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Increased tumor glycolysis is
associated with decreased
immune infiltration across
human solid tumors
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Response to immunotherapy across multiple cancer types is approximately

25%, with some tumor types showing increased response rates compared to

others (i.e. response rates in melanoma and non-small cell lung cancer

(NSCLC) are typically 30-60%). Patients whose tumors are resistant to

immunotherapy often lack high levels of pre-existing inflammation in the

tumor microenvironment. Increased tumor glycolysis, acting through

glucose deprivation and lactic acid accumulation, has been shown to have

pleiotropic immune suppressive effects using in-vitro and in-vivo models of

disease. To determine whether the immune suppressive effect of tumor

glycolysis is observed across human solid tumors, we analyzed glycolytic and

immune gene expression patterns inmultiple solid malignancies. We found that

increased expression of a glycolytic signature was associated with decreased

immune infiltration and a more aggressive disease across multiple tumor types.

Radiologic and pathologic analysis of untreated estrogen receptor (ER)-

negative breast cancers corroborated these observations, and demonstrated

that protein expression of glycolytic enzymes correlates positively with glucose

uptake and negatively with infiltration of CD3+ and CD8+ lymphocytes. This

study reveals an inverse relationship between tumor glycolysis and immune

infiltration in a large cohort of multiple solid tumor types.

KEYWORDS

tumor metabolism, immunotherapy, tumor microenvironment, solid tumors,
glycolysis, immune infiltration
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Introduction

Immune checkpoint blockade (ICB) with PD1/PDL1-, or

CTLA4-blocking antibodies has shown encouraging results,

either as monotherapy or in combination with other

checkpoint inhibitors or with standard chemotherapies (1, 2).

As a monotherapy, some of the best responses were observed in

melanoma (objective response rate (ORR) of 45%) (3), PDL1-

positive non-small cell lung cancer (NSCLC; ORR 45%) (4–6)

and multiple Mismatch-Repair deficient (MMRd) tumor types

(ORR of 40-53%) (7–9). The combination of anti-PD1 and anti-

CTLA-4 therapies has also shown excellent responses with an

ORR in the 40-60% range and long duration of these responses

(3, 10–12). ICB also generates improved responses in

combination with standard chemotherapies, most notably in

lung and breast cancer, with a ~40% increase in 2-year overall

survival rates in the immunotherapy-containing arm vs. the

chemotherapy-only arm in multiple clinical trials (13–20).

Further, multiple studies have recently shown the benefits of

neoadjuvant or adjuvant ICB in multiple tumor types (21–27).

Since the initial FDA approval of immunotherapy for melanoma

and lung cancers, immunotherapies have been cleared by the

FDA for various additional tumor types, including head and

neck, renal, hepatocellular, colorectal, urothelial, gastric,

cervical, breast and Merkel cell carcinomas (28). Moreover, the

use of pembrolizumab was recently approved by the FDA in

Microsatellite Instability-high (MSI-h) patients, irrespective of

the tumor type (29). Although highly encouraging, the majority

of patients treated with immunotherapy still fail to respond. This

lack of response is likely due in part to the hostile tumor

microenvironment (TME) found in solid tumors and its effect

on immune infiltrating cells (30).

The Warburg effect describes the preferential utilization of

glycolysis in tumor cells even in the presence of oxygen (31).

Signaling via different oncogenic pathways has been shown to

result in increased expression of glycolytic genes with an ensuing

increase in glycolytic rates and cell proliferation. Signaling via

MYC results in the upregulation of various glycolytic genes, such

as LDHA (32); signaling via AKT and BRAF leads to increased

glucose uptake in tumor cells (33, 34); and TP53 inactivation

results in increased glycolysis (35). This results in a metabolic

tumor microenvironment (mTME) characterized by glucose

depletion, lactic acid accumulation and an acidic pH, among

other metabolic changes (36–38). Lactic acid is a highly

immune-suppressive metabolite that can directly affect many

steps involved in mounting a successful anti-tumor immune

response (39). Independent studies using mouse models of

breast cancer and melanoma have shown that depletion of

lactate dehydrogenase A (LDHA) from tumor cells led to a

dramatic increase in tumor-infiltrating T-cells and NK cells (40,

41). In addition, activated CD4+ and CD8+ T cells are highly

dependent on glucose (38, 42), whereas regulatory T cells (Tregs)
Frontiers in Immunology 02
can function effectively in low glucose, high lactate

microenvironments. In fact, Tregs have been shown to

metabolize lactic acid to fuel their proliferation and support

their immune suppressive capacity (43, 44), and inhibition of

tumor glycolysis was shown to lead to Treg functional

destabilization and increased efficacy of ICB in mouse models

of breast cancer and melanoma (45).

Given that one of the best predictors for response to

immunotherapy is pre-existing inflammation within tumors

(46), we focused on understanding a potential mechanism of

immune exclusion that may be important to improve the

response to ICB. We hypothesized that increased tumor

glycolysis would be associated with decreased immune

infiltration across a variety of non-hematologic solid tumor

types. Using gene expression profiles from The Cancer

Genome Atlas (TCGA) and other independent datasets, we

found that increased tumor glycolysis was associated with

decreased immune infiltration across multiple cancer types.

Our findings may help define not only a subset of patients

where ICB is unlikely to be effective, but may also reveal new

strategies for the combination of ICB and treatments targeting

tumor cell metabolism.
Materials and methods

Data processing

Gene expression (RNA) data was downloaded from the

National Cancer Institute Genomic Data Commons (NCI

GDC) Pan Cancer Atlas Publications website (https://gdc.

cancer.gov/about-data/publications/pancanatlas) (47). Clinical

data was downloaded from the TCGA-Clinical Data Resource

(CDR) Outcome site. We focused our analysis on non-

hematologic solid tumor types, and excluded Acute Myeloid

Leukemia (LAML), Thymoma (THYM) and Diffuse Large B Cell

Lymphoma (DLBC) (n = 30 solid tumor types). Primary and

Metastatic tumor samples were included in our study (TCGA

Barcode Sample Type Codes 01 and 06). The expression values

from the NCI GDC were transformed into log base 2 values.

Gene expression data from the METABRIC (48) study was

downloaded from the cBioPortal (https://www.cbioportal.org/

datasets) (49); data from GSE65904 (melanoma) and

GSE119267 (lung adenocarcinoma) was downloaded from the

National Center for Biotechnology Information Gene

Expression Omnibus (NCBI GEO). Expression values from

GSE65904 were transformed into log base 2 values unless

otherwise noted.

EGFR, KRAS and BRAF mutation status were obtained from

the cBioPortal for each indicated tumor type. For LUAD, we

selected cases with either EGFR L858R mutations or KRAS

G12C/V/D/A/S. For SKCM, we selected cases with BRAF
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V600E mutations. For BRCA, increased androgen receptor (AR)

expression cases were counted if they exhibited either (i) high-

level amplification of the AR region or (ii) AR mRNA expression

>2 standard deviations from the mean relative to all other

BRCA cases.

