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[12] Jason Iaconis, Chunxiao Liu, Gábor B Halász, and Leon Balents. Spin liquid versus
spin orbit coupling on the triangular lattice. SciPost Phys, 4(003), 2018.

[13] Chunxiao Liu, Farzan Vafa, and Cenke Xu. Symmetry-protected topological hopf
insulator and its generalizations. Physical Review B, 95(16):161116, 2017.

[14] Peng Lv, Ai-Min Guo, Huaiyu Li, Chunxiao Liu, XC Xie, and Qing-Feng Sun. Spin-
flip reflection at the normal metal-spin superconductor interface. Physical Review
B, 95(10):104516, 2017.

x



Abstract

Quantum Magnetism in 2D and 3D: Theory and Material Realization

by

Chunxiao Liu

The understanding and predicting of novel phenomena in magnetic materials is an im-

portant theme in condensed matter physics. The most interesting phenomena among

them are the ones that exhibit intrinsic quantum behavior, where high degree of entan-

glement gives rise to macroscopic quantum effect not described in a traditional theory of

symmetry breaking. This thesis is a collection of our efforts to combine the theoretical

toolkit in analyzing exotic quantum states with recent experimental progress in realizing

and finding quantum magnetic materials. We present our study in three parts:

The first part presents a study of the frustrated triangular lattice antiferromagnet

NaYbO2. Both spin liquid signatures in zero field and quantum-induced ordering in

intermediate fields are observed, suggesting the existence of an intrinsically quantum

disordered ground state. Through symmetry analysis and spin wave calculations, we

determine the microscopic model relevant to NaYbO2 and map out the phase diagram

of magnetic orders in presence of a magnetic field. Our result indicates that NaYbO2

is a promising platform for exploring spin liquid physics with full tunability of field and

temperature.
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The second part presents an investigation of a chemically related compound LiYbO2,

which has instead a stretched diamond lattice structure. Experiments reveal a rich mag-

netic phase diagram of LiYbO2 that includes a low field incommensurate spiral order

and a high field commensurate order. We first show that the former is largely captured

by a J1 – J2 Heisenberg model, and then employ a phenomenological model to under-

stand the incommensurate-to-commensurate transition at intermediate magnetic fields.

Finally, several effects are addressed in order to understand a small variance between the

observed and predicted phasing of Yb moments.

The last part is devoted to the classification of symmetric Z2 and U(1) spin liquids

on the three-dimensional pyrochlore lattice. We first analyze the magnetic orders linked

to specific Z2 quantum spin liquids. We find that under certain conditions, seemingly

unrelated orders are intertwined and the conventional orders detected in experiments are

accompanied by hidden orders. We then turn to the study of U(1) spin liquid classes

and observe that, surprisingly, a large family of them is described by a U(1) gauge field

coupled to symmetry protected gapless multi-nodal line spinons, hence uncovering a new

prototype of quantum spin liquid beyond the standard example of pyrochlore quantum

spin ice. The low temperature specific heat receives a T 3/2 contribution with logarithmic

corrections from the gauge–spinon coupling and the spinon bands, which serves as a

simple criterion for the existence of these U(1) nodal line spin liquids.
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Chapter 1

Introduction

1.1 Microscopic theory of magnetism

1.1.1 Quantum chemistry: from atoms to crystals

Condensed matter physics studies the properties of almost any material that we en-

counter in our daily life. While there are tens of thousands of materials and the physical

properties vary from one to another, the material must be made of elementary units

such as atoms, ions, and electrons, and one ask whether the property of the material

can be understood directly or indirectly from the property of these individual units that

compose the material. This is indeed a valid viewpoint: a crystal, formed out of array

of atoms, is nothing but collections of isolated individual atoms if they can be brought

apart with infinite distance, and under this (idealized) circumstance any property of the

crystal is simply that of the atom. It turns out that, quite often, real crystals, in which
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atoms are separated with a finite distance of a few angstroms, still possess properties

that can be understood from the isolated atom limit. In this case, we are justified to

begin our journey from studying the quantum properties of individual atoms or ions –

this is the topic of quantum chemistry1.

We clarify that, by the holding of the above criterion, we do not expect the property of

the crystal to be the same as that of the isolated particle. Rather, we mean the property

of the former can be inferred from that of the latter, quite often from perturbative

calculations. We also remind that we will be mostly talking about electrons in the

theory of quantum magnetism. The nuclear contribution to magnetism is much weaker

then the electrons.

The criterion to determine electronic states in an ion is usually summarized in the form

of three Hund’s rules. Within a given configuration of one-electron orbitals (assuming

only one incomplete shell), the ground state of an isolated atom or ion

• has the largest value of the total spin S;

• has the largest value of the total orbital angular momentum L that is permitted by

the first rule;

• has the total angular momentum is J = |L− S| for less-than-half-filled shells, and

J = L+ S for more-than-half-filled shells.

The first Hund’s rule states that the spin interaction is ferromagnetic. The mechanism

of direct exchange offers an explanation to this rule. To be more precise, we consider

1For an extensive review on this subject, see e.g. [41].
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two electrons in the same shell, which feel each other directly through the Coulomb

interactions.2 They must form spin eigenstates, which consist of three triplets with

S = 1 and one singlet, S = 0. The triplets have two parallel spins, therefore when the

two electrons come closer in space, they will occupy the same quantum state, which is

forbidden by the Pauli exclusion principle. Put more plainly, the orbital part of the triplet

wave function vanishes when the two coordinates approach each other3. The singlet state,

however, is not subject to Pauli exclusion principle and can have the two electrons come

close to each other. However, this pushes the singlet state to higher energy due to the

Coulomb repulsion felt by the electrons. Effectively, we are having ferromagnetic (FM)

interactions which gives triplet ground states. We believe the same picture applies to

many-electron systems in which the total spin S =
∑

i Si is a good quantum number.

This gives the first Hund’s rule.

Again assuming the electrons interact with each other only via the Coulomb interac-

tion, the total orbital angular momentum L =
∑

iLi will be good quantum numbers,

and the same logic in the preceding paragraph applies to orbital momentum, giving the

second Hund’s rule.

We emphasize that the above argument for the first and the second Hund’s rule is

based on direct exchange mechanism for orthogonal orbitals, and that the physical reason

is fundamentally rooted in Pauli exclusion principle and Coulomb repulsion. The first

and the second Hund’s rules apply to almost all atoms and ions, and according to the

2In essence, what we need here is orthogonal orbitals, on top of which the Coulomb interaction is a
perturbation.

3This is called the exchange hole effect.
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viewpoint stated at the very beginning, it applies to crystals which behaves not too far

from the isolated atomic limit. Other than that, there are plenty of mechanisms that

restricts the validity of Hund’s these rules4.

The third Hund’s rule is derived from the spin–orbit coupling. The spin–orbit coupling

for a single electron writes

HSO,i = λSi ·Li, (1.1)

where λ = ~2

2m2
ec

2
Ze2

r3 > 0 is a constant that, importantly, is proportional to the atomic

number Z.

Switching on the total spin–orbit coupling from each electrons lifts the degeneracy

between different (L, S)5. The term can be written as∑
i

HSO,i ' λ(L, S)L · S =
λ

2
(J2 − L(L+ 1)− S(S + 1)), where{

λ > 0, less-than-half-filled shell,
λ < 0, more-than-half-filled shell.

(1.2)

This gives Hund’s third rule.

The above analysis holds for isolated ions. In order to apply them to crystals, the

effect of crystalline environment must be additionally considered. These effects include

the potential of the ion core, as well as the electrostatic potential of the surrounding

ligands (oxygen ions in most cases); they are generally called the crystal fields. We must

then examine the effect of crystal fields to the Hund’s rules we introduced earlier. It turns

out that, when crystal fields are strong enough compared to the exchange strength—as

4For example, the mechanism of direct exchange in non-orthogonal orbitals, the kinetic exchange and
the superexchange mechanisms. As a result, Hund’s rules do not generally apply to molecules.

5The smallness of λ justifies HSO as a perturbation in the (L, S) subspace, even for heavy elements
with large Z.

4



is the case of 4d and 5d transition metal compounds—the first and second Hund’s rules

can be invalidated, whereas they are weak enough in other cases such as 3d transition

metals and 4f rare earth compounds so that the isolated ion approximation still stands

to some point. we consider these two cases separately:

• Intermediate crystal field regime: in 3d transition metals, the spin–orbit coupling

is relatively small due to the small atomic number Z, and we have

Exchange splittings > crystal field > spin-orbit coupling, (1.3)

while Hund’s first and second rules apply, the third rule ceases to apply, and J is

not a good quantum number.

• Weak crystal field regime: the 4f orbital lies well inside the xenon core, and the

core electrons outside the 4f orbital offers great protection to screen the fields from

neighboring ions, rendering 4f electrons free-ion-like. Energy scales are

Exchange splittings > spin-orbit coupling > crystal field, (1.4)

and all three Hund’s rules apply. J remains a good quantum number, and crystal

field effects splits states within a given J .

It turns out that, by analyzing the symmetry of the environment, we can already

know—without referring to the detailed form of the Hamiltonian—how the ground state

manifold further splits under the crystal field.

In this thesis we will be mostly focusing on the rare earth compounds (layered trian-

gular, diamond-like, and pyrochlore crystals) as far as material is concerned, and we take
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the element Ytterbium (Yb) as an example. It is the 14th and second last element in the

lanthanide series with atomic number Z = 70. The electron configuration is [Xe]4f 146s2,

where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6 is the configuration of inner closed-

shells (that of xenon). The most common ion form is Yb3+, which has configuration

[Xe]4f 13. Hund’s first and second rules give total spin of S = 1/2 and total orbital

angular momentum of L = 3; Hund’s third rule asserts that the ground state manifold

has total angular momentum J = |L + S| = 7/2, consisting of eight basis states |Jz〉

with Jz = ±1/2,±3/2,±5/2,±7/2. The excited state manifold has J = |L − S| = 5/2,

consisting of six basis states with Jz = ±1/2,±3/2,±5/2.

Now consider crystal fields. In cubic environment [75] (with cubic symmetry Oh),

the eight ground states split to two doublets and a quadruplet.6 The doublets cannot

be further split since they are protected by time reversal symmetry; they are called the

Kramers doublets.

For the compounds NaYbO2 and LiYbO2 studied in this thesis, the local symmetries

of the Yb ion are D3d and D2d, respectively, both are subgroups of the cubic group.

The lowering of the symmetry is an example of the Jahn–Teller effect: if the symmetry

of the crystal field is so high that the ground state of an ion is predicted to be orbitally

6They are

Γ6 :

√
5

12
| ± 7/2〉+

√
7

12
| ∓ 1/2〉,

Γ7 :

√
3

2
| ± 5/2〉 − 1

2
| ∓ 3/2〉,

Γ8 :

√
7

2
| ± 7/2〉 −

√
5

12
| ∓ 1/2〉, 1

2
| ± 5/2〉+

√
3

2
| ∓ 3/2〉.
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degenerate, then it will be energetically preferable for the crystal to distort in such a way

that the orbital degeneracy is lifted. Indeed, either the trigonal distortion Oh → D3d and

the tetragonal distortion Oh → D2d further splits the quadruplet into two doublets. The

low energy crystal field states are therefore four Kramers doublets. At sufficiently low

temperatures, only the ground state Kramers doublet is activated, which is described by

an effective Jeff = 1/2 spin.

The procedures to finding the ground state effective degrees of freedom using the

knowledge of Hund’s rules and crystal field configurations in local environment, as ex-

emplified in the case of Ytterbium, is quite generic—at least for rare earth compounds.

In particular, it is implied that the ground state manifold of rare earth ions with an even

number of electrons in 4f shell is a Kramers doublet, described by an effective Jeff = 1/2

spin.

1.1.2 Symmetry and model Hamiltonian

We have seen in the last subsection that quite often the effective degrees of freedom in

magnetic systems behave as S = 1/2 spins. In the microscopic modeling of such systems,

one seeks to find an exchange Hamiltonian describing the interaction among these spins.

The numerical values of the exchange parameters are usually hard to determine in any

means, but one can at least determine the most general form of the exchange Hamiltonian

using symmetry principles. In this subsection, we outline the procedures to achieve this.

While this is nothing more than an ordinary symmetry analysis, this will prepare us for
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the more complicated version of projective symmetry analysis in the spin liquid context,

to be introduced in a later subsection.

We start with a formal account of the symmetry group. A (three-dimensional crys-

tallographic) space group G consists of all the symmetry operations that map the crystal

lattice to itself. It must contain three primitive translations T1, T2, T3. Denote the trans-

lation group generated by them as T = 〈T1, T2, T3〉. The point group P is a finite group

that, roughly speaking, consists all the rotations, mirror reflections, inversions of the

lattice symmetry lattice. It is defined by the quotient

Point group: H ≡ G/T. (1.5)

Underlying this definition is the fact that the translations T is a normal subgroup of G.7

Usually a powerful way to parse the structure of a group G is to study its generators

and the relations among them8. While the space group G is an infinite group, its genera-

tors are finitely many, and the number of independent group relations is also finite. The

idea that the generators of G is the union of translations T1, T2, T3 and the generators of

the point group, however, is not always correct. We have the following two cases:

• In the so-called nonsymmorphic space groups, some point group operations may not

exist in the parent space group at all. In this case, the space group almost always9

contains nonsymmorphic operations in the form of either a glide reflection or a

screw rotation—these operations are the composition of a point group operation

7For readers enthusiastic about a mathematical description of crystallographic groups, we recommend
the book [144].

8Mathematically, this way of characterizing a group is called the presentation of a group.
9The only exceptions to the “always” part of the claim are the No. 24 and No. 199 space groups,

whose glide and screw operations are “removable”—we refer to Ref. [119] for details.
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(mirror reflection or rotation) with a fraction of the primitive translation. We

must substitute nonsymmorphic operations for some of the point group generators

in order to obtain the generators of the space group.

• Otherwise, the space group is symmorphic, meaning all point group element are

valid symmetry operations of the space group. In this case, the point group gener-

ators, combined with the translations T1,2,3, give the generators of the space group.

Apart from the generators, it is the relations among the generators that specify the group.

Apparently, the relation among translations is that they commute with each other:

TiTj = TjTi for i, j = 1, 2, 3. (1.6)

All the point group relations must also be included; the only subtlety associated with

the nonsymmorphic case is that these relations must be replaced by the corresponding

relations involving the nonsymmorphic elements. Finally, one must examine the com-

mutation relation between point group (or nonsymmorphic) generators and translations.

These will give the complete relations that define the space group.

As an example, consider the symmetry group of the NaYbO2. The compound family

of NaYbO2, called delafossites, have rhombohedral lattice with space group R3̄m (No.

166). This is a symmorphic group, with point group R3̄m/T = D3d the dihedral group

that contains 12 elements, generated by inversion P , a threefold rotation with axis per-

pendicular to the triangle layer C3, and a twofold rotation with axis parallel to a nearest

neighbor (NN) bond in a triangle layer, D. Therefore, the space group is generated by
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elements

R3̄m = 〈T1, T2, T3, P, C3, D〉. (1.7)

The point group is defined by the following relations

P 2 = D2 = C3
3 = 1, PD = DP, PC3 = C3P, (C3D)2 = 1. (1.8)

between the translations and poin group generators, we have

T1C3 = C3T2, T2C3 = C3T
−1
1 T−1

2 , T1P = PT−1
1 , T2P = PT−1

2 , DT1 = T2D.
(1.9)

Combining relations (1.6), (1.1.2) and (1.9) gives the complete relation of R3̄m.

As another example, consider the symmetry group of the pyrochlore lattice. The

space group is Fd3̄m (No. 217). This is a nonsymmorphic group, with point group

Oh = Fd3̄m/T the cubic group. The cubic group contains 48 elements and is gener-

ated by inversion P , a threefold rotation C3 with axis parallel to the body-diagonal of

the pyrochlore unit cell, and a mirror reflection Σ that contains a pair of parallel face-

diagonals. The last point group generator, Σ, is not in the space group; instead, this

element is replaced by the space group generator S, which is a twofold screw operation.

For the detailed definition of S, the structure of the point group and the space group

relations, see Appendix A.1 and A.2.

Having familiarized ourselves with the symmetry structure, it is then straightforward

to use them to obtain symmetry allowed microscopic Hamiltonians. The most general

form of an S = 1/2 exchange Hamiltonian is

H =
1

2

∑
rµ,r′ν

ŜTrµJrµ,r′ν Ŝr′ν . (1.10)
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where r labels unit cells and µ is a sublattice index. The exchange parameters Jrµ,r′ν is

a 3× 3 symmetric matrix.

Under a space group operation O the spins transform as

O : Ŝrµ → UOŜO(rµ)U
†
O, (1.11)

where UO is the SU(2) rotation matrix associated with the operation O. First, consider-

ing translations T1,2,3. The SU(2) matrix UO is just identity. The effect on the exchange

parameters is translation invariance

Jrµ,r′ν = J(r−r′)µ,0ν ≡ Jµ,ν(r − r′). (1.12)

Next, consider non-translation elements O of the space group. Suppose the point group

element that corresponds to O defines a rotation along axis n with angle θ. The spin

rotation matrix is then written as UO = e−i
θ
2
n·σ, where σ = (σ1, σ2, σ3) are the Pauli

matrices. The SU(2) equation (1.11) can then be written as

O : Ŝrµ → R−1(n, θ)ŜO(rµ), (1.13)

In order to make Hamiltonian (1.10) invariant under O, we need to determine what

constraints Eq. (1.13) imposes on the exchange tensor (1.12). Importantly, constraints

are produced only when an exchange bond is mapped back to itself under O. Modulo

translations, the problem can be formulated this way: given a finite set consisting of

all the spins in a primitive cell of the lattice labeled by sublattice index µ = 1, 2, ...,

examine the action of the point group elements on this set. For any unordered pair {µ, ν}

that represents a bond, say the (µ, ν) = (1, 2) bond, find its stabilizer group P{µ,ν}—

the subgroup of P that maps {µ, ν} to itself—these are the operations that produce
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constraints on Jµ,ν . Finally, by solving all the constraints, one obtains the symmetry

allowed exchange Hamiltonian.

Following the procedures outlined above, one can systematically obtain the exchange

Hamiltonian for a given lattice, up to exchanges at arbitrarily far neighbor level. This

will be used in Section 2.3 to determine the symmetry allowed NN exchange Hamiltonian

(both inlayer and interlayer) for the delafossites, and in Section 3.3.2 for the symmetry

allowed Hamiltonian for the stretched diamond lattice up to NNN level.

1.1.3 Symmetry breaking, magnetic orders, and spin waves

Many spin systems—whose low energy degrees of freedom are spins, subject to some

exchange Hamiltonians as described in the last subsection—undergo the transition into

magnetically ordered phase upon cooling. In the magnetically ordered state, the spins

develop nonzero expectation value, in contrast to the high temperature disordered phase

in which the expectation value vanishes. The physics mentioned is an instance of sponta-

neous symmetry breaking, whose essential physics has been captured in Landau’s theory

of phase transition. In this section, we illustrate the content of this theory via simple

model Hamiltonians, from which general principles will be summarized.

The model we choose is a simple NN S = 1/2 Heisenberg model on a cubic lattice

H = J
∑
〈i,j〉

Si · Sj (1.14)

where i, j label sites of the cubic lattice. Here J > 0 and J < 0 correspond to an an-

tiferromagnetic (AFM) exchange and a ferromagnetic (FM) exchange, respectively. We
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choose a three dimensional lattice to avoid complications due to the Mermin–Wagner

theorem10. We choose the cubic lattice and restricting to NN to avoid lattice frustration

in the AFM case (lattice frustration will be introduced later). While the cubic lattice

possesses many spatial symmetries, we will temporarily be oblivious to them in this sec-

tion, but instead focus on the internal symmetries of the model (1.14): the model has

global SU(2) spin rotation symmetry. We point out that, while symmetry analysis out-

lined in the last subsection indicates that more terms are allowed by the cubic symmetry

than the Heisenberg term in (1.14), and that these additional terms necessarily break

the global SU(2) spin rotation symmetry down to a lower one, in reality these terms are

of spin–orbit coupling in origin, and are usually small compared to the Heisenberg term

which is dominant in a Mott insulator.

Let us first look at the FM case, with J < 0. Then, it is obvious that for arbitrary

size of the cubic lattice N , the state with maximally alignment along the ẑ direction,

| + z〉 ≡ ∏i |Szi = 1/2〉, is a ground state. The ground state manifold consists of all

the states that differ from | + z〉 by a global spin rotation; each of these states breaks

the global SU(2) spin rotation symmetry of the model (1.14) down to a global U(1)

spin rotation around the aligned direction. Adopting a formal language, we denote the

original unbroken global symmetry—the SU(2) spin rotation symmetry—by G, and the

residual global symmetry in a ground state—the U(1) spin rotation symmetry—by H.

Then, the ground states are in one-to-one correspondence with the elements of G/H.

10The Mermin–Wagner theorem states that spontaneous symmetry breaking cannot happen in systems
with spatial dimensions two or lower at any non-zero temperature. The precise statement of the theorem,
as well as generalized to quantum systems at zero temperature, can be found in Ref. [9].
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We then look at the AFM case, with J > 0. Since neighboring spins tend to anti-align

with each other, our naive guess of a ground state would be the state |±z〉 ≡∏i∈A |Sz =

+1/2〉∏j∈B |Sz = −1/2〉, where A and B consist of sites whose coordinate sum are even

and odd, respectively. Such a state, however, is not the ground state of the AFM model

for any finite lattice size N .11 Nevertheless, such a state is indeed a ground state in the

thermodynamic limit N →∞. The rest follows the FM case: the state |±z〉 has a global

residual symmetry H = U(1), and other ground states are in one-to-one correspondence

with the element of G/H.

The essence behind the phenomenon of spontaneous symmetry breaking is that, in

the thermodynamic limit, the ground states labeled by elements of G/H do not mix due

to the infinite energy barriers one has to overcome to move from one ground state to

another.

If G/H is continuous, soft excitations exist above a symmetry broken ground state,

whose energy vanishes as its wave number approaches zero. This is Goldstone’s theorem,

which can be understood intuitively in our Heisenberg example. Take the FM case.

since the ground state is maximally polarized (maximally spin alignment), the low-lying

excitations can be created by flipping just one spin, and this excitation can propagate in

the crystal. These “Goldstone modes” are called spin waves, or magnons. One usually

11It can be a nontrivial task to exactly determine the ground state in the AFM case for finite N .
But on physical grounds one can argue that a tower of low energy states exist, which all preserve SU(2)
symmetry.
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describe these excitations in terms of the Holstein–Primakoff (HP) bosons aj:

Sj · cj = S − nj, Sj · (aj + ibj) =
√

2S − njaj, S−j =
(
S+
j

)†
, (1.15)

where aj = x̂, bj = ŷ, cj = ẑ in a FM state, nj = a†jaj is the number operator for aj.

Keeping to quadratic order of the HP bosons and diagonalize the resulting Hamiltonian

H[a, a†], we obtain the dispersion at small ka (a is the lattice constant)

ωk = S|J |(ka)2. (1.16)

The spin waves in the AFM case can be obtained in a similar way. The Néel-type ground

state determines

aj = x̂, bj = ŷ, cj = ẑ for j ∈ A; aj = x̂,−bj = ŷ, cj = −ẑ for j ∈ B. (1.17)

Plugging them to the formula (1.15) for HP bosons aj, the resulting Hamiltonian for aj

has a two-sublattice structure. Completing the diagonalization, we find that there are

two gapless modes at small ka

ωk,1 = ωk,2 = 2dJSak. (1.18)

In general, spontaneous symmetry breaking gives rise to orders. The ordered state is one

of the ground states that transform nontrivially under the broken symmetry and do not

overlap with each other in the thermodynamic limit. The order is described by some order

parameter—an operator that develops nonzero expectation value in the ordered state as

symmetry breaking happens. In the above, the FM (or the Néel) order is characterized

by the order parameter12
∑

j S
z
j (or

∑
j∈A S

z
j −

∑
j∈B S

z
j ). On top of the ordered state

12The formal definition of an order parameter requires the concept of interpolating field. See e.g.
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lies the Goldstone modes—these are the low energy excitations that are gapless at long

wavelength k → 0. The Goldstone modes appear whenever a continuous symmetry is

spontaneously broken13. The quadratic mode in the FM case and the two linear modes in

the AFM case are all examples of Goldstone modes associated to the symmetry breaking

G/H = SU(2)/U(1) ∼= S2. These example clearly demonstrates that, for the very same

symmetry breaking G → H ⊂ G (here G and H are regarded as abstract groups), the

details of the Goldstone modes can still differ. In particular, the “folklore” that each

generator of the spontaneously broken symmetry14 corresponds to one Goldstone mode

is not universally correct.

In fact the correct counting of the Goldstone modes, as well as their dispersion re-

lations, were only cleared up recently. Here we outline the basic idea for the counting

rules; the details can be found in the excellent reviews [163, 9]. Label the generators

of the spontaneously broken symmetry as Qa, with a = 1, 2, ..., n, with n = dimG/H.

These global generators can be written as the sum of local generators, Qa =
∑

iQai. The

extra information to determine the number of Goldstone modes other than the number

n, roughly speaking, is the noncommutativity of the generators in the ground state15;

any such noncommutative relation would result in two linearly dispersing modes (which

are those mentioned in the “folklore”) to combine into one quadratic Goldstone mode.

Ref. [9] for detail.
13Known as the Goldstone’s theorem.
14Here and below we assume implicitly that such symmetry is a global continuous symmetry.
15This defines the so-called Watanabe–Brauner matrix

Mab = −i〈[Qa, Qbi]〉.
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In the case of cubic Heisenberg model, the two generators of the broken global symmetry

are
∑

i S
x
i and

∑
i S

y
i , whose commutator gives the magnetization Sz =

∑
i S

z
i . In the

AFM case, the expectation value 〈Sz〉 vanishes, giving two linearly dispersion Goldstone

modes as usually expected. In the FM case, however, Sz is an order parameter of the

symmetry broken ground state, 〈Sz〉 6= 0, hence we have only one quadratic Goldstone

mode. These two types of Goldstone modes are called type-A and type-B respectively in

the literature.

1.2 Quantum spin liquids and their symmetry clas-

sifications

1.2.1 Frustrated magnetism and fundamentals of spin liquids

As introduced in the last section, the AFM Heisenberg model on a cubic lattice (or any

bipartite lattice) has a Néel-type ground state. In non-bipartite lattices, AFM exchange

interaction can lead to unusual behavior. Taking the triangular lattice for example.

Regarding spins as classical unit vectors, the AFM Heisenberg model has any “three-

sublattice states”, i.e. states with a three-site unit cell with
∑

µ=1,2,3 Sµ = 0, as its

ground state. The ground state manifold is S1 × S1. Turning on quantum effects, there

is no simple way to determine the true quantum ground state due to the vastly many

classically degenerate ground state configurations.

It was proposed, first by Philip Anderson, that nontrivial quantum states can arise
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in this context [2]. The proposed state, the “resonating valence bond” (RVB) state, is a

particular superposition of dimer16 coverings on a triangular lattice. The state differs from

conventional magnetically ordered states since no order parameters or symmetry breaking

exists whatsoever. Therefore, if it is indeed the ground state of the AFM Heisenberg

model, it would lie outside Landau’s theory of spontaneous symmetry breaking.

The RVB state, although now disproved to be the ground state of the triangular AFM

Heisenberg model [182, 166], provides new possibilities in searching for exotic states in

magnetic systems. The state is an early prototype of spin liquids—a highly correlated

spin state that does not order down to temperatures much lower than their exchange

interaction scale. This definition, negative in its tone, works perfectly as a practical

one but is also a too broad one. What we would like to pursue is the class of intrinsic

quantum states that captures the essence of the RVB state. We will call them quantum

spin liquids (QSLs). Adopting a modern point of view, we list the main properties of

QSLs as follows:

• A QSL is a highly entangled state. In contrast to magnetically ordered states which

are product-like in real space, a QSL state is a superposition of product states,

rendering it highly entangled in real space. Entanglement has been a core concept

in modern condensed matter physics, especially in the study of exotic quantum

states. It is the defining property of a QSL state, from which many of the properties

mentioned below follow.

16Here a dimer means a spin singlet state formed by two S = 1/2 spins at the ends of a nearest-neighbor
bond.
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• A QSL supports nonlocal excitations that carry fractional quantum numbers. In

a magnetically ordered state, excitations can all be created by local operators:

shedding a light or shooting a neutron to a magnet, a magnon is locally created

and propagators in the material. The spin carried by the magnon reflects the

flip of a local spin and has the elementary unit of spin one, S = 1. In a QSL

state, however, a low energy magnon can fractionalize into two excitations, called

spinons, each with S = 1/2 and behave as sharp quasiparticles. While the spinons

must be created in pairs, the “individualistic” nature of them makes it legitimate

to regard each of them as elementary excitations of the system. From theory

point of view, each spinon must be created by a nonlocal operator, which is an

extensive product of local operators; the energy cost for a spinon, however, is non-

extensive, which is made possible precisely because of the highly entangled state:

the nonlocal operator, acting on the QSL state, merely “reshuffles the components

of the superposition” [138].

• The nonlocal fractionalized excitations may carry nontrivial self and/or mutual

statistics. In QSLs in which all excitations are gapped, the excitations may encode

information about the topology of the system. In two dimensions, the excitations

may exhibit anyon statistics. Determining the statistics of these excitations in some

cases can be a highly nontrivial task.

• As a byproduct of the lack of symmetry breaking, a QSL usually preserves time

reversal symmetry as well as the full symmetry of the lattice. The interplay be-
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tween symmetry and fractionalization can result in new classification regimes that

generalizes Landau’s paradigm of symmetry classification. This in fact is one of

the main theme of this thesis. Nevertheless, we remind here that a QSL does not

necessarily preserve full symmetry and can coexist with magnetic order [137].

1.2.2 Effective description: emergent gauge fields

It has been realized that an effective low-energy theory for QSLs necessarily involves

gauge fields. A heuristic argument goes like this: we have just seen that low energy

excitations of a QSL are fractionalized, which must be excited in pairs/multiples so that

the sum of their quantum numbers makes sense even outside the QSL realm. Effectively,

whether these excitations can be viewed as individuals depends on the interaction among

them (the fractionalized excitations, and hence the QSL phase, are destroyed if the

interaction develops tension). It is therefore essential to study the dynamics of the

interaction, or in the language of high energy physics, to study the dynamics of the gauge

bosons (they are, after all, the force carrier!). In a larger setting, it is a quite general

phenomenon that highly entangled states, such as the fractional quantum Hall effect and

the half-filled Landau level, necessitate gauge fields in their effective description. Finally,

exactly solvable models that possess highly entangled ground states, such as the toric

code model, the Kitaev honeycomb model, and the quantum spin ice model, all can be

mapped to a gauge theory. Although a proof for the applicability of gauge theory in

highly entangled systems is lacking, it is generally believed to be true. Unlike gauge
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bosons in the elementary particle theory, the gauge field in these highly entanglement

systems is emergent : they are born from the highly entangled ground state, i.e. from the

massive superposition of product states.

In this subsection, we provide a formal derivation of how gauge theory appears in a

simple AFM Heisenberg model, following Ref. [165, 184]. We hope that this example

helps understand the naturalness and prevalence of gauge fields in the theory of QSLs.

There are also other exactly solvable spin models in which gauge field can be explicitly

derived. These models will be reviewed in Subsection 1.2.3.

Our derivation begins with the attempt of finding the effective theory for the AFM

Heisenberg model (1.14) (J > 0) in terms of spinons. To start with, consider a represen-

tation of S = 1/2 spin operators in terms of either Abrikosov fermions frµ or Schwinger

bosons brµ ,

Ŝrµ =
1

2
a†rµσarµ , arµ =

(
arµ,↑
arµ,↓

)
, where a = f or b, (1.19)

formally, the bosons b or fermions f—both called partons—are mathematical representa-

tions of the fractionalized excitations in a spin liquid phase, each carrying a S = 1/2 spin.

They are introduced to describe the deconfined bosonic or fermionic spinon excitations

that are of our interest in the QSL: with the desired fractional spin numbers, the hope is

that either the partons, or any linear combinations of them, provide a good description

of the spinons. The use of boson or fermion is a matter of choice, which should properly

reflect the spinon statistics17.

17Both bosonic and fermionic particles can exist in a QSL. In a U(1) spin liquid described by the usual
Maxwell theory, the bosonic particles are the electric charges and magnetic monopoles, while a bound
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These representations however, are not faithful ones. The partons live in an enlarged

Hilbert space at each site rµ while the original Hilbert space is recovered under the the

constraint

a†rµarµ = 1, arµ↑arµ↓ = a†rµ↑a
†
rµ↓ = 0, for a = b, f. (1.20)

As a consequence, the parton description contains redundant information: a local U(1)

gauge transformation

G : arµ → eiθ(rµ)arµ , a = b, f, θ(rµ) ∈ [0, 2π) (1.21)

leaves Ŝrµ invariant. In fact, for fermions, such a gauge redundancy can be enlarged to

SU(2), which can be seen from the identity

Ŝrµ =
1

4
Tr(Ψ†rµσΨrµ), with Ψrµ =

(
frµ,↑ f †rµ,↓
frµ,↓ −f †rµ,↑

)
, (1.22)

and from the fact that any site-dependent SU(2) gauge transformation

G : Ψrµ → ΨrµW (rµ), W (rµ) ∈ SU(2) (1.23)

leaves the spins Ŝrµ invariant.

Any quantity written in terms of the original spin degrees of freedom can be expressed

in terms of partons. we illustrate this using the fermions f . The partition function for

the AFM Heisenberg model (1.14), in particular, becomes

Z =

∫
D[f, f̄ ; a]e−S[f,f̄ ;a], (1.24)

state formed out of them—a dyon—is fermionic.
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with

S[f, f̄ ; a] = S[f, f̄ ]−
∑
i

{
a3

0,i(f
†
i fi − 1) +

[
(a1

0,i + ia2
0,i)fi↑fi↓ + h.c.

]}
, (1.25a)

S[f, f̄ ] =

∫ β

0

dτ f̄i∂τfi −H[f, f̄ ], (1.25b)

H[f, f †] =
J

8

∑
〈i,j〉

∑
α,β=↑,↓

(
2f †iαfiβf

†
jβfjα − f †iαfiαf †jβfjβ

)
, (1.25c)

where i, j are shorthand notation for rµ, r
′
ν . The auxiliary fields al0,i are introduced to

constrain the Hilbert space; they have their own fluctuations.

In order to make progress with the path integral in Eq. (1.25), one must make some ap-

proximation. Traditionally, it is assumed that the path integral is dominated by nonzero

equal-time expectation values of the following quantities

χij = 〈f †i fj〉, ∆ij = 〈fi↑fj↓〉, al0 = 〈al0,i〉, (1.26)

this is essentially a mean-field treatment, ignoring any time-dependent fluctuations in

∆ij, χij, and al0,i. Note that the mean-field decoupling is by no means unique, and the

above decoupling in terms of the spin singlet hopping and pairing channels are the most

common ones considered to be compatible with the SU(2) spin symmetry of the Heisen-

berg model. The time-dependent fluctuations, not considered in a mean-field Hamilto-

nian, are exactly the gauge fluctuations : indeed, parameterizing the phase fluctuations

of χ as eiaij , an effective low-energy Lagrangian can be written as

L(0) =
∑
i

f̄i(∂τ − a0)fi +
3

8

∑
〈i,j〉

(
Jχeiaij f̄ifj + h.c.

)
+ other terms (1.27)

in which the phase fluctuation aij can exactly be viewed as a gauge field. Standard gauge
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theory analysis can then be applied to study these fluctuations beyond the mean-field

level.

How to determine the actual gauge degree of freedom in a QSL? This is not a trivial

question. In a two-dimensional QSL where all the fractional excitations (i.e. matter

fields) are gapped, the gauge field cannot be U(1) since such a phase is unstable to

confinement [121]. A Z2 gauge field has gapped excitations and does not show at zero

energy of the spectrum. In some models, the gauge type can be determined from the

original degree’s of freedom; but a larger gauge group is always exposed to the possibility

of Higgs transition. In these scenarios, identifying the gauge fields requires both analytical

and numerical efforts.

In the next subsection, we introduce two important models—the toric code model

and the quantum spin ice model, which are known to host a Z2 QSL in 2D and a U(1)

QSL in 3D respectively. Special focus will be on how a gauge structure emerges and how

a QSL–non-QSL transition is characterized by the interplay between the matter fields

(i.e. the fractionalized excitations) and the gauge fields.

1.2.3 Case study: toric code, quantum spin ice, and beyond

The toric code model on a square lattice is defined by

HTC = −KP

∑
p

∏
i∈p

σzi︸ ︷︷ ︸
Pp

−KS

∑
s

∏
i∈s

σxi︸ ︷︷ ︸
Ss

, KP > 0, KS > 0, (1.28)

where p and s respectively label plaquettes and stars, both consisting of four NN bonds

of the square lattice. The Pauli operators σxi and σzi , labeled by index i, live on these
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bonds.

This model is exactly solvable due to the extensive commutativity among Pp and Ss:

[Pp, Pp′ ] = [Ss, Ss′ ] = [Pp, Ss] = 0, for all the plaquettes p, p′ and stars s, s′. It is then easy

to see that the ground states of the toric code are any states that satisfy Pp = Ss = 1 for

all p and s. It turns out that there are only four such states (assuming periodic boundary

conditions) distinguished by nonlocal parity operators but all are highly entangled state.

The Hamiltonian HTC has a gauge structure σzi ≡ σzrr′ → ηrσ
z
rr′ηrr′ where η = ±1 are Z2

variables and we denoted the bond i by its endpoints r, r′. In this sense, the toric code

can be mapped to a Z2 gauge theory.

What are the fractionalized excitations in the toric code? Corresponding to the

two terms in the Hamiltonian, the elementary excitations are a single plaquette defect

Pp = −1, which we call an m particle, and a single star defect Ss = −1, which we call

an e particle. Obviously, since the elementary operator σxi (or σzi ) always affects two

adjacent plaquettes (or stars), the m particle (or e particle) can be created only in pairs.

Also, perhaps less obviously, e are m are both bosons. The creation of a particle pair (e

or m) has a finite energy cost, however, once the pair is created, each particle can travel

arbitrarily far from the other, without causing extra energy. This is a concrete realization

of the fractionalized spinon excitations18 we depicted in Subsection 1.2.1.

A transition out of the Z2 QSL phase can happen by reducing the excitation energy

of, say, the m particle to zero.19 The bosonic m particle condenses, and the field lines

18Due to the duality between e and m, either can be viewed as the spinons.
19Physically, reducing the excitation of energy of the m particle can be achieved with the term

hx
∑

i σ
x
i , with a finite value of hx. A similar story happens for the e particle as well, in which case a

25



emanating from them (represented by strings of σz operators) fluctuate wildly. This

completely pins down the value of the σx fields, meaning the ground state is a simple

product state of σxi for all i, and consequently the e particles are confined since the energy

of separating a pair of e particles scales with the separation.20

The toric code is a concrete realization of Z2 gauge theory, often also called Z2 topo-

logical order. We mentioned briefly that another model, the Kitaev’s honeycomb model21,

lies in the same category for some choice of exchange parameters, but otherwise realizes

a gapless Z2 QSL, which can be regarded as a Z2 gauge theory with gapless matter.

Kitaev’s honeycomb model is, in some sense, a more realistic model as compared to the

toric code, and the materialization is a hot topic in current research, see Ref. [62] for a

review.

The pyrochlore lattice consists of an FCC lattice of a pair of corner-sharing tetrahedra

as unit cells. The lattice and symmetry information is detailed in Appendix A.1. We

consider the XXZ model on pyrochlore:

H =
∑
〈i,j〉

JzS
z
i S

z
j + J⊥(Sxi S

x
j + Syi S

y
j ), (1.29)

here the z direction of the spin is not a global one; rather, the local direction of Szi = 1/2

is defined by the vector that points from site i to the center of the “down” tetrahedron

that contains site i. In the pure Ising limit, J⊥ = 0, the Hamiltonian H is a classical

term hz
∑

i σ
z
i needs to be added with finite hz.

20What we left unmentioned is the nontrivial mutual statistics between e and m: spatially exchanging
them produces a π phase change in the wave function. This provides another viewpoint on the confine-
ment of e: since the ground state is a superposition of different m states, the mutual statistics of e and
m forbids e to propagate coherently.

21We refer the readers to Kitaev’s original paper [78] which explains the model in detail. But the
paper contains much more beyond!
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one with commuting spins Sz. The ground state is any configuration that satisfies the

“two-in two-out” rule, with two Sz = 1/2 and two Sz = −1/2 spins on each “down”

tetrahedron. In fact, this Ising model describes the physics of classical electromagnetism.

The two-in two-out rule resembles the geometrical organization of water ice, and is named

the classical spin ice.

The massively degenerate classical ground states hinted at a potential quantum spin

liquid state. In the following, we switch on the J⊥ term and focus on the strong Ising

AFM limit, Jz � J⊥ > 0. Perturbation theory gives an effective Hamiltonian

Hring = −K
2

∑
7p

(S+
1 S
−
2 S

+
3 S
−
4 S

+
5 S
−
6 + H.c.), (1.30)

where K ∼ J3
⊥/J

2
z , S±i = Sxi ±iSyi , and we used 7p to denote an elementary hexagon ring

with neighboring sites i = 1, 2, ..., 6. The local symmetry is generated by simultaneously

rotation all the four spins in tetrahedron t along their respective z axis by the same

amount α: Gt(α) = exp(iα
∑

i∈t S
z
i ), where α is a U(1) angle.

By introducing a pair of lattice gauge fields—the electric field Err′ = Szi + 1/2 and

the vector gauge potential e±iArr′ = S±i —that live on the dual diamond bonds rr′ (whose

midpoint is the pyrochlore site i), it can be shown that [Err′ , Arr′ ] = i, and the Hamilto-

nian Hring can be mapped to a gauge theory model

H = −K
∑
7d

cos(curlA) +
U

2

∑
rr′

(
Err′ −

εr
2

)2

, (1.31)

where εr = ±1 for r being the center of the up or down tetrahedron. Since the gauge field

A is an angular variable, this is a compact U(1) lattice gauge theory. A compact U(1)

theory differs from a non-compact U(1) theory by the existence of magnetic monopoles—
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the m particles. Whether the difference matters is to ask, equivalently, whether it is

legitimate to expand the cosine. Whenever this expansion is valid, the cosine term

simply gives the magnetic energy B2, and the Hamiltonian realizes a deconfined phase22:

an emergent Maxwell theory of electromagnetism, with gapless (emergent) photon modes.

We then look at the excitations. As in the Z2 QSL case, we have the e and m particles;

the former is really nothing but an emergent electric charge (only assumed to be bosonic

for now), while the latter, monopoles, are the topological defect of a compact U(1). In

the deconfined phase, m is gapped. Once becoming gapless, the monopoles m drives a

confinement transition out of the deconfined QSL phase and the resulting state is some

short-range entangled, product-like state. On the other hand, the bosonic e particle,

when become gapless, can drive a Higgs transition, which does not necessarily terminate

the QSL; for example, a two-charge condensate is a “partial” Higgs transition and can

give rise to a Z2 QSL.

In the analysis of U(1) quantum spin ice above we assumed that e and m particles

are both bosons. This is not necessarily the case. In Ref. [159] and later in [187, 113],

all possible statistics and symmetry classes of e and m in a three-dimensional QSL are

obtained assuming various global symmetries. The major assumption of these works is

that both e and m are gapped excitations. This excludes a large class of U(1) QSL with

gapless spinon excitations on the pyrochlore lattice, which we will discuss in Chapter 5.

22Also known as the Coulomb phase. We remind the reader that such a phase is unstable in 2D unless
in presence of gapless matter fields.
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1.2.4 Projective symmetry group

While the intactness of symmetries should not be regarded as a defining property of QSL

states, symmetry does have important effects for QSLs. Upon imposing symmetries,

a spin liquid phase may split (or “fractionalize”) into several distinct phases that all

preserve the symmetry action. The phases are distinguished by the distinct quantum

numbers carried by the fractionalized excitations under the symmetry action. These spin

liquids phases are called symmetric spin liquids, and the corresponding symmetries form

a projective symmetry group (PSG). The classification of symmetric spin liquids can be

viewed as a symmetry analysis of the PSG acting on fractionalized excitations (in our

case, the bosonic or fermionic spinons). The purpose of this section is to describe the

procedures for this classification. Later in Chapters 4 and 5 we will use the framework

developed here to classify symmetric Z2 and U(1) spin liquids on the pyrochlore lattice.

