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BORN EXPANSION TO ALL ORDERS FOR THE
HETEROTIC STRING -
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Abstract

A perturbation expansion to all orders in loops is developed for the
Eg ® Eg heterotic string. A light-cone gauge Lagrangian is presented and
applied within the functional-integral formalism of Mandelstam to com-
pute scattering amplitndes. Unitarity is manifest and Lorentz invariance
can easily be established hased on previous proofs for the superstring and
bosonic string within the context of this formalisni. It is shown that the
determinant arising from the functional integration associated with the
compactified degrees is analytic. This. along with its modular proper-
ties, gives a unique specification of it up to an overall mnoduli-independent
factor. .
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INTRODUCTION

The heterotic string [1] is a hybrid of a 26-dimensional left-moving (lm) bosenic
string and a 10-dimensional right-moving (rin) superstring. Sixteen of the Im bosonic
string degrees propagate on a torus whose directions are specitied by the routs of the
Eq® Eg Lie Group, “the Eg = Eg lattice™. All the other degrees of this string live in a
9+ 1 dimensional flat spacetime. The spectrum of the theory has a massless spin-two

‘particle and the theory is anomaly free. These properties inake this theory a hopeful

contender as a theory of gravity interacting with matter.

Despite the attractive possibilities that this theory has. calculations of scattering
amplitudes have been restricted to the one loop level which in fact were obtained by
Gross et al., (2] in their seminal work. Although in principle their operator method
should work to all orders in loops. the rask if formidable and has not been done.

In this paper we present a Lagrangian approach which is equivalent to the theory of
Gross el al. {1] at least to one-loop order. \Within the path integral formalism we then
compute scattering amplitudes to all orders in loops. The nmjdr breakthrough that
has opened the way for this calculation was made a few years back by Mandelstam (3,
who obtained the complete perturbation expansion for the superstring. His important
observation was that the determinant of the superstring Laplacian operator. which is
needed in order to compute the path integral in the lightcone gauge. can be deduced
solely by its analvtic and modular properties.

For our purposes this only gives the analvtic portions of the determinant for the
superstring sector of the heterotic string. This still leaves the problem of determining
the nonanalytic factors of the determinant. which in particular mix the left moving
bosonic sector with the right moving superstring sector. \We also have to adopt a
suitable Lagrangian for the compactified degrees so that they can be treated within
a light-cone functional integral formalisn.

In section two of the paper we introduce a light cone Lagrangian for the heterotic
string. Then in section three: the compntation of the path integral is carried out.
We obtain. as our end result. the fornmla for the scartering amplitude in terms of
known expressions such as prime forins and Green's funcrions. There are also three
appendices which have been resersved for some rechnical matters which are indirectly

related to our derivation.



SECTION 2

We will evaluate the following functional integral in imaginary time ¢ = ir , where
7 is Minkowski time, for the n-loop contribution to the scattering amplitude.

Ap = (const.)/D[TeichlD[EzternaI]DXDXe"5‘+5""lIl.-(.\’.X)'Il/(.\'.X) (2.1)

In' (2.1) the total action § is written as a sum of the compactified S, and noncom-
pactified, S,., degrees. )

5 = Sc + snr
where
Se= 1 [ dvip, X'a, %! (2.2)
‘T ir S ’
Se = [ dodpdiox! DX (2.3)
ne 1Ir (3 v .
X' (p.B,w) = X'(p,p) + ¢S (p. §) (2.4)
Q +id,
2 = % (2.5)
o —i0,
3, = '—2— - (2.6)
Do=2 440 (2.7)
¢ = aw “'Up .

and ¥;(¥;) are the initial (final) wave functions of the external states. X! and §!
in (2.4) are the I-th component of the bosonic and fermionic fields respectively. For
convenience later. we also will use the following notation for the quadratic operators
appearing in S.

Ac = 0,0,

A, = 0Dy (2.8)

S. is comprised of sixteen left-moving bosonic degrees of freedom which are com-
pactified on an Eg © Ej lattice. S, is comprised of eight left-moving degrees of a
bosonic string and eight right-moving degrees of a superstring all of which propogate
in flat spacetime.

The Lagrangian in S, was obtained from the following motivations. It gives the
desired classical equations of motion for the heterotic string, as defined in the orig-
inal operator formalism (1). except that it also allows o -independent solutions. In
addition, using the standard canonical prescription, it gives the desired commutation
relations. Hence, upon quantization, the fields are promoted to operators. Observe

that the Lagrangian is invariant ro changes in X which depend only on ¢. We regard
this as a gauge invariance. To fix the gauge. the ficld configurations will be restricted
by the conditions,
f daX'(o.1) =0 " 29)
7]

where the set {o;} contains one path which rounds each string in the diagram.