Protein abundance data [as measured by mass spectrometry

by the Clinical Proteomics Tumor Analysis Consortium

(CPTAC)] for 875 tumor samples across seven cancer types

(breast, lung, ovarian, pancreatic, endometrial, brain and colon

cancer) was downloaded from the cBioPortal. The Z-score

transformed protein abundance values were downloaded and

used as is in this study. The GSE140343 lung adenocarcinoma

(LUAD) proteomics and clinical data (n=103) was downloaded

from Xu, et al. (50) and used as is (only tumor samples were

analyzed in our study, not the matching normal tissue samples).

Metabolite abundance data was downloaded from Tang et al.

(51) and used as is. ssGSEA T-cell estimates were calculated as

above and the relationships between Glucose or Lactate, and

different ssGSEA T-cell estimates were plotted.
Glycolysis and immune signatures

To determine the expression of the glycolysis-related

fluorodeoxyglucose (FDG) uptake signature (52), we calculated

the Weighted Mean of the genes in this signature for each sample

according to the weights in Palaskas, et al. (FDGScore =

weightedMean(gene.symbols, gene.weights, na.rm = T) (Supp

Table S1). This was performed using the log base 2 transformed

expression values for each dataset. For genes with more than one

probe, the weights of each probe were added as in Supp Table S1.

To estimate the abundance of T-cell subsets, the single-sample

GSEA (ssGSEA) method described by Şenbabaoğlu, et al. was

followed [gsva(expression.data, list.of.immune.pathways,

method=“ssgsea”)] (53). The expression values without log base

2 were used to estimate immune-cell proportions with ssGSEA. To

calculate the enrichment of the 50 Hallmark gene sets from the

Molecular Signatures Database (MSigDB) (54), ssGSEA values

were calculated as described above for the estimation of T-cell

subset abundance, but using the Hallmark gene sets.

To determine the relationships between our signatures

(FDGScore, Hallmarks_Glycolysis, and multiple ssGSEA-based

T-cell estimates) and clinical parameters (Tumor Stage, Patient

Age at Diagnosis, Patient Gender) we used multiple statistical

tests. To study the association of our signatures and Tumor

Stage, we performed linear regression between our signatures

and Tumor Stage, where Tumor Stage was defined numerically

from 1 to 4 (Stage I to IV) for TCGA and METABRIC, and

defined numerically from 1 to 3 (Primary Tumor, Regional

Metastasis, Distant Metastasis) for GSE65904, and we reported

the resulting Beta Coefficient (B) and p-value. To study the

association of our signatures and Patient Age at Diagnosis (Age),

we calculated the Spearman correlation coefficient (rho, r)
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between our signatures and Age, and we reported the rho and

p-value. To study the association between our signatures and

Patient Gender, we performed a two-sided t-test between our

signatures and Gender, and we reported the male/female

expression percentage and p-value.
Survival analysis

To perform survival analysis on the publicly available datasets

(TCGA, METABRIC, GSE65904), patients were stratified into

tertiles based on the expression of the different gene signatures

(FDGScore, CD8 TCells) in the tumors. For FDGScore, the log base

2 expression values were used; for CD8 T cells, the raw ssGSEA

output was used without any transformation.

The overall survival between patients in the top tertile (“high”)

vs. those in the bottom tertile (“low”) was compared using Cox

Proportional Hazards Regression analysis with a cutoff of 4,000 days

for TCGA and 10 years for METABRIC and GSE65904. Both

univariate and multivariate analyses were performed for each gene

signature (FDGScore, Hallmarks_Glycolysis, CD8 T cells) and for

other available covariates, depending on the study (Age, Gender,

Stage, Prior therapies).

For TCGA, the TCGA-Clinical Data Resource (CDR)

Outcome file (https://gdc.cancer.gov/about-data/publications/

pancanatlas) was used, as per TCGA recommendations (55).

To perform survival analysis on the MSKCC cohort of 49

patients with ER-negative breast cancer, patients were stratified

into tertiles based on their expression of LDHA and CD8 by IHC

staining. Patients were stratified into the highest LDHA

expression tertiles (LDHA H-Score > 180, “LDHA.High”), the

highest Mean Glycolysis H Score tertile (Mean Glycolysis H

Score > 180, “Gly.High”), the highest CD8 expression tertile

(Stromal CD8+ % > 20, “CD8.High”), and patients which were

not in either of the above top tertiles. The recurrence free

survival (RFS) was compared between patients in the Gly.High

group vs. non-Gly.High and between CD8.High group vs. non-

CD8.High in this cohort using Cox Proportional Hazards

Regression and Kaplan-Meier analysis. Data cutoff date for

tumor recurrence was November 2 2018.
Cases

Following institutional review board (IRB) approval (Protocol

# 17-236A), cases were retrieved from the Pathology archives of

Memorial Sloan Kettering Cancer Center (MSKCC). Patient

consents were obtained as described in the protocol, and 49 ER-

negative primary breast cancers were reviewed by a pathologist

(FP) and classified according to the definitions of the World

Health Organization (56). Tumors were graded according to the

Nottingham grading system (57). ER and HER2 status were

retrieved from the electronic medical records at our institution,
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and the extent of stromal tumor-infiltrating lymphocytes (sTILs)

was evaluated following the recommendation put forward by the

International TILs Working Group 2016 (58).
Immunohistochemistry

Representative formalin-fixed paraffin-embedded whole

tissue sections from the 49 ER-negative primary breast cancers

were subjected to immunohistochemistry as previously

described in the MSKCC Department of Pathology

Immunohistochemistry Core Laboratory (59, 60). In brief,

sections were incubated for 30 min with the anti-CD3

antibody (Leica Biosystems, Clone LN10) at a 1:200 dilution,

anti-CD8 antibody (Dako Omnis, Clone C8/144B) at a 1:100

dilution, anti-LDHA antibody (Cell Signaling, Clone

C4B5; #3582) at a 1:300 dilution, or anti-GLUT1 (Polyclonal

from AbCam) antibody at a 1:400 dilution. All antibody

incubations were followed by a 30 min ER2 pre-treatment

(Bond) on a Leica Bond RX platform, followed by Bond

Poymer Refine Detection (Leica Biosystems; #DS9800).

Immunohistohemical expression of LDHA and GLUT1 was

assessed using the H-score, a semi-quantitative approach based

on the sum of individual scores for each intensity (0, negative; 1+,

weak; 2+, moderate; 3+, strong) and the percentage of tumor cells

displaying a particular expression intensity. The final score is

computed with the formula: [1x(%cells 1+) +2 x(%cells 2+) +3x

(% cells 3+)] and ranges from 0 to 300. We also computed a

composite score of both markers by simply averaging the H-score

for GLUT1 and LDHA (Mean Glycolysis H-score).

Immunohistochemical assessment of CD3 and CD8

expression in TILs was recorded as the % of stromal TILs

displaying immunoreactivity for these markers. All analyses

were performed with observers blinded to the clinical and

radiologic features of the cases.
Imaging

Eighteen of the 49 patients in the MSKCC cohort underwent

FDG-PET imaging. The patients ranged in age from 25 – 71 years,

and were injected with an average of 431 ± 49 MBq of FDG and

imaged at an average of 68 ± 18 min PI on various GE discovery

PET scanners (LS,STE, 690, 710) mid-skull to mid-thigh.

Volumetric Regions of Interest (VOIs) were drawn on FDG-

PET images over the breast lesion of interest. For each lesion VOI,

the maximum and peak standardized uptake values (SUVmax and

SUVpeak, respectively) were calculated. The standardized uptake

value (SUV) is defined as the tracer uptake in a region divided by

the injected activity and patient weight.

