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ABSTRACT OF THE THESIS

Explaining Classifiers

by

Boyun Shih

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Adnan Youssef Darwiche, Chair

We study the task of explaining machine learning classifiers. We explore a symbolic approach

to this task, by first compiling the decision function of a classifier into a tractable decision

diagram, and then explaining its behavior using exact reasoning techniques on the tractable

form. On the compilation front, we propose new algorithms for encoding the decision func-

tions of Bayesian Network Classifiers and Binarized Neural Network Classifiers into tractable

decision diagrams. On the explanation front, we examine techniques for generating a variety

of instance-based and classifier-based explanations on tractable decision diagrams. Finally,

we evaluate our approach on real-world and synthetic classifiers. Using our algorithms, we

can efficiently produce exact explanations that deepen our understanding of these classifiers.
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CHAPTER 1

Introduction

Recent progress in artificial intelligence and the increased deployment of AI systems have led

to the need for explaining the decisions made by such systems, particularly classifiers [RSG16,

EDF17, LL17, RSG18]. It is now recognized that opacity, or lack of explainability, is one

of “the biggest obstacle[s] to widespread adoption of artificial intelligence” [CN17]. For

example, one may want to explain why a classifier turned down a loan application, rejected

an applicant for an academic program, or recommended surgery for a patient. Answering

such why? questions is important for gaining a user’s trust in the classification decision and

for government regulations, such as the EU General Data Protection Regulation [GF17].

In this thesis, we propose a symbolic approach to explaining classifiers, which is based on

the following observation [CD03]. Consider a classifier that labels instances either positively

or negatively based on a number of binary feature variables. The classifier specifies a func-

tion that maps features into a 0/1 decision (1 for a positive instance). We call this function

the classifier’s decision function, which unambiguously describes the classifier’s behavior,

regardless of its implementation. Our goal is then to obtain a symbolic and tractable repre-

sentation of this decision function, to enable efficient reasoning about its behavior, including

generating explanations for its decisions. We refer to the constructing of the symbolic and

tractable representation of a classifier’s decision function as compiling the classifier.

Choosing the target representation of the decision function involves a trade-off between

compilation cost and tractability of explanations. On one extreme, we can maintain the clas-

sifier’s representation, incurring no compilation cost but possibly leaving many explanation

tasks expensive. Another choice may be to compile the classifier into Conjunctive Normal

Form (CNF) and answer explanation tasks using a SAT solver [NKR18]. In this thesis we
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focus on compiling classifiers into Ordered Binary Decision Diagrams (OBDDs) [Bry86],

which require a possibly costly compilation phase but enable us to answer many interesting

explanation tasks in linear/quadratic time on the size of the decision diagram.

In particular, we study Naive Bayes, Bayesian Network, and Binarized Neural Network

classifiers. We review an existing technique for compiling Naive Bayes classifiers into OB-

DDs [CD03], and introduce new algorithms for compiling Bayesian Network and Binarized

Neural Network classifiers into OBDDs. We then convert the OBDDs into Sentential De-

cision Diagrams (SDDs) [Dar11], which can be much more succinct yet still maintain the

tractability properties required for our explanation tasks.

Once we have the classifiers represented as tractable decision diagrams, we explore which

explanation tasks are efficient on the decision diagrams. The explanation tasks we consider

come in two flavors: instance-based or classifier-based. Instance-based explanations reason

about the classifier’s behavior on one specific instance, and asks questions such as “What is

the minimum perturbation required on this instance to flip its classification decision?” or

“What is the minimal subset of features on this instance that can guarantee its classification

decision, regardless of how the remaining features are flipped?” Classifier-based explanations

reason about the classifier’s global behavior, and asks questions such as “Is the classifier

monotonic?” Reasoning about these questions gives us insight into the behavior of the

decision diagrams, which is exactly the behavior of the original classifiers.

We next provide an overview for the remaining chapters of this thesis. In Chapter 2,

we define our notation and review material on tractable decision diagrams and machine

learning classifiers. In Chapter 3, we describe an existing algorithm for compiling Naive

Bayes classifiers and present novel algorithms for compiling Bayesian Network and Binarized

Neural Network classifiers into OBDDs. In Chapter 4, we formally define our explanation

tasks of interest and provide efficient algorithms for answering these tasks on our decision

diagrams. Finally, in Chapter 5, we present experimental results and case studies, and

conclude in Chapter 6.
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CHAPTER 2

Background

We introduce notations and definitions, and review the relevant technical preliminaries.

Capital letters X denote variables and lower-case letters x denote their values, also called

a literal. Bold capital letters X denote sets of variables and bold lower-case letters x denote

their instantiations, also called an instance. When referring to machine learning classifiers,

feature variables are the inputs and class variable is the output of the classifier.

We begin with knowledge compilation, which examines languages for representing Boolean

functions [CD97, DM02, SK96]. The languages that have been studied are generally subsets

of Negation Normal Form (NNF). A NNF is a rooted, directed acyclic graph where each

internal node is labelled with ∧ or ∨ and each leaf node is labelled with >, ⊥, or a literal.

Note that negations (¬) can only appear with a literal, and not as an internal node.

A well-known subset of NNF is Conjunctive Normal Form (CNF). A CNF is a conjunction

of clauses, where each clause is a disjunction of literals. This is also the subset of NNFs with

height at most 2, where the children of each ∨-node are leaves and the root is a ∧-node.

CNF is considered a representation language, since it is suitable for human specification

and interpretation. But, it is not a target compilation language since there is no known

efficient algorithm for important queries/transformations, such as model counting or nega-

tion. These queries/transformations are necessary for generating explanations and reasoning

about a Boolean function. As such, we next examine two target compilation languages that

do efficiently support many queries/transformations.

3



∨

∧

¬x β

∧

α x

X

β α

(a) Circuit (top) and diagram (bottom)

notation of a decision node.

0 1

A

F

G

F

M

(b) Ordered Binary Decision Diagram

Figure 2.1: An OBDD represented using the diagram notation.

2.1 Tractable Decision Diagrams

The main properties that will give us tractability on many queries/transformations is decision

and ordering. A decision node is recursively defined as either >, ⊥, or a ∨-node with the

form (X ∧ α)∨ (¬X ∧ β), where α and β are decision nodes and X is a variable. In the last

case, we say that the decision node is labelled by X. Binary Decision Diagram (BDD) is the

subset of NNF where the root is a decision node.

2.1.1 Ordered Binary Decision Diagrams

An Ordered Binary Decision Diagram (OBDD) is a BDD that respects the ordering prop-

erty [Bry86]. This means that the decision nodes of the OBDD respect some global ordering

of the variables: if a decision node labelled by Xi is a parent of a decision node labelled by

Xj, then Xi must come before Xj in the global ordering. Figure 2.1b shows the decision

diagram notation of an OBDD with the variable ordering A,G, F,M , and sinks 0/1 denoting

⊥/>. To evaluate the OBDD on an instance x, start at the root and repeatedly follow the

solid edge if the variable of the current node is set to 1 by x, and follow the dashed edge

otherwise. The sink node that is reached determines the evaluation of x.
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2.1.2 Sentential Decision Diagrams

A Sentential Decision Diagram (SDD) is a variation of the OBDD where the decision nodes

decompose on sets of variables instead of single variables [Dar11]. A decision node labeled

by variable X in an OBDD decomposes a function f into (¬X ∧h0)∨ (X ∧h1). On the other

hand, a decision node in an SDD is labeled by a splitting of the variables into two sets X

and Y , and decomposes a function f into (g0∧h0)∨ . . .∨ (gn∧hn), where gi : X → {⊥,>},

hi : Y → {⊥,>}, and g1, . . . , gn are exhaustive and mutually exclusive. SDDs are a superset

of OBDDs, since OBDDs can be seen as the special case when X (in the X,Y split of an

SDD node) is a set with a single variable. For a more detailed treatment of SDDs, see [Dar11].

SDDs support almost all of the tractable operations that are offered by OBDDs [Dar11],

and can be more succinct than OBDDs [Bov16]. There is also a comprehensive SDD software

package with all of the necessary operations for running our explanation techniques [CD18].

2.2 Machine Learning Classifiers

We will now describe some commonly used machine learning classifiers. We consider versions

of these classifiers that have binary inputs and outputs, so we can aim to compile their

decision functions into tractable decision diagrams for reasoning and generating explanations.

2.2.1 Bayesian Network Classifiers

A Bayesian Network is a directed acyclic graph (DAG) along with conditional probability

tables (CPTs) [Dar09]. In the DAG, nodes specify variables and edges specify conditional

dependencies. A CPT specifies the distribution on a node for each state of its parents in

the DAG. Together, the DAG and CPTs generate a probability distribution Pr(.) over the

variables of the Bayesian Network.

The Bayesian Network classifiers we consider are Bayesian Networks with a single binary

class variable C, n binary feature variables X = {X1, . . . , Xn}, and a classification threshold

t [FGG97]. The class C is a root in the network and the features X are leaves. A Bayesian
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Network classifier classifies an instance x as 1 if Pr(c | x) ≥ t and 0 otherwise, where Pr(.)

is the probability distribution specified by the underlying Bayesian Network. An example

of a Bayesian Network classifier is shown in Figure 2.2, whose decision function matches the

OBDD in Figure 2.1b. We provide the truth table in Table 2.1.