To start with, one expresses spins in terms of Schwinger bosons or Abrikosov fermions

introduced in Eq. (1.19). At the mean-field level, they are governed by a quadratic Hamil-

tonian, commonly known as the mean-field ansatz. As we mentioned, the enlargement of

the parton Hilbert space and the gauge redundancy must be properly treated to validate

the parton description.

The PSG method is a way to resolve this redundancy in the parton description of

a spin liquid with full lattice symmetries (the symmetric spin liquid). The crucial step

is to realize that physical symmetries act projectively on the parton operators, and that

seemingly different parton Hamiltonians describe the same physics if they are related
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by gauge transformations. Conversely, if two parton Hamiltonians cannot be related by

gauge transformations, they must carry different projective representations of the phys-

ical symmetry—this suggests that the classification of projective symmetry corresponds

classification of symmetric spin liquids. We now formulate this statement in a more con-

crete way. Consider a spin–orbit coupled spin system on some lattice. Under a space

group operation O the spins transform as in Eq. (1.11). According to Eq. (1.22), we

näıvely expect that the partons transform as

O : Ψrµ → U †OΨO(rµ). (1.32)

However, due to the SU(2) gauge redundancy, any operation O can be accompanied by

a site-dependent SU(2) gauge transformation of the form in Eq. (1.23). The partons thus

transform projectively as

Õ = GO ◦ O :
brµ → U †ObO(rµ)e

iφO[O(rµ)],

Ψrµ → U †OΨO(rµ)WO[O(rµ)],

(1.33)

where the symbol “◦” indicates that the projective operation Õ is the composition

of the physical symmetry operation O and the gauge transformation GO. Due to the

notational similarity, we shall use the fermion notation in the second line to denote also

the boson notation in the first line, as long as no confusion is caused.

The projective symmetry can be extended to include internal symmetries, and here

we consider time reversal operation T as an example. The spins transform under T as

Ŝrµ
T−→ K†UT ŜrµU †TK, where UT = iσ2, and K = K† = K−1 applies complex conjugation

to everything on its right. For group relations involving time reversal, special care must
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be taken due to the presence of the complex conjugation K. The bosonic spinons are

found to transform as

T̃ = GT ◦ T : brµ → eiφT (rµ)KU †T brµ . (1.34)

Note that [K, UT ] = 0 because UT is real.

For Abrikosov fermions, however, using the special property of the SU(2) algebra,

one can design the projective action of T on Ψ to be unitary (see App. A.8 for detailed

derivation):

T̃ = GT ◦ T : Ψrµ → UTΨrµWT (rµ), (1.35)

Note that this does not modify the anti-unitary nature of time reversal symmetry.

For a symmetric spin liquid, the projective operations Õ and T̃ generate the sym-

metry group of the parton Hamiltonian, commonly known as the projective symmetry

group. The classification of symmetric spin liquids amounts to the classification of PSGs.

To achieve this, one needs to find all the gauge-inequivalent solutions for the gauge trans-

formations GO and GT that are consistent with the symmetry group of the system. Any

group relation of Eq. (A.4) can be written in the general form of

O1 ◦ O2 ◦ · · · = 1, (1.36)

we consider the gauge-enriched group relation

Õ1 ◦ Õ2 ◦ · · · = (GO1 ◦ O1) ◦ (GO2 ◦ O2) ◦ · · · = G, (1.37)

where G is a pure gauge transformation and corresponds to the identity operation for

the spins. We say that G is an element of the invariant gauge group (IGG), the group

of all pure gauge transformations that leave the parton Hamiltonian invariant. The IGG
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transformation on each site is a subgroup of SU(2), typically Z2 or U(1). In most cases,

there exists a gauge choice (the canonical gauge [165]) in which the IGG transformation

can be made “global” of the form G = eiσ
3χ with a constant χ. In this thesis, we will

be classifying both Z2 and U(1) spin liquids, therefore we consider both IGG = Z2 and

U(1), for which χ = {0, π} and χ ∈ [0, 2π), respectively.

Making use of the general conjugation rule

Oi ◦GOj ◦ O−1
i : Ψrµ → ΨrµWOj [O−1

i (rµ)], (1.38)

which follows directly from Eqs. (1.32) and (1.33), Eq. (1.37) can be rewritten as

GO1 ◦ (O1 ◦GO2 ◦ O−1
1 ) ◦ (O1 ◦ O2 ◦GO3 ◦ O−1

2 ◦ O−1
1 ) ◦ · · · = G, (1.39)

which then becomes a matrix equation:

WO1(rµ)WO2 [O−1
1 (rµ)]WO3{O−1

2 [O−1
1 (rµ)]} · · · = G, (1.40)

this reduces to, for the bosons, a phase equation

φO1(rµ) + φO2 [O−1
1 (rµ)] + φO3{O−1

2 [O−1
1 (rµ)]}+ · · · = nπ mod 2π. (1.41)

The PSG classification is obtained by listing all group relations and finding all solutions

to the corresponding matrix equation (1.40) (or phase equation (1.41)). We emphasize

that solutions must be discriminated by the principle of gauge equivalence, rather than

resemblance. Indeed, by means of a general gauge transformation G as in Eq. (1.23), the

gauge-enriched group relations in Eq. (1.37) can be rewritten as

(G ◦GO1 ◦ O1 ◦G−1) ◦ (G ◦GO2 ◦ O2 ◦G−1) ◦ · · · = G, (1.42)

32



which transforms WOi(rµ) according to

WOi(rµ)→ W (rµ)WOi(rµ)W−1[O−1
i (rµ)]. (1.43)

This indicates that two seemingly distinct solutions to the PSG equations can in fact be

equivalent.

1.3 Experimental probes for magnetic materials

1.3.1 Specific heat, magnetization, and susceptibility

To diagnose spin liquid physics in a candidate material, thermodynamic properties are

usually measured first since they are easy to carry out in a laboratory. The first goal would

be to establish the absence of magnetic ordering at low temperature. A simple measure

is the frustration parameter f = |ΘCW|/Tf . Here ΘCW is the Curie–Weiss temperature

obtained from a fit to the high-temperature susceptibility χ. In an insulating magnet

that is our focus here, the susceptibility obeys the Curie–Weiss form

χ = χ0 +
C

T + ΘCW

, (1.44)

where χ0 is a temperature-independent term that mostly receives contribution from the

Van Vleck susceptibility resulted from the field-induced admixture of the higher-lying

levels of the multiplet. In the second term, C is the Curie constant, which does not

contain much information about the exchange interaction and is only a reflection of the

size of the magnetic moment. The information about exchange interaction is hidden in
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the Curie–Weiss temperature ΘCW: in a mean-field type calculation, we have

ΘCW = Const.J C, (1.45)

where J is the exchange interaction23. Then a positive (negative) ΘCW corresponds

to antiferromagnetic (ferromagnetic) exchanges. The second quantity, Tf , usually is the

actually ordering temperature which is determined from any nonanalytic behavior (such

as divergence, cusp, etc.) in a χ –T plot. The temperature range ΘCW � T > Tf defines

a cooperative paramagnetic regime in which the frustration effect overwhelms and is a

natural place to look for a QSL.

The magnetization M is another simple measurement and contains roughly the same

amount of information as the susceptibility χ.24 In a mean-field-type calculation, M as

a function of temperature T and external field H can be written as

m− χ0H = gJBJ(x), x = J (gµBH − J (m− χ0H)) , (1.46)

where BJ(x) is the Brillouin function which reduces to the familiar hyperbolic tangent

B(x) = tanh x for J = 1/2. The g-factor describes the response to an external magnetic

field. Here we assumed g to be a scalar, but its general form in the Hamiltonian is a

tensor

HZeeman = −µBHµ
∑
i

gµνi S
ν
i , (1.47)

and the tensor structure can be obtained from symmetry principle.

The magnetization and susceptibility measurement both contain single ion contribu-

23We use a calligraphic J to distinguish it from the angular momentum number J . J is also called
the Weiss molecular field constant, and the mean-field theory is also called the Weiss molecular theory.

24Formally the magnetization M is the first derivative of free energy F with respect to external field

H: M = − ∂F
∂H , whereas magnetic susceptibility χ is the second derivative χ(T ) = − 1

V
∂2F
∂H2 .
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tions at the zeroth order, and sometimes it is quite hard to separate the correlation (i.e.

exchange) effects from these quantities.

The measurement which requires interaction between spins to interpret is the low

temperature, zero-field specific heat. Underlying this is the assumption that other con-

tributions such as phonons, nucleus, do not contribute at the temperature measured,

an assumption that must be justified. The phonon contribution to specific heat is easy

to determine in both experiment and theory—experimentally one usually fabricate the

nonmagnetic analogue of the magnetic compound (for rare-earth materials, for example,

replace the magnetic element with the nonmagnetic element lutetium), and subtract the

specific heat curve Cp –T of the nonmagnetic twin from that of the magnetic compound.

Assuming the remaining contribution comes purely from magnetic moment, one compares

the residual curve with the high-temperature expansion result for the specific heat

Cp ∼
C0

T 2
, (1.48)

where C0 = 1
kB

Tr[H2] ∝ J 2. This suggests that the magnetic contribution to high

temperature heat capacity is pure interaction effect.

The in-field magnetic heat capacity, however, contains single-ion effect. At high field,

low temperature heat capacity for a Jeff = 1/2 system takes the Schottky form

CSchottky = n
∆2

T 2

e∆/T

(1 + e∆/T )2
, (1.49)

which describes the heat capacity of a two-level system with energy gap the Zeeman gap

∆ = 2µBgJB.

So far we have seen that the interaction effect is hidden in the Curie–Weiss temper-
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ature obtained from susceptibility measurement, as well as the constant in the magnetic

high temperature heat capacity. It is quite common that the exchange effect extracted

from these two approaches show variances since in either approach many other factors

can influence the result. For example, at high enough temperature, the heat capacity

will surely include contributions from crystal field excitations.

In summary, one usually compare the high-temperature thermodynamic response

result with a high-temperature expansion of a putative spin Hamiltonian determined from

symmetry principles in order to make connection between the macroscopic measurements

and microscopic descriptions. For system whose spin Hamiltonian and g-factor are of a

simple enough form this can often give us a lot of information. However, it is inevitable

that high-temperature expansion include many other unwanted contributions that blur

this analysis. A major complement to these experiments are spectroscopic measurements,

which we introduce below.

1.3.2 Spectroscopy

Inelastic neutron scattering is the process during which the neutron scatters off the ma-

terial with a spin flip. The inelastic neutron scattering cross-section can be theoretically

derived

dσ

dΩdE
∝ F (q)

(
δαβ −

qαqβ

q2

)∑
rµ,r′ν

eiq·(rµ−r
′
ν)

∫
dtdt′e−iω(t−t′)〈Sαrµ(t)Sβr′ν (t

′)〉. (1.50)
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If the material is magnetically ordered, the scattering is primarily a two-body neutron–

magnon scattering, with definite energy–momentum transfer between them. In a QSL,

the scattering is a three-body (or multibody) scattering between neutron and a pair (or

multiple) of spinons. Assume the spinons have momenta k1 and k2, a smooth signal

is produced at each momentum transfer q, where the intensity is spread out over a

continuum of frequencies ω, only constrained by the momentum sum k1 + k2 = q. The

high energy neutron scattering can be used to measure crystal field excitations.

While the existence of a broad continuum in the inelastic neutron scattering is a good

indication of a QSL phase, it is not sufficient to claim the observation of fractionalized

spinon excitations from it alone. First of all, a multi-magnon excitation is always a

possibility. Second, a quasiparticle description of the low energy excitations may not

exist at all. In short, inelastic neutron scattering is a powerful tool to diagnose spin

liquid physics, but in most case it does not qualify as a smoking-gun measurement for

the QSL phase.

In addition to neutron scattering measurements, the resonant inelastic x-ray scatter-

ing have been increasingly applied as a probe of magnetism. The technique typically

detects small changes in a resonant atomic transition, and consequently the energy res-

olution is limited as far as current experiments (a few tens of meV, as compared to

∼ 0.1 meV in for neutrons) are concerned. However this is an active and rapidly chang-

ing experimental field, where capabilities have witnessed major improvement in the past

years. Compared to neutron scattering, x-ray scattering has the advantage of being able
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to treat samples with much smaller sizes while maintaining good momentum resolution.

However, x-ray resonant processes is much more complicated than neutrons (see the

equivalence of Eq. (1.50) in Ref. [141]) and can involve other types of excitations. This

can blur the information about the magnetism in the material.

There are still other powerful probes which we mention briefly. The nuclear magnetic

resonance (NMR) probe the local magnetic fields of the spin degrees of freedom via the

hyperfine interaction with nuclear levels. The relaxation time 1/T1 measures the local

magnetic susceptibility (in the zero-frequency limit) which is related to the magnetic

density of states. Alternatively, the local magnetic fields is measured in muon spin

resonance (µSR) experiments, which can distinguish and is highly sensitive to static

moments (which suggest the existence of conventional long range order) and dynamical

moments of spin liquids. For other probes, we refer the readers to the superb review

[138].

1.4 Outline of the thesis

1.4.1 Theoretical and experimental study of the frustrated tri-

angular lattice antiferromagnet NaYbO2

In chapter 2, we investigate NaYbO2, which hosts an ideal triangular lattice of effective

Jeff = 1/2 moments with no inherent site disorder. No signatures of conventional mag-

netic order appear down to 50 mK, strongly suggesting a quantum spin liquid ground
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state. We observe a two-peak specific heat and a nearly quadratic temperature depen-

dence, in agreement with expectations for a two-dimensional (2D) Dirac spin liquid. Ap-

plication of a magnetic field strongly perturbs the quantum disordered ground state and

induces a clear transition into a collinear ordered state, consistent with a long-predicted

up–up–down structure for a triangular-lattice XXZ Hamiltonian driven by quantum fluc-

tuations. The observation of spin liquid signatures in zero field and quantum-induced

ordering in intermediate fields in the same compound demonstrates an intrinsically quan-

tum disordered ground state. We conclude that NaYbO2 is a model, versatile platform

for exploring spin liquid physics with full tunability of field and temperature.

Using the symmetry of the delafossite lattice we determine the symmetry-allowed

exchange interactions on the nearest-neighbor in-plane and inter-layer bonds. Restricting

to the in-plane Hamiltonian, we study all the possible three-sublattice magnetic orders

consistent with the observed order in NaYbO2, both with and without a magnetic field.

We then consider the perturbative effect of couplings between the layers. We find that the

presence of a high degree of degeneracy even once the inter-layer spin–orbit interactions

have been included indicates that the interlayer coupling of the three-sublattice order

is frustrated even with the most general exchange interactions. This suggests a strong

suppression of ordering when the 2D exchanges are in this regime, in zero magnetic field.

Finally, we present the simulation result for the dynamic spin structure factor using linear

spin wave theory.
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1.4.2 LiYbO2 and Heisenberg model on a stretched diamond

lattice

Chapter 3 presents an investigation of an alternative, frustrated diamond lattice frame-

work in the material LiYbO2. This material can be viewed as containing a stretched

diamond lattice of Yb3+ moments, and it falls within a broader family of ALnX2 (A

= alkali, Ln = lanthanide, X = chalcogenide) materials where the lattice structure is

dictated by the ratio of lanthanide ion radius to alkali plus chalcogenide radii. Results

from magnetization, susceptibility, heat capacity, and neutron scattering reveals a rich

magnetic phase diagram of LiYbO2: Long-range incommensurate spiral magnetic order

of k = (0.384,±0.384, 0) forms in the ground state, which seemingly manifests through

a two-step ordering process via a partially ordered intermediate state. Upon apply-

ing an external magnetic field, magnetic order becomes commensurate with the lattice

with k = (1/3,±1/3, 0) through a “lock-in” phase transition. Remarkably, the major-

ity of this behavior in LiYbO2 can be captured in the Heisenberg J1 – J2 limit where

the magnetic Yb3+ ions are split into two interpenetrating A-B sublattices. This model

was explicitly derived and tuned for LiYbO2, and it is directly related to a physical

elongation of the diamond lattice Heisenberg J1 – J2 model. Notably, however, variance

between the observed and predicted phasing of Yb moments on the bipartite lattice as

well as the emergence of an intermediate, partially disordered state suggests the pres-

ence of interactions/fluctuation effects not captured in the classical J1 – J2 Heisenberg

framework. We finally model the observed “lock-in” transition energetically from a sym-

40



metry point of view and show that increasing the magnetic field will inevitably induce an

incommensurate-to-commensurate transition. Exploring the nature of the intermediate

ordered state is promising future steps in single-crystal studies.

1.4.3 Pyrochlore I: competing orders from Z2 spin liquid per-

spective

Chapter 4 combines the two threads mentioned above—magnetic order and QSL physics—

by utilizing the connection of symmetry to emergent gauge structure described by the

PSG. The embedding of the physical symmetries into the PSG can then lead to a unifica-

tion of distinct symmetry-breaking orders that are unrelated in classical physics. Such a

unified description of seemingly unrelated magnetic orders is the main motivation behind

this study. Generally, a QSL state can be connected to magnetically ordered states by

considering the condensation patterns that emerge when the energy of a bosonic QSL

excitation is brought to zero.

We first employ the PSG method for Schwinger bosons to obtain a full classification of

QSLs with Z2 gauge structure on the pyrochlore lattice. While standard parton construc-

tions also allow U(1) and SU(2) gauge structures, we consider the Z2 gauge structure

due to its simplicity (gauge field is gapped and does not enter the low energy sector)

and richness (a single U(1) PSG class can be further split into several Z2 PSG classes

upon lowering the gauge symmetry from U(1) to Z2). We use Schwinger bosons rather

than Abrikosov fermions (which will be considered in Chapter 5) to immediately obtain
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a bosonic excitation, the elementary Schwinger boson itself, that can condense at the

phase transition point out of the QSL.

As a result of our PSG analysis, we find 16 different Z2 QSLs on the pyrochlore lattice.

We use a standard mean-field description to study the 0-flux QSLs, in which translation

symmetry acts linearly (i.e., as in classical physics) on the Schwinger bosons. The PSG

method also allows us to describe phase transitions from these QSLs to magnetically

ordered phases. Condensing the Schwinger bosons, we identify 15 different ordering pat-

terns, and call them “paraphases”, since each of them actually unifies several distinct

symmetry-breaking orders. We find that, generically, these orders are intertwined, neces-

sarily appearing together at the phase transition out of the QSL, and that conventional

spin orders are in many cases accompanied by inversion-breaking “hidden” orders.

The phase transitions corresponding to these 15 paraphases fall into two dynamical

classes of z = 1 and z = 2 quantum criticality, exhibiting critical modes with linear and

quadratic dispersions, respectively. We uncover the mathematical structure discriminat-

ing between these two classes, related to Hamiltonian diagonalizability, and derive their

effective field theories, along with their most important experimental signatures. In par-

ticular, we use mean-field theory to compute static and dynamic spin structure factors

for each of the 15 paraphases. Finally, by comparing the magnetic orders associated with

each paraphase to those observed in experiments, we identify a set of likely QSL phases

that might be relevant to real-world pyrochlore materials.
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1.4.4 Pyrochlore II: classification of U(1) and Z2 spin liquid and

nodal line spin liquid

As a more in-depth study of symmetry fractionalizations on the pyrochlore lattice, in

Chapter 5 we apply the PSG method for Abrikosov fermions to give a complete classifi-

cation of symmetric QSLs on the pyrochlore lattice with either Z2 or U(1) gauge type.

For each gauge type, we first consider only space group symmetry, and later add time

reversal symmetry. We consider generic cases where we allow spin–orbit coupling in the

underlying spin system and do not require SU(2) spin rotation symmetry. By follow-

ing the general PSG principle to solve the gauge–symmetry consistency equations, we

find that there can be at most 18 and 28 symmetric quantum spin liquids preserving

the pyrochlore PSG for the U(1) and Z2 gauge types, respectively. When time-reversal

symmetry is imposed, the number of possible symmetric spin liquids is reduced to 16 for

the U(1) type and is increased to 48 for the Z2 type. For each class, the most general

symmetry-allowed spinon mean-field Hamiltonian is given. Importantly, we find that a

large family of spinon Hamiltonians possesses gapless nodal lines along the four equiva-

lent (111) directions of the Brillouin zone. We call this unusual nodal structure a “nodal

star” and show that it is stable at the mean-field level as it is protected by the projective

threefold rotation and screw symmetries of the system. We then go beyond the mean-

field level and consider a full-fledged low energy theory of the spinon nodal star coupled

to a U(1) gauge field. Specifically, we obtain thermodynamic properties of the system

by computing the photon contribution to the free energy. We find that the two most
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dominant low temperature contributions to the specific heat are C ∼ T 3/2 from the bare

spinons and C ∼ T 3/2/ lnT from the photon–spinon interactions. This scaling of the low

temperature specific heat may serve as a clear evidence for the experimental discovery of

a nodal star U(1) QSL.
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Chapter 2

Frustrated triangular lattice

antiferromagnet in delafossites:

application to NaYbO2

2.1 Introduction

The triangular lattice antiferromagnet is a long-studied archetype of geometrically-driven

magnetic frustration that has been widely explored both theoretically and experimen-

tally. While the ideal Heisenberg antiferromagnet develops three-sublattice 120◦ order,

perturbing away from this limit realizes a rich phase space including QSL phases [110, 13].

Early studies of triangular QSL candidates mainly focused on organic materials. It was

only found recently that several classes of rare earth oxides have model planes of equilat-
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eral triangles of 4f moments form in a high symmetry setting. The archetypal material

in this class is YbMgGaO4, originally proposed as a quantum spin liquid (QSL) candi-

date due its lack of long-range magnetic order and the observation of a low-temperature

continuum of magnetic excitations [89, 88, 91, 92, 118]. However, chemical disorder in

YbMgGaO4, endemic to the mixed occupancies of Mg and Ga atoms on the same crys-

tallographic site, has clouded interpretation [93, 92, 91, 146, 170, 118, 90, 89, 88], and

several other possibilities were suggested in place of a spin liquid state [185, 76, 101].

The rare earth moments in compounds of the form NaRO2 (R=rare earth ions) are

known to form an ideal triangular lattice in the α-NaFeO2 (R3̄m) structure. Previ-

ous studies suggest that they realize a large degree of magnetic frustration [59, 96, 3],

and NaYbO2 in particular stands out as an appealing candidate material. Specifically,

the NaYbO2 lattice promotes enhanced exchange through short nearest neighbor bonds,

where the Yb moments occupy high-symmetry sites that forbid Dzyaloshinskii-Moriya

interactions. This combined with large crystal field splitting between the ground state

and first excited doublet [118, 90] render this lattice an appealing framework.

We start by presenting experimental result of NaYbO2. Zero field susceptibility

data collected down to 50 mK reveal no signatures of spin freezing or glassiness, and

heat capacity data collected over the same temperature range reveal only a broad two-

peak structure–a common signature of the onset of short-range correlations in materials

thought to host quantum disordered ground states [180, 31, 111, 45]. This disordered

state is strongly perturbed via the application of a magnetic field that, under modest
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fields (H ≈ 3 T – 5 T), induces antiferromagnetic order consistent with an up-up-down

plateau state for the triangular lattice.

We then proceed to the theoretical modeling and understanding of the experimental

results via a classical in-field magnetic order analysis and spin wave theory. We show

that the disordered state and the up-up-down order at intermediate fields reflect an

underlying XXZ Hamiltonian with enhanced fluctuations due to interlayer frustration.

We examine the detailed field dependence of low-energy continuum of scattering about

the Q = (1/3, 1/3, 0) two-dimensional antiferromagnetic ordering zone center. Our spin-

wave calculations qualitatively capture the field evolution of dynamics endemic to the

up-up-down phase, an anomalous band of excitations above the single-magnon cutoff is

identified in the ordered state.

2.2 Main results

Polycrystalline NaYbO2 was synthesized and characterized via neutron powder diffraction

measurements. Figure 2.1(a) shows the structure at 1.6 K, revealing that the structure

retains its R3̄m symmetry with fully occupied Na and O sites. The local D3d distorted

YbO6 octahedra and bond lengths are illustrated, and a similar YbO6 environment in

YbMgGaO4 is known to generate a large 38 meV splitting between the first excited state

and the ground state doublet [118, 90]. At low temperatures, the ground state therefore

behaves as an isolated Jeff = 1/2 Kramers doublet. Nearest-neighbor Yb-Yb distances

were refined to 3.3507(1) Å at 300 K, consistent with previous reports [59, 96, 3], and
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Figure 2.1: Crystal structure and magnetic (H,T ) phase diagram of NaYbO2. (a), Re-
fined NaYbO2 structure (1.6 K, R3̄m) contains equilateral triangular layers of D3d YbO6

distorted octahedra separated by 3.346 Å. Sodium cations refine to full occupation, cre-
ating a uniform chemical environment surrounding the triangular layers. Purple spheres,
Yb atoms; black spheres, Na atoms; brown spheres, O atoms. (b), Low-temperature
phase boundary between quantum disordered and antiferromagnetic ordered states in
NaYbO2, plotted as a function of field and temperature, extracted from a.c. suscep-
tibility and neutron-scattering experiments. The dashed line denotes the boundary of
Zeeman-driven quenching of a minority fraction of free Yb moments under field, above
which free moments are quenched. These free moments coexist with a quantum disor-
dered ground state. Values in parentheses and error bars indicate one standard deviation.
kB is the Boltzmann constant, Hq denotes the onset temperature of the up–up–down or-
dered state and HZeeman denotes the suppression in magnetic susceptibility observed due
to the quenching of a small fraction of free Yb moments.
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naively support enhanced exchange relative to other frustrated Yb-based compounds.

Characterizing this exchange, magnetic susceptibility and magnetization data are

plotted in Figs. 2.2 and 2.3. Below 50 K, the Van Vleck contribution to the susceptibility

is negligible. The data from 20 K – 100 K were modeled by Curie–Weiss fits of the form

1
χ−χ0

=
(

C
T−θCW

)−1

shown in Fig. 2.2(a) and yield a local moment value of 2.63(8)µB

with an antiferromagnetic Curie–Weiss θCW = −10.3(8) K. This value is substantially en-

hanced relative to YbMgGaO4 (θCW = −4 K [93, 92, 146, 118]), consistent with enhanced

exchange. The local moment generated from the Curie–Weiss fits suggests a heightened

g-factor, which was validated via electron paramagnetic resonance (EPR) measurements

(Fig. 2 (a) inset). A powder averaged g-factor of gavg = 3.2 implies a local moment of

2.77µB for a J = 1/2 system—a value only 5 higher than the moment extracted from

susceptibility data. Fits to the EPR line shape reveal a highly anisotropic g-factor of

gab = 3.294(8) and gc = 1.726(9), corresponding to the triangular ab-plane and c-axis

respectively.

While the saturated moment for this system is then expected to be approximately

1.6µB/Yb, M(H) measurements collected at 2 K up to 9 T (Fig. 2.2(b)) were only able

to polarize Yb moments up to 1µB, consistent with significant θCW exchange. Fig. 2.2(c)

shows zero-field AC susceptibility data collected down to 50 mK. No signatures of freezing,

frequency dependence, or long-range order are observed. Instead, χ′(T ) continues to

diverge as the sample is cooled, generating an empirical frustration parameter θCW/TAF >

500. As we will later argue, this zero-field state is an inherently quantum disordered state
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Figure 2.2: Low-field magnetization and magnetic susceptibility data. (a), Low-
temperature Curie–Weiss fit to the constant field magnetic susceptibility χd.c. in tem-
perature range free from Van Vleck contributions from high-energy crystal field doublets
(where the majority of trivalent Yb ions are in the Jeff = 1/2 ground state). A large mean-
field interaction strength of−10.3(8) K with an effective local moment, µeff, of 2.63(19)µB

is fit with a temperature-independent χ0 = 0.0053(3) e.m.u. mol−1 background term.
Inset: EPR data collected at 4.2 K fit to anisotropic g-factors of gab = 3.294(8) and
gc = 1.726(9). (b), Isothermal magnetization versus field data reaching only 67% of the
expected 1.5µB per Yb ion polarized moment under µ0H = 9 T. (c), Temperature and
frequency dependence of a.c. magnetic susceptibility χ′(T ) from 50 mK to 4 K under zero
field. (d), χ′(T ) data collected under applied magnetic fields. A minority fraction of free
Yb moments are quenched at low temperatures and high fields, resulting in a peak in
χ′(T ), and the downward inflection parameterizing this Zeeman splitting is denoted by
orange stars. Inset shows field-subtracted 0 T–2 T χ′(T ) data between 1 K and 3 K and a
Curie- Weiss fit quantifying the fraction of free Yb moments in the system, as described
in the text. Values in parentheses and error bars indicate one standard deviation. a.u.,
arbitrary units. 50
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A second transition back into the quantum disordered state or a quantum paramagnetic
phase begins at higher fields. (b), χ′(T ) data collected under a series of magnetic fields
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netic state. (c), Specific heat of NaYbO2 measured down to 80 mK under zero field and
overplotted with the non-magnetic NaLuO2. analogue. The resulting magnetic entropy
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lower peak centered around 1 K develops a sharp anomaly at 5 T, indicative of the phase
transition into the q = (1/3, 1/3, 0) state that is suppressed by 9 T. The inset shows the
low-temperature portion of the 0 T Cp(T ) data fit to a power law. The resulting fit to
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dressed by a small fraction of free Yb moments that are quenched in a magnetic field.

χ′(T ) data collected under a variety of H fields are plotted in Fig. 2.2(d). Under small

H, the divergence in χ′(T ) is suppressed and a maximum appears. The temperature of

this maximum increases with field until µ0H = 2 T is reached, beyond which χ′(T )

becomes nearly temperature independent. The inflection in χ′(T ) increases linearly with

H and is plotted in Fig. 2.1(b). This matches the expected Zeeman splitting of isolated

Jeff = 1/2 moments ∆E = 2µBgavgJeffH and suggests that χ′(T ) at µ0H = 2 T represents

the remaining majority of the correlated/bound Yb moments. As an estimate of the

fraction of free spins, µ0H = 0 T data were fit to a Curie–Weiss form after removing

the majority response accessed at µ0H = 2 T. Fits to a Curie–Weiss form between 1-4 K

(Fig. 2.2(d)) are described by a model of 14.4(6)% free spins with a full moment of 2.63

µB and a θCW = −0.45(4) K. 2 K M(H) data plotted in Supplementary Fig 2 (d) were

also fit to a two-component model of Brillouin-like free spins and exchange-field-bound

moments which yielded a free spin fraction of approximately 7%. These fits roughly

parameterize the limit of a free spin fraction in the material and suggest that free spins

coexist with a quantum disorder ground state.

At higher fields, the nearly temperature-independent χ′(T ) at 2 T evolves into a or-

dered state. Isothermal χ′(H) data at 330 mK plotted in Fig. 2.3 (a) show an increase

in the susceptibility as a phase boundary is traversed at 3 T followed by near total sup-

pression of χ′(H) at 5 T. For µ0H > 5 T, χ′(H) begins to recover suggesting a higher

field phase boundary—one marking the quenching of the ordered state as spins are fur-
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ther polarized toward a quantum paramagnetic phase. χ′(T ) data collected across the

ordered regime are plotted in Fig. 2.3(b) and show a sharp transition into below 1 K at

µ0H = 4 T. The likely origin of the enhancement in χ′(T ) upon entering the ordered

state at 3 T is due to the proximity of the quantum critical point associated with the

nearby 0 K phase boundary. These quantum fluctuations are suppressed crossing the

finite temperature phase boundaries away from this point.

To further characterize NaYbO2, heat capacity measurements were performed. Fig. 2.3(c)

shows the zero-field C(T ) of both NaYbO2 and a nonmagnetic comparator NaLuO2 plot-

ted from 80 mK to 40 K. Consistent with susceptibility data, no sharp anomaly indicative

of the onset of long-range order is observed in NaYbO2. Instead, a broad feature com-

prised of two peaks is apparent—one peak centered near 1 K and the other near 2.5 K.

Two peaks in C(T ) are predicted in a number of theoretical models for both triangular

[162, 72] and kagome-based [40, 151] Heisenberg lattices where a quantum spin liquid

state appears. Integrating Smag(T ) data with the lattice contribution subtracted yields

a magnetic entropy reaching 95% of R ln(2), consistent with the nominal Jeff = 1/2

magnetic doublet of NaYbO2.

Upon applying magnetic field, data in Fig. 2.3(d) show the 2.5 K peak in Cp(T ) shifts

upward in temperature similar to other frustrated magnets; however, under 5 T, a sharp

anomaly appears near 1 K and is coincident with the downturn in χ′(T ) at this field.

Under 9 T, this sharp peak broadens and shifts lower in temperature as the system is

driven into the disordered state. Smag(T ) integrated under 5 T matches that of 0 T and
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the lowest temperature Cp(T ) is strongly suppressed once order is generated. This is

consistent with the suppression of low energy spin fluctuations upon entering the ordered

state, which return when the high field quantum paramagnetic phase is approached.

Determining the precise form of the zero-field Cp(T ) is complicated by a nuclear Schottky

feature that dominates below 100 mK ; however attempts to do so away from this feature

yield a C(T ) ∝ T 2 as shown in the inset of Fig. 2.3(d).

Low temperature neutron scattering measurements were also performed. Fig. 2.4(a)

shows temperature subtracted (330 mK–1.6 K) diffraction data and the absence of zero-

field long-range magnetic order. Field subtracted data at 450 mK plotted in Fig. 2.4(b)

reveal that under 5 T, new superlattice reflections appear at the Q = (1/3, 1/3, 0),

(1/3, 1/3, 1), and (1/3, 1/3, 3) positions. Given the symmetry constraints of the R3̄m,

structure, these either represent a 120◦ noncollinear spin structure or an up-up-down

pattern of spin order. The absence of a reflection at Q = (1/3, 1/3, 2) suggests the field-

induced order is collinear. Additionally, magnetic intensity appears at the Q = (0, 0, 3)

position, consistent with the two-q structure (q = (1/3, 1/3, 0) + q = (0, 0, 0)) expected

for the equal moment up-up-down state [46]. The best fit to this model is shown in

Fig. 2.4(c) where spins refine to be oriented nearly parallel to the (1,−1,−1) direction

with an ordered moment 1.36± 0.1µB. This value is less than the 1.6µB expected likely

due to the presence of a minority fraction of free moments as well as the influence of

remnant fluctuations in the ordered state. Magnetic peaks are resolution-limited with a

minimum spin-spin correlation length of ξmin = 450 Å. Further data collected at 67 mK
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Figure 2.4: Neutron diffraction and inelastic neutron-scattering data. (a), Temperature-
subtracted neutron powder diffraction data (330 mK – 1.5 K) collected under 0 T, show-
ing the absence of low-temperature magnetic order. The red line is a constant fit to
the subtracted data. (b), Under an applied field of 5 T at 450 mK, new magnetic peaks
appear at (1/3, 1/3, z) positions (z = 0, 1, 3), corresponding to an ordering wave vector
of q = (1/3, 1/3, 0). The data were refined by analyzing field-subtracted data (5 T - 0 T),
which are constrained by the suppressed (1/3, 1/3, 2) reflection. (c), The best fit to the
5 T induced magnetic state using the two-q structure q = (1/3, 1/3, 0) + q = (0, 0, 0) is
generated by a collinear spin structure with Yb moments of 1.36(10)µB. The displayed
structure aligns moments approximately along the < 1,−1,−1 > direction and has six
symmetrically equivalent structures generated by threefold in-plane rotational and mirror
symmetries. (d), Inelastic neutron-scattering spectrum collected at 67 mK and 0 T. (e),
Inelastic neutron-scattering spectrum collected at 74 mK and µ0H = 5 T. (f), Linear spin
wave calculations showing the powder-averaged S(Q,E) for a two-dimensional triangu-
lar lattice of anisotropic Yb3+ moments of NaYbO2 in a 5 T field and three-sublattice
ordering. Error bars denote one standard deviation of the data.
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determine the low temperature, magnetic field phase boundaries [14].

Inelastic scattering data plotted in Figs. 2.4(d) and 2.4(e) reveal a dramatic renormal-

ization of the low energy spin dynamics upon transitioning from the quantum disordered

state into the up-up-down phase. The zero field data shows a diffuse spectrum of ex-

citations centered about the (1/3, 1/3, L)-type wave vectors, and upon applying a 5 T

field, much of this spectral weight is shifted into the elastic channel and a nearly flat

band of excitations centered at 1 meV. Powder averaged linear spin wave calculations

assuming a purely two-dimensional triangular lattice in a 5 T magnetic field reproduce

this flat feature, and the simulated S(Q, ω) is plotted in Fig. 2.4(f). This simulation was

generated using nearest neighbor coupling with a nearly Heisenberg Hamiltonian with a

slight easy-plane anisotropy, Jz = 0.45 meV, Jxy = 0.51 meV. The subtle downturn at

low Q of the emergent 1 meV band requires a slight easy-plane anisotropy as discussed

in Subsection 2.6.2.

We now discuss the implications of our results. The similar YbO6 octahedra of

NaYbO2 and YbMgGaO4 intimate that the local crystal fields and in-plane exchange

couplings between Yb ions are comparable; however, the main distinction between the

two systems is the much shorter inter-plane distance in NaYbO2. This suggests that

the interlayer coupling is non-negligible, and therefore, a minimal Hamiltonian should

include nearest neighbor bonds within the planes and between neighboring layers. Based
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on the structure, a symmetry analysis leads to the following exchange Hamiltonian:

H2d =
∑
〈ij〉

{
Jxy
(
Sxi S

x
j + Syi S

y
j

)
+ JzS

z
i S

z
j

+ Jc (êij · Si) (êij · Sj) + Jcz
[
(ẑ · êij × Si)Szj + (ẑ · êij × Sj)Szi

] }
.

(2.1)

H ′ =
∑
〈〈ij〉〉

{
J ′xy
(
Sxi S

x
j + Syi S

y
j

)
+ J ′zS

z
i S

z
j

+ J ′c

(
f̂ij · Si

)(
f̂ij · Sj

)
+ J ′cz

[(
f̂ij · Si

)
Szj +

(
f̂ij · Sj

)
Szi

]}
,

(2.2)

Eq. (2.1) contains interactions within a triangular layer, and Eq. (2.2) between layers.

The unit vectors êij are oriented along the ij bond, and f̂ij is a unit vector along the

projection of the ij bond into the ab-plane. The in-plane Hamiltonian H2d is identical to

that in YbMgGaO4 but rewritten here (following Iaconis et al. [69]) in a more physically

transparent “compass model” form. The interlayer exchange in the second line also has a

compass-like structure. We expect that this form applies to the full family of delafossite-

like antiferromagnets, ARX2, with dipolar Kramer’s doublets on the R site, sharing the

space group 166.

H2d notably contains a wide range of phase space favoring three types of classical

orders: (1) three-sublattice 120◦ structures; (2) collinear two-sublattice stripe phases;

and (3) out-of-plane Ising anisotropy with up-up-down structures. Because we do not

observe zero-field order, and we expect that interplane exchange is substantial, we infer

that the interactions in H ′ should be frustrated by the in-plane order or correlations.

Consideration of the coupling between layers uniquely singles out the three-sublattice
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120◦ structure: to leading order, only this in-plane order allows the staggered magneti-

zation to effectively cancel the exchange field between neighboring planes [14]. This is

even true to a large extent also for the anisotropic J ′c and J ′cz couplings.

Using this deduction that NaYbO2 has 120◦ correlations, we expect fluctuations

amongst many classically degenerate or nearly degenerate states to strongly suppress

order. Furthermore, recent DMRG studies of H2d find that for S = 1/2 quantum spins, a

spin liquid state indeed occurs in a corner of the classically 120◦ ordered phase space with

moderate Jcz coupling [186]. Consequently, it is plausible that a spin liquid state occurs

in NaYbO2, and if so, it is likely to be smoothly connected to the spin liquid of the two-

dimensional problem. The optimal spin liquid ground state for the 2d model based on

variational parton calculations [69] is a U(1) Dirac state with gapless fermionic spinons

described theoretically as a 2+1-dimensional conformal field theory: QED3. The second

implication of our Hamiltonian in this regime is that, on applying a magnetic field, the

degeneracy is strongly lifted. This is because a large part of the zero-field cancellation is

reliant on the specific 120◦ structure of the in-plane ground state, which is modified by

the application of a magnetic field. Therefore, it is natural to expect ordering to become

more robust in an applied magnetic field. The three-sublattice (1/3, 1/3, 0) wave vector

is indeed germane to triangular antiferromagnets in a magnetic field, which stabilize a

quantized magnetization plateau at 1/3 saturation in XXZ models [154, 35].

With this in mind, we return to a discussion of the data. Theory predicts the 2d

U(1) Dirac state to have Cp(T ) quadratic in temperature, consistent with measurements
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[123]. An alternate explanation of T 2 specific heat might come from the degenerate line of

spiral states found by Rastelli and Tassi for the zero-field rhombohedral XXZ model [125],

which has 2d-like spin fluctuations despite 3d coupling. The incommensurate long-range

order of the Rastelli-Tassi spiral does not appear in our measurements, however, the field-

induced Bragg peaks seen in experiment are consistent with the three-sublattice plateau

states that emerge in the XXZ model in a field [154, 117]. Indeed, the magnetization at

5 T, where the ordered phase is maximal, is approximately 1/3 of the expected saturation

moment and corresponds to a plateau where χ(T ) = ∂M/∂H reaches zero. The best fit

to neutron diffraction data further corresponds to the equal moment, two-q up-up-down

structure of the plateau state.

The two peaks observed in the zero field Cp(T ) of NaYbO2 evoke a number of theoret-

ical models of Heisenberg spins on both triangular [162, 72] and kagome [40, 151] lattices

that predict dual entropy anomalies upon cooling into spin liquid ground states. Both

peaks are rarely observed experimentally and interpretations of the nature of each peak

vary with the specific model. Exact diagonalization studies of the XXZ Hamiltonian on

a triangular lattice predict a high temperature peak corresponding to the formation of

trimers of doublet states (i.e. short-range correlations) followed by a lower temperature

peak that marks the onset of a quantum spin singlet state [72]. Recent work exploring

the S = 1/2 triangular lattice using tensor renormalization group techniques predicts

a dual Cp(T ) anomaly with the lower temperature peak signifying the onset of short-

range/incipient order and the upper peak reflective of the onset of gapped low energy,
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chiral fluctuations [31]. The ratio of peak temperatures predicted in this S = 1/2 model

Tl/Th ≈ 0.36 is consistent with those observed in NaYbO2 and the J ≈ 5 K inferred from

the model is reasonably close to the θCW determined from susceptibility data.

Our data demonstrate that the nearly ideal triangular lattice of Yb ions in NaYbO2

realize an unconventional quantum disordered ground state. Unlike the majority of other

spin-liquid candidates such as Herbertsmithite ZnCu3(OH)6Cl2 [60], the ground state in

NaYbO2 can be driven into an intermediate ordered regime in relatively weak magnetic

fields. The origin of the small fraction of free spins coexisting with this ground state

remains an open question; however, they are not reflective of trivial disorder, which

favours the least collinear state [105]. Additionally, rather than hosting a purely two-

dimensional network of spins where the two-dimensionality precludes long-range order

such as in Ba8CoNb6O24 [129, 36], interlayer geometric frustration is critical to the exclu-

sion of order in NaYbO2. This reflects the strong perturbation field provides to a complex

interplay between interlayer frustration and the nearly degenerate ground states inherent

to the XXZ triangular lattice Hamiltonian. Due to this, NaYbO2 uniquely stands able to

provide considerable insight into the critical phase behavior manifest at the phase bound-

aries between the ordered and quantum disordered states in a chemically-ideal frustrated

triangular lattice.
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2.3 Symmetry and exchange interactions

In this section, we discuss the symmetries and show that the symmetry-allowed exchange

interactions on the nearest-neighbor in-plane and inter-layer bonds have the form given

in the main text. In NaYbO2, the magnetic Yb atoms live on the sites of 2d triangular

lattices with “ABC” stacking in the vertical direction. This is a rhombohedral lattice.

Specifically, the system has space group 166, R3̄m. We assume that the there is an effec-

tive spin-1/2 operator transforming like a pseudo-vector on each Yb site. The exchange

interactions on a bond are constrained by the subgroup of the full space group which

preserves that bond, i.e. which leaves the center of the bond unchanged. We discuss the

intra-layer and inter-layer bonds in turn below.

In this and the following Supplemental section, it will be useful to establish notation.