SUVmax hottest voxel within a defined VOI and SUVpeak is

calculated by averaging the SUV for all the pixels within a 1 cc
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sphere containing the lesion VOI such that this average is the

largest of all possible such spheres. Both SUV metrics are used to

assess the most metabolically active region of a tumor.
Results

Inverse correlation between the
expression of glycolysis-related genes
and immune genes across multiple solid
tumor types

Typical response rates to ICB in solid tumor types outside

of melanoma, PDL1-positive NSCLC and MMR-deficient

tumors is ~5-20% (61–64). Thus, we sought to determine

whether increased tumor glycolysis may be associated with

decreased immune infiltration. If true, this may (i) allow the

identification of patients who may be resistant to ICB; and (ii)

reveal tumor glycolysis as a potential target for combination

therapies with ICB (44, 45). To initially determine how

expression of glycolysis-related genes correlated with tumor

immune infiltration, we created a minimal selection of

glycolysis genes (one for each of the 10 steps of glycolysis,

plus the glucose transporter GLUT1 (SLC2A1), lactate

dehydrogenase A (LDHA) and the lactate transporters

SLC16A1 and SLC16A3) and immune genes (consisting of

the ‘identity’ genes CD3, CD4, CD8 and the cytotoxicity

genes Granzyme A (GZMA) and Perforin 1 (PRF1)). This list

included glycolysis rate-limiting genes such as HK2, PFKP and

PKM2 (65, 66). We then performed a preliminary analysis of

the expression patterns of these genes in the 30 non-

hematologic solid tumor types in the Pan Cancer TCGA

cohort (n=9,875). We observed robust co-expression within

the glycolysis and immune gene subsets, but minimal inverse

correlations between the glycolysis and immune genes, with the

strongest negative correlation observed between GPI and CD4:

r = -0.08, p = 2.16e-15) (Supp Figures S1A, B).

When divided into individual cancer types and subtypes,

however, there were strong inverse correlation patterns between

specific glycolysis and immune genes, especially in the Basal and

Her2 subtypes of breast cancer (BRCA) (with the strongest

negative correlations occurring between SLC2A1 and CD8A:

r = -0.32, p = 1.72e-7), skin cutaneous melanoma (SKCM)

(SLC16A1 vs. CD3E: r = -0.42, p = 9.83e-22), and lung

adenocarcinoma (LUAD) (TPI1 vs. CD4: r = -0.22, p = 4.66e-7)

(Figure 1A; Supp Figure S1B). We sought to validate these

findings in independent datasets, including the METABRIC

breast cancer cohort (23); the GSE65904 dataset [comprised of

214 melanoma samples (67)], and a cohort of 155 LUAD samples

(GSE119267) for which gene expression profiles were publicly

available (68). We observed similar expression patterns in these

datasets, wherein some glycolytic genes showed strong and
frontiersin.org
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significant inverse correlations with specific immune genes in

specific tumor types (with the strongest negative correlations

occurring in ER-negative breast cancer from METABRIC: TPI1 vs.

CD3E: r = -0.44, p = 2.39e-22; GSE65904Melanoma: LDHA vs.CD3E: r

= -0.43, p = 6.03e-11; GSE119267 LUAD: ENO1 vs.CD8A: r = -0.43, p =

2.57e-8) (Figure 1B; Supp Figures S1A, B). Additionally, the expression

of the glycolysis rate-limiting genes HK2, PFKP and PKM2 showed

expression patterns similar to non-rate-limiting genes in the Pan

Cancer TCGA cohort. The correlation between the rate-limiting

genes HK2 vs. CD4 was r = -0.03, p = 0.01; PFKP vs. CD4: r = 0.05,

p = 3.43e-6; PKM2 vs. CD4: r = 0.09, p = 6.14e-21). Similarly, the

correlation between specific non-rate limiting glycolysis genes was

GAPDH vs. CD4: r = 0.005, p = 0.61, ALDOA vs. CD4: r = -0.02, p =

0.02 (Supp Figure S1A).

We then delved deeper into the molecular subtypes of breast

cancer, lung adenocarcinoma and melanoma. We found that in

contrast to breast cancer samples from the ER-negative and
Frontiers in Immunology 05
Basal/Her2 subtypes, samples from the ER-positive/LumA-

LumB subtypes showed weaker negative correlations (TCGA BRCA

LumA/LumB:ALDOA vs.CD8A: r = -0.22, p = 2.0e-9;METABRIC ER-

positive: ALDOA vs. CD3E: r = -0.24, p = 1.24e-20) (Supp Figures

S1A, B). Additionally, a cohort of breast cancer patients with increased

expression of the androgen receptor gene (AR) showed a paucity of

statistically significant negative correlations between glycolysis and

immune genes (Supp Figure S2A). Within the SKCM cohort, we

found that tumors with a BRAF V600E mutation lost the strong

negative correlations observed in the BRAF WT cohort between

multiple glycolytic genes and immune genes, with the exception of

LDHA and SLC16A1 (strongest negative correlation between SLC16A1

vs.CD3E: r = -0.34, p = 9.68e-6) (Supp Figure S2B). Similar results were

observed in LUAD tumors with either EGFR L858R or KRAS G12

mutations, wherein a significant portion of the negative associations

between glycolysis and immune genes lost statistical significance (no

significant negative correlations observed in the EGFR L858R cohort;
A

B

C

FIGURE 1

The expression of glycolysis- and immune-related genes is negatively correlated across multiple solid tumor types. (A, B) The correlation
between expression of selected glycolysis and immune genes was plotted for individual tumor types in the TCGA dataset (A) Basal/Her2 Breast
Cancer (BRCA), Skin Cutaneous Melanoma (SKCM), Lung Adenocarcinoma (LUAD), and in the independent datasets (B) ER-negative METABRIC,
GSE65904 Melanoma, GSE119267 LUAD). (C) The correlation between protein abundance of specific glycolysis and immune proteins was
plotted for specific tumor types in the CPTAC cohort (BRCA, LUAD) and the GSE140343 LUAD cohort. Red = positive correlation; blue =
negative correlation. The size and intensity of the circles are proportional to the Pearson r coefficient. Pearson correlation coefficients that were
not statistically significant (p>0.05) are marked with an X.
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strongest negative correlation in the KRAS G12 cohort: TPI1 vs. CD4:

r = -0.018, p = 0.038) (Supp Figures S2C, D).

We performed similar analyses on available proteomics

datasets from (i) the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) (69–76) and (ii) a LUAD cohort of 103

tumor samples (GSE140343) (50). We again found strong

negative correlations in the protein abundance of specific

glycolysis and immune genes in the CPTAC BRCA (GAPDH

vs. CD3E: r = -0.58, p = 8.38e-8) and CPTAC LUAD (ALDOA vs.

CD3D: r = -0.26, p = 0.019) cohorts, and in the GSE140343

LUAD cohort (LDHA vs. PRF1: r = -0.41, p = 0.003) (Figure 1C).

