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Abstract

Essays in Microeconometrics

by

Maximilian Kasy

Doctor of Philosophy in Economics

University of California, Berkeley

Professor James Powell, Chair

This dissertation consists of four chapters contributing to the development of microe-
conometric methodology, with a particular emphasis on questions of identification. The
methodological problems discussed are motivated by substantive questions about the causes
of urban segregation and of long term unemployment.

Chapter 1 develops static and dynamic models of sorting in which location choices depend
on the location choices of other agents as well as prices and exogenous location character-
istics. In these models, demand slopes and hence preferences are not identifiable without
further restrictions because of the absence of independent variation of endogenous compo-
sition and exogenous location characteristics. Four solutions of this problem are presented
and applied to data on neighborhoods in US cities: The first three use exclusion restric-
tions, based on either subgroup demand shifters, the spatial structure of externalities, or the
dynamics of prices and composition in response to an amenity shock. The fourth tests for
multiplicity of equilibria in the dynamics of composition, using the test proposed in chapter
2. The empirical results consistently suggest the presence of strong social externalities, that
is, a dependence of location choices on neighborhood composition.

Chapter 2 proposes an estimator and develops an inference procedure for the number
of roots of functions which are nonparametrically identified by conditional moment restric-
tions. The estimator is superconsistent, and the inference procedure is based on non-standard
asymptotics. This procedure is used to construct confidence sets for the number of equilib-
ria of static games of incomplete information and of stochastic difference equations. In an
application to panel data on neighborhood composition in the United States, no evidence of
multiple equilibria is found.
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Chapter 3 proposes a test for path dependence in discrete panel data based on a charac-
terization of stochastic processes that are mixtures of Markov Chains. This test is applied
to European Community Household Panel data on employment histories. The data allow to
reject the null of no path dependence in all subsamples considered.

Chapter 4 discusses identification in nonparametric, continuous triangular systems. It
provides conditions which are both necessary and sufficient for the existence of control func-
tions satisfying conditional independence and support requirements. Confirming a commonly
noticed pattern, these conditions restrict the admissible dimensionality of unobserved het-
erogeneity in the first stage structural relation, or more generally the dimensionality of the
family of conditional distributions of second stage heterogeneity given explanatory variables
and instruments. These conditions imply that no such control function exists without as-
sumptions that seem hard to justify in most applications. In particular, none exists in the
context of a generic random coefficient model.
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Chapter 1

Identification in models of sorting with
social externalities

Abstract

This paper develops static and dynamic models of sorting in which location choices depend on

the location choices of other agents as well as prices and exogenous location characteristics. In

these models, demand slopes and hence preferences are not identifiable without further restrictions

because of the absence of independent variation of endogenous composition and exogenous location

characteristics. Four solutions of this problem are presented and applied to data on neighborhoods

in US cities: The first three use exclusion restrictions, based on either subgroup demand shifters,

the spatial structure of externalities, or the dynamics of prices and composition in response to

an amenity shock. The fourth tests for multiplicity of equilibria in the dynamics of composition.

The empirical results consistently suggest the presence of strong social externalities, that is, a

dependence of location choices on neighborhood composition.

1.1 Introduction

Urban areas in the United States and across the world show large degrees of social segregation
across neighborhoods. For instance, as documented by Cutler, Glaeser, and Vigdor (2008),
the average dissimilarity index of immigrant groups’ distribution across neighborhoods in
US cities has risen continuously since 1920 from an initial value of 0.34 to a high point of
0.56 in 2000. The dissimilarity index of Hispanic distribution across neighborhoods within
Metropolitan Areas for the sample used in this paper also rose slightly, from .42 in 1980 to
.44 in 2000.1 Similar degrees of segregation can be observed along many dimensions. This

1The dissimilarity index is defined as 0.5
∑
i |hi/H−nhi/NH|, where the sum is taken over census tracts

within a city, hi denotes number of Hispanic residents in the tract, H the number of Hispanic residents in
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Chapter 1. Identification in models of sorting with social externalities

is of concern if the social environment in neighborhoods is an important determinant of life
outcomes.

There are two polar explanations of segregation. Households might sort across locations
because of different willingness to pay for exogenous location characteristics, which may be
due to differences in income or differences in preferences. This is the explanation emphasized
by accounts of sorting such as the classic Tiebout (1956) and Rosen (1974). Alternatively,
households might care about who their neighbors are, and hence choose their neighborhood
based on demographic composition. This possibility was discussed by Schelling (1971) and
Becker and Murphy (2000).

The present paper allows for both possibilities. Consider the following setup: Households
have to choose whether or not to locate in a given neighborhood. This choice depends upon
exogenous neighborhood characteristics, which will be denoted X, a vector describing the
endogenous composition of the residents of a neighborhood, M , as well as endogenous rental
prices, P . The local housing market is in equilibrium if the composition of households
that want to locate in a neighborhood, D, equals the composition of those that are in the
neighborhood, i.e., D(X,M,P ) = M , and if total housing demand E equals housing supply
at the given price, E(X,M,P ) = S(X,P ).

Suppose we want to distinguish between the causes of segregation. In the setup just
described, identification problems arise similar to those in models of endogenous peer effects,
termed the “reflection problem” by Manski (1993). The reason is that both composition and
rental prices are endogenous functions of X, preventing the separate identification of the
effects of X and (M,P ) on demand, or X and M on equilibrium prices. This support problem
is of a different kind than that of omitted variable bias in hedonic or choice regressions, which
is due to unobservability of relevant regressors. Solutions to the omitted variable problem
have been proposed by Black (1999), who controls for border fixed effects, and by Chay and
Greenstone (2005), who use exogenous variation in amenities. Bayer, Ferreira, and McMillan
(2007) estimate hedonic and discrete choice models of sorting, and explicitly recognize the
possibility of a preference for neighborhood composition. However, in light of the issues raised
here, their identification strategy of using controls for composition may be problematic.

The first goal of this paper is to provide a general framework in which this identification
problem becomes obvious. The object that we will be particularly interested to identify is
the presence and degree of social externalities, defined here as a dependence of demand of
various subgroups on the composition of neighborhood residents. In terms of the model,
social externalities exist when DM 6= 0.

The presence of social externalities in sorting is of relevance for several reasons. First,
it poses a methodological problem in the estimation of willingness-to-pay parameters, which
in turn are often used for cost-benefit analyses of policies. Knowing the magnitude of the

the city, and similarly for nhi, NH. The number reported is a population weighted average across cities.
The dataset will be described in detail in section 1.6.
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Chapter 1. Identification in models of sorting with social externalities

dependence of demand on composition allows us to assess the magnitude of biases in hedonic
slopes and choice regressions. Second, externalities matter for understanding the causes of
social segregation across locations and imply multipliers on policies affecting segregation.
Third, if externalities are strong, multiple equilibria in population composition at a given
location arise. Multiple equilibria in turn can imply discontinuous and large effects of demand
shifting policies due to bifurcations, as emphasized by Schelling (1971) and Card, Mas, and
Rothstein (2008). Such bifurcations might explain phenomena of rapid gentrification or the
reverse.

Finally, it is interesting to contrast the importance households attach to neighborhood
composition in their location choice with the available evidence on the effect of neighborhood
environment on observable outcomes. Evidence on the latter is mixed. See, for example,
Katz, Kling, and Liebman (2007). The present paper, on the other hand, finds strong effects
of composition on location choice.

It is important to recognize the differences between the setup developed here and the
models of peer effects discussed in the literature. First, in sorting models a location is
matched with an endogenous set of agents with fixed characteristics, whereas in models such
as those discussed by Manski (1993) or Moffitt (2001), there is a fixed set of agents with
endogenous outcomes. Second, the reflection problem in models of peer effects is the problem
of distinguishing endogenous from exogenous peer effects, not the problem of distinguishing
peer effects from non-random matching, whereas in the sorting model developed here the
fundamental problem is to identify whether there are social externalities at all. Third, in
the setup discussed here, there is a price mechanism allocating households to neighborhoods,
which is absent from peer-effects models. Finally, in peer effects models, endogenous sorting
might be a cause of identification problems, and as such is a nuisance, whereas here it is the
object of interest.

Four possible solutions to the identification problem are discussed in this paper. The first
three are based on assuming exclusion restrictions. The first approach uses exogenous shifters
of demand of certain subgroups that are excluded from the demand of other subgroups.
This builds on the idea of randomized subgroup treatment used for the identification of
peer effects, as recommended in Moffitt (2001) and applied for instance by Duflo and Saez
(2003). The second approach exploits the spatial structure of cities in an extension of the
baseline model, allowing for interactions across adjacent neighborhoods. Identification comes
from the assumption that exogenous demand shifters for neighborhoods beyond a certain
distance are excluded from local demand. This idea is analogous to the use of social network
structures to identify endogenous versus exogenous peer effects, as in Bramoullé, Djebbari,
and Fortin (2009) and De Giorgi, Pellizzari, and Redaelli (2009).

The third and fourth approaches are based on a dynamic extension of the baseline model.
This dynamic extension assumes search frictions in moving from one neighborhood to an-
other. This dynamic model is similar to search models of the labor market as surveyed in
Pissarides (2000). It builds upon search models of the housing market such as Wheaton
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Chapter 1. Identification in models of sorting with social externalities

(1990). The third approach is based on the result that, under certain conditions, past
amenity shocks are excluded from future price changes, as the value of amenities is immedi-
ately reflected in rental prices. Composition, however, does adjust with delay due to search
frictions, and hence prices adjust to this composition change with the same delay. The
fourth and last approach tests for multiplicity of equilibria in the dynamics of composition,
as implied by sufficiently strong social externalities in the search model. This approach is a
modification and theoretical foundation of the test for neighborhood tipping in Card, Mas,
and Rothstein (2008). It uses techniques developed in chapter 2, where we discuss inference
on the number of roots of functions nonparametrically identified via conditional moment
restrictions.

These approaches are applied to data from the Neighborhood Change Data Base (NCDB),
which aggregates US Census data to the level of census tracts. The composition variable
considered is Hispanic share. The first approach uses a synthetic instrument based on prior
composition and national immigration. This instrument is a composition shifter that is
excluded from the demand of non-Hispanics. A similar instrument has been used by Card
(2001). In the second approach, the spatial structure of cities is exploited, assuming cross-
neighborhood spillovers. In particular, the identifying assumption is made that predicted
immigration for neighborhoods more than three kilometers away from a given neighborhood
is excluded from demand conditional on predicted immigration in the given neighborhood.
This approach uses variation in actual composition orthogonal to the first approach, as the
instrument of the first approach is included as a control variable. The third approach uses
past composition change as as an instrument for future composition change conditional on
present composition, as justified by the search model.

All three instruments yield surprisingly consistent estimates. They suggest that a 1%
increase in the Hispanic share of neighborhood population results in a 6 to 10% decline in
non-Hispanics’ demand, and a 3 to 4% rise in Hispanics’ demand. Housing prices appear to
decline by around 0.5% to 1% for a 1% increase in Hispanic share. Inference on the number
of equilibria in the dynamics of composition mostly allows us to reject the null hypothesis of
multiple equilibria. These results are also consistent with the conclusions of Cutler, Glaeser,
and Vigdor (2008), who use variation in segregation across time, city, and immigrant groups
in trying to disentangle the causes of segregation.

The models in this paper are described in terms of households choosing a neighborhood
and paying rents. However, most of the insights should apply to other contexts of sorting.
Examples include sorting of workers across firms, students across schools, customers across
mobile-phone network providers, faculty across universities, or the spatial agglomeration and
dispersion of firms.

Some further relevant contributions in the recent literature have to be mentioned before
proceeding. Nesheim (2001) and Graham (2008) discuss identification issues in specific mod-
els of sorting where peer composition enters an educational production function. Heckman,
Matzkin, and Nesheim (2002) and Ekeland, Heckman, and Nesheim (2004) derive identifi-
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Chapter 1. Identification in models of sorting with social externalities

cation of preferences from cross-sectional price data based on functional form restrictions
(separability). Chiappori, McCann, and Nesheim (2009) show the equivalence of hedonic
sorting, matching and optimal transport problems and derive existence results for equilib-
ria in these models. There is a literature of discrete choice estimation of sorting models,
emphasizing that hedonic regressions only identify the preferences of marginal households.
Examples that allow for preferences for neighbors are Bayer, Ferreira, and McMillan (2007)
and Caetano (2009).

The test for multiplicity of equilibria in the dynamics of composition applied here uses
an inference procedure which is proposed in chapter 2. The development of the asymptotic
theory for this inference procedure applies results from Kong, Linton, and Xia (2010) on
Bahadur expansions for local polynomial m-regression, and uses somewhat similar arguments
as Horváth (1991), who discusses the asymptotic distribution of Lp-norms of multivariate
density estimators. The notion of sequences of experiments is discussed in van der Vaart
(1998). The argument on bootstrap-based inference draws on the review of Horowitz (2001).

The rest of the paper is structured as follows: Section 1.2 develops a static model of
locational sorting. The model of subsection 1.2.1 provides the general framework in which
the identification problem becomes immediate. Subsection 1.2.2 restricts to a special case
that allows for graphical illustration. Section 1.3 discusses the identification problem in the
static model as well as solutions based on subgroup shifters and spatial structure. Section 1.4
provides a search model of the housing market that allows us to characterize the dynamics
of composition and prices. Section 1.5 provides further routes to identification based on
this dynamic extension, and discusses inference on the number of equilibria. Section 1.6
applies four estimators of the degree of social externalities to the NCDB data. Section 1.7
summarizes and concludes. Appendix 1.A states a series of results decomposing linear IV
coefficients into weighted average structural slopes, where the weights are identifiable. All
proofs are relegated to Appendix 1.B, all figures and tables can be found in appendix 1.C.

1.2 The static model of sorting with social externalities

This section presents the baseline model of sorting discussed in this paper. The model gener-
alizes both discrete choice and hedonic sorting models. As this paper is about identification,
functional forms and heterogeneity of utility are left unrestricted. The central feature of the
model is that it allows for social externalities, in the sense that demand for housing at a
location, and household utility, are allowed to depend on the composition of residents at that
location. This dependence can reflect a direct preference over neighbors’ types. It can also
reflect a preference over amenities or production processes affected by neighbors’ types, such
as peer effects in education, crime etc., as in Nesheim (2001) or Graham (2008). A num-
ber of specializations and extensions of this basic model will be presented later, allowing in
particular for cross-neighborhood externalities and for search frictions. Most of the analysis
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Chapter 1. Identification in models of sorting with social externalities

will be partial-equilibrium, in the sense that cross-neighborhood feedback is ignored.

1.2.1 General static model of location choice with social externalities

The baseline model, which will be formally stated below, can be summarized as follows:
Consider one neighborhood among many. This neighborhood is characterized by exogenous
properties, the composition of residents, and rental prices. Household utility for choosing
to locate in this neighborhood depends on these exogenous characteristics, composition and
rents. Households choose to live in the neighborhood if and only if the utility provided by
living there is higher than utility for their best outside option. An example of exogenous
neighborhood characteristics would be geographic location, an example of composition would
be the share of various ethnic groups living in the neighborhood.

Households can be one of several types. Arbitrary heterogeneity of utility within and
across types is allowed. Composition is restricted to enter household utility only in terms
of the number of households of each type present in the neighborhood. Utility maximizing
choices imply demand schedules for each type of household as a function of exogenous char-
acteristics, composition, and prices. The observable prices and composition are assumed to
be in equilibrium given exogenous neighborhood characteristics.

The baseline model consists of three assumptions. The structure of the model is il-
lustrated in figure 1.1. As this figure shows, the assumptions map primitives to higher
level objects, going from preferences to demand functions (assumption 1.2.3), from demand
functions to equilibrium comparative statics (assumption 1.2.1 and definition 1), and from
equilibrium comparative statics to the observable data distribution (assumption 1.2.2). The
problem of identification is essentially the problem of inverting these maps. In this paper,
the inversion of the map from demand functions to equilibrium comparative statics is of
particular interest.

Assumption 1.2.1 describes the basic setup in terms of demand functions D. In combi-
nation with definition 1 of partial sorting equilibrium, it provides a mapping from demand
functions to equilibrium schedules (M∗, P ∗). These equilibrium schedules give population
composition and rental prices in a neighborhood as a function of exogenous neighborhood
characteristics and any other determinants of location choices.

Assumption 1.2.2 describes how the equilibrium schedules translate into a distribution of
observable data P. It restricts observable composition and prices to be in equilibrium given
exogenous location characteristics. If we additionally assume full observability of all relevant
location characteristics X, the resulting model provides an “upper bound” for identifiability.
In particular, we can at most identify features of the model that can be written as a function
of the equilibrium schedules. This is a useful point of departure for negative identification
results. If on the other hand we have only partial observability of location characteristics
but exogenous variation of some of the observed components of X, we get a useful setup for
positive identification results.

6



Chapter 1. Identification in models of sorting with social externalities

Assumption 1.2.3, finally, connects household demand functions to underlying household
utility u. Housing demand for a given type of household is defined as the number of house-
holds in the population for which the utility of living in the neighborhood is greater than the
exogenously given utility of their outside option. This assumption characterizes the model
as being partial equilibrium because the utility of outside options is assumed not to change
as a function of the characteristics of the given neighborhood.

Throughout, superscripts will denote indices (for instance M c is the cth component of M)
and subscripts will denote partial derivatives (for instance DM = ∂D/∂M). Probabilities
will be denoted by P in order to distinguish them from prices P .

Assumption 1.2.1 (The local economy).

• There are C types of households, c = 1, . . . ,C .

• A neighborhood is characterized by

1. the number of households of each type, M = (M1, . . . ,MC )

2. a (rental) price P

3. an exogenous vector X of all other location characteristics and factors influencing
demand or supply.

• Demand for housing in a neighborhood, for each type, is a bounded continuously dif-
ferentiable function of these. Denote by Dc the demand of households of type c, and
let D = (D1, . . . , DC ), then D = D(X,M,P ). Total demand is given by E :=

∑
cD

c.

• Housing supply is a bounded continuously differentiable function of P and X, S =
S(P,X).

It should be emphasized that X is defined inclusively as comprising all exogenous demand
and supply shifters, including random fluctuations. Locations in this model only differ if X
is different, all other variables will be endogenously determined given the exogenous X. The
vector X includes determinants of demand such as preference and income distributions and
demographic composition of the population, as well as local labor demand. In particular,
the empirical application at the end of the paper will use changing demographic composition
due to immigration as a demand shifter.

The influence of M on D is a reduced-form social externality. It includes both direct
preferences over neighborhood composition and preferences over neighborhood properties
influenced by composition, such as school quality. The assumption allows only for a finite
number of types, as far as neighbors are concerned. This greatly simplifies exposition.
Allowing for more general type-sets does not alter most conclusions.

The following definition of partial sorting equilibrium requires that the neighborhood
composition is consistent with the demand of each of the different types, and that housing
demand equals housing supply.

7



Chapter 1. Identification in models of sorting with social externalities

Definition 1 (Partial Sorting Equilibrium). A partial sorting equilibrium (M∗, P ∗) given X
solves the C + 1 equations

D(X,M∗, P ∗) = M∗ (1.1)

S(P ∗, X) =
∑
c

M∗c. (1.2)

Let (M∗(X), P ∗(X)) denote the correspondence mapping X into the partial sorting equilibria
given X.

Equilibrium existence is guaranteed by

Proposition 1. Under assumption 1.2.1, there exists at least one Partial Sorting Equilib-
rium (M∗, P ∗) given X.

The proof of this proposition, and of all further results, can be found in Appendix 1.B.
The following assumption states that M and P are in equilibrium given the exogenous

determinants of demand and supply, X. Furthermore, X = (X1, ε) where ε is a vector of
unobserved determinants. In the case of unique partial equilibrium, all conditional random-
ness in M and P given X1 comes from ε, i.e., M = M∗(X1, ε) and P = P ∗(X1, ε). Two
cases will be considered. The full observability case is useful to discuss the central identifi-
cation problems, as it assumes away the problem of mapping from the data distribution to
equilibrium schedules, and allows to focus on the problem of mapping equilibrium schedules
to demand functions. The partial observability case with exogenous variation then allows to
generalize the results obtained in the full observability case to more realistic settings.

Assumption 1.2.2 (Observable data).

• The observable data consist of repeated observations of (X1,M, P ) where X = (X1, ε)
for vectors X1 and ε.

• M and P are in equilibrium given X for all observations, i.e., (M,P ) ∈ (M∗(X), P ∗(X)).

• X is continuously distributed on its support in Rdim(X).

• Full observability case: X = X1 and (M,P ) have full support on (M∗(X), P ∗(X)),
so that (M∗(X), P ∗(X)) is identified on the support of X.

• Partial observability with exogenous variation case: X1 is statistically inde-
pendent of ε and the equilibrium selection mechanism. Therefore, conditional average
slopes of equilibrium schedules are identified by E

[
∂
∂x1
M∗(x1, ε)

]
= ∂

∂x1
E [M |X1 = x1].

The first expectation in this expression is taken over the unconditional distribution of
ε and the equilibrium selection mechanism. Similarly for P ∗.

8



Chapter 1. Identification in models of sorting with social externalities

The next assumption gives demand as the outcome of utility maximizing household
choices. Utility is indirect in the sense that it is given as a function of neighborhood char-
acteristics and rents, where all other household choices are “concentrated out.” Households
choose between locating in the neighborhood or elsewhere. The indirect utility of choosing to
live elsewhere is not modeled, but assumed to be exogenously given. Unrestricted heterogene-
ity of utility is allowed. This assumption can be understood as describing a nonparametric
discrete choice setup. If we have a priori knowledge that some factors are excluded from the
location choices of some group, this will in fact yield a route to identification.

Assumption 1.2.3 (Household utility maximization).

• Households are characterized by the triple (u(X,M,P ), uo, c), where u is their continu-
ously differentiable indirect utility dependent on neighborhood characteristics, uo is the
utility of their best outside option and c is their type.

• Households locate in the given neighborhood iff u(X,M,P ) ≥ uo.

• uo is exogenously determined, i.e., constant in (X,M,P ).

• There is a continuum of households of total mass M tot in the economy. The vector
(u, uX , uM , uP , u

o), evaluated at any (X,M,P ), has a continuous joint distribution.

• Dc is the mass of households that want to locate in the given neighborhood,

Dc = M tot · P(u ≥ uo, c).

Similarly E = M tot · P(u ≥ uo).

The assumption of a continuous joint distribution is necessary for well defined differentials
of the demand functions Dc.

In the subsequent discussion of identification, different combinations of these assumptions
will be used, where the identification results discuss how to invert the mappings provided by
these assumptions, possibly under additional restrictions. In the next subsection, assumption
1.2.1 will be specialized to the case of two household types, which allows for easy illustration
of some important features of the model. Assumption 1.2.3 will also provide the connection
to the dynamic model discussed later in this paper, which is more naturally stated in terms of
utilities rather than resulting choices. As it will turn out, the model defined by assumptions
1.2.1 and 1.2.3 is a limit case of the dynamic model in the absence of search frictions, and
describes steady state comparative statics of the dynamic model more generally.

1.2.2 A specialization to the case of two types

To provide some intuition for the implications of this model, let us consider a special case
with only two types of households.

9



Chapter 1. Identification in models of sorting with social externalities

Assumption 1.2.4 (Two type model).

• There are only C = 2 types.

• The price elasticity of demand of the two types is the same:

D1
P

D1
=
D2
P

D2
.

• Both types have the same demand elasticity with respect to the scale of the neighborhood:

1

D1
(D1

M1M1 +D1
M2M2) =

1

D2
(D2

M1M1 +D2
M2M2).

Define d as the share of type 1 households among those who want to live in the neigh-
borhood, i.e., d = D1/(D1 +D2). Similarly, let m be the share of type 1 households among
those who do live in the neighborhood, m = M1/(M1 + M2). Recall finally that E is the
total demand for housing in the neighborhood, E = D1 + D2. Under assumption 1.2.4, the
demand share of type 1, d, can be written as a function of m and X alone, where X is
exogenous. Put differently, the relative demand of the two types is not affected by prices or
population density. This implies that (partial) equilibrium can be defined by the conditions

d(m∗, X) = m∗ (1.3)

E(P ∗,m∗, X) = S(P ∗, X), (1.4)

which have a recursive form that we can easily analyze, both graphically and analytically.
The share of either type is a solution to the first equation. Given this equilibrium share, the
second condition is a conventional partial-equilibrium supply and demand equation. Figure
1.2 represents these two equilibrium conditions as well as the comparative statics of the
model.

Formally, consider a small change in X that does not affect housing supply, SX = 0.
Make assumptions 1.2.1 and 1.2.4 and assume that social externalities are not too strong, so
that dm < 1. Assume furthermore that partial sorting equilibrium is unique, or let (m∗, P ∗)
denote a differentiable selection from the set of partial equilibria. Then

m∗X =
dX

1− dm
(1.5)

and

P ∗X =
EX + Emm

∗
X

SP − EP
. (1.6)

This follows immediately from equations 1.3 and 1.4.

10



Chapter 1. Identification in models of sorting with social externalities

Equation 1.6 gives the response of rents to amenity shifts. Below we will compare this to
the hedonic slope with inelastic supply in the absence of externalities, P+

X = −EX
EP

. P+
X is the

response in prices that would hold housing demand constant if composition m did not change
in response to changes in amenities, and corresponds to the slope that hedonic regressions
try to estimate. The price schedule P+, which takes composition as exogenously given,
will be referred to as the counterfactual partial equilibrium price. Relative to P+

X , there
is an additional term in P ∗X if there are social externalities, i.e., Em 6= 0, and equilibrium
composition does depend on exogenous location characteristics, i.e., m∗X 6= 0.

This leads us to the identification problem that will be discussed formally in the general
case below: Knowledge about equilibrium schedules M∗ and P ∗ does not allow us to identify
the demand functions Dc, nor the slopes Dc

m, Dc
X , P+

m or P+
X . The reason is that m∗, in

the two type case, is functionally dependent on X. There never is independent variation
of the two. Therefore, the slopes Dc

X and Dc
m can not be identified separately. If the

partial equilibrium is unique, any equilibrium schedule (M∗, P ∗) can be rationalized by a
version of the model without social externalities, for instance by setting Dc(X,m,P ) =
M c∗(X,m∗(X), P ∗(X)).

Equation 1.5 implies a “multiplier” effect in the sense that any immediate causal effect
of amenities on composition, dX , is amplified by a factor 1

1−dm . This factor is bigger than
one iff dm > 0, that is iff

D1
m

D1
>
D2
m

D2
.

In particular, this is the case if the left hand side is positive and the right hand side is
negative. This case could be described as homophilia, following Currarini, Jackson, and Pin
(2009). Note however, that this could also hold under “hierarchical preferences” in the sense
that both groups prefer, say, a higher share of group 1 but this preference is stronger among
group 1 members. Conversely, in the case of “heterophilia,” or

D1
m

D1
<
D2
m

D2
,

social externalities have a dampening effect on amenity variation. In this case they lead to
a more integrated residential distribution. Finally, if social preferences are strong enough,
it is also quite possible that there are unstable equilibria with dm > 1, in which case there
must be at least two more stable equilibria. This case is the one emphasized in discussions of
“tipping” such as Card, Mas, and Rothstein (2008). In section 1.5.2, a test for multiplicity of
equilibria is discussed. If dm > 1, amenity or population changes might lead to a bifurcation
where two equilibria merge and then disappear, the so called tipping of a neighborhood.
Figure 1.3 illustrates this case.

11



Chapter 1. Identification in models of sorting with social externalities

1.3 The identification problem and solutions in the static
model

This paper is about identification in sorting models with social externalities.2 Parameters
of interest in the model introduced in the last section are the demand schedule D(X,M,P ),
its slopes (DX , DM , DP ), and in particular whether demand exhibits social externalities.

Definition 2 (Social externalities). Demand is said to exhibit social externalities if DM 6= 0.

Related questions are whether landowners would be able to ask for different rents depend-
ing on neighborhood composition, holding amenities fixed, or what the marginal willingness
to pay for neighborhood composition is.

It is useful to decompose the identification problem into several steps, going from the
observable data distribution and regression slopes to equilibrium comparative statics to de-
mand functions to preferences, as illustrated in figure 1.1, which also provides a roadmap
through the following discussion. Objects further down in this figure are increasingly hard
to identify, and not identifiable without identification of the previous steps. The problem
of identification is one of mapping from observable data distributions into objects of inter-
est, thus inverting the mappings from primitives into observables provided by the model
assumptions. The structure of the problem displayed in figure 1.1 is similar for any setup
with optimizing agents where outcomes are determined by some form of equilibrium.

The next subsection explores the relation between the demand and price schedules and the
underlying distribution of household utility. It also introduces the notion of counterfactual
partial equilibrium. The corresponding counterfactual price schedule, P+, equates demand
and supply of housing while not requiring equality of actual composition and composition
entering location decisions, thus treating composition like an exogenous amenity.

Subsection 1.3.2 discusses the relationship between equilibrium comparative statics and
demand functions. It exposes the fundamental identification problem in our model, which
is due to the endogeneity of equilibrium (M∗(X), P ∗(X)), and the implied degeneracy of
the joint support of (X,M,P ). Without further restrictions, demand slopes with respect to
(X,M,P ) are not identified, and neither are the slopes of the counterfactual price schedule
P+ with respect to X and M . In particular, both cross-section and panel data, even with
experimental variation in location characteristics X, are uninformative about the presence
of social externalities. The cause of the identification problem is the lack of independent
variation of composition and other demand shifters. Any test for social externalities will
have to “drive a wedge” between these two.

Subsections 1.3.3 and 1.3.4 develop positive identification results based on exclusion
restrictions. Subsection 1.3.3 extends the idea of randomized subgroup treatment familiar

2A parameter is said to be identified if it can be written as a function of the distribution of the observable
data.
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from the peer effects literature. Subsection 1.3.4 suggests exclusion restrictions based on
the spatial structure of interactions across neighborhoods, in an extended version of the
model that allows for externalities across adjacent neighborhoods. The main results in
these subsections map equilibrium schedules into demand functions under such exclusion
restrictions. Corollaries to these results combine them with a mapping from regression
slopes to equilibrium comparative statics, using the LATE representations of appendix 1.A.

