutta, G.G. Finn, and B. Ford. A dynamic

recursive unified internet design (DRUID). Computer Networks, 2011.

[TEH16a] M. Thomson, G. Eriksson, and C. Holmberg. An architecture for secure

content delegation using HTTP. IETF Standards Track Internet-Draft,

2016.

[TEH16b] M. Thomson, G. Eriksson, and C. Holmberg. Caching secure HTTP

content using blind caches. IETF Standards Track Internet-Draft, 2016.

[TGDM11] E. Trouva, E. Grasa, J. Day, and I. Matta. Transport over heteroge-

neous networks using the RINA architecture. Wired/Wireless Internet

Communications, 6649(Chapter 25):297–308, 2011.

[Tho16] M. Thomson. Encrypted content-encoding for HTTP. IETF Standards

Track Internet-Draft, 2016.

[TP08] J.D. Touch and V.K. Pingali. The RNA metaprotocol. Proc. Interna-

tional Conference on Computer Communications and Networks, pages

1–6, 2008.

[TZY01] C.W. Turner, M. Zavod, and W. Yurcik. Factors that affect the per-

ception of security and privacy of e-commerce web sites. International

Conference on Electronic Commerce Research, 2001.

[VBZ+12] T. Vu, A. Baid, Y. Zhang, T. Nguyen, J. Fukuyama, R. Martin, and

D. Raychaudhuri. Dmap: A shared hosting scheme for dynamic iden-

tifier to locator mappings in the global internet. Proc. IEEE ICDCS,

2012.

110

[ver] IP latency statistics. http://www.verizonenterprise.com/about/network/latency/.

[Wat81] R.W. Watson. Identifiers (Naming) in Distributed Systems. Distributed

Systems–Architecture and Implementation (LCN 105), Chapter 9:191–

210, 1981.

[WB13] S. Weiler and D. Blacka. RFC 6840: Clarifications and Implementation

Notes for DNS Security (DNSSEC). IETF Standard, 2013.

[WS99] E. Wedlund and H. Schulzrinne. Mobility support using SIP. Proc.

ACM WoWMoM, 1999.

[XVT+12] G Xylomenos, X Vasilakos, C Tsilopoulos, V A Siris, and G C Polyzos.

Caching and mobility support in a publish-subscribe internet architec-

ture. Communications Magazine, IEEE, 50(7):52–58, 2012.

[XY13] X. Xu and L. Yong. NVGRE and VXLAN encapsulation extension for

L3 overlay. IETF Draft, 2013.

[ZM02] V. Zandy and B. Miller. Reliable network connections. Proc. ACM

MOBICOM, 2002.

111

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Related Work
	Names, Addresses, and Routes
	Future Internet Architectures
	Internet Mobility and Multihoming
	Host-Identifier Approaches
	Host-Locator Approaches
	Combined Approaches
	Independent Host Namespaces

	Information Centric Networking
	Web Content Delivery and Caching

	The Design of Hidden Identifiers
	Open and Hidden Identifiers
	Open Identifiers
	Hidden Identifiers

	The Arguments For Opacity
	Identifiers, Locators, and Translation
	File Descriptors and Opacity
	Identifiers at Intermediate Systems
	Identifiers at End Systems

	Hidden Identifier Acquisition and Semantic Binding
	Semantic Bindings at Applications
	Peripheral Resolution Functions

	Servers and Listening Applications
	Hidden Identifiers in the Network Stack
	Hidden Identifier Multiplexing
	Demultiplexing and Scoping
	Connection-Oriented Protocols

	Conclusion

	HIDRA: A Network Architecture Based on Hidden Identifiers
	HIDRA Network Protocol Stack
	HID, TID, and NID Semantics
	Connecting, Sending, and Receiving Messages
	Transport-Layer Changes

	Application-Layer Interface
	Existing Semantic Bindings
	Future Semantic Mappings

	HIDRA Control Processes
	Basic Table Interface
	Mechanism and Policy

	Evaluation And Case Studies
	Data-Plane Address and Host Multiplexing
	Adapting Non-HIDRA Applications
	Legacy Application Support
	Multiplexing Overhead

	Conclusion

	DIME: Lightweight and Deployable Mobility at End Hosts
	Protocol Challenges and Requirements
	The Internet Host Mobility Protocol
	End-To-End Host Identification
	IHMP Hello Exchange
	Backpath Probing
	Address Up and Down Events
	Handoffs
	Control-Plane Security
	Out of Band Signaling

	Additional Considerations and Edge-Cases
	Simultaneous Mobility
	Mistaken Identities
	Micro Mobility
	NAT Detection and Traversal

	Implementation and Evaluation
	Deployment and Configuration
	Handoff Latency
	Data Plane Throughput
	Multipath Link Bundling
	Connections, Hosts, and Scalability
	Control Message Analysis
	Lines of Code
	Featureset Comparison

	Conclusion

	iDNS: Supporting Information Centric Networking Through the DNS
	Goals, Assumptions, and Architecture
	The Information-Centric Name Resolver
	The DNS Lookup and HTTP Data Plane
	Layered Mobility Signaling

	iDNS and the Content Record
	Object and Record Security
	Address Record Selection

	Content Replication
	Long-Lived Content Replication
	Content Caching

	Comparing iDNS to Prior ICN Proposals
	Location-Independent Persistent Naming
	Efficient Content Distribution
	Object Level Security Model
	Mobility And Disruption
	Differences With Prior ICN Work

	Analysis of Scalability
	Scalability of the Authoritative DNS
	Scalability at the Local DNS Server

	Experimental Deployment
	Name Format Translation
	Latency Results

	Conclusion

	GroupSec: A New Security Model for the Web
	Content Group Security
	Asymmetric Privacy Model
	HTTP-Centric Security
	Middleboxes and Trust

	HTTP-GroupSec
	Object Encryption and Decryption
	URL Hashing
	Hostname Stripping
	Transparent Caching
	Cross-Domain Linking

	Threat Model Analysis
	Unauthorized File Access
	Client Requests
	Content Spoofing
	Cache Poisoning

	Performance Evaluation
	Sustainable Load
	Latency

	Conclusion

	Conclusion
	References