We also found significant negative correlations in the PAAD

(ENO1 vs. CD3E: r = -0.46, p = 4.030e-7), UCEC (TPI1 vs. GZMB:

r = -0.31, p = 0.015), GBM (PFKP vs. CD3E: r = 0.50, p = 7.42e-3),

OVCA (GPI vs. CD4: r = -0.28, p = 9.69e-3) and LUSC (SLC2A1

vs. CD3E: r = -0.44, p = 2.52e-6) cohorts, but minimal negative

correlations in the CPTACCOAD (HK2 vs. CD8A: r = -0.35, p = 0.02)

cohort (Supp Figure S3A). Moreover, our analyses revealed a robust

negative correlation between LDHA protein abundance and the extent

of immune-cell and CD8+ T cell infiltration in the GSE140343 LUAD

proteomics cohort, where the negative associations between LDHAand

immune cell infiltration were stronger in the EGFR wildtype (WT)

cases compared to the EGFR mutant cases (Supp Figures S3B, C).

Thus, our preliminary analysis on both mRNA and protein datasets

(TCGA,METABRIC, GSE65904, GSE119267, CPTACBRCA, PAAD,

UCEC, GBM, OVCA, LUSC and GSE140343) suggest that increased

tumor glycolysis may lead to decreased immune infiltration across

multiple solid tumor types.
Increased expression of a glycolysis
signature is associated with depletion of
CD8+ T-cells in most solid tumor types

To quantify the expression patterns of glycolysis and immune

related genes, we applied a previously developed signature that

predicts fluorodeoxyglucose (FDG) uptake in patients and in cell

lines (52). This signature, referred to as FDGScore in our study, has

the advantage of having been developed by assessing FDG uptake

both in patients (ensuring clinical relevance) and cell lines in-vitro,

ensuring that the signature takes into account uptake and retention

of the radiotracer without confounding factors found in purely

clinical data sets, such as tumor size, heterogeneity, vessel quantity,

and radiotracer delivery. In addition, to estimate the proportion of

different immune cell types within tumors from TCGA as well as

other datasets, we implemented the single-sample GSEA (ssGSEA)

method (53, 77). This method has the advantage of (i) producing

near-Gaussian curves of the immune estimates; and (ii) ease of

implementation into independent datasets.

We first characterized the expression patterns of FDGScore

in our cohorts, and found that increased FDGScore expression

was significantly associated with Tumor Stage across the entire

Pan Cancer TCGA cohort (Regression Beta Coefficient (B) =
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0.16, p = 6.65e-42) and the METABRIC cohort (B = 0.29, p =

1.03e-95), but not in the GSE65904 Melanoma cohort (B = 0.05,

p = 0.398) (Supp Figures S4A–C). When analyzed in individual

tumor types, we found that 8/30 (27%) of tumor types showed a

statistically significant association between FDGScore and

Tumor Stage (Supp Table S2). Further, we observed minimal

differences in FDGScore expression with increasing Age or Male

vs. Female Gender, both at the PanCancer level and within

individual tumor types (Supp Figures S4A–C and Supp

Table S2).

We then sought to determine the correlation between the

estimate of the proportion of all the T-cell subsets (by the ssGSEA

method) and our FDG signature (FDGScore) across the entire TCGA

cohort (n=9,875). We found that FDGScore was most negatively

correlated with the CD8 T cell estimate (Pearson rho = -0.29, p <

1.42e-186) and the central memory T cell estimate (Tcm; r = -0.29

and p < 3.02e-192) (Figure 2A). When conducting the analyses in

individual tumor types we found that FDGScore was significantly

negatively correlated with the CD8 T cell estimate in 23/30 tumor

types tested (Pearson r range: -0.57 - -0.09). Similarly, FDGScore

was negatively correlated with the Tcm estimate across all cancer

types in a statistically significant manner with the exception of

CHOL (Pearson r range: -0.72 – 0.19) (Supp Table 3).

We then focused on BRCA, SKCM and LUAD and found that

they were among the top 10 tumor types with the strongest negative

correlations between FDGScore expression and the CD8 T cell

estimate (BRCA Basal/Her2: r = -0.42, p = 6.15e-12; SKCM: r = -0.39,

p = 1.21e-18; LUAD: r = -0.40, p < 2.36e-21) and the Tcm estimate

(BRCA Basal/Her2: r = -0.52, p = 6.35e-19; SKCM: r = -0.59, p =

3.96e-45; LUAD: r = -0.54, p < 1.75e-39) (Figures 2B–D and Supp

Table 3). These observations extended to our independent datasets,

with negative associations found between FDGScore and CD8 T

cells (METABRIC ER-negative: r = -0.42, p < 2.69e-20; GSE65904

(Melanoma): r = -0.34, p = 3.67e-7; GSE119267 (LUAD): r = -0.44,

p = 7.02e-09) and Tcm cells (METABRIC ER-negative: r = -0.26, p <

2.58e-8; GSE65904 (Melanoma): r = -0.30, p = 7.17e-6; GSE119267

(LUAD): r = -0.40, p = 2.13e-7) (Supp Figures S5A–C). Further, within

breast cancer subtypes, we found that the LumA/LumB subtype of

BRCA in TCGA, and the ER-positive subtype in METABRIC had

weaker negative correlations between FDGScore and immune cell

infiltration, although statistical significance was maintained (Supp

Figures S6A). These results support our hypothesis that increased

tumor glycolysis may create a microenvironment that is hostile to

infiltrating T-cells, especially CD8+ T-cells and Tcm cells.

We then sought to validate the findings obtained with the

FDGScore signature using a different glycolysis gene signature.

We chose to focus on the Molecular Signatures Database

“Hallmark” Gene Set Collection (54). From this collection of

50 “Hallmark” gene sets, we selected the “Glycolysis” gene set

and quantified its associations with FDGScore and the various

ssGSEA-derived T-cell estimates, as above. We observed a strong

positive correlation between HM_Glycolysis and FDGScore

across all tumor types we tested (Pearson r range = 0.40-0.78).
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(Supp Table 3). In accordance with our FDGScore-based

findings, we observed a robust negative correlation between

the Hallmark Glycolysis gene signature (referred to as

HM_Glycolysis in our study) and T cell estimates across

multiple solid tumor types. Across the entire TCGA cohort,

HM_Glycolysis was strongly negatively correlated with the CD8
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T cell estimate (Pearson r = -0.40, p < 2.2e-200) and the Tcm

estimate (r = -0.65, p = 4.18e-284) (Supp Figure S7A and Supp

Table 3). As above, we quantified these relationships within

individual tumor types and found that 27/30 solid tumor types

in the TCGA dataset showed a statistically significant negative

association between HM_Glycolysis and the CD8 T cell estimate
A

B

D

C

FIGURE 2

Expression of the glycolysis signature FDGScore is inversely correlated with multiple estimates of T cell infiltration across solid tumors. (A–D)
The correlation profiles of the FDG uptake signature (FDGScore) and the estimates of T cell subset abundance (as measured by ssGSEA) were
calculated and plotted for the entire TCGA Pan Cancer cohort (A) and for individual tumor types within TCGA (B–D) (left). The expression of the
FDGScore vs. CD8 (middle) and Tcm (right) T cell estimates is also shown with the calculated Pearson and Spearman coefficients. Red = positive
correlation; blue = negative correlation. The size and intensity of the circles are proportional to the Pearson r coefficient. Pearson correlation
coefficients that were not statistically significant (p>0.05) are marked with an X.
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(Supp Table 3). In addition, similar to our observations with

FDGScore, we observed robust negative associations between

HM_Glycolysis and the CD8 and Tcm estimates in the TCGA

BRCA Basal/Her2, SKCM and LUAD cohorts (Supp Figures

S7B–D). We also observed negative associations in the

METABRIC ER-negative, GSE65904 and GSE119273 cohorts

(Supp Figures S8A–C), and weaker negative correlations in the

TCGA BRCA LumA/LumB and METABRIC ER-positive

cohorts (Supp Figures S9A, B). Thus, using a different

glycolysis signature from the Broad MSigDB, we validated our

initial findings and showed that increased expression of a

different glycolysis signature is strongly and significantly

associated with decreased expression of multiple T-cell

estimates across most solid tumor types we studied.