In the case of S, the Lagrangian is written in terms of the superfield X. Ohserve
that unlike the case of the superstring. omr superspace does not have a fermionic
partner ¢ to p.

In our problem we define a superconformal transformation as a regular supercon-
formal transformation on ¢ and p but only a conformal transformation on 5. It is
important to realize the point here. that we do not have to treat j as the complex con-
jugate of p. To understand this statement. suppose first. for orientational purposes.
that 5, p, and ¥, define the geometrical point with p as the complex conjugate to p.
Now suppose we choose to refer to {p, v) by another set of coordinates (5, /) but do
not affect our reference to 5. Then. for any field configuration X(p, v). although its
functional form in terms of (5, ¥') will look different.

X(p, ) = X(plp. ). ¢(3 07)) = X(p, ) {2.10)

the value of the action .., and su its weighted amplitude. remains the same.

This important property allows us to apply an analysis similar 10 the one in
Berkovits' paper {4] to the right-moving sector in S,,. and immediately conclude that
the present supetfield formalism is equivalent to the original component formalism
of Mandelstam (5]. The crucial step in such a derivation would be that one would
need to make a superconformal transformation at the joining points to another set
of coordinates which are defined in Berkovits’ paper. Hence. having established su-
perconformal invariance for our Lagrangian. our proof of equivalence follows directly
from Berkovits' analysis.

To establish the equivalence of the superfield formalism to the component for-
malism is necessary since only in the latter has the proof of Lorentz invariance been
established. The advantage of the superfield formalism is that the resulting equations
are more convenient to handle since there is no explicit appearance of the nontrivial
interaction vertex operator which is needed in the component form. For further mo-
tivation the reader is encouraged to examine this vertex operator in Mandelstam's

original paper (5].



SECTION 3

In this section the amplitude is explicidy evaluated for the computation of the
n-loop contribution to the scattering amplitude of N tachyons. Amplitudes involving
any other types of external particles can in principle be obtained from the present
one by factorization.

The first step in the calculation is to decompose the field for the compactified
degrees as

X' =X+ Fl . (3.1)
where X, is periodic on all strings and F, ., changes by nj; times the circumference

of the i-th radii when rounding the j-th a-cvcle. A’ is defined in terms of the radii,
{Ri.i = 1,16}, of the Eg x Ej lattice as

- 1
I\jl = —ﬁZIU‘-c!R,‘ . (32)

where e/ is the i-th component of the projection vector for the i-th radii.

In contrast to its properties around a-cycles. F,.io0p i8 periodic around all b-
cycles. The reason is 50 as to not overcount equivalent surfaces; our gauge constraint
requires this.

We can write an expression for Fi,_i., most simply in a mixed representation
which uses both string diagram coordinates p and complex plane coordinates # as the
sum of three terms.

Fl_tp = F{(p) + Fl(t) + Fi(2) (3.3)

swhere )
- 2 g 1vi(2) — vy( 2
Fl(p)=Y_ 27k} [—“—'( ),m-'( 2 ]
i=1 =

Flty= - 2aK!Y 7i;9,(8)

=1 1=l
Elt) = 3. Clo(t — t)(tin — 1)
y Z;I (3.4)
with
cr==t (F! + Fi)do
o Jui=cyete
P = {
wsf .

and tiz(tig) is the left (right) t-coordinate of the joining point for the i-th loop.

The function Fj(t) is needed in order that the gauge fixing condition (2.10) is
satisfied for F. It is necessary that F satisfy this condition independently since the
other term, X}, already satisfies it.

The functions v;, j=1...n. are the integrals of the one forms and 7 the period
matrix on the surface. Explicit expressions for these functions and the transformation
between the string diagram and the complex plane can be found for the Schottky
parameterization in Ref{6]. In (3.4) the function g;(t) satisfies Ancg; = 0 and it
changes by 1 when rounding the j-th b-cycle. Such a function exists in all cases
although its representation can be a bit cumbersome to describe.

One possible general form for such a function is,

it For 0 < 0 < Oum;

JRT4L

9;(t) = tjL<t<tpp (3.5)
0 otherwise -

where by continuation, g is defined elswehere. In particular there is no jump at t;5.
On the z-plane such a continuation can be seen explicitly by using, as an example,
the Schottky representation. In (3.5) ¢;. and ¢;z are chosen so that the next bound-
ary above o is at the same value of o, denoted o,; and so that this boundary is
nonterminating between ¢;; and £;. As an example consider the diagram in Figure
1 for the cut (loop) which is labelled 2 where in this case o, = 73.