1.3.1 Counterfactual partial equilibrium, price slopes and preferences

In this subsection, the relationship between demand slopes, slopes of equilibrium prices and
household utility is explored. Since Rosen (1974), price slopes of the form P ∗X have often
been used as estimates of household willingness to pay for X, which equals −uX/uP in the
notation of the present paper. In the context of discrete choice models, it becomes evident
that price slopes are not necessarily equal to willingness to pay for infra-marginal households.
Lemma 1 and its corollary 1 show this in the present, nonparametric, setup. They represent
the price gradient as an appropriately weighted average of willingness to pay of marginal
households. If, however, there is a continuum of similar outside options, all households in
the neighborhood are marginal and have identical willingness to pay, as illustrated by lemma
2.

Due to the possible presence of social externalities, uM 6= 0, price slopes may also deviate
from willingness to pay forX for marginal households. Price changes P ∗X must compensate for
the change in composition, M∗

X . This is made apparent by defining a notion of counterfactual
partial equilibrium, as a point of reference. Counterfactual partial equilibrium gives the price
P+ that would prevail if M were determined exogenously and need not equal D. In Lemma
1, the comparison of P ∗X and P+

X shows the bias in P ∗X relative to average marginal willingness
to pay for X, P+

X , due to externalities. This also suggests P+
X and P+

M as empirical objects
of interest in their own right.

In section 1.2.1, partial sorting equilibrium was defined as the solution to equating total
housing demand and supply as well as composition and type specific demand. Counterfactual
equilibrium (M+(M,X), P+(M,X)) is defined as the solution to equating housing demand
and supply, while the argument M to the demand functions is exogenously given and not
necessarily equal to D:

Definition 3 (Counterfactual Partial Equilibrium). A counterfactual partial equilibrium
(M+, P+) given X and M solves the C + 1 equations

M+ = D(X,M,P+) (1.7)

S(P+, X) =
∑
c

M+c. (1.8)

13
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Let (M+(X,M), P+(X,M)) denote the function mapping (X,M) into the counterfactual
partial equilibrium given (X,M).

Lemma 1 (Price gradients and marginal households’ utility). Under assumptions 1.2.1 and
1.2.3, the slope of total housing demand with respect to X is given by

EX = M tot · fu−uo(0) · E[uX |u = uo],

where fu−u
o

denotes the density of u−uo. Similarly for EM , EP , Dc
X , Dc

M , and Dc
P . Assume

additionally that partial sorting equilibrium is unique or assume (M∗, P ∗) is a differentiable
selection from the set of partial equilibria, and assume SP = SX = 0. Then

P+
X = −E[uX |u = uo]

E[uP |u = uo]
,

P+
M = −E[uM |u = uo]

E[uP |u = uo]
,

and

P ∗X = P+
X + P+

MM
∗
X = −E[uX + uMM

∗
X |u = uo]

E[uP |u = uo]
.

Lemma 1 expresses the price gradients as ratios of average marginal utilities among
marginal households. Since one can rewrite any ratio of averages as weighted average of
ratios, the following corollary expresses the gradients as average willingness to pay for X,
where the average is taken with respect to a reweighted distribution. The reweighting can
be interpreted as a re-normalization of household utility to a constant marginal disutility of
P , which implies a rescaling of the conditional density of marginal utilities among marginal
households.

Corollary 1 (Price gradient as weighted average willingness to pay). Under the assumptions
of lemma 1, if uP < 0 for all households,

P+
X = Ẽ

[
−uX
uP

∣∣∣∣u = uo
]
,

where the expectation Ẽ is taken with respect to the density

fuX ,uP |u−u
0

(uX , uP |0) · uP
E[uP |u = u0]

.

Similarly for P+
M and P ∗X .

If, relative to lemma 1, we assume additionally that there is a continuum of alterna-
tive location choices, as in hedonic models, tighter characterizations of equilibrium prices
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and sorting follow. All households in a neighborhood become marginal and have the same
marginal willingness to pay.

Lemma 2 (Hedonic gradient given continuum of outside options). Make assumptions 1.2.1
and 1.2.3. Assume additionally that uo is bounded by the supremum of u(X,M,P ) over a set
of outside options including an ε ball around X, and the corresponding equilibria (M,P ) ∈
(M∗(x), P ∗(x)):

uo ≥ sup
x:||x−X||<ε

(M,P )∈(M∗(x),P∗(x))

u(x,M,P )

Then

P ∗X = −uX + uMM
∗
X

uP
(1.9)

for all households choosing a neighborhood with given X.

This subsection concludes with a lemma characterizing local comparative statics of aver-
age reservation prices among households in the neighborhood in terms of average marginal
willingness to pay of all households in the neighborhood. This lemma will be central in
the characterization of prices in the dynamic model presented later in this paper. In this
dynamic model, landowners will extract all surplus value generated by a match to a tenant,
so that rents are equal to household reservation prices. Formally, define the reservation price
of a household for living in the neighborhood, given X and M , as

P res = P res(X,M) := sup{P : u(X,M,P ) ≥ uo}.

Lemma 3 characterizes the dependence on X of average reservation prices, conditional on
locating in the neighborhood, i.e., conditional on P res ≥ P ∗. Changes in X can, in principle,
influence average reservation prices in three ways: directly, through their effect on M , and
through a reshuffling of residents. The last may matter if, under the new X, households
with higher reservation prices crowd out the initial residents. The central message of lemma
3 is that this effect is not of first-order importance if housing supply is inelastic, so that the
number of households in the neighborhood is constant, or if housing demand is elastic, so
that all households in the neighborhood have reservation prices equal to P ∗.

Lemma 3 (Comparative statics of average reservation prices). Assume partial sorting equi-
librium is unique or assume (M∗, P ∗) is a differentiable selection from the set of partial
equilibria. Under assumptions 1.2.1 and 1.2.3

∂

∂X
E [P res|P res ≥ P ∗] = E [P res

X + P res
M M∗

X |P res ≥ P ∗]

−
(

∂

∂X
logP (P res ≥ P ∗)

)
· (E [P res|P res ≥ P ∗]− P ∗) ,(1.10)
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where P res
X = −uX/uP and P res

M = −uM/uP . In particular, if housing supply is price inelastic
and constant in X, i.e., SP = SX = 0, or if all households in the neighborhood are marginal,
i.e., E [P res|P res ≥ P ∗] = P ∗, then

∂

∂X
E [P res|P res ≥ P ∗] = E [P res

X + P res
M M∗

X |P res ≥ P ∗] . (1.11)

1.3.2 Degenerate support and non-identification

Under assumptions 1.2.1 and 1.2.2, even in the full observability case, any cross-section or
panel dataset can at best identify the joint distribution of (X,M,P ). This joint distribution
can be decomposed into the exogenous distribution of X and the conditional distribution
of M and P given X. By assumption, the latter has its support on the set of partial sort-
ing equilibria given X, (M∗(X), P ∗(X)). The present section discusses what knowledge
of (M∗(X), P ∗(X)) allows us to learn about the demand schedule D(X,M,P ), its deriva-
tives DX , DM and DP , the counterfactual price schedule P+(X,M) defined in the previous
subsection, and underlying utilities u(X,M,P ).

This subsection will abstract from any identification problems due to partial observability
of X or the types c which might obstruct identification of (M∗(X), P ∗(X)) itself. Such lack
of observability underlies omitted variable bias problems and necessitates the search for
exogenous variation of X. The positive identification results in the following sections will
first assume knowledge of (M∗(X), P ∗(X)), and express parameters of interest in terms of
derivatives of these equilibrium schedules. They will then extend these results to the partial
observability case with exogenous variation of components of X, where (weighted averages
of) these derivatives can be recovered by regression.

The following relationships hold, by definition, between partial sorting equilibrium, coun-
terfactual partial equilibrium and the demand schedule:

(M∗(X), P ∗(X)) = (M+(X,M∗(X)), P+(X,M∗(X))) (1.12)

D(X,M,P+(X,M)) = M+(X,M) (1.13)

D(X,M∗(X), P ∗(X)) = M∗(X) (1.14)

Proposition 2 ((Non)identification). Make assumptions 1.2.1 and 1.2.2, and consider the
full observability case. Then:
D(X,M,P ) is not identified for (M,P ) /∈ (M∗(X), P ∗(X)).
(M+(X,M), P+(X,M)) is not identified for M /∈M∗(X).
But:
D(X,M,P ) is identified on the joint support of (X,M,P ).
(M+(X,M), P+(X,M)) is identified on the joint support of (X,M).

The proof of this proposition is quite straightforward. The focus on the full observability
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case makes evident that the underlying reason of the problem is lack of support, not lack of
observability or randomized variation in X.

There is a parallel between this identification problem and the classic simultaneity prob-
lem in identifying price elasticities, as well as the reflection problem, as Manski (1993) named
it, in the identification of models with endogenous peer effects. In all these problems, an
endogenous equilibrium outcome serves as argument to some structural relationship. There
is no (continuous) variation of the equilibrium outcome conditional on the other arguments
of the same relationship, at least without further exclusion restrictions.

The problem can be restated in terms of the slopes of demand and the counterfactual
price schedule, as in the following lemma. Lemma 4 can be understood as showing that the
identification problem is a “multicollinearity” problem. There is no independent variation
of X and (M∗(X), P ∗(X)).

Lemma 4 (Identification of slopes). Make assumptions 1.2.1 and 1.2.2 and consider the
full observability case. Assume partial sorting equilibrium is unique or assume (M∗, P ∗) is a
differentiable selection from the set of partial equilibria. Linear combinations of the demand
slopes are identified as

DX +DMM
∗
X +DPP

∗
X = M∗

X . (1.15)

Linear combinations of the counterfactual price gradient are identified as

P+
X + P+

MM
∗
X = P ∗X . (1.16)

No other linear combinations of (DX , DM , DP ) and (P+
X , P

+
M) are identified.

This subsection concludes with a discussion of two apparent solutions to the identification
problem. First, there might be a temptation to “break the multicollinearity problem” by
assuming functional form restrictions, such that slopes are identified using the curvature
or higher order properties of the equilibrium schedules (M∗, P ∗). However, any result on
social externalities can be rationalized with any dataset using the appropriate functional form
assumption, as the following lemma shows. In the proof of the lemma, the derivativesDM and
DP are chosen in a data-independent way. Arbitrary generalizations of the counterexample
used can be constructed by choosing them as a function of the data.

Lemma 5 (Spurious identification by functional form assumptions). Make assumptions
1.2.1 and 1.2.2 and consider the full observability case, and assume that partial equilibrium
is unique.
Fix an arbitrary C ×C matrix A and a C vector B. Then there exists a just-identified model
for D(X,M,P ) such that DM ≡ A and DP ≡ B for the unique D in the model such that
D(X,M∗(X), P ∗(X)) = M∗(X) for all X.
Similarly, fixing again a C vector B, there exists a just-identified model for P+, such that
P+
M = B for the unique P+ in the model such that P+(X,M∗(X)) = P ∗(X).
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Another temptation might be to search for exogenous variation in X and control for
composition M in order to estimate the counterfactual price gradient P+

X , as in Bayer,
Ferreira, and McMillan (2007). However, by endogeneity of M , such conditioning on M
introduces dependence between unconditionally independent components of X. Formally,
make assumptions 1.2.1 and 1.2.2 and consider the partial observability case, where X1 ⊥ ε,
and assume that partial sorting equilibrium is unique. Suppose we were to use the regression
slope

∂

∂x1
E
[
P |X1 = x1,M

]
as an estimator for

E
[
P+
X1|X1 = x1,M

]
.

This would be valid if X1 ⊥ ε conditional on M . However, the conditional expectation is
taken over the distribution of ε on the subspace defined by M∗(X1, ε) = M , which changes
as a function of X1. In particular, if dim(ε) is equal to dim(M), then ε is function of X1

conditional on M , and the bias in the regression conditioning on M relative to P+
X1 is equal

to

−P+
ε ·

M∗
X1

M∗
ε

.

1.3.3 Exclusion restrictions based on subgroup demand shifters

In the last subsection, it was argued that D, and in particular the slopes (DX , DM , DP ),
are unidentifiable due to functional dependence of (M∗, P ∗) and X. Holding X constant,
there is no variation in M that allows us to identify the effect of M on D. After these
negative results, the rest of the theoretical development in this paper is dedicated to positive
identification results based on additional model restrictions and extensions.

The first identification result is based on the assumption that some components of X
are excluded from the demand of some subgroup, or from demand of all groups but not
from supply. Under such exclusion restrictions, variation in the components of X that are
excluded generates variation in M and P that is not functionally dependent on the relevant
arguments of demand. This idea underlies proposition 3, which expresses demand slopes in
terms of equilibrium slopes under exclusion restrictions. If there additionally is a source of
variation of these observed components of X that is statistically independent of variation
in the unobserved components ε, equilibrium slopes, and thereby demand slopes, can be
identified by regression, as in corollary 2.

Exclusion restrictions of the form D1
X1 = 0 are the natural analogon to using (random-

ized) subgroup treatment as a source of identification of peer effects. Compare for instance
the general discussion in Moffitt (2001), and Duflo and Saez (2003). The latter provided
information about pension plans to a random subset of employees in a random subset of
departments of a university, and studied the effect on the behavior of other employees of the
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same departments. Exclusion restrictions of the form DX2 = 0 but SX2 6= 0 correspond to
the classic use of supply side instruments to identify the price elasticity of demand.

Exposition will be simplified from now on by considering the two-type model of section
1.2.2. In that case M∗1

X = D1
X + D1

mm
∗
X + D1

PP
∗
X . Similar arguments hold more generally,

however.

Proposition 3 (Subgroup identification). Make assumptions 1.2.1 and 1.2.4. Assume that
D1
X1 = 0 but D2

X1 6= 0 for some component X1 of X, and D1 6= 0. Then

D1
m =

1

m∗X1

(
M∗1

X1 −D1
PP
∗
X1

)
. (1.17)

Assume additionally D1
X2 = D2

X2 = 0 but SX2 6= 0. Then

D1
m =

1

m∗X1

(
M∗1

X1 −
M∗1

X2

P ∗X2

P ∗X1

)
. (1.18)

Proposition 3 expresses slopes of demand D in terms of equilibrium slopes. The latter
are not observable in the realistic partial observability case, however. To translate this result
into one that can be used in practice, we have to substitute partial derivatives by estimable
slopes. This is what corollary 2 does below.

Without any restrictions on functional form, assuming smoothness and appropriate exo-
geneity, linear OLS and IV regressions recover weighted average derivatives of the structural
functions of interest, as shown in appendix 1.A. If the setup is restricted to linear ran-
dom coefficients, weighted averages of the random slopes are identified by IV. If, finally,
functional forms are restricted to be linear in the arguments of interest, the corresponding
partial derivatives are constant.

Corollary 2. Make assumptions 1.2.1, 1.2.2 in the partial observability case, and 1.2.4. As-
sume we observe a two period panel of locations, with changes in exogenous demand shifters,
composition, and prices, (dX, dm, dP ).
Assume logD1 is linear in m and logP . Assume dX1 is uncorrelated with changes in D1

induced by the other components of dX, and similarly for dX2.
Denote by βlogM1,X1

the expectation of the OLS regression coefficient of d logM1 on dX1 etc.
If D1

X1 = 0 and D2
X1 6= 0, and ∂ logD1/∂ logP ∈ [ηmin, ηmax], then

∂ logD1

∂m
∈ 1

βm,X1

(
βlogM1,X1 − [ηmin, ηmax] · βlogP,X1

)
. (1.19)
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If additionally D1
X2 = D2

X2 = 0 but SX2 6= 0,

∂ logD1

∂m
=

1

βm,X1

(
βlogM1,X1 − βlogM1,X2

βlogP,X2 · βlogP,X1

)
. (1.20)

If the assumption on linearity of logD1 is dropped, equation 1.19 still holds if we replace
∂ logD1

∂m
by the weighted average E

[
∂ logD1

∂m
· ω
]
, where the weight is given by

ω =
mt(dX

1 − E[dX1])

E[mt(dX1 − E[dX1])]
,

and the expectations are taken over the product distribution of the crosssectional distribution
over the i and the uniform distribution over the time interval [1, 2].

1.3.4 Exclusion restrictions based on spatial structure

In the model considered so far, in the absence of exclusion restrictions there is no independent
variation of X and (M∗(X), P ∗(X)). Put differently, the arguments determining demand
and supply and the arguments determining equilibrium outcomes are exactly the same.
The identification results in this subsection, as well as those using dynamics which will
be developed later, are based on model extensions which generate variation in equilibrium
composition conditional on all relevant exogenous arguments of demand and supply, X.

In assumption 1.2.1, the possibility of cross-neighborhood externalities has been ignored.
This subsection extends the baseline model of assumption 1.2.1 by adding a spatial structure.
It is assumed that the relevant composition variable m̃ affecting demand is a weighted average
of the composition of adjacent neighborhoods, m, and similarly X̃ is a weighted average of
the Xs of adjacent neighborhoods. The weights are given by a matrix G, where the (k, l)th
entry of G describes the strength of externalities from neighborhood l to neighborhood k.
Under these conditions, too, variation in the X of adjacent neighborhoods always induces
variation in m̃, thus not allowing for separate identification of the effects of the two. However,
there is a “propagation” effect of composition along chains of adjacent neighborhoods. A
change in X in one location changes m̃ in adjacent locations, which in turn affects demand
and composition in their adjacent neighborhoods etc. Thus, variation in X in non-adjacent
neighborhoods is excluded from demand in a location, yet might generate variation in m and
m̃. Proposition 4 formalizes this idea.

The simplifications of the two-type model of assumption 1.2.4 are made again, but the
results generalize.

Assumption 1.3.1 (Cross neighborhood interactions). There are N neighborhoods. G is
a N ×N matrix with non-negative entries summing to one in each row and with positive
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diagonal entries.
Let m be the N vector of m for all neighborhoods, m̃ = Gm the vector of G weighted
averages of m, similarly for X and X̃.
Then, for each neighborhood, with X̃, m̃ being the neighborhood specific entries of the corre-
sponding vectors,

d(m̃, X̃) = m (1.21)

E(P ∗, m̃, X̃) = S(P ∗, X). (1.22)

Note that d is constant in components of (m,X) with a corresponding zero entry in G.
In this sense, this is still a partial equilibrium model which does not consider the effect on
outside options of changes in remote locations.

In immediate generalization of definition 3 , let P+(m̃, X̃,X) denote the equilibrium price

that would prevail if (m̃, X̃,X) were to characterize a neighborhood.

Proposition 4 (Spatial identification). Make assumption 1.3.1, and assume SX = 0 and
0 < dm̃ < 1 as well as dX̃ 6= 0, for all neighborhoods.
Fix two neighborhoods k and l. If the k, lth entry of G equals 0 and there exists a power
j > 1 of G, such that the k, lth entry of Gj is not equal to zero3, then:

dm̃

(
m̃k, X̃k

)
=
mk
Xl

m̃k
Xl

, (1.23)

P+
m̃

(
m̃k, X̃k, Xk

)
=
P k
Xl

m̃k
Xl

, (1.24)

and

Dc
m̃

(
m̃k, X̃k, P k

)
=

1

m̃k
Xl

(
M∗c,k

Xl −Dc,k
P P k

Xl

)
. (1.25)

Again, this is a theoretical identification result in terms of equilibrium slopes. It is
translated by the following corollary into an implementable one, using OLS slopes. As before,
the results are first stated imposing linearity assumptions in order to facilitate exposition,
and then the general case follows. In this corollary, an instrument Xf is constructed as an
average of changes in X in non-adjacent neighborhoods.

Corollary 3. Make assumptions 1.3.1 and 1.2.2, and assume SX1 = 0 and 0 < dm̃ < 1 as
well as d

X̃1 6= 0, for all neighborhoods.
Assume we observe a two period panel of locations, with changes in exogenous demand
shifters, composition, and prices, (dX, dm, dP ).
For each neighborhood k let dXf be an average of dX1 over a set of neighborhoods l, such

3Note that Gj here denotes G · . . . ·G, i.e., j is a power, not an index.
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that the k, lth entry of G equals 0 and there exists a power j > 1 of G, such that the k, lth
entry of Gj is not equal to zero.
Assume that d, logP+ and logD are linear in m̃. Assume that dXf is uncorrelated with
changes in D and P+ which are induced by the other components of dX.
Denote by βm,X

f
the expectation of the OLS regression coefficient of dm on dXf etc.

Then

dm̃ =
βm,X

f

βm̃,Xf , (1.26)

(logP+)m̃ =
βlogP,Xf

βm̃,Xf , (1.27)

and

(logDc)m̃ ∈
1

βm̃,Xf

(
βlogMc,Xf − [ηmin, ηmax] · βlogP,Xf

)
. (1.28)

In the last equation, [ηmin, ηmax] are bounds on Dc,k
P as in corollary 2. If the linearity assump-

tions are dropped, these equations still hold if we replace the partial derivatives by weighted
averages thereof, as in corollary 2.

1.4 A dynamic extension of the static model with search
frictions

The model discussed so far is static. We can think of it as describing an economy with negli-
gible search frictions in which equilibrium is instantaneously achieved. Alternatively, it could
be considered as describing the long run steady state of an economy with frictions. However,
explicitly considering dynamics and frictions reveals additional sources of identification.

A well established literature in labor economics discusses the dynamics and comparative
statics of unemployment and wages in models with search frictions. Its central presumption
is that finding a job or an employee takes time and unemployment is due to this search time.
Pissarides (2000) provides an extensive overview of this literature. Wheaton (1990) applies
the insights of this literature to the housing market. The focus of either of these is the
relationship between vacancies (unemployment) and prices. Wheaton (1990) in particular
models housing vacancies as corresponding to the search time of households who decided
to move due to lifecylce events (shocks), found another place and now attempt to sell their
old home. The present section extends the basic sorting model of section 1.2.1 using similar
techniques as these papers.

Relative to the static model described by assumptions 1.2.1 and 1.2.3, the main extensions
in the dynamic model are as follows. There is an explicit, continuous time dimension, and
exogenous location characteristics X can change over time. Households that would like to
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move to a different neighborhood are subject to search frictions. If they decide to search
for a new home, offers arrive at Poisson rate λ. Similarly, owners of vacant units have to
search for tenants and find them at rate µ. Households are maximizing expected discounted
utility, and make their search decisions in a forward looking way. Due to search frictions,
composition M changes continuously over time and only reacts with delay to shocks in X.
Finally, once a match is formed between homeowner and household, they are in a situation
of bilateral monopoly: By breaking the match they both would have to search again, and
thereby incur a loss of utility. Therefore, they have to negotiate over the division of the
surplus, and rents are match-specific.

The purpose of this extension is twofold. First, the delayed adjustment of composition
M to changes in exogenous characteristics X generates independent variation between X
and M , contrary to the static case where M is essentially a function of X. This allows,
under certain conditions, to separately identify household willingness to pay for X and for
M . Second, the dynamic structure provides a connection between multiplicity of equilibria
in the static sense, as mentioned in section 1.2.2, and multiplicity of equilibria in a dynamic
sense. A test for the latter will be constructed below.

This section presents a search model of the rental market for housing. Considering
homeownership would add the additional complication of housing being an asset in addition
to being a consumption good. Under complete financial markets, the results derived for the
rental market of housing immediately extend to the more general case however, as will be
discussed briefly at the end of this section.

For simplicity of notation, household and time superscripts are mostly dropped. As
before, we consider one fixed neighborhood.

Assumption 1.4.1 (The local economy, dynamic setup).

• There are C types of households, c = 1, . . . ,C .

• Households can be in one of four states: Living in the neighborhood and not searching,
living in the neighborhood and searching for a place outside, living outside and searching
for a place in the neighborhood, living outside and not searching for a place in the
neighborhood.

• Housing units can be in one of two states, vacant or occupied by one household.

• A neighborhood, at each point of time t ∈ R, is characterized by

1. the number of households of each type living in the neighborhood, M = (M1, . . . ,MC )

2. an exogenous vector X of all other location characteristics and factors influencing
demand or supply.

• The time paths of X and M are piecewise differentiable.
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• There is a match specific rental price P for each match between a unit and a household.

• Households living outside searching for a place in the neighborhood, or living in the
neighborhood and searching for a place outside, find a match at rate λ. Vacancies are
matched to a household at rate µ. These rates can vary over time but are constant
across households and units.

• Vacant units and searching households are matched uniformly at random.

Assumption 1.4.2 (The household problem).

• Households are characterized by their type c, their flow utility u(X,M,P ) of living in
the given neighborhood, their discount rate r and the value of their outside option V o.
Except for type, all of these may depend on time t. V o does not depend on X,M .

• Households have the choice between searching or not. They do so to maximize their
expected discounted utility.

• There are no costs of search.

• There is a continuum of households of total mass M tot in the economy.

Denote the value of living in the given neighborhood by V = max(V s, V ns), where V s and
V ns are the values of searching and not searching, respectively. Denote the time derivative
of V by V̇ . The value functions are to be understood as conditional expectations, given the
information set at time t, as are their time derivatives. Assumptions 1.4.1 and 1.4.2 imply

rV s = u(X,M,P ) + λ(V o − V ) + V̇ (1.29)

and
rV ns = u(X,M,P ) + V̇ . (1.30)

A household living in the neighborhood wants to search for a place outside if and only if
V o > V , and V satisfies

(r + λ)V = u(X,M,P ) + λmax(V o, V ) + V̇ . (1.31)

Let us now turn to the landowners.

Assumption 1.4.3 (The landowner’s problem).

• Landowners are risk neutral, maximize their discounted stream of incomes and are
otherwise indifferent about the residents of their units. Their discount rate is denoted
by r.
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• Owners of vacant units can and do search for renters among the pool of households
that search for a home in the given neighborhood.

Denote the value of an occupied unit by W = max(W s,W ns) where W s and W ns are the
values of the unit when the renting household is searching and not searching, respectively.
Denote the value of a vacant unit by W v. Under assumptions 1.4.1 and 1.4.3, the value of
an occupied unit where the renter is not searching for a new place is characterized by

rW ns = P + Ẇ . (1.32)

The value of an occupied unit with a searching renter is

rW s = P + λ(W v −W ) + Ẇ . (1.33)

The value of a vacant unit satisfies, finally,

rW v = µ(W new −W v) + Ẇ v. (1.34)

Note that the value of a match to the landowner is household specific, and therefore W new,
the expected value of a match with a new renter, is in general different from the value of the
current match, W . These values describe the expected discounted revenue for a given unit.

Once a potential renter and a landowner holding a vacant unit meet, they have to nego-
tiate a rental contract.

Assumption 1.4.4 (Rent determination).

• The contract specifies rental payments. Contracts can be continuously renegotiated.

• Each of the contract parties can unilaterally decide at any time to end the contract and
initiate search of the renting household, where this decision is reversible. The renter
can not be evicted before she has found a new place, but can be committed to search.

• Rents are determined by Nash bargaining over the division of the surplus relative to the
outside option of searching (not searching)4, that is, current rents maximize (V ns −
V s)β(W ns −W s)(1−β), where β ∈ [0, 1] is the relative bargaining power of tenants.

We have (V ns − V s)β(W ns −W s)(1−β) = λ(V − V o)β(W −W v)(1−β), and the first order
condition for the solution to Nash bargaining is

(V − V o) = β [−uP (W −W v) + (V − V o)] . (1.35)

4Note that the potential outside option of searching for a different home in the same neighborhood is
always strictly dominated. It leaves the household indifferent and the landowner strictly worse off, since she
foregos rents while searching for a new tenant.
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If there exists a price P such that both V > V o and W > W v, then these conditions must
hold under the bargaining solution, no matter what β is. Search happens if and only if there
is no such P , and the search decision is always consensual. This is a feature of any privately
efficient contract. For households living outside the neighborhood, the decision to search
in this given neighborhood is independent of β. Our last assumption pins down bargaining
power β:

Assumption 1.4.5 (Bargaining power). All bargaining power lies with the landowners, i.e.,
β = 0.

This assumption allows for a clean characterization of price dynamics, since all changes
in household utility will be compensated by price changes. If we were to drop assumption
1.4.5, only a fraction 1− β of utility changes would be compensated by price changes.

Readers familiar with the literature on search models of unemployment will notice a
central feature of these models missing in the assumptions just stated. Neither λ and µ,
nor housing supply, are explicitly modeled. Common practice in the literature, for instance
in the models reviewed in Pissarides (2000), is to assume a matching technology where the
rates λ and µ are a function of the ratio of searching workers (households) to vacancies,
and there is free entry of firms (landlords). This is crucial in the context of search models
of the labor market that attempt to explain unemployment and vacancy rates. It also has
important implications for the speed of adjustment following shocks. As neither vacancies nor
variation in the speed of adjustment are of central concern in the present context, exposition
is simplified by not explicitly modeling intertemporal variation in λ and µ.

1.4.1 Implications of the model

The rest of this section develops some central properties of the model described by assump-
tions 1.4.1 through 1.4.5. First, the dynamics of composition are shown to follow a differential
equation of the form Ṁ = λ · (D−M), where D is a dynamic generalization of the demand
function. If we specialize this to the two type case and consider discrete intervals of time,
then changes in composition m follow the difference equation ∆m := m1−m0 = κ · (d−m0),
where κ is a rate derived from λ.

Next, the reaction of prices to shocks in X is studied. In the short run, because of
search frictions, M is not affected by such shocks. Under assumptions 1.4.4 and 1.4.5, rents
immediately adjust so that all surplus of the match is appropriated by landlords, and changes
in rents correspond to household willingness to pay for changes in X. In the long run, M does
change however. Rental changes occurring with delay correspond to household willingness
to pay for this change in M .

Finally, the relationship between this dynamic model and the static model studied so far
is clarified. First, the long run comparative statics of M , as a function of X, are the same
as those of an appropriately defined corresponding static model. Second, if search frictions
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are low and/or discount rates high, then the dynamic model is approximated by the static
model in a sense made precise below.

These results will be synthesized in proposition 5 in the next section. This proposition
describes how the dynamic structure of responses in prices and composition to changes in
exogenous characteristics allows us to identify average willingness to pay for both X and m
among households living in the neighborhood. Section 1.5 will also characterize the relation-
ship between quantile regressions of ∆m on m and the function d, and will discuss how tests
for multiplicity of roots of d−m in m can be constructed.