Additionally, to investigate whether the abundance of lactate

itself was associated with the levels of T cell infiltration in human

tumors, we leveraged the metabolomics dataset published by

Tang et al. (51). The authors collected a cohort of 23 breast

tumors that were fully characterized by TCGA (15/23 cases

being LumA/LumB subtypes, 8/23 being Basal/Her2 subtypes),

and they further analyzed the metabolome of these tumors by

gas-chromatography/mass spectroscopy (GC/MS) and liquid-

chromatography/mass spectroscopy (LC/MS), which included

both glucose and lactate. We found that FDGScore was

negatively correlated with glucose levels (r = -0.52, p = 0.012)

and positively correlated with lactate levels (r = 0.49, p = 0.017)

(Supp Figures S10A, B). We further observed that lactate levels

were negatively correlated with multiple ssGSEA-based T cell

estimates (lactate vs. Tcm: r = -0.45, p = 0029; lactate vs. T

Helper: r = -0.44, p = 0.037; lactate vs. CD8: r = -0.31, p = 0.15)

(Supp Figures S10A, C). Taken together, in addition to the

transcriptomic and proteomic data presented above, the analysis

of a metabolomic dataset lends further support to the notion that

increased levels of glycolysis and lactate accumulation are

associated with decreased immune infiltration in human

breast tumors.
Expression of FDGScore and CD8 T-cell
signatures is associated with prognosis

We next sought to determine whether FDGScore and the

CD8-T cell ssGSEA estimate correlate with patient survival. Our

analyses in all patients of the Pan Cancer TCGA cohort revealed

that high FDGScore expression was associated with poor

prognosis (HR = 2.47, 95% CI = 2.24-2.72, p = 4.25e-73)

whereas CD8 T cell estimates was associated with improved

prognosis (HR = 0.63, 95% CI = 0.58-0.69, p = 2.46e-23) in

univariate analysis (Figure 3A; Supp Table S4). We also found

that a high FDGScore expression was associated with poor

prognosis in specific individual tumor types (METABRIC HR:

1.70, 95% CI = 1.43-2.01, p = 7.18e-10; TCGA SKCM HR: 1.39,

95% CI = 0.98-1.97, p = 0.0598; TCGA LUADHR: 2.31, 95% CI =
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1.58-3.39, p = 1.76e-5), while a high CD8 T-cell signature was

consistently associated with improved prognosis (METABRIC

HR: 0.78, 95% CI = 0.66-0.92, p = 3.66e-3; TCGA SKCM HR:

0.60, 95% CI = 0.43-0.86, p = 4.51e-3; TCGA LUAD HR: 0.62,

95% CI = 0.43-0.90, p = 1.12e-2) (Figures 3B–D; Supp Table S4).

In contrast to the stronger negative correlations found in the

Basal/Her2/ER-negative cohorts of the TCGA BRCA and

METABRIC cohorts compared to the Luminal/ER-positive

cohorts, we found minimal differences in prognosis between

Basal/Her2/ER-negative and Luminal/ER-positive breast cancer

cohorts (Supp Figures S11A-D). Additionally, we again sought

to validate our findings using the HM_Glycolysis signature and

similarly found that increased HM_Glycolysis expression was

associated with poor prognosis both in the entire Pan Cancer

TCGA cohort as well as within the individual tumor types that

we studied (Supp Figures S12A-D).

Further, FDGScore was independently associated with poor

prognosis in the entire Pan Cancer TCGA cohort in multivariate

analysis (HR = 2.47, 95% CI = 2.24-2.72, p = 4.25e-73), while the

CD8 T cell estimate was associated with improved prognosis

(HR = 0.69, 95% CI = 0.61-0.77, p = 3.20e-10) (Supp Table S5).

Similarly, HM_Glycolysis was also independently associated

with poor prognosis in the Pan Cancer TCGA cohort (HR =

1.62, p = 3.08e-25) (Supp Table S5). When analyzed within

individual tumor types, many of the associations with

prognosis remained significant (FDGScore remained

significantly associated with prognosis in the TCGA LUAD,

METABRIC and GSE65904 cohorts; while the CD8 T cell

estimate remained significantly associated with improved

prognosis in the TCGA LUAD and SKCM cohorts; Supp

Table S5). These data suggest that increased expression of

glycolytic genes is significantly associated with poor prognosis,

while increased expression of the CD8 T-cell signature is

modestly and significantly associated with improved prognosis

across multiple tumor types.
Increased protein expression of
glycolytic enzymes is associated with
decreased immune infiltration in primary
ER-negative breast tumors

ER-negative breast cancer was found to display significant

negative correlations between glycolysis and immune infiltration

by transcriptomic and proteomic profiling (Figures 1, 2). To

corroborate these observations, we assessed the protein

expression levels of surrogate markers of glycolytic activity and

immune infiltration in 49 treatment-naïve, primary breast

cancers, including 39 triple-negative breast cancers (TNBC;

i.e., ER-negative, PR-negative and HER2-negative) and 10 ER-

negative/HER2-positive breast cancers using IHC staining (Supp

Table S6). The median age of the patients was 47 years old

(range: 25-71) and the median size of the tumors was 2.4 cm
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FIGURE 3

Overall survival by FDGScore and the CD8 T cell estimate in solid tumors. (A–D) Kaplan-Meier survival analysis was performed for the entire
TCGA cohort (A), as well as individually for the TCGA SKCM (B), TCGA LUAD (C) and METABRIC (D) cohorts. The disease-specific survival
probability of patients was measured in the top tertile vs the bottom tertile of expression of either FDGScore (left) or CD8 T cell estimate (right)
for each cancer type, and the Hazard Ratio (HR) was calculated.
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(range: 0.9 – 5 cm). Fifty-one percent (25/49) and 45% (22/49) of

tumors were of T1 and T2 stage, respectively, whilst one tumor

was of T3 and another one T4 (1/49; 2% each). Fifty-six percent

(27/48) of patients were node positive, and 18/49 of patients had

undergone an FDG PET scan prior to therapy or surgery.