Using the above decomposition of X. we now substitute into S.. This leaves us to.

- consider,

L= / dodtd, X'9,X! = /dadté),, (X4 4+ Flip) %0 (X} + Fllioy)  (36)

The right-hand side can be greatly simplified by exploiting the coordinace depen-
dences of Fy, F; and Fy. From this we obtain.

L= / dodtd, X}8,X! — i / dodtd, F}(5)0(F] + Fl) (3.7)
We now observe that the term involving F3 vanishes as can be seen by noting that,

QF o Y CH8(t = tin) — 6t — tin)}

and f_daa,.F.(p)|,,.L = 74 dodu Fi(p).q (3.8)



We comunent that the final answer should not have depended on F; since it is
needed due to our specific gauge choice.

Substituting for X/ in S.. and preforming the integral over the fields and summa-
tion over the Eg © Eg lattice we obtain the following formula for the amplitude:

An = (const.) [ [T dr, [] do, [T 48, T] dBd™*¢d*Qd" Q
P q r s .
XM MAL(7,5.0,0)

exp [—-12- Y Po- Py Nue(QarQai QuQs) (3.9)

ad>f
where
mia=1...2n-3

b;a=1...2n -3
(3.10)
aa=1...n

Jaa=1...n

are the set of real string diagram coordinates,
faia=1...2n-2
are the odd moduli parameters.
Qaia=1...N

are the joining points of the external states. M. and A, are the determinants of the
regularized operators: M, = det A.. '-..\I,.c = det A, and the Green’s function N,
satisfies ‘
Dy Noe(pyp, i o p' 0"} = 2@ = )8(p — p)8(p —~ )
(3.11)
+ Focldyp,w)
We also define the Green’s function. .V, associated with the compactified degrees
which satisfies

050,Nc(p,8') = wb(p — p'Y6(p ~ ') + Fulp) (3.12)

Although N, dves not arise explicitly in the amplitude for Tachyons presently be-
ing computed, it will be needed later in our derivarion when we compute the measure
factor. In the above definitions the functions F, and F,. arise hecause the quadratic
operators A, and A, have zero modes and therefore have illdefined inverses.
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L(7.9.2;,Q;) in (3.7) is the lattice sum over the Eg & Eg lattice. \Ve define it
more genérally as.

" NoQf &
Lird.z.Q) = Y. explin 3 K/miK]+ 3 ==Y Kluz)].  (3.13)
KeEsQE: =l =1 "9

Where. for our case of Tachyon scattering. we set all the @, equal to zero.

The Modular properties of L(7, i, zi,Q;) can be deduced by using the genera-
tors of Sp(2,2) which are given in Mumtord (7), page (189). Under the Modular
transformation

T — (Adr 4+ B)(Cr + D)™! (3.14)
we find
L((Ar + B)(Cr + D)™ (C7 + D)'¥.2.Qs)

= det(Cr + D)2 exp [in?(Cr + D)'e] Lir..2.Q:) 13.15)
We will now calculate the explicit expressions for the Green's functions and mea-
sure factors for the compactified and non-compactified degrees in that order.

The specifications for IV, are that it satisfies equation (3.10) and that it be periodic -
around a- and b-cycles. Such a function can be expressed as,

N, = N° 4+ N 4 y@ (3.16)
where
N = — [8(¢ — £')N°(p. pr) + 8(t' — t)N"(p.n)]
with
AL = =100+ tury
or=ap=o0
t,=-x
Ih =+
and
. 1\.’0 Wy //. ’ , _
NO o fda"ué—:la—t—! [No(o" t' L) — N°(a".t's pr) + 900 (0”")] (3.17)

and N° is the antianalytic portion of the usnal n-loop bosonic Green's function.
Again. as convenience mandates. a mixture of 5 and 2 coordinates ave nsed.
The function A™ alone produces the desired ¢-function singularity at 5 = j',

however it has two undesirable features which are corrected by adding N and N7 to

1



it. The problems with V° is first that it produces a logarithmic jump along a line
starting at 5 = ' on the string diagram and second that it is not periodic around b-
cycles. Both these problems are almost fully corrected by adding N* to it. It should
be noted that both these probléms occur with respect to either the g or o’ coordinate.
In the following we will carry out our discussion in terms of the g coordinate.