In conventional rhombohedral coordinates, we specify positions using dimensionless co-

ordinates so that

rmnl = ma1 + na2 + lc, (2.3)

with vectors

a1 = a(1, 0, 0), a2 = a(−1

2
,

√
3

2
, 0), c = c(0, 0, 1). (2.4)

Note that c is not the primitive translation but a conventional one. The primitive

translation is (2a1 + a2 + c)/3. This connects a layer at l = 0 to l = 1/3.
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2.3.1 NN in-plane bonds

All the in-plane bonds are equivalent by rotations and translations. So we can deduce the

exchange on all of them by considering one. Specifically, we consider one whose center

is at coordinates (1/2, 0, 0). This is the middle of a bond along the x axis in cartesian

coordinates. This point is the 9e Wyckoff position, with site symmetry group 2/m.

The point group is generated by 2 Z2 operations, which we can take as: (1) inversion

through the bond center and (2) a C2 rotation about the axis along the bond. Composing

these two gives a third (not independent) element, a mirror reflection through the plane

normal to the bond. Using these operations, we learn from inversion that there is no

DM coupling. Then applying the C2 operation, for a bond along x, the sites are not

interchanged but Syi → −Syi and Szi → −Szi . This means the general exchange matrix

for a bond connecting the two sites along this direction is

JNN,x =

J1 0 0
0 J2 J4

0 J4 J3

 . (2.5)

Now we obtain the exchange for an arbitrary pair of in-plane NN spins by rotation.

The general form is given in Eq. (2.1). This form is equivalent to that written down in

Ref. [92]. The relation between the form used here and the one in Ref. [92] can be found

in Ref. [69].
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2.3.2 Out of plane bonds

The out of plane bonds are not vertical, but connect each spin in a layer to three spins

above and three spins below. As above, we consider the point symmetry group of a

mid-point of such a bond. An example is the point (1/3, 1/6, 1/6) in lattice coordinates.

This is the mid-point of a bond whose projection into the xy plane is at a 30 degree angle

to the x axis, i.e which bisects a triangle of the triangular plane. This is the 9d Wyckoff

position, which also has site symmetry 2/m. The group is the same as for the in-plane

bond, but the symmetries are slightly different. The two generators in this case can be

considered as: (1) inversion and (2) a C2 rotation which is about an axis which bisects

the bond and is parallel to the xy plane. The two composed together give the third non-

trivial operation in the point group which is a mirror plane which contains the bond and

is normal to the xy plane. The difference from the previous case is the orientation of the

C2 axis or the plane of the mirror. The result is that the effective exchange interaction

has a very slightly different form from Eq. (2.1), and is given in Eq. (2.2). Note that the

vectors êij appearing in Eq. (2.1) are oriented along the triangular axes, while the vectors

f̂ij appearing in Eq. (2.1) bisect these directions. The other difference from Eq. (2.1) is

that in Eq. (2.2), the final term has no cross product. That is a result of the different

orientation of rotation axis/mirror plane in this second situation. This completes the

symmetry analysis of interactions.
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2.4 Classical phases and frustration in two dimen-

sions

In this section, we discuss aspects of the classical ground states of the model Hamiltonian

given in Eq. (2.1), and to what extent frustration arises therein. Since we expect that the

interlayer interactions are small compared to the intralayer ones in practice, we begin by

discussing what is known for the two dimensional model, with all interlayer interactions

turned off.

The Hamiltonian 2.1 has already been extensively studied. It is a simple extension

of the “compass” model on the triangular lattice, which had been considered long ago.

Collecting results from many papers [69, 186, 100, 89], there are three types of classical

ground states which emerge for nearly all parameters in the antiferromagnetic regime: a

three-sublattice 120◦ planar state, and two collinear stripe states, which differ from one

another only in the direction of their spin polarization.

2.4.1 Classical three-sublattice states

First we consider the three-sublattice 120◦ states. It is helpful to rewrite the Hamiltonian

a bit more explicitly. For a single layer, we can write

H2d =
∑
i

∑
µ=1,2,3

{
Jxy
(
Sxi S

x
i+µ + Syi S

y
i+µ

)
+ JzS

z
i S

z
i+µ + Jc (aµ · Si) (aµ · Si+µ)

+ Jcz
[
(ẑ · aµ × Si)Szi+µ + (ẑ · aµ × Si+µ)Szi

] }
.

Here we took a3 = −a1 − a2.
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Now consider a general three-sublattice state, in which for site i = (m,n) in lattice

coordinates

Sm,n = SnMod[−m−n,3], (2.6)

with three classical fixed length vectors ns with s = 0, 1, 2 labeling the three sublattices.

For such a state, the energy becomes

3E2d/(NS
2) =

∑
s=0,1,2

{
3Jxy

(
nxsn

x
s−1 + nysn

y
s−1

)
+ 3Jzn

z
sn

z
s−1 + Jc

∑
µ

(aµ · ns) (aµ · ns−1)

+ Jcz
∑
µ

[
(ẑ · aµ × ns)nzs−1 + nzs (ẑ · aµ × ns−1)

] }
Here we have written sublattice s modulo 3. The sum over µ can be carried out explicitly.

The last term vanishes because
∑

µ aµ = 0. In the second last term, we use
∑

µ aµa
T
µ =

(3/2)diag(1, 1, 0). We obtain

3E2d/(NS
2) =

∑
s=0,1,2

[
3

(
Jxy +

Jc
2

)(
nxsn

x
s−1 + nysn

y
s−1

)
+ 3Jzn

z
sn

z
s−1

]
. (2.7)

We observe the remarkable emergence of U(1) symmetry of the classical energy, despite

the anisotropy of the Hamiltonian. This is a well-known accidental degeneracy which

occurs for many compass models.[114] Note that vanishing effect of in-plane anisotropy

and the complete absence of any effect from Jcz is general for any three-sublattice state

with this unit cell, whether the spins be collinear, coplanar, or otherwise. It would

also hold within any Curie–Weiss mean field treatment which would allow for variable

magnitude of the local spin expectation values. The three-sublattice ordered state occurs

when the first term above dominates, and the spins consequently orient in the plane with
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three different sublattice orientations at 120◦ angles to one another. Frustration is evident

in this ordered pattern by the fact that the classical energy is independent of the overall

angle of the spins within the XY plane, which is not related to any symmetry of the

model.

Note that when Jz is sufficiently large, the lowest energy configurations of the three

sublattice state become Ising like, with spins oriented normal to the plane. However, in

this regime the global ground states are actually not of the three-sublattice form, but

rather the stripe states we consider next.

2.4.2 Classical stripe phases

If the compass interaction Jc dominates, it is natural to select spins to be aligned or anti-

aligned along appropriate neighbors. For example, if we take Jc < 0, the compass coupling

for an a1 = x̂ bond would favor spins oriented along the x direction forming ferromagnetic

chains along this axis. Let us just assume to start a two-sublattice structure, so that

Sm,n = SnMod[n,2], (2.8)

i.e. with ferromagnetic chains along x. Inserting this into Eq. (2.6), we obtain an energy

2E

NS2
=J(2 + 4n0 · n1) + Jz

(
4nz0n

z
1 + (nz0)2 + (nz1)2

)
+ Jc

(
(nx0)2 + (nx1)2 + nx0n

x
1 + 3ny0n

y
1

)
+ JczXX,

(2.9)

where we did not write the expression for the Jcz term, because we are going to focus

on in-plane order (favored for negative Jz). Assuming in-plane order, i.e. nza = 0, the
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energy is minimized for spins aligned along the y direction:

n0 = −n1 = ±ŷ, 2E

NS2
= −2Jxy − 3Jc. (2.10)

The above equations describe two solutions for stripe states, which are translations and

time-reversals of one another. There are another four such states, obtain by C3 rotations

of these two, where the ferromagnetic stripes lie along other axes. Note this sixfold

degeneracy of the stripe states is not accidental, but symmetry mandated. There is no

accidental degeneracy within the stripe ground states, and hence we may regard them as

less frustrated than the 120◦ three sublattice states.

One can compare the energy for these states to that for the 120◦ states, by examining

Eq. (2.7). For the 3 sublattice states, one has ns ·ns−1 = −1/2. One obtains the energy

per spin in the two cases as

E120/(NS
2) = −3

2
Jxy −

3

4
Jc, Estripe/(NS

2) = −Jxy −
3

2
Jc. (2.11)

Clearly the 120 degree state is better for small Jc and the stripe state is better for larger

Jc. One finds the stripe is favorable once Jc > 2/3Jxy.

2.4.3 Adding magnetic field

Now we study the classical ground state of the two dimensional model (2.1) in presence

of a magnetic field. The field dependence enters the Hamiltonian through the Zeeman

term. For the rest of this subsection we will work under the assumption of a general

three-sublattice state. Then the four-term Hamiltonian (2.1) reduces to an XXZ model

as was shown in Eq. (2.7).
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We further allow an onsite anisotropy term along the z direction. The Hamiltonian

then reads

H =
∑
〈i,j〉

JzS
z
i S

z
j + Jxy(S

x
i S

x
j + Syi S

y
j ) +D

∑
i

(Szi )2 −
∑
i

µBgµνB
µSνi , (2.12)

where µ, ν = x, y, z, gµν = diag(gxy, gxy, gz). We now proceed to study the classical

phases of this model.

The main conclusions from our previous study [14] of this Hamiltonian are: (1) the

ground state is a three-sublattice 120◦ structure that (2) evolves into a canted phase with

an external field, which becomes a canted up-up-down structure depending on the field

strength and direction, and (3) a good fit to the inelastic neutron scattering powder-

averaged spectrum of NaYbO2 is produced at Jxy = 0.51 meV and Jz = 0.45 meV.

We now use d = a, b, c to label the three sublattices, and define Sµd = Snµd , where

nd is a unit vector. We further define Σµ =
∑

d n
µ
d , then the classical ground state is

obtained by minimizing the following quantity

E =
H

3NS2Jxy/2
= A(Σz − hz)2 + (Σx − hx)2 + (Σy − hy)2 − δ

∑
d

(szd)
2 − C, (2.13)

where N is the number of sites in the 2D lattice, and we have defined

A = r−1 =
Jz
Jxy

, (hx, hy, hz) =
µB
3S

(
gxyB

x

Jxy
,
gxyB

y

Jxy
,
gzB

z

Jz

)
,

δ = A− 1− 2D

3Jxy
, C =

H2
zJxy
3J2
z

+
H2
xy

3Jxy
− 9JxyS

2

3S2Jxy
. (2.14)

We then write nd = (sin θd cosφd, sin θd sinφd, cos θd) and take the derivatives with respect
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to angular variables,

∂E

∂θd
= 0 ⇒ A(Σz − hz)sxyd − (Σx − hx)szd

sxd
sxyd
− (Σy − hy)szd

syd
sxyd
− δszdsxyd = 0,(2.15a)

∂E

∂φd
= 0 ⇒ (Σx − hx)syd − (Σy − hy)sxd = 0, (2.15b)

where sxyd = (sxd)
2 + (syd)

2 (we will use similar notation for other quantities). We then

have the following two cases:

Case 1: If Σx − hx and Σy − hy do not vanish at the same time: suppose Σy − hy 6= 0,

then we have Σx−hx
Σy−hy =

sxd
syd

, the order is coplanar in the plane containing z axis. Therefore

we are actually minimizing

Ecoplanar = A(Σz − hz)2 + (Σxy − hxy)2 − δ
∑
d

(szd)
2. (2.16)

This will be treated in detail below.

Case 2: Otherwise, we have

Σx − hx = Σy − hy = 0. (2.17)

Plugging this into Eq. (2.15a), we see that

sxyd [δszd − A(Σz − hz)] = 0, (2.18)

has four cases, depending on how many sxyd = 0; note that if two or all three sxyd = 0

then the situation is included in the first case. Therefore we only need analyze two

possibilities.
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The first is if sxyd 6= 0 for all d = a, b, c, then we must have

sza = szb = szc =
Ahz
δ − 3A

, (2.19)

In other words, the spins have equal z component. We call this the “canted-I” phase.

This solution should be considered only when sz = | Ahz
δ−3A
| ≤ 1 and 3

√
1− (sz)2 ≤ hxy,

i.e.

h2
xy

9
+

h2
z

(3− δ/A)2
≤ 1. (2.20)

The ground state manifold is a degenerate 1D parameter space, resulting from the

different ways the xy in-plane vectors satisfy Eq. (2.17). Note that in this case the three

equations for θd are all independent, but the three equations for φd are reduced to just

two equations. Therefore we should get a 1D degenerate classical ground state manifold.

The second possibility is to suppose sxya = 0 and sxyb = sxyc ≡ sxy 6= 0, then we must

have szb = szc . We call this the “canted-II” phase. In this case there are already four

equations therefore the spins are uniquely determined, leaving no classical ground state

degeneracy. This solution should be considered only when sxy =
√

1− (sz)2 ≥ hxy/2,

i.e.

h2
xy

4
+

(sza − hz)2

(2− δ/A)2
≤ 1, sza = ±1. (2.21)

In summary, the classical ground state of the Hamiltonian (2.12) can only be one of the

following types: coplanar (in which the order plane must contain the z axis), collinear,

“canted-I” (in which the three spins have the same z component), or “canted-II” (in

which one spin lies along z and the other two have the same z component). For generic
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field directions, only the “canted-I” states can form a 1D degenerate classical ground

state manifold.

2.4.4 Classical phase diagram

In the following we will set the onsite ion term D = 0, which means δ = A− 1. We now

present a concrete phase diagram for the Hamiltonian in the (A, hxy, hz) phase space.

For an illustration of the phase diagram, see Fig. 2.5.

Easy-plane anisotropy: In the easy-plane anisotropy region (0 < A < 1), the phase

diagram can been analytically obtained [14]{
h2
xy

9
+ h2

z

(1/A+2)2 ≥ 1: “paramagnetic” phase;
h2
xy

9
+ h2

z

(1/A+2)2 < 1: “canted-I” phase.
(2.22)

The phase boundary is the same as Eq. (2.20) if we take the equality. The “param-

agnetic” phase has a unique classical ground state while in the “canted-I” phase the

classical ground states are accidentally degenerate and form a one-dimensional manifold,

subject to the constraints (2.17) and (2.19).

Easy-axis anisotropy: In the easy-axis anisotropy region (A > 1), three phases exist: the

“paramagnetic” phase, the “Y” phase and the “V” phase. We define the “V” phase to

be such that two of the spins have identical orientation which is different from the third

one, while we define the “Y” phase to be such that the orientation of each is different
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from the other two. the complete phase diagram is



h2
xy

(A+2)2 + h2
z

(1/A+2)2 ≥ 1: “paramagnetic” phase;

h2
xy

(A+2)2 + h2
z

(1/A+2)2 < 1 and hz ≥ hz,0(A, hxy) : “V” phase;

hz ≤ hz,0(A, hxy) : “Y” phase,

(2.23)

where we have defined critical hz,0(A, hxy), which is a function of A and hxy. hz,0 is

determined from the following group of equations, taking the smallest positive nonzero

solution for hz,0:

A(a+ c− hz)
√

1− a2 = a(
√

1− a2 +
√

1− c2 − hxy),
A(2a− hz)

√
1− c2 = c(2

√
1− a2 − hxy),

c = hz − a3(A−1 − 1)− 2a. (2.24)

the corresponding solution for the other variables a = nza = nzb and c = nzc gives the

z component of the three spins in the “V” phase. The first two equations simply come

from the saddle point equation (2.15a); the last equation originates from the fact that,

at the vicinity of the phase boundary between “V” and “Y” the energy (2.16) (note now

δ = A − 1) takes the form Ecoplanar ∼ Const. +O(a − b)3, i.e. when expanding Ecoplanar

in powers of a − b both the first and second order terms must vanish (in fact the third

order vanishes too). The analytical solution of Eqs. (2.24) to hz is hard; however, when

A is small enough (A < 2 for a numerical estimation), the solution for hz can be well

approximated by the empirical form

hz =
1

A

(
1− hx

2 + A

)2 [
b+ (1− b)

(
1− hx

2 + A

)]2

(2.25)
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with appropriate choice of b as a fitting parameter. Note in the limit hxy = 0 (perpen-

dicular field) we recover the result hz,0 = 1/A for the boundary between the “Y” and the

“V” phases, and hz,1 ≡ 1/A + 2 for the boundary between the “V” phase and the fully

polarized phase [108]. Note also that a special type of the “V” state, the up-up-down

state, should be distinguished as another distinct phase in the hxy = 0 limit, but such a

phase loses its meaning as soon as an in-plane field component is turned on.

Applying these results to NaYbO2, which carries easy-plane exchange couplings Jz =

0.45 meV and Jxy = 0.51 meV, we are left only with two phases: the “canted-I” phase

and the “paramagnetic” phase. The critical field for the onset of the “paramagnetic”

phase is

Bz,c = 21.15 T, Bxy,c = 12.03 T, (2.26)

and when the field is oriented in other directions, the corresponding critical Bc interpo-

lates between these two values.

We note here that the canted-I phase does not exactly match the experimentally

reported up-up-down state. A slightly canted up-up-down state can however form within

the manifold of allowed canted-I states. This may be beyond the detection of the current

powder measurements, or, alternatively, we envision that quantum fluctuations or other

exchange interactions may lead to a slightly different ground state from those predicted

in the purely 2D classical XXZ phase diagram. Despite this difference, the dynamics

calculated from the classical 2D model are likely to be relatively insensitive to small

differences in the ordered phase such as a small degree of noncollinear canting predicted
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Figure 2.5: Classical phase diagram of the 2D XXZ model on a triangular lattice in
presence of magnetic field. The 3D phase space is parameterized by (hxy, A

−1, hz), where
hxy =

√
h2
x + h2

y. Only first octant (hxy ≥ 0, A−1 ≥ 0, hz ≥ 0) is considered. The blue
surface separates the “Y” and the “V” phases; the red plane separates the phases between
the A < 1 and the A > 1 regions; the green surface separates the “canted-I” and the
“paramagnetic” phases in the region A < 1, and the orange surface separates the “V”
and the “paramagnetic” phases in the region A > 1.

in the present model.

2.5 Inter-layer effects

Next we consider the effect of couplings between the layers. We regard the inter-layer

couplings always as small compared to the intra-layer ones. Thus to a first approximation,

we ask how the interlayer Hamiltonian, H ′, behaves when projected into the space of states

whose order or correlations is set by the 2d interactions.
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2.5.1 Three-sublattice regime

If the 2d system is in the regime with three-sublattice correlations, we should consider

the energy of an arbitrary state with the three-sublattice structure in each layer, and find

the energy due to interlayer couplings. We further assume that the system is periodic

under translation by three layers. There will then be 9 sublattices, labeled by a sublattice

index s = 0, . . . , 9. We can define this by the condition

Si = Sns, ri = ma1 + na2 +
l

3
(2a1 +a2 + c), s = 3Mod[l, 3] + Mod[−m− n, 3].

(2.27)

Now we can express the inter-layer energy in terms of the 9 sublattice magnetizations

ns:

9Eil/(NS
2) =

2∑
l=0

2∑
p=0

2∑
q=0

{
J ′xy

(
nxs(l,p)n

x
s′(l,p,q) + nys(l,p)n

y
s′(l,p,q)

)
+ J ′zn

z
sn

z
s′

+ J ′c (fq · ns) (fq · ns′) + J ′cz [(fq · ns)nzs′ + nzs (fq · ns′)]
}
,

where

s(l, p) = 3l + p, s′(l, p, q) = 3Mod[l + 1, 3] + Mod[p+ q, 3], (2.28)

and

fq =

cos
(
π
6

+ 2πq
3

)
sin
(
π
6

+ 2πq
3

)
0

 . (2.29)
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The first two terms can be readily rewritten to simplify the energy to

9Eil/(NS
2) =

2∑
l=0

{
J ′xy
(
mx
lm

x
l+1 +my

lm
y
l+1

)
+ J ′zm

z
lm

z
l+1 +

∑
pq

(
J ′c (fq · ns) (fq · ns′)

+ J ′cz [(fq · ns)nzs′ + nzs (fq · ns′)]
)}
,

where

ml =
2∑
p=0

n3l+p (2.30)

is the total magnetization per unit cell of layer l. Note that in this case the last two

terms do not drop out or simplify as they do for the intralayer couplings, because the

sublattice indices s and s′ are a function of q, which means the q sum is not trivial.

Examining Eq. (2.30), we see that the XXZ type inter-layer couplings J ′xy and J ′z

depend on the spin configurations only through the layer magnetizations ml. This van-

ishes in the three-sublattice states favored by the 2d interactions. Thus, at this level, the

interlayer XXZ exchanges are completely ineffective at coupling the layers and creating

3d order. This is simply because each spin is symmetrically coupled to three spins on

a triangle in the layers above and below it, whose sum is zero. Thus the J ′xy and J ′z

interactions are fully frustrated by the 2d three-sublattice order.

This conclusion is perturbative in J ′xy and J ′z. But in fact the frustration is even

stronger. For the XXZ model with Jc = J ′c = Jcz = J ′cz = 0, Rastelli and Tassi[125] have

found the exact classical ground states for arbitrary Jxy, Jz, J
′
xy, J

′
z. In a wide regime, the

ground states form a line of degenerate spirals which are close to the three-sublattice 120◦

state but have in general an incommensurate wavevector with an arbitrary component
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kz normal to the plane. The continuous family of spiral wavevectors echoes the full

frustration in the perturbative limit, and shows that frustration remains in the XXZ

model non-perturbatively.

We now return to the perturbative analysis, and consider the effects of the anisotropy

terms J ′c and J ′cz. We suppose each layer has a 120◦ three-sublattice configuration, and

ask how they are coupled. A general form for such a configuration is

n̂lp =

cos(2πσlp
3

+ φl)
sin(2πσlp

3
+ φl)

0

 , (2.31)

where σl = ±1 is the vector spin chirality of the triad of three spins in layer l, and

s = 3l + p as usual. For this ansatz, ml = 0. The inter-layer energy becomes

9Eil/(NS
2) = J ′c

∑
l,p,q

cos

(
2πσlp

3
+ φl −

π

6
− 2πq

3

)
cos

(
2πσl+1(p+ q)

3
+ φl+1 −

π

6
− 2πq

3

)
=
J ′c
2

∑
l,p,q

[
cos

(
2π(σlp+ σl+1(p+ q))

3
+ φl + φl+1 −

π

3
− 4πq

3

)
+ cos

(
2π(σlp− σl+1(p+ q))

3
+ φl − φl+1

)]
=
J ′c
2

∑
l,p,q

cos

(
2π(σlp+ σl+1(p+ q))

3
+ φl + φl+1 −

π

3
− 4πq

3

)
.

One immediately sees that, because we took an in-plane configuration, J ′cz drops out

trivially. In passing to the last line we noticed that the sum over q always gives zero in

the final term of the previous line, and so dropped it. The final form may also vanish

under summation. The sum over q will vanish here unless σl+1 = −1, in which case the q

dependence drops inside the cosine. Then we see that the sum over p will vanish unless
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σl = −σl+1 = +1. So finally we have

9Eil/(NS
2) =

9

2
J ′c
∑
l

cos
(
φl + φl+1 −

π

3

)
δσl,1δσl+1,−1. (2.32)

Actually in this analysis we do not need to assume threefold periodicity in the c direction,

and can take l to just sum over all the layers in the crystal.

Based on Eq. (2.32), we can address how frustrated the remaining J ′c inter-layer

coupling is. First, if the chiralities are the same in all layers then the energy due to J ′c

vanishes. This is entirely independent of the overall angle φl within each layer. Second,

a pair of adjacent layers can lower its energy by choosing the “lower” one (smaller z) to

have “positive” chirality σl = 1 and the upper one negative, and then choosing φl+φl+1 =

−2π/3 (for J ′c > 0). However, the J ′c interaction between the upper layer and the next

layer then is guaranteed to vanish, as is the interaction between the lower layer and the

next lower one. So the best configuration is one in which layers alternate chirality and

gain energy from every other pair. There are two possible staggered orders of chirality.

For example, we can take σl = (−1)l. In this case the energy lowering comes from the

interaction between spins with even l and those with odd l+ 1. Moreover, spins in those

pairs of layers are correlated, while between these pairs there is no correlation. For 2N

layers there are N free angles φ2n remaining. So there is still quite a bit of degeneracy.

However, it is also clear that, in this pattern of spins, translational symmetry by 3 in the

vertical direction is necessarily broken.

In summary: the presence of a high degree of degeneracy even once the J ′c interactions

have been included indicates that the interlayer coupling of the three-sublattice order is
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frustrated even with the most general exchange interactions. This suggests a strong

suppression of ordering when the 2d exchanges are in this regime, in zero magnetic field

(which we have assumed).

2.5.2 Stripe regime

Now we suppose the individual layers are in the stripe regime of the classical phase

diagram. We consider the effect of interlayer interactions on these stripes to see how

they couple together to form 3d order. Suppose, as in Eq. (2.10), the spins in the layer

z = l = 0 order into ferromagnetic stripes along the x axis, with spins oriented along y.

Now consider the next exchange field on the spins in the layer at z = 1/3. Each spin

in that layer receives contributions from three spins from a triangle in the z = 0 layer.

Consequently, even for simple Heisenberg or XY coupling J ′ between the layers, there is

a net exchange field on each site in the z = 1/3 layer, which aligns those spins into a

unique preferred pattern in the next layer. This pattern also consists of ferromagnetic

chains along x and moments along y. If one assumes antiferromagnetic J ′, each spin on

the z = 1/3 layer is antiparallel to two spins on the triangle below it. Repeating this

process leads to a globally determined ordering pattern. The interlayer coupling in the

stripe state is therefore unfrustrated and the ground state degeneracy of the stripe is just

that of a single layer, i.e. 6.

The 3d ordering pattern that results in the way just described has symmetry under

a three-dimensional translation by the vector t = (−a1 − 2a2 + c)/3. So due to the
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in-plane doubled unit cell, in total it has just a doubled unit cell.

The lack of frustration of the interlayer coupling in the stripe state suggests that

a system whose 2d interactions favor the stripe order will likely stabilize 3d ordering

through the inter-layer interactions. Since this does not occur in NaYbO2, we argue by

contradiction that this material is likely to be in the parameter regime in which the 2d

exchanges favor three-sublattice 120◦ order and not the stripe state. This corresponds to

the XXZ regime with not too strong Jc interactions.

2.6 Simulation for the dynamic spin structure factor

In this section, we study the excitations of the 2d triangular XXZ model using linear spin

wave theory and present simulation results for the dynamic spin structure factors.

2.6.1 Linear spin wave theory

Define an orthogonal basis (ps, qs,ns) for each classical spin ns, s = 0, 1, 2. The standard

Holstein-Primakoff transformation is

Si · ps =
√

2S
ai + a†i

2
, Si · qs =

√
2S
ai − a†i

2i
, Si · ns = S − a†iai, (2.33)

or

Si =
√

2SMsK

(
ai
a†i

)
+ ns(S − a†iai), (2.34)
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where a†i and ai are the boson creation and annihilation operators for spin excitations,

and we defined

Ms =
(
ps qs

)
and K =

1

2

(
1 1
−i i

)
. (2.35)

Plugging Eq. (2.34) into the Hamiltonian (2.12) (setting D = 0), keeping terms only of

the order S and doing a Fourier transform, we arrive at a quadratic Hamiltonian for the

bosons:

H2d,B[a, a†] =
∑
k∈BZ+

Φ†kH(k)Φk, (2.36)

where BZ+ is half of the Brillouin zone which is mapped to the other half by momentum

inversion, and we defined Φk =
(
ak,0, ak,1, ak,2, a

†
−k,0, a

†
−k,1, a

†
−k,2

)T
,

H(k) =


J0 [J0,1]11 [J2,0]∗11 0 [J0,1]12 [J2,0]∗21

[J0,1]∗11 J1 [J1,2]11 [J0,1]∗21 0 [J1,2]12

[J2,0]11 [J1,2]∗11 J2 [J2,0]12 [J1,2]∗21 0
0 [J0,1]21 [J2,0]∗12 J0 [J0,1]22 [J2,0]∗22

[J0,1]∗12 0 [J1,2]21 [J0,1]∗22 J1 [J1,2]22

[J2,0]21 [J1,2]∗12 0 [J2,0]22 [J1,2]∗22 J2

 , (2.37)

and

Js,s+1 = 2S

( ∑
µ=1,2,3

eik·aµ

)
K†M †

sJMs+1K, (2.38)

Js = −3SnTs J(ns+1 + ns−1) + µBB
Tgns, (2.39)

where J ≡ diag(Jxy, Jxy, Jz), g = diag(gxy, gxy, gz). Combined with our knowledge of

the classical ground state spin configuration in Sec. 2.4.4, the following can be deduced:

• The diagonal entries (2.39) are the classical energy cost of a spin flip S → −S. The

flip changes the exchange energy −3SnTs J(ns+1 + ns−1) and the Zeeman energy
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µBB
Tgns. The off-diagonal entries (2.38) describe quantum fluctuations due to

boson hopping.

• In the easy-plane limit r > 1, since all three classical spins have the same z com-

ponent nzs = mz
r+2

, we have

Js = 3SJxy, s = 0, 1, 2. (2.40)

At Γ = (0, 0) the spectrum is gapless, due to the Goldstone mode of the broken U(1)

symmetry. Furthermore, at K = (0,± 4π
3
√

3a
), the Hamiltonian is purely diagonal,

and the energy is just the value of Js in (2.40), which is three fold degenerate.

• In the extreme easy-axis limit r � 1 with a perpendicular field B = (0, 0, 1)B,

the system is classical and again we are left with only diagonal elements in the

Hamiltonian. The ground state in a large magnetic field range is the up-up-down

state with excitation energy

J0 = J1 = µBgzB, J2 = 6JzS − µBgzB. (2.41)

Finally, let us comment on the criterion of selecting the classical ground state n0,1,2

which serves as the input to linear spin wave theory. The issue arises when the classical

ground state is degenerate (as in the “canted” phase), and different states in the degen-

eracy manifold may lead to different dynamic spin structure factor patterns. Whenever

degeneracy happens, it can be shown that a classical ground state is fully determined by

the choice of in-plane components of the spin vector, ms = (nxs , n
y
s , 0). Without loss of

generality we define |m0| ≤ |m1| ≤ |m2|. Our criterion is always to pick n0,1,2 such that
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m0 and m1 have the smallest angle between them. This criterion is chosen to mimic

the fact that, in real triangular systems, quantum fluctuation tends to favor states in the

degenerate manifold in which spins are maximally collinear.

2.6.2 Dynamic spin structure factor

The dynamic spin structure factor, by definition, is

S(k, ω) =
∑
µ,ν

(δµν − (k̂)µ(k̂)ν)
∑
s,s′

〈mµ
s (−k,−ω)mν

s′(k, ω)〉, (2.42)

where mµ
s (k, ω) = µB

∑
κ g

µκSκs (k, ω), and k̂ is the unit vector with orientation of k.

After some derivation, we can write S(k, ω) concisely as

S(k, ω) =
∑
e=1,2,3

2Sµ2
Bδ(ω − λek)

[
V †(k)Q̃†M̃ †g†

(
13×3 − k̂k̂T

)
gM̃Q̃V (k)

]
e,e
, (2.43)

where we defined M̃ =

(
p0 p1 p2 q0 q1 q2

)
, and Q̃ = K ⊗ 13×3. V is the

matrix that diagonalizes H: V †HV = Λ with energies stored in the diagonal matrix

Λ = diag(λ1, λ2, λ3, λ1, λ2, λ3). Commutation relation of the bosons in the old and the

new bases requires V (σ3 ⊗ 13×3)V † = σ3 ⊗ 13×3.

To connect to the experiment, we define the momentum-orientation-averaged spin

structure factor

SB(k, ω) =
1

4π

∫ 0

π

sin θdθ

∫ 2π

0

dφ SB(k sin θ cosφ, k sin θ sinφ, ω), (2.44)

where we have used subscript B to remind us of the field dependence. Furthermore, we
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define the magnetic-orientation-averaged spin structure factor

S(k, ω) =
1

4π

∫ 0

π

sin θBdθB

∫ 2π

0

dφB SB(sin θB cosφB ,sin θB ,sinφB ,cos θB)(k, ω). (2.45)

Admittedly, such a spin structure factor (2.45) in which the momentum and magnetic

field orientations are independently averaged does not fully correspond to the experi-

mental measurement: the neutron scattering measurement averages over the grain ori-

entations of the powder sample, which is equivalent to averaging over momentum and

magnetic field orientations that are locked with a definite relation. Nevertheless our

choice of averaging is justified by the robust spectral features (e.g. the isolated high en-

ergy flat intensity) observed in a large region with easy-plane near-Heisenberg exchange

and in the extreme easy-axis region.

Now we describe the results for the dynamic spin structure factors. We present two

representative parameter points near the Heisenberg limit: the first one has weak easy-

axis anisotropy with (Jz, Jxy) = (0.5, 0.45) meV, and the second one has weak easy-plane

anisotropy with (Jz, Jxy) = (0.45, 0.51) meV. The magnetic field is set to be 5 T in both

cases but its orientation is varied. The simulated structure factor plots are shown in

Fig. 2.6.

(Jz, Jxy) = (0.5, 0.45) meV. When the magnetic field is along z direction, the classi-

cal ground state has a coplanar three-sublattice order [see Fig. 2.6(a)]. The lowest energy

band becomes gapless at Γ (Goldstone mode), corresponding to zero energy structure fac-

tor intensity at |Q| ≈ 1.25 Å−1. The highest energy band is almost flat on the boundary
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of the magnetic order Brillouin zone, which accounts for the structure factor intensity

plateau at 0.8 meV. In addition, the highest band has energy minimum at Γ, which is

reflected in the downturn of the high energy intensity plateau at small reciprocal lattice

|Q| → 0. As the magnetic field develops an in-plane component [see Fig. 2.6(b) for

θB = 75◦], the highest band becomes less flat and the highest band energy at Γ increases;

at θB ≈ 70◦ Γ becomes the energy maximum, making the structure factor intensity as

|Q| → 0 also at the highest energy. The destruction of the high energy flat bands and

the appearance of structure factor intensity at energy maximum as |Q| → 0, both due

to large in-plane field component, are generic features of the easy-axis phase region in

the parameter range we considered, and consequently one observes an upturn of the high

energy intensity as |Q| → 0 in the S(k, ω) plot, with no well-defined isolated high energy

intensity plateau.

(Jz, Jxy) = (0.45, 0.51) meV. When the magnetic field is along z direction the clas-

sical ground states form a degeneracy manifold of the “canted” type. Since the z spin

component is small in the parameter range we considered [see Fig. 2.6(c)], the spin order

is almost coplanar, and consequently the spin structure factor resembles the previous

case (Jz, Jxy) = (0.5, 0.45) meV. In addition to the gapless energy band at Γ (Goldstone

mode), threefold energy degeneracy appears at K and its equivalent points [whose ener-

gies are given in Eq. (2.40)]. There is no global flat energy bands at high energy, and

indeed when the magnetic field is along z, there is no well-defined high energy flat inten-

sity in the structure factor plots. Nevertheless, as the magnetic field develops an in-plane
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component, isolated structure factor intensity plateau emerges as the magnetic field angle

θB exceeds 30◦ [see Fig. 2.6(d)) for θB = 75◦]. The emergence of such isolated intensity

plateau due to in-plane field component is a generic feature of the Heisenberg limit with

weak easy-plane anisotropy, and persists through 1 < r < 1.6 in the parameter range

we considered. The highest energy band has a local minimum at Γ for all magnetic field

orientation (unlike the easy-axis case), which accounts for the downturn of the isolated

high energy intensity plateau at small reciprocal lattice |Q| → 0 in the S(k, ω) plot.

Here we present further numerical result of the two-step averaged dynamic spin struc-

ture factor S(Q,ω) for various field strengths, see Fig. 2.7. As we expect that the ground

state of NaYbO2 is strongly renormalized by quantum fluctuations, this model only cap-

tures features in the field-induced ordered state of NaYbO2 where quantum fluctuations

in the material are suppressed. Three main features can be observed immediately:

Region 1: Zero energy intensity at the two-dimensional magnetic zone center Q =

(1/3, 1/3, 0) (|Q| = 1.25 Å−1) can be observed for a large range of field values, indicating

the existence of gapless Goldstone mode at Γ point. The zero energy intensity is the

highest at zero field with a sharp linear dispersion, and as field starts to increase, such zero

energy intensity decreases, while the intensity at low but finite energy begins to develop.

The zero energy intensity becomes extremely weak but still observable as the field goes

beyond 13 T, and finally vanishes entirely at high field values 22 T. Such behavior of

the gapless intensities can be understood from the classical ground state: the ground

state belongs to the “canted-I” phase, which forms 1D degenerate ground state manifold
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and possesses one Goldstone mode for generic field directions and strength. As field

increases, the configuration with in-plane field first reaches critical field at 12 T, and the

structure factor of such configuration becomes gapped due to the vanishing of Goldstone

modes. As field further increases, more and more configurations reach their critical field

and become gapped, and at B ∼ 21 T the last gapless configuration (corresponding to a

perpendicular field) vanishes, leaving behind a fully gapped low energy intensities.

Region 2: A flat intensity region is discernible at fields smaller than ∼ 6 T. At zero

field, the flat intensity appears at energy E ∼ 0.8 meV; as field increases, the flat region

starts to split and form two flat regions, one moving towards higher energy and the other

towards lower energy. The higher energy flat region approaches E ∼ 1.0 meV at B = 5 T,

which corresponds to the observed flat intensity in neutron scattering experiments at the

same field strength. As field further increases, the higher and lower energy flat intensities

vanish at B ∼ 6.5 T and ∼ 8.5 T, respectively.

Region 3: The behavior of the intensities at zero momentum |Q| ∼ 0 change dras-

tically as field is varied. When the field is small, the zero momentum intensity is weak

and at low energy, resulting a visual downturn from the higher energy flat intensities.

As field increases, the zero momentum intensity also increases and moves towards higher

energies; the downturn finally vanishes at B = 5.5 T, resulting a globally flat intensity

across all the plotted momenta. Further increasing the field will result in an upturn of the

zero momentum intensity, meaning the zero momentum intensity further increases and

become the highest energy intensity in the plot. The evolution of the zero momentum
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intensity is closely related to the large in-plane component of the field [14]; after the field

exceeds the in-plane critical field Bxy,c, the configuration with an in-plane field has a

gapped spin wave spectrum, which is responsible for the highly dispersed, high intensity

branch of the plot.

As a comparison, figures 2.8 shows the field-dependent evolution of the INS spec-

trum of NaYbO2 powder across a series of fields spanning from 0 T to 10 T. At zero-field,

NaYbO2 contains a continuum of excitations from the quantum disordered ground state

that evolve into the up-up-down ordered phase as reported above [14]. The diffuse con-

tinuum is centered about the two-dimensional magnetic zone center Q = (1/3, 1/3, 0)

with a bandwidth of approximately 1 meV. With increasing field at base temperature,

the spectral weight condenses and splits, with part of it coalescing into the elastic line

and part of it pushed upward within a nearly flat, powder-averaged band near 1 meV in

the ordered state (Figure 2.8). Upon exiting the ordered state at 10 T, the remaining

resolvable scattering in this energy window primarily resides above the two-dimensional

magnetic zone center Q = (1/3, 1/3, 0) (|Q| = 1.25 Å−1) and the (0, 0, 3) Bragg peak

(|Q| = 1.15 Å−1).

88



0.5 1.0 1.5 2.0 2.5

|Q|(Å−1)
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Figure 2.6: Dynamic spin structure factor S(k, ω) and the classical three-sublattice (red,
green and blue) spin ground state from different views. The exchange parameters are
(a,b) (Jz, Jxy) = (0.5, 0.45) meV, and (c,d) (Jz, Jxy) = (0.45, 0.51) meV. Field strength is
fixed at B = 5 T, while the field orientation is tilted from the z axis with an angle of
either (a,c) θB = 0◦ or (b,d) θB = 75◦.
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Figure 2.7: Linear spin wave theory (LSWT) calculations showing S(Q, ~ω) as a function
of field for powder-averaged Yb3+ ions on a two-dimensional triangular lattice assuming
three-sublattice ordering derived from the proposed spin model for NaYbO2 [14]. At
0 T, NaYbO2 does not show magnetic ordering, and therefore LSWT fails to capture the
continuum of excitations from the quantum disordered ground state.
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Figure 2.8: Low energy inelastic neutron scattering (INS) spectrum S(Q, ~ω) of NaYbO2

powder at varying fields collected on DCS. With increasing field, NaYbO2 evolves from
a gapless quantum disordered ground state (0 – 2 T) into an up-up-down equal moment
magnetic structure (3 – 8 T) and a field-polarized state at high field (9 – 10T). Data were
collected with longer scans at 0, 5, and 10 T to increase resolution. Detector spurions
occur at [0.5 Å−1, 1.8 meV] and [1.75 Å−1, 0.4 meV]. Data were collected between 67 –
100 mK.
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Chapter 3

Frustrated Heisenberg J1 – J2 model

within the stretched diamond lattice

of LiYbO2

3.1 Introduction

In the field of three-dimensionally frustrated magnets, the predominant research focus

has centered on the magnetic diamond and pyrochlore lattices [10, 84, 22, 30, 12, 139, 19,

57, 56, 109, 25, 122, 18, 20, 45, 133]. Both of these frameworks appear within the family

of transition-metal spinels of the form AB2X4 (A,B = transition metal or metalloid, X

= chalcogenide), where the diamond and pyrochlore lattices appear on the A- and B-

site sublattices, respectively. Strong magnetic frustration within each of these sublattice
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types is known to suppress typical Neél order and instead favor the manifestation of

unconventional ground states, including classical spin liquids [109, 25], (quantum) spin

ices [122, 18, 20, 133], and (quantum) spiral spin liquids [10, 84, 22].

Quantum fluctuations that manifest in the small spin limit on these lattices further

suppress magnetic order and can formulate the basis for highly entangled ground states

[83, 5, 138, 167, 184, 21]. At this limit, the magnetic diamond lattice has been less

thoroughly studied in comparison to the magnetic pyrochlore lattice, as the magnetic

pyrochlore lattice also manifests in a large, well-studied family of rare-earth Ln2M2O7

(Ln = lanthanide, M = metal or metalloid) compounds [12, 139, 19, 57, 56, 109, 25, 122,

18, 20, 45, 133]. Furthermore, while introducing model Jeff = 1/2 lanthanide moments

within frustrated magnetic motifs has shown promise in realizing intrinsically quantum

disordered states (e.g. Yb2Ti2O7 pyrochlore [133, 47] and triangular lattice NaYbO2 [14,

16, 38, 124]), isolating materials that comparably incorporate model f -electron moments

within a diamond lattice framework is a challenge.

Frustration within the diamond lattice is best envisioned by dividing the lattice into

two interpenetrating face centered cubic (FCC) lattices with two exchange interactions,

J1 and J2, where in the Heisenberg limit (Figure 3.1) [10, 84, 22].

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj (3.1)

In the two limits where either J1 or J2 is zero, this bipartite system is unfrustrated

with a conventional Neél ordered ground state. However, when J2 > 0 and |J1| > 0,

ordering becomes frustrated. When J2/|J1| ≥ 1/8, the classical interpretation of this
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Figure 3.1: a) Crystal structure of LiYbO2 with YbO6 octahedra shaded in green and
black spheres noting the positions of Li ions. b) The frustrated J1 – J2 model on the
diamond lattice consists of two interpenetrating face centered cubic (FCC) sublattices,
A and B, with a J1 (black) magnetic interaction connecting the two sublattices and
a J2 (orange) spanning interactions within an FCC sublattice. When this structure is
stretched along one of the cubic axes, the I41/amd lattice of LiYbO2 is reproduced
where the dashed green line represents the unit cell origin of LiYbO2 shown in panel
c). In LiYbO2, the stretched bond (5.909 Å, dashed orange) is 1.527 Å longer than the
in-plane J2 (4.382 Å, solid orange). In the present model for LiYbO2, the stretched bond
is assumed negligible in strength relative to the shorter J2. c) NN (J1) and NNN (J2)
exchange pathways between Yb-ions in LiYbO2 with Yb ions in the A and B sublattices
shaded differently for clarity.

model develops a degenerate ground state manifold of coplanar spin spirals [10, 84, 22].