Our analysis revealed a strong positive correlation between

FDG uptake and GLUT1 expression (Pearson r = 0.67; p =

0.002) (Figure 4A) that was further enhanced in the Mean

Glycolysis H-Score (see Methods) (Pearson r = 0.70; p =

0.001) (Supp Figure S13A). These results suggest that the

expression of glycolytic markers can be used as an indicator of

glycolytic activity in breast tumors. We then quantified the

relationship between FDG uptake and immune-cell infiltration

and found no significant associations between FDG uptake and

either total stromal TILs, CD3+ or CD8+ TILs (Supp Figure

S13B). We also studied how expression of glycolytic enzymes

and immune infiltration affects patient recurrence-free survival

(‘RFS’). Notably, we found that increased expression of glycolytic

markers was associated with poor prognosis (HR 3.44, p =

0.0529), whereas a numerical association between stromal

immune infiltration and longer RFS (HR = 1.2e-8, p = 0.99)

was observed, although this analysis did not reach statistical

significance, likely due to the small sample size and number of

events (Supp Figure S13C).

Next, we sought to determine the relationship between the

expression of the glycolytic enzyme LDHA and the extent of

lymphocytic infiltration. We separated our samples into either

the top tertile of LDHA expression vs. the bottom 2 tertiles of

LDHA expression. We found that tumors with the highest levels

of tumor-cell LDHA expression displayed a significantly reduced

infiltration of stromal TILs (left), and of CD3+ (middle) and

CD8+ (right) lymphocytes (Figure 4B; p = 0.001, 0.003 and 0.015,

respectively). Moreover, the extent of CD8+ stromal tumor-

infiltrating lymphocytes (sTILs) inversely correlated with the

LDHA expression when used as a continuous variable (Pearson

rho = -0.37, p = 0.01) (Figure 4C). Given that the association

between CD8 sTIL % and LDHA H Score was not linear, we also

calculated the odds of a tumor having both high CD8 sTIL % and

high LDHA H Score, and found that the probability for a tumor

to be in the top tertile for both was 0, although this test did not

reach statistical significance (p = 0.16), likely due to low n.

Further, three clusters with different extents of CD8-positive

sTILs and LDHA expression levels were identified (LDHA.High,

CD8.High, or Neither). We sought to determine whether

patients in these three clusters would have differences in their

recurrence-free survival. Our analysis revealed that patients in

the CD8.High group (with high levels of CD8+ stromal TILs and

low LDHA), tended to have a better recurrence-free survival

than those in the remaining two clusters (Figure 4D). Although

statistical significance was not achieved (due to a low “n”), no

patients in cluster 3 had a recurrence event as of data cutoff. In

contrast, patients in the LDHA.High or Neither groups had high

and moderate LDHA levels and low CD8+ TILs, respectively,
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and 20-40% of patients in these clusters experienced tumor

recurrence. Taken together, these findings show that increased

metabolic tumor activity is associated with immune exclusion

and poor prognosis.
Discussion

Numerous published studies have demonstrated a direct and

strong inhibitory effect of tumor glycolysis and lactic acid on

immune cell function, mostly using in-vitro and in-vivo models

of disease (41, 42, 78, 79). Given the robust effect observed in

these studies, we hypothesized that this immune suppressive

effect of tumor glycolysis may be widespread and would also be

observed in patients, across multiple solid tumor types. Indeed,

we demonstrate that in most solid tumor types in the TCGA

dataset, as well as in select independent datasets, there is a strong

negative correlation between expression of two glycolysis

signatures and CD8 and memory T-cell infiltration.

The Warburg effect, discovered in the 1920’s, is a common

finding across multiple cancer types (80). Multiple lines of

evidence suggest that the Warburg effect, in addition to being

important for providing the metabolic building blocks for rapid

cell proliferation (81), is highly immune suppressive. The

depletion of glucose and the concomitant accumulation of

lactic acid has been shown to directly affect multiple immune

cell types, inhibiting anti-tumor immune cells while promoting

the formation, survival and function of pro-tumorigenic

immune cells. For example, two recent studies have elegantly

shown that Tregs become destabilized and lose their immune-

suppressive potential with increased glucose uptake and

increased glycolytic rates that may be found in tumors with

decreased tumor glycolysis (44, 45). In contrast, Tregs with

decreased glucose uptake show increased uptake of

extracellular lactate and increased immune suppressive

potential. Further, recent studies have also shown that

glycolytic metabolites can directly regulate the nutrient-sensing

PI3K/mTOR pathway (82–84), and that glycolysis and lactic acid

can directly affect gene expression by promoting histone

acetylation and lactylation (85, 86), expanding the tumor-

promoting effects of the Warburg effect. In this study, we

propose that glycolysis-induced local immune suppression in

solid tumors is yet another critical contribution of the Warburg

effect to tumor progression, and this may help explain why the

Warburg effect is central to tumorigenesis across multiple

tumor types.

We initially showed that expression of specific glycolysis-

related genes is negatively correlated with expression of

immune-related genes across multiple tumor types, both at the

mRNA and protein level. In our study, we did not observe

differences in the expression pattern of the glycolysis rate-

limiting genes HK2, PFKP and PKM2 when compared to the

expression of non-rate limiting steps of glycolysis. We expanded
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our observations by studying the relationship between

established glycolysis (52) and immune (53) signatures. We

found a strong inverse relationship between the glycolysis and

the CD8 T-cell signatures in 23/30 solid tumor types in the

TCGA cohort (Supp Table 3). We further observed that the

Central Memory T-cell signature was significantly negatively

correlated with expression of the FDGScore (Supp Table 3). This

suggested that increased glycolysis may not only blunt CD8 T-
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cell infiltration, but it may also negatively affect the phenotype of

Tcm T-cells, another critical component of the anti-tumor

immune response. We validated these findings using the well-

established “Hallmarks” gene signatures from the MSigDB, and

found similar negative associations between HM_Glycolysis and

the CD8 and Tcm estimates (Supp Table 3). Additionally, we

leveraged the metabolomic dataset from Tang et al. (51) to show

that the levels of lactate itself were negatively associated with T
A
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FIGURE 4

IHC staining of primary breast tumor samples reveals an inverse association between expression of glycolytic and immune markers.
(A) Representative micrographs of immunohistochemical staining for CD8, GLUT1 and LDHA in our cohort of 49 primary, untreated ER-negative
breast tumor samples. Shown are selected sections of tumors with high LDHA expression and low stromal CD8+ T-cell infiltrate (top), and with
low LDHA expression and high stromal CD8+ T-cell infiltration (bottom). (B) The extent of stromal lymphocytic infiltration (sTILs) was quantified
(by H&E staining, left; or by IHC staining of CD3+ (middle) or CD8+ (right) T cells) and plotted in tumors in the top tertile of LDHA expression vs.
tumors in the bottom 2 tertiles of LDHA expression, as measured by the H-Score. (C) The percentage of stromal CD8+ TILs was plotted against
the LDHA H-Score, and data was color coded according to whether the sample was in CD8 High (blue), LDHA High (red) or Neither (black)
group. The Odds Ratio for CD8 High and LDHA High was calculated and displayed. (D) Recurrence-free survival was calculated and Kaplan-
Meier plots were plotted for all tumors according to their phenotype as described in (C).
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cell infiltration (Supp Figure S9). We corroborated these findings

by analyzing 49 primary and treatment-naïve breast tumor

samples, where we observed a strong inverse relationship

between the expression of glycolysis markers (GLUT1 and

LDHA) and stromal infiltration of CD3+ and CD8+ T-cells

(Figure 4). We found that expression of GLUT1 and LDHA

correlated strongly with 18F-FDG uptake as measured by PET

(Supp Figure S13A). Further, in agreement with the

transcriptomic analyses performed here, there was a strong

negative correlation between expression of LDHA protein and

all 3 immune variables (CD3+, CD8+ and total lymphocyte

counts, Figure 4B). Thus, we consistently show a strong

inverse relationship between expression of glycolytic and

immune markers across multiple solid tumor types.