For the sum N?® + NW it is possible to define the logarithmic jump on the 5
plane so that it never lies on the string diagram. Furthermore, the sum of these
two quantities, although still not periodic when  rounds any b-cycle, will change
by a function independent of 5’. This in fact is sufficient for the defining properties
for this Green'’s function, since we can always define these jumps at each loop to be
independent of o. Stated differently, we can rid ourselves of these jumps by adding
to the Green's function (3.16) a o independent function which jumps by appropriate
compensating values at each loop to offset the jumps which are present. By adding
such a function to equation (3.16), (3.12) would still be satisfied.

However, N° + N s not the desired Green's function because this function bas
a jump at ¢ = #'. In particular, as you cross from ¢t = ¢/ — z to ¢t = ¥ + ¢, there is
a discontinuity arising from NW). It is the purpose of N® to remove this jump so
that N, is smoothly defined on the entire string diagram as is necessary to satisfy
equation (3.12). By examining N® one sees that the first two terms in the bracket
Ne(o",t'; i)~ N%(a",t'; pr), correct the discontinuity produced by N, However the
functions N°(a”,t'; pr) and N®(o",t'; pr). in N3 are not defined on the same hranch
as the ones in N!). In our case the branch cut for N°(o”,t'; o) — N°(o".t'; pr) in N°®
runs between p = jp contrasting the case of N*- N, This branch cut introduced by
Ne(g",t; p) — N*(0",¥; pr), in N1? produces another jump which g,+(o") removes.

One important property of N, which will be useful later we will quote here. When
the two coordinates j and §' are set equal to each other. the sum of the nonsingular
terms, i.e., all but the terms which go as In{(p — 7'), in N, conspire so that only N¢
remains..

We also point out here that ounly the antianalytic part. \. of N, would survive in
the momentum dependent term of any scattering amplitude hecause of momentum
conservation. However, this point is not of importance for the specific amplitude we

are presently computing.

As a final remark, although our discussion has singled out the j- coordinate,
observe that the function we added to N, N4 N2} introduced only o’-independent
discontinuities when considered as a function of the ' coordinate. This means we

could add a similar function with the roles of 5 and 7 reversed and construct a
symmetric Green’s function in j and 5 which satisfied (3.12) with respect to both
these coordinates.

Before proceeding to construct .. it will he neceséary to transform to a “new” set
of complex string diagram coordinates first introduced by Mandelstam [S]. Although
the “old” string diagram coordinates (a.d, r.8) are useful for their.graphical inter-
pretation, they are not compléx analytic coordinates. The definition of both types of
coordinates for the bosonic string and superstring are given in Appendix A. In our
case, due to the asymmetry of the right-moving superstring modes versus left-maving
bosonic modes, the Jacobian between the two sets of coordinates is different. The
derivation is given in Appendix A. We find

-3 n In-3 1 In=3 I3
'I;]; dr, E da, 'IJI dé, = T f|d Ysd™* Y (3.18)

where we will use the definition

r-r
Im'r =

(3.19)

with T and 7 being the period matrices associated with the rm superstring and Im
bosonic string respectively.

We now proceed to compute the measure factor M,. To do this we use the ob-
servation by Mandelstam (3) that it can be determined soley by its analytic and
modular properties. We must therefore establish the fact that M. is analytic with
respect to the Teichmiiller parameters {¥5}. Ve do this by showing that an infinites-
imal change of M., §,,AL. is analytic with respect to an infinitesimal change in any
of the Teichihuller parameters. We use the standard formula applicable to any linear
operator O for the variation of In O

4n0 = 600! (3.20)

and
dlndet O = &(Trlu O) = Tr(600") (3.21)

Since the operators we are dealing with require regularization, equation (3.18) is
not a complete formula for the variation. because it assumes that the trace can be
defined without regularization. However. careful analysis which takes the ordering
into account shows that naive use of equation (3.21) is allowed in this situation. In
all subsequent discussion. it is to be understood that we are discussing the regularized

- operator so that implicitly. the necessary subtractions are always done where needed.

9



Any infinitesimal variation of the Teichmiiller parameters can be affected by a
suitable coordinate transformation p, — p,,. One possible choice which generates all
the desired variations is

_ ) potcGlts) Forty <t <trioa<o<o,
Pu Po Qtherwise

where
to—th

At

G(t,) =

and At=1¢t;— (3.22)

where for definiteness one can imagine this as a relabeling of the coordinates of the
string diagram. The limits for o in (3.21). o, and o4, are always at two edges of a
string, either cuts within the diagram or the ends of the diagran. where, in particular,
these points are identified. Therefore the transformation (3.22) only changes p, on
some retangular region which is part of one internal or external string. Examples
of such regions are shown in Fig. 2. Implicitly it is to be understood that the
transformation (3.22) does not jump at ¢, and ¢, since one re-defines all functions as
consisting of two parts that are identified at these boundaries.