C

A

N1

G F M

N2

(a) Directed acyclic graph

Threshold 0.5

C = 1 0.5

C 0 1

A = 1 0.6 0.7

C 0 1

N1 = 1 0.3 0.9

N1 0 1

N2 = 1 0.3 0.7

N1 0 1

G = 1 0.5 0.6

N2 0 1

M = 1 0.2 0.9

N1, N2 00 01 10 11

F = 1 0.1 0.8 0.3 0.9

(b) Conditional probability tables and threshold

Figure 2.2: The DAG and CPTs of a Bayesian Network classifier.

Table 2.1: The function on the 16 possible inputs computed by the OBDD in Figure 2.1b.

The Bayesian Network classifier in Figure 2.2 also computes the same function.

AGFM f(x)

0 0000 0

1 0001 0

2 0010 0

3 0011 1

AGFM f(x)

4 0100 0

5 0101 0

6 0110 1

7 0111 1

AGFM f(x)

8 1000 0

9 1001 0

10 1010 1

11 1011 1

AGFM f(x)

12 1100 0

13 1101 0

14 1110 1

15 1111 1
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2.2.2 Naive Bayes Classifiers

A Naive Bayes classifier is a special type of a Bayesian Network classifier where there is an

edge from the node of the class variable to the nodes of each feature variable, and there are

no other edges or nodes.

2.2.3 Binarized Neural Network Classifiers

A Binarized Neural Network classifier is a feed-forward neural network where the weights

and activations are binarized using {−1, 1} [HCS16]. A Binarized Neural Network classifier

is composed of internal blocks and one output block. Internal blocks consist of three layers:

a linear transformation (LIN), batch normalization (BN), and binarization (BIN).

• The LIN layer has parameters a (weights) and b (bias). Given an input x, this layer

returns 〈a,x〉+ b.

• The BN layer has parameters µ (mean), σ (standard deviation), α (weight), and γ

(bias). Given an input y, this layer returns α(y−µ
σ

) + γ.

• The BIN layer returns the sign (1 or −1) of its input.

The output block consists of a LIN layer and an ARGMAX layer. The ARGMAX layer

picks the output class with the highest activation. More details regarding these blocks and

layers and their exact definitions is given by Narodytska et al. [NKR18]. For convenience we

consider a Binarized Neural Network classifier with outputs 0/1 instead of −1/1.

Both the Bayesian Network and Binarized Neural Network classifiers we consider have

underlying decision functions that map binary inputs into a binary output. As such, we aim

to compile their decision functions into tractable decision diagrams for efficient generation

of explanations.

7



CHAPTER 3

Compilation Algorithms

In this section we explore techniques for compiling machine learning classifiers into tractable

decision diagrams. The goal is to construct an OBDD that completely captures the decision

function, or the input/output behavior, of the classifier.

We begin by reviewing an algorithm for compiling Naive Bayes classifiers from [CD03].

Then, we will introduce methods for compiling Bayesian Network and Binarized Neural

Network classifiers, based on work published in [SCD19, SDC19].

3.1 Compiling Naive Bayes Classifiers

[CD03] proposed an algorithm for compiling a Naive Bayes classifier into an OBDD, while

guaranteeing an upper bound on the time of compilation and the size of the resulting OBDD.

In particular, for a classifier with n feature variables, the compiled OBDD has a number of

nodes that is bounded by O(2n/2) and can be obtained in time O(n2n/2). Experimentally,

the time and space costs can still be quite low, depending on the classifier’s parameters and

variable order used for the OBDD.

The algorithm is based on the following insights. Let X be all feature variables. Clas-

sifying an instance x is based on the test Pr(c|x) ≥ t, which is equivalent to the following

test [CD03].
Pr(c)Pr(x|c)

Pr(¬c)Pr(x|¬c)
≥ t

1− t
(3.1)

Since all the feature variables are independent in a Naive Bayes classifier, we can partition

X into two sets U and V in any way and rewrite Equation 3.1. For convenience we will let

8



s(u) = Pr(u|c)
Pr(u|¬c) and s(v) = Pr(v|c)

Pr(v|¬c) .

Pr(c)

Pr(¬c)
Pr(u|c)
Pr(u|¬c)

Pr(v|c)
Pr(v|¬c)

≥ T

1− T
(3.2)

Pr(c)

Pr(¬c)
s(u)s(v) ≥ t

1− t
(3.3)

This formulation will help the efficient construction of OBDDs. In particular, at level

k in our OBDD, we have 2k possible partial instantiations, leading to 2k values in {s(u) :

u ∈ {0, 1}|U |}. Moreover, there are only n− k remaining feature variables, leading two 2n−k

values in {s(v) : v ∈ {0, 1}|V |}. As such, we can bound the number of distinct subfunctions

at level k by O(min(2n, 2n−k)), which gives us the same Sieling and Wegener bound on the

number of OBDD nodes [Weg00]. To finish, the total number of nodes in the OBDD has a

bound of 2
∑n/2

k=1 c2
k = O(2n/2) [CD03].

3.2 Compiling Bayesian Network Classifiers

We now present the algorithm for compiling Bayesian Network classifiers, which is more

involved since the feature variables of the classifier are not necessarily independent. As such,

we cannot partition the feature variables X in any way, since those in U may interact with

those in V in the Bayesian Network.

Our compilation algorithm is based on recursively decomposing into smaller classifiers and

identifying those that are equivalent to avoid the compilation of a classifier if an equivalent

one has already been compiled. We first describe the method of decomposing into smaller

classifiers, which can be described at a high level as follows. Given a Bayesian Network

classifier B, let U and V be a partition of its features variables X and let H be a variable

not in X. Suppose now that we are only interested in classifying instances x that set feature

variables U to some state u. When certain conditions hold, we can perform the classification

using a smaller classifier, which is obtained from classifier B as follows:

– Node H is disconnected from its parents and C, the class node, is added as the new

parent of H.

9



H U

V

C

(a) Classifier B.

V

C

H

(b) Subclassifier BH
u .

Figure 3.1: Variable H splits feature variables into (U ,V ). When given an instantiation

u on the feature variables U , we can construct a subclassifier that has the same decision

function as the original classifier over feature variables V .

– A CPT is assigned to H based on inference on B.

– A prior is assigned to C based on inference on B.

– Leaves are repeatedly removed from classifier B as long as they are not in C ∪H ∪V .

The resulting classifier is called a subclassifier. Figure 3.1 depicts an example of the structural

changes needed to construct a subclassifier. We let FB denote the decision function of the

original classifier B and FBHu denote the decision function of the subclassifier BH
u . The main

insight regarding these subclassifiers is that for any u and its corresponding subclassifier,

FBHu (v) = FB(uv) for any v. This key property will be used in the algorithm to reduce the

compilation of a classifier into the compilation of subclassifiers.

We will now spell out the above result on subclassifiers. We first state the conditions

under which a subclassifier can be constructed.

Definition 1 Let (U ,V ) be a partition of the feature variables X in a Bayesian Network

classifier B, and let H be a variable outside X. We say that H splits feature variables X

into (U ,V ) if H d-separates feature variables V from C and U .

Recall that Z d-separates X from Y if X and Y are independent given Z [Dar09]. We

are now ready to define subclassifiers.

10



Definition 2 Let B be a Bayesian Network classifier, H be a variable that splits feature

variables into (U ,V ), and u be an instantiation of feature variables U . The subclassifier

for H and u, denoted BH
u , is obtained from classifier B as follows:

1. Disconnect node H from its parents.

2. Make H a child of class variable C, and set its Conditional Probability Table (CPT)

to P (H|Cu).

3. Set the CPT of C to P (C|u).

4. Repeatedly remove every leaf node from B that is not in C ∪H ∪ V .

Constructing a subclassifier requires some computational work on the original classifier

B. First, we need to identify a variable H that satisfies the condition of Definition 1. This

can be done in polynomial time as it only involves reasoning about d-separation [Dar09].

Second, we need to determine the CPTs of H and C, which require the computation of

posteriors on the H and C, given the state u of feature variables U . This requires exact

inference on the classifier B. We will later provide a bound on the number of inference

calls made by our compilation algorithm for this purpose. The next theorem formalizes the

property of subclassifiers.

Theorem 1 Let B be a Bayesian Network classifier and let H be a variable that splits

feature variables into (U ,V ). For a subclassifier BH
u , we have FB(uv) = FBHu (v) for all

instantiations v of feature variables V .

According to this theorem, the classification of an instance uv by classifier B will match

the classification of v by subclassifier BH
u . As we shall see, when our compilation algorithm

fixes the state of feature variables U to u, it will construct and recursively compile the

subclassifier BH
u .

We will now introduce the second key result that will form the basis of our algorithm for

compiling a Bayesian Network classifier into an OBDD. This result provides a method for

detecting when two “similar” Bayesian Network classifiers induce the same decision function.

11



In this section we assume, without loss of generality, that the classifier has a class node C

which has a single child H. This assumption is satisfied by all subclassifiers and can easily

be satisfied for any classifier by adding a dummy class node with the original class node as

its single child. First we define when two classifiers are considered similar.

Definition 3 Let B be a Bayesian Network classifier with a class node C which has a single

child node H. A second Bayesian Network classifier is similar to B if it has the same

structure as B and differs only in the CPTs of C and H.