The dynamics of composition
Under assumptions 1.4.1 and 1.4.2 we have, at each point in time, a set of households of
each type c that want to move out of the neighborhood, because for them V o > V , and
a corresponding outflow. Similarly, at each point in time there is a set of households of
each type c that want to move into the neighborhood, because for them V ≥ V o, and a
corresponding inflow. The net flow will equal λ times the difference between the number of
households that want to live in the neighborhood, i.e., for which V ≥ V o, and those that
do live in the neighborhood, M . This motivates the following definition of demand D in the
dynamic model.

Definition 4 (Demand in the dynamic model). Denote by Dc the mass of households of
type c for which V ≥ V o:

Dc = M tot · P(V ≥ V o, c)

Lemma 6 (Dynamics of composition). Make assumptions 1.4.1, 1.4.2, 1.4.3 and 1.4.4.
Then

Ṁ = λ · (D −M), (1.36)

where Ṁ is the expected time derivative of M .

The following result specializes to a two-type model and describes changes of composition
m over discrete time intervals.

Lemma 7 (Dynamics of composition in the two-type model). Make the assumptions of
lemma 6, as well as assumption 1.2.4. Then the change in m from time 0 to time 1 is given
by

∆m := m1 −m0 = κ · (d(m,X)−m0) (1.37)

for some m,X at a time in [0, 1], where

κ = 1− exp

(
−
∫ 1

0

λ · D
1 +D2

M1 +M2
ds

)
> 0. (1.38)
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The determination of prices
Under assumption 1.4.5, the landowner appropriates all surplus from the match, and equation
1.35 implies that the participation constraint for the renter is binding at all times, i.e.,
V = V o. By equation 1.30, the household specific rental price is then determined by

u(X,M,P ) = rV o − V̇ o, (1.39)

where X, M , and V o are given to the household and landowner. This implies in turn that
changes in rents must directly reflect willingness to pay for changes in X and M , for any
household that lives in the neighborhood. This is reflected in the following lemmas 8 and 9.
Lemma 8 additionally uses the fact that composition M is constant in the short run.

Lemma 8 (Short run comparative statics of prices). Make assumptions 1.4.1, 1.4.2, 1.4.3,
1.4.4, specifying the dynamic model, and 1.4.5 on bargaining power.
Assume that X = x before time 0, X = x + ξ for a jump ξ after time 0, and (u, V o) is
continuously differentiable with respect to time for all households.

Then ∂
∂ξ

limt→0+ E[P ] = E
[
−uX
uP

]
where the expectation is taken over the set of households

living in the neighborhood at time t = 0.

We recover short-run comparative statics of prices in response to changes in X and M
which look similar to the ones in the static model in the absence of social externalities
and with inelastic housing supply. In the static model, the neighborhood rental gradient P+

X

equals the average marginal willingness to pay of marginal households, according to corollary
1, whereas here the match specific rent gradient PX equals the marginal willingness to pay
of any given household. In the static case, marginal households had to be kept indifferent by
changes in X and P ∗ for demand to be constant. In the present case, all households have to
be kept indifferent by changes in X and P , since by the assumption on bargaining power all
households are marginal, in the sense that their utility is equal to their reservation utility.

As households re-sort across neighborhoods, however, prices adjust further for two rea-
sons. First, holding outside options as well as X and M constant, some households will want
to move in which have a willingness to pay for the given bundle (X,M) which is higher than
the willingness to pay of the current residents. Second, composition M will adjust over time,
and influence the households’ valuation of the neighborhood. If housing supply is constant
or all households are marginal, the first reason can be ignored to first order, however. This
follows from lemma 3. As a consequence, long run effects of changes in X on rents P reflect
the sum of the willingness to pay for X and of the willingness to pay for the change in M
induced by X.

Lemma 9 (Long run comparative statics of prices). Make assumptions 1.4.1, 1.4.2, 1.4.3,
1.4.4, specifying the dynamic model, and 1.4.5 on bargaining power. Assume that housing
supply is constant or all households are marginal.

28



Chapter 1. Identification in models of sorting with social externalities

Assume that X = x before time 0, X = x + ξ for a jump ξ after time 0, and (u, V o) is
constant for all households. Denote M lr = limt→∞M , where it is assumed that this limit
exists.

Then ∂
∂ξ

limt→∞E[P ] = E
[
−uX+uMM

lr
ξ

uP

]
, where the expectation is taken over the set of house-

holds living in the neighborhood at time t = 0.

Demand in the dynamic and the static model
D, as given by definition 4, equals the number of households for which V ≥ V o. In the static
model, under assumption 1.2.3, D was equal to the number of households for which u ≥ uo.
How do these notions of demand relate to each other? To connect the dynamic model to
our discussion of the static model, the following definition is useful. It derives a static model
from the given dynamic model. Equilibrium prices in the static model correspond to cut-off
prices, below which landlords do not accept a tenant in the dynamic model in steady state.
The utility of households’ outside option, uo, is implicitly given by V o. Corresponding static
demand, finally, is equal to the mass of households for which flow utility u is bigger than
outside utility uo. As shown in lemma 10, the static model defined in this way describes the
long run comparative statics of composition in the dynamic model. Lemma 11 implies that
it also approximates the short run behavior of the dynamic model in the case of low search
frictions or high discount rates.

Definition 5 (The corresponding static model). Under assumptions 1.4.1, 1.4.2, 1.4.3,
1.4.4 and 1.4.5, the corresponding static model is defined as follows: Let uo := rV o − V̇ o.
Let P res = max{P : u(X,M,P ) ≥ uo} be the reservation price for each household. Let P ∗ be
the “cut-off” price below which landowners in the dynamic model would not accept a tenant
in steady state. As will be shown, this cut-off is given by

P ∗ =
rµ

r + µ
Es[P res|P res > P ∗], (1.40)

where the expectation Es is taken over the set of households searching for a place in the
neighborhood. This equation implicitly defines the corresponding static housing supply.
The corresponding static demand of type c is equal to

D̃c = M tot · P(u(X,M,P ∗) > uo|C = c) = M tot · P(P res > P ∗|C = c) (1.41)

for all c. Let Ẽ =
∑

c D̃
c. Denote the equilibrium (set) of this corresponding static model by

(M∗, P ∗).

Lemma 10 (Long run comparative statics of composition). Make assumptions 1.4.1, 1.4.2,
1.4.3, 1.4.4, specifying the dynamic model, and 1.4.5 on bargaining power.
Assume that λ is uniformly bounded away from zero for t > 0, and that X and (u, uo) is
constant over time for all households.
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If M lr := limt→∞M exists, then M lr ∈ M∗, i.e., composition converges to an equilibrium
composition of the corresponding static model.

Lemma 11 (Low-friction limit of the dynamic model). Make assumptions 1.4.1, 1.4.2, 1.4.3
and 1.4.4. Define uo as uo = (r+λ)V o−V̇ o−λmax(V, V o). Assume u and uo are continuous
in time and bounded. Then, for V, V o, u and uo evaluated at time t0,

lim
V − V o∫∞

t0
e−

∫ t
t0

(r+λ)dsdt
= u− uo

as r + λ → ∞ uniformly in a neighborhood of t0, if r + λ remains bounded away from 0
uniformly on [t0,∞).

Lemma 11 says that, if discount rates are large or search frictions low, then relative values
are approximately equal to relative flow utilities. Similarly, if u and uo are constant over
time, relative values equal relative flow utilities. If either of these is the case uniformly across
households, then dynamic demand D is approximately equal to demand in the corresponding
static model D̃. It is in this sense that the static model can be regarded as an approximation
to the dynamic model in the cases of either “myopic” behavior (high discount rates), low
search frictions (high λ) or steady state (constant u).

Home ownership
So far we have been discussing the market for housing rentals. What about home ownership?
Under an assumption of perfect financial markets a no-arbitrage condition between either
renting and holding financial assets or home-ownership must hold. In particular, we could
extend the above model assuming that at each point in time a landowner can decide to sell
her unit to the tenant or to another potential landowner, if the latter agrees. The price for
such a (potential) sale into ownership is P. Agreement on such a sale requires that each
party is indifferent between holding financial assets and home ownership. Such indifference
implies the asset equation

rP = P + Ṗ, (1.42)

where r is now a market rate of return. Tenant households could at the same time be
landowners, for instance for units previously occupied. The interest rate r implicitly already
incorporates a risk premium and a compensation for depreciation.

The focus of the present paper is identification of the determinants of the consumption
value u. This consumption value conceptually maps more closely to rental prices P rather
than home values P, since decisions about homeownership reflect both consumption and
investment considerations. This explains our focus on rental prices.
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1.5 Identification in the dynamic model

In this section, we discuss the observable implications of social externalities for price and
composition dynamics. Section 1.5.1 synthesizes into one proposition the characterization of
price setting that was developed in the lemmas 6 through 10. This proposition in particular
allows us to identify the average willingness to pay for composition, both for all households
and for arbitrarily defined subgroups, by using the delayed response in average prices to
exogenous shocks in X. If we add an assumption on the cross-sectional data generating
process, this result allows to construct estimators of average willingness to pay.

In section 1.5.2, the implications of multiplicity of equilibria in composition m, as dis-
cussed in section 1.2.2, for cross-sectional quantile regressions of ∆m on m will be analyzed.
Under plausible restrictions on the data generating process, structural multiplicity of equi-
libria implies multiplicity of roots of such quantile regressions, although the reverse does
not hold true. Section 1.5.2.1 reviews inference on the number of roots of nonparametric
regressions (such as quantile regressions), which is discussed in more detail in chapter 2.

1.5.1 Exclusion restrictions based on the dynamic structure of price
and composition responses

The following proposition 5 characterizes what happens to average rental prices in the neigh-
borhood after a shock of size ξ to exogenous neighborhood characteristics X. As illustrated
in figure 1.4, immediately following the shock prices jump by P sr

x ξ. This is because house-
holds’ reservation prices are a function of X and landowners extract all the surplus generated
by the contract. This price jump reflects households’ valuation of X. Due to search fric-
tions, M evolves continuously in time and therefore remains unchanged in a vicinity of time
0. As time progresses, composition M converges to its new equilibrium, and prices change
according to households’ average valuation of M , yielding a total change in prices of P lr

x ξ.
Formally:

Proposition 5 (Dynamic identification of hedonic slopes). Make assumptions 1.4.1, 1.4.2,
1.4.3, 1.4.4, specifying the dynamic model, and 1.4.5 on bargaining power. Assume that
housing supply is constant or all households are marginal.
Assume that X = x before time 0, X = x + ξ for a jump ξ after time 0, and (u, V o) is
constant for all households.
Denote P b = limt→0− E[P ] the average price before the jump, P sr = limt→0+ E[P ] the price
right after the jump, i.e., “in the short run,” and P lr = limt→∞E[P ] the price in the long
run, similarly M lr = limt→∞M , where it is assumed that these limits exists..
Then the following claims hold, where all the derivatives are evaluated at ξ = 0:

1. P sr
ξ = E

[
−uX
uP

]
.
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2. P lr
ξ = E

[
−uX+uMM

lr
ξ

uP

]
and M lr

ξ = M∗
X .

3. If additionally assumption 1.2.4 holds,

E

[
−um
uP

]
=
P lr
ξ − P sr

ξ

mlr
ξ

. (1.43)

4. More generally, for times t2 > t1 > 0, making assumption 1.2.4 again and taking P t1,
P t2 as the time specific averages,

E

[
−um
uP

]
=
P t2

ξ − P t1

ξ

mt2
ξ −mt1

ξ

. (1.44)

Completely analogous claims hold for any subgroup, i.e., replacing E[P ] by E[P |C], E
[
−uX
uP

]
by E

[
−uX
uP

∣∣C], etc., if either all households in the subgroup are marginal, P = P co, or we

are looking at an upper tail of P of constant mass for this subgroup, P(C) = const.

So far, the discussion of the dynamic model was restricted to one neighborhood, there
was no data generating process as in assumption 1.2.2. Proposition 5 is stated in terms of
all-else-equal comparative statics. In order to use proposition 5 for identification of average
willingness to pay parameters, we have to add an assumption on exogenous shocks to X in
a cross-sectional dataset, as done in the following corollary. This corollary is stated in the
fully nonparametric case, i.e., without imposing partial linearity assumptions.

Corollary 4. Make assumptions 1.4.1, 1.4.2, 1.4.3, 1.4.4, specifying the dynamic model,
and 1.4.5 on bargaining power. Assume that housing supply is constant or all households are
marginal.
Assume that we observe a cross-sectional dataset including P t1 , P t2 ,mt1 ,mt2 and ξ, where ξ
is a random change of X taking place before time t1.
Let ∆ logP = E[logP |t2]−E[logP |t1] and ∆m = mt2−mt1. Denote by βlogP,ξ the expectation
of the OLS regression coefficient of ∆ logP on ξ etc.
Assume that ξ is uncorrelated with changes in P in the time interval [t1, t2] induced by
changes in X or the distribution of u, V o in this interval.
Then

βlogP,ξ

βm,ξ
= E

[
E

[
− um
ulogP

]
· ω
]
, (1.45)

where

ω =
mt(ξ − E[ξ])

E[mt(ξ − E[ξ])]
.
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The inner expectation in equation 1.45 is taken over all households of a given neighbor-
hood, and the outer expectation is taken over the product distribution of the cross-sectional
distribution of the neighborhoods and the uniform distribution over the time interval [t1, t2].

1.5.2 Social externalities, static and dynamic multiplicity of equilibria

Under the assumptions of the dynamic model of section 1.4 and assumption 1.2.4, according
to lemma 7, the change of m over a time interval [0, 1] is approximately given by

∆m = m1 −m0 ≈ κ · (d(m0, X)−m0).

In section 1.2.2, we saw that strong social externalities can imply multiplicity of equilibrium
compositions m∗, that is, solutions to the equation d(m∗, X) = m∗. What are the empirical
implications of multiple equilibria? Multiple equilibria, like path dependence more generally,
imply a positive causal relation between past values of m and current values. However, time
invariant unobserved heterogeneity (in X) also implies positive correlation between past and
present m.

To illustrate, consider the following linear autoregressive panel model with fixed effects:

mi,t = αmi,t−1 + βX i + εi,t.

The coefficient α reflects path dependence, βX reflects time invariant heterogeneity. Below,
we will study what happens around unstable equilibria of nonlinear difference equations.
Locally, they are similar to this linear model with α > 1. Unobserved heterogeneity biases
cross-sectional regression estimates of α upward, as we will show now for this linear example,
and then discuss in a nonparametric context. This upward bias implies that we will see
unstable roots in regressions if there are multiple equilibria, but the reverse does not hold
true.

Assuming that the ε are i.i.d. and uncorrelated with X, cross-sectional OLS regression
of ∆m = mt −mt−1 on m = mt−1, using a two period panel, estimates the slope coefficient

α− 1 + β · Cov(m,X)

V ar(m)
.

The bias in this expression relative to α− 1 is positive if Cov(m,βX) is positive. This is in
particular the case if the mt−1 are generated from the stationary distribution of this panel
model, which exists if |α| < 1:

β · Cov(mt−1, X)

V ar(mt−1)
=

β2σ2
X/(1− α)

(β2σ2
X/(1− α) + σ2

ε )/(1− α2)
= (1 + α) · β2σ2

X

β2σ2
X/(1− α) + σ2

ε

.
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The bias term here is positive if α is bigger than −1. A positive bias implies that cross-
sectional regression of ∆m on m will yield a positive slope if α > 1, but the reverse is not
true. The following discussion generalizes this idea to a nonparametric context, using the
specification of ∆m derived from the dynamic model in section 1.4.

Let us now return to the nonlinear equation ∆m = m1 − m0 ≈ κ · (d(m0, X) − m0).
Suppose we observe a two-period panel of m across neighborhoods, or equivalently a cross-
sectional distribution of (∆m,m). By endogeneity of m, if there is serial dependence in
X then m will not be independent of X and the conditional distribution of ∆m given m
does not permit direct inference on d. However, by a generalization of the argument just
made, structural multiplicity of equilibria implies multiplicity of roots in such cross-sectional
regressions, under certain assumptions.

Denote the τth conditional quantile of ∆m given m by Q∆m|m(τ |m), the conditional cu-
mulative distribution function at Q by F∆m|m(Q|m), and the conditional probability density
by f∆m|m(Q|m). The following lemma shows that quantile regressions of ∆m on m yield
biased slopes relative to the structural slope κ · (dm − 1).

Lemma 12 (Bias in quantile regression slopes). If ∆m = κ · (d(m,X)−m), and Q and F
are differentiable with respect to the conditioning argument m, then

∂

∂m
Q∆m|m(τ |m) = E [κ · (dm − 1)|∆m = Q,m]

− 1

f∆m|m(Q|m)
· ∂
∂m

P (κ · (d(m′, X)−m′) ≤ Q|m)

∣∣∣∣
m′=m

.

In the linear example discussed above, unobserved heterogeneity X was constant over
time, which implied a positive correlation between βX at time t and m at time t − 1. The
bias term in the linear example continues to be positive under the much weaker condition
that X is not negatively correlated across time. In the nonparametric quantile regression
case, assumption 1.5.1 provides the natural analogon of such non-negative correlation. It
states that there is no negative dependence between current d, evaluated at fixed m, and
current m. Violation of this assumption would require some underlying cyclical dynamics,
in continuous time, with a frequency close enough to half the frequency of observation, or
more generally with a ratio of frequencies that is an odd number divided by two. It seems
safe to discard this possibility in most applications. This assumption might not hold, for
instance, if outcomes were influenced by seasonal factors and observations were semi-annual.

Assumption 1.5.1 (First order stochastic dominance). P((d(m′, X)−m′) ≤ Q|m) is non-
increasing as a function of X, holding x′ constant.

We can now formally state the claim that if there are unstable equilibria structurally,
then quantile regressions should exhibit multiple roots.
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Proposition 6 (Unstable equilibria in dynamics and quantile regressions). Assume
∆m = κ · (d(m,X)−m) and assumption 1.5.1 holds.
Then, if Q∆m|m(τ |m) has only one root5 m for all τ , then the conditional average structural
functions E [κ · (d(m′, X)−m′)|d(X,m) = m,m], as functions of m′, are “stable” at the
roots m:

E [κ · (dm − 1)|∆m = 0,m] ≤ 0

for all m, where (0,m) is in the support of (∆m,m).

1.5.2.1 Testing for the number of roots of nonparametrically identified functions

Chapter 2 develops an inferential procedure to construct (integer valued) confidence sets for
the number of roots of some function g in a certain range, where g is a function identified
by conditional moment restrictions such as a conditional mean or quantile. In what follows,
some of the central results of chapter 2 are summarized. For more detail the interested
reader is referred to that chapter.

Assume we are interested in the number of roots Z(g) of some function g on the range
[0, 1]:

Definition 6. For g continuously differentiable

Z(g) := |{m ∈ [0, 1] : g(m) = 0}|.

The inference procedure proposed is based on a smoothed version of Z, Zρ:

Definition 7.

Zρ(g(.), g′(.)) :=

∫ 1

0

Lρ(g(m))|g′(m)|dm, (1.46)

where Lρ is a Lipschitz continuous, positive symmetric kernel integrating to 1 with bandwidth
ρ and support [−ρ, ρ]

If ρ is small enough, then for generic g it can be shown that Z(g) = Zρ(g). The function g
is assumed to be identified by the conditional moment restriction g(m) = argmindE∆m|m[ρ(∆m−
d)|m], where ρ is some loss function. This includes in particular the case ρq(δ) := δ(q1(δ >
0) − (1 − q)1(δ < 0)) for conditional qth quantile regression. Local linear m-regression es-
timates g and g′ by analogy, fitting a line to the data by essentially minimizing a kernel
estimate of the conditional expectation of ρ:

(ĝ(m), ĝ′(m)) = argmina,b
∑
k

Kτ (mk −m)ρ(∆mk − a− b(mk −m)). (1.47)

5i.e., one solution m to the equation Q∆m|m(τ |m) = 0
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An “estimator” Ẑ of Z can be formed by plugging (ĝ, ĝ′) into the functional Zρ, i.e.,

Ẑ := Zρ(ĝ, ĝ′). As it turns out, uniform convergence of (ĝ, ĝ′) implies a degenerate asymptotic

distribution for Ẑ, and any recentered/rescaled version of it. Define the following functional
norm:

Definition 8 (C 1 norm). Let C 1([0, 1]) denote the space of continuously differentiable func-
tions on the interval [0, 1]. The norm ||.|| on C 1([0, 1]) is defined by

||g|| := sup
m∈[0,1]

|g(m)|+ sup
m∈[0,1]

|g′(x)|.

Then we have

Proposition 7. Z(.) is constant in a ||.|| neighborhood of any generic function g ∈ C1 with
Z(g) <∞, and so is Zρ for ρ small enough.

This implies the corrolary that, under standard i.i.d. sequences of experiments, no non-
degenerate asymptotic distribution can be obtained for Ẑ. More precisely, if (ĝ, ĝ′) converges
uniformly in probability towards (g, g′), if g is generic, and if αn → ∞ is some arbitrary
diverging sequence, then

αn(Z(ĝ)− Z(g))→p 0.

Furthermore, if ρ is small enough for Zρ(g, g
′) = Z(g), then

αn(Zρ(ĝ, ĝ′)− Z(g))→p 0.

Given this result, no useful asymptotic theory for inference on Z(g) can be found using
standard i.i.d. sequences of experiments. The central result of chapter 2 therefore gives the
asymptotic distribution of Ẑ for a non-standard sequence of experiments, which is defined
by

mi,n ∼iid fm(.) (1.48)

γi,n|mi,n ∼ fγ|m (1.49)

∆mi,n = g(mi,n) + rnγi,n, (1.50)

where 0 = argminxE[ρ(γ − x)|m] = argminxE[ρ(δ − x)|m]. This sequence increases the
variance of the “residual,” rnγi,n = ∆mi,n − g(mi,n), as sample size n increases, thereby
reducing the “signal to noise ratio,” leaving the model otherwise unchanged.

Theorem 1 (Asymptotic normality). Under the above model assumptions and regularity
conditions stated in chapter 2, and if rn = (nτ 5)1/2, nτ → ∞, ρ → 0 and τ/ρ2 → 0, then
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there exist µ > 0 and V such that√
ρ

τ

(
Ẑ − µ− Z

)
→ N(0, V )

for Ẑ = Zρ

(
ĝ, ĝ′

)
. Both µ and V depend on the data generating process only via the

asymptotic mean and variance of ĝ′ at the roots of g.

This result allows the construction of integer-valued confidence sets using t-statistics with
bootstrapped standard error and bias.

1.6 Application to data on cities in the United States

In this section the identification results of the previous sections are applied to data on
neighborhood composition in cities in the United States. In particular, we estimate the
extent to which the Hispanic share in a given neighborhood affects the decision of Hispanics
and non-Hispanics to move to that neighborhood. The next subsection provides a description
of the Neighborhood Change Data Base (NCDB), which aggregates data of the US census
to the level of census tracts, and discusses sample selection as well as variable construction.
The sample is restricted to larger urban areas and outliers are omitted. Imputed rents have
to be calculated from observed rents and house values.

Subsection 1.6.2 provides estimates of demand slopes and hedonic slopes based on the
various exclusion restrictions that were discussed in sections 1.3 and 1.5. These estimates
consistently suggest large positive dependence of demand of Hispanics on Hispanic share and
similarly large positive dependence of demand of non-Hispanics on non-Hispanic share. The
estimates of price slopes with respect to Hispanic share imply moderately negative depen-
dence. Subsection 1.6.3 checks the robustness of these results by applying the estimators
to various subsamples and different housing cost variables and by decomposing the linear
IV coefficients using the results of appendix 1.A. In section 1.6.4, finally, we look at the
dynamics of neighborhood composition over time for the largest metropolitan areas in the
United States. The evidence suggests the absence of multiple equilibria in the dynamics of
composition. Social externalities do not seem to be strong enough to cause tipping behavior.

1.6.1 The data

The data set used is an extract from the Neighborhood Change Database (NCDB) which
aggregates US census variables to the level of census tracts. Tract definitions are changing
between census waves but the NCDB matches observations from the same geographic area
over time, thus allowing to observe the development over several decades of the universe of
US neighborhoods.
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The sample is selected in a manner similar to Card, Mas, and Rothstein (2008), who use
the same database. In particular, all rural tracts are dropped, as well as all metropolitan
standard areas (MSA) with fewer than 100 tracts, all tracts with population below 200 and
tracts that grew by more than 5 standard deviations above and beyond the MSA mean.
The definition of MSA used is the MSAPMA from the NCDB, which is equal to “Primary
Metropolitan Statistical Area” if the tract lies in one of those, and equal to the MSA it lies
in otherwise.

Three measures of housing prices are used, median reported rents, median reported
values, and an “imputed rent” variable created by myself. The latter imputes rents based on
housing values and takes share weighted averages of imputed and reported rents as follows.
By the arbitrage condition between owning and renting discussed in section 1.4.1, we have
P = rP− Ṗ. Under the assumption that the expected value appreciation Ṗ is uncorrelated
with baseline value P, the appropriate interest rate can then be determined by a cross-
sectional linear regression of P on P. Rents are imputed from housing values as the predicted
rents from such cross-sectional regressions in each decade. The imputed rent variable used
in regressions is a weighted mean of average observed rents and average rents predicted from
house values, where the weights correspond to the respective share of rental and non-rental
units in a tract.

1.6.2 Exclusion restrictions based estimates

The parameters of interest are the dependence of the demand of Hispanics and non-Hispanics
on Hispanic share, everything else equal, as well as the (weighted average) willingness to pay
for composition, which is reflected in the counterfactual hedonic slope P+

m of housing costs
with respect to Hispanic share.

Table 1.1 shows a number of “naive” hedonic and demand regressions that ignore prob-
lems of omitted variables and the endogeneity of composition in the presence of social ex-
ternalities. Clearly, problems of omitted variable bias are severe as, throughout the demand
regressions shown, demand is increasing in prices, suggesting price variation is driven by
fluctuations in demand due to variation in omitted factors X. Taken at face value, these
regressions would furthermore suggest a negative preference of non-Hispanics for Hispanic
share, and a strong positive preference of Hispanics for Hispanic share, as well as an average
willingness to pay for Hispanic share of around 0.

In this subsection, several instrumental variables for neighborhood composition are con-
structed, as suggested by the theoretical results of sections 1.3 and 1.5. Throughout this
section, the restrictive assumption is made that C = 2 and the relevant type variable is
Hispanic origin. Hispanics are denoted by c = 1 and non-Hispanics by c = 2. The preferred
specifications are run in decadal differences on the dataset pooling changes over the 80s and
90s, controlling for MSA × time fixed effects. They furthermore control for neighborhood
and decade specific initial conditions, as described below. Let us now define the instruments
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used and discuss the conditions of their validity. Then, the empirical results of the preferred
specifications, as shown in table 1.2, will be discussed and put in the context of the theo-
retical models. The theoretical interpretations of the entries of table 1.2 are summarized in
table 1.3.

1.6.2.0.1 Subgroup shifters
Let c̃ denote “subtypes” of Hispanics which correspond to country of origin (Mexico, Puerto
Rico and Cuba). M c̃ is the initial population of type c̃ in a neighborhood and dM c̃,nat/M c̃,nat

is the the total change of population of type c̃, summed over all neighborhoods in the dataset,
divided by total initial population of type c̃. The instrument dXI is defined as

dXI =
1

M1 +M2

∑
c̃

M c̃ · dM
c̃,tot

M c̃,tot
. (1.51)

This is a synthetic instrument similar to the one used by Card (2001) on the MSA level as
a predictor of changes in labor supply. It is predictive for local changes in Hispanic share
if new immigrants from the same source countries have a similar distribution of preferences
as prior migrants, whether the preference is for exogenous location characteristics or for the
presence of their compatriots.

Formally, in order to use dXI as an instrument for composition m in estimation of D2
m, we

need dXI to satisfy the conditions D2
XI = 0, D1

XI 6= 0 and dXI has to be uncorrelated with
counterfactual changes in M2. The instrument dXI is excluded from the demand of type
c = 2 if there is no causal effect of total immigration on demand of type 2, i.e., non-Hispanics.
This might not hold if the set of outside options is affected by immigration. All regression
control for MSA × time fixed effects, however, absorbing any city-wide shifts in outside
options. They furthermore control flexibly for initial Hispanic share, so that identification
is driven by variation in the composition of initial Hispanic population of a neighborhood in
terms of country of origin, conditional on Hispanic share. We also need the instrument dXI

to be independent of changes in ε affecting demand of type 2. A potential threat to validity
here would be some delayed adjustment due to frictions, which could imply a correlation
between current composition and future adjustment of type 2 population. The fact that
shifting immigrant demand will also shift rental prices for non-Hispanics will be explicitly
taken into account below.

1.6.2.0.2 Spatial structure and exclusion restrictions
Spatial structure is extracted from the data as follows: For each census tract, the Neighbor-
hood Change Data Base reports latitude α and longitude β of an interior point. Distance
between neighborhoods is defined, based upon these coordinates, as the euclidean distance
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between the corresponding coordinates in R3, which are given by

6371 · (cos(α) · cos(β), cos(α) · sin(β), sin(α)) . (1.52)

Here 6371 is taken to be the radius of earth in kilometers. Denote the average predicted shift
of Hispanic demand in neighborhoods that are at least 3 km away, but among the 15 closest
neighborhoods, by dX>3, where predicted shift is the synthetic instrument dXI defined by
equation 1.51. Denote m̃ the average Hispanic share in the given neighborhood and its 4
closest adjacent tracts.

In order to use dX>3 as an instrument for composition m̃ in estimation of D2
m̃, in the con-

text of the spatial model of section 1.3.4, we need dX>3 to satisfy the conditions D2
X>3 = 0,

m̃X>3 6= 0, and dX>3 has to be uncorrelated with counterfactual changes in M and P .
Furthermore, we need to assume that the composition variable which does matter for house-
holds’ location choices is m̃. The regressions using dX>3 as an instrument for m̃ will control
for dXI , and thus use variation in composition orthogonal to the one used in the subgroup
approach. While we might expect some amenities to be relevant for neighborhoods further
than 3km away, it seems plausible that the exclusion restrictions are satisfied in the case of
predicted immigration for neighborhoods at a certain distance conditional on local predicted
immigration. The use of m̃, the average of m for 5 adjacent neighborhoods, as relevant
composition variable is quite arbitrary. The results are robust to different specifications of
m̃, however.