Each of these spirals can be described by a unique momentum vector, and together

the degenerate momentum vectors formulate a spin spiral surface in reciprocal space

[10, 84, 22]. The degeneracy of these spin spirals can be lifted entropically via an order-

by-disorder mechanism that selects a unique spin spiral state [10, 84, 22], but in the

presence of strong quantum fluctuations (S ≤ 1), long-range order is quenched and a

spiral spin liquid ground state manifests that fluctuates about the spiral surface [22].
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Identifying materials exhibiting (quantum) spiral spin liquid states derived from this

J1 – J2 model remains an outstanding goal. Transition-metal-based AB2X4 spinels have

been primarily investigated as potential hosts; however two vexing problems typically

occur: (1) non-negligible further neighbor interactions beyond the J1 – J2 limit arise and

lift the degeneracy and (2) weak tetragonal distortions from the ideal Fm3̄m spinel

structure appear. For example, detailed investigations of the spinels MgCr2O4 [158, 4],

MnSc2S4 [44, 71, 79], NiRh2O4 [22, 26], and CoRh2O4 [50] have all required expanding the

model Hamiltonian to include up to third-neighbor interactions, originating from the large

spatial extent of d-orbitals, to describe the generation of their helical magnetic ground

states. Within some materials like NiRh2O4 [22, 26], single ion anisotropies must also be

incorporated to digest the experimental results. Complexities with extended interactions

beyond the J1 – J2 limit may also compound with inequivalent exchange pathways that

form as the cubic Fm3̄m spinel structure undergoes a distortion to a tetragonal I41/amd

or I 4̄2d space group prior to magnetic ordering (e.g. NiRh2O4 [22, 26] and CoRh2O4 [50]).

The tetragonal distortion in spinels can be viewed as a compression of the diamond

lattice along one of its cubic axes (opposite to that illustrated in Figure 3.1), and it splits

the nominal J2 of the ideal diamond lattice structure into two different pathways. This

disrupts the reciprocal space spiral surface generated in the J1 – J2 model’s cubic limit.

Despite these complications common to A-site transition metal spinels, the predictions

born from the model Hamiltonian show substantial promise as materials such as MnSc2S4

[44, 71, 79], CoAl2O4 [178, 134, 102], and NiRh2O4 [22, 26] are nevertheless either close
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to or partially manifest degenerate spiral spin states. Identifying other crystal struc-

tures that realize comparable physics but with more localized f -electron moments is an

appealing path forward.

Here we present an investigation of an alternative, frustrated diamond lattice frame-

work in the material LiYbO2. This material can be viewed as containing a stretched

diamond lattice of Yb3+ moments (Figure 3.1), and it falls within a broader family

of ALnX2 (A = alkali, Ln = lanthanide, X = chalcogenide) materials where the lattice

structure is dictated by the ratio of lanthanide ion radius to alkali plus chalcogenide radii.

Our results show that LiYbO2 realizes the expected ground state derived from a J1 – J2

Heisenberg model on a tetragonally-elongated diamond lattice and that Jeff = 1/2 Yb3+

ions in related materials may act as the basis for applying the Heisenberg J1 – J2 model

to Ln-ion diamond-like materials. Notably, however, variance between the observed and

predicted phasing of Yb moments on the bipartite lattice as well as the emergence of an

intermediate, partially disordered state suggests the presence of interactions/fluctuation

effects not captured in the classical J1 – J2 Heisenberg framework.

3.2 Experimental results

3.2.1 Magnetization, susceptibility, and heat capacity results

Figure 3.2 shows the magnetic susceptibility, isothermal magnetization, and a.c. suscepti-

bility measured on powders of LiYbO2. In the low temperature regime where the ground
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Figure 3.2: a) Temperature dependence of the inverse magnetic susceptibility of LiYbO2.
Solid line shows the a Curie–Weiss fit to the data between 20 < T < 100 K. b) Field
dependence of the magnetization collected at a variety of temperatures. c) 2 K isother-
mal magnetization curve with a linear fit in the saturated state above 10 T. The 0 T
intercept (gavgµB/2) provides a powder-averaged gavg,VV and the slope provides χVV. d)
a.c. magnetic susceptibility χ′(T ) data collected for 330 mK< T < 3.5 K at zero-field.
The two dashes lines at 1.13 K and 0.45 K mark the onset of peaks observed in zero-field
heat capacity data.

state Kramers doublet is primarily occupied (T < 100 K), data were fit to a Curie–

Weiss-type behavior with a ΘCW = −3.4 K and an effective moment µeff = 2.74 µB.

This implies a powder-averaged g-factor gavg,CW = 3.13 assuming Jeff = 1/2 Yb ions.

The nonlinearity of the Curie–Weiss fit above 100 K arises due to Van Vleck contribu-
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Figure 3.3: a-d) Specific heat C(T ) of LiYbO2 collected as a function of temperature
under µ0H = 0, 3, 4, and 9 T. The integrated magnetic entropy δSM is overplotted with
the data as a black line. Results from a Debye model of lattice contributions to C(T )
are shown as orange lines. The horizontal dashed lines represent R ln(2).

tions to the susceptibility that derive from the CEF splitting of the J = 7/2 Yb manifold.

In order to independently determine gavg, the χVV contribution to the total susceptibility

was fit in the saturated regime (µ0H > 10 T) of the 2 K isothermal magnetization data

shown in Figure 3.2. In the near-saturated state, the slope of isothermal magnetization

yields χVV = 0.0206 cm3 mol−1
Y b [167], and the intercept of this linear fit with µ0H = 0 T

was utilized to determine the saturated magnetic moment (gµB/2) that corresponds to

a powder-averaged gavg,VV = 2.98.

Magnetic susceptibility data in Figure 3.2 explore the low temperature magnetic
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behavior of LiYbO2. Two low-temperature (T < 10 K) features appear: The first is

a broad cusp in susceptibility centered near 1.5 K and is an indication of the likely onset

of magnetic correlations. The second feature is a small upturn below 0.45 K. When

compared with specific heat measurements in Figure 3.3, these two features in χ′(T )

coincide with the two sharp anomalies in Cp(T ) at TN1 = 1.13 K and TN2 = 0.45 K. An

additional broad peak also appears in C(T ) centered near 2 K, likely indicative of the

likely onset of short-range correlations. As discussed later in this manuscript, the two

lower temperature peaks in Cp(T ) mark the staged onset of long-range magnetic order

with TN1 marking the onset of partial order with disordered relative phases between the

A and B Yb-ion sublattices and with TN2 marking the onset of complete order between

the two sublattices.

Figure 3.3a) also displays the total magnetic entropy released upon cooling down to

100 mK. Below 200 mK, a nuclear Schottky feature arises from Yb nuclei as similarly

observed in NaYbO2 [14]. Integrating Cp/T between 100 mK and 40 K shows that 98%

of R ln(2) is reached at 0 T, showing that the ordering is complete by 100 mK. Approxi-

mately half of R ln(2) is released upon cooling through the broad 2 K peak representing

the onset of short range correlations. Cp(T ) data were also collected under a series of

applied magnetic fields. The onset of TN1 stays fixed at 1.13 K from 0 T to 5 T and shifts

up to 1.40 K at 9 T. The 0 T heat capacity anomaly at TN2 = 0.45 K begins to broaden

at 3 T into a small shoulder of the initial 1.13 K transition and vanishes by 5 T. The

broad Cp(T ) peak marking the onset of short-range correlations near 2 K shifts to higher
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Table 3.1: Coefficients of the magnetic basis vectors creating the helical models of the
base temperature magnetic structure of LiYbO2 at 0 T and 3 T, where bv1 = (100),
bv2 = (010), and bv3 = (001).

270 mK, 0 T 270 mK, 3 T
k = (0.384,±0.384, 0) k = (1/3,±1/3, 0)

atom (x, y, z) bv1 bv2 bv3 bv1 bv2 bv3

Yb1 (0, 0.75, 0.125) 0 -1.26i 1.26 0 -1.26i 1.26
Yb2 (0, 0.25, 0.875) 0 -1.26i 1.26 0 -1.26i 1.26

temperatures with increasing magnetic field, consistent with a number of other frustrated

spin systems [14, 167]. The suppression of the staged TN1-TN2 ordering under modest

magnetic field strengths suggests that zero-field fluctuations/remnant degeneracy likely

influence the ordering behavior.

3.2.2 Neutron diffraction results

To further investigate the low-temperature, ordered state, neutron powder diffraction

measurements were performed. Figure 3.4 details the field- and temperature-evolution of

magnetic order in LiYbO2 about the TN1 and TN2 transitions identified in specific heat

measurements (Figure 3.3). Magnetic peaks appear in the powder neutron diffraction

data below 1 K, and three regions of ordering were analyzed: (1) In the zero-field low-

temperature, fully ordered state (T < 450 mK); (2) in the zero-field, intermediate ordered

state (450 mK< T < 1 K); and (3) in the field-modified ordered state (T < 450 mK and

µ0H = 3 T). Figure 3.4a) shows the data and structural refinement collected at 1.5 K in

the high temperature paramagnetic regime—this is used as nonmagnetic background that

is subtracted from the low-temperature data. Figure 3.4b) shows the subtracted data
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Figure 3.4: Neutron powder diffraction data collected for LiYbO2 at HB-2A at the High
Flux Isotope Reactor. a) Fits to the elastic scattering data at 1.5 K reveal only one
structural phase. b) Temperature-subtracted diffraction data (T − 1.5 K) revealing a
series of new magnetic peaks upon cooling. Additionally, at 270 mK and 3 T, another set
of magnetic peaks arise. Intensity near 1.5 Å−1 results from slight under/over subtraction
of the structural peak at that position in a) and is not a magnetic Bragg reflection. c)
Helical magnetic structure fit below the ordering transition TN2. d) 270 mK data collected
under zero field with the 1.5 K structural data subtracted. Green line shows the resulting
fit using the magnetic structure described in the text. e) 830 mK data collected under
zero field with the 1.5 K structural data subtracted. The orange line shows the partially
disordered, intermediate helical state described in the text and the green line shows a fit
using the fully ordered helical structure for comparison. f) 270 mK data collected under
µH = 3 T with the 1.5 K structural data subtracted. The red line shows the fit to the
commensurate magnetic structure describe in the text.
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in each of the above regions overplotted with one another, and each magnetic profile

is discussed separately in the following subsections. We note here that in each region,

the large difference signal observed slightly above 1.5 Å
−1

is due to the slight under/over

subtraction of a nuclear reflection.

Region 1: µ0H = 0 T, T < 450 mK

At 270 mK, well below TN2, a series of peaks appear at incommensurate momentum

transfers. These new magnetic reflections are described by a doubly-degenerate ordering

wave vector of k = (0.384,±0.384, 0). The best fit to the data in this regime corresponds

to a helical magnetic structure shown in 3.4c) that is produced from the Γ1 irreducible

representation (Kovalev scheme) of this space group with the three basis vectors bv1 =

(1, 0, 0), bv2 = (0, 1, 0), and bv3 = (0, 0, 1). The helical state is defined by a combination

of the ordering wave vector k and the helical propagation direction. The latter defines a

vector that moments rotate in the plane perpendicular. Best fits for the refinement data

were achieved when the helical propagation vector is restricted to the ab-plane. However,

all helical propagation directions within the ab-plane produce equivalent fits to the data.

The fit presented in Figure 3.4d) corresponds to the instance where helices propagate

along the b-axis with moments rotating within the ac-plane depicted in in Figure 3.4c).

Coefficients of the basis vector representation of this fit are shown in Table 3.1. Due to

the bipartite nature of this lattice, two magnetic Yb3+ atoms are defined in the system

(denoted as sublattices A and B), and in effect, this creates a relative phase difference

in the moment rotation between the two sites that is experimentally fit at 0.58π. The
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ordered magnetic moment refined with this fit is µ = 1.26(10) µB, comprising 84% of the

expected 1.5 µB moment in a Jeff = 1/2 system with gavg = 3.

Region 2: µ0H = 0 T, 450 mK < T < 1.13 K

As the temperature is increased above TN2 to 830 mK into the intermediate ordered

state, incommensurate magnetic reflections with the same ordering wave vector of k =

(0.384,±0.384, 0) persist (Figure 3.4e)). Order in this TN1 state is seemingly still long-

range and the lowest angle reflection can be fit to a Lorentzian peak shape to extract

an estimated, minimum correlation length. In both the 270 mK base temperature and

830 mK intermediate temperature regimes, the minimum correlation length corresponds

to ≈ 364 Å. Modeling the pattern of magnetic peaks in this intermediate temperature

regime using the same TN2 structure as described above however fails to fully capture the

data. As seen in Figure 3.4e), the TN2 (green) structure overestimates reflections near

1.2 Å−1.

One potential model for the magnetic order in this intermediate temperature regime

is to allow the relative phasing of the A and B magnetic sublattices to become disordered

upon warming into the TN1 state. In other words, helical magnetic order could estab-

lish with k = (0.384,±0.384, 0); however the phasing between Yb-sites would remain

disordered prior to selecting a specific phase below TN2. This conjecture was modeled

by averaging over ten fits using equally-spaced relative phases from zero to 2π between

Yb-sites, and where each fit was calculated using an identical moment size (1.26 µb).

This averaged phasing model (Figure 3.4d) orange) captures the relative peak intensi-
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ties better than the single-phase model used below TN2 and is supported by C(T ) data

showing that additional entropy freezes out below TN2.

Region 3: µ0H = 3 T, T < 450 mK

Upon applying a magnetic field to the low-temperature ordered state below TN2, the

magnetic ordering of the system changes. Figure 3.4f) shows that a µ0H = 3 T field drives

commensurate peaks to appear in place of the incommensurate reflections in the zero-field

ordered state. The modified propagation vector corresponds to the doubly-degenerate

k = (1/3,±1/3, 0). Although the modified k reflects a locking into a commensurate

structure, qualitatively, the details of the ordered state remain similar to the zero-field

TN2 model. The commensurate 3 T state is still best represented by an ab-plane helical

magnetic structure with basis vector coefficients displayed in Table 3.1. The magnetic

moment is refined to be µ = 1.26(9)µB and the two Yb-sublattices differ by a relative

phase of 0.42π.

3.2.3 Low-energy magnetic fluctuations

The low-energy spin dynamics of Yb moments in LiYbO2 were investigated in all three

ordered regimes described in the previous section via inelastic neutron scattering mea-

surements. While the powder-averaged data is difficult to interpret given the complexity

of the ordered state, Figure 3.5 plots a series of background-subtracted inelastic spectra

that qualitatively illustrate a few key points. Below TN2 and in zero-field, the bandwidth

of spin excitations extends to roughly 1 meV. Spectral weight appears to originate from
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Figure 3.5: Low-energy inelastic neutron scattering (INS) spectra S(|Q|, ~ω) collected
on the DCS spectrometer at a) µ0H = 0 T and 36 mK, b) µ0H = 0 T and 800 mK, and
c) µ0H = 3 T and 36 mK. All data have data collected at 36 mK and 10 T subtracted,
where LiYbO2 enters a field-polarized state, indicated by isothermal magnetization data
from Figure 4b).

the magnetic zone centers of k = (q,±q, 0) (where q = 0.384 at 0 T and q = 1/3 at 3 T)

and the Γ point. As the ordered does not change appreciably under moderate fields,

the low-energy spectra remain qualitatively similar for both 0 T and 3 T data below TN2.

Similarly, upon heating from TN2 into the TN1 state, minimal changes are observed in

the inelastic spectra. At 10 T and 36 mK however, LiYbO2 enters a field-polarized state

where the low energy spin fluctuations are dramatically suppressed. The removal of

low-energy fluctuations in this high-field data was used to subtract out background con-

tributions in the data shown in Figure 3.5. There are slight differences in the dynamics

of the 0 T and 3 T states in Figure 3.5 that will require future experiments to detail their

differences with higher statistics.
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3.3 Theoretical analysis

In the following subsections, we construct a classical Heisenberg Hamiltonian to describe

the interactions of Yb ions in LiYbO2. We then use this Hamiltonian, extended out

to next-nearest neighbors, to model the potential magnetic ground states in LiYbO2

for comparison with experimental data. Spin excitations are then also modeled in the

parameter space predicting magnetic order most closely matching that experimentally

observed.

3.3.1 Coordinates and symmetry

First we establish the coordinates for the Yb atoms in LiYbO2 by denoting the orthogonal

unit cell vectors as a = ax̂, b = aŷ, and c = cẑ, with a = 4.378 Å, and c = 10.058 Å.

The BCC primitive cell vectors are

ap =
1

2
(−a+ b+ c), bp =

1

2
(a− b+ c), cp =

1

2
(a+ b− c). (3.2)

We choose the origin to be centered on the µ = 0 sublattice ; the other sublattice (µ = 1)

has one atom sitting at 1
2
b + 1

4
c. We introduce the global coordinate (x, y, z) and the

sublattice-dependent coordinate (r1, r2, r3)µ, with µ = 0, 1:

(r1, r2, r3)µ = r1ap + r2bp + r3cp + δµ

=

(−r1 + r2 + r3

2
,
r1 − r2 + r3

2
+
µ

2
,
r1 + r2 − r3

2
+
µ

4

)
.

(3.3)

On the other hand, we have (r1, r2, r3)µ = (x, y, z) = (y+ z− 3µ/4, x+ z− µ/4, x+ y−

µ/2)µ, where µ = 0 if x, y, z all are multiples of 1/2, and µ = 1 if at least one of x, y, z

is not a multiple of 1/2 (and is a multiple of 1/4).
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The space group for LiYbO2 is I41/amd (No. 141). The point group is D4h with 16

elements, generated by the following symmetry operations

S2z : (r1, r2, r3)µ → (1 + r2 − r3 − µ, 1 + r1 − r3, 1− r3 − µ)µ, (3.4a)

S4z : (r1, r2, r3)µ → (r2 + µ, r2 − r3,−r1 + r2)1−µ, (3.4b)

C2y : (r1, r2, r3)µ → (−r2 + r3 + µ, 1− r2, r1 − r2 + µ)1−µ, (3.4c)

P : (r1, r2, r3)µ → (−r1,−r2,−r3)1−µ. (3.4d)

In global coordinates, these symmetry operations have the form

S2z : (x, y, z)→ (
1

2
− x, 1

2
− y, 1

2
+ z), (3.5a)

S4z : (x, y, z)→ (−y, 1

2
+ x,

1

4
+ z), (3.5b)

C2y : (x, y, z)→ (
1

2
− x, y, 3

4
− z), (3.5c)

P : (x, y, z)→ (−x, 1

2
− y, 1

4
− z). (3.5d)

The minimal set of generators of D4h can be chosen as {S4z, C2y, P}.

The local environment symmetry for an Yb ion is D2d, which is order-eight, generated

by three order-two elements C2z, M , and S (assuming the Yb ion is at the origin):

C2z : (x, y, z)→ (−x,−y, z), (3.6a)

M : (x, y, z)→ (−x, y, z), (3.6b)

S : (x, y, z)→ (−y, x,−z). (3.6c)

The local environment symmetry group D2d is a subgroup of the point group D4h. This

can be seen from the following relations:

C2z = S4zT
−1
1 T−1

2 T−1
3 S4z, M = T−1

1 T−1
2 T−1

3 C2yP, S = PS4z. (3.7)
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3.3.2 LiYbO2 exchange Hamiltonian

A minimal Hamiltonian describing the NN interactions in LiYbO2 (I41/amd) following

symmetry analysis in the last subsection can be written as

H1 =
∑
〈i,j〉

JzS
z
i S

z
j + Jxy(S

x
i S

x
j + Syi S

y
j ) + Jδ(Si · fij)(Sj · fij) + Jcz(Si · fijSzj + Szi · fijẑ),

(3.8)

where fij is the projection of the bond vector eij onto the basal plane. The symmetry-

allowed next nearest-neighbor (NNN) interactions are written as

H2 =
∑
〈〈i,j〉〉

J ′zS
z
i S

z
j + J ′xy(S

x
i S

x
j + Syi S

y
j ) + J ′δ(Si · eij)(Sj · eij) +Dij · Si × Sj, (3.9)

where the Dzyaloshinskii-Moriya (DM) vectors for the NNN bonds 〈ij〉 along a and b

are Dij = (−1)µ(i)Da × ẑ and Dij = (−1)µ(i)Db × ẑ, respectively. Here µ(i) = 0, 1 for

the sublattice i = A,B, respectively, indicating that the sign of the DM vector alternates

between layers.

We hereby restrict our study to the Hamiltonian up to NNN: H = H1 + H2. For

f -orbital ions such as Yb, the anisotropies Jδ and J ′δ are usually negligible, and as a good

approximation we take the Heisenberg limit Jz = Jxy = J1, and J ′z = J ′xy = J2 (the effect

of Jz 6= Jxy and J ′z 6= J ′xy will be discussed in a later subsection). This generates as a

physical model the J1 – J2 Heisenberg Hamiltonian

H = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj (3.10)
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Figure 3.6: Phase diagram of magnetic order in the J1 – J2 Heisenberg model, assuming
J2 > 0, where ferromagnetic (FM), incommensurate (IC) spiral, and antiferromagnetic
(AFM) Néel order exist.

3.3.3 The J1 – J2 model and spiral order

We first look at the J1 – J2 Heisenberg model on the stretched diamond lattice without the

DM term. The classical ground state of this model can be solved exactly. In momentum

space, the J1 – J2 Heisenberg model is written as

H =
∑
q,µ,ν

Sq,µJ
µν
q S−q,ν , (3.11)

with

J11
q = J22

q = J2(cos q · a+ cos q · b),

J12
q = J21∗

q = J1

(
e−i

q·c
4 cos

q · a
2

+ ei
q·c
4 cos

q · b
2

)
.

Therefore the lower branch of the band is

λq = J11
q − |J12

q |. (3.12)

Solving for the minimum of λq, the classical ground state is an incommensurate spiral,

with wave vector

q =
2π

a
(q, q, 0) or q =

2π

a
(q,−q, 0), (3.13)

where

q ≡
{
± 1
π

arccos |J1|
4J2
,

0,
respectively for

{
|J1| ≤ 4J2,
|J1| > 4J2.
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Figure 3.7: The classical ground state condition S4,1 + S4,2 + J1

2J2
S4,3 = 0.

Note that due to the sublattice structure, both the FM and AFM Néel orders have

q = 0. From now on we assume J2 > 0 since spiral order can appear only for a positive

J2 (Figure 3.6). The experimental value for the doubly-degenerate spiral wave vector is

2π
a

(0.384,±0.384, 0), which gives

J1 = ±4 cos(0.384π)J2 = ±1.426J2. (3.14)

The eigenvector corresponding to λq is uq = 1√
2
(eiφq , 1)T , where the phase φq = π +

ArgJ12
q determines the relative angle or phase between the spins of the two sublattices.

The magnetic order then is

Sri = (0, cos q · ri, sin q · ri) (3.15)

or any coplanar configuration that is related to Eq. (3.15) by a global SO(3) rotation.

A more intuitive, geometrical way to obtain the ground state of the Heisenberg J1 – J2

Hamiltonian is to rewrite it as the sum over all the “elementary” triangles 4 that are

enclosed by two NN bonds and one NNN bond, where each NNN bond belongs to only

one “elementary” triangle while each NN bond is shared by two “elementary” triangles.

Concretely, for each 4, label the two spins connected with an NNN bond as S4,1 and
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S4,2, and the third spin as S4,3, we then have:

H = Constant +
J2

2

∑
4

(
S4,1 + S4,2 +

J1

2J2

S4,3

)2

. (3.16)

Written in this way, the classical ground state is the spin configuration that satisfies

S4,1 + S4,2 + J1

2J2
S4,3 = 0 for all 4. Denote the (orientationless) angle between two

vectors S1 and S2 by 〈S1,S2〉. One easily infers from Figure 3.7 that

〈S4,1,S4,3〉 = 〈S4,2,S4,3〉 =

{
π − arccos J1

4J2
> π

2
, 4J2 ≥ J1 > 0

arccos |J1|
4J2

< π
2
, 4J2 ≥ −J1 > 0

,

〈S4,1,S4,2〉 = 2 arccos
|J1|
4J2

.

(3.17)

This result agrees with the exact diagonalization result above. When J1 = 1.426J2 > 0

with a sublattice phasing of π, the angle between the two spins in a primitive cell is

expected to be π − arccos(1.426/4) = 1.935 ∼ 111◦.

3.3.4 Effect of other terms; phasing and lattice distortion

The J1 – J2 model reproduces the spiral phase and the incommensurate wave vector in

the ground state of LiYbO2. The angle difference between the nearest spins (111◦),

however, does not agree with the best experimental fitting (staggered in alternating 34◦

and 172◦ angles). One plausible explanation is a small lattice distortion that is outside

of resolution of the neutron powder diffraction data.

In this subsection, we study the effect of a lattice distortion on the magnetic order.

We assume a simple scenario in which the lattice distortion results in a displacement

between two sublattices: suppose the µ = 1 sublattice, originally δ = a/2 + c/4 part
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from the µ = 0 sublattice, is offset by ε from the original position, where ε = (ε, ε, 0). In

this case the NN vectors from the Yb ion at the origin become a
2

+ c
4

+ ε, −a
2

+ c
4

+ ε,

b
2
− c

4
+ ε, and −b

2
− c

4
+ ε, which correspond to J ′1, J

′′
1 , J

′
1, J

′′
1 , respectively. Here we

assume antiferromagnetic exchange J ′1, J
′′
1 > 0 in order to agree with experiment. We

can again write down the Hamiltonian in momentum space in the form of Eq. (3.11),

with modified off-diagonal element

J12
q = J21∗

q =
J ′1
2

(
eiq·(

a
2

+ c
4

+ε) + eiq·(
b
2
− c

4
+ε)
)

+
J ′′1
2

(
eiq·(−

a
2

+ c
4

+ε) + eiq·(−
b
2
− c

4
+ε)
)

=
1

2
eiq·ε

(
J ′1e

iq·(a
2

+ c
4) + J ′1e

iq·( b
2
− c

4) + J ′′1 e
iq·(−a

2
+ c

4) + J ′′1 e
iq·(− b

2
− c

4)
)
,

(3.18)

where we denote qx = q · a, qy = q · b, and qz = q · c. It is easy to show that

λq ≥ J2(cos qx + cos qy)−
√
J ′21
4

+
J ′′21

4
+

1

2
J ′1J

′′
1 cos qx −

√
J ′21
4

+
J ′′21

4
+

1

2
J ′1J

′′
1 cos qy,

(3.19)

hence the energy minimum is reached at qx = qy ≡ q0 and qz = 0. Here q0 = 0.384× 2π

is the required experimental value to minimize f(q) = J2 cos q−
√

J ′21
2

+
J ′′21

2
+ J ′1J

′′
1 cos q,

and we get

cos q0 =
J ′21 J

′′2
1 − 4J2

2 (J ′21 + J ′′21 )

8J2
2J
′
1J
′′
1

,

This equation restricts the value between J ′1/J2 and J ′′1 /J2. Setting J ′1 = J ′′1 = J1 recovers

the previous undistorted result, J1 = 4 cos q0
2

= 4 cos πq. The eigenvector corresponding
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to λq is again uq = 1√
2
(eiφq , 1)T , where we now have

φq0 = π + q0 · ε+ arctan
(

tan
(π

4
− β

)
tan

q0

2

)
≈ π + arctan

(
tan
(π

4
− β

)
tan

q0

2

)
,

(3.20)

and we define tan β = J ′′1 /J
′
1. The term q · ε is small and can be ignored. Eq. (3.20)

suggests that the angle difference between NN spins (which is φq0 + q0/2) depends on

the spiral wave vector and the ratio of NN bond exchange energies. If we plug in

φq0 = 360◦ − 34◦ = 172◦, then we get tan β ≈ 6. This means that in our simple

lattice distortion scenario, a large exchange ratio is needed in order to reproduce the

experimentally observed order.

We note that the DM contribution vanishes if different layers are assumed to have

the same order: assume D � J1, J2; suppose the coplanar order is normal to n, then

the DM interaction in layer l is proportional to (−1)µ(l)D(a − b) · n sin qa. The sign

(−1)µ(l) indicates that neighboring layers (belonging to different sublattices A and B)

have opposite contributions, leading to a vanishing DM energy.

3.3.5 Effect of anisotropy in the J1 – J2 model

In this subsection we briefly address the effect of anisotropy. Since the classical solution

of the original J1 – J2 Heisenberg model can be mapped to a J1 – J2 Heisenberg chain, we

use a chain representation in the following analysis: the site index in the chain labels the

sites in the (110) direction of the original LiYbO2 lattice; in doing so we collapse and

treat all the spins in the plane normal to the (110) direction as one spin, since they all

113



have the same orientation in the Ansatz that we now consider.

We consider an XXZ model with NN and NNN exchange interactions. Denote as ∆1,2

the Ising anisotropy at NN and NNN level, the energy can be written as

H =
∑
i

J1(sin θi sin θi+1+∆1 cos θi cos θi+1)+J2(sin θi sin θi+2+∆2 cos θi cos θi+2). (3.21)

In the Heisenberg limit ∆1 = ∆2 = 1, H =
∑

i J1 cos(θi+1 − θi) + J2 cos(θi+2 − θi), the

uniform spiral order is recovered. For general ∆1 and ∆2, we assume the Ansatz that

θ2i = θ0 + 2iφ, while θ2i+1 = θ2i + φ+ α. The energy under this Ansatz becomes

H =J1

∑
i

∆1 − 1

2
(cos(2θ0 + (4i+ 1)φ+ α) + cos(2θ0 + (4i+ 3)φ+ α))

+
∆1 + 1

2
(cos(φ+ α) + cos(φ− α))

+ J2

∑
i

∆2 − 1

2
(cos(2θ0 + (4i+ 2)φ) + cos(2θ0 + (4i+ 4)φ+ 2α))

+
∆2 + 1

2
(cos(2φ) + cos(2φ)).

(3.22)

If φ is an incommensurate angle (i.e. irrational fraction of 2π), then the first term of

each summation averages to zero, and only the last term of each summation survives the

average. This recovers the original J1 – J2 chain with renormalized exchange parameter

Ji → Ji
∆i+1

2
, i = 1, 2.

Next we consider the possibility of lattice distortion, which is a displacement between

two sublattices as mentioned in the main text. In the chain representation, J1 is now

modified to J ′1 and J ′′1 depending on the bond considered, while ∆1 is still unique. Then

114



we have

H =
∑
i

∆1 − 1

2
(J ′1 cos(2θ0 + (4i+ 1)φ+ α) + J ′′1 cos(2θ0 + (4i+ 3)φ+ α))

+
∆1 + 1

2
(J ′1 cos(φ+ α) + J ′′1 cos(φ− α))

+ J2

∑
i

∆2 − 1

2
(cos(2θ0 + (4i+ 2)φ) + cos(2θ0 + (4i+ 4)φ+ 2α))

+
∆2 + 1

2
(cos(2φ) + cos(2φ)).

(3.23)

Again assume incommensurate φ, the first terms of the two sums average to zero, and

we are left with

H/N =
∆1 + 1

2
((J ′1 +J ′′1 ) cosα cosφ+ (−J ′1 +J ′′1 ) sinα sinφ) +J2(∆2 + 1) cos 2φ, (3.24)

One then first minimizes with respect to α. At (cosα, sinα) =
(−(J ′1+J ′′1 ) cosφ,−(−J ′1+J ′′1 ) sinφ)√

J ′21 +J ′′21 +2J ′1J
′′
1 cos 2φ

,

H is minimized

H/N = −∆1 + 1

2

√
J ′21 + J ′′21 + 2J ′1J

′′
1 cos 2φ+ J2(∆2 + 1) cos 2φ. (3.25)

Finally, minimizing H with respect to φ gives the condition for φ

cos 2φ =
J ′21 J

′′2
1 − 4

(
∆2+1
∆1+1

)2

J2
2 (J ′21 + J ′′21 )

8
(

∆2+1
∆1+1

)2

J2
2J
′
1J
′′
1

. (3.26)

Compare this equation with its Heisenberg limit at ∆1 = ∆2 = 1, we see that the effect

of Ising anisotropy is to renormalize J2 → ∆2+1
∆1+1

J2.
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3.3.6 Linear spin wave theory

In this subsection, we present simulations of the dynamical structure factor using linear

spin wave theory. An undistorted lattice is assumed. Introducing Holstein-Primakoff

(HP) bosons

Si · ai =
√
s
ai + a†i√

2
, Si · bi =

√
s
ai − a†i√

2i
, Si · ci = s− ni (3.27)

where ci = u cos q̃ ·ri +v sin q̃ ·ri is the spin order (u and v are orthogonal unit vectors

spanning the order plane), bi = u×v, and ai = bi× ci. We define q̃ = 2π
a

(1− q, 1− q, 0)

to remind that the angle between NN spins is obtuse in the J1 – J2 model. The spin wave

Hamiltonian is then

H =
∑
k∈BZ+

Φ†kH(k)Φk, (3.28)

where Φk =
(
ak,0, ak,1, a

†
−k,0, a

†
−k,1

)T
are the HP bosons in momentum space, and

H(k) = 2


h11 h12 p11 p12

h∗12 h11 p∗12 p11

p11 p12 h11 h12

p∗12 p11 h∗12 h11

 , (3.29)

with

h11 = J2

∑
δ=a,b

(
2s cosk · δ

[
1

4
(cδ + 1)

]
− scδ

)
− J1

∑
δ=±a

2
− c

4
,± b

2
+ c

4

s

2
cδ, (3.30a)

h12 = J1

∑
δ=±a

2
− c

4
,± b

2
+ c

4

seik·δ
[

1

4
(cδ + 1)

]
, (3.30b)

p11 = J2

∑
δ=a,b

2s cosk · δ
[

1

4
(cδ − 1)

]
, (3.30c)

p12 = J1

∑
δ=±a

2
− c

4
,± b

2
+ c

4

seik·δ
[

1

4
(cδ − 1)

]
, (3.30d)
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Figure 3.8: a) Spin wave spectrum (red lines) and the structure factor simulation for
J1 = 1.42565J2 > 0. Both along the (110) direction. b) Angular averaged structure
factor for J1 = 1.42565J2 > 0.

where we defined

cδ ≡ cos q̃ · δ =

{ −J1/4J2, δ ∈ NN,

2
(
J1

4J2

)2

− 1, δ ∈ NNN.
(3.31)

The boson canonical commutation relation is preserved by the diagonalization V †kH(k)Vk =

Λk, Φk = VkΨk, where V †kJVk = J ≡ Diag(1, 1,−1,−1). Diagonalizing JH(k) then gives

the spin wave spectrum Λ = (λ1, λ2,−λ1,−λ2), with

λ1,2 =
√

(h11 ± |h12|)2 − (p11 ∓ |q12|)2. (3.32)

The spin wave spectrum (3.32) along the (110) direction is shown in Figure 3.8a. One

observes that the spectrum is gapless at

q = (0, 0, 0), ±2π

a
(q, q, 0), and ± 2π

a
(1− q, 1− q, 0), (3.33)

and the momenta that are related to q by a C4 rotation along (001) or translation by

reciprocal lattice vectors.
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We then derive an expression for the dynamical structure factor, which is the Fourier

transform of spin-spin correlation function. One obtains

S(k, ω) =
3∑

i,j=1

(δij − (k̂)i(k̂)j)
1∑

µ,ν=0

〈mi
µ(−k,−ω)mj

ν(k, ω)〉

= 2sµ2
B

4∑
e=1

δ(ω − Jλk−q̃,e)
[
V †k−q̃K

†
1g
†PkgK1Vk−q̃

]
e,e

+ δ(ω − Jλk+q̃,e)
[
V †k+q̃K

T
1 g
†PkgK

∗
1Vk+q̃

]
e,e

+ δ(ω − Jλk,e)
[
V †kK

†
2g
†PkgK2Vk

]
e,e
,

(3.34)

where we defined projector Pk = 13×3 − k̂k̂T . From Eq. (3.34), it is clear that the

structure factor intensity at one k receives contributions from three momenta: k± q̃ and

k. The simulated structure factor according to Eq. (3.34) is shown in Figure 3.8a) for a

specific (1, 1, 0) direction, and in Figure 3.8b) for the angular averaged result. One of the

main features at low-energy is the vanishing intensity at Γ and |q| = 2
√

2π
a

0.384, where the

spin wave spectrum is gapless, and one would naively expect a strong intensity peak at

zero energy due to singular BdG Hamiltonian at these momenta. Physically the “missing”

intensity is a consequence of the destructive interference of the two sublattices at Γ and

q that leads to vanishing contribution to the structure factor. The same interference

pattern is also true for the static structure factor. The perfect cancellation is really

a consequence of the (undistorted) J1 – J2 Heisenberg model. On the other hand, the

persistence of high intensities at Γ and q from the neutron experiment suggests this

cancellation is partially lifted in the real material due to other effects not captured by

the J1 – J2 Heisenberg model.
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3.3.7 Free energy analysis

The classical ground state of the J1 – J2 Heisenberg model has a global SO(3) symmetry

due to the freedom in choosing the spiral plane. Since the lattice only has discrete

symmetries, it is likely that this continuous symmetry is lifted due to other effects, such

as spin–orbit coupling and fluctuations, and it is the goal of this section to address this

issue energetically from a symmetry point of view. Specifically, we will examine the

symmetry constraints on the free energy. We first write down the spiral order parameter.

Assuming the spiral plane is spanned by two orthogonal vectors u and v, the order

parameter can be chosen as the Fourier transform of the magnetic order, which can be

written as

d = eiθ(r)(lu+ imv), (3.35)

where θ(r) determines the direction of the spins in the spiral plane. While it is a constant

in the spiral phase, spatial fluctuation of θ must be considered near the incommensurate-

to-commensurate (IC-C) transition. Note we have introduced l and m to account for

either perfect circular (l = m, no net magnetization), elliptical (m 6= l > 0) or linear (m =

0) polarization, which correspond to zero, low and high magnetic fields, respectively.

We first look at the zero-field case, l = m. Following Lee and Balents [84], we seek to

write down the free energy for the order parameter to quadratic order using symmetry

considerations. Out of the symmetry generators T1,2,3, S4z, C2y and P , the little group of

the wave vector q̃ contains P , T1,2,3, S2
4z, and S3

4zC2y : (x, y, z)→ (y−1/2, x−1/2, 3/2−z).

Under these symmetries, the order parameter transforms as
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P : d→ eiπq̃d∗, (3.36a)

S2
4z : d→ Diag(−1,−1, 1)d∗, (3.36b)

T1,2 : d→ d, (3.36c)

T3 : d→ e−2iπq̃d, (3.36d)

S3
4zC2y : d→

 1
1

1

 ei2πq̃d, (3.36e)

where the last symmetry operation can be composed with T3 to get T3S
3
4zC2y : d →

(dy, dx, dz). From this, one can write down a free energy density that is quadratic in d:

f(d) = c0|d|2 + c1(d∗1d2 + c.c.) + c2d
∗
3d3. (3.37)

By minimizing this free energy one finds there are three choices for the spiral plane

depending on the value of c1 and c2 [84]: the normal of the order plane can be along

either (001), (11̄0), or (110).

The result above applies to a generally incommensurate wave vector q̃ at zero mag-

netic field. As the field is switched on, the spiral order ceases to be circularly polarized,

and the unequal components l 6= m allow for nonzero net magnetization. As a conse-

quence, some of the symmetry transformations in (3.36) are no longer valid and need to

be modified. Nevertheless, we assume that all the symmetry transformations in (3.36)

remain approximately valid at small field. Under these assumptions, we proceed to an

explanation of the IC-C transition at 3 T. The commensurate phase has a three-unit cell

order with corresponding wave vector q = 2π(1
3
, 1

3
, 0). In this phase, another term can

be added to the free energy density:

fC = f(d)− c̃6

(
(d · d)3 + c.c.

)
. (3.38)

120



The development of unequal l and m can be further modeled phenomenologically by

fourth-order terms in the free energy such as β2|d ·d|2 +χ1H
2(d∗ ·d) +χ2|H ·d|2, which

we do not discuss here but instead refer to Ref. [183].

In the following, we show that the IC-C transition can be described phenomenolog-

ically by a sine-Gordon model. For given J1 and J2, assume q is the (generally incom-

mensurate) ground state spiral wave vector, while k is a nearby commensurate wave

vector. Assume q = k+ δk+∇θ, where ∇θ denotes the spatial fluctuation of the order

parameter. The classical energy can be expanded around k:

λ = λ0 + 2δ ·∇θ +
κxy
2

((∂xθ)
2 + (∂yθ)

2) +
κz
2

(∂zθ)
2, (3.39)

where λ0 = − J2
1

4J2
− 2J2, and the rigidity for θ is

κxy = − a2

16J2

(J2
1 − 16J2

2 ), κz =
c2J2

1

32J2

. (3.40)

Importantly, a term linear in the gradient of θ exists, with coefficient δ = κxyδk. A full

theory for θ then appears as

F [θ] = A

∫
d3x

(κ
2

(∇θ)2 + 2δ ·∇θ − c6 cos 6θ
)
, (3.41)

where the last term comes from Eq. (3.38) with c6 ∼ (l2 − m2)3c6. This is the sine-

Gordon model that has been analyzed in numerous works; see e.g. Ref. [183]. The basic

physics is that the soliton number N of the lowest energy solution to the free energy

functional (3.41) distinguishes commensurate phase (N = 0) and incommensurate phase

(N = ±1); the C-IC transition then is determined by the energetics of N = 0 and

N 6= 0 configurations, with critical relation κ2c6/4κδk = π2/32 (κ2c6/4κδk < π2/32

gives the incommensurate phase). Since the elliptic polarization is induced by magnetic
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field, following Ref. [183] we conclude that the coefficient c6 ∝ (l2−m2)3 ∝ H6, and that

increasing the magnetic field will inevitably induce an IC-C transition.

3.4 Discussion

LiYbO2 shows a rich magnetic phase diagram (see Figure 3.9) with inherent similarities to

the A-site transition metal spinels and the J1 – J2 diamond lattice model, indicating that

the underlying physics of both systems arises from the same bipartite frustration. The

J1 – J2 model on the ideal diamond lattice with J2/|J1| > 1/8, produces frustrated spiral

order with wave vectors directed along the high-symmetry directions of the lattice (e.g.

(q, q, q), (q, q, 0), (0, 0, q)) and similar spiral order also appears in tetragonaly elongated

diamond lattice of LiYbO2 near |J1| ≤ 4J2. Spiral wave vectors in the distorted case are

however limited to (q,±q, 0), and tetragonal distortion lifts the degeneracy of the spiral

spin liquid surface predicted for the perfect diamond lattice [10, 84, 22].

Curiously, in zero-field, the long-range helical ground state forms through two succes-

sive magnetic transitions upon cooling. An intermediate state formed upon cooling below

TN1 is best fit by modeling a spiral state on each Yb-site but with disordered relative

phasing between the two spirals. This apparent frustration in the relative phase between

magnetic sublattices and the formation of a partially ordered state is also likely reflected

in the departure of the relative phasing between Yb-ions within the fully ordered state

(below TN2) from the predictions of the Heisenberg J1 – J2 model. Specifically, the model

predicts that moments rotate along all A-to-B sublattice bonds equivalently (i.e. the
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angle difference between every NN spin is 111◦), while the experimental data suggests

that moments rotate in a staggered fashion, where the first A-to-B sublattice bond is

34◦ and the second is 172◦. This generates a magnetic structure in which pairs of spins

between the A and B sublattices are nearly aligned antiparallel.

While CEF data suggest the presence of two Yb environments in the lattice, this

is not readily apparent in the average structural data, suggesting that the distortion

responsible for this is reasonably subtle. Given the large distortion required for the model

to produce the experimentally observed phasing between Yb-moments, the possible origin

for the phase difference instead lies in the presence of anisotropic exchange interactions

in LiYbO2. We note however that, assuming spiral order with a single wave vector q,

including Ising type of anisotropy at NN and NNN level does not help in explaining

the disagreement between theory and experiment. Resolving the possibility of other

anisotropic terms in the Hamiltonian as well as the precise nature of the anomalous state

between 0.45 K < T < 1.13 K will require future single crystal studies.

The incommensurate helical structure in LiYbO2 evolves into a commensurate helical

structure when µ0H = 3 T is applied. A similar type of “lock-in” incommensurate-

to-commensurate (IC-C) phase transition occurs in the A-site spinels, originating from

magnetic anisotropy on top of the J1 – J2 model [84]. Anisotropy accounts for the change

from an incommensurate (q,±q, 0) helical phase to a commensurate one in MnSc2S4

[84, 44, 71] and CoCr2O4 [28, 81, 32] with decreasing temperature. In LiYbO2 however,

the field-driven “lock-in” phase transition is captured within the sine-Gordon model in
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Eq. (3.38) without the need to perturb the Heisenberg J1 – J2 model.

In fact, a considerable amount of the zero-field magnetic behavior of LiYbO2 is cap-

tured at the ideal Heisenberg J1 – J2 limit. The doubly-degenerate ordering wave vector

(q,±q, 0) predicted by the model is reproduced in the fits to elastic neutron diffraction

data, and the theory predicts that the spiral structure’s ordering plane should be along

(0, 0, 1), (1, 1, 0), or (1, 1̄, 0). Experimental fits in Figure 3.4 and Table 3.1 rule out the

(0, 0, 1) ordering plane and the remaining planes of (a, b, 0) can not be distinguished with

the present powder data. Future single crystal neutron experiments could reveal if the

ordering plane aligns with the energy minimization in the (1, 1, 0) or (1, 1̄, 0) planes.