Let X be the feature variables of two similar classifiers B and B′. Note that P (X|H) is

the same across the two classifiers, and H d-separates C from X by our earlier assumption.

Thus, we can rewrite P (C|X) as follows:

P (C|x) =
∑
h

P (C|h)P (h|x)

=
∑
h

P (C, h)P (x|h)/P (x) (3.4)

So far, these results have not assumed that the class variable C and the variable H are

binary. For the rest of this section, we will assume that nodes C and H are binary, and the

classification threshold is t. In this setting, we have an efficient way of detecting when two

similar classifiers share the same decision function, in time linear in the number of feature

variables X. We present the details next.

Setting ah = P (c,H = h) − tP (H = h), we can rewrite the classification as a linear

inequality. ∑
h

P (c, h)P (x|h) ≥ tP (x)

∑
h

(P (c, h)− tP (h))P (x|h) ≥ 0

∑
h

ahP (x|h) ≥ 0 (3.5)

For two similar classifiers, the values ah vary but P (x|h) is the same. To detect if two

similar classifiers share the same decision function, we just need to verify that the two sets
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α βγ

Figure 3.2: Visualization of the equivalence interval of a classifier B. The red dots represent

instances classified as 1 and the blue dots represent instances classified as 0. A classifier

that is similar to B shares the same decision function as B if its coefficient γ falls within the

equivalence interval of B, depicted by the white region between α and β.

of values ah classify all instances x the same way. To do so, we define the sign, margin, and

coefficient of such classifiers.

Definition 4 Let B be a non-trivial1 Bayesian Network classifier with a threshold t and a

binary class node C which has a single binary child node H. Let σ denote the sign of the

classifier, which is defined to be 1 if P (c|H = 1) ≥ t and 0 otherwise. The margin α, β and

coefficient γ of B are defined as follows:

α = max
x:FB(x)=1

P (x|H = 1− σ)/P (x|H = σ)

β = min
x:FB(x)=0

P (x|H = 1− σ)/P (x|H = σ)

γ = −1 · P (c,H = σ)− tP (H = σ)

P (c,H = 1− σ)− tP (H = 1− σ)

That is, α is the largest value of P (x|H = 1 − σ)/P (x|H = σ) attained by any instance

classified as 1, and β is the smallest such value attained by any instance classified as 0 (see

Figure 3.2). The values α, β, and γ come from a rearrangement of Equation 3.5 for the

case of a binary H variable. The notion of a margin was actually identified by [CD03] in

connection to Naive Bayes classifiers, and turns out to apply to general Bayesian Network

classifiers.

The next result was proven only for Naive Bayes classifiers in [CD03]. We generalize this

to Bayesian Network classifiers.

1A non-trivial classifier with a binary class node classifies at least one instance as 1 and at least one
instance as 0.
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Theorem 2 Let B be a non-trivial Bayesian Network classifier with a binary class node C

and a single binary child node H. Let B′ be a second classifier that is similar to B and has

the same sign as B. Let t be their threshold, (α, β) be the margin of classifier B, and γ be

the coefficient of B′. The two classifiers have the same decision function, FB = FB′, iff γ

belongs to the interval [α, β). This is called the equivalence interval of classifier B.

The above theorem enables us to perform binary search over equivalence intervals to

identify equivalent subclassifiers: ones that lead to the same decision function and hence the

same compilation. This technique avoids the compilation of a subclassifier if an equivalent

one has already been compiled.

From Bayesian Network Classifiers to OBDDs

We now present the full algorithm for compiling a Bayesian Network classifier B into an

OBDD. We first identify a binary variable H that splits the feature variables into (U ,V ).

We then start enumerating over the values of feature variables in U as if we are building a

decision tree, in a depth-first manner. Each leaf of this decision tree corresponds to a distinct

instantiation u and a subclassifier BH
u with its equivalence interval. These subclassifiers are

similar to one another, since they differ only in the CPTs of class C and variable H. Our

algorithm will then compile these subclassifiers recursively using the same technique, except

that it will avoid compiling a subclassifier if it already compiled an equivalent one—as

determined by Theorem 2.

The efficiency of this algorithm depends on the choice of variable H and the correspond-

ing feature variable decomposition (U ,V ), as we want the size of U to be small. We identify

such feature variable decompositions in a preprocessing step. That is, after first decompos-

ing feature variables into (U ,V ) using an appropriate H, we follow by decomposing V

recursively. This leads us to the notion of a block ordering of feature variables.

Definition 5 Given a Bayesian Network classifier, a block ordering of its feature variables

X is a sequence π = (X1, . . . ,Xm) such that X1, . . . ,Xm is a partition of feature variables

14



X, and for each 0 < k < m, there exists a binary variable H that splits feature variables X

into (X1 ∪ . . . ∪Xk,Xk+1 ∪ . . . ∪Xm).

Each element Xi is called a block of the block ordering π. We will assume that the feature

variables in a block are ordered (arbitrarily). As such, we will refer to feature variables by

their position in the block ordering π.

We will later discuss a heuristic for obtaining a block order, which we used in our exper-

iments. But for now, we will discuss Algorithms 1 and 2. Algorithm 1 is passed a Bayesian

Network classifier B and a block ordering π of feature variables. It creates the sinks of the

OBDD and calls Algorithm 2.

Algorithm 2 implements the proposal we discussed earlier. It maintains a cache that

stores tuples of the form (D, I, σ, k), where D is an OBDD node, I is an equivalence interval,

σ is a boolean, and k is an integer. Such a cache entry means that OBDD D is the result of

compiling a subclassifier Bu that has equivalence interval I and sign σ. It also means that

the last feature variable in block U is at position k − 1 in the block ordering π. The cache

is fetched based on a coefficient γ, a sign σ and a level k. That is, it returns OBDD D if

γ ∈ I for the same σ and same k.

Algorithm 2 makes use of four auxiliary functions. First, get-subclassifier(B,u, π, k)

constructs a subclassifier and requires a constant number of calls to an exact inference

algorithm to get the coefficients of the subclassifier. get-sink(B) takes in a subclassifier

with no more feature variables, and returns either the 0-sink or the 1-sink based on a

simple check. equivalence-interval(D) computes the equivalence interval of the classifier

leading to OBDD D. This is done in constant time using the equivalence intervals for the

children of D [CD03]. Finally, get-OBDD-node(S) returns an OBDD node, which is defined

by the set S that specifies the node’s children and the labels of edges pointing to these

children.
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Algorithm 1 compile-classifier(B, π)

input: Bayesian Network classifier B and block ordering π of feature variables

output: OBDD for the decision function of classifier B

main:

1: 0-sink ← terminal OBDD node labeled with 0

2: 1-sink ← terminal OBDD node labeled with 1

3: D ← compile-subclassifier(B, {}, π, 0)

4: return reduced form of D

Algorithm 2 compile-subclassifier(B,u, π, k)

input: Bayesian Network classifier B, instantiation u of some feature variables, block ordering π

of feature variables, integer k

output: OBDD for the decision function of classifier B

main:

1: if u is an instantiation of a block in ordering π then

2: B ← get-subclassifier(B,u, π, k)

3: if B has no feature variables then

4: return get-sink(B)

5: γ, σ ← coefficient and sign of B

6: D ← find-in-cache(γ, σ, k)

7: if D = null then

8: D ← compile-subclassifier(B, {}, π, k)

9: I ← equivalence-interval(D)

10: store-in-cache(D, I, σ, k)

11: return D

12: X ← feature variable at position k in ordering π

13: S ← {}

14: for each state x of feature variable X do

15: C ← compile-subclassifier(N,u ∪ x, π, k + 1)

16: add (C, x) to set S

17: return get-OBDD-node(S)

16



Algorithm 3 implements a simple, greedy heuristic for obtaining a block ordering of

feature variables. Its running time is O(n4), where n is the number of feature variables,

which was sufficient for our experiments.

Algorithm 3 block-order(B,X)

input: A Bayesian Network classifier B with feature variables X

output: A block ordering π of the feature variables X

main:

1: H,U ,V ← class variable of B, X, ∅

2: for each variable H ′ that splits feature variables X into (U ′,V ′) do

3: if |U ′| ≤ |U | then

4: H,U ,V ← H ′,U ′,V ′

5: u← some instantiation of U

6: return U , block-order(BH
u ,V )

We close this section by providing time and size bounds on our compilation algorithm.

We later show that for certain classes of Bayesian Networks, these bounds can be as tight

as the bounds provided by [CD03] for compiling Naive Bayes classifiers into OBDDs.

Definition 6 Let π = (X1, . . . ,Xm) be a block ordering of the feature variables in a Bayesian

Network classifier B. Let pi denote the number of feature variables in block i, and let

s(i, j) =
∑j

k=i pk. The width wπ of this order and the compilation width wB of clas-

sifier B are defined as:

wπ = max
i∈{1,...,m}

[
pi ·min(s(1, i− 1), s(i,m)

)
]

wB = min
π
wπ.

We now have the following bounds on Algorithm 1.

Theorem 3 The number of nodes in the OBDD returned by Algorithm 1 is O(2wπ), where

wπ is the width of order π. Moreover, the running time of the algorithm is O(PT +wπ2wπ),

where P is the sum of the state space sizes of blocks in π and T is the time of an inference

call on the classifier.