1.6.2.0.3 The dynamic structure of price responses and exclusion restrictions
Let dXL be the decadal change in m, lagged by a decade. The variable dXL is used as an
instrument for ∆m in regressions of ∆P on ∆m, controlling for m. In the context of the
dynamic model, past changes in m are predictive of future changes if they reflect incomplete
adjustments to past shocks in X.

Proposition 5 stated that, under the appropriate assumptions, any shocks to X are
immediately incorporated into prices P according to household willingness to pay. Due
to search frictions, however, composition m only adjusts with delay, with prices following
accordingly. Past changes in m are a valid instrument for future changes in m iff they are
uncorrelated with future changes in X. We shall make the strong identifying assumption
that this holds true, conditional on current Hispanic share m. The main threat to the validity
of this assumption would be anticipated changes in amenities X that are reflected in past
composition changes.

1.6.2.0.4 Discussion and interpretation of estimates
Table 1.2 shows the central empirical results, using these instruments. Instrumental vari-
able regressions which are not theoretically meaningful are omitted from the table. Table 1.3
shows the corresponding interpretations of these results under the assumptions of the respec-
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tive models. The first thing to note is that the instrument is a highly significant predictor
of the change in local composition for all three specifications. Strength of the instruments
is therefore not an issue.

For both the subgroup instrument and the spatial instrument, the results suggest a strong
negative dependence of the demand of non-Hispanics on Hispanic share. We have to take
care, however, to correct for the price effect of changing Hispanic share in order to obtain
structural slopes of demand (compare corollaries 2 and 3). This is reflected in the bias terms

of the form D2
P
P ∗X
mX

in table 1.3. If we assume that the elasticity of non-Hispanic demand
with respect to rents is between 0 and 2, and taking into account that the IV regressions of
P on m yield coefficients of around -0.5, this implies a bias of around 0 to 1. Subtracting
this bias yields estimates of D2

m of -6.3 to -9.4. For Hispanics, the estimate based on the
spatial instrument implies a positive dependence of demand on Hispanic share. Correcting
again for the rent-bias, we get an estimate of D1

m of around 2.4 to 3.4. The IV regressions
of prices on Hispanic share, using the spatial and dynamic instruments, yield moderately
negative estimates of P+

m of -0.75 and -0.52. This implies a moderately negative average
marginal willingness to pay for Hispanic share.

These results are remarkably consistent across instruments. While we might have doubts
about the validity of each of the instruments, they do rely on different assumptions and use
orthogonal variation in the data, so that this consistency might add to the credibility of the
results. Finally, let us compare these results to those using “naive” regressions, as shown
in table 1.1. Consistently across specifications, it seems that the naive estimates of D1

m, D
2
m

are strongly upward biased, and the estimates of P+
m are moderately upward biased. This

also holds true for the specifications in differences controlling for initial Hispanic share and
MSA × time fixed effects. One interpretation of this result might be that Hispanic location
decisions were more “pro-cyclical” relative to non-Hispanics, i.e., Hispanic demand reacted
more strongly to unobserved shocks in X.

1.6.3 Robustness - Subsamples, different housing cost variables, and
decomposition of the LATE

The regressions of the previous subsection used the full sample of the 114 largest MSAs in
the United States, pooling the data for changes in the 80s and in the 90s. In this subsection,
the robustness of the results is checked by replicating the regressions on subsamples. In
particular, table 1.4 presents estimates for the subset of MSAs with Hispanic shares larger
than 8% in 2000. This corresponds to roughly 50% of the sample. Furthermore, there might
be concerns about the effect of rent controls. Table 1.5 replicates the regressions on the
sample of MSAs excluding California and the state of New York, where rent controls might
play some role. Table 1.6 finally shows estimates for the 80s and for the 90s separately. This
table also uses median rents and median reported house values as alternative housing cost
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variables.
The results are largely consistent with those obtained previously, with a few exceptions.

First, in the sample of MSAs with large Hispanic shares, Hispanics seem less responsive
in their location decision to the Hispanic share of a neighborhood. Second, in the sample
excluding California and New York, price responses seem somewhat stronger. This might
indicate a certain role of rent controls. Finally, in this sample the subgroup instrument is
quite weak, and the corresponding estimate of D2

m very high with a very large standard
error. The different housing cost variables behave in a roughly similar way.

Finally, instrumental variables estimates describe the local average treatment effect (LATE)
for the subpopulations for which the instruments do affect the treatment. What are the char-
acteristics of these subpopulations of neighborhoods for our instruments? The decomposition
results of appendix 1.A can be used to shed some light on this question. In particular, the IV
coefficient controlling for covariates can be decomposed as a weighted average of structural
slopes over the sampling population, where the weights ω are identifiable and are given by

ω =
∆m · e

E[∆m · e]
.

In this expression, ∆m is the regressor of interest and e is the residual of a regression of the
instrument on the controls. Panels 1.5 through 1.7 show the unweighted density of the initial
Hispanic share across neighborhoods for the sample used, as well as this density reweighted
by ω, for weights ω corresponding to the various instruments. They furthermore show plots
of estimates of the “conditional first stage” and “conditional reduced form,” E[ω|m] and
E[∆Y ·e|m], where ∆Y corresponds to the change of various outcomes of interest. The plots
of the reweighted densities are particularly instructive. They show that the specification
using the subgroup instrument estimates a LATE for neighborhoods with a medium to high
initial Hispanic share, using the spatial instrument yields a LATE for neighborhoods with
lower Hispanic shares (although still upweighting higher shares relative to the population),
and the dynamic instrument estimates a LATE for neighborhoods somewhere in between.
The conditional expectation estimates for higher values of m should be interpreted with
caution, as they are quite imprecisely estimated due to limited support of Hispanic share in
the right tail.

The graphs of the conditional reduced form of price responses, E[∆P · e|m] for the
spatial and dynamic instrument, when compared to the conditional first stage, E[ω|m],
are somewhat worrisome. They suggest significant variation of the conditional IV coefficient
given m over the range of m. This does not imply invalidity of the instrument, but it cautions
to be careful when extrapolating the willingness-to-pay results to different populations.
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1.6.4 Multiple equilibria

Finally, we shall now look at the dynamics of neighborhood composition in the largest
metropolitan areas of the United States, and discuss what they reveal about underlying
multiplicity of equilibria in composition. According to lemma 10, if the corresponding static
model has multiple equilibria, then the dynamic model has multiple equilibria. Under as-
sumption 1.5.1, if the dynamic model has multiple equilibria, then cross sectional quantile
regressions of ∆m on m have multiple roots. Section 1.5.2.1 reviewed inference on the number
of roots of nonparametrically identified functions as proposed in chapter 2.

Panel 1.8 shows kernel density plots of the distribution of Hispanic share across census
tracts in the three largest Metropolitan Areas of the United states, in 1980 and 1990. Panel
1.9 displays quantile regressions of the change in Hispanic share on initial Hispanic share for
the 1980s and 1990s for the same cities, where the plots show the 0.2, 0.5 and 0.8 conditional
quantile.

Visual inspection of these quantile regressions suggests a pattern of stability with mean-
reversion for New York, where all neighborhoods appear to be converging to a medium level of
Hispanic share, although at a rather slow rate. Los Angeles, on the other hand, experienced
growth of Hispanic shares across neighborhoods, with the Hispanic share in intermediate
neighborhoods growing the fastest. The pattern for Chicago is less clear. In interpreting
these regressions, we have to be careful about the initial support of m. As Chicago had very
few neighborhoods with high Hispanic shares, the estimates for high initial m are largely
based on extrapolation. That said, these pictures do not seem to suggests a pattern of
unstable equilibria, which would imply regressions crossing the horizontal axis from below.

Table 1.7 formalizes this visual intuition, testing for the number of roots of these quantile
regressions in the interval [0, 1]. Each city and decade is considered separately. As can be
seen from this table, in nearly all cases considered, multiplicity of roots can be rejected at the
5% level. Two things are important to note. First, the smoothing parameter ρ was chosen to
equal 0.04. For regressions that stay within the interval [−.04, .04] over extended ranges this
might imply an upward bias, if estimated regressions are “wiggly” due to estimation noise,
and a downward bias, if the true regressions peak within this range and intersect the axis
on both sides of the peak. Second, the range of integration was chosen to equal [0, 1]. This
implies, in particular, that roots lying right at the boundary of this interval might only be
“counted half”. It implies furthermore that the regressions might be extrapolating in ranges
of initial Hispanic share for which no observations are available. Hence, in interpreting these
estimates, the corresponding graphs should always be considered.

1.7 Summary and conclusion

In this paper we presented models of sorting in which location choices depend on the location
choices of other agents, as well as exogenous location characteristics. In such a setup, the
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composition of agents at a location is an endogenous equilibrium outcome with generically
degenerate support given exogenous location characteristics. This leads to an identification
problem similar to the “simultaneity problem” and the “reflection problem” discussed in the
literature: the effects of endogenous composition and exogenous characteristics on agents’
location choices and prices are not separately identified.

A series of approaches to overcome this problem was proposed here. The first is based
on assuming that some exogenous, location specific demand shifters are excluded from the
choices of a subgroup of agents. If that is the case, random variation in such exogenous
characteristics can serve as an instrument for endogenous composition. The second is based
on assuming a spatial structure with externalities across adjacent locations. Given such a
spatial structure, variation in exogenous characteristics at a location generates variation in
composition propagating across adjacent neighborhoods, and can serve as an instrument for
composition in neighborhoods not immediately adjacent. The third is based on a dynamic
search-model extension. In this extension prices adjust immediately but location composition
reacts only with delay to changes in exogenous characteristics, because of search frictions.
Past shocks in exogenous characteristics can therefore serve as instruments for future compo-
sition changes. Finally, the testable implications of multiplicity of equilibria in composition,
as implied by strong social externalities, were discussed.

In an application of these approaches, the impact of the share of Hispanics in neighbor-
hoods in the United States on housing demand of Hispanics and non-Hispanics as well as
rental prices was studied. The results consistently suggest a strong impact of composition on
location choices, in the form of an own-group preference. This contrasts with the rather weak
evidence on the impact of neighborhood composition on observable outcomes of residents, as
in Katz, Kling, and Liebman (2007). It remains a task for future research to further disentan-
gle the nature of the social externalities that were found here. For instance, we could think
of the reduced form demand functions D(X,M,P ) as reflecting preferences over endogenous
amenities W (X,M), D(X,M,P ) = D(X,W (X,M), P ), where dim(W ) = dim(M). Under
this assumption, DM = DWWM . Given identification of DM , one could attempt to identify
either DW or WM , and then invert to get for instance DW = DMW

−1
M . Identification of WM

could come from shocks to X which are excluded from W but do affect composition M . This
approach would require full observability of W .

Application of the methods developed here to a number of different problems seems
interesting. For instance, in the field of economic geography firm location choices are studied
which depend on exogenously given geographic factors and the location choices of other
firms (and households). One central question of this field is to understand the mechanisms
determining the agglomeration or dispersion of economic activity, see for instance Krugman
(1991) and Ellison and Glaeser (1999). It seems that the problem of firm location choice has
a very similar structure to the problem of household neighborhood choice within a city, which
motivated this paper. Another interesting application might be the academic job market:
In choosing among job-offers, academics will generally make their decision based not only
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on exogenous characteristics (location, facilities...) and pay, but based also on who else is
working at a given university.

Appendix 1.A Decomposition representations of linear IV
coefficients

In this appendix, a series of representations of linear IV coefficients in terms of weighted
average slopes is developed. These results resemble closely the LATE representations intro-
duced by Imbens and Angrist (1994). The distinguishing feature of the results presented
here is that all weights are defined in terms of observable and identifiable quantities, as op-
posed to first stage structural slopes (in the binary case, compliance versus noncompliance).
This allows to describe the distribution of any observable covariates for the population over
which structural slopes are averaged to obtain the linear IV coefficients. In the terminology
of Imbens and Angrist (1994), we don’t know who the compliers are but we do know how
they look like. Results similar in spirit were used by Kling (2001).

The first set of results is stated for a random coefficient, cross-sectional setup. These
results suggest to plot densities of covariates with respect to a reweighted distribution, and
to plot conditional IV coefficients in the case of linear IV with controls. Then, these results
are generalized to the fully non-parametric panel difference case, which is the setup relevant
for the present paper.

Lemma 13 (Crossectional IV, random coefficient case). Assume that

Y i = αi + βiX i (1.53)

and assume Cov(Z, α) = 0. Then

βIV =
Cov(Y, Z)

Cov(X,Z)
= E

[
βi · ω

]
for a weighting function

ω =
X(Z − E[Z])

E[X(Z − E[Z])]
.

Lemma 14 (Crossectional OLS with controls, random coefficient case). Assume that

Y i = X1,iβ1,i +X2,iβ2,i + ε (1.54)

for a scalar X1 and a vector X2. Assume X1 ⊥ (β, ε)|X2, and E[X2,iβ2,i + ε|X2] is linear
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in X2. Then the coefficient on X1 in OLS regression of Y on X is in expectation equal to

β1,OLS = E

[
E[β1,i|X2]

E[X1e|X2]

E[X1e]

]
,

where e is the residual from OLS regression of X1 on X2.

Lemma 15 (Crossectional IV with controls, random coefficient case). Assume that

Y i = X1,iβ1,i +X2,iβ2,i + ε (1.55)

for a scalar X1 and a vector X2. Assume Z ⊥ (β2, ε)|X2 for a scalar instrument Z, and
E[X2,iβ2,i + ε|X2] is linear in X2. Denote by e the residual of OLS regression of Z on X2.

Then the coefficient on X1 in IV regression of Y on X, instrumented by (Z,X2), is in
expectation equal to

β1,IV =
E[Y e]

E[X1e]
= E

[
E[β1,iX1e|X2]

E[X1e]

]
= E

[
β1,i · ω

]
for a weighting function

ω =
X1e

E[X1e]
.

These lemmas give a LATE representation of IV coefficients. In the setup of lemma 15,
the following two exercises seem instructive:

Suggestion 1: Plot the distribution of covariates (in particular of components of X2),
reweighted by ω. In the terminology of Imbens and Angrist (1994), this gives the distribution
of covariates for the set of compliers.

Suggestion 2: Calculate conditional IV given (components of) X2: Let Ê denote some
flexible (“nonparametric”) estimator of the conditional expectation. For components of X2,
plot (nonparametric) regressions of

β̂IV (X2) :=
Ê [Y e|X2]

Ê [X1e|X2]

on these components. The estimator β̂IV (X2) converges to a conditional weighted average
of the structural slope β2,

E

[
β1 X1e

E[X1e|X2]

∣∣∣∣X2

]
.

In, practice, however, such estimates of βIV (X2) might be poorly behaved. If the denomina-

tor, Ê [X1e|X2], has positive mass around 0, then β̂IV (X2) might not have a finite expecta-
tion. In that case, it can still be insightful to plot the “conditional reduced form” estimator
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Ê [Y e|X2].

The following lemmas extend the previous results to the panel-difference case.

Lemma 16 (Panel difference IV, random coefficient case). Assume that

Y it = αit + βitX it (1.56)

for t ∈ {0, 1}, and assume ∆Z ⊥ (∆α + ∆β ·X i,1).6 Then

βIV,∆ :=
Cov(∆Y,∆Z)

Cov(∆X,∆Z)
= E

[
βi,0 · ω

]
for a weighting function

ω =
∆X(∆Z − E[∆Z])

E[∆X(∆Z − E[∆Z])]
.

Lemma 17 (Panel difference IV, nonparametric case). Assume that

Y it = g(X it, εit) (1.57)

for t ∈ [0, 1], and assume

∆Z ⊥
∫ 1

0

gε(X
it, εit) · εt dt.

Then

βIV,∆ :=
Cov(∆Y,∆Z)

Cov(∆X,∆Z)
= E [gX · ω]

for a weighting function

ω =
Xt(∆Z − E[∆Z])

E[Xt(∆Z − E[∆Z])]
.

All expectations here are taken over the product distribution of the crosssectional distribution
over the i and the uniform distribution over the time interval [0, 1].

Lemma 18 (Panel difference IV, nonparametric case, if exclusion is violated). Assume that

Y it = g(X1,it, X2,it, εit) (1.58)

for t ∈ [0, 1], and assume

∆Z ⊥
∫ 1

0

gε(X
it, εit) · εt dt.

6That is, ∆Z is uncorrelated with the counterfactual change in Y which would have occurred if X had
stayed constant.
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Then

βY 1,IV,∆ :=
Cov(∆Y,∆Z)

Cov(∆X1,∆Z)
= E

[
gX1 · ω1

]
+R

for weighting functions (j = 1, 2)

ωj =
Xj
t (∆Z − E[∆Z])

E[Xj
t (∆Z − E[∆Z])]

and an error term

R = E

[
gX2 · X

2
t

X1
t

· ω
]

= E[gX2ω2] · β21,IV,∆ = E[gX2ω2] · Cov(∆X2,∆Z)

Cov(∆X1,∆Z)
.

All expectations here are taken over the product distribution of the crosssectional distribution
over the i and the uniform distribution over the time interval [0, 1].

Suggestion 3: Bound the error term by making a-priori assumptions giving bounds
on E[gX2ω2]. Estimate β21,IV,∆ = Cov(∆X2,∆Z)/Cov(∆X1,∆Z) directly from the data.

This appendix concludes with a characterization of cross-sectional linear IV in a trian-
gular system, where the weights in this lemma are now expressed in terms of first stage
structural slopes.

Lemma 19 (Cross-sectional linear IV in nonparametric triangular systems). Consider the
triangular system Y = g(X, ε), X = h(Z, η), Z ⊥ (ε, η), where all variables are continuously
distributed and g, h are continuously differentiable. Then

βIV =
Cov(Y, Z)

Cov(X,Z)
= E [gx(X, ε)ω(Z, η)]

for a weighting function ω which is given, up to normalization, by

ω(z, η) = const. · hz(z, η)

f(z)
· (E[Z|Z > z]− E[Z|Z ≤ z])P(Z > z)P(Z ≤ z).

The constant is such that E[ω] = 1.

Appendix 1.B Proofs

Section 1.2

Proof of proposition 1:
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This follows from applying Brouwer’s fixed point theorem to the following bounded contin-
uous mapping with convex domain:

(M,P )→

(
D(X,M,P ), P −

(
S(P,X)−

∑
c

M c

))
. (1.59)

The fixed points of this mapping are exactly the partial sorting equilibria. �

Section 1.3

Proof of Lemma 1 :
Plugging 1.7 into 1.8 and differentiating w.r.t. X gives

SX + SPP
+
X =

∑
c

M+c
X =

∑
c

(Dc
X +Dc

PP
+
X ) = EX + EPP

+
X .

Inelastic supply SP = 0 and constancy SX = 0 imply

P+
X = −EX

EP
.

Analogously,

P+
M = −EM

EP

and

P ∗X = −EX + EMM
∗
X

EP
.

By assumption 1.2.3 and iterated expectations, we can write E = M tot · E[P(u ≥ uo|uX)].
Denote fu−u

o|uX the conditional density of u − uo given uX , which exists according to as-
sumption 1.2.3. We get

1

M tot
EX = E

[
∂

∂X
P(u− uo ≥ 0|uX)

]
= E

[
uXf

u−uo|uX (0|uX)
]

=

∫
uX

fu−u
o,uX (0, uX)

f(uX)
f(uX)duX = fu−u

o

(0)E[uX |u = uo].

Similarly for EM and EP and for D. �

Proof of Corollary 1:
Immediate from lemma 1, once we check that this density integrates to one and is non-
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negative. �

Proof of Lemma 2:
u(X,M∗(X), P ∗(X)) ≥ uo implies the first order condition

uX + umM
∗
X + uPP

∗
X = 0

for all the households choosing the given neighborhood. �

Proof of Lemma 3:
For simplicity of notation, the superscript res will be omitted from reservation prices in
this proof. Furthermore, assume for the moment that there are no social externalities, i.e.,
uM = 0. The general case is completely analogous. By iterated expectations we can write

E[P |P ≥ P ∗] = E[E[P · 1(P ≥ P ∗)|PX ]]/P(P ≥ P ∗).

In integral notation, the conditional expectation is given by

E[P · 1(P ≥ P ∗)|PX ] =

∫ ∞
P ∗

Pf(P |PX)dP.

Differentiating this conditional expectation gives

∂

∂X
E[P · 1(P ≥ P ∗)|PX ] = PX · P(P ≥ P ∗|PX) + P ∗ · (PX − P ∗X) · fP−P ∗|PX (0|PX).

The second term is due to the change in the boundaries of integration. Hence

∂

∂X
E[P · 1(P ≥ P ∗)] = E[PX1(P ≥ P ∗)] + P ∗ · E[PX − P ∗X |P = P ∗] · fP−P ∗(0).

Similarly
∂

∂X
P(P ≥ P ∗) = E[PX − P ∗X |P = P ∗] · fP−P ∗(0).

Collecting terms then gives

∂

∂X
E[P |P ≥ P ∗] =

(
E[PX1(P ≥ P ∗)] + P ∗

∂

∂X
P(P ≥ P ∗)

)
/P(P ≥ P ∗)

− E[P |P ≥ P ∗]
∂

∂X
P(P ≥ P ∗)/P(P ≥ P ∗)

= E[PX |P ≥ P ∗]

−
(

∂

∂X
logP (P ≥ P ∗)

)
· [E [P res|P ≥ P ∗]− P ∗] .
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Finally, inelastic housing supply implies that, in equilibrium, the number of households must
be constant, i.e., P (P ≥ P ∗) does not depend on X. �

Proof of Proposition 2:
Identification follows from identification of supp p(M,P |X), the fact that by assumption
1.2.2 supp p(M,P |X) = (M∗(X), P ∗(X)) and equations 1.12 and 1.14. Non-identification is
a corollary of lemma 5 below. �

Proof of Lemma 4:
Identification follows from identification of (M∗(X), P ∗(X)) and equations 1.12 and 1.14.
Non-identification again follows from lemma 5 below. �

Proof of Lemma 5:
Take the family of demand functions

{D̃(X,M,P ) = f(X) + AM +BP : f arbitrary}.

In the absence of multiple equilibria, this model is just identified, where we get f(X) =
(1 − A)M∗(X) − BP ∗(X), and an “estimate” of D of D̂(X,M,P ) = (1 − A)M∗(X) −
BP ∗(X) + AM +BP , with DM = A, DP = B.
The proof for P+ is completely analogous. �

Proof of Proposition 3:
1.17 is immediate from M∗1

X = D1
X +D1

mm
∗
X +D1

PP
∗
X , once we have shown m∗X1 6= 0. Under

assumption 1.2.4, m∗X1 = dX1/(1− dm). Since d = D1/(D1 +D2),

dX1 =
−D1D2

X1

(D1 +D2)2
6= 0

by assumption.

Equation 1.18 follows from 1.17 if we can show
M∗1
X2

P ∗
X2

= D1
P . Under assumption 1.2.4, dP = 0,

and by assumption of this lemma dX2 = 0, hence m∗X2 = 0. It follows that M∗1
X2 = D1

PP
∗
X2 .

Finally,

P ∗X2 =
SX2

EP − SP
6= 0

again by assumption. �

Proof of Corollary 2:
This follows from proposition 3 and lemma 18. �
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Proof of Proposition 4:
By equation 1.21 it is immediate that

mk
Xl = dkm̃km̃

k
Xl ,

since X̃k
Xl = 0 by the assumption that the k, lth entry of G equals 0. Similarly

P+,k
Xl = dkm̃km̃

k
Xl

and
M∗c,k

Xl = Dc,k
m̃ m̃k

Xl +Dc,k
P P k

Xl .

To proof the claim, it remains to show that the denominator m̃k
Xl does not equal zero.

Differentiating equation 1.21 in its vector form, i.e., stacking up the equations for all neigh-
borhoods, gives

dm̃GmX + dX̃G = mX

and hence
mX = (I − dm̃G)−1dX̃G, (1.60)

where I is the N ×N identity matrix and dm̃ is a diagonal matrix with positive diagonal
entries, by assumption. Invertibility of (I −dm̃G) follows from the normalization of rows of
G to sum to one, and dm̃ < 1. We can expand equation 1.60 as a geometric series,

mX =

(∑
j≥0

(dm̃G)j
)

dX̃G. (1.61)

All of the terms in the series have non-negative entries, the k, lth entry of Gj is not equal 0
for some power j by assumption, the same holds for (dm̃G)j by dm̃ being a diagonal matrix
with positive diagonal entries, and finally dX̃G has non-zero diagonal entries. �

Proof of Corollary 3:
This follows from proposition 3, lemma 17 and lemma 18. �

Section 1.4

Proof of Lemma 6:
We can divide households of type c into four classes, depending on whether or not they live
in the neighborhood (indexed by 1 and o) and depending on whether the want to stay (s)
or to move (m) into or out of the neighborhood. Denote these classes by Dc,1,s, . . . , Dc,o,m.
By definition M c = Dc,1,s +Dc,1,m and Dc = Dc,1,s +Dc,o,m. A fraction λ of those that want
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to move will be successful per time unit, giving

Ṁ c = λ
(
Dc,o,m −Dc,1,m

)
= λ

(
(Dc,1,s +Dc,o,m)− (Dc,1,s +Dc,1,m)

)
= λ (Dc −M c) .

�

Proof of Lemma 7:
Recalling the definitions m = M1/(M1 +M2) and d = D1/(D1 +D2), and using the result
of the previous lemma,

ṁ =
∂m

∂M
Ṁ = λ · ∂m

∂M
· (D −M) = λ̆ · (d−m),

where

λ̆ := λ ·
∂m
∂M
· (D −M)

d−m
= λ · D

1 +D2

M1 +M2
.

The second equality in this expression follows from

∂m
∂M
· (D −M)

d−m
=

1
(M1+M2)2

(M2,−M1) · (D1 −M1, D2 −M2)
′

D1

D1+D2 − M1

M1−M2

=
D1 +D2

M1 +M2
.

By assumption 1.2.4, the price and scale elasticities of both types are identical and hence
d = d(X,m). Therefore ṁ = λ̆ · (d(X,m)−m).
Taking the time path of d and λ̆ as given, the solution to this differential equation can be
written as

mt = m0e−
∫ t
0 λ̆ds +

∫ t

0

λ̆de−
∫ t
s λ̆duds.

This gives mt as a weighted average of initial m0 and d in the time interval from 0 to t. Let-

ting κ = 1− e−
∫ 1
0 λ̆ds and (m,X) some appropriate intermediate values in the time interval

[0, 1] the claim follows. �

Proof of Lemma 8:
From equation 1.39 it is immediate that, for any given household, PX,m = (uX ,uM )

−uP
. By as-

sumption, due to search frictions, M has a smooth time path and in particular ∂
∂ξ

limt→0+ M =
0. �

Proof of Lemma 9: For any given household, it can be shown as in lemma 8 that

PX,m = −uX+uMM
lr
ξ

uP
. To prove the claim we have to show, that resorting of households ac-

cording to willingness to pay has no first order effect on the average reservation price within
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the neighborhood. But this follows immediately from lemma 3. �

Proof of Lemma 10:
First, M ∈ M∗ are the only constant solutions of the differential equation 1.36: Any stable
solution must imply M = D. By constancy of X,M and u, uo, V̇ = 0 and V = u/r,

V o = uo/r. Hence V > V o if and only if u > uo, and D is equal to demand D̃ in the
corresponding static model. A landlord accepts a tenant if and only if W for this tenant is
greater than W v, i.e., if

P = rW ≥ rW v =
rµ

r + µ
E [P new] .

By random matching E [P new] = Es[P res|P res > P ∗], and hence D equals to demand D̃ of
the corresponding static model.
The claim follows, since any limit of a converging path must satisfy Ṁ = 0. �

Proof of Lemma 11:
Let w.l.o.g. t0 = 0. If we denote V max = max(V o, V ) and impose a transversality condition,
we can solve equation 1.31 for V and get

V =

∫ ∞
0

e−
∫ t
0 (r+λ)ds [u(X,M,P ) + λV max] dt. (1.62)

This is again to be understood as a conditional expectation given the information set at time
0. A similar equation holds for V o.
Equation 1.62 implies

V − V o =

∫ ∞
0

e−
∫ t
0 (r+λ)ds [u− uo] dt

and hence
V − V o∫∞

0
e−

∫ t
0 (r+λ)dsdt

=

∫ ∞
0

wt [u− uo] dt, (1.63)

where we denote

wt :=
φt∫∞

0
φtdt

for φt = e−
∫ t
0 (r+λ)ds The weights wt integrate to one. Let ε > 0 be such that r+ λ > C1 and

|(u1,t − u2,t)− (u1,0 − u2,0)| < δ on the interval [0, ε], and assume r + λ > C2 on [0,∞). We
get ∣∣∣∣(u1,0 − u2,0)−

∫ ∞
0

wt [u− uo] dt
∣∣∣∣ < C3δ + (1− C3) sup

t
(u− uo) (1.64)
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for C3 =
∫ ε

0
wtdt. Some algebraic manipulation yields

C3 =
1

1 + φε∫ ε
0 φ

tdt

∫∞
ε φtdt

φε

.

By r + λ > C1 on [0, ε] ∫ ε

0

φtdt > φε
∫ ε

0

eC
1[ε−t]dt =

φε

C1

[
eC

1ε − 1
]
.

By r + λ > C2 on [ε,∞) ∫ ∞
ε

φtdt < φε
∫ ∞
ε

e−C
2[t−ε]dt =

φε

C2
.

Hence, as C1ε→∞
C3 >

1

1 + C1C2

eC1ε−1

→ 1.

The claim now follows from equation 1.64. �

Section 1.5

Proof of Proposition 5:
Claims 1 through 3 follow from the lemmata 6 through 10.
Claim 4 follows from lemma 3, because the resorting of marginal households according to
willingness to pay has no first order effect on the average willingness to pay if housing supply
is constant. �

Proof of Corollary 4: This follows from proposition 5 and lemma 17, once we note
that under the given assumptions

∂ logP

∂m
= E

[
− um
ulogP

]
for all neighborhoods and times. �.

Proof of Lemma 20:
By definition of conditional quantiles, F∆m|m (Q∆m|m(τ |m)|m

)
= τ . Differentiating this with

respect to m gives
∂

∂m
Q∆m|m(τ |m) = −

∂
∂m
F∆m|m(Q|m)

f∆m|m(Q|m)
. (1.65)
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The differential in the numerator has two components, one due to the structural relation
between ∆m and m, i.e., the derivative with respect to the argument m of d(m,X) − m,
and one due to the stochastic dependence of m and X.