Additionally, the extracted value of |J1|/J2 = 1.426 from the J1 – J2 model makes

intuitive sense within the chemical lattice. It is unsurprising that the two magnetic

interactions would be comparable in strength due to their relative superexchange path-

ways. In comparison, materials such as KRuO4 [104] and KOsO4 [153, 70] share the

same I41/amd magnetic sublattice comprised of Ru and Os ions, but break the oxygen-

based superexchange connection along J2. In these systems, magnetic order resides in

the J2 = 0 limit of the Heisenberg J1 – J2 model, where moments order within a Neél

antiferromagnetic state and an unfrustrated J1 [104, 153, 70].

Calculations of low-energy spin excitations with the parameters obtained from the

J1 – J2 model largely reproduce the low-energy INS spectrum in Figures 3.5 and 3.8 with

J2 ≈ 1/3 meV and J1 ≈ 0.475 meV. One difference appears in the spectral weight at the

Γ and |q| = 2
√

2π
a
×0.384 positions, where a cancellation of the simulated structure factor
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intensity occurs due to destructive interference of the two sublattices at these momenta.

This cancellation does not occur in the experimental data due to the difference in phasing

between Yb-moments relative to the predictions of the J1 – J2 model.

Despite this minor deviation, rooted in the relative phasing between the Yb-sublattices,

our work establishes that LiYbO2 contains a tetragonally-elongated diamond lattice

largely captured by the Heisenberg J1 – J2 model. To the best of our knowledge, re-

ports of diamond lattices decorated with trivalent lanthanide ions are rare, and, based

upon our results, we expect that an ideal diamond lattice decorated with Yb3+ moments

may reside close to the ideal Heisenberg limit. Such an ideal cubic Ln-ion diamond lattice

would be a promising platform for manifesting (quantum) spiral spin liquid states, simi-

lar to transition metal spinels, while potentially avoiding the complications of extended

exchange interactions born from d-electron systems.

3.5 Conclusions

LiYbO2 provides an interesting material manifestation of localized f -electron moments

decorating a frustrated diamond-like lattice. Long-range incommensurate spiral magnetic

order of k = (0.384,±0.384, 0) forms in the ground state, which seemingly manifests

through a two-step ordering process via a partially ordered intermediate state. Upon

applying an external magnetic field, magnetic order becomes commensurate with the

lattice with k = (1/3,±1/3, 0) through a “lock-in” phase transition. Remarkably, the

majority of this behavior in LiYbO2 can be captured in the Heisenberg J1 – J2 limit where
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Figure 3.9: Proposed powder-averaged, low-temperature (H,T ) diagram of LiYbO2 ex-
tracted from a combination of specific heat (Cp) measurements and elastic neutron pow-
der diffraction data. At high temperature, LiYbO2 is in the paramagnetic (PM) phase.
Below approximately 10 K, specific heat shows a broad feature where roughly half of the
magnetic entropy of R ln(2) is released and signifies the onset of short-range magnetic
correlations. A sharp anomaly at 1.13 K at 0, 3, and 5 T and 1.40 K at 9 T in specific
heat measurements shows where long-range magnetic order sets in. Combining specific
heat data with neutron powder diffraction data suggests that the temperature regime be-
tween 0.45 K and 1.13 K consists of a helical magnetic structure with disordered phasing
between the two interpenetrating Yb sublattices. The system undergoes a lock-in phase
transition from an incommensurate helical structure at zero field to a commensurate
structure at 3 T.

the magnetic Yb3+ ions are split into two interpenetrating A-B sublattices. This model

was explicitly re-derived and tuned for LiYbO2, and it is directly related to a physical

elongation of the diamond lattice Heisenberg J1 – J2 model. Differences in the relative

phasing of A-B sublattices between the Heisenberg model and the observed magnetic

structure suggest additional interactions and quantum effects may be present in LiYbO2.

This is possibly related to the observation of crystal field splittings suggesting two Yb

environments. Exploring these as well as the nature of the intermediate ordered state
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are promising future steps in single-crystal studies.
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Chapter 4

Competing orders in pyrochlore

magnets from a Z2 spin liquid

perspective

4.1 Introduction

Quantum spin liquids (QSLs) [138] are zero-temperature phases of interacting spin sys-

tems which possess intrinsic long-range entanglement and support nonlocal excitations

carrying fractionalized quantum numbers. Typically, they respect all symmetries of the

underlying lattice, i.e., they exhibit a lack of conventional symmetry-breaking order. The

theoretical understanding of QSLs is largely in terms of emergent gauge theory, which pro-

vides a convenient mathematical framework to describe long-range entanglement, along
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with the nonlocal nature of the fractionalized excitations.

In frustrated magnetic systems [5], QSL ground states may control the physics even

at (small) finite temperatures, as long as energy dominates over entropy. For two-

dimensional spin liquids, this statement is purely asymptotic; at any nonzero temperature

T > 0, the putative QSL is adiabatically connected to a high-temperature paramagnet.

However, some three-dimensional spin liquids, particularly the so-called Z2 states with

Ising-like emergent gauge fields, are more robust, and can persist in the form of a distinct

low-temperature phase up to a nonzero critical temperature.

While QSLs are extremely interesting from a conceptual perspective, it is far from

obvious to realize them in experimental materials, or even realistic spin Hamiltonians.

Traditionally, most studies considered spin-rotation-invariant Heisenberg systems on ge-

ometrically frustrated two-dimensional lattices. However, it has recently been recognized

that magnetic systems with strong spin–orbit coupling provide a promising alternative

avenue to QSLs [167, 51, 127, 69]. In general, these systems have a large number of

magnetically anisotropic terms, leading to exchange frustration as well as an extended

parameter space, and are thus expected to harbor QSL ground states on a wide range of

two- and three-dimensional lattices.

The most widely studied such three-dimensional structure is the pyrochlore lattice,

consisting of periodically arranged corner-sharing tetrahedra. Experimentally, two large

families of materials, the pyrochlore spinels and the rare-earth pyrochlores, provide vast

real-world possibilities [45] to test theoretical predictions on the pyrochlore lattice. In the
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2000s, it was predicted that certain antiferromagnetic pyrochlore models could support

a U(1) QSL phase [63] [the “U(1)” means that the gauge field belongs to the Lie algebra

of the U(1) group and that the emergent charges are characterized by integers related to

the generating charge of U(1)], which is a simulacrum of electromagnetic gauge theory

in high-energy physics. In 2011/2012, theoretical applications of this idea to realistic

models emerged, suggesting the presence of a U(1) spin liquid in the so-called “quantum

spin ice” pyrochlore materials [133, 137]. So far, these predictions remain to be confirmed

in experiments, even though there are some promising recent developments [65, 64, 49,

149, 150, 143, 155, 147, 157].

Another thread recurring in the experimental study of rare-earth pyrochlores is the

close competition amongst several weakly ordered states [55]. Several hints at this com-

petition are present in the family of Yb pyrochlores, Yb2B2O7, which have a systematic

structural evolution across the series B = Ge, Ti, Pt, Sn. While the germanate orders

antiferromagnetically, the remaining members of the family have ferromagnetic ground

states, suggesting the close proximity of at least these two phases. In each material,

the specific heat is peaked at a temperature of 2-4 K, while the maximum ordering tem-

perature is 0.6 K in the germanate and half or less than that in the rest of the family.

These findings indicate the onset of strong spin correlations well above the ordering tem-

perature, but an inability of the system to decide upon its ground state. The weak

ferromagnetic ground state in Yb2Ti2O7 is also famously mercurial, changing its char-

acter substantially with sample variations [17]. Theoretically, a classical analysis indeed
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finds close competition amongst several distinct phases [172], but a quantum picture of

this phase competition is not yet available.

In this work, we combine the two threads of phase competition and QSL physics by

utilizing the connection of symmetry to emergent gauge structure. This connection is

mathematically described by the projective symmetry group (PSG), proposed by Wen

in 2002 [165], which encapsulates the fact that, in a QSL, the group operations of the

physical symmetry group are interleaved with those of the emergent gauge group. The

embedding of the physical symmetries into the PSG can then lead to a unification of

distinct symmetry-breaking orders that are unrelated in classical physics. Such a unified

description of seemingly unrelated magnetic orders is the main motivation behind the

present study.

The PSG also offers a straightforward method to classify QSLs in the presence of

symmetry. Concretely, the PSG specifies a distinct set of transformation rules for the

emergent matter and gauge fields in each QSL phase, corresponding to a given PSG class.

Employing the PSG method, an entire zoo of QSLs has been found on the square [130],

triangular [97], kagome [99], honeycomb [177], star [34], and hyperkagome [67] lattices,

to give a few notable examples. Generally, these QSLs can be connected to magnetically

ordered states by considering the condensation patterns that emerge when the energy of

a bosonic QSL excitation is brought to zero [11, 29, 87].

In this chapter, we employ the PSG method to obtain a full classification of QSLs

with Z2 gauge structure on the pyrochlore lattice using Schwinger bosons [135, 161, 160,
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174, 106, 23, 68]. While standard parton constructions also allow U(1) and SU(2) gauge

structures, we consider the Z2 gauge structure for two reasons. First, it is the simplest

one: quasiparticles in a Z2 QSL are weakly interacting because the gauge field itself

is gapped. Second, it is also the richest one: a single U(1) PSG class can be further

split into several Z2 PSG classes if the gauge symmetry is lowered from U(1) to Z2.

We use Schwinger bosons rather than Abrikosov fermions [136] to immediately obtain

a bosonic excitation, the elementary Schwinger boson itself, that can condense at the

phase transition out of the QSL.

As a result of our PSG analysis, we find 16 different Z2 QSLs on the pyrochlore lattice.

We use a standard mean-field description to study the 0-flux QSLs, in which translation

symmetry acts linearly (i.e., as in classical physics) on the Schwinger bosons. The PSG

method also allows us to describe phase transitions from these QSLs to magnetically

ordered phases. Condensing the Schwinger bosons, we identify 15 different ordering pat-

terns, and call them “paraphases”, since each of them actually unifies several distinct

symmetry-breaking orders. We find that, generically, these orders are intertwined, neces-

sarily appearing together at the phase transition out of the QSL, and that conventional

spin orders are in many cases accompanied by inversion-breaking “hidden” orders.

The phase transitions corresponding to these 15 paraphases fall into two dynamical

classes of z = 1 and z = 2 quantum criticality, exhibiting critical modes with linear and

quadratic dispersions, respectively. We uncover the mathematical structure discriminat-

ing between these two classes, related to Hamiltonian diagonalizability, and derive their
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effective field theories, along with their most important experimental signatures. In par-

ticular, we use mean-field theory to compute static and dynamic spin structure factors

for each of the 15 paraphases. Finally, by comparing the magnetic orders associated with

each paraphase to those observed in experiments, we identify a set of likely QSL phases

that might be relevant to real-world pyrochlore materials.

The rest of the chapter is organized as follows. First, in Sec. 4.2, we summarize our

main results on the different QSL phases and the corresponding phase transitions out

of them (“paraphases”). In Sec. 5.2, we employ the PSG method, deriving the PSG

classes, and constructing a mean-field theory for each PSG class. In Sec. 5.3, we analyze

the mean-field theories of our QSL phases, describing phase transitions out of them, and

establishing the two dynamical classes with critical exponents z = 1, 2. In Sec. 5.4, we

move on to the experimental signatures of our phase transitions, describing the heat

capacity and the spin structure factors, and also introducing the concept of intertwined

and hidden orders. Finally, in Sec. 5.5, we discuss our results and connect them to

existing experimental data. Detailed derivations and lengthy formulas are given in the

Appendices for reference.

4.2 Main results
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From our PSG classification scheme, we find that there are 16 different Z2 PSG classes

of Schwinger bosons, corresponding to 16 inequivalent Z2 QSL phases, on the pyrochlore

lattice. Out of these 16 different QSLs, there are eight 0-flux QSLs and eight π-flux

QSLs. For each QSL, we construct a general quadratic mean-field Hamiltonian for the

Schwinger bosons containing all onsite, nearest neighbor (NN), and next-nearest neighbor

(NNN) terms allowed by symmetry. However, for simplicity, we focus on the 0-flux QSLs

and restrict the mean-field Hamiltonian to onsite and NN terms. At such a NN level,

two out of eight 0-flux Hamiltonians have an enlarged U(1) gauge symmetry, and we thus

concentrate on the remaining six 0-flux Hamiltonians with Z2 gauge symmetry.

In each of the six corresponding Z2 QSL phases, the Schwinger bosons can be iden-

tified as elementary spinon excitations carrying fractionalized quantum numbers. If the

chemical potential is tuned to its critical value, there is a phase transition driven by the

condensation of these bosonic spinons. Depending on the particular patterns of spinon

condensation, we describe 15 different critical “paraphases” out of the six QSL phases.

The most important characteristics of these paraphases, labeled by their parent QSL

phases and the condensation momenta of the spinons, are tabulated in Table 4.1.

For each paraphase, the spinon spectrum is gapless at the critical point by construc-

tion. The effective field theory of the critical point is characterized by the low-energy

spinon dispersion, ω ∼ kz, in terms of the dynamical critical exponent, which is either

z = 1 or z = 2. These two dynamical classes give rise to distinct sets of experimental

signatures. For a start, the power-law exponent x of the low-temperature heat capacity,
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CV ∼ T x, is determined by the dynamical exponent z and the dimensionality of the con-

densation manifold, i.e., if the spinons condense at points or along lines in the Brillouin

zone (BZ). Also, the dynamical exponent gives rise to universal features in the static

and dynamic spin structure factors, which appear on top of more detailed characteristics

specific to given paraphases. In particular, when approaching zero energy, the spectral

weight in the dynamic structure factor vanishes for z = 2 but diverges for z = 1; the

divergence in the z = 1 case is also observable as a nonanalytic behavior in the static

structure factor.

To establish a connection between spinon condensation and the resulting magnetic or-

ders, restricted to zero momentum for simplicity, we investigate the transformation rules

of the possible order parameters under the point group Oh of the pyrochlore lattice. For

each paraphase, we determine which magnetic orders generically appear, concentrating

in particular on the conventional spin orders seen in the experiments: the all-in-all-out,

antiferromagnetic, ferromagnetic, and Palmer-Chalker orders. In doing so, we learn two

important general lessons on magnetic orders obtained by spinon condensation. First,

several distinct orders may be intertwined, i.e., they necessarily accompany each other,

even though they are completely unrelated on the classical level. Second, the conven-

tional spin orders may emerge together with more exotic inversion-breaking “hidden”

orders.
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4.3 Classification result

4.3.1 Projective symmetry group

The detailed solution of the PSG equations is presented in Appendix A.5. The PSG

results for the phases are

φT1(rµ) = 0, (4.1a)

φT2(rµ) = n1πr1, (4.1b)

φT3(rµ) = n1π(r1 + r2), (4.1c)

φT (rµ) = 0, (4.1d)

φC6
(rµ) =

[nC6

2
+ (n1 + nST1)δµ=1,2,3

]
π

+n1δµ=2,3πr1 + n1δµ=2πr3 + n1(r1r2 + r1r3), (4.1e)

φS(rµ) =

[
(−)δµ=1,2,3

n1 + nST1

2
+ δµ=2nC6S

]
π + (n1δµ=1,2 − nST1)πr1

+(n1δµ=2 − nST1)πr2 + n1δµ=1,2πr3 −
1

2
n1π(r1 + r2)(r1 + r2 + 1), (4.1f)

where n1, nC6S
, nST1 , and nC6

are four Z2 parameters, each being either 0 or 1. Therefore,

we find that there are 16 gauge-inequivalent Z2 PSG classes, corresponding to distinct

Z2 quantum spin liquids, which we label by the notation n1π-(nC6S
nST1 nC6

). The four

Z2 parameters have concrete interpretations:

• The parameter n1 comes from the three PSG equations corresponding to TiTi+1T
−1
i T−1

i+1 =

1, which are required by the PSG to share the same Z2 parameter. Physically, it

quantifies the Aharonov-Bohm (AB) phase a spinon accumulates while moving on

the closed edge of a plaquette, which is traversed by such a sequence of translations.

In the case of n1 = 1 (n1 = 0), the AB phase is π (0), corresponding to a π-flux
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(0-flux) spin liquid.

• The parameter nC6
comes from the PSG equation corresponding to C

6

6 = 1. Phys-

ically, it describes the AB phase a spinon accumulates after completing six subse-

quent sixfold rotoinversions. Together with nST1 , it determines whether or not the

sixfold rotoinversion C6 acts projectively.

• The parameter nST1 comes from the PSG equation corresponding to ST1S
−1T−1

3 T1 =

1. Physically, it describes the AB phase a spinon accumulates after completing

the operation sequence ST1S
−1T−1

3 T1. Together with n1 and nC6S
it determines

whether or not the screw operation S acts projectively.

• The parameter nC6S
comes from the PSG equation corresponding to (C6S)4 = 1.

Physically, it describes the AB phase a spinon accumulates after completing the

operation sequence (C6S)4.

4.3.2 Construction of mean-field ansätze

We are now in the position to construct the mean-field ansatz for each PSG class. The

most general mean-field ansatz for bosonic spinons can be written as

H =
∑
rµ,r′ν

b†rµu
h
rµ,r′ν

br′ν + b†rµu
p
rµ,r′ν

(
b†r′ν

)T
+ h.c., (4.2)

where uhrµ,r′ν and uprµ,r′ν are 2× 2 matrices acting on spin space, and the labels “h” and

“p” indicate hopping and pairing terms, respectively.

The PSG operators Õ and T̃ are the symmetry operators of the Hamiltonian H,
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meaning Õ : H → H and T̃ : H → H. Since the spinons transforms under Õ and T̃

according to Eqs. (1.33) and (1.34), the matrices uh and up must transform as

G†O[O(rµ)]UOu
h
rµ,r′ν

U †OGO[O(r′ν)] = uhO(rµ),O(r′ν), (4.3a)

G†O[O(rµ)]UOu
p
rµ,r′ν

UT
OG

†
O[O(r′ν)] = upO(rµ),O(r′ν) (4.3b)

for space-group elements O ∈ {T1, T2, T3, C6, S} and as

G†T (rµ)UT

(
uhrµ,r′ν

)∗
U †TGT (r′ν) = uhrµ,r′ν , (4.4a)

G†T (rµ)UT

(
uprµ,r′ν

)∗
UT
T G

†
T (r′ν) = uprµ,r′ν (4.4b)

for time reversal T . The respective SU(2) matrices are

UT1 = UT2 = UT3 = σ0, UT = iσ2,

UC6
= UC3 = e

− i
2

2π
3

(1,1,1)√
3
·σ
, US = e

− i
2
π

(1,1,0)√
2
·σ
.

(4.5)

where σ0 = 12×2 is the identity matrix. Suppressing the site indices for simplicity, we

parameterize the matrices uh and up in the general forms

uh = aσ0 + i(bσ1 + cσ2 + dσ3), (4.6a)

up =
(
a′σ0 + i(b′σ1 + c′σ2 + d′σ3)

)
· iσ2, (4.6b)

where a, b, c, d, a′, b′, c′, d′ are all complex. The additional factor iσ2 appearing in up

ensures that (a, b, c, d) and (a′, b′, c′, d′) transform in the same way under the respective

unitary conjugations uh → UuhU † and up → UupUT for any U ∈ SU(2). In both

cases, the singlet parameters a and a′ transform as scalars, while the triplet parameters

b = (b, c, d) and b′ = (b′, c′, d′) transform as SO(3) vectors. Indeed, any SU(2) rotation

leaves the singlet parameters invariant and performs the corresponding SO(3) rotation
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on the triplet vectors: b→ Rb and b′ → Rb′. For the generators C6 and S, these SO(3)

rotations are

RC6 =

 1
1

1

 , RS =

 1
1

−1

 , (4.7)

while the translations T1,2,3 correspond to trivial SO(3) rotations: RT1,2,3 = 13×3.

To reduce the number of parameters in the mean-field ansatz, we first consider the

effect of time reversal. Substituting Eq. (4.6) into Eq. (4.4), and taking GT (rµ) = 1 from

Eq. (4.1d), we obtain (a, b, c, d) = (a∗, b∗, c∗, d∗) as well as (a′, b′, c′, d′) = (a′∗, b′∗, c′∗, d′∗)

and deduce that all 8 parameters of uh and up are real.

Turning to space-group symmetries and using Eq. (4.3), we can then establish rela-

tions between the respective parameters of uhrµ,r′ν and uprµ,r′ν that correspond to different

bonds 〈rµ, r′ν〉 of the lattice. In fact, the entire mean-field ansatz in Eq. (4.2) can be

constructed up to next-nearest-neighbor level by specifying the 8 real parameters for each

of the following three representative bonds:

• onsite “bond” 00 → 00:

uh00,00
= ασ0 + i(βσ1 + γσ2 + δσ3),

up00,00
=
(
α′σ0 + i(β′σ1 + γ′σ2 + δ′σ3)

)
· iσ2,

(4.8)

• nearest neighbor (NN) bond 00 → 01:

uh00,01
= aσ0 + i(bσ1 + cσ2 + dσ3),

up00,01
=
(
a′σ0 + i(b′σ1 + c′σ2 + d′σ3)

)
· iσ2,

(4.9)

• next-nearest neighbor (NNN) bond 01 → 02 − ê2:

uh01,02−ê2 = Aσ0 + i(Bσ1 + Cσ2 +Dσ3),

up01,02−ê2 =
(
A′σ0 + i(B′σ1 + C ′σ2 +D′σ3)

)
· iσ2.

(4.10)
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Table 4.2: Independent mean-field parameters and constraints for the sixteen PSG
classes. The parameters not mentioned in this table are enforced to be zero by the
constraints. Note that a nonzero onsite chemical potential µ = α is allowed in all PSG
classes. We defined † to be the condition β′ = δ′ = γ′ = ν. In the classes superscripted
by ‡, the mean-field Hamiltonians appear to be U(1) on the NN level, but recover their
Z2 character upon including NNN terms.

Class n1π- Independent nonzero parameters Constraints
(nC6S

nST1nC6
) Onsite NN NNN Onsite NN NNN

0-(000)‡ µ a,c A,B,D,B′ c = −d B = C, B′ = −C ′
0-(001) µ a,c,b′ A,B,D,B′ c = −d, B = C, B′ = −C ′
0-(010) µ, ν a,c,b′ A,B,D,A′, B′, D′ † c = −d, B = C, B′ = C ′

0-(011)‡ µ, a,c A,B,D,A′, B′, D′ c = −d, B = C, B′ = C ′

0-(100) µ, b,c′ A,B,D,B′ c′ = d′, B = C, B′ = −C ′
0-(101) µ, b,a′,c′ A,B,D,B′ c′ = −d′, B = C, B′ = −C ′
0-(110) µ, ν b,a′,c′ A,B,D,A′, B′, D′ † c′ = −d′, B = C, B′ = C ′

0-(111) µ, b,c′ A,B,D,A′, B′, D′ c′ = d′, B = C, B′ = C ′

π-(000) µ, ν a,c,b′ B,B′ † c = −d B = −C, B′ = −C ′
π-(001)‡ µ a,c B,B′ c = −d B = −C, B′ = −C ′
π-(010) µ a,c B,A′, B′, D′ c = −d B = −C, B′ = C ′

π-(011) µ, a,c,b′ B,A′, B′, D′ c = −d B = −C, B′ = C ′

π-(100)‡ µ, ν b,a′,c′ B,B′ † c′ = −d′ B = −C, B′ = −C ′
π-(101) µ, b,c′ B,B′ c′ = d′ B = −C, B′ = −C ′
π-(110) µ b,c′ B,A′, B′, D′ c′ = d′ B = −C, B′ = C ′

π-(111) µ, b,a′,c′ B,A′, B′, D′ c′ = −d′ B = −C, B′ = C ′

4.3.3 Nontrivial parameter constraints

When constructing the entire mean-field ansatz from the representative bonds in Eqs. (4.8)–

(4.10), the significance of using Eq. (4.3) is twofold. On the one hand, most space-group

elements map the representative bonds onto different bonds, thereby determining the

matrices uhrµ,r′ν and uprµ,r′ν for all symmetry-related bonds. On the other hand, some

space-group elements map the representative bonds onto themselves, thereby leading to

nontrivial constraints on the original 24 parameters.

For simplicity, we first concentrate on the 0-flux PSG classes. Since translation is
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trivial [see Eqs. (4.1a)–(4.1c)], we can restrict our attention to a single unit cell, within

which bonds are mapped onto each other by elements of the point group. Since the point

group Oh consists of 48 elements, and there are 4 onsite, 12 NN, and 24 NNN bonds

within a single unit cell, which can be viewed as three orbits in the point group, the

orbit-stabilizer theorem implies that the onsite, NN, and NNN representative bonds are

mapped onto themselves by 12, 4, and 2 point-group elements, respectively. When a bond

is mapped onto itself by such a point-group element, nontrivial constraints are obtained

on the parameters by comparing the new and the old expressions for uhrµ,r′ν and uprµ,r′ν .

These constraints can be found in Appendix A.2; see Ref. [94] for the detailed solution

to these constraints.

In Table 4.2, we present the nonzero parameters of the mean-field ansatz for each of

the eight 0-flux and each of the eight π-flux PSG classes up to NNN level, along with any

constraints between the parameters. From these nonzero parameters, the entire mean-

field ansatz can be constructed via Eq. (4.3). Note that some of the mean-field ansätze

in Table 4.2 have an enlarged U(1) gauge symmetry at the NN level which only breaks

down to Z2 when nonzero NNN terms are included.

4.4 Analysis of the mean-field ansätze

The previous section explains how the method of PSG can be used to obtain classes

of 0-flux and π-flux mean-field ansätze, which describe distinct phases of Z2 quantum

spin liquids on the mean-field level. In this section, we focus on the 0-flux mean-field
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ansätze and study their physical properties in great detail. Since our main goal is to

explore the relationship between spin liquids and magnetic orders adjacent to them, we

primarily concentrate on the critical field theories and the condensation patterns (i.e.,

the resulting magnetic orders).

In each mean-field ansatz, we neglect the NNN terms for simplicity, restricting our

attention to onsite and NN terms. Since we are interested in Z2 spin liquids, and two out

of eight 0-flux mean-field ansätze have U(1) gauge symmetry at the NN level, we only

consider the remaining six mean-field ansätze in the rest of the chapter.

4.4.1 Symmetry properties

The PSG method is rooted in symmetry analysis, and it is important to understand

how the PSG governs the symmetry of the mean-field Hamiltonians. By means of a

Fourier transformation, a general mean-field Hamiltonian [see Eq. (4.2)] can be written

in momentum space as

H =
∑
k∈BZ

B†kH(k)Bk, (4.11)

where Bk =
(
bk,0, bk,1, bk,2, bk,3, b

†
−k,0, b

†
−k,1, b

†
−k,2, b

†
−k,3

)T
is a 16-component vector of

operators. The matrix H(k) has the standard Bogoliubov form

H(k) =

(
Uh(k) Up(k)
U †p(k) UT

h (−k)

)
, (4.12)

where Uh(k) = U †h(k) and Up(k) = UT
p (−k), corresponding to hopping and pairing

terms, respectively.

The Hamiltonian matrix H(k) combines momenta ±k and thus assigns a full set of
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physical degrees of freedom to only half of the BZ. This redundancy in the description

leads to an effective charge-conjugation “symmetry”, corresponding to the matrix-level

constraint

U−1
C H∗(k)UC = H(−k), (4.13)

where we define UC = σ1 ⊗ 18×8. The anti-unitary charge-conjugation operator is then

given by UCK, where K denotes complex conjugation.

Considering physical symmetries, time reversal T gives rise to an analogous matrix-

level constraint

U−1
T H∗(k)UT = H(−k), (4.14)

where we define UT = 18×8 ⊗ (iσ2). Correspondingly, the anti-unitary time-reversal

operator is UTK. Note that time reversal acts non-projectively in all PSG classes because

we use gauge freedom to fix φT (rµ) = 0.

In contrast, inversion I = C
3

6 acts projectively on the spinons and generates the

matrix-level constraint

U−1
I (k)H(k)UI(k) = H(−k), (4.15)

where UI(k) = (σ3)
nC6 ⊗ (UJ · I2(k)) ⊗ σ0, in terms of the 4 × 4 diagonal form-factor

matrix

I(k) = Diag
(
1, eik·ε̂1 , eik·ε̂2 , eik·ε̂3

)
, (4.16)

and the diagonal matrix UJ = Diag ((−1)nST1 , 1, 1, 1).

The symmetries C, T , and I result in important general spectral features. First, the

symmetry I ◦ T guarantees that each energy level is doubly degenerate, according to
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Kramers theorem. Second, the symmetry I ◦ C leads to an additional double degener-

acy for any non-zero-energy level, which is connected to the redundant description in

Eqs. (4.11) and (4.12). The two symmetries together thus result in a generic fourfold

degeneracy at each energy level E > 0 shared by momenta ±k. Note that the degen-

eracy may be smaller or larger at special time-reversal-invariant momenta (k = −k)

because there are half as many physical degrees of freedom but, on the other hand, pure

point-group symmetries (e.g., inversion) may lead to additional degeneracy.

The degeneracy of zero-energy levels is more subtle as it may be affected by the

diagonalizability of the Hamiltonian matrix H(k). Since the low-energy physics is the

main focus of our study, this issue will be addressed in a separate section (see Sec. 4.4.4).

4.4.2 Condensation domains: a “phase diagram” for paraphases

The use of bosonic mean-field Hamiltonians, obtained from the spinon decomposition in

Eq. (1.19), facilitates the study of phase transitions between spin liquids and magnetically

ordered phases. Indeed, by lowering the chemical potential µ, there is a critical chemical

potential µc at which the bosonic spinons undergo Bose–Einstein condensation at some

critical momenta kc and the system thus develops magnetic order.

For the mean-field Hamiltonian in each PSG class, the critical chemical potential µc is

a function of the mean-field parameters.While the value of µc changes continuously with

the mean-field parameters, and this variation of µc is thus locally analytic, it globally

separates into domains across which the variation of µc is non-analytic. These domains
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Figure 4.1: Condensation “phase diagrams” for the NN mean-field ansätze of the six
0-flux PSG classes 0-(001), 0-(010), 0-(100), 0-(101), 0-(110), and 0-(111). The complete
phase diagram at NN level is 1D for classes 0-(100) and 0-(111), 2D for classes 0-(001)
and 0-(101), and 3D for classes 0-(010) and 0-(110). The parameters (ψ, θ, φ) are related
to the mean-field parameters according to Table 4.6. For the classes 0-(010) and 0-(110),
only a 2D slice with ψ = 0 is shown. The slices for other values of ψ share the same
qualitative behavior as the ψ = 0 slice, e.g., they also consist of two phases Γ and Λ.

of analyticity of µc are reminiscent of the domains of analyticity of the free energy, which

define phases in thermodynamics. However, the analogy is not perfect as each such

domain may give rise to several true phases on crossing the phase transition into magnetic

order (i.e., when taking µ < µc). We therefore coin the word paraphases to describe the

distinct domains of analyticity of µc. Restated, each paraphase is a connected region of

phase space in which the unstable manifold of condensation modes varies smoothly.

Following this logic, the six mean-field Hamiltonians are further divided into 15 para-

phases (see Fig. 4.1). The analytical expressions for the paraphase boundaries are given
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Table 4.3: Paraphase boundaries of the NN ansätze.

Class Adjacency Paraphase boundary

0-(001)
Λ vs L 2ac+ c2 − b′2 = 0
Γ vs L 2a2 + ac− b′2 = 0 for c > a and ac− 4c2 + b′2 = 0 for c < a
Λ vs Γ 2a+ c = b′ = 0

0-(010) Γ vs Λ
√

4(a− c)2 + 3(ν − b′)2 = −2a− 4c+
√

3|ν + b′|
0-(100) Γ vs Λ

√
2b = ±c′

0-(101)
Γ vs W −2b2 + 3c′2 + 2c′a′ + a′2 = 0, b > 0
X vs W −2b2 + 3c′2 + 2c′a′ + a′2 = 0, b < 0

0-(110) Γ vs Λ
√

(ν + a′ − 2c′)2 + 2(ν − a′)2 = 4b+
√

3|ν + a′ + 2c′|
0-(111)

Γ vs W
√

2b = ±c′
X vs W b = ±

√
2c′

Table 4.4: Possible sets of condensation momenta.

Label Description
Γ (0, 0, 0)
L π(δ1, δ2, δ3), where δ1, δ2, δ3 ∈ {1,−1}
Λ k(δ1, δ2, δ3), where k ∈ [−π, π] and δ1, δ2, δ3 ∈ {1,−1}
X X1 = 2π(1, 0, 0), X2 = 2π(0, 1, 0), X3 = 2π(0, 0, 1)
W π(2,±1, 0) and all permutations of the 3 components

in Table 4.3, while the distinct critical momenta kc = Γ,L,Λ,X,W characterizing the

various paraphases are explained in Table 4.4. Finally, the distinct expressions for the

critical chemical potentials µc in the 15 paraphases are listed in Table 4.5.

Note that, for the PSG classes with nST1 = 1, the PSG result for the screw operation

S depends on the spatial coordinates, and it is convenient to shift the entire BZ by the

translation k → k − π(1, 1, 1). Such a shift of the BZ can be thought of as a gauge

transformation of the spinons, which does not modify any physical quantities on the spin

level. This shift is assumed throughout the chapter and is already taken into account

when specifying the condensation momenta in Fig. 4.1.
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Table 4.5: Critical chemical potential µ for the 15 paraphases.

Paraphase Critical µc

0-(001)Γ µc = max{−6a, 2a− 8c}
0-(001)L

Largest root of µ3 + 2(a+ 2c)µ2

−4(2a2 − 4ac+ 2c2 + 3b′2)µ− 24b′2(a+ 2c) = 0
0-(001)Λ µc = 2a+ 4c

0-(010)Γ µc = 2
(
a+ 2c+

√
4(a− c)2 + 3(ν − b′)2

)
0-(010)Λ µc = 2

(
−a− 2c+

√
3|ν + b′|

)
0-(100)Γ µc = −6b

0-(100)Λ µc = 2b+ 4
√

2|c′|
0-(101)Γ µc = −6b

0-(101)W
Largest root of µ4 − 8(b2 + 2a′2 + 4c′2)µ2

+64(2a′ + c′)bc′µ− 64a′c′(b2 + 3c′2)
+16(b2 − 3c′2)2 − 32b2a′2 + 48a′4 = 0

0-(101)X µc = 2b+ 2
√

2|a′ − c′|
0-(110)Γ µc = 6b+ 2

√
3|ν + a′ + 2c′|

0-(110)Λ µc = −2b+ 2
√

(ν + a′ − 2c′)2 + 2(ν − a′)2

0-(111)Γ µc = 6b

0-(111)W µc = max
{
±
√

2w +
√

2
√

2b2 ∓ 4
√

2bw + 7w2
}

0-(111)X µc = −2b+ 2
√

6|c′|

Note also that the region Λ supports a one-dimensional manifold of condensation

momenta. Since the only physical symmetries are discrete space-group and time-reversal

symmetries, this ground-state continuum must be accidental, i.e., the result of restricting

the mean-field Hamiltonians to NN level. Indeed, when including infinitesimal NNN

parameters, we see that the condensation regions are reduced from Λ to either Γ or L.

4.4.3 Critical spectra

The critical spectra of the 15 paraphases, corresponding to µ = µc in each case, are

shown in Fig. 4.4, along with the associated dynamical spin structure factors, obtained
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on the mean-field level. Generically, each of these spectra consists of four bands, which

is consistent with the fourfold degeneracy of each band. While certain spectra have

distinguishing features, not all paraphases can be fully distinguished by their spectra, as

some spectral characteristics are shared by multiple paraphases. Among other features,

several spectra show a quasi-mirror-reflection symmetry (in terms of energy) between

two bands, which accounts for certain high-energy features in the dynamic spin structure

factor (see Sec. 4.5.2).

Most importantly, however, the critical paraphases can be divided into two classes,

characterized by linear and quadratic dispersions at low energies. In terms of the dy-

namical critical exponent z, defined by ω ∼ |k − kc|z and specified for each paraphase

in Table 4.1, these two classes are labeled by z = 1 and z = 2, respectively. As we

later show, paraphases with z = 1 and z = 2 correspond to different critical field theo-

ries, which determine the critical exponents of various physical observables, such as the

heat capacity and the magnetic susceptibility, and thus lead to distinct experimental

signatures.

4.4.4 Hamiltonian diagonalizability

From a technical point of view, the distinction between z = 1 and z = 2 theories becomes

evident when we try to diagonalize the Hamiltonian matrix in Eq. (5.17). In general, we

seek a change of basis for the bosonic operators,

Bk = V (k)B̃k, (4.17)
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such that the Hamiltonian in Eq. (5.16) is of the form

H =
∑
k∈BZ

B̃†kΛ(k)B̃k, (4.18)

where Λ(k) = V †(k)H(k)V (k) is a 16×16 diagonal matrix, and V (k) ∈ SU(8, 8) satisfies

V (k)JV †(k) = J, J = σ3 ⊗ 18×8, (4.19)

ensuring that this change of basis is a canonical transformation. The matrices Λ(k) and

V (k) can be found by solving the generalized eigenvalue problem

JH(k)ak,i = λk,iak,i, (4.20)

where the eigenvalues λk,i give the diagonal elements of the matrix JΛ(k) and the

eigenvectors ak,i form the columns of the matrix V (k). However, since JH(k) is not

necessarily Hermitian (or even normal), it is not guaranteed that such a matrix V (k)

actually exists.

In particular, it may happen at the critical chemical potential µ = µc that there

are not enough independent eigenvectors for the zero eigenvalues λkc = 0. Physically,

this scenario means that we cannot diagonalize our critical Hamiltonian by a canoni-

cal transformation of bosonic creation and annihilation operators, and instead we must

decompose our complex operators Bk according to

Bk =
1√
2

(X̂k + iP̂k), (4.21)

where X̂k and P̂k are 16-dimensional vectors of real operators, analogous to the position

and momentum operators in first quantization. In terms of these new operators, the
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analog for the change of basis in Eq. (4.17) is(
X̂k
P̂k

)
= W (k)

(
Ŷk
Q̂k

)
, (4.22)

where the 32× 32 matrix W (k) satisfies

W (k)EW T (k) = E , E = iσ2 ⊗ 116×16. (4.23)

Using this canonical change of basis, the Hamiltonian can then be brought to the diagonal

form

H =
∑
k,i

αk,iŷ
2
k,i + βk,iq̂

2
k,i, (4.24)

where ŷk,i and q̂k,i are the components of Ŷk and Q̂k, respectively, and the new eigenvalues

are related to the original ones by

λ2
k,i = αk,iβk,i. (4.25)

Importantly, however, unlike the original method of diagonalization, Bk → B̃k, which

may fail if JH(k) is a defective matrix, the alternative method of diagonalization,

(X̂k, P̂k)→ (Ŷk, Q̂k), always works.

For any zero mode i at a critical momentum kc, we have αkc,iβkc,i = 0 from Eq. (4.25).

The diagonalizability of the critical Hamiltonian H(kc) is then determined by the follow-

ing simple criterion:

• If αkc,i = βkc,i = 0, the Hamiltonian can be diagonalized in the original basis of

creation and annihilation operators;

• Otherwise, either αkc,i = 0, βkc,i 6= 0 or αkc,i 6= 0, βkc,i = 0; the Hamiltonian is

not diagonalizable in any creation-annihilation-operator basis, meaning that the
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SU(8,8) transformation is singular.

To understand how these two scenarios for the diagonalizability lead to theories of

z = 2 and z = 1 types, respectively, we now switch to the language of path integrals and

consider the critical low-energy actions.

4.4.5 Effective low-energy theories

Our phase transitions from spin liquids to magnetic orders, driven by a change in the

chemical potential µ, are prototypes of quantum critical points (QCPs). At such a QCP,

one can write down an effective theory in terms of the low-energy degrees of freedom. We

assume a single condensing eigenmode obtained from the Hamiltonian H(kc), denoted

by b̃kc . Including spatial fluctuations, we promote this eigenmode to a field φ(τ,x) and

consider the imaginary-time action S =
∫
L d3xdτ . If the Hamiltonian is diagonalizable,

the critical Lagrangian becomes

L = φ (∂τ − µij∂i∂j)φ, (4.26)

describing a massless field φ at the QCP. The corresponding action is invariant under

the rescaling

τ → τe−l, x→ xe−l/2, φ→ φe3l/4, (4.27)

from which we can immediately deduce that the dynamical critical exponent is z = 2.

However, the mass of φ should be generally considered as a tensor of real fields χ and

π, which are the real and imaginary components of φ, such that

φ = χ+ iπ. (4.28)
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In the Hamiltonian language, these two components correspond to the “position” and

“momentum” operators in Eq. (4.21). Consequently, if the Hamiltonian is not diagonal-

izable, only one of these components is massless at the QCP. Assuming without loss of

generality that χ is massive and π is massless, the critical Lagrangian becomes

L = 2iχ∂τπ + r2χ2 − πνij∂i∂jπ. (4.29)

By integrating out the massive field χ and rescaling the massless field as π → rπ, we

finally obtain

Leff = π
(
∂2
τ − ν̃ij∂i∂j

)
π. (4.30)

This effective action is invariant under the rescaling

τ → τe−l, x→ xe−l, π → πel, (4.31)

from which we can immediately deduce that the dynamical critical exponent is z = 1.

These two distinct QCPs, characterized by critical exponents z = 2 and z = 1,

respectively, are reminiscent of the QCPs governing phase transitions from quantum

paramagnets to XY antiferromagnets [179]. If such a transition is induced by an external

magnetic field, the QCP is described by the z = 2 critical theory in Eq. (4.26), while if

the transition is induced by pressure and is thus time-reversal symmetric, the QCP is

described by the z = 1 critical theory in Eq. (4.30).

4.4.6 Spin condensation: order patterns

We are now ready to describe the spin orders obtained by condensing the spinons in each

of the 15 critical paraphases. When the chemical potential µ reaches its critical value
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Table 4.6: Parametrization of the NN mean-field ansätze using generalized spherical
coordinates (ψ, θ, φ) for the phase diagram in Fig. 4.1.

Class
Independent nonzero parameters up to NN terms
and parameterized by

0-(001) (a, c, b′) = (sin θ cosφ, sin θ sinφ, cos θ)
0-(010) (ν, a, c, b′) = (cosψ, sinψ sin θ cosφ, sinψ sin θ sinφ, sinψ cos θ)
0-(100) (b, c′) = (cosφ, sinφ)
0-(101) (b, a′, c′) = (cos θ, sin θ cosφ, sin θ sinφ)
0-(110) (ν, b, a′, c′) = (cosψ, sinψ cos θ, sinψ sin θ cosφ, sinψ sin θ sinφ)
0-(111) (b, c′) = (cosφ, sinφ)

µc, certain spinons b̃kc at critical momenta kc condense and thereby acquire macroscopic

occupation numbers 〈̃bkc〉. We can then use these 〈̃bkc〉 as order parameters and de-

tect spin orders by looking at order parameter bilinears, which, according to the spinon

decomposition in Eq. (1.19), recover spin expectation values.

So far, several types of orders have been successfully identified in pyrochlore mate-

rials, most of which do not break translation symmetry. These zero-momentum orders

correspond to representations of the point group Oh and can thus be analyzed by the

standard representation theory of groups. We will defer such an effort to the next sec-

tion. In this subsection, we select several paraphases with definite ordering signatures

and explicitly calculate the spin expectation values via condensing spinons. This way, we

capture a limited set of orders, which correspond to irreducible representations (irreps)

of the tetrahedral group Td (see Appendix A.3), and show that all such orders can be

obtained from at least one of the six Z2 spin liquids. We mainly restrict ourselves to NN

terms in the spinon Hamiltonian but include NNN terms whenever necessary.

One must bear in mind that the simplified irrep analysis on these explicit spin-
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condensation orders may be incomplete. For example, we will find from such an analysis

that pure all-in-all-out order may be obtained in the paraphase 0-(100)Γ, while a full

representation-theory analysis in Sec. 4.5.3 leads to Table 4.9, which indicates that all-

in-all-out order is always intertwined with some hidden orders (i.e., it can never appear

alone). Still, the näıve spin-condensation analysis in this subsection is a good starting

point to build some insight into how the six spin liquids are physically distinct from each

other.