17



H0

H2X0 X1
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(a) Ladder classifier (vari-

ables Xi are feature variables)
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(b) Cluster classifier (clouds contain ar-

bitrary structure)

Figure 3.3: Examples of classifier families with improved compilation time.

Consider the family of ladder classifiers depicted in Figure 3.3a, which has n = 2m + 1

feature variables. We can use the sequence of nodes H2, H4, . . . , H2m to decompose feature

variables, leading to the block ordering

[X0, X1], [X2, X3], . . . , [X2m−2, X2m−1, X2m],

which has width n/2. The size of the OBDD is O(2n/2) and the running time is O(nT+n2n/2).

The family of cluster classifiers in Figure 3.3b has similar bounds. Assume that we have

n feature variables and k clusters, with each cluster having n/k feature variables. We can

repeatedly use the node H0 to split feature variables into k blocks of size n/k, leading to a

block order width n/2, and a largest block size n/k. The size of the OBDD is O(2n/2) and

the running time is O(k2n/kT + n2n/2).

What is interesting about these bounds is that they match the ones for compiling Naive

Bayes classifiers to OBDDs [CD03]—an NP-hard problem as shown by [SCD18b]. In practice,

however, the time and space costs of Algorithm 1 can be quite low as we show in the

experiments in Chapter 5.
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3.3 Compiling Neural Network Classifiers

In this section, we explore the compilation of Binarized Neural Network classifiers (BNNs)

into OBDDs. We have the same motivations as before, except this time we may be interested

in only compiling the decision function over an input space, rather than over all possible

inputs. For example, users of a BNN can pinpoint a particular input instance x and ask

for guarantees on the behavior of the BNN for other inputs in the neighborhood of x. This

has practical applications for image classification, where users expect an image of a dog to

remain classified as a dog if only a few pixels are modified.

Let B be a BNN, and let BS represent the function of B on S, an input region of interest.

To obtain BS in a tractable form, we propose an Angluin-style algorithm for learning the

OBDD representation of BS [Ang87]. Our algorithm leverages an existing technique for

learning an OBDD using standard membership and equivalence queries [Nak05]. First, we

construct a hypothesis OBDD and then iteratively call equivalence queries, adding OBDD

nodes until its output agrees with BS. To answer equivalence queries efficiently, we encode

the BNN and the hypothesis OBDD into a CNF, and require that the region S can be

encoded as a CNF as well. When the algorithm terminates, it returns an OBDD D such

that D(x) = B(x) : ∀x ∈ S, a notion related to the Constrain operator on OBDDs [MT98].

We then verify properties of BNN B by performing efficient verification queries on OBDD

D.

Our algorithm can also be used as an incremental and anytime compilation algorithm,

by slowly increasing the region of interest. The compiled OBDD of a smaller region can be

used as the hypothesis OBDD for the compilation task of a larger region, without starting

over. We can essentially save our progress, and build on it at a later time if we decide the

initial region is too small.

We next provide the encoding of BNNs and OBDDs into CNF, which will serve an

important role in our main compilation algorithm.
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BNN to CNF

We use the conversion given by Narodytska et al. [NKR18]. An internal block of a BNN

consists of three layers: a linear transformation (LIN), batch normalization (BN), and bi-

narization (BIN). The LIN layer has parameters a (weights) and b (bias). The BN layer

has parameters µ (mean), σ (std), α (weight), and γ (bias). Put together, the three layers

of an internal block can be translated to the following function h(x) on an input instance

x [NKR18].

h(x) = 1 ⇐⇒ 〈a,x〉 ≥ −σ
α
γ + µ− b

Since the weights a and input x are binarized as {−1, 1}, the above computation reduces

to a cardinality constraint of the form
∑m

i=1 li ≥ C, where li ∈ {0, 1} and C ∈ R. This

cardinality constraint can be encoded as a CNF.

The output block has a LIN layer followed by an ARGMAX layer, which can be encoded

using a similar technique. First, we encode a cardinality constraint for all pairs of classes,

which tells us the class that has a higher activation function in the pairing. Then, we use

a final set of cardinality constraints to determine the class that was the winner in all of its

pairings [NKR18]. Since we focus on Neural Networks with binary output classes in this

paper, a single CNF variable is enough to represent the output of the BNN.

The space complexity of this conversion is O(NC2), where N is the number of neurons

in the BNN and C is the constant from the above cardinality constraint.

OBDD to CNF

We convert an OBDD into a CNF using the well-known Tseitin transformation [Tse68],

which converts a Boolean circuit into a CNF. Consider an OBDD node labelled by variable

X. If the two children of this node compute Boolean functions C0, C1, then the OBDD node

computes the Boolean function R = (C0 ∧ ¬X) ∨ (C1 ∧ X). We can then represent the

Boolean function of this node by the following five clauses:
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¬R ∨ C0 ∨X

¬R ∨ C1 ∨ ¬X

¬R ∨ C0 ∨ C1

R ∨ ¬C0 ∨X

R ∨ ¬C1 ∨ ¬X

Applying this conversion to all OBDD nodes leads to a CNF representation of the Boolean

function computed by the OBDD. The number of CNF clauses produced by this conversion

is 5N , where N is the number of OBDD nodes.

The above encodings allow us to convert a BNN into a CNF α and an OBDD into a CNF

β. Let X be the CNF variables corresponding to the BNN inputs and O be the variable

corresponding to its output. Then α∧x∧O will be satisfiable iff the BNN outputs 1 under

input x. Similarly, α∧x∧¬O will be satisfiable iff the BNN outputs 0 under input x. Now

let X be the CNF variables corresponding to the OBDD variables and R be the variable we

introduced for the OBDD root. Then β ∧ x ∧ R will be satisfiable iff the OBDD outputs 1

under input x and β ∧ x ∧ ¬R will be satisfiable iff the OBDD outputs 0 under input x.

When the BNN and the OBDD share the same inputs x, we can check for their inequiv-

alence with the formula φ = α ∧ β ∧ (O ∨ R) ∧ (¬O ∨ ¬R) [NKR18]. Then, φ is satisfiable

iff there is some instantiation of x such that (O ∧ ¬R) ∨ (¬O ∧ R) (i.e. BNN and OBDD

disagree).

Angluin-Style Exact Learning of Finite Automaton

In this section we describe Angluin’s algorithm for learning Deterministic Finite Automata

(DFA) [Ang87]. The DFA learning algorithm has an adaptation for learning OBDDs [Nak05],

which serves as the backbone for our neural network compilation algorithm. DFAs and

OBDDs are initimately related: a Complete OBDD (an OBDD that does not skip vari-

ables [Weg00]) is also a DFA (but a DFA is not necessarily an OBDD).

We roughly summarize the exposition on the topic of learning DFAs from the textbook

by Kearns and Vazirani [KV94]. The learning algorithm falls under the category of active

learning where the algorithm can learn through experimentation, as opposed to passive
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learning where the algorithm has no control over the sample of examples. To learn the DFA

for a function f , the learning process requires access to oracles for two types of queries:

• Membership Queries: The learning process selects an instance x and the oracle returns

the value of f(x).

• Equivalence Queries: The learner submits a hypothesis automaton h. The oracle tells

the learner if h computes the correct function (i.e. h = f), otherwise the oracle returns

a counterexample x for which h(x) 6= f(x).

The main idea of the algorithm is as follows. Let S be the set of states of a minimal

DFA we want to learn. Recall that each state represents a distinct equivalence class of input

strings. At all times we keep a hypothesis DFA whose states S? represent a partition of

S. We iteratively refine the partition by splitting some partition element of S? into two,

so that |S?| increases. When |S?| = |S|, each element in the partition contains exactly one

equivalence class from S, so our hypothesis DFA computes the target DFA.

Initially, we start with a one-node hypothesis DFA with just one state, which partitions

all the states in S into one group. As long as our DFA is incorrect, we will receive counterex-

amples from the equivalence query. Given a counterexample e, we can simulate e on our

hypothesis DFA and identify the first state s? for which its following step in the simulation is

provably incorrect. This can be done efficiently by maintaining a binary classification tree,

the details of which we omit. We then refine the partition by splitting s? into two nodes.

This process repeats until we have learned all the states of S, at which point the equivalence

query gives no more counterexamples and our algorithm terminates.

Suppose we wish to learn a DFA on binary inputs for the 3 mod 4 counter f , and we

currently have the hypothesis DFA h in Figure 3.4a and its binary classification tree in

Figure 3.4c. Since h(1101) = 0 6= f(1101), we get the string 1101 as a counterexample.

Using the binary classification tree along with membership queries, the algorithm identifies

the state λ in h as faulty, and splits it into two. This generates the updated DFA in

Figure 3.4b, which computes f correctly.
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Figure 3.4: Learning the finite automaton for the 3 mod 4 counter. Using the counterexample

1101, we modify the hypothesis DFA into the updated DFA.

The automaton learning algorithm was adapted into an OBDD learning algorithm by

Nakamura [Nak05]. This variation requires n equivalence queries and 6n2 + n log(m) mem-

bership queries, where n is the number of nodes in the final OBDD and m is the number of

variables in the OBDD.

BNN Compilation Algorithm

We now describe our main contribution: a compilation algorithm from a BNN to an OBDD.