∂

∂m
F∆m|m(Q|m) = E

[
κ · (dm − 1) · f∆m|dm,m,κ(Q|dm,m, κ)

∣∣m]
+

∂

∂m
P (κ · (d(m′, X)−m′) ≤ Q|m)

∣∣∣∣
m′=m

.

This can be seen as follows: We can decompose the derivative according to

∂

∂m
F∆m|m(Q|m) =

[
∂

∂m′
+

∂

∂m

]
P (κ · (d(m′, X)−m′) ≤ Q|m)

∣∣∣∣
m′=m

.

To simplify the first derivative, note that by iterated expectations

P (κ · (d(m′, X)−m′) ≤ Q|m) = E[F (κ · (d(m′, X)−m′)|m,κ, dm)|m].

Differentiating this with respect to m′ gives

E
[
κ · (dm − 1) · f∆m|dm,m(Q|dm,m)|m

]
.

The claim now is immediate. �

Proof of Proposition 10:
Sincem andm+∆m have their support in the interval [0, 1], Q∆m|m(τ |0) ≥ 0 andQ∆m|m(τ |1) ≤
0. Therefore the uniqe root m of Q∆m|m(τ |m) must be stable, ∂

∂m
Q∆m|m(τ |m) ≤ 0.

By lemma 20 and assumption 1.5.1, this implies that E [κ · (dm − 1)|∆m = Q,m] ≤ 0.
Finally, note that for all m where (0,m) is in the support of (∆m,m), there exists a τ such
that Q∆m|m(τ |m) = 0. �

Appendix 1.A

Proof of lemma 13:
Since Cov(αi, Z) = 0, we have Cov(Y, Z) = Cov(βiX,Z) = E[βiX(Z − E[Z])] �

Proof of lemma 14:
By the Frisch-Waugh theorem, β1,OLS = E[Y e]

E[X1e]
, where e is the residual from OLS regression

of X1 on X2. By linearity of E[X2,iβ2,i + ε|X2] and independence of β2,i, εi and (X1,i, X2,i),
E[Y e] = E[β1,iX1,ie]. By independence of β1,i and (X1,i, X2,i), E[β1,iX1,ie|X2,i] = E[β1,i|X2]E[X1e|X2].
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The claim then follows from iterated expectations. �

Proof of lemma 15:
β1,IV = E[Y e]

E[X1e]
follows again from the Frisch-Waugh theorem, applied to the two-stage least-

squares representation of β1,IV , and E[Y e] = E[β1,iX1,ie] from linearity of E[X2,iβ2,i+ ε|X2]
and conditional independence Z ⊥ (β2, ε)|X2. �

Proof of lemma 16:
Immediate from lemma 13, with differences replacing levels. �

Proof of lemma 17:
Under appropriate smoothness assumptions, we can write

∆Y =

∫ 1

0

(gX(X it, εit) ·Xt + gε(X
it, εit) · εt) dt.

By exogeneity of the instrument, we then get

Cov(∆Y,∆Z) = E

[∫ 1

0

gX(X it, εit) ·Xt dt(∆Z − E[∆Z])

]
== E [gX · ω] .

�

Proof of lemma 18:
This is an immediate extension of lemma 17. �

Proof of lemma 19:
First, consider the covariance of X and Z. Denote µ(Z) := E[X|Z] = E[h(Z, η)|Z]. Then

Cov(X,Z) = E[µ(Z)(Z − E[Z])] =

∫ ∞
−∞

∫ z

−∞
µz(z̃)(z − E[Z])f(z)dz̃dz =

=

∫ ∞
−∞

µz(z̃)

∫ ∞
z̃

(z−E[Z])f(z)dzdz̃ =

∫ ∞
−∞

µz(z̃) (E[Z|Z > z]− E[Z|Z ≤ z])P(Z > z)P(Z ≤ z)dz̃dz =

= E [hz(Z, η)ω̃(Z)] ,

where

ω̃(z) :=
1

f(z)
(E[Z|Z > z]− E[Z|Z ≤ z])P(Z > z)P(Z ≤ z).

Similarly,
Cov(Y, Z) = E [gx(X, ε)hz(Z, η)ω̃(Z)] .
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The assertion follows from βIV = Cov(Y,Z)
Cov(X,Z)

. �

Appendix 1.C Figures and tables

Table 1.1: Naive hedonic and demand regressions

log non-Hisp pop log Hisp pop log mean imputed rent
Cross-section Hisp shr -1.815 5.616 -0.476

(0.023) (0.039) (0.005)
log mean 0.117 0.198
imputed rent (0.014) (0.031)

Differences Hisp shr -1.674 5.946 -0.321
(0.025) (0.064) (0.008)

log mean 0.398 -0.278
imputed rent (0.014) (0.015)

Differences Hisp shr -1.681 7.433 0.293
w. controls (0.027) (0.076) (0.009)

log mean 0.378 0.555
imputed rent (0.014) (0.037)

Notes: This table shows demand regressions of log non-Hispanic population and log Hispanic population on
Hispanic share and log mean imputed rents, as well as hedonic regressions of log mean imputed rents on
Hispanic share. The first specification is a pooled cross-sectional regression using data from 1980, 1990 and
2000, the second and third are regressions in decadal differences for the 80s and 90s. All regressions control
for MSA × time fixed effects, the third specification additionally for initial Hispanic share and its square.
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Table 1.2: Instrumental Variable estimates, decadal changes in the 80s and
90s

first stage IV regressions
Instrument log non-Hisp pop log Hisp pop log mean imputed rent
subgroup 0.146 -8.360 – –

(0.016) (0.740)
spatial 0.119 -6.251 3.437 -0.758

(0.007) (0.620) (0.733) (0.119)
dynamic 0.198 – – -0.516

(0.011) (0.049)

Notes: This table shows instrumental variables regressions of the change in log non-Hispanic population,
log Hispanic population, and mean imputed rent on the change in Hispanic share using the instruments
discussed in the text. All regressions pool data for the 80s and the 90s and control for time × MSA fixed
effects. The subgroup and dynamic instrument regressions control for initial Hispanic share and its square,
the spatial instrument regressions control for predicted immigration.

Table 1.3: Theoretical interpretation of the entries of table 1.2

first stage IV regressions
Instrument log non-Hisp pop log Hisp pop log mean imputed rent

subgroup m∗XI

M∗2
XI

m∗
XI

= – –

D2
m +D2

P

P ∗
XI

m∗
XI

spatial m̃X>3

M∗2
X>3

m̃X>3
=

M∗1
X>3

m̃X>3
=

PX>3

m̃X>3
= P+

m̃ =

D2
m̃ +D2

P

P ∗
X>3

m̃X>3
D1

m̃ +D1
P

P ∗
X>3

m̃X>3
Ẽ

[
−um̃

uP

∣∣∣∣u = uo
]

dynamic ∆mXL – –
∆P

XL

∆m
XL

=

E
[
−um

uP

]
Notes: This table shows the theoretical interpretations of the first stage and instrumental variable coefficients
displayed in table 1.2. The regression coefficients estimate weighted averages of the slopes shown here.
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Table 1.4: Subsample of MSAs with large Hispanic share - Instrumental Vari-
able estimates

first stage IV regressions
Instrument log non-Hisp pop log Hisp pop log mean imputed rent
subgroup 0.146 -8.262 – –

(0.016) (0.742)
spatial 0.114 -6.419 0.651 -0.760

(0.007) (0.677) (0.762) (0.128)
dynamic 0.210 – – 0.210

(0.011) (0.011)

Notes: This table replicates table 1.2 for the subset of cities with Hispanic shares larger than 8% in 2000,
which corresponds to roughly 50% of the neighborhoods in the full sample.

Table 1.5: Subsample excluding California and New York - Instrumental Vari-
able estimates

first stage IV regressions
Instrument log non-Hisp pop log Hisp pop log mean imputed rent
subgroup 0.043 -33.575 – –

(0.024) (17.116)
spatial 0.122 -8.257 5.513 -1.021

(0.010) (0.891) (1.046) (0.163)
dynamic 0.171 – – -0.981

(0.016) (0.092)

Notes: This table replicates table 1.2 for the subset of cities outside the states of California and New York.
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Chapter 1. Identification in models of sorting with social externalities

Table 1.7: .95 confidence sets for Z(g) for the largest MSAs by decade and
quantile

place 80s 90s
q = .2 q = .5 q = .8 q = .2 q = .5 q = .8

New York [1,1] [0,0] [0,0] [0,0] [1,1] [0,0]
Los Angeles [0,0] [1,1] [1,1] [1,1] [1,1] [1,1]
Chicago [1,1] [1,1] [0,0] [0,0] [0,0] [0,0]
Houston [0,1] [0,0] [0,0] [0,1] [1,1] [0,0]
Phoenix [1,3] [0,0] [0,0] [1,1] [0,0] [0,0]
Philadelphia [1,3] [0,0] [0,1] [1,1] [0,1] [0,0]
San Antonio [0,0] [0,0] [0,0] [0,0] [0,0] [0,0]
Dallas [1,1] [0,0] [0,0] [1,2] [0,0] [0,0]
San Diego [1,1] [0,0] [0,0] [1,1] [1,1] [1,1]
San Jose [0,1] [0,0] [0,0] [1,1] [1,1] [0,0]
San Francisco [1,1] [1,1] [0,0] [2,2] [1,1] [0,0]

Notes: The table shows confidence intervals in the integers for Z(g) for the ten largest MSAs of the Unites
States, and for San Francisco, ordered by population size, where g is estimated by local linear quantile
regression of the change in Hispanic share over a decade on the initial Hispanic share for the quantiles q =
.2, .5 and .8. Regression bandwidth τ is n−.2, ρ is chosen as .04. Confidence sets are based on t-statistics
using bootstrapped bias and standard errors.
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Observable data, regression slopes

Equilibrium comparative statics: M*(X), P*(X)

Demand functions, counterfactual prices: D(X,M,P), P+(X,M)

Household preferences: u(X,M,P)

Appendix A

Assumptions Identification

Sections 3.2,3.3,3.4, 5.1

Section 3.1

Assumption 2

Assumption 1, Definition1

Assumption 3

Figure 1.1: Assumptions and steps of the identification problem

m

d

d(m,X)
d(m,X2)

m* m*2 E,S

P
S(P)

E(P,m*,X)

E(P,m*2,X2)

E(P,m*,X2)P*

P*2

Figure 1.2: Comparative statics in the simplified C = 2 model
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m

d

d(m,X)
d(m,X2)

m* m*2

Figure 1.3: Multiple equilibria and tipping
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t

P
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P
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s  r  ξ

P
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l r  ξ
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0

m
X
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Figure 1.4: Dynamic response to shock in X
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Figure 1.5: Decomposition of the subgroup instrumental variable estimate

Density and reweighted density of initial Hispanic share
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Notes: These graphs decompose the IV estimate based the subgroup instrument shown in table 1.2, ac-

cording to lemma 15. The top row shows a kernel estimate of the density of initial Hispanic share across

neighborhoods in the sample, as well as this density reweighted to give the distribution among the population

for which the LATE is estimated. The bottom row shows kernel estimates of the conditional expectation of

the weight ω, as well as the “conditional reduced form”, ∆M2 · e.
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Figure 1.6: Decomposition of the spatial instrumental variable estimate

Density and reweighted density of initial Hispanic share
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Notes: These graphs replicate those of figure 1.5 for the spatial instrument, and display conditional reduced

forms for the additional outcome variables M1 and P .
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Figure 1.7: Decomposition of the dynamic instrumental variable estimate

Density and reweighted density of initial Hispanic share
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Notes: These graphs replicate those of figure 1.5 for the dynamic instrument, where the conditional reduced

form is for the outcome variable P .
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Figure 1.8: Density of initial Hispanic share in 1980 and 1990
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Notes: These graphs show kernel density estimates of the distribution of initial Hispanic share across neigh-

borhoods for the years 1980 (left column) and 1990 (right column).
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Figure 1.9: Quantile regressions of the change in Hispanic share on initial
Hispanic share over the 1980s and 1990s
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Notes: These graphs show local linear quantile regressions of the change in Hispanic share and on initial

Hispanic share, .2, .5 and .8th conditional quantile, for the 80s (left column) and 90s (right column). The

graphs do not show confidence bands.
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Chapter 2

Nonparametric inference on the number
of equilibria

Abstract

This paper proposes an estimator and develops an inference procedure for the number of roots of

functions which are nonparametrically identified by conditional moment restrictions. The estimator

is superconsistent, and the inference procedure is based on non-standard asymptotics. This proce-

dure is used to construct confidence sets for the number of equilibria of static games of incomplete

information and of stochastic difference equations. In an application to panel data on neighborhood

composition in the United States, no evidence of multiple equilibria is found.

2.1 Introduction

Some economic systems show large and persistent differences in outcomes even though the
observable exogenous factors influencing these systems differ little.1 One explanation for
such persistent differences in outcomes is multiplicity of equilibria. If a system indeed has
multiple equilibria, temporary, large interventions might have a permanent effect, by shifting
the equilibrium attained, while long-lasting, small interventions might not have a permanent
effect. This paper develops a superconsistent estimator2 and an inference procedure on
the number of equilibria of economic systems. Suppose the equilibria of a system can be
represented as solutions to the equation g(x) = 0, and suppose g can be identified by some
conditional moment restriction. The procedure proposed here provides confidence sets for
the number Z(g) of solutions to the equation g(x) = 0.

1“System” might refer to households, firms, urban neighborhoods, national economies, etc.
2An estimator is called superconsistent if it converges at a rate faster than the usual parametric rate,

which equals the square root of the sample size.
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Some examples help motivate interest in the number of equilibria. Multiple equilibria
and poverty traps are discussed by Dasgupta and Ray (1986), Azariadis and Stachurski
(2005), and Bowles, Durlauf, and Hoff (2006). Poverty traps can arise, for instance, if an
individual’s productivity is a function of her income and if wage income reflects productivity,
as in models of efficiency wages. Productivity might depend on wages because nutrition and
health are improving with income. If this feedback mechanism is strong enough, there might
be multiple equilibria, and extreme poverty might be self-perpetuating. In that case, public
investments in nutrition and health can permanently lift families out of poverty.

Multiple equilibria and urban segregation are discussed by Becker and Murphy (2000)
and Card, Mas, and Rothstein (2008). Urban segregation, along ethnic or sociodemographic
dimensions, might arise because households’ location choices reflect a preference over neigh-
borhood composition. If this preference is strong enough, different compositions of a neigh-
borhood can be stable, given constant exogenous neighborhood properties. Transition be-
tween different stable compositions might lead to rapid composition change, or “tipping,” as
in the case of gentrification of a neighborhood. Interest in such tipping behavior motivated
Card, Mas, and Rothstein (2008), and is the focus of the application discussed in section 2.4
of this paper.

Multiple equilibria and the market entry of firms are discussed by Bresnahan and Reiss
(1991) and Berry (1992). Entering a market might only be profitable for a firm if its com-
petitors do not enter that same market. As a consequence, different configurations of which
firms serve which markets might be stable.

In sociology, finally, multiple equilibria are of interest in the context of social norms.
If the incentives to conform to prevailing behaviors are strong enough, different behavioral
patterns might be stable norms, i.e., equilibria, see Young (2008). Transitions between such
stable norms correspond to social change. One instance where this has been discussed is the
assimilation of immigrant communities into the mainstream culture of a country.

We will discuss two general setups that allow us to translate the hypothesis of multiple
equilibria into a hypothesis on the number of roots of some identifiable function g; these
setups are (i) static games of incomplete information and (ii) stochastic difference equations.
In section 2.3.4, a nonparametric model of static games of incomplete information, similar to
the one analyzed in Bajari, Hong, Krainer, and Nekipelov (2006), will be discussed.3 Assume
there are two players i = 1, 2, who both have to choose between one of two actions, a = 0, 1.
Player i makes her choice based on public information s, as well as private information
εi. The public information s is observed by the econometrician, and εi is, assumed to be
independent of s.4 Denote the probability that player i plays strategy a = 1 given the public
information s by σi(s). Player i’s expected utility given her information, and hence her
optimal action ai, depend on s and εi, as well as player −i’s probability of choosing a = 1,

3Note that this paper does not contribute to the literature discussing estimation problems in games of
complete information with multiple equilibria.

4Note that this excludes, for instance, correlated value auctions.
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σ−i(s). Let us denote the average best response of player i, integrating over the marginal
distribution of εi, by

gi (σ−i, s) = E [ai|σ−i, s] . (2.1)

Figure 2.1 illustrates, by plotting the response functions gi for given s. In Bayesian Nash
Equilibrium, the probability of player i choosing a = 1, σi, equals the average best response
of player i, gi. This implies the two equilibrium conditions

σi(s) = gi (σ−i(s), s) ,

for i = 1, 2. In figure 2.1, the Bayesian Nash Equilibria correspond to the intersections of
the graphs of the two gi. If we impose exclusion restrictions, the response functions gi are
identifiable from the equilibrium probabilities σi(s), and this in turn allows to identify the
equilibria which are not directly observable. Note that no functional form restrictions are
needed for identification of the choice functions gi. This stands in contrast to Bajari, Hong,
Krainer, and Nekipelov (2006), who need to impose such restrictions in order to be able
to identify the underlying preferences. Bayesian Nash Equilibrium in this game requires
g(σ1, s) = 0, where

g(σ1, s) = g1(g2(σ1, s), s)− σ1. (2.2)

The number of roots of g(σ1, s) in σ1 is the number of Bayesian Nash Equilibria in this game,
given s.

As a second general setup, in section 2.3.5 we will consider data generated by the differ-
ence equation

∆Xi,t+1 = Xi,t+1 −Xi,t = g(Xi,t, εi,t). (2.3)

Holding ε constant, the number of roots of g in X is the number of equilibria of this difference
equation. If ε is stochastic, the number of roots can still serve to characterize qualitative
dynamics in terms of “equilibrium regions”, as will be discussed below and is illustrated in
figure 2.2. In this figure there are ranges of X in which the sign of ∆X does not depend on
ε, so that in these ranges X moves towards the equilibrium regions, which are the regions in
which the roots of g(., ε) lie.

We cannot hope to identify g outside the support of X in the data. Identification of g is
further complicated by the fact that positive statistical dependence of ∆Xi,t+1 and Xi,t can be
due to either a positive causal relationship, or due to unobservable exogenous determinants of
X which are positively related over time. Therefore, cross-sectional nonparametric quantile
regressions of ∆Xi,t+1 on Xi,t will in general estimate slopes that are upward-biased relative
to the slopes of g, as will be shown. As a consequence of such upward-bias, structural
functions g that only exhibit one stable root might generate quantile regressions ĝq with
more than one root, as will be discussed in section 2.3.5. However, if the functions ĝq have
only one stable root, the dynamics of the system are stable, i.e., we can reject the hypothesis
of multiple equilibria in the support of X.
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Before we move on to formally discuss the inference procedure on the number of roots
of g, let us give a heuristic preview of some of the main ideas. The procedure is based upon
first stage estimation of g using local linear m-regression. Local linear m-regression replaces
the conditional expectation in the moment condition identifying g with a kernel estimate
thereof, and minimizes this kernel estimate in order to estimate g. Based on this estimate
ĝ of g, the most intuitive estimator of the number of roots of g, Z(g), would be the plug-in
estimator Z(ĝ). Instead of using this plug-in estimator, we propose an alternative that allows
for inference that is easily implemented in practice and that dominates the plug-in estimator
Z(ĝ) in terms of asymptotic efficiency. We estimate Z(g) by Zρ(ĝ), where Zρ(g) is a smooth
functional which approximates the number of roots of g and is defined by

Zρ :=

∫
X

Lρ
(
g(x)

)∣∣g′(x)
∣∣dx.

In this expression, Lρ is a kernel function with bandwidth ρ which integrates to 1 and X is
the support of X. The functional Zρ(g) equals the integer valued Z(g) for most functions
g. It differs from Z(g) in the neighborhood of functions g̃ where Z(g) jumps. In these
neighborhoods, Zρ(g) varies continuously with g.

The functional Zρ(g) has some peculiar features, which make the statistical theory of
Zρ(ĝ) mathematically interesting. In particular, since Zρ(g) is equal to the discrete-valued
functional Z(g), and hence constant, in the neighborhood of any generic function g̃, any
“delta-method”-type approximations of the distribution of Zρ(ĝ) only yield a degenerate

limiting distribution. Under standard i.i.d. asymptotics and regularity conditions, ĝ and ĝ′

converge uniformly to (g, g′). As a consequence of this and the local constancy of Zρ(g),
Zρ(ĝ) converges to Z(g) at an infinite rate. Meaningful asymptotic approximations can
therefore only be obtained using non-standard asymptotics. As is well known, estimates of
g′ converge at a slower rate than estimates of g. If variation in ĝ is negligible relative to
variation in ĝ′, variation in Zρ(ĝ) (and Z(ĝ)) is driven by “wiggles” in ĝ in the neighborhood
of the true roots of g.

The central mathematical result of this paper states that a rescaled version of Zρ(ĝ)
converges to a normal distribution under a non-standard sequence of experiments using
increasing levels of noise and shrinking bandwidth as sample size increases. This sequence
is chosen such that ĝ converges uniformly to g, while ĝ′ converges to a non-degenerate limit.
Under the same sequence of experiments, the bootstrap provides consistent estimates of the
bias and standard deviation of Zρ(ĝ) relative to Z(g). Inference on Z(g) can therefore be
performed by using t-statistics which are based on Zρ(ĝ), as well as bootstrapped standard
errors and bias. Monte Carlo evidence largely conforms to the asymptotic results, although
the inference procedure appears to be conservative in the range of experiments simulated.

The statistical theory developed in this paper is based on results from Kong, Linton, and
Xia (2010) on Bahadur expansions for local polynomial m-regression, and uses somewhat
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similar arguments as Horváth (1991), who discusses the asymptotic distribution of Lp-norms
of multivariate density estimators. The argument on bootstrap-based inference draws on
the review by Horowitz (2001). The generalizations of the inference procedure discussed in
section 2.3 use results on the asymptotic theory of partial means estimation developed in
Newey (1994). The applications were motivated, in particular, by Bajari, Hong, Krainer,
and Nekipelov (2006) and by Card, Mas, and Rothstein (2008).

The rest of this paper is structured as follows. Section 2.2 presents the inference pro-
cedure, as well as its asymptotic justification, for the baseline case. Section 2.3 discusses
generalizations, as well as identification and inference in static games of incomplete infor-
mation and in stochastic difference equations. Section 2.4 applies the inference procedure
to the data on neighborhood composition studied by Card, Mas, and Rothstein (2008). In
contrast to their results, no evidence of “tipping” (equilibrium multiplicity) is found here.
Section 2.5 concludes. Appendix 2.A presents some Monte Carlo evidence. All proofs are
relegated to appendix 2.B, all figures and tables can be found in appendix 2.C. Additional
figures and tables are in the web appendix, Kasy (2010). This web appendix also contains a
second application of the inference procedure to data on economic growth, similar to those
discussed by Azariadis and Stachurski (2005), section 4.1, and by Quah (1996).

2.2 Inference in the baseline case

Throughout this paper, the paramter of interest is the number of roots Z of some function
g on its support X :

Z(g) := |{x ∈X : g(x) = 0}|. (2.4)

The identification of this parameter follows from identification of g on X . In this section,
inference on Z(g) is discussed for functions g with one dimensional and compact domain and
range. Throughout, the following assumptions will be maintained. The observable data are
i.i.d. draws of (Yi, Xi). The density of X is bounded away from 0 on X . The function g is
identified by a conditional moment restriction of the form

g(x) = argminyEY |X [m(Y − y)|X = x]. (2.5)

This in particular covers the cases m(δ) = δ2 for conditional mean regression and mq(δ) =
δ(q − 1(δ < 0)) for conditional qth quantile regression. Furthermore, g is assumed to be
continuously differentiable and generic in the following sense.

Definition 9 (Genericity). A continuously differentiable function g is called generic if

{x : g(x) = 0 and g′(x) = 0} = ∅

and if all roots of g are in the interior of X .
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Genericity of g implies that g has only a finite number of roots.

We propose the following inference procedure for the number of roots of g, Z(g): First,
estimate g(.) and g′(.) using local linear m-regression:(

ĝ(x), ĝ′(x)
)

= argmina,b
∑
i

Kτ (Xi − x)m(Yi − a− b(Xi − x)), (2.6)

where Kτ (δ) = 1
τ
K( δ

τ
) for some (symmetric, positive) kernel function K integrating to one

with bandwidth τ . Equation (2.6) is a sample analog of equation (2.5), where a kernel
weighted local average is replacing the conditional expectation. Next, estimate Z(g) by

Ẑ = Zρ

(
ĝ(.), ĝ′(.)

)
, where Zρ is defined as

Zρ (g(.), g′(.)) :=

∫
X

Lρ
(
g(x)

)∣∣g′(x)
∣∣dx. (2.7)

In this expression, Lρ is a Lipschitz continuous, positive symmetric kernel integrating to 1

with bandwidth ρ and support [−ρ, ρ]. Estimate the variance and bias of Ẑ relative to Z
using bootstrap. Finally, construct integer valued confidence sets for Z using t-statistics
based on Ẑ and the bootstrapped variance and bias.

The rest of this section will motivate and justify this procedure. First, we will see that
Ẑ is a superconsistent estimator of Z, in the sense that αn(Ẑ − Z) →p 0 for any diverg-
ing sequence αn → ∞, under i.i.d. sampling and conditions to be stated. Then we will
present the central result of this paper, which establishes asymptotic normality of Ẑ under
a non-standard sequence of experiments. From this result it follows that inference based
on t-statistics, using bootstrapped standard errors and bias corrections, provides asymptot-
ically valid confidence sets for Z. The theorem also suggests that Ẑ is an efficient estimator
relative to the simple plugin estimator Z(ĝ).

The following proposition states that Z(g) = Zρ(g) for generic g and ρ small enough. The
two functionals only differ around non-generic g, or “bifurcation points,” that is g where Z
jumps. The functional Zρ is a smooth approximation of Z which varies continuously around
such jumps.

Proposition 8. For g continuously differentiable and generic, if ρ > 0 is small enough, then

Zρ(g(.), g′(.)) = Z(g(.)).

The proof proceeds as follows: Given a generic function g, consider the subset of X where
Lρ(g) is not zero. If ρ is small enough, this subset is partitioned into disjoint neighborhoods
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of the roots of g, and g is monotonic in each of these neighborhoods. A change of variables,
setting y = g(x), shows that the integral over each of these neighborhoods equals one. Figure
2.3 illustrates the relationship between Z and Zρ. The two functionals are equal, if g does
not peak within the range [−ρ, ρ]. If g does peak within the range [−ρ, ρ], they are different
and Zρ is not integer valued.

It is useful to equip the space of continuously differentiable functions on X with the
following norm:

Definition 10 (C 1 norm). Let C 1(X ) denote the space of continuously differentiable func-
tions on the compact domain X . The norm ||.|| on C 1(X ) is defined by

||g|| := sup
x∈X
|g(x)|+ sup

x∈X
|g′(x)|.

Given this norm, we have the following proposition:

Proposition 9 (Local constancy). Z(.) is constant in a neighborhood, with respect to the
norm ||.||, of any generic function g ∈ C1, and so is Zρ if ρ is small enough.

Using a neighborhood of g with respect to the sup norm in levels only, instead of ||.||,
is not enough for the assertion of proposition 9 to hold. For any function g1 that has at
least one root, we can find a function g2 arbitrarily close to g1 in the uniform sense, which
has more roots than g1, by adding a “wiggle” around a root of g1. Figure 2.4 illustrates by
showing two functions which are uniformly close in levels but not in derivatives, and which
have different numbers of roots. If one, however, additionally restricts the first derivative
of g2 to be uniformly close to the the derivative of g1, additional wiggles are precluded
around generic roots, since around these g1 has a non-zero derivative. Since derivatives
are “harder” to estimate than levels, variation in the estimated derivatives dominates the
asymptotic distribution of estimators for Z(g), as will be shown. Proposition 9 implies the

following corollary, which states that the plugin estimator Ẑ = Zρ

(
ĝ(.), ĝ′(.)

)
converges to

a degenerate limiting distribution at an “infinite” rate, if ĝ converges with respect to the
norm ||.||.

Corollary 5 (Superconsistency). If
(
ĝ, ĝ′

)
converges uniformly in probability to (g, g′), if g

is generic and if αn →∞ is some arbitrary diverging sequence, then

αn(Z(ĝ)− Z(g))→p 0.

Furthermore, if ρ is small enough so that Zρ(g, g
′) = Z(g) holds, then

αn

(
Zρ

(
ĝ, ĝ′

)
− Z(g)

)
→p 0.
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This corollary implies that αn

(
Zρ

(
ĝ, ĝ′

)
− Z(g)

)
→p 0 if ρ→ 0 as n→∞.

To further characterize the asymptotic distribution of Ẑ, we need a suitable approx-

imation for the distribution of the first stage estimator
(
ĝ(.), ĝ′(.)

)
. Kong, Linton, and

Xia (2010) provide uniform Bahadur representations for local polynomial estimators of m-
regressions. We state their result, for the special case of local linear m-regression, as an
assumption.

Assumption 2.2.1 (Bahadur expansion). The estimation error of the estimator
(
ĝ(x), ĝ′(x)

)
defined by equation (2.6) can be approximated by a local average as follows:(

ĝ(x), ĝ′(x)
)
− (g(x), g′(x)) = R−

−f−1
x (x)s−1(x)In(x)

1

n

∑
i

Kτ (Xi − x)φ(Yi − g(x)− g′(x)(Xi − x))

(
1

τ
,
Xi − x
ν2τ 3

)
, (2.8)

where fx is the density of x, ν2 :=
∫
K(x)x2dx, φ := m′ (in a piecewise derivative sense),

s(x) = ∂
∂g(x)

E[φ(Y − g(x))|X = x], and In(x) is a non-random matrix converging uniformly
to the identity matrix, and where

R = op

((
ĝ(x), ĝ′(x)

)
− (g(x), g′(x))

)
uniformly in x.