All-in-all-out order

We consider the paraphase 0-(100)Γ, but also remark that the paraphases 0-(101)Γ and 0-

(111)Γ give similar results. At the critical chemical potential µc, the zero-energy subspace

is twofold degenerate. The zero-energy eigenvectors are obtained from Eq. (4.20) and are

given by the time-reversal partners a and UT a
∗. After condensing these two modes,

the corresponding operators b̃1,2 acquire macroscopic occupation numbers 〈̃bi〉 = rie
iφi ,

with i = 1, 2, implying 〈Bkc〉 =
∑

i=1,2 airie
iφi at the critical momentum kc = Γ. In

terms of the 12-component vector S = (S0,S1,S2,S3) of the spin components on the

four sublattices, we have, up to a global coefficient,

S = rSr + cos(φ1 − φ2)Sc + sin(φ1 − φ2)Ss, (4.32)

where r = (r2
1 − r2

2)/(2r1r2), and Sr,c,s are three equimodular and mutually orthogonal

vectors (see Appendix A.3 for detail). Using the basis for the irreducible representations

of Td (see Appendix A.3), it can be shown that this paraphase generically supports two
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orders: the all-in-all-out order and the AFM order. One can obtain pure all-in-all-out

order [see Fig. 4.2(a) for illustration] by setting particular values for the condensation

parameters r1,2 and φ1,2.

XY antiferromagnetic order

The paraphase 0-(110)Γ has a non-diagonalizable critical Hamiltonian, because H has

four zero-energy eigenvalues, but the nullspace of JH is only two dimensional, spanned by

the time-reversal partners a and UT a
∗. We therefore switch to the position-momentum

representation (x̂, p̂), according to Eq. (4.21). The critical Hamiltonian is then diagonal-

ized by a basis change (x̂, p̂)→ (ŷ, q̂) and takes the low-energy form

H = q̂2
1 + q̂2

2 + 0 · ŷ2
1 + 0 · ŷ2

2, (4.33)

which contains two gapless modes ŷ1 and ŷ2. To minimize the energy, we must have

〈q̂i〉 = 0 and, due to the uncertainty principle, ŷi must fluctuate maximally. In terms of

yi = 〈ŷi〉, we then find 〈Bkc〉 = by1 + UT by2 at kc = Γ for some vector b determined by

a, and the final result for spin configuration becomes

S ∝ (C,−S2,−S1, C, S2, S1,−C,−S2, S1,−C, S2,−S1) ,

S1 = sin
( π

12
− θ
)
, S2 = sin

(π
4

+ θ
)
, C = cos

( π
12

+ θ
)
,

where cos θ = y2
1 − y2

2 and sin θ = y1y2/2. This spin configuration, shown in Fig. 4.2(b),

corresponds to the “XY” order of the irrep E obtained in Eq. (39) of Ref. [172] after a

redefinition θ → θ − π
12

.
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(a) (b) (c) (d)

Figure 4.2: Typical spin order for (a) the paraphases 0-(100)Γ, 0-(101)Γ, and 0-(111)Γ
(all-in all-out order), (b) the paraphase 0-(110)Γ (the XY order), (c) the paraphase
0-(001)Γ (ferrimagnetic order), and (d) the paraphase 0-(101)X (the Palmer-Chalker
order).

Ferromagnetic order: collinear and non-collinear

For the paraphase 0-(001)Γ, all pairing terms vanish at the Γ point at the NN level and,

solving the hopping part at µc, we find that the zero-energy subspace is spanned by the

time-reversal partners a and UT a
∗. There are two cases depending on the expression

for µ in terms of the mean field parameters. When µ = −6a, all four spins point in the

same direction, which is the collinear FM order. When µ = 2a − 8c, the spin vector S

follows Eq. (4.32), where Sr,c,s are three equimodular and mutually orthogonal vectors

(see Appendix A.3 for detail). A typical spin configuration of such ferrimagnetic nature

is shown in Fig. 4.2(c).

Palmer-Chalker order

The paraphase 0-(101)X has a non-diagonalizable critical Hamiltonian, because H has

eight zero-energy eigenvalues, but the nullspace of JH is only four dimensional. Switch-

ing to the (x̂, p̂) representation and diagonalizing the Hamiltonian via the basis change
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(x̂, p̂) → (ŷ, q̂), we find that there are four gapless modes ŷ1,2,3,4 for each of the three

critical momenta kc = X1,2,3. The expression for 〈Bkc〉 thus contains 12 real parame-

ters: the expectation values of the maximally fluctuating modes ŷ1,2,3,4 at each critical

momentum. Although most choices of these condensation parameters give an order with

an enlarged unit cell, some special cases respect translation symmetry. For instance, if

condensation is restricted to X1, the spin configuration, shown in Fig. 4.2(d), corresponds

to a Palmer-Chalker order, transforming under the irrep T2.

Non-uniform spinon condensations and partial orders

The spin expectation values S0,1,2,3 for the paraphase 0-(010)Γ have different ampli-

tudes on different sublattices, invalidating the irrep analysis that presupposed classically

ordered states of fixed-length spins. There is no a priori reason to rule out such a non-

uniform spin-amplitude state. It does, however, correspond to a more “exotic” ordered

phase in which the spin is more ordered on some sublattices than others. This type

of partially ordered state has been proposed in the material Gd2Ti2O7 [27, 74] and in

various theoretical models.

Spinon line orders

The line orders Λ appearing in classes 0-(001), 0-(010), 0-(100), and 0-(110) have acciden-

tal degeneracies, higher than demanded by the lattice symmetry. This extra degeneracy

is an artifact of the restriction to NN ansätze, and should reduce to discrete condensa-

tion momenta in the presence of further-neighbor terms. If we include infinitesimal NNN
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terms to the mean-field ansatz, using Table 4.2, we indeed see that line condensation

along Λ shrinks to point condensation at either Γ or L. However, if we increase these

NNN terms, the condensation points are shifted away from these high-symmetry points.

Due to the large NNN parameter space, we were unable to exhaustively study the

effect of NNN terms on the NN mean-field ansatz. However, for some purposes, the NN

level ansätze may be adequate. For example, as we explore in the next section, the line

minima contribute to substantial low-energy continua in the dynamical spin structure

factor. This feature should persist at intermediate energies when small NNN terms are

included.

Multi-spinon condensation orders

Spinon condensation at multiple critical momenta, in the paraphases 0-(001)L, 0-(101)X/W,

and 0-(111)X/W, allows for richer physics and is often accompanied by an enlargement

of the unit cell. As an example, we look at the paraphase 0-(001)L: there are two in-

dependent zero-energy modes at each critical momentum L, and the four inequivalent L

momenta thus give rise to an eight-dimensional zero-energy subspace. The 16-component

zero-energy modes at these critical momenta have a complicated expression and do not

form a representation of Td, thereby leading to non-uniform spinon condensation, as

discussed above. Indeed, if condensation is restricted to one of the four inequivalent L

momenta, we find that three of the four sublattices have the same spin amplitude, while

the fourth sublattice has a different one.
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4.5 Experimental signatures

4.5.1 Critical behavior of the heat capacity

For each critical paraphase, the low-temperature heat capacity is expected to follow a

power law whose exponent is determined by the low-energy spinon density of states in

the critical theory. Indeed, depending on the dynamical exponent z and the spinon

condensation manifold (i.e., if spinons condense at points or along lines), this low-energy

density of states follows different power laws g(ε) ∼ εα, where the possible values of α

are listed in Table 4.7. The thermal energy due to spinon excitations at temperature T

is then given by

E ∼
∫
dε g(ε)

ε

exp(ε/T )− 1
∝ T 2+α, (4.34)

and the heat capacity takes the form

CV =
dE

dT
∝ T 1+α. (4.35)

We remark that line condensation is not stable against generic perturbations, corre-

sponding to further-neighbor terms in the mean-field ansatz. Consequently, at the lowest

temperatures, we expect that the line-condensation paraphases are governed by the same

exponents as their point-condensation counterparts. Nevertheless, if the NN mean-field

ansatz is a good first approximation, there is an intermediate temperature range in which

the approximate line condensation in such paraphases becomes manifest and therefore

the line-condensation exponents in Table 4.7 are experimentally observable.
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Table 4.7: Power-law exponents of the low-energy spinon density of states and the cor-
responding low-temperature heat capacity for critical theories of dynamical exponents
z = 1, 2 where spinons condense at points or along lines.

Condensation Dynamical Density of states: Heat capacity:
manifold exponent g(ε) ∝ εα CV ∝ T x

Point(s)
z = 2 α = 1

2
x = 3

2

z = 1 α = 2 x = 3

Line(s)
z = 2 α = 0 x = 1

z = 1 α = 1 x = 2

4.5.2 Critical spin structure factors

In this subsection, we present the most direct signatures of our critical points between

magnetic orders and their parent spin liquids by computing both the static and the

dynamic spin structure factors for the 15 paraphases. While our calculation is based on

mean-field theory, it still serves as a reference point for classifying the possible spinon

spectra in pyrochlore magnets.

The static structure factor (SSF) is defined as the spatial Fourier transform of the

equal-time spin-spin correlation function,

S(q) =
1

N

∑
rµ,r′ν ,α

〈
ŜαrµŜ

α
r′ν

〉
eiq·(rµ−r

′
ν), (4.36)

where α = x, y, z. We calculate this quantity using the critical mean-field ansätze in

Sec. 5.3. Writing the 16× 16 matrix V (k) in Eq. (4.17) as

V (k) =

(
V11(k) V12(k)
V21(k) V22(k)

)
, (4.37)
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Figure 4.3: Static spin structure factors for representative points in each of the 15 para-
phases along the high-symmetry path in the Brillouin zone. The chemical potential µ is
above the critical condensation value by ∆µ = 10−1, 10−2, ..., 10−9 (in arbitrary units).
The vertical axis is the spectral weight S normalized by the maximum intensity of the
∆µ = 10−9 line along the path. In each paraphase, denoted by its PSG class and con-
densation momenta, the representative point is specified by the mean-field parameters.

where the 8× 8 blocks generally satisfy

V ∗11(k) = V22(−k), V ∗12(k) = V21(−k) (4.38)

due to charge-conjugation “symmetry”, the SSF becomes

S(q) =
1

2N

∑
k,α

Tr
[
Uα(k, q) (Uα(k, q))†

]
(4.39)

in terms of the auxiliary 8× 8 matrices

Uα(k, q) = Wα(k, q) + (Wα(−k + q, q))T , Wα(k, q) = V †12(k) (I(q)⊗ σα)V11(k − q),
(4.40)

where I(q) is the 4× 4 diagonal form-factor matrix defined in Eq. (4.16). The resulting

SSFs for representative points in each of the 15 paraphases are plotted in Fig. 4.3 for

chemical potentials µ = µc+ 10−δ, where δ = 1, 2, . . . , 9, and µc is the critical value given
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in Table 4.5. When numerically computing the SSF, we ensure convergence by taking a

momentum-space grid that does not contain any condensation momenta kc.

For chemical potentials well above the critical value µc, the SSFs of the 15 paraphases

(not shown here) can be partitioned into two classes, depending on the sum of the Z2

parameters nC6S
+ nST1 + nC6

characterizing the parent spin liquid. Plotted along the

high-symmetry path in the BZ, the SSFs of the nC6S
+nST1 +nC6

= odd paraphases and

those of the nC6S
+nST1 +nC6

= even paraphases resemble each other after an appropriate

reflection in energy. This relation between the two classes qualitatively survives as the

chemical potential approaches its critical value (see Fig. 4.3). For example, depending on

the the sum nC6S
+nST1 +nC6

being even or odd, the SSF has either a valley or a peak at

the Γ point. The distinction between the two behaviors can be traced back to Eqs. (4.39)

and (4.40). Since the SSF is the squared trace norm of the matrix Uα, which in turn is the

sum of two matrices Wα, there is a cross term from the product of the two matrices Wα,

physically corresponding to the spinon pairing channel 〈b†k1,µσ1
b†k3,νσ3

〉〈bk1−q,µσ2bk3+q,νσ4〉,

and we numerically find this cross term to be negative for the nC6S
+ nST1 + nC6

= even

paraphases and positive for the nC6S
+ nST1 + nC6

= odd paraphases. Nevertheless, a

deeper understanding of this connection to nC6S
+ nST1 + nC6

remains to be found.

Also, there are general differences between the SSFs of the paraphases governed by

z = 1 and z = 2 critical theories, respectively. For most of the z = 1 paraphases, as

the chemical potential approaches its critical value, the SSF becomes a non-differentiable

function at certain momenta q. This feature is clearly observable in Fig. 4.3 for the
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Figure 4.4: Dynamic spin structure factors (gray) and spinon spectra (red) for represen-
tative points in each of the 15 paraphases along the high-symmetry path in the Brillouin
zone. The vertical axis is the energy ω in arbitrary units, while the gray scale is the
quartic root of the spectral weight (power is chosen such that maximum resolution is
ensured), 4

√
S, normalized by its maximum intensity along the path. The chemical po-

tential µ is 10−9 above the critical condensation value. In each paraphase, denoted by
its PSG class and condensation momenta, the representative point is specified by the
mean-field parameters.

paraphases 0-(010)Λ, 0-(100)Λ, 0-(101)W, 0-(111)W, 0-(111)X at the Γ point and for the

paraphases 0-(101)W, 0-(101)X, 0-(111)W, 0-(111)X at the X point. However, not all

z = 1 paraphases conform to this rule; the SSFs of the paraphases 0-(110)Γ and 0-(110)Λ

do not reveal any singular behavior along the high-symmetry path in the BZ. Instead,

they resemble the SSFs of z = 2 paraphases, which are smooth across the entire BZ.

To understand these features, we consider the dynamic structure factor (DSF), which

provides further information on the dynamics of spinons. This quantity is defined as the

spatial and temporal Fourier transform of the spin-spin correlation function,

S(ω, q) =
1

2πN

∫ ∞
−∞

dt
∑
rµ,r′ν ,α

〈
Ŝαrµ(t)Ŝαr′ν

〉
ei(ωt+q·(rµ−rν)), (4.41)
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and, using the mean-field ansätze in Sec. 5.3, it takes the general form [94]

S(ω, q) =
1

N

∑
µ,ν

eiq·(ε̂µ−ε̂ν)
∑

σ1,σ2,σ3,σ4,α

(σα)σ1,σ2
(σα)σ3,σ4

∑
ρ1,ρ2

∑
τ1,τ2

∑
k

δ (ω − λ−k,ρ1τ1 − λk−q,ρ2τ2)

·
[
(V12(k))∗µσ1,ρ1τ1

(V11(k − q))µσ2,ρ2τ2
(V11(−k))∗νσ3,ρ1τ1

(V12(−k + q))νσ4,ρ2τ2

+ (V12(k))∗µσ1,ρ1τ1
(V11(k − q))µσ2,ρ2τ2

(V11(k − q))∗νσ3,ρ2τ2
(V12(k))νσ4,ρ1τ1

]
.

(4.42)

The critical (µ = µc) DSFs and the corresponding spinon spectra are plotted in Fig. 4.4

for representative points in each of the 15 paraphases.

Focusing on universal low-energy features, we first observe that each DSF has char-

acteristic points or regions where it is gapless (i.e., finite at small ω). Since the DSF

describes spin dynamics, and each spin is decomposed into two spinons, the DSF is gap-

less at momenta q that are appropriate sums of spinon condensation momenta kc such

that q = kc,1 +kc,2. Consequently, we can establish a one-to-one correspondence between

the potential spinon condensation momenta described in Table 4.4 and the gapless points

or regions of the DSF plotted in Fig. 4.4; see Table 4.8 for this correspondence.

We also notice that the DSF has different low-energy behavior in the paraphases

governed by z = 1 and z = 2 critical theories, respectively. For the z = 1 paraphases 0-

(010)Λ, 0-(100)Λ, 0-(101)W, 0-(111)W, and 0-(111)X, the weight of the low-energy DSF

is concentrated around zero energy, while for the z = 2 paraphases 0-(001)Γ, 0-(100)Γ,

0-(101)Γ, and 0-(111)Γ, the low-energy DSF gradually vanishes as the energy is decreased

to zero.

These low-energy features in the DSF can be understood from a scaling analysis of
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Table 4.8: One-to-one correspondence between the potential set of momenta at which the
spinons condense at the critical point and the set of momenta at which the corresponding
dynamic structure factor is gapless along the high-symmetry path in Fig. 4.4; these set
of momenta can be points A or sections A→ B between two points A and B.

Spinon condensation Gapless points or regions in
momenta dynamic structure factor

Γ Γ
L Γ, X
X Γ, X
W Γ, X, 2

3
K

Λ Γ→ X, K→ Γ→ L→ U

the critical field theories in Eqs. (4.26) and (4.30). The DSF is the expectation value of

a four-point correlation function in the condensation fields; using Wick’s theorem, this

expectation value can be written as the convolution of two Green’s functions,

Sz(ω, q) ∼
∫
d3kdω′Gz(ω

′,k)Gz(ω − ω′, q − k), (4.43)

where Gz(ω,k) are labeled by the dynamical critical exponents z of corresponding field

theories:

G1(ω,k) =
1

ω2 + µijkikj
, G2(ω,k) =

1

ω + ν̃ijkikj
. (4.44)

Inserting Gz(ω,k) into Eq. (4.43), and evaluating the integrals over ω′ and k, we obtain

the scaling behaviors

Sz=1(ω, q) ∼ log(ω) f1 (q/ω) , Sz=2(ω, q) ∼ √ω f2 (
√
q/ω) , (4.45)

where f1 and f2 are some general functions. At the momentum with gapless DSF, cor-

responding to q = 0, the DSF at ω → 0 thus diverges in the z = 1 case and vanishes

in the z = 2 case. This result qualitatively explains the low-energy DSF features de-

scribed above. Furthermore, it elucidates why the SSFs of the z = 1 paraphases have
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singularities at specific momenta, which precisely coincide with the gapless momenta of

the corresponding DSFs. We stress again that there are z = 1 paraphases, for example,

0-(110)Γ, which have SSFs and DSFs following z = 2 behavior. Such a discrepancy may

occur if a coefficient in the critical theory accidentally vanishes for the NN mean-field

ansatz.

Finally, we remark that the DSFs of several paraphases have high-energy points ex-

hibiting large spectral weights at the Γ point. In fact, whenever such points exist, there

is a quasi-mirror-reflection symmetry (in terms of energy) between two spinon bands,

such that the two band energies satisfy λk,1 + λk,2 = E for all momenta k. Due to this

“symmetry”, these two bands can contribute strongly at the Γ point close to energy E,

resulting in an increased spectral weight as well as a Dirac-like texture. However, we

emphasize that the high-energy part of the DSF depends on specific details and is not

to be taken too seriously; only the low-energy part of the DSF captures the universal

physics in the given paraphase.

168



T
ab

le
4.

9:
A

n
al

y
si

s
of

th
e

ze
ro

-m
om

en
tu

m
(K

=
0)

or
d
er

p
ar

am
et

er
s

fo
r

th
e

p
ar

ap
h
as

es
ch

ar
ac

te
ri

ze
d

b
y

si
n
gl

e-
p

oi
n
t

an
d

m
u
lt

i-
p

oi
n
t

co
n
d
en

sa
ti

on
(i

.e
.,

ex
cl

u
d
in

g
li
n
e

co
n
d
en

sa
ti

on
).

F
or

ea
ch

p
ar

ap
h
as

e,
th

e
co

m
p
le

x
(φ

)
or

re
al

(χ
)

co
n
d
en

sa
ti

on
fi
el

d
s

ar
e

sp
ec

ifi
ed

;
th

e
ze

ro
-m

om
en

tu
m

or
d
er

p
ar

am
et

er
s

ar
e

th
en

b
il
in

ea
rs

of
th

es
e

fi
el

d
s

w
it

h
to

ta
l

m
om

en
tu

m
K

=
0

an
d

tr
an

sf
or

m
u
n
d
er

va
ri

ou
s

ir
re

d
u
ci

b
le

re
p
re

se
n
ta

ti
on

s
of

th
e

p
oi

n
t

gr
ou

p
O

h
.

F
or

so
m

e
p
ar

ap
h
as

es
,

d
is

ti
n
ct

or
d
er

p
ar

am
et

er
s

ar
e

in
te

rt
w

in
ed

su
ch

th
at

th
ey

m
u
st

ap
p

ea
r

to
ge

th
er

at
co

n
d
en

sa
ti

on
;

fo
r

ea
ch

p
ar

ap
h
as

e
ch

ar
ac

te
ri

ze
d

b
y

si
n
gl

e-
p

oi
n
t

co
n
d
en

sa
ti

on
,

th
e

or
d
er

p
ar

am
et

er
s

ar
e

ar
ra

n
ge

d
in

to
cl

as
se

s
C

(m
ar

ke
d

b
y

cu
rl

y
b
ra

ck
et

s)
su

ch
th

at
th

er
e

m
u
st

b
e

at
le

as
t

on
e

n
on

ze
ro

or
d
er

p
ar

am
et

er
fr

om
ea

ch
cl

as
s
C

.
T

h
e

n
u
m

b
er

of
q
u
ad

ra
ti

c
sc

al
ar

s
in

te
rm

s
of

th
e

or
d
er

p
ar

am
et

er
s

is
al

so
sp

ec
ifi

ed
;

if
th

er
e

is
on

ly
on

e
su

ch
sc

al
ar

,
al

l
or

d
er

p
ar

am
et

er
s

ar
e

in
d
iff

er
en

t
cl

as
se

s
an

d
h
en

ce
ar

e
m

ax
im

al
ly

in
te

rt
w

in
ed

.

P
ar

ap
h
as

e
C

on
d
en

sa
ti

on
R

ea
l

d
im

en
si

on
of

D
ec

om
p

os
it

io
n

in
to

N
u
m

b
er

of
sc

al
ar

s
G

en
er

al
in

te
rt

w
in

in
g

b
et

w
ee

n

fi
el

d
s

or
d
er

-p
ar

am
et

er
ir

re
d
u
ci

b
le

re
p
re

se
n
ta

ti
on

s
q
u
ad

ra
ti

c
in

or
d
er

ir
re

d
u
ci

b
le

re
p
re

se
n
ta

ti
on

s
sp

ac
e

at
K

=
0

(i
.e

.,
d
is

ti
n
ct

or
d
er

s)
p
ar

am
et

er
s

C
1
⊕
··
·⊕

C
q

0-
(0

01
)Γ

φ
1
,2

10
A

1
g
⊕
T

1
g
⊕

2T
2
u

1
{A

1
g
}⊕
{T

1
g
}⊕
{T

2
u
}

0-
(0

01
)L

φ
1
−

8
40

A
1
g
⊕
A

2
g
⊕
E

g
⊕

2T
1
g
⊕

2T
2
g

(2
p

er
k
c
)

⊕
2A

1
u
⊕

2E
u
⊕

2T
1
u
⊕

4T
2
u

0-
(0

10
)Γ

φ
1
,2

10
A

1
g
⊕
T

1
g
⊕

2T
2
g

1
{A

1
g
}⊕
{T

1
g
}⊕
{T

2
g
}

0-
(1

00
)Γ

φ
1
,2

10
A

1
g
⊕

3A
2
g
⊕

3E
g

6
{A

1
g
}⊕
{A

2
g
}⊕
{E

g
}

0-
(1

01
)Γ

φ
1
,2

10
A

1
g
⊕
A

2
g
⊕
E

g
⊕

2A
1
u
⊕

2E
u

4
{A

1
g
}⊕
{A

2
g
,E

g
}⊕
{A

1
u
,E

u
}

0-
(1

01
)W

χ
1
−

2
4

48
2A

1
g
⊕
A

2
g
⊕

3E
g
⊕
T

1
g

(8
p

er
±
k
c
)

⊕
2T

2
g
⊕

2A
1
u
⊕
A

2
u

⊕
3E

u
⊕

3T
1
u
⊕

4T
2
u

0-
(1

01
)X

χ
1
−

1
2

30
A

1
g
⊕

2A
2
g
⊕

3E
g
⊕
T

2
g
⊕

2A
1
u

(4
p

er
k
c
)

⊕
A

2
u
⊕

3E
u
⊕
T

1
u
⊕

2T
2
u

0-
(1

10
)Γ

χ
1
,2

3
A

1
g
⊕
E

g
1

{A
1
g
}⊕
{E

g
}

0-
(1

11
)Γ

φ
1
,2

10
A

1
g
⊕
A

2
g
⊕
E

g
⊕

2A
2
u
⊕

2E
u

4
{A

1
g
}⊕
{A

2
g
,E

g
}⊕
{A

2
u
,E

u
}

0-
(1

11
)W

χ
1
−

2
4

48
A

1
g
⊕

2A
2
g
⊕

3E
g
⊕

2T
1
g

(8
p

er
±
k
c
)

⊕
T

2
g
⊕
A

1
u
⊕

2A
2
u

⊕
3E

u
⊕

4T
1
u
⊕

3T
2
u

0-
(1

11
)X

χ
1
−

1
2

30
2A

1
g
⊕
A

2
g
⊕

3E
g
⊕
T

1
g
⊕
A

1
u

(4
p

er
k
c
)

⊕
2A

2
u
⊕

3E
u
⊕

2T
1
u
⊕
T

2
u

169



4.5.3 General order parameters: hidden and intertwined orders

The näıve spin-condensation analysis of magnetic orders in Sec. 4.4.6 is far from com-

plete as it presumes that any zero-momentum order transforms under a representation

of Td and thus ignores the possibility of hidden orders transforming under inversion-odd

representations of the full pyrochlore point group Oh = Td × Ci, where Ci is the Z2

group consisting of inversion and identity. One simple example of such a hidden order

is the alternating expansion and contraction of tetrahedra realized in the “breathing”

pyrochlores [116, 77, 126]. In this subsection, we analyze zero-momentum orders more

comprehensively by identifying all possible order parameters in terms of the condensing

spinon fields and constructing the most general Ginzburg–Landau (GL) theory that is

compatible with the point group Oh of the pyrochlore lattice. Such an analysis has been

previously done for several problems building on the PSG framework [11, 6, 7].

When the spinons condense at the critical point, certain bosonic modes at the con-

densation momenta kc become macroscopically occupied, and the expectation values of

their bosonic operators thus become classical condensation fields. For the z = 2 critical

points, the condensation fields φn are complex, while for the z = 1 critical points, the

condensation fields χn are real. Importantly, these fields themselves are not valid order

parameters as they carry a Z2 gauge charge and transform projectively under the point

group. Indeed, the projective transformation rules of φn and χn under the generators of

the point group can be explicitly obtained from the corresponding transformation rules
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of the original bosonic operators bkc,µ (see also Appendix A.3):

I : bk,µ → (−1)nST1
δµ=0eik·êµb−k,µ, (4.46a)

C3 : bk,µ → U †C3
b(kz ,kx,ky),C3(µ), (4.46b)

S : bk,µ → (−1)δµ=3nST1
+δµ=2nC6Seik·êµU †Sb(ky ,kx,−kz),S(µ), (4.46c)

where C3(µ) = 0, 2, 3, 1 and S(µ) = 3, 1, 2, 0 for the respective sublattices µ = 0, 1, 2, 3.

The simplest possible order parameters are then the bilinears of the condensation fields,

corresponding to total momentum K = 0, which are gauge invariant and transform as

linear, generically reducible, representations of the point group. For each paraphase, the

irrep decomposition of this reducible representation is given in Table 4.9. We now discuss

the physical implications of this decomposition.

The scalar irrep A1g corresponds to a quadratic invariant, i.e., a “mass” term in

the GL theory, which drives the phase transition between the spin-liquid phase and

the magnetically ordered phase. For almost all paraphases, it appears only once in the

reducible representation, which indicates that all components of the condensation occur

together by symmetry. The bilinear term transforming under the scalar irrep is
∑

n χ
2
n,

where we decompose any complex fields into real fields as φn = χ2n−1+iχ2n. The effective

GL theory governing the phase transition is then

L =
∑
n

(∇χn)2 + r
∑
n

χ2
n +O(χ4). (4.47)

When A1g appears more than once in the reducible representation [for the paraphases
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0-(101)W and 0-(111)X], it signals an accidental degeneracy, which should be lifted when

going beyond the NN level.

The remaining irreps, denoted by standard labels, correspond to various order param-

eters that describe distinct scenarios of symmetry breaking (see Table 4.10). Irreps with

the subscript “g” are even under inversion and correspond to the conventional spin orders

discussed in Ref. [172]. The single-spin order parameters of such spin orders are straight-

forward to detect with neutron scattering. In contrast, irreps with the subscript “u” are

odd under inversion and correspond to more unconventional hidden orders. The order

parameters of these inversion-breaking orders always contain multiple spin operators and

are thus harder to detect [58]. However, in our case, they are also accompanied by a

spontaneous breaking of inversion symmetry, which may be observed as a “breathing”

distortion of the pyrochlore lattice.

Table 4.9 indicates that one paraphase can give rise to several distinct order parame-

ters. In general, the presence or absence of a given order parameter is determined by the

particular form of the GL theory governing the phase transition. However, for some para-

phases, we can argue that several distinct orders are intertwined in the sense that they

always accompany one another, regardless of the GL parameters. This highly nontriv-

ial result emerges because the magnetically ordered phases are obtained by condensing

fractionalized excitations (spinons) that transform projectively under symmetries.

To analyze the general intertwining between distinct orders for a given paraphase,

we form an orthogonal basis for the (real) order parameters {ΨR,1, · · · ,ΨR,NR} that
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Table 4.10: Irreducible representations of the point group Oh and the corresponding
symmetry-breaking orders. For some representations, simple examples of order param-
eters are provided in terms of the spins Si at sites i, where ri is the vector from site i
to the center of the nearest “up” tetrahedron, ni,j is the vector from site i to site j, and
λi,j = ±1 for bonds 〈i, j〉 in “up” and “down” tetrahedra, respectively. Note that the
scalar representation A1g does not break any symmetries and hence does not correspond
to any order.

Irrep Dim.
Standard name of Simple example of order

corresponding order parameter in terms of spins
A1g 1 (N/A) 1
A2g 1 All-in-all-out

∑
i ri · Si

Eg 2 XY antiferromagnet
T1g 3 Ferromagnet

∑
i Si

T2g 3 Palmer-Chalker
∑

i ri × Si
A1u 1

∑
〈i,j〉 λi,j(Si · Sj)

A2u 1
∑
〈i,j〉ni,j · (Si × Sj)

Eu 2
T1u 3

∑
〈i,j〉(ri × ni,j)× (Si × Sj)

T2u 3
∑
〈i,j〉ni,j × (Si × Sj)

transform under each distinct irrep R. Note that NR is the product of the irrep dimension

and the multiplicity of the irrep in the reducible representation. Since each symmetry

acts on the vector (ΨR,1, · · · ,ΨR,NR) by an orthogonal matrix, the quadratic term WR =∑NR
j=1 Ψ2

R,j must be a scalar transforming under A1g. This scalar can be interpreted as

the “weight” of the given irrep; since it is a function of the condensation fields χn, it

may vanish for some special configurations of these fields, indicating the absence of the

corresponding order. In contrast, the total weight of all irreps,

W0 =
∑
R

WR =
∑
R

NR∑
j=1

Ψ2
R,j ∝ (

∑
n

χ2
n)2, (4.48)

is nonzero for all field configurations, indicating that at least one order must always be

present.
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For each paraphase, however, the irreps R may be partitioned into classes C1⊕· · ·⊕Cq

(see Table 4.9) such that the total weight of each class C = {R1, · · · , RNC}, containing

some nontrivial subset of all irreps, is proportional to the total weight of all irreps,

WC =
∑
R∈C

WR =
∑
R∈C

NR∑
j=1

Ψ2
R,j ∝ W0, (4.49)

and is thus nonzero for all configurations of the condensation fields. Consequently, at

least one order from each class C must always be present, regardless of the GL parameters.

In the most extreme scenario, when each irrep forms its own class, such that WR ∝ W0 for

all irreps R, the orders are maximally intertwined, i.e., all of them must appear together.

For certain paraphases, one can argue for this scenario by counting all possible quadratic

scalars that can be formed from the order parameters or, equivalently, all possible fourth-

order scalars that can be formed from the condensation fields. There is always at least one

such scalar, (
∑

n χ
2
n)2; however, if there is only one such scalar, it is clear that the weight

WR of each irrep R must be proportional to this scalar, and all orders must therefore be

simultaneously present.

While we do not analyze the general intertwining between distinct orders in all para-

phases, we observe from the particular examples studied (see Table 4.9) that the presence

of intertwined orders is a common feature of magnetically ordered phases obtained by

spinon condensation on the pyrochlore lattice. In particular, for parent spin liquids with

nC6
= 1, where inversion symmetry acts projectively on the spinons, we generically antic-

ipate the (already intertwined) spin orders to be also accompanied by inversion-breaking

hidden orders.
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4.6 Discussion

4.6.1 Summary

In this chapter, we gave a complete classification of spin–orbit-coupled Z2 spin liquids on

the pyrochlore lattice by using the PSG method for Schwinger bosons. We studied the

mean-field Hamiltonians of the six 0-flux spin liquids at the NN level and examined the

critical field theories that describe phase transitions to ordered phases via spinon con-

densation. We found two crucially different classes of critical field theories, characterized

by dynamical exponents z = 1 and z = 2, respectively, which have distinct properties

ranging from Hamiltonian diagonalizability to experimental observables. Moreover, we

investigated the zero-momentum orders obtained from spinon condensation, both by a

näıve spin-condensation analysis and by the representation theory of the full pyrochlore

point group Oh. We found that seemingly unrelated orders are generically intertwined

with each other and that conventional spin orders are often accompanied by more exotic

inversion-breaking “hidden” orders. Finally, we calculated several physical observables

for our critical theories, including the heat capacity, as well as the static and dynamic

spin structure factors, which may be compared with experimental data.

4.6.2 Possible implications

Many pyrochlore materials have been experimentally confirmed to possess one of the

spin orders discussed in this chapter. For example, Yb2Pt2O7 has ferromagnetic order
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[24], while Nd2Zr2O7 possesses all-in-all-out order [86]. Since all of these spin orders

can appear as a result of spinon condensation from one of our Z2 spin liquids, one can

contemplate the possibility that some of these materials are proximate to such a spin

liquid.

As a particular example, one may consider Er2Ti2O7, which is confirmed to have a

Ψ2 antiferromagnetic ground state. The Ψ2 ground state is selected from the Γ5 irrep,

containing both Ψ2 and Ψ3 states, as a result of order-by-disorder mechanism, possibly

aided by virtual crystal-field effects [61, 140, 115, 73, 128]. This Ψ2 ground state is

quite stable, which suggests that, if it is obtained from an instability of a spin liquid,

such an instability should uniquely prefer Eg order. Consulting Table 4.9, we see that

the paraphase Γ of the PSG class 0-(110) has a single nontrivial irrep Eg, which is not

intertwined with any other orders. Hence, if Er2Ti2O7 is proximate to a spin liquid, a

natural candidate for its parent spin liquid is the one corresponding to the PSG class

0-(110).

One motivation of this work was to understand the puzzling experiments on Yb2B2O7,

where B = Ge, Ti, Sn. These three compounds have distinct ground states: the Ge

compound is antiferromagnetic [54], while the Ti [48] and Sn [176] compounds are fer-

romagnetic, at least when any order can be clearly identified. The Ti compound is also

sensitive to disorder. Despite the disparate ground states, inelastic neutron scattering

gives very similar spectra for all three materials [53], consisting of continuum weight

over the entire Brillouin zone down to the lowest energies resolvable in the measure-
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ments. This observation suggests that the relevant excitations are characteristic of some

common underlying structure, which is distinct from the usual spin waves tied to the

individual ordered states. The approach in this work gives one possible explanation: the

excitations may be the spinons of a parent spin-liquid state.

To identify a potential parent spin liquid, we seek a PSG class from which both

antiferromagnetic and ferromagnetic orders can be obtained through the same conden-

sation paraphase. It is clear from Table 4.1 that such classes exist; the classes 0-(001),

0-(101) and 0-(111) all satisfy this criterion. Therefore, the proximity to a spin liquid

corresponding to either of these classes can potentially explain the observed excitation

spectra. Looking at the dynamic spin structure factors in Fig. 4.4, we indeed see that

many of the critical structure factors in these classes [e.g., 0-(001)L, 0-(101)W, and 0-

(111)X] have a large scattering continuum over the entire Brillouin zone down to a very

small fraction of the spin-excitation bandwidth. It would be interesting to attempt a

more quantitative comparison with the experimental data, which would require, at the

very least, a careful consideration of effects beyond mean-field theory.

If the scattering continua in the Yb pyrochlores are reflections of a parent spin liquid,

it also suggests that hidden order may be present in these materials [53]. Indeed, from

the last column of Table 4.1, we see that the paraphases 0-(001), 0-(101) and 0-(111)

all include hidden orders breaking inversion symmetry. Searching for such inversion-

breaking orders may be an incisive test of the physical picture presented in this work;

if such an order is identified, a full characterization may be assisted by the associated
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order parameters in Table 4.10. We note that hidden order may also participate in the

specific-heat anomalies of the Yb pyrochlores [53].

4.6.3 Future directions

The present chapter explored the physics of proximity to a broad class of quantum spin

liquids on the pyrochlore lattice. Nevertheless, several assumptions in the analysis could

be modified or relaxed in future work. We focused on Z2 spin liquids and used the

framework of bosonic spinons; it would be interesting to consider U(1) spin liquids and

explore fermionic spinons as well. The fermionic approach does not, however, provide

a simple mean-field way to study magnetic instabilities, which is straightforward with

bosonic spinons by condensing them.

In addition, the PSG results may be further exploited even within the framework of

bosonic spinons. We concentrated on the 0-flux NN mean-field Hamiltonians for simplic-

ity, assuming that NNN terms do not qualitatively change our results. This assumption,

however, is not necessarily true; in certain cases, a NNN term one-tenth as strong as

a NN term can already change the condensation momenta. Moreover, the π-flux PSG

classes may exhibit interesting physics of their own. These PSG classes have a fourfold

enlarged unit cell due to nontrivial translational PSG along the ê2 and ê3 directions,

which leads to a 64 × 64 mean-field Hamiltonian in terms of the parameters in Table

4.2. Multi-spinon condensation may further enlarge the magnetic unit cell. In turn,

this enlargement results in a complex spinon spectrum that probably requires a more
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computational approach.

We also presumed that the full symmetry group of the pyrochlore lattice is preserved

at the level of the spin Hamiltonian. However, there is a large family of “breathing”

pyrochlore materials [116, 77, 126] that explicitly break inversion symmetry (Fd3m →

F43m) by expansion and contraction of alternating tetrahedra. One material from this

family, Ba3Yb2Zn5O11, was reported to remain disordered down to 0.38 K [77], and a

gauge mean-field theory, distinct from the spinon approach in this work, predicts that

this material may experience a non-symmetry-breaking transition between a paramagnet

and a quantum spin ice [142]. It would be interesting to see how this material (and the

phase transition predicted for it) fits into a pyrochlore PSG classification.

Finally, the PSG method can be connected to the energetics of realistic spin Hamilto-

nians. Indeed, our mean-field spinon states can in principle be used as variational wave

functions, as can their so far unexplored fermionic counterparts. Calculating variational

energies for these wave functions would require a major effort in variational Monte Carlo

in three dimensions; it is well beyond the present work but is quite worthwhile to explore.
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Chapter 5

U(1) and Z2 symmetric spin liquids in

pyrochlore: a fermionic classification

5.1 Introduction

Quantum spin liquids (QSLs) are zero temperature phases of quantum magnets in which

localized spins evade magnetic long-range order due to strong quantum fluctuations and

form liquid-like states [138]. Such states are fundamentally characterized by intrinsic

long-range entanglement and support nonlocal excitations carrying fractionalized quan-

tum numbers. These nonlocal fractionalized excitations interact with each other via an

emergent gauge field. Therefore, QSLs are naturally described in terms of gauge theories.

At a coarse level, different QSLs can be classified by their underlying low energy

effective theories. Depending on whether a mass exists, the fractionalized spinon exci-
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tations (the matter fields) may or may not bear relevance to the low energy description

of QSLs. The gauge field may also be gapless as is a U(1) gauge field of photons, or

gapped as is a Z2 gauge field which is of topological nature. All these types have been

extensively studied in two dimensions (2D). Perhaps the most well-known Z2 QSL is the

Kitaev model on the 2D honeycomb lattice: this model supports either gapped or gapless

Majorana fermions [78]. On the other hand, a compact U(1) gauge theory is confined

in 2D [121], and a QSL corresponding to the deconfined phase can appear only in the

presence of gapless matter fields. So far, the two most studied examples are spinon Fermi

surface and Dirac U(1) QSLs. On the experimental side, promising Kitaev materials in-

clude a family of honeycomb iridates [152] and α-RuCl3 [8], and new proposals are still in

progress [62]. A spinon Fermi surface U(1) QSL has been speculated to emerge in the 2D

layered triangular materials YbMgGaO4 and NaYbSe2 [118, 146, 37], while a U(1) Dirac

QSL may be relevant for the 2D layered kagome material Herbertsmithite [123, 173].

The recent material NaYbO2 may also realize a Dirac U(1) spin liquid [38, 14]. These

spin liquid candidates provide a natural ground for the experimental realization of exotic

quantum phenomena such as quantum electrodynamics in three dimensional spacetime

(QED3) and 2D topological order.

Moving to the three-dimensional (3D) world, arguably the most studied examples

are QSLs on the pyrochlore lattice. Consisting of corner-sharing tetrahedra, the geomet-

rically frustrated pyrochlore lattice has been proposed to host a QSL phase since the

birth of the concept of QSLs [1]. An important theoretical advance occurred in 2004:
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through a rigorous mapping, Ref. [63] showed that the pyrochlore Heisenberg model with

local Ising anisotropy has a U(1) QSL phase, commonly known as quantum spin ice,

which is described by the Maxwell theory at low energies. Since then, the properties

of such pyrochlore QSLs have been extensively studied [63, 137, 175, 171], and numer-

ous experiments have reported liquid-like behaviors in rare-earth pyrochlore materials

[148, 150, 43, 49, 85].

Given the interest in quantum spin ice that realizes a prototypical low energy theory,

it is compelling to ask whether there are other spin liquids whose low energy theory is of

a new prototype. In a narrower sense, this amounts to asking if gauge fields can interact

with novel forms of gapless matter fields. This has indeed been considered in other

works. For example, Refs. [169, 107] considered a class of QSLs with symmetry protected

quadratic spinon band touchings for the triangular spin liquid candidates Ba3NiSb2O9,

κ-(BEDT-TTF)2Cu2(CN)3, and EtMe3Sb[Pd(dmit)2]2. In three dimensions, Refs. [67,

82] studied possible symmetric spin liquids on the hyperkagome lattice and found that

certain classes possess gapless nodal lines of spinons along high symmetry paths in the

Brillouin zone. A similar conclusion was drawn in Ref. [23] for a QSL on the pyrochlore

lattice. However, in these two 3D examples it is not clear whether such gapless nodal

structures are stable against perturbations. Nodal lines of excitations also appear in other

spin liquids, which are either robust against gauge fluctuations [103, 112] or symmetry

protected [181].

Another more systematic, yet formal, way of classifying QSLs is based on their sym-
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metry properties. Due to the absence of magnetic long-range order, a QSL state usually

preserves the full symmetry of the lattice and it may also preserve time reversal symme-

try. Crucially, due to the emergent gauge structure, the fractionalized excitations of the

system carry a projective representation of the symmetry group—a representation of the

group extension of the original symmetry group by the gauge structure. The classification

of symmetric spin liquids can therefore be achieved by classifying all the distinct projec-

tive representations for a given lattice symmetry and a given gauge group type. In his

seminal work [165], Wen coined this procedure the classification of projective symmetry

groups (PSGs). The PSG approach has led to many fruitful results in our understanding

of symmetric spin liquids. For example, we now know that there are at most 20 different

Z2 QSL classes on the kagome [99] and triangular [97] lattices with distinct projective

symmetries for fermionic spinons, while the analogous numbers for the 3D hyperkagome

[82] and hyperhoneycomb [66] lattices are 3 and 160, respectively. The idea of the PSG

has also been applied to the pyrochlore lattice, in the hope of identifying experimental

spin liquid candidates within the classification [11, 23, 29, 33, 94].

In this work, we apply the PSG method for Abrikosov fermions to give a complete

classification of symmetric QSLs on the pyrochlore lattice with either Z2 or U(1) gauge

type. For each gauge type, we first consider only space group symmetry, and later add

time reversal symmetry. In general, we allow spin–orbit coupling in the underlying spin

system and do not require SU(2) spin rotation symmetry. By following the general PSG

principle to solve the gauge-symmetry consistency equations, we find that there can be
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at most 18 and 28 symmetric quantum spin liquids preserving the pyrochlore PSG for

the U(1) and Z2 gauge types, respectively. When time-reversal symmetry is imposed,

the number of possible symmetric spin liquids is reduced to 16 for the U(1) type and

is increased to 48 for the Z2 type. For each class, the most general symmetry-allowed

spinon mean-field Hamiltonian is given. Importantly, we find that a large family of spinon

Hamiltonians possesses gapless nodal lines along the four equivalent (111) directions of

the Brillouin zone. We call this unusual nodal structure a “nodal star” and show that it

is stable at the mean-field level as it is protected by the projective threefold rotation and

screw symmetries of the system. We then go beyond the mean-field level and consider

a full-fledged low energy theory of the spinon nodal star coupled to a U(1) gauge field.