Given a BNN B on n binary inputs and one binary output, we wish to obtain an OBDD D

that computes the function of B on a region S (i.e. D(x) = B(x) : ∀x ∈ S). We require

region S to be encoded as a CNF.

Algorithm 4 implements our proposal. The subroutines BNNToCNF and OBDDToCNF per-

form the encodings described earlier. We encode the BNN B as a CNF α with output

variable O. Then, we start the OBDD learning algorithm as described in Section 3.3 to

learn the reduced OBDD representation of B. The learning algorithm creates a hypothesis

OBDD D, which we encode as a CNF β with variable R representing the OBDD output. We
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Algorithm 4 CompileBNN(B,X, S)

input: A Binarized Neural Network B with input variables X, and a CNF S encoding an

input region

output: An OBDD D computing the function of B on S

main:

1: α,O ← BNNToCNF(B,X)

2: D ← initial hypothesis OBDD

3: β,R← OBDDToCNF(D,X)

4: φ← α ∧ β ∧ (O ∨R) ∧ (¬O ∨ ¬R) ∧ S

5: while φ has a satisfying assignment s do

6: x← projection of s on X

7: D ← UpdateHypothesis(D,x)

8: β,R← OBDDToCNF(D,X)

9: φ← α ∧ β ∧ (O ∨R) ∧ (¬O ∨ ¬R) ∧ S

10: return D

set φ on Line 4 such that φ has a satisfying assignment iff the current hypothesis OBDD D

does not compute the same function as BNN B on region S. While φ is satisfiable, we take

the satisfying assignment and keep only the variables corresponding to the BNN/OBDD in-

puts as our counterexample x. The subroutine UpdateHypothesis then edits our hypothesis

OBDD using counterexample x. Once we have an unsatisfiable φ, we return the OBDD D

with the guarantee that it computes the same function as BNN B on S. Note that there are

no guarantees on the output of OBDD D on instances outside S. The number of iterations

of the while loop is N , where N is the number of nodes in the final output D.

In Algorithm 5 we propose the construction of an input region that captures all instances

in the neighborhood of some instance x on n variables. More specifically, Algorithm 5 takes

in an instance x, a radius r, and outputs a CNF S on variables X1, . . . , Xn. An instance x?

is a satisfying assignment for S iff the Hamming distance between x and x? is no greater

than r. This becomes a cardinality constraint, which can be encoded in many ways [BB03].
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Algorithm 5 r-RadiusDomain(x, r)

input: An input x = x1, . . . , xn and a radius r ≤ n

output: A CNF that encodes all instances x? such that h(x,x?) ≤ r, where h measures the

Hamming distance

main:

1: d← a 2D array with dimensions [0, n]× [0, r]

2: for j ← 0 to r do

3: d0,j ← >

4: for i← 1 to n do

5: for j ← 0 to r do

6: h← di−1,j

7: l← di−1,j−1 if j > 0 else ⊥

8: di,j ← OBDD node: label Xi, xi-child h, ¬xi-child l

9: return OBDDToCNF(dn,r,X)

For ease of exposition, we use an OBDD for the constraint and then convert it to CNF.

In the algorithm, node di,j stores the state with n − i variables processed and a current

Hamming distance of r − j. On Line 8, the child edge of di,j that agrees with xi points to

di−1,j. The other child edge points to di−1,j−1 if j > 0, otherwise it points to ⊥. By using S

as an input for Algorithm 4, we can compile an OBDD that exactly computes the function

of a BNN for all instances close to some instance of interest, measured by the number of

differing variables. The time and space complexity of Algorithm 5 is O(nr).

To extend our algorithm into an anytime compilation algorithm, we start with a small

region of interest and increase its size over time. The compiled OBDD D will compute the

same function as B on this small region. To compile the OBDD for a larger region, we can

feed in D as the initial hypothesis OBDD in Algorithm 4 on Line 2, without the need to

build D from scratch. Then, we can use the updated OBDD to verify the properties of B

on the enlarged region. We can continue to enlarge this region until it becomes {0, 1}n, at

which point S = > and the compiled OBDD computes the same function as B everywhere.
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3.A Proofs

Proof of Theorem 1 We want to show that FB(uv) = FBH
u

(v). We let P (.) denote the

probability distribution of the original classifier B and let P ′(.) denote the probability dis-

tribution of the subclassifier BH
u . First, we work out the following equalities:

P (h|u) =
∑
c

P (h|cu)P (c|u)

=
∑
c

P ′(h|c)P ′(c) = P ′(h)

P (v|u) =
∑
h

P (v|hu)P (h|u)

=
∑
h

P (v|h)P (h|u)

=
∑
h

P ′(v|h)P ′(h) = P ′(v)

This gives us the following list of identities:

P (c|u) = P ′(c) P (h|cu) = P ′(h|c)

P (h|u) = P ′(h) P (v|u) = P ′(v)

Next, we will show the main property we are after: for any c and v, P (c|uv) = P ′(c|v).

P (c|uv) =
∑
h

P (c|huv)P (h|uv)

=
∑
h

P (c|hu)P (h|vu)

=
∑
h

P (h|cu)P (c|u)

P (h|u)

P (v|hu)P (h|u)

P (v|u)

=
∑
h

P ′(h|c)P ′(c)
P ′(h)

P ′(v|h)P ′(h)

P ′(v)

=
∑
h

P ′(c|h)P ′(h|v) = P ′(c|v)

Since the threshold is the same for the classifier B and the subclassifier BH
u , it follows

that FB(uv) = FBH
u

(v) for all v. �
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Proof of Theorem 2 We let P (.) denote the probability distribution of the classifier B

and let P ′(.) denote the probability distribution of the classifier B′. Using Equation 3.5

we can rewrite the classification decision of classifier B as
∑

h ahP (x|h) ≥ 0, where ah =

P (c,H = h)− tP (H = h). Since h is binary, we can expand the summation.

a0P (x|H = 0) + a1P (x|H = 1) ≥ 0

Since the classifier B is nontrivial, we know that a0/a1 < 0. Suppose that the sign σ of

B is 1, and thus a1 > 0. Rearranging, we get:

−1 · a1

a0

≥ P (x|H = 0)

P (x|H = 1)
(3.6)

Now suppose FB(x) = 1 for some x. Recall that α is the maximum value of P (x|H=0)
P (x|H=1)

attained

by any instance classified as 1. Let a′h = P ′(c,H = h)− tP ′(H = h).

−1 · a
′
1

a′0
= γ ≥ α ≥ P (x|H = 0)

P (x|H = 1)

So we have that F ′B(x) = 1. The proof is analogous for instances classified as 0, as well

as for classifiers with sign 0, thus FB(x) = F ′B(x) for all x. �

Proof of Theorem 3 Let π = (X1, . . . , Xm) be the block ordering of the feature variables,

and let s(i, j) =
∑j

k=i pk, where pk denotes the number of feature variables in block k. Let

tk be the number of OBDD nodes in levels s(1, k − 1) to s(1, k) − 1, so
∑

k tk is the total

number of nodes in the OBDD.

We will bound the number of nodes in the OBDD by bounding the number of nodes

in each block. The number of OBDD nodes on level s(1, k − 1) is bounded from above by

2s(1,k−1) (by decision trees) and also by 2 · 2s(k,m) (by equivalence intervals). The bound of

2 ·2s(k,m) from equivalence intervals is due to the following observation. For the subclassifiers

stored in cache of sign 1 and level s(1, k−1), their classification decision on an instance x can

be written as in Equation 3.6. Since the RHS of the inequality of Equation 3.6 is the same

among all subclassifiers of sign 1 and level s(1, k−1), and there are 2s(k,m) distinct instances

for such subclassifiers, there are at most 2s(k,m) equivalence classes of subclassifiers of sign
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1 and level s(1, k − 1). The analysis for subclassifiers of sign 0 and level s(1, k − 1) is the

same, so we have at most 2 · 2s(k,m) equivalence classes for subclassifiers on level s(1, k − 1).

From level s(1, k−1) to level s(1, k)−1, the algorithm constructs the OBDD in a decision

tree manner. Therefore, we have that tk is bounded by pk · min(2s(1,k−1), 2 · 2s(k,m)). So,

tj = O(2wπ), where j = argmaxk(tk). To finish, observe that both sequences tj+1, tj+2, . . .

and tj−1, tj−2, . . . on either side of j decay exponentially fast, so we have that the total

number of nodes is
∑

k tk = O(tj) = O(2wπ).

Next we will bound the time complexity of the algorithm. We start by showing that the

number of exact inference calls is P = p1 + . . .+ pm. This number is much smaller than the

number of subclassifiers constructed, which is O(2wπ), because we can share the results of

inference calls across different subclassifier constructions.

We want to show that for multiple classifiers that are similar, the construction of their

subclassifiers can reuse the same inference calls. For a set of similar classifiers, let H ′ be the

child of class node C and let H be the new splitting node used to construct the subclassifiers.

Note that to construct a subclassifier, we need the values P (h|uc) and P (c|u).

P (h|uc) =
∑
h′

P (h|uch′)P (h′|c)

The terms P (h|uch′) are actually the same across similar classifiers, since similar classi-

fiers only differ in the CPTs of C and H ′ and those variables are fixed in these terms. As

well, the terms P (h′|c) do not require any inference at all, since these are just the CPTs

encoded in the network. A similar analysis shows that inference calls can also be shared

when calculating the value of P (c|u). Therefore, the total number of inference calls for the

i-th block is O(pi). Finally, computing equivalence intervals in the algorithm can be done

without any inference calls using the equivalence intervals of subclassifiers. So, the total

number of inference calls is O(P ).