Kong, Linton, and Xia (2010) provide regularity conditions under which

R =

(
1,

1

τ

)
Op

(
log(n)

nτ

)λ
uniformly in X, for some λ ∈ (0, 1) as n → ∞. In the case of qth quantile regression,
φ(δ) = q − 1(δ < 0) and s(x) = −fy|x(g(x)|x). In the case of mean regression, φ(δ) = −2δ
and s(x) = −2.

The asymptotic results in the remainder of this section depend on the availability of an
expansion in the form of expansion (2.8) and the relative negligibility of the remainder, but
not on any other specifics of local linear m-regression. This will allow for fairly straightfor-
ward generalizations of the baseline case considered here to the cases discussed in section 2.3
as well as to other cases which are beyond the scope of this paper, once we have appropriate
expansions for the first stage estimators.

By proposition 9, consistency of any plugin estimator follows from uniform convergence
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of
(
ĝ(.), ĝ′(.)

)
. Such uniform convergence follows from assumption 2.2.1, combined with a

Glivenko Cantelli-theorem on uniform convergence of averages, assuming i.i.d. draws from
the joint distribution of (Y,X) as n→∞, see van der Vaart (1998), chapter 19. Superconsis-

tency of Ẑ therefore follows, which implies that standard i.i.d. asymptotics with rescaling of
the estimator yield only degenerate distributional approximations. This is because Zρ and Z
are constant in a C1 neighborhood of any generic g, even though they jump at “bifurcation
points”, i.e., non-generic g. As a consequence, all terms in a functional Taylor expansion of
Zρ, as a function of g, vanish, except for the remainder. The application of “delta method”
type arguments, as in Newey (1994), gives only the degenerate limit distribution.

In finite samples, however, the sampling variation of Ẑ is in general not negligible, as
the simulations of appendix A confirm, which makes the distributional approximation of the
degenerate limit useless for inference. Asymptotic statistical theory approximates the finite
sample distribution of interest by a limiting distribution of a sequence of experiments, of
which our actual experiment is an element. The choice of sequence, such as i.i.d. sampling,
is to some extent arbitrary. In econometrics, non-standard asymptotics are used for instance
in the literature on weak instruments (e.g., Imbens and Wooldridge (2007)). In the present

setup, a non-degenerate distributional limit of Ẑ can only be obtained under a sequence of
experiments which yields a non-degenerate limiting distribution of the first stage estimator(
ĝ(.), ĝ′(.)

)
. We will now consider asymptotics under such a sequence of experiments. The

sequence we consider has increasing amounts of “noise” relative to “signal” as sample size
increases. Assume that for the nth experiment we observe (Yi,n, Xi,n) for i = 1, . . . , n, and
assume

Xi,n ∼iid fx(.) (2.9)

γi,n|Xi,n ∼ fγ|X (2.10)

Yi,n = g(Xi,n) + rnγi,n, (2.11)

where {rn} is a real-valued sequence and 0 = argminaE[m(γ − a)|X] = argminaE[m(rnγ −
a)|X]. The last equality requires the criterion function m to be “scale neutral”. For a given
sample size n, this is the same model as before. As n changes, the function g identified by
equation (2.5) is held constant. If rn grows in n, the estimation problem in this sequence of
models becomes increasingly difficult relative to i.i.d. sampling. Note that equation (2.11)
does not describe an additive structural model, which would allow to predict counterfactual
outcomes. Instead, rnγi,n is simply the statistical residual, given by the difference of Y and
g(X), which is also well-defined for non-additive structural models.

By corollary 5, a necessary condition for a non-degenerate limit of Ẑ is that
(
ĝ, ĝ′

)
converges to a non-degenerate limiting distribution. As is well known, and also follows from
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assumption 2.2.1, ĝ′ converges at a slower rate than ĝ, so that asymptotically variation in ĝ′

will dominate, namely by adding “wiggles” around the actual roots. If rn = (nh5)1/2 in the
sequence of experiments just defined, ĝ converges uniformly in probability to g, whereas ĝ′

converges point-wise (and indeed functionally) to a non degenerate limit. This is the basis
for the following theorem.

Theorem 2 (Asymptotic normality). Under the above model assumptions and assumption
2.2.1, and if rn = (nτ 5)1/2, nτ → ∞, ρ → 0 and τ/ρ2 → 0, then there exist µ > 0 and V
such that √

ρ

τ

(
Ẑ − µ− Z

)
→ N(0, V )

for Ẑ = Zρ

(
ĝ, ĝ′

)
. Both µ and V depend on the data generating process only via the

asymptotic mean and variance of ĝ′ at the roots of g, which in turn depend upon fX , g′, s
and V ar(φ|X) evaluated at the roots of g.

This result justifies the use of t-tests based on Ẑ for null hypotheses of the form Z(g) =
Zρ(g) = z0. The construction of a t-statistic requires a consistent estimator of V and an

estimator of µ converging at a rate faster than
√
ρ/τ . The last part of theorem 2 suggests a

way to obtain those. Any plug-in estimator that consistently estimates the (co)variances of
ĝ′ under the given sequence of experiments consistently estimates µ and V . One such plug-in
estimator is standard bootstrap, that is resampling from the empirical distribution function.
The Bahadur expansion in assumption 2.2.1, which approximates ĝ′ by sample averages,
implies that the bootstrap gives a resampling distribution with the asymptotically correct
covariance structure for ĝ′. From this and theorem 2 it then follows that the bootstrap
gives consistent variance and bias estimates for Zρ, where the bias is estimated from the
difference of the resampling estimates relative to Zρ(ĝ). If sample size grows fast enough

relative to
√
ρ/τ and τ , the asymptotic validity of a standard normal approximation for the

pivot follows.
In principle, higher order bootstrapping could now be applied to obtain distributional re-

finements for this statistic, as discussed in detail by Horowitz (2001). However, higher order
bootstrapping might be very computationally demanding in the present case, in particular
if criteria like quantile regression are used to identify g.

Theorem 2 also implies that increasing the bandwidth parameter ρ reduces the variance
without affecting the bias in the limiting normal distribution. Asymptotically, the difficulty
in estimating Z is driven entirely by fluctuations in ĝ′. These fluctuations lead both to
upward bias and to variance in plug-in estimators. When ρ is larger, these fluctuations
are averaged over a larger range of X, thereby reducing variance. Theorem 2 implies that
Zρ1 is asymptotically inefficient relative to Zρ2 for ρ1 < ρ2. Furthermore, by proposition 8,
Z(g) = limρ→0 Zρ(g) for all generic g. If the relative inefficiency carries over to the limit as
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ρ→ 0, it follows that the simple plug-in estimator Z(ĝ) is asymptotically inefficient relative

to Ẑ. Note, however, that this is only a heuristic argument. We can not exchange the limits
with respect to ρ and with respect to n to obtain the limit distribution of Z(ĝ).

2.3 Extensions and applications

In this section, several extensions and applications of the results of section 2.2 are presented.
Subsections 2.3.1 through 2.3.3 discuss, in turn, inference on Z if g is identified by more
general moment conditions, inference on Z if the domain and range of g are multidimensional,
and inference on the number of stable and unstable roots. Subsections 2.3.4 and 2.3.5 discuss
identification and inference for the two applications mentioned in the introduction, static
games of incomplete information and stochastic difference equations.

2.3.1 Conditioning on covariates

In the previous section, inference on Z(g) was discussed for functions g identified by the
moment condition

g(x) = argminyEY |X [m(Y − y)|X = x].

This subsection generalizes to functions g identified by

g(x,w1) = argminyEW2

[
EY |X,W [m(Y − y)|X = x,W1 = w1,W2]

]
, (2.12)

where the parameter of interest now is Z(g(., w1)), the number of roots of g in x given w1.
The conditional moment restriction (2.12) can be rationalized by a structural model of the
form Y = h(X,W1, ε), where ε ⊥ (X,W1)|W2 and g is defined by

g(x,w1) := argminyEε [m(h(x,w1, ε)− y)]] .

We will assume that the joint density of X,W is bounded away from zero on the set
supp(X,W1)× supp(W2), where supp denotes the compact support of either random vector.

The vector W2 serves as a vector of control variables. The conditional independence
assumption ε ⊥ (X,W1)|W2 is also known as “selection on observables.” The function g
is equal to the average structural function if m(δ) = δ2, and equal to a quantile structural
function if mq(δ) = δ(q − 1(δ < 0)). The average structural function will be of importance
in the context of games of incomplete information, as discussed in section 2.3.4, quantile
structural functions will be used to characterize stochastic difference equations in section
2.3.5. When games of incomplete information are discussed in section 2.3.4, W = W1 will
correspond to the component of public information which is not excluded from either player’s
response function.
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The inference procedure proposed in the previous section is based upon two steps. First,
the function g and its derivative are estimated using local linear m-regression. In the second

step, the estimator
(
ĝ, ĝ′

)
is plugged into the functional Zρ(., .), which is a smooth approx-

imation of the functional Z(.). We can generalize this approach by maintaining the same

second step while using more general first stage estimators
(
ĝ, ĝ′

)
. Equation (2.12) suggests

estimating g by a nonparametric sample analog, replacing the conditional expectation with
a local linear kernel estimator of it, and the expectation over W2 with a sample average.
Formally, let (

ĝ(x,w1), ĝ′(x,w1)
)

= argmina,bM(a, b, x, w1),

where

M(a, b, x, w1) =
1

n

∑
j

∑
iKτ (Xi − x,W1i − w1,W2i −W2j)m(Yi − a− b(Xi − x))∑

iKτ (Xi − x,W1i − w1,W2i −W2j)
. (2.13)

An asymptotic normality result can be shown in this context which generalizes theorem
2. In light of the proof of theorem 2, the crucial step is to obtain a sequence of experiments
such that ĝ converges uniformly to g while ĝ′ has a non degenerate limiting distribution. If
we obtain an approximation of ĝ′ equivalent to the approximation in assumption 2.2.1, all
further steps of the proof apply immediately. This can be done, using the results of Newey
(1994), for the following sequence of experiments.

(Xi,n,Wi,n) ∼iid fx,w(.) (2.14)

γi,n|(Xi,n,Wi,n) ∼ fγ|X,W (2.15)

Yi,n = g(Xi,n,W1i,n) + rnγi,n. (2.16)

Theorem 3 (Asymptotic normality, with control variables). Under the assumptions of sec-
tion 2.2, but with g identified by equation 2.12 and the data generated by the model given

by equation 2.14 through 2.16, if R = op

((
ĝ, ĝ′

)
− (g, g′)

)
uniformly as n→∞ in the Ba-

hadur expansion of
(
ĝ, ĝ′

)
, and if rn =

(
nτ 4+d

)1/2
, where d = dim(X)+dim(W1), nτ d →∞,

ρ→ 0 and τ/ρ2 → 0, then there exist µ > 0 and V such that√
ρ

τ

(
Ẑ − µ− Z

)
→ N(0, V ).

2.3.2 Higher dimensional systems

Thus far, only one-dimensional arguments x and one-dimensional ranges for the function g
were considered, where x is the argument over which Zρ integrates. All results of section 2.2
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are easily extended to a higher dimensional setup. In particular, assume we are interested
in the number of roots of a function g from Rd to Rd. Generalizing equation (2.7), we can

define Ẑ as

Ẑ :=

∫
Lρ
(
ĝ
)∣∣ det ĝ′

∣∣, (2.17)

where
(
ĝ(.), ĝ′(.)

)
are again estimated by local linear m regression, Lρ is a kernel with

support [−ρ, ρ]d, and the integral is taken over the set X ⊂ Rd in the support of g.
As in the one dimensional case, superconsistency follows from uniform convergence of (ĝ, ĝ′).
The following theorem, generalizing theorem 2, holds for arbitrary d:

Theorem 4 (Asymptotic normality, multidimensional systems). Under the assumptions of

section 2.2, but with g : Rd → Rd and Ẑ defined by equation (2.17), if R = op

((
ĝ, ĝ′

)
− (g, g′)

)
uniformly as n→∞ in the Bahadur expansion of

(
ĝ, ĝ′

)
, and if rn = (nτ 4+d)1/2, nτ d →∞,

ρ→ 0 and τ/ρd+1 → 0, then there exist µ > 0, V such that(ρ
τ

)d/2 (
Ẑ − µ− Z

)
→ N(0, V ).

2.3.3 Stable and unstable roots

Instead of testing for the total number of roots, one might be interested in the number
of “stable” and “unstable” roots, Zs and Zu. Stable roots are those where g′ is negative,
unstable roots those where g′ is positive.

Definition 11. For g continuously differentiable, let

Zs(g) := |{x ∈X : g(x) = 0 and g′(x) < 0}|

and
Zu(g) := |{x ∈X : g(x) = 0 and g′(x) > 0}|.

In the multidimensional case, we could more generally consider roots with a given number
of positive and negative eigenvalues of g′. We can define smooth approximations of the
parameters Zs and Zu as follows:

Zs
ρ(g(.), g′(.)) :=

∫
X

Lρ
(
g(x)

)∣∣g′(x)
∣∣1(g′(x) < 0

)
dx

Zu
ρ (g(.), g′(.)) :=

∫
X

Lρ
(
g(x)

)∣∣g′(x)
∣∣1(g′(x) > 0

)
du. (2.18)
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Again, all arguments of section 2.2 go through essentially unchanged for these parameters.
In particular, theorem 2 applies literally, replacing Z with Zs or Zu.

More generally, functionals which are smooth approximations of the number of roots with
various stability properties can be constructed in the multidimensional case by multiplying
the integrand with an indicator function depending on the signs of the eigenvalues of ĝ′.

2.3.4 Static games of incomplete information

Consider the two player, two action static game of incomplete information discussed in the
introduction. In this subsection, identification and inference on the number of Bayesian Nash
Equilibria of this game, given the public information s, will be discussed. Assume we observe
an i.i.d. sample of (a1,j, a2,j, sj), the players’ realized actions and the public information of
the game, where ai,j ∈ {0, 1} for i = 1, 2 and s ∈ Rk. In this subsection, i indexes players and
j indexes observations. Rational expectation beliefs of player −i about the expected action
of player i are given by σi(s) = E [ai|s]. The following two-stage estimation procedure is a
nonparametric variant of the procedure proposed by Bajari, Hong, Krainer, and Nekipelov
(2006). We can get an estimate of the beliefs, σ̂i(s) = Ê [ai|s], by local linear mean regression.

(σ̂i(s), σ̂
′
i(s)) = argminb,c

∑
j

Kτ (sj − s) (ai,j − b− c(sj − s))2 (2.19)

Average best responses of players are given by gi (σ−i, s) = E [ai|σ−i, s], since we assumed
that the private information of players is independent, conditional on s. Without further
restrictions, gi is not identified, since by definition σ is functionally dependent on s. If,
however, exclusion restrictions of the form

gi (σ−i, s) = gi (σ−i, si) (2.20)

are imposed, the gi can be identified. In particular, assume that exclusion restriction (2.20)
holds, with dim(si) = dim(s) − 1 = k − 1. There is one excluded component of s for each
player, the remaining k − 2 components are not excluded from either response function gi.
Assume furthermore that σi(s) has full support [0, 1] given s−i, for i = 1, 2. Under these

assumptions, we can estimate the best response functions, ĝi(σ̄−i, si) = Ê [ai|σ̂−i = σ̄−i, si],
again using local linear mean regression:(

ĝi(σ̄−i, si), ĝ′i(σ̄−i, si)
)

=

argminb,c
∑
j

Kτ (σ̂−i,j − σ̄−i, si,j − si) (ai,j − b− c (σ̂−i,j − σ̄−i, si,j − si))2 (2.21)
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The condition for Bayesian Nash Equilibrium in this game is given by

g(σ̄1, s) = g1(g2(σ̄1, s2), s1)− σ̄1. (2.22)

Inserting ĝ2 into ĝ1, both estimated by (2.21), yields an estimator of g which can be written
as

ĝ(σ̄1, s) = Ê
[
a1

∣∣∣σ̂2 = Ê [a2|σ̂1 = σ̄1, s2] , s1

]
− σ̄1. (2.23)

Based on this estimator, we can perform inference on the number of Bayesian Nash Equilibria
given s, Z(g(., s)). In particular, let

Ẑ = Zρ

(
ĝ(., s), ĝ′1(., s)

)
, (2.24)

where ĝ(., s) is given by (2.23). The term ĝ′1(., s) refers to the estimated derivative of g w.r.t.

σ̄1, and similarly for ĝ′11 and ĝ′12 , so that

ĝ′1(σ̄1, s) = ĝ′11 (ĝ2(σ̄1, s2), s1) · ĝ′12 (σ̄1, s1). (2.25)

Inference on Z(g(., s)) can now proceed as before, if an asymptotic normality result similar to

theorem 2 can be shown. In the proof of theorem 2, three properties of
(

(ĝ(.), ĝ′(.)
)

needed

to be proven for the statement of the theorem to follow: First, under the given sequence of
experiments, ĝ(.) converges uniformly in probability to a degenerate limit. Second, ĝ′(.) con-
verges in distribution to a non-degenerate limit. Third, ĝ′(x1) and ĝ′(x2) are asymptotically

independent for |x1−x2| > const ·τ . These properties can be shown for rn ·
(

(ĝ(., s), ĝ′1(., s)
)

in the present case, with σ̄1 replacing x, for an appropriate choice of sequence of experiments,
where rn is a scale parameter as before.

The choice of sequence of experiments may seem to be more complicated here than in
the baseline case, since the dependent variable a is naturally bounded by [0, 1], so that
increasing the residual variance would be inconsistent with the structural model. This is
not a problem, however, if we note that the distribution of Ẑ, in the baseline model, is
invariant to a proportional rescaling of Y , g and ρ. We can therefore define a sequence of
experiments which is equivalent to the one defined by equations (2.9) through (2.11) if we
replace equation (2.11) by

Yi,n =
1

rn
g(Xi,n) + γi,n (2.11’)

and ρ by ρ/rn. Intuitively, shrinking the “signal” g is equivalent to increasing the “noise”
rnγi,n.

Returning to games of incomplete information, consider the following sequence of ex-
periments indexed by n. Assume that, for i = 1, 2, gi,0 is continuously differentiable and

85



Chapter 2. Nonparametric inference on the number of equilibria

monotonic in σ−i, and let g−1
i,n denote the inverse of gi,n with respect to the σi,n argument,

given si. Assume also

sj,n ∼iid fs(.) (2.26)

ai,j,n|sj,n ∼ Bin(σi,n(sj,n)) (2.27)

σi,n(s) = gi,n(σ−i,n(s), si) (2.28)

g1,n(σ2, s1) =
1

rn
g1,0(σ2, s1) +

(
1− 1

rn

)
σ2 (2.29)

g−1
2,n(σ2, s2) =

1

rn
g−1

2,0(σ2, s2) +

(
1− 1

rn

)
σ2. (2.30)

Equations (2.26) to (2.28) are the same as in the model we have been discussing so far.
Equations (2.29) and (2.30) shrink the graphs of the best response functions gi(., si) towards
the σ1 = σ2 line (compare figure 2.1), parallel to the σ1 axis. Denote σ2,n = g2,n(σ1, s2). We
get

gn(σ1, s) = g1,n(g2,n(σ1, s2), s1)− σ1 = g1,n(σ2,n, s1)− g−1
2,n(σ2,n, s2)

=
1

rn

[
g1,0(σ2,n, s1)− g−1

2,0(σ2,n, s2)
]
.

By equation (2.30), if rn →∞, then σ2,n → σ1, and hence

rngn(σ1, s)→ g1,0(σ1, s1)− g−1
2,0(σ1, s2). (2.31)

Using this sequence of experiments, we can now state an asymptotic normality result,
similar to theorem 2, for static games of incomplete information. The statement of the
theorem differs in two respects from the baseline case. First, ρ is replaced by rnρ in all
expressions. Since this sequence of experiments shrinks g rather than expanding the error,
the bandwidth ρ must also shrink correspondingly. Second, the rate of growth of rn is
smaller. Since all regressions are controlling for s1 or s2, rates of convergence are slower. In

particular, rn · ĝ′1i converges to a non-degenerate limit iff rn = O((nτ 4+k)1/2), where k is the
dimensionality of the support of the response functions gi, k = dim(s).

Theorem 5 (Asymptotic normality, static games of incomplete information). Under the

sequence of experiments defined by equation (2.26) to (2.30), if R = op

((
ĝ, ĝ′

)
− (g, g′)

)
uniformly in the Bahadur expansions as n→∞, and if rn = (nτ 4+k)1/2, nτ →∞, rnρ→ 0
and τ/(rnρ)2 → 0, then there exist µ > 0 and V such that√

rnρ

τ

(
Ẑ − µ− Z

)
→ N(0, V ).
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2.3.5 Stochastic difference equations

In this subsection, identification and interpretation of the number of roots of g for stochastic
difference equations of the form

∆Xi,t+1 = Xi,t+1 −Xi,t = g(Xi,t, εi,t) (2.32)

is discussed. This discussion will form the basis of the empirical application in section 2.4.
First, it will be shown that, under plausible assumptions, finding only one root in cross-
sectional quantile regressions of ∆X on X implies that there is only one stable root for every
member of a family of conditional average structural functions. Second, it will be argued that
the number of roots of g allows to characterize of the qualitative dynamics of the stochastic
difference equation in terms of equilibrium regions.

The first claim is based on the fact that unobserved heterogeneity which is positively
related over time leads to an upward bias in quantile regression slopes relative to the corre-
sponding structural slopes. To show this, denote the qth conditional quantile of ∆X given
X by Q∆X|X(q|X), the conditional cumulative distribution function at Q by F∆X|X(Q|X),
and the conditional probability density by f∆X|X(Q|X). The following lemma shows that
quantile regressions of ∆X on X yield biased slopes relative to the structural slope ∂

∂X
g, if

X is not exogenous. The second term in equation 2.33 reflects the bias due to statistical
dependence between X and ε.

Lemma 20 (Bias in quantile regression slopes). If ∆X = g(X, ε), and if Q and F are
differentiable with respect to the conditioning argument X, then

∂

∂X
Q∆X|X(τ |X) = E

[
∂

∂X
g(X, ε)

∣∣∣∣∆X = Q,X

]
− 1

f∆X|X(Q|X)
· ∂
∂X

P (g(X ′, ε) ≤ Q|X)

∣∣∣∣
X′=X

. (2.33)

The following assumption of first order stochastic dominance states that there is no
negative dependence between current g(x′, ε), evaluated at fixed x′, and current X:

Assumption 2.3.1 (First order stochastic dominance). P(g(x′, ε) ≤ Q|X) is non-increasing
as a function of X, holding x′ constant.

Violation of this assumption would require some underlying cyclical dynamics, in con-
tinuous time, with a frequency close enough to half the frequency of observation, or more
generally with a ratio of frequencies that is an odd number divided by two. It seems safe to
discard this possibility in most applications. This assumption might not hold, for instance,
if outcomes were influenced by seasonal factors and observations were semi-annual.
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We can now formally state the claim that, if there are unstable equilibria structurally,
then quantile regressions should exhibit multiple roots.

Proposition 10 (Unstable equilibria in dynamics and quantile regressions). Assume
that ∆X = g(X, ε) and that g(inf X , ε) > 0, and g(sup X , ε) < 0 for all ε. If assumption
2.3.1 holds and Q∆X|X(q|X) has only one root X for all q, then the conditional average
structural functions E [g(x′, ε)|g(X, ε) = 0, X], as functions of x′, are “stable” at the roots
m:

E

[
∂

∂X
g(X, ε)

∣∣∣∣∆X = 0, X

]
≤ 0

for all X, where (0, X) is in the support of (∆X,X).

This proposition assumes “global stability” of g, i.e., X does not diverge to infinity. Un-
der such global stability, if there is only one root of g, then this root is stable. According to
this proposition, if quantile regressions only have one stable root, then the same is true for
the conditional average structural functions. This is not conclusive, but it is suggestive that
the g(., ε) themselves have only one root.

Let us now turn to the implications of the number of roots of g for the qualitative
dynamics of the stochastic difference equation (2.32). Let g̃(x, ε) := g(x, ε)+x. If g describes
a structural relationship, the counterfactual time path under “manipulated” initial condition
Xi,0 = x′ is given by

Xi,1 = g̃(x′, εi,0)

Xi,2 = g̃(Xi,1, εi,1)
...

Xi,t = g̃(Xi,t−1, εi,t−1). (2.34)

Given the initial condition Xi,1 and shocks εi,1, . . . , εi,t, equation (2.32) describes a time
inhomogenous deterministic difference equation. The following argument makes statements
about the qualitative behavior of this difference equation based on properties of the func-
tion g, in particular based on the number of roots in x of g(x, ε) for given unobservables
εi,1, . . . , εi,t. Consider figure 2.2, which shows gU and gL defined by

gUi,t(x) = max
0≤s<t

g(x, εi,s) (2.35)

gLi,t(x) = min
0≤s<t

g(x, εi,s). (2.36)

The functions gUi,t and gLi,t are the upper and lower envelope of the family of functions g(x, εi,s)
for s = 1, . . . , t. The direction of movement of X over time does not depend on s in the
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ranges where gUi,t < 0 or gLi,t > 0 (which is where the horizontal axis is drawn solid in figure
2.2), since the sign of g(x, εi,s) does not depend on s in these ranges. In other words, suppose
we start off with an initial value below x1 in the picture. If that is the case, Xi,s will converge
monotonically toward the left-hand dashed range and then remain within that range for all
s ≤ t. Similarly, for Xi,0 in the upper “basin of attraction” beyond x2, Xi,s will converge to
the upper “equilibrium range” given by the right hand dashed range. Hence small changes
of initial conditions (from x1 to x2) can have large and persistent effects on X in this case,
in contrast to the case where g(., ε) only has only one stable root for all ε. These arguments
are summarized in the following proposition.

Proposition 11 (Characterizing dynamics of stochastic difference equations). Assume that
gUi,t and gLi,t, defined by equation (2.35) and (2.36), are smooth and generic, positive for
sufficiently small x and negative for sufficiently large x, and have the same number z of
roots, xU1 < . . . < xUz and xL1 < . . . < xLz , and let xL0 = −∞, xUz+1 =∞. Define the following
mutually disjoint ranges:

Nc = [xUc , x
U
c+1] for c = 1, 3, . . . , z

Pc = [xLc , x
L
c+1] for c = 0, 2, . . . , z − 1

Sc = [xLc , x
U
c ] for c = 1, 3, . . . , z

Uc = [xUc , x
L
c ] for c = 2, 4, . . . , z − 1

Then all g(x, εi,s) are negative on the Nc, and positive on the Pc. Furthermore, all g(x, εi,s)
are negative in a neighborhood to the right of the maximum of the Sc and positive to the
left of the minimum, and the reverse holds for the Uc. Therefore, if Xi,0 ∈ Nc and Sc 6= ∅,
then Xi,s will converge monotonically toward Sc and then remain within Sc. If Xi,0 ∈ Pc and
Sc+1 6= ∅, then Xi,s will converge monotonically toward Sc+1 and then remain within Sc+1.

Assuming nonemptiness of these ranges, the interval Pc−1 ∪Sc ∪Nc is a “basin of attrac-
tion” for Sc, i.e., X in this interval converges monotonically to Sc and then remains there.
The main difference relative to the deterministic, time homogenous case is the “blurring” of
the stable equilibrium to a stable set Sc.

We did not make any assumptions on the joint distribution of the unobserved factors
εi,1, . . . , εi,t. The whole argument of the preceding theorem is conditional on these factors.
However, the predictions of the theorem will be sharper (given g) if serial dependence of
unobserved factors is stronger, increasing the number of units i to which the assertion is
applicable and reducing the size of the intervals Sc and Uc, since gUi,t − gLi,t is going to be
smaller on average.

In summary, proposition 10 implies that, if we do not find multiple roots in quantile
regressions, then the conditional average structural functions E [g(x′, ε)|g(X, ε) = 0, X] do
not have multiple roots. Proposition 11 implies that, if upper and lower envelopes of g(., εi,s)
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do not have multiple roots, then the dynamics of the system are stable and initial conditions
do not matter in the long run.

2.4 Application to the dynamics of neighborhood compo-
sition

This section analyzes the dynamics of minority share in a neighborhood, applying the meth-
ods developed in the last two sections to the data used for analysis of neighborhood com-
position dynamics by Card, Mas, and Rothstein (2008). Card, Mas, and Rothstein (2008)
study whether preferences over neighborhood composition lead to a “white flight”, once the
minority share in a neighborhood exceeds a certain level. They argue that such “tipping”
behavior implies discontinuities in the change of neighborhood composition over time as a
function of initial composition, and test for the presence of such discontinuities in cross-
sectional regressions over different neighborhoods in a given city. The authors provided full
access to their datasets, which allows us to use identical samples and variable definitions as
in their work.

The data set is an extract from the Neighborhood Change Database, or NCDB, which
aggregates US census variables to the level of census tracts. Tract definitions are changing
between census waves but the NCDB matches observations from the same geographic area
over time, thus allowing observation of the development over several decades of the universe
of US neighborhoods. In the dataset used by Card, Mas, and Rothstein (2008), all rural
tracts are dropped, as well as all tracts with population below 200 and tracts that grew by
more than 5 standard deviations above the MSA mean. The definition of MSA used is the
MSAPMA from the NCDB, which is equal to Primary Metropolitan Statistical Area if the
tract lies in one of those, and equal to the MSA it lies in otherwise. For further details on
sample selection and variable definition, see Card, Mas, and Rothstein (2008).

The graphs and tables to be discussed are constructed as follows. For each of the MSAs
and each of the decades separately, we run local linear quantile regressions of the change in
minority share of a neighborhood (tract) on minority share at the beginning of the decade.
This is done for the quantiles 0.2, 0.5 and 0.8, with a bandwidth τ of n−.2, where n is the
sample size.5 The left column of graphs in figure 2.5 shows these quantile regressions for the
three largest MSAs.