From (3.21) we obtain for the quadratic operator A,
§TrlnA, = %Tr [6A.V.] (3.23)
where
6Ac = 6(05,05,) = 05,05, — 05,05, = ~(0,,G)00,0,, — €(8,,G) 05,0,

+0(c?)

Substituting for 8,,3,, in (3.23) we want to establish that the resulting expression is
antianalytic with respect to the Teichmiiller parameters {¥g}. In particular that it is
only a function of & and not ¢. In fact. the c~dependent term in (3.23) wiil be removed
upon regularization. The remaining possible trouble arises from the fact that both
N, and the term containing G(t) in (3.22) involve nonanalytic quantities.

In order to show that they do not appear in the variation we first argue that N,
appearing in (3.23) can be replaced by only N®. For this. recall that in order to
take the trace the rule is to first set the prime coordinates equal to the unprimed
(this is after regularizing whicl: is essential equivalent to the prescription of ignoring
the singular terms) and then integrating over the unprimed coordinate. Now, when
one sets { = t’ we can use the property already stated above and can replace the

10

nonsingular part of N, by just the nonsingular part (means all but the part behaving
like In(p — §')) of N°.

What then remains in total for the variation is the expression.

A 1 ‘.
slndet A, = —— [ dtF(#',4")yzyrer + (analytic in Teich) (3.24)
2At Uy,

where
F(t't") = / do [0,0;N%(0. ', 0" 1")] fon=o
LL

Recall that in the above formulas, it is understood that we only consider the nonsin-
gular portion of Ne. The variation of the singular part. which goes as In(s — 7'), is
absorbed in the regularization so we can ignore its effect. The only cause of nonana-
lyticity in this expression is the apparent dependence on ty and 2. We will show that
it is in fact independent of ¢, and t, hence establishing analyticity of &1n A, with re-
spect to the Teichmiiller parameters. Observe that by applying the Cauchy-Riemann
equation we have
(O + Q) F(t.1') =0

since

/a. do(O + 0 )N (0. t.0' ' Mot=o = /W da(d, + 8, )N%(a,t.0",1')|pr=0
(2]

LL]

= / d00,N(0,t.0.t') = A, N =0 (3.25)

o
where AN, is the change of ¥ around the jth a-cycle. which is zero from the known
properties of N°. This means the integral over t in (3.19) simply gives the length of
the interval, At. which cancels with the same quantity in the denominator leaving
only /2, an antianalytic quantity.
We now turn to the noncompactified sector and counsider the construction of the
Green’s function. We write the result as a sum of three terms.

Npe = Jvﬂ + Ng+ Nouon

where Vg is the antianalytic portion of the usual busonic Green's function. Vs is the
superanalytic portion of the superstring Green's function. and Ny, is a nonanalytic
piece which is defined so that N, has the correct periodicity properties. An applica-
tion of the Riemann Bilinear Relations can establish the hehavior of Ny + Vg under

transformations around a- and b-cveles. This then gives the specifications needed of

11
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Npon- The appropriate function one finds is:

Npon = ;—’: ; [(T(:_i + gz, L‘)) - (m + 1.2 :,l‘,r))]

y (Tz— f)" (3.26)
2

% | (002 + palz, ) = (0a02) + mal ')

where the functions § and s are the integrals of the 1-forms for the Im bosonic sector
and 1/2-forms of the rm superstring sector respectively.

We now turn to the computation of the measure factor Af,,.. \WWe use formula (3.21)
to study the variation of Indet Af,.. Of course the trace operations now adhere to
the standard rules of superspace. It is again possible to use just the naive expression
(3.18). The other termns which would arise in the variation (not shown) do not affect
the result once both the original and varied operators are appropriately regularized.
We then find.