As for the number of computations of the algorithm, observe that the most expensive

operation is finding and storing equivalent subclassifiers in cache, which requires binary

search on O(2wπ) intervals. This gives us O(wπ2wπ) computations and a time complexity of

O(PT + wπ2wπ). �
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CHAPTER 4

Explanation Techniques

In Chapter 3, we examined compilation algorithms for converting the decision function of

machine learning classifiers into OBDDs. In this section, we will leverage the tractability

of OBDDs to develop efficient methods for reasoning and generating explanations for these

decision functions. OBDDs can handle a wide range of queries and transformations in

polynomial time, which will serve as building blocks for our explanation techniques. The

work in this chapter is published in [SCD18a, SCD18b]

We describe these explanation techniques with respect to a decision function, rather than

a classifier, so the set of all variables in the explanations is the set of all feature variables in

the original classifier. We first look at instance-based techniques, which analyze a decision

function with respect to a particular instance. Then, we will contrast this with classifier-

based techniques, which examine a decision function more generally, taking into account

every possible input instance. We will then use these explanation techniques to analyze the

behavior of machine learning classifiers in Chapter 5.

4.1 Instance-Based Techniques

4.1.1 Prime Implicant

The first class of explanations we consider is prime-implicant, or PI for short. These expla-

nations answer the following question: what is the smallest subset of variables that renders

the remaining variables irrelevant to the current decision? In other words, which subset of

variables—when fixed—would allow us to arbitrarily toggle the values of other variables,

while maintaining the classifier’s decision?
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Let y and z be instantiations of some variables and call them partial instances. We will

write y ⊇ z to mean that y extends z. That is, it includes the variables in z but may set

some additional variables.

Definition 7 (PI-Explanation) Let f be a decision function and x be an instance. A

PI-explanation of f on x is a partial instance y such that

(a) y ⊆ x,

(b) f(x) = f(x?) for every x? ⊇ y, and

(c) no other partial instance z ⊂ y satisfies (a) and (b).

So, fixing the partial instantiation of y guarantees the classification decision of f(x)

regardless of how the remaining variables are set. A PI-explanation on an instance for a

decision function represented as an OBDD can be computed using Algorithm 6. In fact,

Algorithm 6 returns a set of PI-explanations, encoded as an Ordered (Non-Binary) Decision

Diagram with three types of edges: negative literal, positive literal, and don’t-care (the

literal does not appear in the PI-explanation). In the output decision diagram, the edges on

a path from the root to the 1-sink will give us a PI-explanation.

4.1.2 Robustness

The second class of explanations we consider is robustness. Robustness explanations answer

the following question: what is the smallest perturbation on an instance required to change

the function decision? As an example, in the domain of educational assessment, we may

want to know whether a passing student was only a few test questions away from failing a

test, or whether they would have still passed it, even if they had gotten many more questions

wrong. As another example, in the context of image classification and self-driving cars, we

may want to know whether or not an image is only a few pixels away from being classified

as a stop sign. Given a decision function f , we may define the robustness of an instance x

as the number of variables that we need to flip, before we change the function decision.
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Algorithm 6 pi-inst(f, π,x)

input: OBDD f , variable ordering π, and instance x

output: Ordered Decision Diagram g for PI-explanations of f on x

main:

1: if π is empty return f

2: remove first variable X from order π

3: g∗ ← pi-inst(fx̄ ∧ fx, π,x)

4: if x sets X to x̄ then

5: gx̄ ← pi-inst(fx̄, π,x), gx ← ⊥

6: else

7: gx̄ ← ⊥, gx ← pi-inst(fx, π,x)

8: gx̄ ← gx̄ ∧ ¬g∗, gx ← gx ∧ ¬g∗

9: return Ordered Decision Diagram with branches gx̄, gx, g∗

Definition 8 Given a non-trivial decision function f and an instance x, we define the

robustness of the decision as:

robustnessf (x) = min
x′:f(x′)6=f(x)

d(x′,x)

where d(x′,x) denotes the Hamming distance between x′ and x, i.e., the number of variables

X where x and x′ differ.

The following observation implies an efficient algorithm for computing robustness. Con-

sider a decision function f(Y,X). The robustness of a positive instance y,x satisfies:

robustnessf (y,x) = min{robustnessf |y(x), 1 + robustnessf |ȳ(x)}

where robustnessf (x) = 0 if f = ⊥ (false) and robustnessf (x) = ∞ if f = > (true). So, it

takes time linear in the size of an OBDD to compute the robustness of a given instance (by

caching intermediate results, each node of an OBDD is evaluated at most once).
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4.1.3 Minimum Cardinality

The next class of explanations we consider is minimum-cardinality, or MC for short. To

motivate these explanations, consider a classifier that has diagnosed a patient with some

disease based on some observed test results, some of which were positive and others negative.

Some of the positive test results may not be necessary for the classifier’s decision: the decision

would remain intact if these test results were negative.

A MC explanation then tells us which of the positive test results are the culprits for the

classifier’s decision. In other words, we identify a minimal subset of the positive test results

that is sufficient for the current decision.

Consider two instances x? and x. We write x? ⊆1 x to mean the variables set to 1 in

x? are a subset of those set to 1 in x. We define x? ⊆0 x analogously. Moreover, we write

x ≤1 x? to mean: the count of 1-variables in x is no greater than their count in x?. We

define x ≤0 x? analogously.

Definition 9 (MC-Explanation) Let f(X) be a given decision function. An MC-explanation

of a positive instance x is another positive instance x? such that x? ⊆1 x and there is no

other positive instance x′ ⊆1 x where x′ <1 x?. An MC-explanation of a negative instance

x is another negative instance x? such that x? ⊆0 x and there is no other negative instance

x′ ⊆0 x where x′ <0 x?.

Cardinality minimization was explored in [Dar01] for Decomposable Negation Normal

Form, which is a superset of OBDD. The minimization procedure, which can be done in a

linear pass, applies directly to OBDDs.

4.2 Classifier-Based Techniques

The next explanation techniques examine the decision function as a whole, without specifying

a particular instance.

32



4.2.1 Monotonicity

We consider the property of monotonicity on a decision function. Intuitively, a monotone

function satisfies the following. A positive instance remains positive if we flip some of its

variables from 0 to 1. Moreover, a negative instance remains negative if we flip some of its

variables from 1 to 0. In certain domains, one expects or desires a classifier learned from

data to be monotone [GBF04]. For example, in the context of educational assessment, we

expect a student to be assessed positively if their correct answers are a superset of those of

another student who has been assessed positively.

More formally, consider two instances x? and x. As before, we write x? ⊆1 x to mean

the variables set to 1 in x? is a subset of those set to 1 in x. Monotone classifiers are then

characterized by the following property of their decision functions.

Definition 10 A decision function f(X) is monotone if

x? ⊆1 x only if f(x?) ≤ f(x).

So, if the positive variables in instance x contain those in instance x?, then instance x must

be positive if instance x? is positive.

For a decision function represented as an OBDD, monotonicity can be decided in time

quadratic in the OBDD size [HI02]. A simpler but less efficient approach is based on the

following observation: a decision function f is monotone iff f |x̄ |= f |x for all variables X.

Given an OBDD f , we can perform conditioning (f |x̄, f |x) and test entailment (f |x̄ |= f |x)

in time polynomial in the size of input OBDDs.

We also consider unateness, a mild generalization of monotonicity, which can also be

verified efficiently given a decision function represented by an OBDD.

Definition 11 A decision function f(X) is unate if for all X

f |x̄ |= f |x or f |x |= f |x̄.

Any monotone decision function is also unate. Intuitively, in a unate function, for each

variable X there exists a polarity x or x̄ where flipping variable X to that polarity will
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cause a positive instance to remain positive. In other words, it behaves like a monotone

function when we interpret the appropriate polarity of each variable as if it were positive.

As with monotone functions, we can efficiently test if a given decision function is unate given

an OBDD representation of that function. Moreover, if a decision function is unate, then

certain explanations become more efficient to compute, such as prime-implicant explanations,

as shown by [SCD18b].

4.2.2 Irrelevant Variables

Another important explanation technique is identifying irrelevant variables. This particularly

comes up with Bayesian networks that have multiple class variables, as only a subset of

the variables may turn out to be relevant to a particular class variable. In this case, we

would like to detect and then drop these irrelevant variables, to obtain a simpler and more

computationally efficient classifier.

Definition 12 A decision function f(X) essentially depends on variable X if f |x 6= f |x̄.

If the decision function does not essentially depend on variable X, we say that variable

X is irrelevant to the decision. In an OBDD, conditioning on a variable takes time that is

linear in the size of the OBDD. Moreover, equivalence testing can be done in constant time.

Hence, determining if a variable is irrelevant can be done efficiently. In fact, for a reduced

OBDD, it suffices to scan the OBDD to see if any node is labeled by variable X.
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CHAPTER 5

Experiments and Case Studies

In this chapter we report on experiments for the compilation algorithms presented in Chap-

ter 3, and we run the explanation queries on the compiled tractable decision diagrams using

the techniques from Chapter 4. First, we compile Bayesian Network classifiers from litera-

ture into OBDDs, such as ones that diagnose printer failures or assess educational outcomes.