A potential caveat of our approach is that we studied the

relationships between just two glycolysis signatures and a single

method for estimating immune cell abundance (ssGSEA).

However, while numerous other glycolysis-related signatures

have been described (87–95), these signatures are (i) mostly

composed of genes that are not directly involved in glycolysis

(such as COL5A1, HMMR, STC1, among others); and (ii) have

been developed by their association with prognosis/survival

rather than with the metabolic activity of tumors. We initially

chose the glycolysis signature described by Palaskas, et al. (52)

given that (i) this signature was developed by the direct

measurement of FDG uptake in cell lines and in patients; and

(ii) this signature is composed solely by genes involved in

glucose metabolism. Additionally, to validate our findings, we

chose the Hallmarks-Glycolysis gene signature as it was

developed by the Molecular Signatures Database (MSigDB).

The Hallmark gene lists were created using a combination of

bioinformatic approaches and expert curation that led to

Hallmark gene sets with reduced variation and redundancy

while attaining increased coherent expression within each

Hallmark gene list (54). The HM_Glycolysis signature showed

highly concordant expression with FDGScore across tumor

types, and showed negative associations with various T-cell

estimates to a similar degree as we observed when using

FDGScore (Supp Table 3).

Currently, there are multiple methods for estimating

immune-cell abundance (96). We chose the ssGSEA approach

taken by Senbabaoglu, et al. (53) given that (i) it produces

normally distributed scores for multiple immune cell types,

making downstream statistical analyses more straightforward;

and (ii) ease of implementation to independent datasets, as

demonstrated in previous studies that used ssGSEA for

immune deconvolution of various solid tumors (77, 97).

However, although our mRNA analysis may be limited to

individual gene signatures, these findings are consistent with

the proteomic analysis by the CPTAC described in Figure 1 and

Supp Figure S3, and with our IHC analysis of human breast

tumor tissues described in Figure 4. Although our mRNA studies

are based on a number of different cohorts and encompass
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>10,000 patient samples, a limitation of our study is that the IHC

findings are based on a limited number of patients (49 breast

cancer patients). Thus, further studies to confirm our

observations using protein-based methods in diverse tumor

types are warranted. Another caveat of our study is that while

we show strong negative associations between glycolysis and

immune-cell infiltration, the prognostic value of the FDGScore

and T-cell signatures, and IHC staining of glycolytic and

immune markers, although statistically significant in many

cases, is not universally strong and statistically significant.

Although the associations between our glycolysis and immune

gene signatures showed robust associations with overall survival

in the Pan Cancer TCGA cohort of 30 solid tumor types

(Figure 3A), the association between our gene signatures and

prognosis were modest when analyzed within individual tumor

types (Figures 3B, C and Supp Tables S4, S5). We speculate that

the robust associations in the Pan Cancer cohort may arise from

increased variability in gene signature expression and prognosis

between the 30 solid tumor types studied, while the modest

associations observed within individual tumor types may arise

from decreased variability within individual disease types.

We note that a number of studies have quantified the

relationship between FDG uptake and TIL abundance in solid

tumors, with some studies showing a positive (albeit small)

correlation between FDG uptake and TIL counts (98, 99). In our

study, we did not observe a significant correlation between FDG

uptake and TIL counts in our cohort of 49 breast cancer patients

(Supp Figure S13B). In contrast, throughout our study we have

shown a significantly negative association between tumor

glycolysis and immune infiltration. These contrasting results

could be explained by the fact that while the FDGScore signature

is indeed associated with FDG uptake, it is mainly composed of

glycolysis and glucose metabolism genes. As such, FDGScore

expression in tumors should be viewed primarily as a measure of

tumor glycolysis rather than a direct surrogate of FDG uptake. In

fact, in an analysis of a cohort of 20 breast tumor samples (100)

we similarly observed that FDGScore, but not SUVmax, was

significantly negatively associated with the ssGSEA CD8 T cell

signature (data not shown), suggesting that while FDGScore is

associated with FDG uptake as measured by PET, they are

not identical.

Tumor glycolysis is a critical component of tumor growth. In

addition to fueling cell proliferation, it can directly regulate the

mTOR pathway (82–84), regulate translation of immune-related

mRNAs (79), and affect histone modification (85, 86).

Additionally, increased tumor glycolysis and lactate

production is known to directly inhibit effector T-cell function

while promoting regulatory T-cell function (45). Our study has

important limitations, such as the observational character of our

analyses, the lack of validation of our findings at the protein level

in larger cohorts, and the weak association of FDGScore and

prognosis across multiple tumor types. However, we aimed to

determine whether the association between tumor glycolysis and
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immune exclusion described in pre-clinical models of disease

was also true across a wide range of solid human malignancies.

Despite the limitations mentioned, taken together our study

indeed shows that tumor glycolysis is associated with exclusion

of CD8 T-cells across most solid tumor types. In combination

with the published literature demonstrating the causal effect of

tumor glycolysis on immune exclusion in selected mouse models

of disease, our study raises the interesting possibility that

inhibiting tumor glycolysis may lead to increased immune cell

infiltration across multiple solid tumor types, and thus may serve

to increase the efficacy of immune checkpoint blockade. The

combination of glycolysis inhibition in tumor cells with immune

checkpoint blockade has been recently shown to lead to

dramatically improved efficacy of ICB in mouse models of

breast cancer and melanoma (45). In addition, an inhibitor of

the lactate transporter MCT1 (AZD3965) has been shown to

increase immune-cell infiltration into solid tumors in pre-

clinical models (101), and has also entered phase I clinical

trials, showing safety and on-target effects as measured by

changes in urinary lactate (102). Whether inhibiting glycolysis

and/or lactate transport in combination with ICB in highly

glycolytic tumors will increase the efficacy of ICB in patients

remains to be determined.
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SUPPLEMENTARY FIGURE S1

Co-expression patterns of glycolysis and immune related genes within

individual tumor types. (A, B) RNA expression data was downloaded from
TCGA and other datasets (see Methods), and the correlation between

expression of selected glycolysis and immune genes was plotted (red =
positive correlation; blue = negative correlation. X marks correlation

coefficients with p>0.05). Correlation profiles of mRNA expression of

selected glycolysis- and immune-related genes across multiple solid
tumor types from the TCGA and independent cohorts are shown (A).
(B) The expression of specific glycolysis and immune genes was plotted
for specific tumor types and the Pearson and Spearman correlation

coefficients were calculated.
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SUPPLEMENTARY FIGURE S2

Co-expression patterns of glycolysis and immune related genes within
specified subtypes of breast cancer, lung cancer, and melanoma. (A-D)
Correlation profiles of mRNA expression of selected glycolysis- and
immune-related genes across specific tumor subtypes from the TCGA

are shown: A) AR-Normal vs. AR-High BRCA; B) BRAF WT vs. V600E MUT
SKCM; C) EGFR WT vs. L858R MUT LUAD and D) KRAS WT vs. G12

MUT LUAD.