For each of the regressions, Zρ is calculated, where ρ is chosen as 0.04. The integral in
the expression for Zρ is taken over the interval [0, 1], intersected with the support of initial
minority share if the latter is smaller. Note that it is possible to find no (stable) equilibrium
for an MSA, i.e. Zρ < 1, if high initial minority shares do not occur in that MSA and most
neighborhoods experienced growing minority shares. Figure 2.6 shows kernel density plots of

5The implementation of local linear quantile regression uses code downloaded from Koenker (2009).
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the regressor, initial minority share, which suggest that support problems are not an issue, at
least for the largest MSAs. For each Zρ, bootstrap standard errors and bias are calculated, as
well as the corresponding t-test statistics for the null hypothesis Zρ = 0, 1, 2, 3, . . ., implying
an integer-valued confidence set (of level .05) for z. By the results of section 2.2, these
confidence sets have an asymptotic coverage probability of 95%. By the Monte Carlo evidence
of appendix A, they are likely to be conservative, i.e., have a larger coverage probability. If
the confidence sets thus obtained are empty, the two neighboring integers of Ẑ are included
in the intervals shown. This makes inference even more conservative. Table 2.1 shows
the resulting confidence sets for the twelve largest MSAs in the United States (by 2009
population), for all quantiles and decades under consideration.6

As can be seen from the table, in very few cases there is evidence of Z exceeding 1.
In all cases shown, except for the .2 quantile for Atlanta in the 1980s, we can reject the
null Z ≥ 3. Similar patterns hold for almost all of the 118 cities in the dataset. Rather
than exhibiting multiple equilibria, the data indicate a general rise in minority share that
is largest for neighborhoods with intermediate initial share, but not to the extent of leading
to tipping behavior. Proposition 10 in section 2.3.5 suggests that, if we do not find multiple
roots in quantile regressions, we can reject multiple equilibria in the underlying structural
relationship. I take these results as indicative that tipping is not a widespread phenomenon
in US ethnic neighborhood composition over the decades under consideration. This stands
in contrast to the conclusion of Card, Mas, and Rothstein (2008), who do find evidence of
tipping.

The approach used here differs from the main analysis in Card, Mas, and Rothstein
(2008) in a number of ways. Card, Mas, and Rothstein (2008) (i) use polynomial least
squares regression with a discontinuity. They (ii) use a split sample method to test for
the presence of a discontinuity, and they (iii) regress the change in the non-Hispanic, white
population, divided by initial neighborhood population, on initial minority share. We (i)
use local linear quantile regression without a discontinuity, we (ii) run the regressions on full
samples for each MSA and test for the number of roots, and we (iii) regress the change in
minority share on initial minority share.

To check whether the differing results are due to variable choice (iii) rather than testing
procedure, the figures and tables that were just discussed are replicated using the change in
the non-Hispanic, white population relative to initial population as the dependent variable,
as did Card, Mas, and Rothstein (2008). The right column of figure 2.5 shows such quantile
regressions. These figures correspond to the ones in Card, Mas, and Rothstein (2008), p.190,
using the same variables but a different regression method and the full samples. Table 2.2
shows confidence sets for the number of roots of these regressions for the 12 largest MSAs.
In comparing tables 2.1 and 2.2, note that there is a correspondence between the lower
quantiles of the first (low increase in minority share) and the upper quantiles of the latter

6The full set of results for all 115 MSAs in the dataset can be found in the web-appendix, Kasy (2010).
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(higher increase/lower decrease of white population). The two tables show fairly similar
results. Again, no systematic evidence of multiple roots is found.

Some factors might lead to a bias in the estimated number of equilibria, using the methods
developed here. First, the test might be sensitive to the chosen range of integration if there
are roots near the boundary. If a root lies right on the boundary of the chosen range of
integration, it enters Zρ as 1/2 only. Extending the range of integration beyond the unit
interval, however, might also lead to an upward bias in the estimated number of roots,
if extrapolated regression functions intersect with the horizontal axis. Second, choosing
a bandwidth parameter ρ that is too large might bias the estimated number of equilibria
downwards, if the function g peaks within the range [−ρ, ρ]. Third, there might be roots of
g in the unit interval but beyond the support of the data.

2.5 Summary and conclusion

This paper proposes an inference procedure for the number of roots of functions nonpara-
metrically identified using conditional moment restrictions, and develops the corresponding
asymptotic theory. In particular, it is shown that a smoothed plug-in estimator of the num-
ber of roots is super-consistent under i.i.d. asymptotics, but asymptotically normal under
non-standard asymptotics, and asymptotically efficient relative to a simple plug-in estimator.
In section 2.3, these results are extended to cover various more general cases, allowing for
covariates as controls, higher dimensional domain and range, and for inference on the number
of equilibria with various stability properties. This section also discusses how to apply the re-
sults to static games of incomplete information and to stochastic difference equations. In an
application of the methods developed here to data on neighborhood composition dynamics
in the United States, no evidence of equilibrium multiplicity is found.

The inference procedure can also be used to test for bifurcations, i.e., (dis)appearing
equilibria as a function of changing exogenous covariates. It is easy to test the hypothesis
Z(g(.,W1)) = Z(g(.,W2)), since the corresponding estimators Ẑ(g(.,Wi)) are independent
for W1 and W2 further apart than twice the bandwidth τ . If there are bifurcations, small
exogenous shifts might have a large (discontinuous) effect on the equilibrium attained, if the
“old” equilibrium disappears.

In the dynamic setup, one might furthermore consider to apply the procedure to de-
trended data, for instance by demeaning ∆Y . It seems likely that regressions of detrended
data have a higher number of roots. The rationale of such an approach could be found in
underlying models in which the dynamics of a detrended variable are stationary. This is in
particular the case in Solow-type growth models, in which GDP or capital stock is stationary
after normalizing by a technological growth factor.

Finally, it might also be interesting to extend the results obtained here to cover further
cases where g can not be directly estimated using conditional moment restrictions. The
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crucial step for such extensions, as illustrated by the various cases discussed in section
2.3, is to find a sequence of experiments such that the first stage estimator ĝ converges in
probability to a degenerate limit whereas ĝ′ converges in distribution to a non-degenerate
limit. Furthermore, ĝ′(x1) needs to be asymptotically independent of ĝ′(x2) for all |x1−x2| >
const. · τ .

There are many potential applications of the results obtained here, where it might be
interesting to know whether the underlying dynamics or strategic interactions imply multiple
equilibria. Examples include household level poverty traps, intergenerational mobility, effi-
ciency wages, macro models of economic growth (as analyzed in the web appendix), financial
market bubbles (herding), market entry, and social norms.7

Appendix 2.A Monte Carlo evidence

This section presents simulation results to check the accuracy in finite samples of the asymp-
totic approximations obtained in theorem 2. In all simulations, the X are i.i.d. draws of
Uni[0, 1] random variables, and the additive errors γ are either uniformly or normally dis-
tributed:

Xi ∼iid Uni[0, 1]

γi|Xi ∼ fγ|X

Yi = gj(Xi) + γi, (2.37)

where fγ|X is an appropriately centered and scaled uniform or normal distribution. Two
functions gj are considered, the first with one root and the second with three roots:

g1(x) = 0.5− x
g2(x) = 0.5− 5x+ 12x2 − 8x3.

The function g is estimated by median regression, mean regression and .9 quantile re-
gression, where the γ in the simulations are shifted appropriately to have median, mean or
.9 quantile at the respective g. The figures and tables show sequences of four experiments
with 400, 800, 1600 and 3200 observations. The variance of γ in each experiment is chosen to
yield the same variance for ĝ′, as implied by the asymptotic approximation of the Bahadur
expansion, in all experiments for a given g. By the proof of theorem 2, we should therefore
get similar simulation results across all setups. Furthermore, the variance of Ẑ should be
constant up to a factor τ/ρ. The parameters of these simulations are chosen to lie in an
intermediate range where variation in ĝ′ is existent but moderate.

7The Matlab/Octave code written for this paper is available upon request.
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Figure 2.7 shows density plots for Ẑ for the sequences of experiments with uniform errors
and median regressions; in the web-appendix, Kasy (2010), similar figures are presented for
the other experiments. Visual inspection does not reveal obvious failures of the approxi-
mation by normal densities. Table 2.3 shows the results of simulations using bootstrapped
standard deviations and biases, for mean regression with uniform errors. The results show,
for the range of experiments considered, that rejection frequencies are lower than the 0.05
value implied by asymptotic theory. If this pattern generalizes, inference based upon the
t-statistic proposed in this paper is conservative in finite samples. In particular, it seems
that bootstrapped standard errors are too large.

Appendix 2.B Proofs

Proof of proposition 8: By continuity of g′ as well as genericity of g we can choose
ρ small enough such that sgn(g′(x)) is constantly equal to sgn(g′(xc)) 6= 0 in each of the
neighborhoods of the c = 1, . . . , z roots of g, {xc}, defined by Lρ(g(x)) 6= 0. Hence we can
write the integral

∫
X
Lρ(g(x))|g′(x)|dx as a sum of integrals over these neighborhoods, in

each of which there is exactly one root. Assume w.l.o.g. that z = 1 and g′ is constant in the
range of x where Lρ(g(x)) 6= 0. Then, by a change of variables setting y = g(x),∫

X

Lρ(g(x))|g′(x)|dx =

∫
g(X )

Lρ(y)|g′(g−1(y))| 1

|g′(g−1(y))|
dy = 1

�

Proof of proposition 9: We need to find ε such that ||g − g̃|| < ε implies Z(g̃) =
Z(g). By genericity of g, each root xc of g is such that sgn(g′(xc)) 6= 0. By continuous
first derivatives we can then find δ such that sgn(g′(.)) is constant in the neighbourhood
NHc := (xc − δ, xc + δ) of each of the finitely many roots xc and the NHc are mutually
disjoint. By continuity of g,

ε1 := inf
x/∈

⋃
cNHc

g(x) > 0 (2.38)

and
ε2 := inf

x∈
⋃
c N̄Hc

|g′(x)| > 0, (2.39)

where N̄Hc is the closure of NHc. Choosing ε = 1
2

min(ε1, ε2) fulfills our purpose. To see this
choose a g̃ such that ||g− g̃|| < ε. For x /∈

⋃
cNHc g̃ is bounded away from zero by equation

(2.38). In NHc there must be exactly one x such that g̃(x) = 0: Since the NH are mutually
disjoint, sgn(g(xc−δ)) 6= sgn(g(xc+δ)), by (2.38) again sgn(g(xc−δ)) = sgn(g̃(xc−δ)) and
sgn(g(xc + δ)) = sgn(g̃(xc + δ)), and finally the sign of g̃′ is constantly equal to sgn(g′(xc))
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in NHc by equation (2.39).
The assertion for Zρ follows now from the first part of this proof, combined with propo-

sition 8, if we can choose a ρ independent of g̃ such that proposition 8 applies. Sufficient for
this is a ρ that separates roots. Choosing ρ = ε accomplishes this. By equation (2.38), Lρ
will separate the NHc, and by the previous argument each of the NHc will contain exactly
one root of g̃. �

Proof of theorem 2:
Write Z1 =A Z2, if anZ

1 − bn and anZ
2 − bn have the same non-degenerate distributional

limit for some non-random sequences an and bn. In particular, as long as such sequences
exist that guarantee convergence to a non-degenerate limit, this is implied by equality up to
a remainder which is asymptotically negligible under the given sequence of experiments, i.e.,
Z1 =A Z2 if Z1 − Z2 = op(Z

2). We will use Z1, Z2, Z3 to denote a sequence of approxima-

tions to Ẑ.

1) Approximation of ĝ with g:

Ẑ =A Zρ(g, ĝ′)

The remainder of this approximation is given by∫
(Lρ(g)− Lρ(ĝ))|ĝ′|

Negligibility of this remainder follows from uniform convergence of ĝ under our sequence
of experiments at a rate faster than ρ, which is a consequence of Bahadur expansion (2.8)
and of ρ/τ → ∞. Assuming that Lρ is Lipschitz with constant C/ρ, this in turn implies
uniform convergence of (Lρ(g) − Lρ(ĝ)) to 0. This, combined with the arguments proving

distributional convergence of
∫
ĝ′ over neighborhoods of the roots of g, given below, proves

that the remainder is op(Ẑ).

2) Approximation of ĝ′ by the Bahadur expansion:

Zρ(g, ĝ′) =A

∫
Lρ(g(x))

∣∣g′(x)− f−1(x)s−1
n (x)In(x)·

· 1
n

∑
i

Kτ (Xi − x)φ(Yi − g(x)− g′(x)(Xi − x))

(
Xi − x
ν2τ 3

)∣∣∣∣∣ dx =: Z1
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The absolute value of the remainder of this approximation is less than or equal to∫
Lρ(g)|R|,

where R is the remainder of the Bahadur expansion. Negligibility of the remainder of the
approximation is a consequence of the assumption that the remainder of the Bahadur ex-

pansion is negligible, i.e., R = op

((
ĝ, ĝ′

)
− (g, g′)

)
uniformly in x.

3) Restriction to one root at 0 and Taylor approximations:
Assume that g(0) = 0 and g(x) 6= 0 for x 6= 0 (i.e., Z = 1). This is without loss of generality,
since the integral for the general case is simply a sum of the independent integrals in a
neighborhood of each root.

Now define c = g′(0), w = −f−1(0)s−1(0) 1
ν2

, φi = φ(ei) and K̃τ (d) = Kτ (d) d
τ
.

By replacing g with g′(0)x in Lρ(g(x)) and replacing −f−1(x)s−1(x) 1
ν2

with w, both
justified by smoothness and ρ→ 0, as well as In(x)→ 1 uniformly, we get

Z1 =A

∫
Lρ(cx)

∣∣∣∣∣g′(0)− f−1(0)s−1(0)
1

ν2τ 3

1

n

∑
i

Kτ (Xi − x)(Xi − x)φ(εi)

∣∣∣∣∣ dx
=

∫
Lρ(cx)

∣∣∣c+ w
rn
τ 2
En

[
K̃τ (Xi − x)φi

]∣∣∣ dx = Z2

The absolute value of the remainder of this approximation is less than or equal to∫
|Lρ(g)− Lρ(cx)|

∣∣∣g′ −∑∣∣∣+

∫
Lρ(cx)

∣∣∣∣f−1(x)s−1(x)In(x)
1

ν2τ 2
− w

∣∣∣∣ |En| .
Both terms in this expression go to 0 as ρ→ 0. We can assume furthermore that

Xi ∼iid Uni([−ρ/c, ρ/c])

conditional on falling in this interval and that

φi ∼iid φ(e)|X = 0

These assumptions are justified by another Taylor approximation, this time of the distri-
bution functions FX(x) = FX(0) + fX(0)X + o(X) and Fφ|X(φ|X) = Fφ|X(φ|0) + O(X),
assuming both distribution functions to be C1. To see that this approximation is justified,
note that distributional convergence to the same limit is equivalent to convergence of the
expectations of any Lipschitz continuous bounded function of the statistics to the same limit.
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The difference in expectations between a function h of Z2 and of its approximation using
conditionally uniform X and i.i.d. φ is given by∫

h(Z2)
∏
i

(
fX(X i)fφ|X(φi|X i)− fX(0)fφ|X(φi|0)

)
This integral goes to 0 because the support of h(Z2) in X is a neighborhood of 0 shrinking
to 0.

4) Partitioning the range of integration:
Partition [−ρ/c, ρ/c] into subintervals [tj, tj+1], j = 1, . . . , bρ/τc with ti+1 − ti = 2τ . Then

Z2 =A

bρ/cτc∑
j=1

Lρ(ctj)ξj = Z3

with

ξj =

∫ tj+1

tj

∣∣∣c+ w
rn
h2
En

[
K̃τ (Xi − x)φi

]∣∣∣ dx
The remainder of this approximation is given by∫ (

Lρ(cx)− Lρ
(
c

(
max
tj<x

tj

))) ∣∣∣c+ w
rn
h2
En

∣∣∣
This approximation is warranted by Lipschitz continuity of Lρ with a Lipschitz constant of
order 1/ρ2, and by τ/ρ2 → 0.

5) Poisson approximation:
The following argument essentially replaces the number ofX falling into the interval [−ρ/c, ρ/c],
which is approximately distributed Bin(n, 2f(0)ρ/c), with a Poisson random variable with
parameter 2nf(0)ρ/c; the distribution of everything else conditional on this number remains
the same.

Let nj be distributed i.i.d. Poisson(2nτf(0)) for j = 1, . . . , bρ/τc. This is an approxi-
mation to the number of X falling into the bin [tj, tj+1].
Draw Xjl ∼iid Uni([tj, tj+1]) and φjl ∼iid φ(e)|X = 0 for j = 1, . . . , bρ/τc and l = 1, . . . , nj.
Now define

πj =

∫ tj+1

tj

∣∣∣∣∣c+ w
rn
nτ 2

j+1∑
k=j−1

nk∑
l=1

[
K̃τ (Xjl − x)φjl

]∣∣∣∣∣ dx.
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Then

Z3 =A

bρ/cτc∑
j=1

Lρ(ctj)πj

where the πj are identically distributed and πj is independent of πk for |j − k| ≥ 2.
Conditional on ñ :=

∑
j nj, the equality is exact. The exact distribution of the number

of observations falling in the interval [−ρ/c, ρ/c], corresponding to ñ, would be given by

(2n(ρ/c)f(0))ñ

ñ!

n!

nñ(n− ñ)!
(1− 2(ρ/c)f(0))(n−ñ).

The Poisson approximation sets the latter part of this expression to a constant in ñ. This
is justified by the usual arguments deriving the Poisson distribution as a limit of Binomial
distributions. The approximation of Z3 follows by an argument similar to the one of point
3, second part, once we note that the multinomial p.m.f. converges uniformly.

6) Moments of the integrals over the subintervals:

• E[πj] = τµ1 + o(τ)

• E[π2
j ] = τ 2µ2 + o(τ 2)

• E[πjπj+1] = τ 2µ11 + o(τ 2)

• E[π3
j ] = τ 3µ2 + o(τ 3)

These equations follow from noting first pointwise convergence to normality of

Γ(x) = w
rn
nτ 2

j+1∑
k=j−1

nk∑
l=1

[
K̃τ (Xjl − x)φjl

]
→ N(0, v)

under our sequence of experiments. This is the point where the rate rn matters:

Γ(x) = w
τ 1/2

n1/2

j+1∑
k=j−1

nk∑
l=1

[
K̃τ (Xjl − x)φjl

]

∼ w
1

(nτ)1/2

(nj−1+nj+nj+1)∑
l=1

[K(ζl)ζlφl] =

= w

(
nj−1 + nj + nj+1

nτ

)1/2(
1

nj−1 + nj + nj+1

)1/2 (nj−1+nj+nj+1)∑
l=1

[K(ζl)ζlφl] ,
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where the ζj are i.i.d. Uni[−3, 3]. Now asymptotic normality follows by noting
(nj−1+nj+nj+1

nτ

)
→p

6f(0), (nj−1 + nj + nj+1)→p ∞ and E[φl|Xl] = 0. Similarly(
Γ(x1)

Γ(x1 + τδ)

)
→ N

((
0
0

)
,

(
v corr(|δ|) · v

corr(|δ|) · v v

))
.

Second, a change of the order of integration and the limit in n delivers the claims, where
this change of order is justifiable by the dominated convergence theorem. For instance,

lim(E[π2
j ]/τ

2) = 4 limE

[∫
[0,1]2
|(c+ Γ(tj + 2τδ1))(c+ Γ(tj + 2τδ2))| dδ1dδ2

]

= 4

∫
[0,1]2

limE [|(c+ Γ(tj + 2τδ1))(c+ Γ(tj + 2τδ2))|] dδ1dδ2

7) Central limit theorem applied to the sum of integrals over the subintervals:
Now apply a central limit theorem for m-dependent sequences to the sum of integrals. For
a definition of m-dependence, see Hoeffding and Robbins (1994). Note that Lρ(ctj)πj is an
m-dependent sequence with m = 1. We have

V ar

√ρ

τ

bρ/cτc∑
j=1

Lρ(ctj)πj

 =

ρ

τ

(∑
j

L2
ρ(ctj)V ar(πj) +

∑
j

Lρ(ctj) (Lρ(ctj−1) + Lρ(ctj+1))Cov(πj, πj+1)

)

≈
(ρ
τ

)( c
τ

)∫ ρ/c

−ρ/c
L2
ρ(cu)τ 2(µ2 + 2µ11 − 3µ2

1)du

= c(µ2 + 2µ11 − 3µ2
1)

∫ 1

−1

L2
1(cu)du

Asymptotic normality for
√

ρ
τ

(Z3 − E[Z3]) follows, and by Ẑ =A Z3, the same holds for√
ρ
τ

(
Ẑ − E[Ẑ]

)
. Furthermore, E [Z3] = O(1), and hence so is E

[
Ẑ
]
. �

Proof of theorem 3 (Sketch):
We will approximate M(a, b, x, w1) by a criterion function that has the form of equation (2.6),
i.e., a local weighted average over the empirical distribution of some objective function.
Based on this approximation we can then again apply the results of Kong, Linton, and
Xia (2010). Newey (1994) provides a set of results that facilitate such approximations of
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partial means. In particular, lemma 5.4 in Newey (1994) allows derivation of the required
approximation by replacing the outer sum over j in equation (2.13) with an expectation,
and by linearizing the fraction inside. The first replacement is asymptotically warranted
since the variation created by averaging over the empirical distribution is of order 1/

√
n and

hence dominated by the variation in the nonparametric component. The second replacement
follows from differentiability and requires in particular that the denominator of the fraction
be asymptotically bounded away from zero. This is guaranteed by the requirement that W2

has full conditional support given (X,W1). Formally, lemma 5.4 in Newey (1994) gives

M(a, b, x, w1)− EW2 [Em|X,W [m|X = x,W1 = w1,W2]] = M̃(a, b, x, w1) + op(M̃(a, b, x, w1)),

where M̃(a, b, x, w1) :=

1

n

∑
j

(
Kτ (Xj − x,W1j − w1)

m(Yj − a− b(Xj − x))− E[m(Yj − a− b(Xj − x))|Xj,Wj]

fX,W1|W2(Xj,W1j|W2j)

)
.

(2.40)
This approximation of the objective function has the general form assumed in Kong, Linton,
and Xia (2010) if we set

m̃(Y,X,W, a, b, x) :=
m(Y − a− b(X − x))− E[m(Y − a− b(X − x))|X,W ]

fX,W1|W2(X,W1|W2)
, (2.41)

providing us with the desired Bahadur expansion. Choosing the appropriate sequence of
experiments, from here on the entire proof and result of theorem 2 go through unchanged.
If W1 6= const., the rates have to be adapted as follows. The number of observations within
each rectangle of size τ d goes to ∞ if nτ d → ∞. Finally, the variance of ĝ′ converges iff

rn = O
(
nτ (4+d)

)1/2
. �

Proof of theorem 4: The proof requires the following modifications relative to the
one-dimensional case: Assumption 2.2.1 is still applicable, where the only difference in the
d-dimensional case is that (2.8) has to be multiplied by 1/τ d−1. For ĝ′ to have a point-wise
non-degenerate distributional limit, we have to choose the rate rn to equal (nτ 4+d)1/2, which

is slower for higher d. To see this note that V ar(ĝ′) = O
(

r2n
nτ4+d

)
. Lρ is Lipschitz contin-

uous of order ρ−(1+d), so that we require τ/ρd+1 → 0 for step 4 of the proof. The range of
integration has to be partitioned into rectangular subranges of area τ d instead of intervals of
length τ . There will be approximately const · (ρ/τ)d such subintegrals. The variance of the
integral of |ĝ′| over each of these subranges will be of order τ 2d, similarly for expectations

and covariances. This yields a variance of Ẑ of O((τ/ρ)d); see point 7 of the proof. �
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Proof of theorem 5: By equations (2.23) and (2.25), it is sufficient to show that

rn · ĝ′11 (g2,n(σ̄1, s2), s1) and rn · ĝ′12 (σ̄1, s1)) converge jointly in distribution, while rn · ĝ(σ̄1, s),
as well as σ̂, converge in probability. These claims follow as before if we combine the con-

vergence of rngn from display (2.31) with Bahadur expansion (2.8) for ĝ′12 and ĝ′11 , where the
latter are evaluated at σ̄2,n, which is not constant but converges. �

Proof of lemma 20:
By definition of conditional quantiles, F∆X|X (Q∆X|X(q|X)|X

)
= q. Differentiating this with

respect to X gives
∂

∂X
Q∆X|X(q|X) = −

∂
∂X
F∆X|X(Q|X)

f∆X|X(Q|X)
. (2.42)

The differential in the numerator has two components, one due to the structural relation
between ∆X and X, i.e., the derivative with respect to the argument X of d(X, ε), and one
due to the stochastic dependence of X and ε.

∂

∂X
F∆X|X(Q|X) = E

[
gX · f∆X|gX ,X(Q|gX , X)

∣∣X]
+

∂

∂X
P (g(X ′, ε) ≤ Q|X)

∣∣∣∣
X′=X

.

This can be seen as follows: We can decompose the derivative according to

∂

∂X
F∆X|X(Q|X) =

[
∂

∂X ′
+

∂

∂X

]
P (g(X ′, ε) ≤ Q|X)

∣∣∣∣
X′=X

.

To simplify the first derivative, note that by iterated expectations

P (g(X ′, ε) ≤ Q|X) = E[F (g(X ′, ε)|X, gX)|X].

Differentiating this with respect to X ′ gives

E
[
gX · f∆X|gX ,X(Q|gX , X)|X

]
.

The claim now is immediate. �

Proof of proposition 10:
SinceX andX+∆X have their support in the interval [0, 1], Q∆X|X(q|0) ≥ 0 andQ∆X|X(q|1) ≤
0. Therefore the unique root X of Q∆X|X(q|X) must be stable, ∂

∂X
Q∆X|X(q|X) ≤ 0.

By lemma 20 and assumption (2.3.1), this implies that E [gX |∆X = Q,X] ≤ 0.
Finally, note that for all X where (0, X) is in the support of (∆X,X), there exists a q
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such that Q∆X|X(q|X) = 0. �

Proof of proposition 11: The claims are immediate, noting that Nc =
⋂
s[x

s
c, x

s
c+1]

and similarly for Pc. Furthermore, xsc ∈ Sc for all s, c = 1, 3, . . . and xsc ∈ Uc for all s,
c = 2, 4, . . .. Next, g(., ei,s) < 0 on [xsc, x

s
c+1], c = 1, 3, . . . from which negativity on Nc

follows, similarly for Pc.
Finally, under monotonicity of potential outcomes, assuming for simplicity differentiabil-

ity of g,
∂

∂e
xc = −

∂
∂e
g

∂
∂x
g
.

The numerator is always positive by assumption, the denominator is negative for c = 1, 3, . . .
and positive for c = 2, 4, . . . since we had assumed g positive for sufficiently small x, hence
∂
∂e
xc is positive for c = 1, 3, . . . and negative for c = 2, 4, . . .. �

Appendix 2.C Figures and tables
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Chapter 2. Nonparametric inference on the number of equilibria

Table 2.3: Montecarlo rejection probabilities

n τ r P̂ (ζ > zα) P̂ (ζ < −zα)
400 0.065 0.179 0.05 0.01
800 0.059 0.194 0.03 0.02

1600 0.055 0.231 0.02 0.01
3200 0.052 0.290 0.02 0.01
400 0.065 0.268 0.03 0.02
800 0.059 0.292 0.01 0.02

1600 0.055 0.347 0.01 0.01
3200 0.052 0.434 0.01 0.02

Notes: This table shows the frequency of rejection of the null under a test of asymptotic level 5%, for the
sequences of Monte Carlo experiments described in appendix A. The g are estimated by mean regression,
the errors are uniformly distributed, and the first four experiments are generated using g1 with one root,
the next four using g2 with three roots. The columns show in turn sample size, regression bandwidth, error
standard deviation, and the rejection probabilities of one-sided tests.
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Chapter 2. Nonparametric inference on the number of equilibria

Figure 2.1: Response functions and Bayesian Nash Equilibria
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Notes: This figure illustrates the two player, two action static game of incomplete information discussed in
section 2.3.4. The functions gi are the (average) best response functions, Bayesian Nash Equilibrium requires
g(σ̄1, s) := g1(g2(σ̄1, s2), s1) − σ̄1 = 0, and we observe one equilibrium (σ1(s), σ2(s)) in the data. In this
graph, there are two further equilibria which are not directly observable.
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Chapter 2. Nonparametric inference on the number of equilibria

Figure 2.2: Qualitative dynamics of stochastic difference equations
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Notes: This figure illustrates proposition 11, where gU is the upper envelope of g(., εs) for s ≤ t, and gL is
the lower envelope. In the graph, equilibrium regions correspond to the dashed segments of the X axis, the
basin of attraction of the lower equilibrium region is given by (−∞, x1], and the basin of attraction of the
upper equilibrium region is [x2,∞).

Figure 2.3: Z and Zρ
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Notes: This figure illustrates the relationship between Z and Zρ. For the functions g depicted, Z(g1) =
Zρ(g1) = 0, Z(g2) = 0 < Zρ(g2) < 1, Z(g3) = 2 > Zρ(g3) > 1, and Z(g4) = Zρ(g4) = 2.
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Chapter 2. Nonparametric inference on the number of equilibria

Figure 2.4: On the importance of wiggles
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Notes: This figure illustrates how functions that are uniformly close can have different numbers of roots.
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Chapter 2. Nonparametric inference on the number of equilibria

Figure 2.5: Quantile regressions of the change in minority share and of the
change in white population on initial minority share
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Notes: These graphs show local linear quantile regressions of the change in minority share (left column)

and of the change in white population relative to initial population (right column) on initial minority share

for the quantiles .2, .5 and .8. The graphs do not show confidence bands.
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Figure 2.6: Density of minority share across neighborhoods
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Notes: These graphs show kernel density estimates of the distribution of minority share across neighborhoods.
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Chapter 2. Nonparametric inference on the number of equilibria

Figure 2.7: Density of Ẑ in Monte Carlo experiments
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Notes: This figure shows density plots of Ẑ from Monte Carlo experiments with uniform errors and g

identified by median regression, as described in appendix A. The upper graph shows the distribution from

four experiments with increasing samplesize n and correspondingly growing variance of the residual γ, where

the true parameter Z equals one. The same holds for the lower graph, except that Z = 3.
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Chapter 3

A nonparametric test for path
dependence in discrete panel data

Abstract

This paper proposes a test for path dependence in discrete panel data based on a characterization

of stochastic processes that are mixtures of Markov Chains. This test is applied to European

Community Household Panel data on employment histories. The data allow to reject the null of

no path dependence in all subsamples considered.