Specifically, we obtain thermodynamic properties of the system by computing the photon

contribution to the free energy. We find that the two most dominant low temperature

contributions to the specific heat are C ∼ T 3/2 from the bare spinons and C ∼ T 3/2/ lnT

from the photon–spinon interactions. This scaling of the low temperature specific heat

may serve as a clear evidence for the experimental discovery of a nodal star U(1) QSL.

The rest of the chapter is organized as follows. In Sec. 5.2, we apply the PSG pro-

cedure to the classification of pyrochlore QSLs with or without time reversal symmetry.

In Sec. 5.3, we construct mean-field Hamiltonians for the fermionic spinons and analyze

their symmetry properties. We prove that several mean-field Hamiltonians obtained from

the U(1) PSG possess symmetry protected nodal lines. In Sec. 5.4, we construct a con-

tinuum model for the spinon nodal lines coupled to a U(1) gauge field, and consider the
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thermodynamic properties of the system. Finally, we summarize and discuss our results

in Sec. 5.5.

5.2 Classification result

We first solve the PSG equations obtained from space group symmetries. The PSG

equations for U(1) and Z2 gauge groups are solved in App. A.6 and App. A.7, respectively.

The results are presented in Table 5.1 for the U(1) gauge group and in Table 5.2 for the

Z2 gauge group. We find 18 gauge-inequivalent PSG solutions for the U(1) gauge type

and 28 gauge-inequivalent PSG solutions for the Z2 gauge type. As a result, there can

be at most 18 U(1) and 28 Z2 symmetric spin liquids, ignoring possible time reversal

symmetry. Both the U(1) and the Z2 solutions have the following form:

WTi(rµ) = eiσ
3φTi (rµ), i = 1, 2, 3, (5.1a)

WC6
(rµ) = WC6,µ

eiσ
3φC6

(rµ), (5.1b)

WS(rµ) = WS,µe
iσ3φS(rµ), (5.1c)

with

φT1(rµ) = 0, (5.2a)

φT2(rµ) = −χ1r1, (5.2b)

φT3(rµ) = χ1(r1 − r2), (5.2c)

φC6
(rµ) = −χ1r1(r2 − r3)− [2χST1 + 2χ1 + (δµ,2 − δµ,3)χ1]r1 + δµ,2χ1r3, (5.2d)

φS(rµ) = χ1

[
(r1 + 1)r1

2
− (r2 + 1)r2

2
− r1r2

]
+ [(δµ,1 − δµ,2)χ1 + (2χ1 − χST1)]r1

+[(2δµ,1 − δµ,2)χ1 + 3χST1 ]r2 + [(δµ,1 − δµ,2) + 2]χ1r3. (5.2e)
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The parameters χ1 and χST1 are elements of the IGG defined on the right-hand sides of

the PSG equations obtained from Eq. (A.4). Concretely:

• The parameter χ1 is associated with TiTi+1T
−1
i T−1

i+1 = 1, and physically quantifies

the Aharonov-Bohm (AB) phase a spinon accumulates under such a sequence of

translations. The AB phase is a gauge invariant quantity. In U(1) PSG, such a

phase is allowed to take on values 0, π and π/2. They give rise to zero-flux, π-flux

and π
2
-flux spin liquids, respectively. The π

2
-flux spin liquid explicitly breaks time

reversal symmetry since a π
2

flux changes sign under time reversal operation. In Z2

PSG, only 0- and π-flux spin liquids are found.

• The parameter χST1 is associated with ST1S
−1T−1

3 T1 = 1, and physically quantifies

the AB phase a spinon accumulates under the sequence of operations ST1S
−1T−1

3 T1.

Such a phase is allowed to take on values 0 and π in both U(1) and Z2 PSGs.

WC6,µ
and WS,µ in Eqs. (5.1b) and (5.1c) are the SU(2) matrices at the origin, rµ = 0,

which depend on additional discrete parameters as given in Tables 5.1 and 5.2 for the two

gauge types. The parameters χC6S
, χC6

and χSC6
are elements of the IGG associated

with (C6S)4 = 1, I2 = 1 and (IS)3 = 1, respectively, and have the same AB phase

interpretation as explained above. We note that two additional parameters wC6
and wS

appear in the U(1) PSG classification: they are Z2-valued (w = 0, 1) and determine

whether or not the SU(2) matrices WC6,µ
and WS,µ belong to the IGG. It is necessary to

introduce these two parameters in the U(1) case a priori in order to simplify the SU(2)

PSG equations to U(1) phase equations for φO(rµ). This is not required in the Z2 case,
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since the phases φO(rµ) are Z2-valued and commute with WC6,µ
and WS,µ. The SU(2)

equations for WC6,µ
and WS,µ, however, do rely on an additional discrete parameter j in

some classes (see Table 5.2).

In the second step, we include the time reversal operation T in the symmetry group.

In an appropriate gauge, the solution for time reversal operation can be chosen as

WT (rµ) = iσ1 (5.3)

for U(1) gauge type and

WT (rµ) = iηµσ
k (5.4)

for Z2 gauge type, where k = 1, 2, 3 depends on the PSG class and ηµ = ± is a sublattice-

dependent sign factor. Applying this gauge choice and the space group PSG solutions in

Eq. (5.1) to the time reversal PSG equations associated with Eqs. (A.4i) and (A.4j), we

obtain the PSG solutions for time reversal invariant symmetric spin liquids. We find that

there are 16 classes for the U(1) gauge type and 48 classes for the Z2 gauge type. We

list these classes again in Tables 5.1 and 5.2 for U(1) and Z2 gauge groups, respectively

and explicitly mark the data that are specific to the time reversal symmetric classes.
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It is worth pointing out that including time reversal symmetry to the PSG has oppo-

site effects on the U(1) and the Z2 classes. In U(1) PSG, the presence of time reversal

symmetry forbids the two π
2
-flux PSG classes (last line of Table 5.1), thereby reducing

the total number of PSG classes from 18 to 16. On the other hand, in Z2 PSG, adding

time reversal symmetry introduces two additional discrete parameters χT C6
and χT S in

the labeling of the time reversal invariant classes (see columns 7 and 8 of Table 5.2).

These two parameters are the IGG elements associated with Eq. (A.4j) for O = C6

and S, respectively, and characterize the phases that a spinon acquires in completing

the corresponding spacetime processes. We find that 20 classes obtained from the pure

space group PSG are further “fractionalized” as a result of these additional parameters,

thereby increasing the total number of PSG classes from 28 to 48. In U(1) PSG, χC6T

and χST do not increase the number of classes since they are fully determined by the Z2

parameters wC6
and wS that are already introduced for the pure space group PSG. The

phenomenon described here in fact also happens in the classification of other projective

lattice symmetries: it is generally true that adding time reversal symmetry will increase

the number of Z2 PSG classes and reduce the number of U(1) PSG classes.

5.3 Analysis of the mean-field ansätze

The PSG classification in the last section provides the symmetry constraints on con-

structing Hamiltonians that describe fractionalized spinons in symmetric U(1) and Z2

spin liquids. Since the gauge fields are deconfined in a spin liquid phase, a good de-
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scription for the spinons is already achieved at the mean-field level. In this section, we

present a complete list of parton mean-field Hamiltonians for symmetric spin liquids on

the pyrochlore lattice. These Hamiltonians can either be analyzed in their own right,

or serve as a first step towards a more realistic description of spin liquids upon adding

spinon interactions or fluctuating gauge fields.

5.3.1 Construction of the mean-field ansätze

We are now in the position to construct the mean-field ansatz for each PSG class. The

most general mean-field ansatz for fermionic spinons can be written as

H =
∑

α=0,x,y,z

Hα, Hα =
∑
rµ,r′ν

Hα
rµ,r′ν

,

Hα
rµ,r′ν

= Tr
[
σαΨrµu

(α)
rµ,r′ν

Ψ†r′ν

]
,

(5.5)

where u
(α)
rµ,r′ν

with α = 0, x, y, z contain all the sixteen real parameters for the bond

rµ → r′ν ,

u
(0)
rµ,r′ν

= ia0
rµ,r′ν

1− (b0
rµ,r′ν

σ1 + c0
rµ,r′ν

σ2 + d0
rµ,r′ν

σ3),

u
(x)
rµ,r′ν

= axrµ,r′ν1 + i(bxrµ,r′νσ
1 + cxrµ,r′νσ

2 + dxrµ,r′νσ
3),

u
(y)
rµ,r′ν

= ayrµ,r′ν1 + i(byrµ,r′νσ
1 + cyrµ,r′νσ

2 + dyrµ,r′νσ
3),

u
(z)
rµ,r′ν

= azrµ,r′ν1 + i(bzrµ,r′νσ
1 + czrµ,r′νσ

2 + dzrµ,r′νσ
3).

(5.6)

Note that 1 denotes the 2× 2 identity matrix.

The bond parameters are subject to constraints provided by the PSG. The PSG

operators Õ and T̃ are the symmetry operators of the Hamiltonian H, meaning Õ : H →

H and T̃ : H → H. Since the spinons transform under Õ and T̃ according to Eqs. (1.33)

and (1.35), we have the following rules:
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• For a general translation t = t1e1 + t2e2 + t3e3, we have

u
(α)
rµ,r′ν

= u
(α)
(r−t)µ,(r′−t)νe

iσ3[t2(r′1−r1)−t3(r′1−r1−r′2+r2)]χ1 ; (5.7)

• For space-group elements O ∈ {C6, S}, the singlet and the triplet parts transform

as

WO[O(rµ)]u
(0)
rµ,r′ν

W †
O[O(r′ν)] = u

(0)
O(rµ),O(r′ν),

WO[O(rµ)]u
(i)
rµ,r′ν
ROijW †

O[O(r′ν)] = u
(j)
O(rµ),O(r′ν),

(5.8)

where the SO(3) matrices RC6 and RS were given in Eq. (4.7).

• For time reversal T ,

uαrµ,r′ν = −WT (rµ)uαrµ,r′νW
†
T (r′ν). (5.9)

By solving Eqs. (5.7)-(5.9) for the sixteen real parameters at each bond, we obtain the

mean-field ansätze for the PSG classes.

The pyrochlore bonds can be categorized into equivalence classes (or orbits) of the

space group, where the bonds within each class are related by space group transforma-

tions, while the bonds in different classes are unrelated. In order to obtain the complete

mean-field ansatz, it suffices to obtain the mean-field solution for one representative bond

of each equivalence class. We choose and express these representative bonds as follows:

• We use the Greek letters α,β,γ,δ to parameterize the representative onsite bond

(0, 0, 0)0 → (0, 0, 0)0, the Latin small letters a,b,c,d to parameterize the represen-

tative nearest-neighbor bond (0, 0, 0)0 → (0, 0, 0)1, and the Latin capital letters

A,B,C,D to parameterize the representative next-nearest-neighbor (NNN) bond
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(0, 0, 0)1 → (0,−1, 0)2.

• Take the representative NN bond for example. In an ansatz for the Z2 PSG without

time reversal symmetry, all the 16 terms in Eq. (5.6) may be nonvanishing. We

then use eight complex numbers ah, bh, ch, dh, ap, bp, cp, dp to paramaterize the 16 real

parameters in this bond: explicitly, we write (omitting the bond label (0, 0, 0)0 →

(0, 0, 0)1)

u(0) = iReah1− Reapσ
1 − Imapσ

2 − Imahσ
3,

u(x) = Rebh1 + i(Rebpσ
1 + Imbpσ

2 + Imbhσ
3),

u(y) = Rech1 + i(Recpσ
1 + Imcpσ

2 + Imchσ
3),

u(z) = Redh1 + i(Redpσ
1 + Imdpσ

2 + Imdhσ
3).

(5.10)

In the U(1) PSG, we only have hopping bilinears, therefore the σ1 and σ2 terms

in Eq. (5.6) vanish, and we parameterize Eq. (5.6) as

u(0) = iRea1− Imaσ3, u(x) = Reb1 + iImbσ3,

u(y) = Rec1 + iImcσ3, u(z) = Red1 + iImdσ3.
(5.11)

The symmetry relations (5.7), (5.8), and (5.9) impose constraints on these param-

eters, and the numbers of independent real bond parameters are usually smaller than

16 or 8 in the Z2 and U(1) ansätze, respectively. To determine the independent bond

parameters, one needs to find all the symmetry operations (the so called “stabilizers”

of the symmetry group) that leave the representative bonds invariant. As an example,

time reversal symmetry leaves any bond invariant. In the U(1) case, applying the time

reversal PSG in Eq. (5.3) to Eq. (5.9) reduces the bond parameterization in Eq. (5.11)
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to

u(0) = −Imaσ3, u(x) = iImbσ3,

u(y) = iImcσ3, u(z) = iImdσ3.
(5.12)

In the Z2 case, applying the time reversal PSG in Eq. (5.4) to Eq. (5.9) reduces the

bond parameterization in Eq. (5.10) depending on the value of ηµ for µ = 0, 1:

u(0) = −Reapσ
1 − Imapσ

2, u(x) = i(Rebpσ
1 + Imbpσ

2),

u(y) = i(Recpσ
1 + Imcpσ

2), u(z) = i(Redpσ
1 + Imdpσ

2)
(5.13)

for η0 = η1 and

u(0) = iReah1− Imahσ
3, u(x) = Rebh1 + iImbhσ

3,

u(y) = Rech1 + iImchσ
3, u(z) = Redh1 + iImdhσ

3
(5.14)

for η0 = −η1. Note that the form of Eq. (5.14) coincides with that of a U(1) ansatz

[see Eq. (5.11)]. However, pairing terms (in which parameters have a subscript “p”) do

appear for other bonds (e.g., the representative NNN bond), and this is generally not a

U(1) ansatz.

The final result of the mean-field parameters for representative bonds up to NNN are

presented in Table 5.3 for the U(1) PSG and Table 5.4 for the Z2 PSG. The effect of time

reversal symmetry has also been addressed therein.
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5.3.2 Symmetry properties of the 0-flux ansätze

The symmetry constraints imposed by the PSG given in the last subsection are formulated

in real space. For analyzing the properties of the mean-field ansätze, it is more helpful to

see how the projective symmetry transformations apply in momentum space. In the 0-

flux case (χ1 = 0), the action of each projective symmetry is simple and can be explicitly

given. To start with, we define the Bogoliubov-de Gennes (BdG) basis (where the spin

indices are suppressed):

Φk =
(
fk,0, fk,1, fk,2, fk,3, f

†
−k,0, f

†
−k,1, f

†
−k,2, f

†
−k,3

)T
. (5.15)

The Hamiltonian is then written as

H =
∑
k∈BZ+

Φ†kHBdG(k)Φk, (5.16)

where the momentum sum is over half of the Brillouin zone (BZ) with, say k3 > 0. This

Hamiltonian has the standard Bogoliubov form

HBdG(k) =

( HU(1)(k) Hp(k)
H†p −HT

U(1)(−k)

)
, (5.17)

where HU(1) and Hp correspond to the hopping and pairing terms in Eq. (5.6) for the

Z2 PSG. For the U(1) PSG, the pairing terms vanish and the BdG form corresponds to

two copies of the U(1) Hamiltonian HU(1).

In terms of the BdG Hamiltonian matrix HBdG(k) describing each 0-flux ansatz, we

have the following symmetry constraints:

W †
C6,wC6

(k)HBdG(k)WC6,wC6

(k) = HBdG

(
C6(k) + µ3φST1b1

)
, (5.18)
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W †
S,wS

(k)HBdG(k)WS,wS(k) = HBdG

(
S(k) + µ3φST1(b1 + 3b3)

)
, (5.19)

where bi (with i = 1, 2, 3) are the three reciprocal lattice vectors in units of a−1, while

µi (with i = 1, 2, 3) are the Pauli matrices acting in the particle-hole space (f, f †)T . The

derivation of these equations together with the forms of WC6,wC6

(k) and WS,wS(k) can

be found in App. A.10. We point out that, due to the projective nature of the symmetry

transformation, an annihilation operation f can be mapped to either an annihilation

operator f or a creation operator f †. Therefore, the unitary matrices WO,wO(k) with

O = C6, S are either off-diagonal (corresponding to wO = 1) or diagonal (corresponding

to wO = 0) in the particle-hole space. Let us understand the implications of this property

for a U(1) 0-flux ansatz with wC6
= 1 by considering the action of I = C

3

6:

wC6
= 1 : W †

IHU(1)(k)WI = −H∗U(1)(k) ∀k ∈ BZ. (5.20)

Therefore, projective inversion acts like the product of faithful inversion and charge

conjugation, which ensures that the energies come in ±E(k) pairs for the entire BZ.

5.3.3 0-flux U(1) ansätze with wS = 1: projective symmetry

protected gapless nodal star

Unlike the wC6
= 1 classes, a 0-flux U(1) ansatz with wC6

= 0 does not necessarily have

energy levels coming in ±E(k) pairs at each momentum k. However, in the case of

wS = 1 (regardless of wC6
), there exists a one-dimensional (1D) submanifold in the BZ
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Figure 5.1: Illustration of the nodal star Fermi surface; the contour corresponds to an
energy infinitesimally above the Fermi level.

along which this is true. In fact, along this submanifold,

Λ = {(ς1, ς2, ς3)k|ς1,2,3 = ±}, (5.21)

the energy levels not only come in ±E(k) pairs, but are always gapless at E = 0,

i.e., there are always two degenerate modes sitting at the Fermi energy. We call this

1D submanifold Λ the star manifold, and refer to the gapless modes as the nodal star

zero modes; see Fig. 5.1 for an illustration. A direct check by adding up to 8th-nearest

neighbor bonds with generic bond parameters shows that the zero modes are robust as

long as the projective symmetries are intact. This is strong evidence that the nodal star

zero modes are not accidental but are protected by the projective symmetries.

Such a nodal star structure has been reported in other contexts. In Ref. [23], Burnell

et al. studied an SU(2) invariant ansatz with purely imaginary NN hoppings forming

π/2 fluxes on all pyrochlore faces: the so-called “Monopole Flux” state. Such an ansatz

preserves charge conjugation, the product of inversion and time reversal I ◦ T , and the

24 “proper elements” of the point group Oh, but it breaks the individual time reversal
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and inversion symmetries. The 24 “proper elements” and the composed symmetry I ◦ T

allow the mapping of one NN bond to all the other NN bonds, while charge conjugation

and I ◦ T ensure that the Hamiltonian is real and an odd function of k. An algebraic

proof was then given to show that the matrix structure on the star submanifold leads to

nodal star zero modes and that the symmetries forbid a chemical potential which could

otherwise gap out the nodal star. However, the proof relies on the restriction of the

hopping to the nearest neighbors, and it is not clear in the proof if the nodal star is truly

symmetry protected, i.e., whether further neighbor symmetry allowed hoppings can gap

out the nodal star. A similar nodal star state also appears in the bosonic description

of a Z2 spin liquid [94] at the NN level. In that case, it was explicitly shown that an

infinitesimal NNN bond amplitude is enough to gap out the nodal line to discrete points.

Here, we provide a proof that the nodal star zero modes appearing in our wS = 1

classes are indeed protected by the projective symmetries, see App. B.1. The proof is

algebraic, and can be viewed as a generalized version of that given in Ref. [23]. The

proof relies on the following observation: while an unprojective screw symmetry relates

the Hamiltonian at momentum k = (kx, ky, kz) with that at momentum (ky, kx,−kz), a

projective screw symmetry relates the Hamiltonian at momentum k = (kx, ky, kz) with

that at momentum (−ky,−kx, kz). Therefore, focusing on the (1, 1, 1) nodal line without

loss of generality, the symmetry operation

R ≡ S ◦ C3 ◦ C3 ◦ S ◦ C3 ◦ S (5.22)

leaves the momenta along the nodal line unchanged in the case of a projective S. This
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symmetry constrains the Hamiltonian along the nodal line [cf. Eq. (5.20)],

W †
R(k, k, k)HU(1)(k, k, k)WR(k, k, k) = −H∗U(1)(k, k, k), (5.23)

and implies that the energy levels come in ±E(k) pairs. Considering the analogous

action of the threefold rotation C3 [which also maps (k, k, k) to (k, k, k)],

W †
C3

(k, k, k)HU(1)(k, k, k)WC3(k, k, k) = HU(1)(k, k, k), (5.24)

and the specific forms ofWR(k, k, k) andWC3(k, k, k), it can then be shown (see App. B.1)

that the rank of the matrix HU(1)(k, k, k) is at most 6, which implies that it has at least

two zero eigenvalues. Since our proof only relies on the symmetry properties of the

spinon Hamiltonian, the result universally applies to any fully symmetric mean-field

ansatz with a projective screw symmetry (wS = 1), even beyond the NN (or NNN) level.

In turn, this suggests that a pyrochlore spin liquid with a nodal star Fermi surface may

be commonplace.

Lemma 5.3.1 define a 6× 6 matrix

A(x, y, z) ≡

 x(σ2 − σ3) y(σ1 − σ2) z(σ3 − σ1)
z(σ1 − σ2) x(σ3 − σ1) y(σ2 − σ3)
y(σ3 − σ1) z(σ2 − σ3) x(σ1 − σ2)

 , (5.25)

(what we will use later is a special case with (x, y, z) = (c, c′, c′∗).) then its inverse is

(A(x, y, z))−1 =
A(x2 − yz, z2 − xy, y2 − xz)

2(x3 + y3 + z3 − 3xyz)
. (5.26)

Furthermore, define a 2× 6 matrix

B(α, β, γ, δ) ≡
(
ασ0 + (β, γ, δ) · σ, ασ0 + (δ, β, γ) · σ, ασ0 + (γ, δ, β) · σ

)
(5.27)
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and a 6× 2 matrix

C(α′, β′, γ′, δ′) ≡

 α′σ0 + (β′, γ′, δ′) · σ
α′σ0 + (δ′, β′, γ′) · σ
α′σ0 + (γ′, δ′, β′) · σ

 (5.28)

then for any complex ζ we have (be wary of the switching δ ↔ γ between B and C below)

B(α, β, γ, δ) (A(x, y, z))−1C(ζα, ζβ, ζδ, ζγ) = 0. (5.29)

The proof of this Lemma is elementary.

Now we use the lemma to prove that the existence of nodal star. The U(1) 0-flux

mean-field ansätze correspond to an 8 × 8 matrix HU(1)(k) in the momentum space,

with basis the parton operators (f0k↑, f0k↓, f1k↑, f1k↓, f2k↑, f2k↓, f3k↑, f3k↓)
T . We abbrevi-

ate HU(1)(k) by H(k) for the rest of this appendix. For U(1) 0-flux states with the PSG

number wS = 1, we have the threefold rotation symmetry C3 along (1, 1, 1) axis, and the

screw symmetry S:

W †
C3

(k)H(k)WC3(k) = H(kz, kx, ky),

W †
S(k)H(k)WS(k) = −HT (−ky,−kx, kz),

(5.30)

notice the second line is specific to wS = 1. Now define the operation R ≡ S ◦ C3 ◦

C3 ◦ S ◦ C3 ◦ S. Then we notice that Eqs. (5.23) and (5.24) hold, meaning that R and

C3 both map the momentum (k, k, k) back to itself. Now, assume the most general form

of an 8 × 8 hermitian matrix HU(1)(k, k, k) = [hµν ], where hµν are 2 × 2 blocks with

µ, ν = 0, 1, 2, 3. Using the special form of WC3(k, k, k) and WR(k, k, k), we can show step

by step the following:

• h00 = 0, h11 = c(σ2 − σ3), h22 = c(σ3 − σ1), h33 = c(σ1 − σ2), where c is some real

parameter;
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• h12 = c′(σ1 − σ2), h13 = c′∗(σ3 − σ1), h23 = c′(σ2 − σ3), where c′ is some complex

parameter;

• h01 = a′′σ0 + (b′′, c′′, d′′) · σ, h02 = a′′σ0 + (d′′, b′′, c′′) · σ, and h03 = a′′σ0 +

(c′′, d′′, b′′) ·σ, where (a′′, b′′, c′′, d′′) are complex parameters satisfying a′′eik = −a′′∗,

eik(−b′′,−d′′,−c′′) = (b′′∗, c′′∗, d′′∗).

Therefore the Hamiltonian can be written in the form

H(k, k, k) =

(
0 B
C A

)
, (5.31)

where A is a 6 × 6 block containing hij blocks with i, j = 1, 2, 3, B is a 2 × 6 block

containing h01, h02 and h03, and C = B†. Using the above Lemma, we can show that

BA−1C = 02×2, therefore using the standard matrix decomposition, we have

H(k, k, k) =

(
12×2 BA−1

0 16×6

)(
0 0
0 A

)(
12×2 0
A−1C 16×6

)
, (5.32)

we see that the rank of HU(1)(k, k, k) is smaller or equal to 6, i.e. HU(1)(k, k, k) at

least has two zero eigenvalues. The existence of zero eigenvalues of HU(1)(−k,−k, k),

HU(1)(−k, k,−k) and HU(1)(k,−k,−k) then follows.

5.4 Nodal star U(1) spin liquid

In this section, we restrict ourselves to the study of U(1) spin liquids with a gapless

nodal star structure as was put forward in the last subsection. Our goal is to develop

a full-fledged low energy theory whose degrees of freedom include both the nodal star

spinons and the U(1) gauge field. The gauge field has physical consequences and may
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lead to observable effects. Such effects have been explored in U(1) spin liquids with

a spinon Fermi surface where the U(1) gauge fluctuations lead to T 2/3 and T ln(1/T )

scaling in the specific heat for two and three spatial dimensions, respectively [145, 110].

These non-Fermi liquid behaviors have been important experimental touchstones for the

discovery of spinon Fermi surface U(1) spin liquids. In this regard, it is interesting to ask

how gauge fluctuations affect the thermodynamic properties of the nodal star U(1) spin

liquid. We hope that the answer to this question provided in this section can serve as a

primer for the more interesting properties of the nodal star U(1) spin liquid.

5.4.1 Low energy effective model for spinon nodal bands

In this subsection, we take a specific class of nodal star spin liquid and study its low energy

properties in detail. We choose the U(1) class 0–(1 1)–(0 π) and only keep the NN mean-

field parameters b = ibi and c = cr. Although the energy at arbitrary momentum cannot

be written in a closed form, the energies along the star (ς1k, ς2k, ς3k) ∈ Λ have a simple

expression:

E1,2 = 0, E3 = −E4 = 4
√

2cr, E5,6 = −E7,8 =
√

6b2
i + 20c2

r − 6(b2
i − 2c2

r) cos k.

(5.33)

For simplicity, we set bi =
√

2cr; this specific ansatz should be continuously connected

to those at other parameter regions. The low energy dispersion along the nodal lines and
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in vicinity of the Γ point is then well described by the following effective Hamiltonian:

H(k) = dk · σ, (5.34a)

dk =


cos k3 − cos k2

cos k1 − cos k3

cos k2 − cos k1

 . (5.34b)

Along each momentum section perpendicular to the star lines, the spinon field has the

dispersion of a 2+1D Dirac field, where the Dirac velocity v =
√

3 sin k is a sinusoidal

function of the star momentum (ς1k, ς2k, ς3k). In the vicinity of the Γ point, the model

can be further simplified by expanding dk:

dk = (k2
2 − k2

3, k
2
3 − k2

1, k
2
1 − k2

2) +O(k4). (5.35)

The spinon nodal star creates an interesting instance of U(1) gauge fields interacting

with gapless matter. This is in contrast with the quantum spin ice model established

in Ref. [63] where the matter fields are gapped and the low energy description is the

Maxwell theory.

5.4.2 Nodal star spinons with U(1) gauge field

We now assume that the nodal star spinons are coupled to a U(1) gauge field. The low

energy effective Hamiltonian describing the spinon nodal bands in Eq. (5.34a) corresponds

to a Lagrangian

L0 = ψ†k(−ik0 +H(k))ψk, (5.36)
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where we use the imaginary time formulation and denote k = (k0,k) as the four-

momentum in Euclidean spacetime. The U(1) gauge field has a Maxwell term

LM =
1

2g2
Aµ(k)(k2δµν − kµkν)Aν(−k), (5.37)

which emerges in this low energy effective theory by integrating out the high energy

spinon bands. Finally, the gauge field couples to the spinon fields in the form of

L1 =
∑
q

iA0(−q)ψ†k−q/2ψk+q/2 + Ai(−q)ψ†k−q/2
∂H(k)

∂ki
ψk+q/2

+
∑
q,q′

Ai(q)Aj(q′)ψ†k+q′
∂2H(k)

∂kj∂ki
ψk−q +O(A3),

(5.38)

where the first line is the usual minimal coupling terms and the second line is a diamag-

netic coupling term. The complete theory describing the low energy nodal star spinons

and the U(1) gauge field is thus

L = L0 + LM + L1 + Lgf + Lgh, (5.39)

where we have also included a gauge fixing term and a ghost term for later use [120]:

Lgf =
1

2ξ
kµkνA

µ(k)Aν(−k), (5.40a)

Lgh =
1

g2
η̄kk

2ηk. (5.40b)

It is the goal of the next subsection to derive an effective theory for the photon field.
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Figure 5.2: The two diagrams for the photon self-energy at one loop level: the “vacuum
polarization bubble” (left) and the “tadpole” (right). Solid (wavy) lines denote spinon
(photon) propagators.

5.4.3 Vacuum polarization for the emergent photons

We follow the usual perturbative approach to calculate the photon effective action within

the random phase approximation (RPA). The validity of this calculation will be com-

mented below.

At one-loop level, the spinon-gauge coupling L1 produces two diagrams for the photon

self-energy, as shown in Fig. 5.2. Due to gauge invariance, the photon self-energy must (i)

vanish when q → 0 and (ii) satisfy the Ward identity at small q. We prove these properties

at one-loop level in Appendix B.1. We show that, at q = 0, the two diagrams of Fig. 5.2,

the “vacuum polarization bubble” and the “tadpole”, cancel each other. Furthermore,

at q 6= 0, the corrections to the tadpole are only O(q2), while, as we will show below,

there are corrections to the vacuum polarization bubble at a lower order of q. Therefore,

at leading order in q, the photon self-energy can be identified as the q-dependent part of

the vacuum polarization bubble. Ignoring a minus sign resulting from the fermion loop,

the vacuum polarization bubble reads

Πµν(q) =

∫
d4k

(2π)4
Tr
[
Γµ(k)G0(k +

q

2
)Γν(k)G0(k − q

2
)
]
, (5.41)
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where G0(k) = 1
ik0−H(k)

is the Green’s function for the bare spinon Lagrangian L0, and

the vertex Γµ obtained from Eq. (5.38) has the following form:

Γ0(k) = i12×2, Γ1(k) = sin k1(σ2 − σ3),

Γ2(k) = sin k2(σ3 − σ1), Γ3(k) = sin k3(σ1 − σ2).
(5.42)

While the anisotropic forms of the Hamiltonian [Eq. (5.36)] and the vertices [Eq. (5.42)]

make it difficult to evaluate the polarization in Eq. (5.41) exactly, it is physically clear

that there are two distinct momentum regions in the BZ. These two regions, the star

region and the gapped region away from the star, result in different scalings of the photon

self energy. The contribution from the gapped region away from the nodal lines, Π1, is

O(q2), as can be directly seen from expanding the polarization in Eq. (5.41). The final

result for Π1 is constrained by the Ward identity (see Appendix B.1) to have the form

of the bare Maxwell term in Eq. (5.37), hence it simply renormalizes the corresponding

coupling constant g. In contrast, the contribution from the star region, Π0, is linear in q

with logarithmic corrections. This means that Π0 completely dominates over Π1 at low

energy and small momentum. In the following, we focus on the calculation of Π0.

We first provide an intuitive understanding for the linear scaling Π0 ∼ |q| and the

existence of logarithmic corrections. In the BZ, each plane perpendicular to the nodal

direction has a Dirac dispersion E = v|k⊥| with a Dirac velocity v =
√

3 sin k‖ that is a

sinusoidal function of the nodal line momentum (ς1, ς2, ς3)k‖. Restricted to such a plane,

the spinon-gauge coupled system can be viewed as a QED3. The vacuum polarization

diagram in QED3 scales linearly in q⊥ = (q0, vq⊥) as

Πab
QED3 =

√
q2
⊥

(
δab − qa⊥q

b
⊥

q2
⊥

)
, a = 0, 1, 2. (5.43)
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The polarization of one nodal line branch can therefore be obtained by considering copies

of QED3 interacting with each other. To the leading order of q, these QED3 copies are

decoupled, and we find that the polarization in the star region, Π0, summed over these

QED3 copies and over different line branches, scales linearly with q. Note, however, that

this picture is oversimplified as the vanishing Dirac velocity at the Γ point would lead to

unphysical divergence in the limit of q0/|q| → 0 when integrating over copies of QED3:∫ π

0

dk‖Π
00
QED3 ∼

∫ π

0

dk‖
1√

q2
0 + q2

⊥ sin2 k‖

q0/|q⊥|→0−−−−−−→ divergent! (5.44)

In reality, the quadratic dispersion near the Γ point takes over as the Dirac dispersion

flattens, which removes the unphysical divergence and introduces a small momentum

cutoff θ0 for the nodal line momentum k‖. The cutoff is determined by the criterion that

the Dirac dispersion becomes comparable to the quadratic dispersion around the Γ point,

v|k⊥| ∼ k2, which gives θ0 ∼ |k| and thus changes the integration range in Eq. (5.44) as∫ π

0

dk‖ →
∫ π−|q|

|q|
dk‖. (5.45)

This cutoff introduces a logarithmic correction to the 00, 0i and i0 components of the

polarization tensor.

To understand the scaling behavior of Π0 in a more rigorous manner, we provide in

Appendix B.2 the scaling analysis of the vacuum polarization tensor in Eq. (5.41) for

q0/|q| � 1. We find that

Π00
0 ∼ −|q| ln

(
1

q2 + ω2/q2

)
+ |q|f00(q0/q

2), (5.46a)
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Π0i
0 ∼ iq0 ln

(
1

q2 + ω2/q2

)
+ q2f0i(q0/q

2), (5.46b)

Πij
0 ∼ |q|+ |q|3fij(q0/q

2), (5.46c)

where, in each expression, the first and the second terms denote the contributions from

the nodal lines and the region near the Γ point, respectively, while f00(x), f0i(x), and

fij(x) are regular functions for any 0 < |x| < 1. We see that, in all components of the

polarization tensor, the contribution from the Γ region is subdominant compared to that

from the nodal lines themselves.

The analysis in the preceding two paragraphs allows us to obtain the analytic form

of the dominant contribution to the photon self-energy by performing a “QED3 type”

calculation for the nodal lines. The detailed calculation can be found in Appendix B.2.

Here we stress that the “QED3 type” calculation performed here must be understood

with caution. In the usual perturbative calculation of QED3, a large parameter N (the

number of fermion flavors) is introduced to ensure the validity of the RPA and the

convergence in the infrared (IR) limit. While we introduce no explicit large parameter N

in our calculation, such a large N should be understood to be present whenever needed,

and we hope that the result can be analytically continued to the N = 1 case.

With this caution in mind, we present the final result here: at the leading order of q,

the photon self-energy is

Π(iq0, q) =
∑

ς1,ς2,ς3=±1

Πς1,ς2,ς3(iq0, q), (5.47)

where Πς1,ς2,ς3(iq0, q) is the contribution from the nodal line branch (ς1, ς2, ς3). The
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individual contributions are

Πς1,ς2,ς3(iq0, q) =

√
q2

0

16
√

3π


Q2

q2
0
F −ς1Q1

q0
F −ς2Q2

q0
F −ς3Q3

q0
F

−ς1Q1

q0
F D+

11 −ς1ς2D−33 −ς1ς3D−22

−ς2Q2

q0
F −ς1ς2D−33 D+

22 −ς2ς2D−11

−ς3Q3

q0
F −ς1ς3D−22 −ς2ς3D−11 D+

33

 , (5.48)

with

D+
ii = (1 +

Q2
ii

Q2
)F + (1− Q2

ii

Q2
)E, D−ii =

[
(
1

2
− Q2

ii

Q2
)F + (

1

2
+
Q2
ii

Q2
)E

]
, i = 1, 2, 3,

(5.49)

where

F = F (π − |q|,−Q2/q2
0)− F (|q|,−Q2/q2

0), E = E(π − |q|,−Q2/q2
0)− E(|q|,−Q2/q2

0),
(5.50)

are the incomplete elliptic integrals of the first and second kinds, respectively, with

elliptic modulus Q/q0, and

Q1 = 2ς1q1 − ς2q2 − ς3q3, Q2 = −ς1q1 + 2ς2q2 − ς3q3, Q3 = −ς1q1 − ς2q2 + 2ς3q3,

Q2
11 = Q2 − 3(ς2q2 − ς3q3)2, Q2

22 = Q2 − 3(ς3q3 − ς1q1)2, Q2
33 = Q2 − 3(ς1q1 − ς2q2)2,

Q2 =
1

3
(Q2

1 +Q2
2 +Q2

3).

(5.51)

For each branch (ς1, ς2, ς3), Πς1,ς2,ς3(iq0, q) has two zero eigenvalues corresponding to

eigenvectors (q0, q1, q2, q3) and (0, ς1, ς2, ς3); the former one is the longitudinal four-momentum

vector. The remaining two nonzero eigenvalues,
√

3
32π

√
q2

0E and
√

3
32π

q2
0+ 1

3
Q2√
q2
0

F , are nondegen-

erate; they correspond to one “transverse” eigenvector (0, ς1(ς2q2 − ς3q3), ς2(ς3q3 − ς1q1), ς3(ς1q1 − ς2q2))

and one “longitudinal” eigenvector (−Q2

q0
, ς1Q1, ς2Q2, ς3Q3), where “transverse” and “lon-

gitudinal” are understood with respect to the spatial three-momentum (Q1, Q2, Q3). The

212



nondegeneracy here implies that the boost symmetry of the QED3 is broken in our theory,

which can be traced back to the “boost symmetry breaking” of the vertices in Eq. (5.42).

The photon self-energy Π(iq0, q) contains the longitudinal four-momentum vector as

an eigenvector corresponding to eigenvalue zero, which ensures that the Ward identity

qµΠµν = 0 is preserved. However, since the four star branches have different three-

momenta (Q1, Q2, Q3), Π(iq0, q) can no longer be decomposed into longitudinal and

transverse modes.

Suppose ei(iq0, q) with i = 1, 2, 3 are the three nonzero eigenvalues of Π(iq0, q) that

correspond to the eigenvectors vi(iq0, q). The dressed photon Green’s function is then

Dµν(iq0, q) =
3∑
i=1

P µν
i

1
g2 q2 + ei(q)

+ ξ
qµqν

q4
, (5.52)

where P µν
i = vµi v

ν
i are the projectors for the i = 1, 2, 3 modes. The last term results

from the gauge fixing term Lgf in Eq. (5.40a).

We remind the reader that the photon self-energy calculated here is for zero temper-

ature. A finite temperature calculation can also be considered following Ref. [132]. We

leave such a calculation to future work.

5.4.4 Photon contribution to thermodynamics

We now proceed to calculate the photon contribution to the thermodynamics. The

photon free energy reads

F = − 1

2β

∑
n

∫
d3q

(2π)3

(
ln detD(iωn, q) + 2 ln β2(ω2

n + q2)
)
, (5.53)
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where ωn is the Matsubara frequency and D is the photon Matsubara Green’s function.

The second term of F comes from the fictitious free energy for the ghost fields ηk in

Eq. (5.40b). Half of this fictitious term will cancel the contribution from the gauge fixing

term ξqµqν/q4 in the photon Green’s function, while the other half will contribute a

positive term ∝ T 4 to the free energy. Such a term would cancel out the longitudinal

mode in the free gauge theory, however, as we will see, this is no longer the case in the

full theory when the photons are coupled to the spinons. Converting the Matsubara sum

to a contour integral, we then obtain

F =
π2

90
T 4 +

3∑
i=1

∫ +∞

−∞

dω

2π

1

eβω − 1

∫
d3q

(2π)3
tan−1

( −ω0+ + ImeRi (ω, q)

−ω2 + q2 + ReeRi (ω, q)

)
, (5.54)

where eRi (ω, q) are the eigenvalues of the retarded polarization ΠR(ω, q) = Π(iq0 →

ω+, q) with the notation ω+ = ω + i0+. Note that the dressed photon Green’s function

corresponds to zero temperature and that the temperature dependence of the free energy

comes entirely from the Boltzmann function. The momentum-frequency integral in the

free energy can be separated into two regions that give different scaling behaviors.

The “dynamic” region: |ω|/|q| ≥ 2. In this region, we have Q2

ω2 ≤ 4q2

ω2 ≤ 1, and the

elliptic functions E and F are both real. The eigenvalues eR1,2,3 are then purely imaginary

due to the prefactor
√
q2

0 → −iω on the upper half plane in Eq. (5.48). Furthermore,

the eigenvalues are of the same amplitude:

eR1,2,3 → −
isgn(ω)

4
√

3π
when |ω|/|q| → ∞, (5.55)
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which is much larger than −ω2+q2 at small frequency. We then have tan−1
(

ImeRi (ω,q)

−ω2+q2

)
∼

−π
2
sgn(ω) and, hence, the free energy scales with temperature as

Fdyn(T ) ∼ 3

∫ +∞

−∞

dω

2π

1

eβω − 1

4π
3

(2π)3

ω3

8

(
−π

2

)
= − π2

480
T 4, (5.56)

where we have dropped an unphysical part Fdyn(0) which is divergent and temperature

independent. One notices that the free energy (and other thermodynamic properties,

such as the entropy and the specific heat) of each dressed photon is a fraction of that of a

free photon, which can be viewed as being contributed by a fractional degree of freedom.

Such a phenomenon also appears at infinite coupling of large N QED3 [131].

The “static” region: |ω|/|q| � 1. In this region, by using the asymptotic forms of the

elliptic functions, the polarization Πµν in Eq. (5.48) agrees with the general scaling form

in Eq. (5.46). The Ward identity ωΠ00 + qiΠ
i0 = 0 suggests that Π0i ∼ |ω|

|q|Π
00 � Π00.

Therefore, the Π00 component is decoupled from the 3×3 block of the polarization tensor

with spatial indices and is identified with one of the eigenvalues, eR3 . The remaining

eigenvalues eR1,2 then correspond to the two transverse polarization modes. All three

eigenvalues eR1,2,3 are generally complex, and we find the following scaling form for them:

eR1,2 ∼ −iω
[
E

(
0,

2q2

(ω+)2

)
− F

(
0,

2q2

(ω+)2

)]
∼ |q| − i ω

2

|q|sgn(ω), (5.57a)

eR3 ∼ i
q2

ω

[
F

(
π − θ0,

2q2

(ω+)2

)
− F

(
θ0,

2q2

(ω+)2

)]
θ0∼|q|−−−→ |q| ln

(
1

max{ |ω||q| , |q|}

)
+ i|q|u

( |ω|
|q|

)
sgn(ω)θ

( |ω|
|q| − |q|

)
, (5.57b)
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where u( |ω||q| ) scales as u(x) ∼ const.+ x2. The eigenvalues of the transverse modes, eR1,2,

do not diverge near Γ or L, therefore the cutoff θ0 has been set to zero.

In writing these asymptotic expressions, we have neglected the angular dependence

in the momentum. The validity of this approximation has been numerically verified. For

|ω| > q2, the physical modes i = 1, 2, 3 lead to a dressed photon Green’s function of the

form

Dµν =
P µν

1 + P µν
2

1
g2 (q2c2 − ω2) + 1

2
√

3π
(|q| − isgn(ω)ω

2

|q|)

+
P µν

3

1
g2 (q2c2 − ω2) + 1

2
√

3π
(|q| ln |q||ω| + isgn(ω)|q|)

.