Then, we train Binarized Neural Network classifiers on the USPS digit dataset and compile

them into OBDDs. These OBDDs are then converted into SDDs using the SDD software

package [CD18]. The SDD representation can be much smaller than the OBDD represen-

tation, and preserves tractability of our explanation techniques. Lastly, we implement our

explanation algorithms on top of the SDD software package, and examine the behavior of

the machine learning classifiers.

5.1 Bayesian Network Classifier Experiments

Table 5.3b summarizes compilation experiments we ran on three Bayesian Network classifiers

using leaf nodes as feature variables. For each network we included a number of classifiers,

each corresponding to one root of the network, using a threshold of 1
2
. Table 5.2 provides

similar results on two other networks, except in this case we sampled some of the leaf nodes

to include as feature variables (the networks were too large to fully compile). Inference calls

were performed using the SamIAm library [Dar].

The sizes of the resulting OBDDs are quite small. For example, the size of the OBDD

of the Andes classifier with root ValueKnownEq(VKE) is less than 1% of the state space size

given by the block order width. The limiting factor for the compilation algorithm is the
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Table 5.1: win95pts has 76 nodes, 16 feature variables and width 9. Andes has 223 nodes,

24 feature variables and width 18. cpcs54 has 54 nodes, 13 feature variables and width 14.

Width refers to the network tree-width, approximated by the minfill heuristic.

network class block order width largest / # blocks OBDD size compile time (s)

win95pts GRDS 15 15 / 2 498 21

win95pts PO 15 15 / 2 291 21

win95pts PAT 13 13 / 4 636 5

win95pts PDrvr 14 14 / 3 352 11

win95pts PMem 13 13 / 4 890 5

win95pts POn 14 14 / 3 31 11

win95pts PPpr 14 14 / 3 31 10

Andes TK 23 18 / 7 47 11,708

Andes VKE 19 19 / 6 2,107 27,495

Andes CNBG 19 19 / 6 2,893 24,374

Andes MDA 19 19 / 6 5,454 26,614

cpcs54 x3 12 12 / 2 25 69

cpcs54 x4 12 12 / 2 92 69

cpcs54 x9 11 11 / 3 13 35

compilation time, which depends on the treewidth of the network and scales exponentially

with respect to the largest block. The treewidth affects the time of each inference call, and

the largest block bounds the number of inference calls made by the compilation algorithm.

For example, the two emdec6g experiments in Table 5.2 with 27 and 30 feature variables

differ only by 2 in block order width. But, since they differ by 11 in the largest block,

we notice a large jump in the compilation time for these two experiments (two orders of

magnitude). On the other hand, the experiment with 30 and 33 feature variables also differ

by 2 in block order width. Since their largest blocks differ only by 2, the compilation times

are comparable (factor of 2). The OBDD size and compilation time are also significantly

affected by the threshold of the classifier. A heavily biased threshold can lead to a very small

OBDD and a short compilation time, while a balanced threshold generally leads to larger

OBDDs.
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Table 5.2: Network tcc4e has 98 nodes and width 10. Network emdec6g has 168 nodes and

width 7. We use t27 as the class node for tcc4e, and x29 as the class node for emdec6g.

network # feature variables block order width largest / # blocks OBDD size compile time (s)

tcc4e 21 15 11 / 7 167 4

tcc4e 26 19 14 / 8 930 11

tcc4e 30 30 20 / 6 3,057 1,873

tcc4e 37 37 25 / 8 10,442 39,705

tcc4e 38 38 26 / 8 22,508 91,332

emdec6g 24 24 7 / 13 115 6

emdec6g 27 27 10 / 10 122 11

emdec6g 30 29 21 / 7 4,154 2,487

emdec6g 33 31 22 / 8 3,855 5,308

5.2 Bayesian Network Classifier Case Study

We illustrate the utility of our compilation algorithm by showing how the resulting OBDDs

can be used to explain and verify a given classifier. We consider two networks from the

literature: win95pts and Andes; see Table 5.3b. We treat each network as a set of classifiers,

taking each root node as a class variable. We treat each leaf node as a feature variable, and

use a threshold of 1
2
.

We compile an OBDD for each classifier and then explain their decisions using two types

of explanations shown in Chapter 4: minimum cardinality (MC) explanations and prime

implicant (PI) explanations [SCD18b].

The win95pts network is used to diagnose why a printing job has failed [BH96]. It has

76 binary variables, 16 of which are leaves which we take as the feature variables of the

classifier. One of its root nodes PtrOffline (PO) represents a failure mode (the printer is

offline), and has two states: Online (0) and Offline (1). An instance is classified positively if

the the probability of being Offline is ≥ 1
2
. We first consider a positively classified instance

(indicating a printing failure) that sets 7 of 16 feature variables as 1. The unique MC-

explanation for this decision consists of a single feature variable set to 1: the printer icon
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is grayed out (PrtIcon is GrayedOut (1)). That is, observing this one symptom positively is

sufficient for a positive decision (printer is offline), even if all of the other 6 feature variables

were observed as 0 instead of 1. A technician using such a classifier for decision support

can troubleshoot a printer failure using this symptom, as it is the most pertinent among all

positively observed feature variables.

Consider the shortest PI-explanation of this positive instance, which consists of three

feature variables: the printer icon is grayed out (PrtIcon is GrayedOut), the problem is re-

peatable (NotRepeat is No), and the graphics are not distorted (GraphicsDistorted is No).

With just these three observations, the classifier will always decide that the printer is offline

(PtrOffline is Offline), no matter how the other feature variables are observed. Such a guaran-

tee can help users trust the classifier, especially if its behavior matches the users’ intuition.

Users can even enter their own partial observation of interest (say, PrtIcon is Normal and

GraphicsDistorted is Yes) and check if the classifier is guaranteed to behave according to their

expectations (say, decide that PtrOffline is Online) regardless of how the remaining feature

variables are set.

Next, we consider the Andes network, which models students’ problem-solving skills in

physics [GCV98]. We consider the class node TryKinematics (TK), which has two states:

false (0) and true (1). This class predicts whether a student has developed problem-solving

skills in kinematics, and assesses the student positively if the probability of true is ≥ 1
2
. This

classifier has 24 binary feature variables. First, we verify whether the classifier is monotonic

or not: it is indeed monotonic. Next, we consider a positively classified instance that ob-

served 5 of these feature variables as 1. The MC-explanation tells us that 3 of these 5 feature

variables are responsible for the decision: TryKinematicsForAccel, TryKinematicsForDuration,

and TryKinematicsForDisplacement. That is, we can flip the other two feature variables to 0

and still maintain a positive classification. We can also efficiently test whether the classifica-

tion of this instance is robust, given an OBDD of the classifier’s decision function [SCD18a].

In our example, it only takes a single feature variable to be flipped (from 1 to 0) to flip the

decision to negative.
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5.3 Binarized Neural Network Experiments

We present similar compilation experiments on Binarized Neural Networks. We consider the

fully connected version as well as the sparser binary Convolutional Neural Network, based

on the setup from [CSS19].

• Binarized Neural Networks (BNNs) [HCS16], as described in Chapter 2. In particular,

we assumed a fully-connected multi-layer feedforward architecture;

• Convolutional Neural Networks (CNN) with binary inputs and outputs, where we used

step activations instead of the more commonly used ReLU activations [CSS19].1 Such

a network corresponds to a Boolean circuit, although in general it will not be tractable.

However, we can encode it as a CNF using the Tseitin transformation, and use the

same algorithm described in Section 3.3 to learn its (tractable) OBDD.

We considered the USPS digits dataset, and binarized the inputs to get 16 × 16 black

and white images [Hul94]. We then trained our neural networks to distinguish between digit

‘0’ images (false-class) and digit ‘8’ images (true-class).

• We trained a BNN which achieved 94% accuracy using the training algorithm from [CHS16].

We first down-sampled the inputs to 8× 8 images. The BNN thus had 64 input nodes;

we further used 5 hidden nodes, and 2 output nodes. The network was encoded into

a CNF with 10, 664 variables and 41, 553 clauses. Using riss-coprocessor to pre-

process auxiliary variables, we compressed the CNF to 3, 438 variables and 23, 254

clauses [KKM15]. The original and compressed CNFs are equivalent after existentially

quantifying out all variables except for the inputs and output, which is enough for the

correctness of our algorithm.

• We trained a CNN which achieved 97% accuracy, using TensorFlow. The network used

the original 16×16 images, and thus had 256 input nodes. We created two convolution

1We first train the network using sigmoid activations, and then at test time we replace the sigmoid
activations with step activations, while keeping the learned weights.
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(a) A digit 0 that is classi-

fied as ‘0’.

(b) A digit 8 that is classi-

fied as ‘8’.

(c) A smile which is classified

as ‘8’ by the BNN and ‘0’ by

the CNN.

Figure 5.1: Three 16× 16 images: digit 0, digit 8, and a smile. For each image we compile

around its r-neighborhood (the used 8× 8 images are not shown).

layers, each with stride size 2. We first swept a 3 × 3 filter on the original 16 × 16

image (resulting in a 7× 7 grid), followed by a second 2× 2 filter (resulting in a 3× 3

grid). These outputs were the inputs of a fully-connected layer with a single output.