3.1 Introduction

Path dependence is of potential relevance in many areas of economics and the social sciences
more generally. Path dependence here is understood to signify a causal impact of past states
of some system on the future of that system, holding constant the present state. For instance,
the employment history of an individual i might have a causal impact on that individual’s
chance of finding a job, given present unemployment. This is suggested by the empirical
observation that past employment status Yi,0 is predictive of future status Yi,2, conditional
on present status Yi,1, in panel data on individual employment histories. However, if there
is unobserved and exogenous heterogeneity across individuals that is serially dependent, and
influences employment prospects, a similar implication for observable data follows.

Several different approaches can be taken to identify the nature of path dependence in the
presence of unobserved heterogeneity. Experimental variation of initial Yi,0 identifies path
dependence as the excess causal impact of Yi,0 on Yi,2, beyond the effect mediated through
Yi,1. The latter is identified by compounding the effect of Yi,0 on Yi,1 and the effect of Yi,1
on Yi,2.

Functional form assumptions underly popular models of panel data as well as duration
data. For instance, additive separability of heterogeneity is required in fixed effects models
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Chapter 3. A nonparametric test for path dependence in discrete panel data

(see Chamberlain (1985)), and multiplicative separability of heterogeneity is imposed in the
mixed proportional hazards model (see Heckman and Singer (1985), Van den Berg (2001)).

Without either experimental variation or functional form restrictions, models with ar-
bitrary unobserved heterogeneity but no path dependence are still testable. In the case
of spell durations, Heckman, Robb, and Walker (1990) devise tests based on characteriza-
tions of mixtures of exponential distributions. In the case of discrete panel data, Lee (1987)
discusses restrictions on the coefficients of log linear probability models implied by mixture
assumptions. The present paper is based on a characterization of mixtures of Markov Chains,
proven by Diaconis and Freedman (1980).

3.2 The test for path dependence

The time path (Yi,t) of an individual’s status is described by a Markov chain, conditional on
time invariant individual specific heterogeneity αi, if two assumptions hold: First, the con-
ditional distribution of future status given the individual’s history and time invariant exoge-
nous characteristics does not depend on the individual’s history: P (Yi,t+1|αi, Yi,t, Yi,t−1, . . .) =
P (Yi,t+1|αi, Yi,t). This is implied by the absence of both path dependence and time varying
heterogeneity. Second, this conditional distribution does not depend on time t. This paper
proposes a test for the hypothesis that individuals’ histories follow a Markov chain, condi-
tional on time invariant individual specific heterogeneity. This implies that the population
distribution of histories can be represented as a mixture of Markov Chains.

Throughout we consider discrete panel data with finite support, Yi,t ∈ {y1, . . . , ym}. The
event {Yt = σt : t = 0, . . . , T} is denoted Aσ. The null hypothesis for which a test statistic is
developed is the hypothesis that the data are generated from a mixture of Markov Chains:

Definition 12 (Mixture of Markov Chains).
A process (Yt) is called a mixture of Markov Chains if its law can be represented by

P (Aσ) =

∫
P

T−1∏
t=0

p(σt, σt+1)µ(dp)

for some µ on the set of stochastic matrices P, where w.l.o.g. y0 = 1.

In this definition, p(σt, σt+1) = P (Yi,t+1 = σt+1|αi, Yi,t = σt). Conditional on αi (that is,
p), the probability of a given sequence (y0, . . . , yT ) is the product of the probabilities of tran-
sitions from yt to yt+1, where these transition probabilities are statistically independent and
constant over time. Given the initial state, the probability of such a sequence only depends
on the number of transitions between any pair of states. It does not depend on the order of
these transitions. Two sequences with the same initial state and number of transitions have
the same probability. This equality is preserved under mixing. This motivates the following
definition.
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Chapter 3. A nonparametric test for path dependence in discrete panel data

Definition 13 (Partial Exchangeability).
Two finite sequences of states, σ and τ , are called equivalent if they start with the same state
and they have the same number of transition counts from p to q for every pair of states p
and q, that is they contain the ordered tuple pq the same number of times.
A process is called partially exchangeable, iff for all equivalent strings σ and τ , P (Aσ) =
P (Aτ ).

Consider the sequences 1011 and 1101. Partial exchangeability implies those two to be
equally likely. If there was negative duration dependence in state 1, the second sequence
might be less likely.

By the above argument, any process that is a mixture of Markov chains is partially
exchangeable. That the reverse also holds true was proven by Diaconis and Freedman (1980),
in an extension of the classic de Finetti’s theorem.

Definition 14 (Recurrence).
A process (Yt) is called recurrent, if it returns with probability one to its initial state.

Diaconis and Freedman (1980) prove:

Theorem 6. Let (Yt) be recurrent. Then it is partially exchangeable iff it is a mixture of
Markov chains.

For a balanced panel, testing partial exchangeability amounts to testing equality restric-
tions on the multinomial distribution of state sequences in the population1. This can be
done, in principle, using a generalized likelihood ratio test for equality restrictions on a
multinomial distribution:

X2 := 2
∑
σ

Nσ log

(
Nσ

npσ

)
d→ χ2

k

under partial exchangeability as n→∞, where n is the number of cross-sectional units, σ is
an index ranging over all possible sequences, Nσ is the number of observations of type σ, pσ
are the maximum likelihood probabilities of sequences σ subject to the equality restrictions
implied by partial exchangeability, and k are the number of linearly independent restrictions.
The null can be rejected for large test statistics.

The number of restrictions k implied by partial exchangeability is shown in table 3.1.
As can be seen, greater length of the panel increases the ratio of restrictions to possible
sequences, k/mT+1. Many states (large m) might be problematic since the number of pos-
sible sequences, mT+1, explodes, thus making the probability of observing any particular
equivalence class low.

1The assumption of recurrence in theorem 6 is only needed for the implication from partial exchangeability
to representability as a mixture of Markov Chains. Hence rejection of partial exchangeability implies rejection
of a mixture of Markov Chains even without recurrence.
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Chapter 3. A nonparametric test for path dependence in discrete panel data

states
periods 2 3 4 5 6
3 0 0 0 0 0

(8) (27) (64) (125) (216)
4 2 6 12 20 49

(16) (81) (256) (625) (1296)
5 10 57 168 370 2925

(32) (243) (1024) (3125) (7776)
6 32 315 1368 4742 29720

(64) (729) (4096) (15625) (46656)
7 84 1347 8492 44247 234602

(128) (2187) (16384) (78125) (279936)
8 198 4983 44660 304587 1572245

(256) (6561) (65536) (390625) (1679616)
9 438 16899 211124 1759026 9829528

(512) (19683) (262144) (1953125) (10077696)
10 932 54387 932168 9353166 59932614

(1024) (59049) (1048576) (9765625) (60466176)

Table 3.1: Number of linearly independent restrictions implied by partial exchangeability, in
brackets number of different possible sequences

The asymptotic χ2 approximation might fail in practice for two related reasons. First,
some equivalence classes have actual probability 0. Second, some equivalence classes have
very few observations. According to van der Vaart (1998) chapter 17, the χ2 approximation
under the null is “good” if there are, in expectation, at least 5 observations per possible
sequence σ.

The following modification of the test is asymptotically valid and gives significant finite
sample improvements: Count the number of observed sequences falling into each equivalence
class, and discard all classes that contain less than “5 times the number of cells in the class”
observations. Calculate the generalized likelihood ratio test statistic of the restrictions on
this subsample. Reject the null if the statistic exceeds the critical value of a χ2 distribution
with degrees of freedom corresponding to the number of implied restrictions in the classes
retained in the sample.

The asymptotic validity of this approach can be seen as follows: Condition on the distri-
bution across equivalence classes. Calculate the generalized likelihood ratio test statistic for
the null of a uniform distribution within each equivalence class. Note that for each of these
test statistics standard χ2 asymptotics apply, conditional on the distribution across classes.
Note, finally, that these statistics are conditionally independent across equivalence classes,
and that the sum of independent χ2 variables is χ2 itself.
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3.3 Application to employment data

We shall now apply this test to panel data on employment histories in Western European
countries. The data set used is the ECHP household panel for the years 1995 to 2001.
Individuals are coded to be in one of three states, employed, unemployed or unobserved.
After discarding all individuals where first period employment status is unobserved, we get
156060 sequences of 7 periods (years) and 3 states.

The results of applying the modified χ2 test for partial exchangeability to these data are
shown in table 3.2. In all cases but the UK we get p-values far below 1 percent, and even
for the UK we are below 5 percent. Only a small fraction of the observations have to be
discarded for the modified test. The null of a mixture of Markov Chains can be rejected in
all subsamples considered.

3.4 Discussion and Conclusion

We have tested and rejected the null that individual employment histories are generated from
a mixture of Markov Chains. This null, and the notion of path dependence more generally,
are relative to the coding of status. If the causal effect of Yi,0 on Yi,2 is mediated through
Yi,1 and Zi,1, including Z in the coding of status eliminates path dependence. In particular,
even if data are generated from a Markov process, aggregation of states leads to violation of
the Markovian property and hence of partial exchangeability.

The null also implies time homogeneity. This cannot be relaxed fully, since any distribu-
tion of sequences can be generated from a mixture of time inhomogeneous processes without
path dependence. We could allow for aggregate structural breaks in an extension of the test.
For instance, choose a breakpoint and calculate the previous test statistic for either part of
the time window, take the sum and reject for the appropriate critical value of a χ2 distribu-
tion with degrees of freedom equal to the sum of the number of restrictions from both parts.
In another generalization, one can test for higher order Markovian behavior conditional on
time invariant heterogeneity. By redefining states as Zt = (Yt, Yt−1) for instance, second
order Markov behavior of Y is equivalent to first order Markov behavior of Z. Applying
either extension to the ECHP data again allows to reject the null hypotheses.

To conclude, it should be emphasized that the test proposed is a complement rather
than a substitute for inference procedures relying on stronger assumptions. It is not able
to disentangle the nature of path dependence (duration dependence in which state?), nor
can we allow for time varying exogenous covariates, as D’Addio and Honoré (2006) do. It
is attractive, however, because it requires neither functional form restrictions nor exogenous
sources of variation.
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Chapter 4

Identification in Triangular Systems using
Control Functions

Abstract

This paper discusses identification in nonparametric, continuous triangular systems. It provides

conditions which are both necessary and sufficient for the existence of control functions satisfy-

ing conditional independence and support requirements. Confirming a commonly noticed pattern,

these conditions restrict the admissible dimensionality of unobserved heterogeneity in the first stage

structural relation, or more generally the dimensionality of the family of conditional distributions

of second stage heterogeneity given explanatory variables and instruments. These conditions im-

ply that no such control function exists without assumptions that seem hard to justify in most

applications. In particular, none exists in the context of a generic random coefficient model.

4.1 Introduction

In a recent paper, Imbens and Newey (2009) develop nonparametric identification results in
triangular systems for models with a first stage that is monotonic in unobservables. Based
on these results, they construct inference procedures. In related work, Imbens (2007) surveys
control functions in triangular systems more generally. This note elaborates on their analysis
by providing conditions which are both necessary and sufficient for the existence of control
functions. The nonparametric, continuous triangular system setup considered is given by:

Y = g(X, ε) (4.1)

X = h(Z, η) (4.2)

where we assume
Z ⊥ (ε, η) (4.3)
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Chapter 4. Identification in Triangular Systems using Control Functions

with Z,X, Y each continuously distributed in R. This is the general setup in which the
application of instrumental variable methods is usually discussed, where Z is the exogenous
instrument, X is the treatment and Y is the outcome variable. The object of interest is the
structural function g.

Recent contributions to the literature have generalized identification in parametric (lin-
ear) triangular models to nonparametric setups. The idea of nonparametric identification
using the control function approach is to find a function C of X and Z such that, for
V = C(X,Z),

X ⊥ ε|V. (4.4)

If C is a one-dimensional, strictly monotonic function of both X and Z, then there exists a
one to one mapping between (X,Z), (X, V ) and (Z, V ). Existence of an invertible mapping
between (X, V ) and (Z, V ) implies that conditional independence 4.4 is equivalent to

Z ⊥ ε|V. (4.5)

In contrast to the literature providing mostly sufficient conditions for identification, this
note provides conditions which are both necessary and sufficient for the existence of control
functions that satisfy conditional independence and support requirements. These conditions
impose restrictions on the dimensionality of unobserved heterogeneity. While the importance
of dimensionality restrictions has been noted repeatedly, among others by Imbens (2007),
this note is, to the best of our knowledge, the first to formally show that they are both
necessary and sufficient.

The central object of interest in the control function literature is the average structural
function (ASF). Let Eε denote the expectation taken over the marginal distribution of ε,
and similarly for EV . The ASF was defined by Blundell and Powell (2003) as ASF (x) :=
Eε[g(x, ε)]. Given a control function, the ASF is identified by

ASF (x) = EV [E[g(X, ε)|V,X = x]] = EV [E[Y |V,X = x]]. (4.6)

The first equality requires conditional independence 4.4. Identification of the conditional
expectation given X, V requires full support of V given X. Under the same conditions, one
can identify the quantile structural function (QSF) gτ (x), which is given by the τth quantile
of g(x, ε) over the marginal distribution of ε, as well as functions defined by more general
conditional moment restrictions.1

Various choices for C have been proposed in the literature. Newey, Powell, and Vella

1 Suppose the object of interest is g̃(x) = argminǧEε[ρ(g(x, ε), ǧ)] for a loss function ρ(Y, g̃). The function
g̃ is identified under the same conditions as the ASF. To show this, replace Y with ρ in equation 4.6.
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Chapter 4. Identification in Triangular Systems using Control Functions

(1999) suggest using the residual of a first stage mean regression:

V = C(X,Z) = X − E[X|Z]. (4.7)

This is justified by an additive model for h, i.e. h(Z, η) = h̃(Z) + η and V = η. Such
additivity would not hold, for example, in models with heteroskedastic residuals.

Imbens and Newey (2009) propose, more generally, to use the conditional cumulative
distribution function F of X given Z:

V = C(X,Z) = F [X|Z]. (4.8)

This is justified by a first stage h that is strictly monotonic in a one-dimensional η, implying
that V = F (η).

In either of these cases, the fact that V is a function of η alone immediately implies that
conditional independence 4.5 holds. Under strict monotonicity of the conditional expecta-
tion or distribution function in Z, this in turn implies conditional independence 4.4.

The next section provides an example of failure of conditional independence 4.4 using the
control function 4.8. Sections 4.3.1 and 4.3.2 provide the central results of this note. Section
4.3.1 gives a condition which is both necessary and sufficient for the existence of a control
function that is constant in the instrument given unobserved heterogeneity. Section 4.3.2 does
the same for the more general case of control functions satisfying conditional independence
4.4. Section 4.3.2 also shows that no control function can exist in the case of the random
coefficient model. Section 4.3.3 states extensions to the case of higher dimensional X and
Z. Section 4.4 concludes. All proofs are relegated to appendix 4.A.

4.2 Counterexample

Consider the following random coefficient model:

X = η1 + η2Z = η · (1, Z) (4.9)

(η1, η2, ε) ∼ N(µ,Σ) (4.10)

Z ⊥ (η, ε) (4.11)

This model will serve as a counterexample for identification attempts using control functions.
Imbens (2007) subsection 5.2 uses the same example of failure of the control function of
Imbens and Newey (2009). As will be shown in section 4.3, no control function exists in this
specification because first-stage heterogeneity η is more than one-dimensional.
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For an economic example of this2, suppose the following: We are interested in the pro-
duction function relating output of firms to a single variable input, e.g., labor l. Production
technology is Cobb-Douglas, i.e., log output is yi = Ai +αili, where A and α are unobserved
heterogeneity in firm technology or endowment with other factors. Prices for the output
good vary exogenously, wages are constant, and firms maximize profits. Then both the first
stage relationship, that is, firm specific labor demand as a function of prices, and the second
stage production function exhibit a linear random coefficient structure.

A similar example is the problem of estimating returns to schooling when returns are
heterogeneous, schooling depends on returns, and we observe an independent cost variable
affecting school choice that can serve as an instrument.

Now we will show why the control function proposed by Imbens and Newey (2009), V =
F (X|Z), fails in this random coefficient model. For jointly normally distributed variables,
the conditional expectation is given by the best linear predictor. Hence we get, by ordinary
least squares regression of ε on X given Z,

E[ε|X,Z] = µε + (X − E[X|Z]) · Cov(X, ε|Z)

V ar(X|Z)
.

The assumptions imply that X and ε are jointly normal given Z, with

Cov(X, ε|Z) = Ση1,ε + ZΣη2,ε

V ar(X|Z) = Ση1,η1 + 2ZΣη1,η2 + Z2Ση2,η2

E[X|Z] = µη1 + Zµη2 .

This gives

E[ε|X,Z] = µε + (X − µη1 − Zµη2) ·
Ση1,ε + ZΣη2,ε

Ση1,η1 + 2ZΣη1,η2 + Z2Ση2,η2

. (4.12)

The control function proposed by Imbens and Newey (2009),

V = F (X|Z) = Φ

(
(X − µη1 − Zµη2)√

V ar(X|Z)

)
, (4.13)

is monotonic in X. If the support of Z is restricted to an appropriate range3, it is also
monotonic in Z. Hence, for at least a subrange of V , the following equalities hold:

E[ε|V,X] = E[ε|V, Z] = E[ε|X,Z] =

2I thank Bryan Graham for this motivation.
3If µη2 > 0, then Z ≤ −Ση1,η2/Ση2,η2 is sufficient, though not necessary.
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= µε + Φ−1(V )
Ση1,ε + ZΣη2,ε√

Ση1,η1 + 2ZΣη1,η2 + Z2Ση2,η2

. (4.14)

From this it follows that conditional independence 4.4 is violated: By invertibility of
C in both X and Z, conditional independence 4.4 and 4.5 are equivalent. Conditional
independence 4.5 requires conditional mean independence, i.e., that E[ε|V, Z] is constant in
Z given V . By equation 4.14, this holds if and only if Ση2,η2 = 0, that is, if the slope of the
first stage is constant. If the slope η2 has positive variance, conditional independence 4.4
does not hold. A similar argument can be made about the conditional variance of ε given
V,X.

4.3 Characterization of models in which control functions
exist

The next three subsections will present the general results characterizing triangular systems
for which control functions exist. Subsection 4.3.1 shows that control functions that do not
depend on Z given η exist if and only if η is one-dimensional. This requirement is in particular
violated by the random coefficient model of the previous section. Subsection 4.3.2 shows that
control functions that satisfy conditional independence 4.4 exist if and only if the family of
conditional distributions P (ε|X,Z) is one-dimensional. This dimensionality requirement is
again violated by the random coefficient model. Section 4.3.3 finally generalizes the previous
results to setups with higher dimensional X and Z.

4.3.1 Control functions that do not depend on Z given η

The following proposition covers all variants of the control function approach that we are
aware of, in particular Newey, Powell, and Vella (1999) and Imbens and Newey (2009):

Proposition 12. If V = C(h(Z, η), Z) does not depend on Z given η, then conditional
independence 4.5 holds.

As mentioned in the introduction, conditional independence 4.5 is equivalent to 4.4 if
there exists a mapping (Z, V ) → (X, V ), which is true if C is invertible. Conditional inde-
pendence 4.4 is necessary for the use of V as a control. The condition of proposition 12,
however, comes at the price of restricting the first stage structural function, h:

Proposition 13. If V = C(h(Z, η), Z) does not depend on Z given η for a C(X,Z) that
is smooth and almost surely invertible in X, then {h(·, η)} is a one-dimensional family of
functions in Z
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Remark: Identification of average structural functions or quantile structural functions
for a given X = x requires, in addition to conditional independence 4.4, that V has full
support given X = x. In other words, the range of C(X,Z) must be independent of X.

Remark: Assume that almost surely h(Z, η1) 6= h(Z, η2) for independent draws Z, η1, η2

from the respective distributions of Z and η. Then the family of functions {h(., η)} is one-
dimensional if and only if it is possible to predict the counterfactual X under manipulation
of Z from knowledge of X and Z. This possibility is a much stronger requirement than
the possibility of identifying the ASF or QSF for the first stage relationship, which follows
immediately from exogeneity of Z. The counterfactual outcome setting Z = z0, h(z0, η), is
used as a control function in the proof of proposition 14 below.

Remark: If invertibility is dropped from the assumptions of proposition 13, one-dimensionality
of the family {h(·, η)} does not necessarily follow, but neither does conditional independence
4.4. For example, if C = const., then conditional independence 4.5 holds, but 4.4 does not
necessarily hold.

The reverse of proposition 13 is also true:

Proposition 14. If {h(., η)} is a one-dimensional family of functions in Z and almost surely
h(Z, η1) 6= h(Z, η2) for independent draws Z, η1, η2 from the respective distributions of Z and
η, then there exists a control function V = C(h(Z, η), Z) which does not depend on Z given
η.

Remark: If the family {h(., η)} is not only one-dimensional but also monotonic in
unobserved heterogeneity, that is

h(z1, η1) > h(z1, η2)⇔ h(z2, η1) > h(z2, η2) ∀ z1, z2, η1, η2, (4.15)

then C(X,Z) = F (X|Z) is the same control function as the one constructed in the proof
of proposition 14, in that there is an invertible mapping between the two. If monotonicity
fails, however, C(X,Z) = F (X|Z) cannot satisfy the sufficient condition of proposition 12.

Remark: It follows from proposition 13 that in the random coefficient example of section
4.2, no control function satisfying the sufficient condition of proposition 12 and invertibility
in X can exist. The family of functions

h(Z, η1, η2) = η1 + η2Z (4.16)

assumed in the random coefficient model is two-dimensional, which implies that we can-
not predict the counterfactual X under a manipulation setting Z = z, h(z, η), for a given
observational unit from X and Z alone.
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4.3.2 Control functions satisfying conditional independence

Next we will consider the more general case of control functions satisfying conditional inde-
pendence 4.4, which is required to identify Eε|V [g(x, ε)|V ] by E[Y |X = x, V ].

Proposition 15. There exists a control function V = C(X,Z) such that conditional in-
dependence 4.4 holds and which is invertible in Z if and only if P (ε|X,Z) is an at most
one-dimensional family of distributions that is not constant in Z if it is not constant.

Remark: If C is not invertible in Z the following situation is theoretically possible: The
family of conditional distributions p(ε|Z,X) is two-dimensional. The conditional support of
(X,Z) given V , XZ(V ), is comprised of a discrete set of points given X. Hence p(ε|X, V ) is a
mixture of p(ε|Z,X) over a discrete set of points Z. None of the components of this mixture
is constant as X varies and Z covaries to remain within the manifold XZ(V ). Nevertheless,
the changes in the components cancel exactly, implying that p(ε|X, V ) is constant in X.

Intuitively, such canceling seems a highly non-generic phenomenon and of little practical
relevance. We do not have results, however, precluding this possibility in the absence of
invertibility of C in Z.

Remark: The theorem only characterizes conditions for the existence of a control func-
tion. It does not give conditions for identifiability of C itself.

In the random coefficient model of section 4.2, the necessary condition of proposition 15
is not fulfilled in general. We have

ε|X,Z ∼ N

(
µε + (X − µη1 − µη2Z)

Cov(X, ε|Z)

V ar(X|Z)
, V ar(ε)− Cov2(X, ε|Z)

V ar(X|Z)

)
, (4.17)

which is a two-dimensional family as long as Cov(X, ε|Z) is not identical 0 and Cov2(X,ε|Z)
V ar(X|Z)

is
not constant in Z, i.e., so long as

(Ση1,ε + ZΣη2,ε)
2

Ση1,η1 + 2ZΣη1,η2 + Z2Ση2,η2

depends on Z. Since this is the case for generic Σ, the following corollary holds:

Corollary 6. There exists no control function invertible in Z in the generic random coeffi-
cient model of section 4.2 such that conditional independence 4.4 holds.

4.3.3 Higher dimensional X and Z

The results of the previous sections extend to the case of higher dimensional X and Z. In
particular, if we allow X ∈ Rk and Z ∈ Rl with l ≥ k, the following generalization of
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proposition 13 holds:

Proposition 16. If V = C(h(Z, η), Z) does not depend on Z given η for a C(X,Z) that
is smooth and almost surely invertible in X, then {h(., η)} is a k-dimensional family of
functions in Z.

The proof is analogous to the one-dimensional case. Similarly for proposition 14:

Proposition 17. If {h(., η)} is a k-dimensional family of functions in Z and almost surely
h(Z, η1) 6= h(Z, η2) for independent draws Z, η1, η2 from the respective distributions of Z and
η, then there exists a control function V = C(h(Z, η), Z) which does not depend on Z given
η.

Finally, since none of the arguments leading to proposition 15 depended on the dimen-
sionality of X or Y , we get the following generalization:

Proposition 18. There exists a control function V = C(X,Z) such that conditional in-
dependence 4.4 holds and which is invertible in Z if and only if P (ε|X,Z) is an at most
l-dimensional family of distributions that is not constant in Z if it is not constant.

4.4 Conclusion

This note characterizes triangular models for which control functions satisfying conditional
independence and support requirements exist. These characterizations seem restrictive and
will generally not be fulfilled. In particular, proposition 13 states that having a control
function that is a function of unobserved heterogeneity η requires a one-dimensional first
stage family of structural functions.

Examples of such one-dimensional families include (i) families that are monotonic in
unobserved heterogeneity, as in Imbens and Newey (2009), (ii) models with X = h(|Z − η|),
which could describe the loss from missing an unknown target η, and (iii) multiplicative
families of the form X = h(Z) · η, where h is of non-constant sign. An economic example
of (iii) is an income equation where X is income, h(Z) is the (possibly negative) amount of
some asset that an individual owns, and η is the rate of return. The characterizations proven
in this paper show, however, that while such alternative families could be considered, no less
restrictive family will allow construction of a control function. That is, there is no scope for
generalization in conditions beyond Imbens and Newey (2009).
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Appendix 4.A Proofs

Proof of Proposition 12: This is immediate from independence of Z and (η, ε). By
assumption we can write V as a function of η, and therefore

Z|(V (η), ε) ∼ Z. (4.18)

Hence, the conditional distribution of Z given V (η), ε does not depend on ε, implying con-
ditional independence 4.5. �

Proof of Proposition 13: Invertibility in X and smoothness of C implies that the
range of V = C(X,Z) is a one-dimensional, smooth manifold for a given Z. Since V is a
function of η only, its range is independent of Z. Hence the range of V is a one-dimensional,
smooth manifold. Invertibility and smoothness of C imply further that we can define a
function h̃ such that X = h̃(Z, V ).

These assertions are true for many “reduced form” representations of the first stage such
as regression residuals or conditional quantiles. However, the assumption that V does not
depend on Z given η makes the first stage “structural” in the sense that we can write

h(Z, η) = h̃(Z, V (η)). (4.19)

Because V is one-dimensional, this is a one-dimensional family of functions in Z. �

Proof of Proposition 14: Since {h(., η)} is a one-dimensional family of functions, we
can assume without loss of generality that η has its support in R. Pick a generic z0 from the
distribution of Z, and define C(X,Z) = h(z0, h

−1(Z,X)), where the inverse is understood
with respect to the η argument of h holding Z fixed. This inverse is well defined by the non-
constancy of h in η and the one-dimensionality of η. By definition, C(h(Z, η), Z) = h(z0, η),
which is a function of η alone. �

Proof of Proposition 15: Consider the family of conditional distributions of ε given
Z,X. This is an at most two-dimensional family, indexed by a parameter which shall be
denoted θ(Z,X), that is, p(ε|Z,X) =: p(ε, θ(Z,X)). The distribution of ε given X, V is in
general a mixture over Z of p(., θ(Z,X)) for Z such that C(X,Z) = V . If C is invertible in
Z, no mixing takes place and this reduces to p(., θ(Z,X)) for Z = C−1(X, V ). In this case,
conditional independence 4.4 is equivalent to constancy of θ(Z,X) on the manifold

XZ(V ) := {(x, z) : C(x, z) = V, (x, z) ∈ supp(X,Z)}. (4.20)

Hence θ could be written as a function of C, which implies that the dimensionality of the
range of θ is no higher than the dimensionality of the range of C. The range of C, however,
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cannot be of dimensionality larger than the dimension of Z if C has full range given X, as
required for identification of the ASF and implied by the invertibility of C. This implies
that the range of θ is at most one-dimensional. �
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D’Addio, A. C., and B. E. Honoré (2006): “Duration dependence and timevarying
variables in discrete time duration models,” Princeton University.

Dasgupta, P., and D. Ray (1986): “Inequality as a determinant of malnutrition and
unemployment: Theory,” The Economic Journal, 96(384), 1011–1034.

De Giorgi, G., M. Pellizzari, and S. Redaelli (2009): “Identification of Social In-
teractions through Partially Overlapping Peer Groups,” .

Diaconis, P., and D. Freedman (1980): “de Finetti’s theorem for Markov chains,” The
Annals of Probability, 8(1), 115–130.

Duflo, E., and E. Saez (2003): “The Role of Information and Social Interactions in
Retirement Plan Decisions: Evidence From a Randomized Experiment,” Quarterly Journal
of Economics, 118(3), 815–842.

Ekeland, I., J. J. Heckman, and L. Nesheim (2004): “Identification and Estimation
of Hedonic Models,” Journal of Political Economy, 112(S1), 60–109.

Ellison, G., and E. L. Glaeser (1999): “The geographic concentration of industry: Does
natural advantage explain agglomeration?,” American Economic Review, 89(2), 311–316.

129



BIBLIOGRAPHY

Graham, B. (2008): “On the Identification of Neighborhood Externalities in the Presence
of Endogenous Neighborhood Selection,” Workingpaper, UC Berkeley.

Heckman, J., R. Matzkin, and L. Nesheim (2002): “Nonparametric estimation of
nonadditive hedonic models,” Manuscript, Univ. Chicago.

Heckman, J. J., R. Robb, and J. R. Walker (1990): “Testing the mixture of expo-
nentials hypothesis and estimating the mixing distribution by the methods of moments,”
Journal of the American Statistical Association, 85(410), 582–589.

Heckman, J. J., and B. Singer (1985): “Social science duration analysis,” Longitudinal
analysis of labor market data, pp. 39–110.

Hoeffding, W., and H. Robbins (1994): “The central limit theorem for dependent
random variables,” The collected works of Wassily Hoeffding, p. 205.

Horowitz, J. L. (2001): “The Bootstrap,” Handbook of Econometrics, 5, 3159–3228.
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