Slndet M, = Tr(6An.Ng) + Tr(88,.Ns) + Tr{éAnciNoon) (3.27)

One can establish by an analysis similar to that for A that the first two terms above
are analytic with respect to the Teichmiiller parameters. Then, by Mandelstam’s
trick. we can write down the explicit expressions arising from these two terms which
we will denote by A, and A, where M,. = M, MM, ... M, will be, up to a
constant, the bosonic determinant and 3f, will be the analytic portion (right moving
part) of the superstring determinant already obtained by Mandelstam [3).
The computation of M., arising from integration of the third term in (3.27) must
be done explicitly.
We now turn to this calculation. After operating on N, by (3.21) and setting
(7,0,¥') = (p,p.¥) we get
;o o 86p 0é
JAnc-\non(pv PP P, U') = [’a_,_)p/—\uc + jﬁeole"
obv 2 R
+ Tag.Dd. + D..8j03 + Dy.bpdpdp {3.28)
P
+D.;»6U’0,—,0./. & L"0,,0,; A”nm-

Recall now from (3.11) that N, is not actually the inverse of A, s0 we nwust be more
careful in the analysis of (3.28). Inspection on N, shows that the function F,. in

12

(3.11) arises from the NV,,, term. Specifically
Fuclp.pyv) = ;D N0, (3.29)

In principle, we could constrtuct the “true” Green's Function by adding to N, the
term Ny, given as,

- . l - 1 - I =t ! ’ L
Nyie(pyp,¥) = 7 / Noc(pyp, 038, 0"V Foc B 9 4"V dp' dp
T
. (3.30)
o nc(p,p.w)/dﬂdpdw wel @0 ¥)

This term will replace Fi,c(p) from the right hand side of (3.11) by a constant. At
least a constant must appear in addition to the é-function. since the operator A,
has no inverse due to the presence of a zerv mode. For purpose of computing on-sheil
scattering amplitudes there is never a nced to explicitly write down this extra term,
Nyiz, because of the momentum conservation condition. Even though both Green's
functions give the same amplitude, one must keep in mind the extra term. Vy;,, when
treating variations of the operator A, as we are doing.

From these considerations what emerges is that any term in (3.28) which is pro-
portional to A, should be ignored, since it would not have appeared had we used the
“true” Green’s functions. In particular the first term on the right hand side in (3.28)
is ignored. We now show that the last three terms in (3.28) are also to be ignored. If
we consider these three terms in isolation, they are:

I= 5‘;‘ / dpdpdyy [(De8pB,05 + Dedvded; — $10;05) N, (3.31)

"”'](ﬁ'-p'.w’)=(ﬁ.p-v)

We will choose to make the variation of ¢. o2, not independent of ép but rather given
by,

St = Dybp — vop 0(8?) (3.32)

-2 9p

e are free to impose such a restriction as long as it can generate all the desired
Teichnuiller deformations. In Appendix C we show that this is possible. Observe
that our choice would just correspond to the restrictions imposed by superconformal
transformations of the (p,y) coordinates had it not heen for the fact that ép depends
on both p and g. In fact relation (3.32) was motivated by this correspondence and
was done so as to simplifv (3.28). However this should not he confused with a super-
conformal transformation since. in fact, perfonming only conformal or superconformal
transformations cannot induce Teichmiller deformations. Using the above relation

13
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and substituting for 4y in (3.31) we are left with

== / dpdpdi [ (D 500605 + L ";” 2,05 ) \] (3.33)
(80 W )={B.p.%)

Again using (3.32) for 8¢ in the first term above. we get

=5 A’mm »
I=2 / dpdp(h/) D.9; (3.34)

which, from what we said earlier, must be ignored.

Hence we find for the nonanalytic portion of det A, the relation.

~if . 0bp by
§1ndet Anon = = / dpdpdi [( Fp0De+ G 0uDut D.,,&pa,,a,,) m]wm
(3.3
The area integtals can be converted to contour integrals to give,
' _ s | o O\ (Im'r)y
§lndet Apon = Z {}( f dpdp2 (6,; et ) g Dan
(3.36)

0v, (Im'r); av,
+f f dp26p i a—p}

The variation of the coordmates (8p, 6¢) induces variations in the period matrix 1s
discussed in Appendix C. Using those results we get.

i 1 et
5;(27n)§{ }gpdpdwh&T,,(lm )2 Do tie

g - '
- f;,_, dpi;ér,,,(lm r),,'aﬁp‘}

= S—:'r—2(21ri)2(6T - é;jp,((r7l'r).p .
= 8(Im't )y (Im'T)sp
and therefore
det A,on = det(Im'r) (3.38)

We can now combine our results for the n-loop contribution to the scattering
amplitude and write it as,

A4, = (const.) / H AYLdih H de! H AQu Qun

MIEAIL(7.7.0.0)

ne

e‘(p[ -3 2 Pa P/.’\,.c ((2“.(20:Quéa)] (3.39)