We encoded this network into a CNF with 10, 547 variables and 31, 682 clauses and

using riss-coprocessor, we pre-processed the auxiliary variables to get a compressed

CNF with 1, 473 variables and 11, 638 clauses [KKM15].

Experiments were done using a single Intel Xeon CPU E5-2670 processor. We used a time

limit of one hour for each compilation. In general, we find that the fully-connected architec-

ture of the BNN was more challenging to compile (hence, the reason for down-sampling the

input images). In fact, when we trained a CNN on the 8× 8 inputs, we were able to compile

the network over the space of all images, not just for a fixed region around a given image.

For the BNN and CNN that we trained, we identified instances classified as digit ‘0’

(Figure 5.1a), and compiled the neighborhood around it using Algorithms 4 and 5. We used

the riss SAT solver for our experiments [KKM15]. Table 5.3a (BNN) and Table 5.3b (CNN)

shows the compilation results for increasing values of r. We did the same for an instance

that is classified as digit ‘8’ (Figure 5.1b). We also compiled around the neighborhood of

an image that is neither a ‘0’ nor an ‘8’ (a smile, Figure 5.1c). For experiments with small
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input spaces, we manually verified the correctness of the OBDD through enumeration.

We make a few observations. For both the BNN and CNN, compiling larger regions

around the smile was more challenging than compiling the regions around a digit. This is

perhaps because there is less structure around an image that the network was not trained

with. Next, while we scaled to a larger radius r using the BNN, the space of images was still

much larger for the smaller radius that we compiled with the CNN, since the input images

were much bigger (16× 16 for the CNN versus 8× 8 for the BNN).

The bottleneck in our experiments is the average time for a SAT query, which is done

once for each of the N equivalence queries, where N is the size of the OBDD (sizes are given

in Tables 5.3a & 5.3b). As the OBDD grows, the membership queries become a bottleneck

as well since the number of membership queries is quadratic on N .

5.4 Binarized Neural Network Case Study

In this section we perform verification queries on the CNNs that we trained and com-

piled. Here, we first counted the number of counterexamples. Second, we performed prime-

implicant queries, which give us a subset of pixels that render the remaining pixels irrelevant

for the neural network classification [SCD18b], up to the region under consideration.

Consider the instance visualized in Figure 5.1a, classified as a ‘0’ digit. For r = 3 in

Table 5.3b, the reduced OBDD is just the constant false (⊥). This means that there were

no counterexamples in this region, and that flipping any r = 3 pixels in our image will still

produce another image classified as digit ‘0’ (the false class). Recall that an image has 256

pixels in our example, so this classification holds for all of the 2, 796, 417 possible inputs

within a radius of 3 around our image in Figure 5.1a.

For r = 6, we get a reduced OBDD of size 1, 469. We first consider the number of

counterexamples, which can be done in time linear in the size of the OBDD. In particular, we

found that 20, 413, 779 out of the 377, 519, 940, 289 images (0.005%) were classified incorrectly

as the digit ‘8.’ Hence, not only can we detect if a given instance is sensitive to perturbations
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(a) 12 out of 256 pixels

fixed from Figure 5.1a

(b) 19 out of 256 pixels

fixed from Figure 5.1b

Figure 5.2: Prime implicant results for r = 6 for the images in Figure 5.1a and 5.1b. The grey

striped region represents ‘don’t care’ pixels. If we fix the black/white pixels in Figure 5.2a,

any completing image within a radius of 6 from Figure 5.1a must be classified as ‘0’. If we

fix the black/white pixels in Figure 5.2b, any completing image within a radius of 6 from

Figure 5.1b must be classified as ‘8’.

(flips of the pixels), we can also quantify how robust it is by counting how many ways the

instance can be flipped. This is in contrast to approaches to neural network verification

based on solving NP-complete problems, such as those relying (just) on SAT-solvers, where

counting is in general out of scope (counting is a #P-complete problem).

Next, using the PI query, we identified a minimal set of pixels that guaranteed a correct

classification, regardless of how the other pixels are set, within a radius of 6 of Figure 5.1a.

The result is shown in Figure 5.2a. This PI query tells us about the behavior of our CNN

classifier, in the space of images around Figure 5.1a. In particular, it suffices to have these

particular white pixels near the border of the image, and these black pixels in the center of

the image, for the classifier to fix its decision that the image is of a digit ‘0.’

We can ask the same queries for the instance visualized in Figure 5.1b and classified as

digit ‘8.’ For r = 3 in Table 5.3b (middle), the OBDD is just the constant true (>), which

means that flipping any 3 pixels of our instance will still produce another image classified

correctly as digit ‘8’ (the true class). For r = 6, we get an OBDD of size 3, 345. Using

this OBDD, we found that 181, 664, 350 out of the 377, 519, 940, 289 images (0.05%) are
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(a) 4 out of 256 pixels fixed

from Figure 5.1a

(b) 12 out of 256 pixels

fixed from Figure 5.1b

(c) 19 out of 256 pixels

fixed from Figure 5.1c

Figure 5.3: Prime implicant results for r = 5 for the images shown in Figure 5.1. The grey

striped region represents ‘don’t care’ pixels. If we fix the black/white pixels in Figure 5.3a,

any completing image within a radius of 5 from Figure 5.1a must be classified as ‘0’. If we

fix the black/white pixels in Figure 5.3b, any completing image within a radius of 5 from

Figure 5.1b must be classified as ‘8’. If we fix the black/white pixels in Figure 5.3c, any

completing image within a radius of 5 from Figure 5.1c must be classified as ‘8’.

classified incorrectly as the digit ‘0.’ The PI query identified the minimal set of pixels in

Figure 5.2b which guaranteed a correct classification regardless of how the remaining pixels

are set (within a radius of 6 of Figure 5.1b).

For the “smile” image in Figure 5.1c, the compiled OBDD for the (r = 5)-neighborhood

is larger than the corresponding OBDDs of the first two images (see each r = 5 row in

Table 5.3b). As well, for r = 5, the PI query for the “smile” requires 19 out of the 256

pixels to be fixed in order to guarantee a classification, while the PI queries for the digit

‘0’ and digit ‘8’ only require 4 and 12 pixels respectively (Figure 5.3). This suggests that

the behavior of the BNN is less structured in the region around the image of the “smile”,

possibly because it is unclear how the image should be classified.
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Table 5.3: Compilation experiments

(a) Compilation of a BNN on 64 variables

around the r-neighborhood of an image of a

digit 0, digit 8, and a smile.

digit 0

r input space OBDD

size

compile

time (s)

1 65 0 (⊥) < 1

2 2,081 0 (⊥) < 1

3 43,745 0 (⊥) < 1

4 679,121 0 (⊥) < 1

5 8,303,633 0 (⊥) 2

6 83,278,001 509 403

7 704,494,193 2,202 2,166

digit 8

r input space OBDD

size

compile

time (s)

1 65 0 (>) < 1

2 2,081 0 (>) < 1

3 43,745 0 (>) < 1

4 679,121 0 (>) 2

5 8,303,633 243 111

6 83,278,001 765 584

7 704,494,193 2,431 3,168

smile

r input space OBDD

size

compile

time (s)

1 65 0 (>) < 1

2 2,081 258 31

3 43,745 1,437 420

4 679,121 6,048 3,336

(b) Compilation of a CNN on 256 variables

around the r-neighborhood of an image of a

digit 0, a digit 8, and a smile.

digit 0

r input space OBDD

size

compile

time (s)

1 257 0 (⊥) < 1

2 32,897 0 (⊥) < 1

3 2,796,417 0 (⊥) < 1

4 177,589,057 12 2

5 8,987,138,113 220 29

6 377,519,940,289 1,469 450

digit 8

r input space OBDD

size

compile

time (s)

1 257 0 (>) < 1

2 32,897 0 (>) < 1

3 2,796,417 0 (>) < 1

4 177,589,057 64 18

5 8,987,138,113 573 250

6 377,519,940,289 3,345 3,486

smile

r input space OBDD

size

compile

time (s)

1 257 0 (⊥) < 1

2 32,897 8 < 1

3 2,796,417 93 7

4 177,589,057 622 138

5 8,987,138,113 3,269 1,661
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CHAPTER 6

Conclusion

The increased adoption of machine learning classifiers has sparked a need for explaining

their behavior. Safety-critical applications, as well as legal regulations, may even require

explaining the decision of machine learning classifiers before deploying them. This has led

to a growing line of research in developing techniques for generating good explanations.

In this thesis we contribute to this line of research by proposing an approach to ex-

plaining machine learning classifiers based on knowledge compilation. First, we capture the

input/output behavior of binary classifiers as tractable decision diagrams. To do so, we

provide algorithms for compiling Bayesian Network and Binarized Neural Network classifiers

into Ordered Binary Decision Diagrams. Then, we efficiently generate explanations for the

tractable decision diagrams, which in turn give explanations for the behavior of the original

classifiers. We outline specific explanation queries, such as prime-implicant and robustness

explanations, and describe how to compute them from a tractable decision diagram. Finally,

we demonstrate these techniques on classifiers for printer diagnosis, educational assessment,

and digit images. By leveraging the strengths of knowledge compilation, we are able to

efficiently generate insightful and exact explanations on machine learning classifiers.
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