SUPPLEMENTARY FIGURE S3

Abundance of glycolytic proteins is associated with decreased immune
infiltration. (A) Correlation profiles of protein abundance of selected

glycolysis- and immune-related genes in selected tumor types from
CPTAC. (B) The LDHA protein abundance was plotted against the

percentage of immune cells in H&E-stained tumor biopsies [as reported
in Xu, Zhang, et al. (50)]. Data is presented in the entire cohort (left), and in

the EGFR WT (middle) and MUT (right) cohorts. (C) LDHA protein

abundance was plotted in samples classified as having low, middle or
high levels of CD8 T cell infiltration as measured by IHC staining and

scoring [as reported in Xu, Zhang, et al. (50)]. Data is presented in the
entire cohort (left), and separated into the individual EGFR WT (middle)

and MUT (right) cohorts.

SUPPLEMENTARY FIGURE S4

Expression of FDGScore across clinical characteristics of multiple
cohorts. (A) FDGScore expression was plotted in relation to the (i)

tumor stage; (ii) patient age at diagnosis; and (iii) gender in the Pan
Cancer TCGA cohort. (B) FDGScore expression was plotted in relation

to (i) tumor stage and (ii) patient age at diagnosis in the breast METABRIC
cohort. (C) FDGScore expression was plotted in relation to (i) tumor

stage; (ii) patient age at diagnosis and (iii) gender in the GSE65904

Melanoma cohort. The relationship between FDGScore and Stage was
determined by calculating a linear regression to obtain the B coefficient.

The relationship between FDGScore and Age was determined by
calculating a Spearman rank correlation to obtain the correlation

coefficient. The relationship between FDGScore and Gender was
determined by performing a t-test between FDGScore expression in

Male/Female.

SUPPLEMENTARY FIGURE S5

Expression of FDGScore is negatively correlated with T cell estimates
within individual tumor types. (A-C) The correlation profiles of the FDG

uptake signature (FDGScore) and the estimates of T cell subset
abundance (as measured by ssGSEA) were calculated and plotted for

the ER-negative METABRIC (A), GSE65904 (B) and GSE119267 (C) cohorts

(left). The expression of the FDGScore vs. CD8 (middle) and Tcm (right) T
cell estimates is also shown with the calculated Pearson and

Spearman coefficients.

SUPPLEMENTARY FIGURE S6

Expression of FDGScore is negatively correlated with T cell estimates

within Luminal and ER-positive breast tumor types. (A-B) The correlation
profiles of the FDG uptake signature (FDGScore) and the estimates of T

cell subset abundance (as measured by ssGSEA) were calculated and
plotted for the Luminal A and Luminal B subtypes of the TCGA BRCA

cohort (A) and for the ER-positive subtype of the METABRIC cohort (B)
(left). The expression of the FDGScore vs. CD8 (middle) and Tcm (right) T

cell estimates is also shown with the calculated Pearson and

Spearman coefficients.

SUPPLEMENTARY FIGURE S7

HM_Glycolysis expression is inversely correlated with estimates of CD8+

and TcmT cells across most solid tumor types. (A-D) The correlation
profiles of the HM_Glycolysis signature and the estimates of T cell

subset abundance (as measured by ssGSEA) were calculated and
Frontiers in Immunology 14
plotted for the entire TCGA Pan Cancer cohort (A) and for individual
tumor types within TCGA (B-D) (left). The expression of the

HM_Glycolysis vs. CD8 (middle) and Tcm (right) T cell estimates is also
shown with the calculated Pearson and Spearman coefficients.

SUPPLEMENTARY FIGURE S8

Expression of HM_Glycolysis is negatively correlated with T cell estimates
within individual tumor types. (A-C) The correlation profiles of the

HM_Glycolysis signature and the estimates of T cell subset abundance

(as measured by ssGSEA) were calculated and plotted for the ER-negative
METABRIC (A), GSE65904 (B) and GSE119267 (C) cohorts (left). The

expression of the FDGScore vs. CD8 (middle) and Tcm (right) T cell
est imates is a lso shown with the calculated Pearson and

Spearman coefficients.

SUPPLEMENTARY FIGURE S9

Expression of HM_Glycolysis is negatively correlated with T cell estimates
within the Luminal and ER-positive breast tumor types.(A-C) The

correlation profiles of the HM_Glycolysis signature and the estimates of
T cell subset abundance (as measured by ssGSEA) were calculated and

plotted for the TCGA BRCA LumA/LumB (A) and METABRIC ER-positive
(B) cohorts. The expression of the FDGScore vs. CD8 (middle) and Tcm

(right) T cell estimates is also shown with the calculated Pearson and

Spearman coefficients.

SUPPLEMENTARY FIGURE S10

Glucose and lactate abundance in a cohort of 23 human breast tumors.

(A) Glucose and lactate metabolite levels were obtained from the Tang et.
al. dataset and the correlation between glucose, lactate, FDGScore and

multiple T cell estimates were plotted. ((B) FDGScore expression was

plotted vs. the levels of glucose and lactate. (C) Multiple T cell estimates
were plotted vs. lactate abundance levels in the Tang dataset.

SUPPLEMENTARY FIGURE S11

Overall survival by FDGScore and the CD8 T cell estimate in individual
subtypes of breast cancer. (A-D) Kaplan-Meier survival analysis was

performed for the Luminal A/B (A) and Basal/Her2 (B) subtypes of the

TCGA BRCA cohort; and for the ER-positive (C) and ER-negative (D)
subtypes of the METABRIC cohort. The disease-specific survival

probability of patients was measured in the top tertile vs the bottom
tertile of expression of either FDGScore (left) or the CD8 T cell estimate

(right) for each cancer type, and the Hazard Ratio (HR) was calculated.

SUPPLEMENTARY FIGURE S12

Overall survival by HM_Glycolysis in solid tumors. (A-D) Kaplan-Meier
survival analysis was performed for the entire TCGA cohort (A), as well as

individually for the TCGA SKCM (B), TCGA LUAD (C) and METABRIC (D)
cohorts. The disease-specific survival probability of patients was

measured in the top tertile vs the bottom tertile of expression of
HM_Glycolysis for each cancer type, and the Hazard Ratio (HR)

was calculated.

SUPPLEMENTARY FIGURE S13

Expression of glycolytic and immune markers in relation to FDG uptake in
primary breast tumors. (A) Volumetric Regions of Interest (ROIs) were

drawn on FDG-PET scans for 18 pts with available scans, and the SUV Peak
was calculated and plotted against the GLUT1 H Score (left), the LDHA H

Score (middle) and the Mean Glycolysis H Score (right) in the MSK cohort

of 49 patients with treatment-naïve ER-negative primary breast cancer;
see Methods. (B) SUV Peak was plotted against the percentage of stromal

TILs (left), stromal CD3+ lymphocytes (middle) and stromal CD8+
lymphocytes (right). (C) Recurrence-free survival was calculated and

Kaplan-Meier plots were plotted for patients in the highest tertile of the
Mean Glycolysis H Score (left) or stromal CD8+ lymphocytes (right) and

compared to patients in the bottom 2 tertiles.
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