2 a>d
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CONCLUSION

The derivation we have given is for the even spin structures: however, there are
only slight modifications for the odd spin structures which we will briefly discuss
now. The form of the final formula for the scattering amplitude would be similar to
(3.39) except there will be additional factors in the integrand which arise from the
zero modes of the external particles. This can be handled by the same procedure
as Mandelstam has used in the case of the superstring {3]. Aside from this, the
main problem- is that there does not exist a set of holomorphic half-forms for odd
spin structures. The analogue for even spin structures were essential in constructing
needed expressions such as the Green's functions. This problem can be overcome
by using a set of half-forms constructed by D’Hoker and Phoug [9] which have one
pole. Mandelstam has shown in the case of the Superstring that the final expression is
independent of the position of the pole. His reasoning can be extended to the heterotic
string with only slight modifications due to the differences in the nonanalytic pieces
of the determinant. Hence the scattering amplitude for the odd spin structures can
also be computed.

One might ask at this stage what is the use of an explicit formula for the string
scattering amplitude. Clearly at present experimental energies there is no evidence
indicating that strings are relevant, at a fundamental level, to the theory of elementary
particles. On the other hand, the search for a consistent S-matrix. arising from
a local field theory, still remains the basic theoretical problem in particle physics.
In this light, string theory is a theoretical experiment based on hopes that it may
resolve the shortcomings of conventional point—particle field theory and give a correct
description of nature. Whether these hopes are to he realized or not. eventually rests
on understanding what statements the theory has to make about the measurable
quantities of particle physics, central to which is the scattering amplitude.
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The complex moduli paramerters {Y5. 1'};} are defined through the following integrals.

2n1 JB, %\
P, .
},n+r_. C)S r=1...2n-3
P,
}',-n+r " 1 ). 3
B = [, B r=1.e.can -

The definition of the complex moduli parameters in terms of the real string diagram
parameters is uniquely given by requiring that the integrals of wg and ws around
a-periods remain unchanged. This means.

bsig = bwg ~ Z 50.,&';;;
’ (43)

é8bp = bog — Y bagw?
T

These equations give relations between the infinitesimal change of the complex pa-
rameters and the real parameters in the form.

1 - .
9. E. D’Hoker and D.H. Phong, Commun. Math Phys. 125, 469 (1989). =54 }g bos = by = ;“”T’"
_ -1 - ~
APPENDIX A b]”g = -7?1 A <= —b/}q + Z(sﬁﬂ'(q
2xi Js, T
. . . . . . P (44)
In this appendix we derive the Jacobian transformation matrix between the real Y4 = / S = T, — i68, — Z Crs, ba;
string diagram coordinates and the "new” complex coordinates which will be referred P i
. _ P,
to as the complex moduli parameters Vgt = / 85 = br, + idh, = 3" CBéa,
Let wp (ws) denote the one-(half-) form that give the real n-loop string diagram P 4
coordinates by the integrals, Hence the Jacobian is.
1
*() =2 )‘i,*’(?) e=l..n M da T3 ] dr [ a0 = J [ dydvi
= 1 . 4 — .
]v(i)__—?_m Hu.(rz) r=1...n with -
(A1) J= [deuT - f)] (45)

R,
Tlr(g) = RE‘/’ w‘(l{) r=1...2n-3

N

i APPENDIX B
0.,(.;) = lm/’?a wemy = 1...2n -3
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In this appendix we will show that a chauge of coordinates
Po — pu = po + dplfo. po. L)
Ao — Pn = fo + 8p(Po, po. Lo} (B1)
Yo — Yn = W0 + é¥(Po, po- Lo)

induces the following changes in the period matrices
. 1 & at, b, _
ra=ia 2 b —f digrots
K 4#"2 2pn fxp,.(p(’)p ap P

_ -1 . i, '0;1,
6T =1 Z_‘I fim }fpn dpdw (b/) 2t 50 ) Dyt (B2)

To show this, first ohserve that a change of coordinates implies that the function v,

and g, = 1...n. which are the integrals of the 1-forms in the bosonic sector and half-
forms in the superstring sector respectively, will change. The new functions (denoted
by uP and uP') associated with the new coordinates are related to the old functions
(denoted with no superscript) by

2(p) = 0,(p — p)+
1 _ 9 - - .
m/dzﬂ"‘——NE(ﬂ, b; o '/’I)[ap”l'(/” — &3P, p. 'l'))l(i-pvw)=(5'~p'.w')]

'
wAmw) = pelp — dpov = de)+

1 4 . I
5 | LA DNp v p ) [&s/trw' —épov' — 6W)I(5.p.w)=ta'.¢.w')] (B3)

27

where N3, is the Green’s function defined in Section 3 equation (3.11) without the
nonanalytic piece and N'§ is the analytic plus antianalytic portion of the usual Bosonic
Green’s function. These relations are obtained by rhe conditions that v)'(u") be
antianalytic (superanalytic) with respect to 5(p. ') and that they have the appropriate

. periodicity properties around all a-cycles.

The transformation properties of the function v*(s') around h-cycles will now
determine the new period matrix. Note that to round rhe s-th h-cycle in the new
coordinates means for the p coordinate for example.

As +8p(pis. prs.tng) — Pas + O (s, pas. t2s) (B4)
when
s — pas (B5)
18

is the corresponding transformation in the old coordinates. Hence we obtain for the
change in the period matrix,

0. 06
ap dp

el , 0. 000)

Op 0p Y Op
(B6)

where we have expanded v, and y, to first order in 65 and (8p, §¢) respectively. Using

the transformation properties of the Green’s function around b-cycles, we then obtain

the relations in B2.

57 = oy [ #7100/ [ N2 s~ N2 (s )]

i / ’ a / ’ 70 . ’ ’
8= g7 [ @94 Do [N (5,15, )= (s rs, )]

APPENDIX C

We will show in this appendix that given any arbitrary variations of the Te-
ichmiiller parameters, we can find a suitable function 8p(5, p, ), with év determined
by the constraint (3.28), which will induce this desired change. The main issue
concerns the joining points where an odd and even coordinate must be changed si-
multaneously.

We recall first the definition [3] of the odd coordinate. ¢,, at joining point s is

related to the behavior of the string diagram coordinate v by,

— L’“ -
TR

where j, is the value of the even coordinate at joining point s. Suppose we want to

W (C1)

change 3, and 1, by arbitrary given values. §5, and 8u, respectively. Our problem is
to show that we can find a function ép(3, p, ¥) such that.

dp(p, 0, 0)|s = 64
X (C2)
(p— o)A p )]s = s

where the function 8y is determined by (3.28). Here and elsewhere in this appendix
the symbol |, is to mean the limit as the arguments approach the joining point s.

To show that this is possible first write dp as.

plp.p )= mlp.p) + Up2ap.p) (C3)

19



Using (3.28) and (C1) we then have.

- 1 B3 ad _
a. 8y, = E'r”la_’:ll +(p- /)l)l“pllc

1., <1720
+ 300~ ~ (c4)
i _
b. 86, = pil + (G_‘p—),,—, +u'(p- ﬁ)"‘) pals

We can further always-write p, and p; as
Q. px(ﬁ,p) = Ple(ﬁ' P) + 'j’c”lo(ﬁr p)
b. p?(ﬁy p) = p%(ﬁa p) + ‘Z'cp?e(ﬁu P)

. . (C5)
C. 61/), = bl + l[l‘bﬁ

d. éﬁa =0+ '1"-0)

where the above decomposition is not necessarily unique. Using the above expressions
we can write (C4) as

7 7 la e -
a. 6'/’0 =1, E?pj‘la + (P“/’)”‘Pul.]

+ (P - ﬁ')ll‘p aln
’ (Co)
b. 6/"- = I’lell + 1/)'(17 - /j)]/.‘p?oln

+ J,l [ploln + ( f20 ln + '[’l(p - ﬁa)”‘ph'n]

=i
We now make the following specifications for ép. From (C6a) let
a/)lc
L), = 2,

iy | 2

/‘2:'. =0 (07)

(p— ,3.)1/4/)20" =10
By this procedure we find that p,, is singular at joining point s but that p; by choice
is not. We now take advantage of the fact that one is still free to fix the function py,
and p;. at joining point s to allow us to satisfy (C6b). We make the choices.

Plc'n = — l'-"(l’ - /70)1/417‘20‘1
(C8)

o I

Mols = €7 — —————
/ loIa 9] (/‘ — /’s)l/'l

20

which means in general the p, is also singular at joining point s.

The above accomplishes our task of constructing ép locally about all joining points.
The local construction of ép for the remaining even Teichnuiller parameters is straight-

forward since éw is not needed. Hence we have established our claim.

FIGURE CAPTIONS

figure 1: String diagram with three cuts (loops). In the region 6, < G < a4, ¢ et
g . 1
&) ( sec text equation 3.5 ) is non o 8 1 3. {£2 < 1 < Iz the function

figure 2: smm regions a anfj b are examples of rectangular regions as discussed in the text regarding
transformation (3.22). _ln region a the upper boundary is a cut and the lower boundary coincides with
the boundary of the string diagram. In region b both boundaries are cuts.
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