(5.58)

Note that the imaginary parts have opposite signs and that the P µν
3 term will contribute

negatively to the specific heat. The photon “bare” velocity c and the coupling g come

from integrating out the gapped spinon bands at higher energies. The “bare” velocity c

should be comparable to the mean Dirac velocity of the nodal line spinons, c ∼ 1, and we

take g . 1 following Ref. [42]. Therefore, at small q, we have |q| > q2 > ω2, and we only

keep |q| in the real part. The free energy can then be written as Fsta = F 1,2
sta +F 3

sta, where

the contributions F 1,2
sta and F 3

sta correspond to the eigenvalues eR1,2 and eR3 , respectively:

F 1,2
sta = −2

∫ Λ

0

q2dq

2π2

∫ |q|
0

dω

2π

1

eβω − 1
2 tan−1 ω

2

q2
, (5.59a)

F 3
sta = −2

∫ Λ

0

q2dq

2π2

∫ <|q|

q2

dω

2π

1

eβω − 1
tan−1 1

ln |ω||q|
, (5.59b)

where the dimensionless parameter Λ is the upper momentum cutoff at which the nodal
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line approximation becomes invalid. Setting x = ω/|q| in F 1,2
sta , we obtain

F 1,2
sta ∼ −

∫ Λ

0

q3dq

∫ 1

0

dx
x2

eβ|q|x − 1
∼ −

∫ Λ

0

dqq3F

( |q|
T

)
, (5.60)

where F (y) =
∫ 1

0
dx x2

eyx−1
. For y → 0, we have F (y) = 1

2y
+ O(1), while for y → +∞,

the upper limit can be extended to +∞, and we have F (y) → 2ζ(3)/y3. Therefore, at

low temperatures, T < Λ, we have F 1,2
sta ∼ −2(

∫ T
0
dqq3 T

q
+
∫ Λ

T
dqq3 T 3

q3 ) ∼ −ΛT 3 + O(T 4),

and the leading contribution to free energy is −ΛT 3.

For the remaining contribution F 3
sta, we perform the following transformation:

F 3
sta

ω≡qα+1

−−−−→ −2

∫ Λ

0

q2dq

∫ α0>0

1

qα+1

α(eβqα+1 − 1)
dα

z≡βqα+1

−−−−−→ 2

∫ 1

α0>0

dα

α(α + 1)
T
α+4
α+1

∫ Λα+1

T

0

z
3

α+1

ez − 1
dz.

(5.61)

Numerics show that F 3
sta is independent of α0 whenever α0 < 0.5. Note also that, when

z � 1, we can approximate ez − 1 ∼ ez, meaning that, at large z, the integral will

contribute to the free energy with an exponentially small term e−
1
T . Therefore, we can

safely extend the upper limit to infinity, and the integral in z then gives∫ ∞
0

z
3

α+1

ez − 1
dz = Γ

(
4 + α

1 + α

)
Li 4+α

1+α
(1). (5.62)

Since it is approximately true for 0.5 < α < 1 that

Γ
(

4+α
1+α

)
Li 4+α

1+α
(1)

α(α + 1)
∼ 0.84

α2
, (5.63)

the contribution F 3
sta takes the leading-order form

F 3
sta ∼

∫ 1

α0

1

α2
T
α+4
α+1dα ∼ − T

5
2

lnT
+O

(
T

5
2

ln2 T

)
. (5.64)

From all the analysis above, we conclude that the contribution F 3
sta dominates the
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dressed photon free energy at low temperature. Note that this dominant term contributes

negatively to the specific heat.

5.4.5 Final result for the specific heat

At the non-interacting level, the temperature scaling of the spinon free energy can be

obtained from the spinon density of states by a simple power counting. The spinons near

the nodal lines and the Γ point have densities of states g(ε) ∝ ε and g(ε) ∝ √ε, and

contribute to the specific heat as cv ∝ T 2 and cv ∝ T
3
2 , respectively. The final result for

specific heat is then

cv ∼ T
3
2 +

T
3
2

lnT
+ subleading terms. (5.65)

Compared to a U(1) QSL with gapped matter fields, the leading term in the specific

heat has a lower power law exponent, cv ∝ T 3/2, while the subleading term has a negative

contribution at low temperature. Since the Dirac velocity v is related to the pyrochlore

spin exchange J by v ∼ Ja/~, the small value of J (typically a few meV) indicates that

this T 3/2 scaling likely dominates at low temperature over non-magnetic contributions

and may serve as strong evidence for the observation of a nodal star spin liquid.
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5.5 Discussion and outlook

5.5.1 Summary

In this chapter, we obtain the complete classification of spin–orbit-coupled spin liquids

with either Z2 or U(1) gauge structure on the pyrochlore lattice, within the PSG frame-

work for Abrikosov fermions. We find that there are at most 18 U(1) and 28 Z2 PSG

classes with full pyrochlore space group symmetry, and that the number of classes reduces

to 16 for U(1) and increases to 48 for Z2 if time reversal symmetry is further imposed.

We present the explicit form of the mean-field Hamiltonian for each PSG class upon

gauge fixing. We also show that, in the U(1) case, several classes of mean-field ansätze

possess robust spinon zero modes along high symmetry lines in the Brillouin zone and

that these nodal lines are protected by the projective screw symmetry. A low energy

effective theory for the nodal line spinons coupled to U(1) gauge fields is given. Finally,

we calculate the spinon contribution to the photon self energy at one loop level and study

the thermodynamics of the dressed photon within the RPA approximation. We find that

the most dominant contributions to the specific heat are T 3/2 from the bare spinons and

T 3/2/ lnT from the dressed photons.

5.5.2 Z2 PSGs from fermionic and bosonic partons

We now discuss the relationship between the Z2 PSGs obtained from fermionic and

bosonic partons. In a previous work [94], we employed Schwinger bosons to classfy
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Z2 spin liquids on the pyrochlore lattice with full lattice and time reversal symmetries.

There, we found 16 distinct PSG classes and labeled them by four Z2 parameters, n1,

nST1 , nC6S
, and nC6

, that are the bosonic counterparts of the χ’s in the current work.

The other IGG parameters are all related to these four parameters, for example, we have

nSC6
= n1 + nC6

+ nST1 , nT C6
= nC6

, and nT S = n1 + nST1 .

By comparing these bosonic quantum numbers with the fermionic ones, we see that

each bosonic class corresponds to an appropriate class in the fermionic PSG with lattice

and time reversal symmetries. In fact, the bosonic classes all have their counterparts

already in the fermionic PSG with only pyrochlore space group symmetry through the

corresponding Z2 quantum numbers (ηSC6
= η1ηST1ηC6

). The fermionic PSG, however,

has a larger number of classes, some of which do not have bosonic counterparts. From

Appendix A.7, it is seen that the additional fermionic classes exist due to the violation of

the condition ηSC6
= η1ηST1ηC6

or as a result of multiple solutions to the SU(2) equation

(which are distinguished by an additional discrete parameter j). Upon imposing time

reversal symmetry, the number of fermionic classes increases from 28 to 48, and the 16

bosonic classes still have 16 counterparts among them.

Physically, the bosonic and fermionic PSGs are supposed to describe fractionalized

excitations with bosonic and fermionic statistics, respectively: the bosonic and fermionic

spinons. This has been well understood for 2D Z2 QSLs with topological order. In

the 2D case, the elementary (fractionalized) excitations are bosonic spinons, fermionic

spinons, and visons. A fermionic spinon can be viewed as a bound state of a bosonic
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spinon and a vison, which induces a corresponding product rule between the vison, bo-

son, and fermion PSGs. It was argued in Ref. [98] on general grounds that the classes

common in bosonic and fermionic PSGs realize gapped Z2 symmetric spin liquids, while

the additional classes in the fermionic PSG realize symmetry protected gapless Z2 spin

liquids. However, it is not clear whether the claim directly applies to our case. Con-

cretely, one can compare the independent nonzero mean-field parameters at a given bond

level between the corresponding bosonic and fermionic classes, and the numbers do not

always match. The possible reasons are that (i) the required assumption of U(1) spin

symmetry for the proof of Ref. [98] is absent in our case, and (ii) the dimensionality is

different in our case. Indeed, the dimensional augmentation to 3D may fundamentally

change the correspondence between the bosonic and fermionic PSGs since the visons are

now line-like objects and do not straightforwardly relate bosonic and fermionic spinons

to each other.

Understanding the relation between the fermionic and bosonic PSG classifications is

an important goal. In addition to extracting the statistics of the fractionalized excitations

discussed above, it can be used to map out the phases proximate to a QSL and the possible

transition types. Indeed, the bosonic representation has the fundamental advantage that

it can describe a transition to a magnetically ordered state via the condensation of bosonic

spinons, while such a transition cannot be easily described in the fermionic representation.

Therefore, we hope to establish a clearer understanding of this important relation in a

future work.
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5.5.3 Z2 and U(1) PSGs using fermionic partons

The Z2 mean-field ansätze have spinon pairing terms which manifestly break the U(1)

symmetry down to its subgroup Z2. However, in special cases, when some of the mean-

field parameters are switched off, the Z2 ansätze may possess an enlarged symmetry. If

this enlarged symmetry is (or contains) U(1), the ansatz with parameters switched off

belongs to some “root” U(1) PSG class and the Z2 PSG can be viewed as being derived

from this U(1) PSG class by “gauge symmetry breaking” via the Higgs mechanism. The

simplest way one can enlarge Z2 symmetry to U(1) is by switching off all the pairing

parameters in a Z2 ansatz. If this can be consistently done without violating the PSG,

we obtain an explicit U(1) ansatz with only hopping terms. For example, if we take the

non-projective Z2 class (00)–(000) and naively switch off the pairings, we get exactly the

U(1) non-projective mean-field state 0–(00)–(00).

However, the correspondence between a Z2 and a U(1) ansatz may not always be

apparent and may be masked by the different gauge fixing conventions used for the Z2 and

the U(1) ansätze. For example, a mean-field Hamiltonian with only singlet pairing terms

(ap and its equivalents at further neighbor bonds) also has a U(1) symmetry. This pairing

U(1) symmetry can be converted to the usual hopping U(1) symmetry by an appropriate

gauge transformation. For Z2 classes with time reversal and (χT C6
, χT S, k) = (0, 0, 3)

(see Table 5.2), such a gauge transformation can be chosen as

W = e−i
π
4
σ2

, (5.66)

which transforms the time reversal PSG according to WT (rµ) = iσ3 → WWT (rµ)W † =
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iσ1. The mean-field parameters therefore transform as

i(Reaσ1 + Imbσ2)→ i(−Reaσ3 + Imbσ2), (5.67)

i.e., the real part of the pairing term is transformed into a hopping term, which is

consistent with Eq. (5.12). In this case, keeping only the real part of the singlet pairing

will recover a U(1) ansatz.

In closing this subsection, we point out that a general mapping between Z2 and U(1)

pyrochlore PSG classes is still lacking. Understanding such a relation will be important

in mapping out phase diagrams containing various spin liquids and magnetic orders.

5.5.4 The non-projective U(1) class: topological insulator

Let us examine the topological properties of the U(1) PSG class 0–(00)–(00): this is

the “trivial” class in which symmetries are realized linearly (i.e., nonprojectively). This

symmetry structure also applies to physical electrons instead of spinons: it can describe

ordinary, non-fractionalized itinerant electrons on the pyrochlore lattice. Such systems

have been intensely studied in the context of pyrochlore iridates [80, 52, 168]. There,

the most striking prediction from theory is the existence of a topological insulator phase,

which occupies a finite volume in the phase space spanned by spin–orbit couplings up to

NNN [80, 52, 168].

The most complete of these prior works [80, 52, 168] is Ref. [168], which determined

the general form of the Hamiltonian up to second neighbor hoppings. Here, we provide

an explicit mapping between the parameters used there and those used in Table 5.3:
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there are in total two real independent parameters (t1, t2) for the NN bonds and three

real independent parameters (t′1, t
′
2, t
′
3) for the NNN bonds [168], which are related to

our PSG results by (t1, t2, t
′
1, t
′
2, t
′
3) = (Ima, Imc, ImA, ImB + ImD, ImB − ImD). This

serves as a partial check of our classification and allows the results in Refs [80, 52, 168]

to directly apply in the PSG context.

Given the existence of a topological insulator phase in the “trivial” U(1) PSG class, it

is reasonable to believe that other classes may also support nontrivial topological phases.

Among them, it would be of specific interest to identify those that are protected by the

projectiveness of the symmetry and would appear only in systems with fractionalized

degrees of freedom.

5.5.5 Future directions

The mean-field ansätze for the PSG classes listed in this work provide abundant ground

state candidates for model spin Hamiltonians on the pyrochlore lattice. In the works

reported so far, the monopole flux state [23] has the lowest energy as a variational mean-

field ansatz for the pyrochlore Heisenberg model. The monopole flux state does not

belong to our classification with the full pyrochlore lattice symmetry since it sponta-

neously breaks lattice inversion. An interesting question is then whether any of the fully

symmetric states may be energetically favored by the Heisenberg model, and if not, what

is the physical reason for the energy being lowered by spontaneous symmetry breaking.

In this regard, it is interesting to study the PSG classification of chiral spin liquids on
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the pyrochlore lattice, in which certain space group symmetries are replaced by them

composed with time reversal symmetries. Furthermore, since rare-earth pyrochlore ma-

terials are intrinsically spin–orbit coupled, it is also natural to take our PSG ansätze as

variational states for the full spin–orbit coupled pyrochlore exchange model [133]. These

questions are addressed in an ongoing work that will be reported elsewhere.

One outcome of this work is the realization, in several PSG classes, of the nodal star

U(1) spin liquid, which represents a new family of pyrochlore U(1) spin liquids beyond

the known prototypes, whose low energy nodal structure is protected by the pyrochlore

space group symmetries. We point out that the proof of the symmetry protected nature

of the nodal lines also applies to several classes of chiral spin liquids, including the

monopole flux state [23]. In the present work, our main focus has been on the spinon

corrections to the gauge field. Subsequent questions – such as how the gauge field feeds

back into the spinons and how the vertices receive corrections – have been outside the

scope of this work and require a more involved calculation. These calculations may reveal

additional contributions to the thermodynamic properties and will provide insights for

another important observable, the spin susceptibility. Even at the non-interacting level,

the nodal line spinons will lead to spectral features that should be observable in, e.g.,

neutron scattering experiments. For example, a broad low energy continuum should be

seen along appropriate high-symmetry planes of the Brillouin zone. The observation of

such signatures may serve as direct evidence for a pyrochlore spin liquid state. We leave

the study of these aspects of the nodal star U(1) spin liquid to a future work.
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There are also several more broad directions to be explored. The pyrochlore PSG

may be studied from the perspective of symmetry protected crystalline insulators and

symmetry enriched topological orders. Apart from the case of the non-projective U(1)

ansätze mentioned in the preceding subsection, the topological aspects of the spinon

bands have not been investigated in this work and deserve further study. Another future

direction is the stability of the gapless states beyond the mean field approximation. While

at the latter level, we have proven that the nodal line is symmetry protected, it is not

clear if it remains robust against symmetry allowed spinon interactions. In this regard,

it would be interesting to look for criteria that forbid a single gapped many-body ground

state of the spinon Hamiltonian from appearing in the presence of spinon interactions and

full pyrochlore symmetry, similar to the proposals of Ref. [98]. In the context of Z2 QSLs,

a related theme would be to generalize the Lieb-Schultz-Mattis theorem to the pyrochlore

lattice and other geometrically frustrated 3D lattice types. The screw symmetry, which

is crucial to the nodal star spin liquids, is an instance of nonsymmorphic symmetry

and, in this regard, it is compelling to connect our results with recent works, such as

Refs. [164, 39] and especially Ref. [156] (considering that the classification result for the

pyrochlore space group there is missing).
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Appendix A

Pyrochlore PSG

A.1 Lattice and time reversal symmetries

In this subsection, we establish the convention and notation for this work and give a brief
introduction to the symmetry properties of the pyrochlore lattice.

The pyrochlore lattice consists of four FCC-type sublattices which we label by µ =
0, 1, 2, 3. The lattice vectors e1, e2, and e3 are defined as

e1 =
a

2
(ŷ + ẑ), e2 =

a

2
(ẑ + x̂), e3 =

a

2
(x̂+ ŷ), (A.1)

where a is the cubic lattice constant, the Cartesian coordinate has its basis x̂, ŷ, and
ẑ aligned with the cubic system of the pyrochlore lattice, and its origin sits on a µ = 0
site. We define the following sublattice-dependent coordinate:

(r1, r2, r3)µ ≡ rµ ≡ r1e1 + r2e2 + r3e3 +
1

2
eµ, (A.2)

where it is implicitly understood that e0 = 0.
The space group of the pyrochlore lattice group is Fd3m. It is generated by the

following five symmetry operations:

T1 : rµ → (r1 + 1, r2, r3)µ, (A.3a)

T2 : rµ → (r1, r2 + 1, r3)µ, (A.3b)

T3 : rµ → (r1, r2, r3 + 1)µ, (A.3c)

C6 : rµ → (−r3 − δµ,3,−r1 − δµ,1,−r2 − δµ,2)C6(µ), (A.3d)

S : rµ → (−r1 − δµ,1,−r2 − δµ,2, r1 + r2 + r3 + 1− δµ,0)S(µ), (A.3e)

where T1, T2, and T3 are translations along the lattice vectors e1, e2, and e3, respectively,
C6 is a sixfold rotoinversion around the [111] axis, and S is a nonsymmorphic screw
operation which is the composition of a twofold rotation around e3 and a translation by
e3/2. In the above equations, we defined the symmetry action on the sublattice indices:
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C6(µ) = 0, 2, 3, 1 and S(µ) = 3, 1, 2, 0 for µ = 0, 1, 2, 3. By definition, the rotoinversion
can be written as the composition of an inversion (with respect to the origin) and a

threefold rotation around the [111] axis: C6 = I ◦ C3, with I = C
3

6 and C3 = C
4

6. The
The generators {I, C3} are therefore equivalent to the generator C6; we choose a single
generator C6 to reduce the number of generators and group relations.

The point group of the pyrochlore lattice, formally defined as the quotient group of
the space group and the group of pure translations, is the cubic group Oh. This group is
minimally generated by C6 and S ′, where S ′ is a twofold rotation around ê3, distinguished
from the space-group generator S by the lack of a subsequent translation along ε̂3. The
detailed structure of the group Oh is given in App. A.2.

In addition to the pyrochlore space group symmetries, time-reversal operation T
is an internal symmetry that commutes with all space-group operations and satisfies
T 2 = −1 when acting on a half-integer spin state. The pyrochlore symmetry group is
then completely characterized by the following group relations:

TiTi+1T
−1
i T−1

i+1 = 1, i = 1, 2, 3, (A.4a)

C
6

6 = 1, (A.4b)

S2T−1
3 = 1, (A.4c)

C6TiC
−1

6 Ti+1 = 1, i = 1, 2, 3, (A.4d)

STiS
−1T−1

3 Ti = 1, i = 1, 2, (A.4e)

ST3S
−1T−1

3 = 1, (A.4f)

(C6S)4 = 1, (A.4g)

(C
3

6S)2 = 1, (A.4h)

T 2 = −1, (A.4i)

T OT −1O−1 = 1, O ∈ {T1, T2, T3, C6, S}, (A.4j)

where it is implicitly understood that i+ 3 ≡ i.

A.2 Point-group structure

The space group Fd3m belongs to the cubic crystal system with point group Oh. The
point group Oh has order 48 and is the symmetry group of a pyrochlore primitive cell – a
pair of corner sharing tetrahedra. It has a direct product structure Oh

∼= S4 ×Z2, which
can be understood as following.

We label the seven vertices by µ±, where µ = 0, 1, 2, 3 is the sublattice index and “+”
(“−”) denotes the upper (lower) tetrahedron (where 0+ = 0− is the shared corner), then
the symmetry operations in Oh are permutations over two sets {0, 1, 2, 3} and {+,−}.
The generators include a threefold rotation C3 = (123), a screw operation (modding out
translations) S = (03)(+−) and an inversion I = (+−), written in terms of the cycle
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notation for permutations. We also define the operation Σ = S ◦ I = (03) for future
convenience. (We can also define C6 = C3 ◦ I to reduce the number of generators, since

equivalently C3 = C
4

6 and I = C
3

6.) The inversion I is the generator of the Z2 group,
therefore we can write Oh

∼= S4∪ (I ◦S4), where I ◦S4 is the coset of S4 left-composed by
I. The subgroup S4 corresponds exactly to the tetrahedron group, Td. The 24 elements
of the group S4 ' Td are generated by Σ and C3 as (where it is understood 4 ≡ 0)

(1) = C3 ◦ C3 ◦ C3,

(12) = Σ ◦ C3 ◦ Σ ◦ C−1
3 ◦ Σ ◦ C3,

(13) = Σ ◦ C3 ◦ Σ ◦ C−1
3 ◦ Σ,

(14) = Σ ◦ C3 ◦ Σ ◦ C−1
3 ◦ Σ ◦ C−1

3 ◦ Σ ◦ C3 ◦ Σ ◦ C3,

(23) = Σ ◦ C3 ◦ Σ ◦ C−1
3 ◦ Σ ◦ C−1

3 ,

(24) = C3 ◦ Σ ◦ C−1
3 ◦ Σ ◦ C−1

3 ◦ Σ,

(34) = Σ,

(123) = C3,

(132) = C−1
3 ,

(124) = Σ ◦ C3 ◦ Σ,

(142) = Σ ◦ C−1
3 ◦ Σ,

(134) = Σ ◦ C3 ◦ Σ ◦ C−1
3 ,

(143) = Σ ◦ C3 ◦ Σ ◦ C−1
3 ◦ Σ ◦ C3 ◦ Σ ◦ C−1

3 ,

(234) = C−1
3 ◦ Σ ◦ C3 ◦ Σ ◦ C−1

3 ◦ Σ ◦ C3 ◦ Σ,

(243) = C−1
3 ◦ Σ ◦ C3 ◦ Σ,

(1243) = Σ ◦ C3,

(14)(23) = Σ ◦ C3 ◦ Σ ◦ C3,

(1342) = Σ ◦ C3 ◦ Σ ◦ C3 ◦ Σ ◦ C3,

(1234) = C3 ◦ Σ,

(13)(24) = C3 ◦ Σ ◦ C3 ◦ Σ,

(1432) = C3 ◦ Σ ◦ C3 ◦ Σ ◦ C3 ◦ Σ,

(1324) = C3 ◦ Σ ◦ C3,

(12)(34) = C3 ◦ Σ ◦ C−1
3 ◦ Σ ◦ C3,

(1423) = C3 ◦ Σ ◦ C−1
3 ◦ Σ ◦ C−1

3 ◦ Σ ◦ C3. (A.5)

Eqs. (A.5) will be useful in determining the mean field ansätze parameter constraints for
the PSG classes.
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For the on-site bond 00 → 00, the 12 group elements that map the bond back are

(1), (12), (13), (23), (123), (13), (+−), (12)(+−),

(13)(+−), (23)(+−), (123)(+−), (13)(+−),

Consider the case for the NN bond 00 → 01. The four group elements that map the
bond back are

(1), (14), (23), (14)(23). (A.6)

For the NNN bond 01 → 02− ê2, it can be checked that only the identity (1) and the
element (12)(+−) = S ◦ C3 ◦ S ◦ C−1

3 ◦ S ◦ C3 map the bond back.

A.3 Basis for irreps of Td and condensation results

We first give the representation analysis result for the spins S on a single tetrahedron,
which can be equally applied to pyrochlore lattices with a Γ point order. The twelve-
component spin S form a 12-dimensional representation of the tetrahedron group Td. The
group Td has irreducible representation (irrep)A1, A2, E, T1, T2. S can be decomposed
into irreps A2, E, T1,A, T1,B and T2. The corresponding basis and orders are listed in
Table. A.1. This is simply a reproduction of TABLE III in Ref. [172].

The basis are

S1 =
1

2
√

3
(1, 1, 1, 1,−1,−1,−1, 1,−1,−1,−1, 1),

S2 =
1

2
√

6
(−2, 1, 1,−2,−1,−1, 2, 1,−1, 2,−1, 1),

S3 =
1

2
√

2
(0,−1, 1, 0, 1,−1, 0,−1,−1, 0, 1, 1),

S4 =
1

2
(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),

S5 =
1

2
(0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0),

S6 =
1

2
(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1),

S7 = − 1

2
√

2
(0, 1, 1, 0,−1,−1, 0,−1, 1, 0, 1,−1),

S8 = − 1

2
√

2
(1, 0, 1,−1, 0, 1,−1, 0,−1, 1, 0,−1),

S9 = − 1

2
√

2
(1, 1, 0,−1, 1, 0, 1,−1, 0,−1,−1, 0),
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Irrep Basis Orders
A2 S1 all in-all out
E S2,S3 Ψ2 and Ψ3

T1,A S4,S5,S6 collinear FM
T1,B S7,S8,S9 non-collinear FM
T2 S10,S11,S12 Palmer-Chalker

Table A.1: Correspondence between orders, irreps and basis of irreps

S10 =
1

2
√

2
(0,−1, 1, 0, 1,−1, 0, 1, 1, 0,−1,−1),

S11 =
1

2
√

2
(1, 0,−1,−1, 0,−1,−1, 0, 1, 1, 0, 1),

S12 =
1

2
√

2
(−1, 1, 0, 1, 1, 0,−1,−1, 0, 1,−1, 0). (A.7a)

The three vectors Sr, Sc, and Ss for the paraphase 0-(100)Γ, mentioned in Eq. (4.32),
are

Sr = (0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0,−1), (A.8a)

Sc = (−1, 0, 0,−1, 0, 0, 1, 0, 0, 1, 0, 0), (A.8b)

Ss = (0,−1, 0, 0, 1, 0, 0,−1, 0, 0, 1, 0). (A.8c)

The three vectors Sr, Sc, and Ss for the paraphase 0-(001)Γ, mentioned in Sec. 4.4.6,
are

Sr = (4, 4, 7,−8,−4,−1,−4,−8,−1, 0, 0, 9), (A.9a)

Sc = (1,−8, 4, 1,−4, 8,−7, 4,−4, 9, 0, 0), (A.9b)

Ss = (−8, 1, 4, 4,−7,−4,−4, 1, 8, 0, 9, 0). (A.9c)

In writing down the Ginzburg–Landau theory for the paraphase 0-(010)Γ, the transfor-
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mation rules of φ1, φ2, φ1, φ2 are

C6 :


φ1

φ2

φ1

φ2

→


( 1
6
− i

6)((1+2i)δ+(1−i)∆)

δ

( 1
6

+ i
6)(δ+∆)

δ
−( 1

2
− i

2)ζ
δ

0

−( 1
6
− i

6)(δ+∆)

δ

( 1
6

+ i
6)((1−2i)δ+(1+i)∆)

δ
0 −( 1

2
+ i

2)ζ
δ

−( 1
2

+ i
2)ζ
δ

0
( 1

6
+ i

6)((1−2i)δ+(1+i)∆)

δ

( 1
6
− i

6)(δ+∆)

δ

0 −( 1
2
− i

2)ζ
δ

−( 1
6

+ i
6)(δ+∆)

δ

( 1
6
− i

6)((1+2i)δ+(1−i)∆)

δ




φ1

φ2

φ1

φ2

 ,

(A.10)

S :


φ1

φ2

φ1

φ2

→


1√
2
− 1√

2
0 0

− 1√
2
− 1√

2
0 0

0 0 1√
2
− 1√

2

0 0 − 1√
2
− 1√

2




φ1

φ2

φ1

φ2

 , (A.11)

where the definition of δ,∆ and ζ has been given in Section 4.4.6. We see that in this
case the fields transform to their complex conjugates under Oh.

The only quartic term invariant under Oh is

Φ =
[
4(|φ1|2 + |φ2|2) +

(
(−1 + i)φ2

1 − (1 + i)φ2
2 − iφ1φ2 + c.c.

)]2
. (A.12)

In writing down the Ginzburg–Landau theory for the paraphase 0-(100)Γ, the transfor-
mation rules of φ1,2 under C6 and S are recorded by the following matrices:

U
(100)Γ

C6
=

1

2

(
1− i 1− i
−1− i 1 + i

)
, U

(100)Γ
S =

1√
2

(
0 −1− i

1− i 0

)
. (A.13)

There are six quartic terms that are invariant under Oh. Three of them can be written
as Φ2

i , where

Φ1 = |φ1|2 + |φ2|2,

Φ2 =
1

2

(
|φ1|2 − |φ2|2

)
+

(
1 + 3i

4
φ2

1 +
1− 2i

2
φ1φ2 +

1− i
2

φ1φ
∗
2 +

3− i
4

φ2
2 + c.c.

)
,

Φ3 = |φ1|2 − |φ2|2 +

(
φ2

1

2
− 1 + i

2
φ1φ2 + (1− i)φ1φ

∗
2 −

i

2
φ2

2 + c.c

)
.

(A.14)
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In writing down the Ginzburg–Landau theory for the paraphase 0-(101)Γ, the transfor-
mation rules of φ1,2 under C6 and S are recorded by the following matrices:

Ũ
(101)Γ

C6
= iU

(100)Γ

C6
, Ũ

(101)Γ
S = U

(100)Γ
S . (A.15)

the extra factor of i for C6 is due to nC6
= 1.

In writing down the Ginzburg–Landau theory for the paraphase 0-(110)Γ, the trans-
formation rules of χ1,2 under C6 and S are recorded by the following matrices:

U
(110)Γ

C6
=

(
1
2
−
√

3
2√

3
2

1
2

)
, U

(110)Γ
S =

 √
3
2√

3+3
−
√

6+ 3√
2√

3+3

−
√

6+ 3√
2√

3+3
−
√

3
2√

3+3

 . (A.16)

the only quadratic and quartic order parameter are the trivial one: (χ2
1 + χ2

2)i, i = 1, 2.
At sextic order, there are two terms allowed:

(χ2
1 + χ2

2)3,
1

3
(χ1 − χ2)χ2(3χ2

1 − χ2
2)(χ2

1 + 4χ1χ2 + χ2
2). (A.17)

In writing down the Ginzburg–Landau theory for the paraphase 0-(111)Γ, the transfor-
mation rules of φ1,2 under C6 and S are recorded by the following matrices:

U
(111)Γ

C6
=

1

2

(
1− i −1 + i
−1− i −1− i

)
, U

(111)Γ

S =
1√
2

(
0 −1− i

−1 + i 0

)
. (A.18)

A.4 PSG equations

The PSG equations are, by definition,

(GTiTi)(GTi+1
Ti+1)(GTiTi)

−1(GTi+1
Ti+1)−1 ∈ IGG, (A.19a)

(GC6
C6)6 ∈ IGG, (A.19b)

(GSS)2(GT3T3)−1 ∈ IGG, (A.19c)

(GC6
C6)(GTiTi)(GC6

C6)−1(GTi+1
Ti+1) ∈ IGG, (A.19d)

(GSS)(GTiTi)(GSS)−1(GT3T3)−1(GTiTi) ∈ IGG, (A.19e)

(GSS)(GT3T3)(GSS)−1(GT3T3)−1 ∈ IGG, (A.19f)

[(GC6
C6)(GSS)]4 ∈ IGG, (A.19g)

[(GC6
C6)3(GSS)]2 ∈ IGG. (A.19h)

where IGG = Z2 or U(1).
For bosonic Z2 PSG, the corresponding phase equations are
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φTi(rµ) + φTi+1
[T−1
i (rµ)]− φTi [T−1

i+1(rµ)]− φTi+1
(rµ) = niπ, (A.20a)

φC6
(rµ) + φC6

[C
−1

6 (rµ)] + φC6
[C
−2

6 (rµ)]

+φC6
[C
−3

6 (rµ)] + φC6
[C
−4

6 (rµ)] + φC6
[C
−5

6 (rµ)] = nC6
π, (A.20b)

φS(rµ) + φS[S−1(rµ)]− φT3(rµ) = nSπ, (A.20c)

φC6
(rµ) + φTi [C

−1

6 (rµ)]− φC6
[Ti+1(rµ)] + φTi+1

[Ti+1(rµ)] = nC6Ti
π, (A.20d)

φS(rµ) + φTi [S
−1(rµ)]− φS[T−1

3 Ti(rµ)]− φT3 [Ti(rµ)] + φTi [Ti(rµ)] = nSTiπ, (A.20e)

φS(rµ) + φT3 [S−1(rµ)]− φS[T−1
3 (rµ)]− φT3(rµ) = nST3π, (A.20f)

φC6
(rµ) + φS[C

−1

6 (rµ)] + φC6
[(C6S)−1(rµ)] + φS[(C6SC6)−1(rµ)]

+φC6
[(C6SC6S)−1(rµ)] + φS[(C6SC6SC6)−1(rµ)]

+φC6
[(C6SC6SC6S)−1(rµ)] + φS[(C6SC6SC6SC6)−1(rµ)] = nC6S

π, (A.20g)

φC6
(rµ) + φC6

[C
−1

6 (rµ)] + φC6
[C
−2

6 (rµ)] + φS[C
−3

6 (rµ)]

+φC6
[(C

3

6S)−1(rµ)] + φC6
[(C

3

6SC6)−1(rµ)]

+φC6
[(C

3

6SC
2

6)−1(rµ)] + φS[S(rµ)] = nSC6
π (A.20h)

where both Eq. (A.20a) and Eq. (A.20d) stand for three equations i = 1, 2, 3, and
Eq. (A.20e) stands for two equations i = 1, 2.

For fermionic PSG, the corresponding SU(2) equations are

WTi(rµ)WTi+1
[T−1
i (rµ)]W−1

Ti
[T−1
i+1(rµ)]W−1

Ti+1
(rµ) = eiσ

3χi , (A.21a)

WC6
(rµ)WC6

[C
−1

6 (rµ)]WC6
[C
−2

6 (rµ)]WC6
[C
−3

6 (rµ)]·
WC6

[C
−4

6 (rµ)]WC6
[C
−5

6 (rµ)] = eiσ
3χC6 (A.21b)

WS(rµ)WS[S−1(rµ)]W−1
T3

(rµ) = eiσ
3χS , (A.21c)

WC6
(rµ)WTi [C

−1

6 (rµ)]W−1

C6
[Ti+1(rµ)]WTi+1

[Ti+1(rµ)] = e
iσ3χC6Ti , (A.21d)

WS(rµ)WTi [S
−1(rµ)]W−1

S [T−1
3 Ti(rµ)]W−1

T3
[Ti(rµ)]WTi [Ti(rµ)] = eiσ

3χSTi , (A.21e)

WS(rµ)WT3 [S−1(rµ)]W−1
S [T−1

3 (rµ)]W−1
T3

(rµ) = eiσ
3χST3 , (A.21f)

WC6
(rµ)WS[C

−1

6 (rµ)]WC6
[(C6S)−1(rµ)]·

WS[(C6SC6)−1(rµ)]WC6
[(C6SC6S)−1(rµ)]·

WS[(C6SC6SC6)−1(rµ)]WC6
[(C6SC6SC6S)−1(rµ)]·

WS[(C6SC6SC6SC6)−1(rµ)] = eiσ
3χC6S , (A.21g)

WC6
[C
−2

6 (rµ)]WS[C
−3

6 (rµ)]WC6
[(C

3

6S)−1(rµ)]·
WC6

[(C
3

6SC6)−1(rµ)]WC6
[(C

3

6SC
2

6)−1(rµ)]WS[S(rµ)] = eiσ
3χSC6 , (A.21h)
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where all the χ ∈ [0, 2π) for U(1) IGG, and χ ∈ {0, π} for Z2 IGG.

A.5 Solving bosonic Z2 PSG equations

First we solve Eq. (A.20a). Due to gauge freedom of second type, we can use a gauge
transformation to achieve φT1(r1, r2, r3)µ = φT2(0, r2, r3)µ = φT3(0, 0, r3) = 0. Then
Eq. (A.20a) gives

φT1(rµ) = 0, φT2(rµ) = n1πr1, φT3(rµ) = n3πr1 + n2πr2 (mod 2π). (A.22)

Using Eq. (A.22) to solve Eq. (A.20d)

φC6
(r1, r2, r3)µ − φC6

(r1, r2 + 1, r3)µ + n1πr1 = nC6T1
π,(A.23a)

φC6
(r1, r2, r3)µ − n1π(r2 + δµ=2)− φC6

(r1, r2, r3 + 1)µ + n3πr1 + n2πr2 = nC6T2
π,(A.23b)

φC6
(r1, r2, r3)µ − n3π(r2 + δµ=2)− n2π(r3 + δµ=3)− φC6

(r1 + 1, r2, r3)µ = nC6T3
π (A.23c)

we get n1 = n2 = n3, and

φC6
(rµ) = φC6

(0µ) + (nC6T3
+ n1δµ=2,3)πr1 + nC6T1

πr2

+ (nC6T2
+ n1δµ=2)πr3 + n1π(r1r2 + r1r3).

(A.24)

Then using Eq. (A.22) to solve Eq. (A.20e) and (A.20f), we get

φS(rµ) = φS(0µ) + (nST3 + n1δµ=1,2 − nST1)πr1 + (nST3 + n1δµ=2 − nST2)πr2

+ (nST3 + n1δµ=1,2)πr3 −
1

2
n1π(r1 + r2)(r1 + r2 + 1).

(A.25)

Using Eqs. (A.22), (A.24) and (A.25) to solve Eq. (A.20g) and Eq. (A.20h) we get

3∑
µ=0

φC6
(0µ) + φS(0µ) =

(
nC6S

+
3∑
i=1

nC6Ti

)
π, (A.26)

and

nST3 +
3∑
i=1

nC6Ti
= 0, (A.27a)

3φC6
(00) +

3∑
j=1

φC6
(0j) + φS(00) + φS(03) =

(
nSC6

+
3∑
j=2

nC6Tj

)
π, (A.27b)
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2φS(0i) + 2
3∑
j=1

φC6
(0j) = nSC6

π, i = 1, 2. (A.27c)

Then, from Eq. (A.20b) we get

6φC6
(00) = nC6

π, (A.28a)

2
3∑
j=1

φC6
(0j) +

3∑
i=1

nC6Ti
π = nC6

π, (A.28b)

and Eq. (A.20c) gives

nST3 = 0 (A.29)

and

φS(00) + φS(03) = nSπ, (A.30a)

2φS(01) + (n1 + nST1)π = nSπ, (A.30b)

2φS(02) + (n1 + nST2)π = nSπ. (A.30c)

Eqs. (A.27a) and (A.29) further imply that

nC6T1
+ nC6T2

+ nC6T3
= 0. (A.31)

This completes solving the inter-unit cell part of the space group PSG equations. We
can use some of the remaining gauge freedom to simplify results. In order to use the IGG
freedom we notice that Eq. (A.19c), (A.19d) and (A.19e) have operators that appear odd
number of times. According to our analysis in the main text, we can set nS = 0, and two
out of the three parameters nCTi to be zero, which together with Eq. (A.31) means that
nC6T1

= nC6T2
= nC6T3

= 0. The independent Z2 parameters at this point are

n1, nC6
, nST1 , nST2 , nC6S

, nSC6
. (A.32)

Then we add time reversal operation. From

(GT T )(GOO)(GT T )−1(GOO)−1 ∈ Z2 (A.33)

where O ∈ {T1, T2, T3, C6, S}, we get

φT (rµ)− φT [T−1
i (rµ)]− 2φTi(rµ) = nT Tiπ, (A.34a)

φT (rµ)− φT [C
−1

6 (rµ)]− 2φC6
(rµ) = nT C6

π, (A.34b)
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φT (rµ)− φT [S−1(rµ)]− 2φS(rµ) = nT Sπ. (A.34c)

where Eq. (A.34a) stands for three equations i = 1, 2, 3. From Eq. (A.34a) we get

φT (rµ) = φT (0µ) + π

3∑
i=1

nT Tiri. (A.35)

From Eq. (A.34b) we get nT T1 = nT T2 = nT T3 ≡ nT T , and

2φC6
(00) = nT C6

π, (A.36a)

φT (0i)− φT (0i−1) + nT Tπ − 2φC6
(0i) = nT C6

π, i = 1, 2, 3, (A.36b)

therefore nT C6
+nT T = nC6

. Finally Eq. (A.34c) gives nT T = 0, nST1 = nST2 = nT S−n1,
and

φT (00)− φT (03)− 2φS(00) = (n1 + nST1)π. (A.37)

Lastly the equation T 2 = −1 gives no constraint.
Now we have solved all the inter-unit cell part of the PSG equations. The intra-unit

cell part gives

2φC6
(00) = nC6

π, (A.38a)

2
3∑
j=1

φC6
(0j) = nC6

π, (A.38b)

φS(00) + φS(03) = 0, (A.38c)

2φS(0i) + (n1 + nST1)π = 0, i = 1, 2, (A.38d)
3∑

µ=0

φC6
(0µ) + φS(0µ) = nC6S

π, (A.38e)

3φC6
(00) +

3∑
j=1

φC6
(0j) = nSC6

π, (A.38f)

2
3∑
j=1

φC6
(0j) + 2φS(0i) = nSC6

π, i = 1, 2, (A.38g)

φT (0i)− φT (0i−1)− 2φC6
(0i) = nC6

π, i = 1, 2, 3, (A.38h)

φT (00)− φT (03)− 2φS(00) = (n1 + nST1)π. (A.38i)

Then we use the gauge freedom of second type. Note under gauge transformation

φ(rµ) = φµ, µ = 0, 1, 2, 3, (A.39)
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we have φO(rµ) → φO(rµ) + φ(rµ) − φ[O−1(r)µ], where φ is an artitrary U(1) phase,
we have φC6

(0)0 → φC6
(0)0, φC6

(0)i → φC6
(0)i + φi − φi+1, φS(0)0 → φS(0)0 + φ0 − φ3,

φS(0)1,2 → φS(0)1,2, φS(0)3 → φS(0)3 + φ3 − φ0, and φT (0)µ → φT (0)µ + 2φµ. Then, we
can choose the value of φµ to fix

φT (0µ) = 0, (A.40)

and

φC6
(0µ) = (

nC6

2
+ pµ)π, (A.41a)

φS(00) = −φS(03) = (
n1 + nST1

2
+m0)π, (A.41b)

φS(01,2) = (−n1 + nST1

2
+m1,2)π, (A.41c)

where pµ,m0 and m1,2 are all Z2 parameters.
Note we still have a discrete gauge freedom: we can choose a particular sublattice ν

and define gauge transformation

φ(rµ) = πδµ,ν , (A.42)

then Eq. (A.40) is preserved but the relative phase of φC6
can be changed. By choosing

ν = 1, 2, 3 we can use gauge (A.42) to fix p1 = p2 = p3 ≡ p. Furthermore, we can use
the global Z2 freedom for φC6

(rµ) and φS(rµ) to fix p0 = 0 and m1 = 0. Then, let
ν = 0, 3, we can use gauge (A.42) to fix m0 = 0. By checking Eqs. (A.38), we have
nSC6

= nC6
+ n1 + nST1 , p = n1 + nST1 and m2 = nC6S

. The final solution is presented
in Eq. (4.1).

A.6 Solving fermionic U(1) PSG equations

The general form for WO(r) is WO(r) = (iσ1)wOeiσ
3φO(r), where wO = 0 or 1, O ∈

{T1, T2, T3, C6, S}. From Eq. (A.21e) we see we must have wT3 = 0, further from
Eq. (A.21d) we have wT1 = wT2 = 0. Therefore Eq. (A.21a) becomes a pure phase
equation

φTi(rµ) + φTi+1
[T−1
i (rµ)]− φTi [T−1

i+1(rµ)]− φTi+1
(rµ) = χi, (A.43)

using gauge freedom to set φT1(rµ) = 0, φT2(r1, 0, 0)µ = 0, and φT3(r1, r2, 0) = 0, we
have

φT1(rµ) = 0, φT2(rµ) = −χ1r1, φT3(rµ) = χ3r1 − χ2r2. (A.44)
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Eq. (A.21d) gives

(−1)wC6

(
φC6

(rµ) + φTi [C
−1

6 (rµ)]− φC6
[Ti+1(rµ)]

)
+ φTi+1

[Ti+1(rµ)] = χC6Ti
, (A.45)

consistency condition

∆iφC6
(rµ) + ∆i+1φC6

[T−1
i (rµ)] = ∆i+1φC6

(rµ) + ∆iφC6
[T−1
i+1(rµ)], i = 1, 2, 3 (A.46)

where we defined ∆iφ(rµ) = φ(rµ)− φ[T−1
i (rµ)], requires

(−1)wC6χ1 = χ3, −χ1 + (−1)wC6χ2 = 0, χ2 = (−1)wC6χ3, (A.47)

which means that, if wC6
= 0, then χ1 = χ2 = χ3 and no quantization condition is

imposed on χ1,2,3; if wC6
= 1, then χ1 = χ2 = χ3 = 0 or π. Combining the two cases we

can write

φC6
(rµ) =− r1(r2 − r3)χ1 − (δµ,2 − δµ,3)χ1r1 + δµ,2χ1r3

− (−1)wC6 (χC6T3
r1 + χC6T1

r2 + χC6T2
r3) + ρµ,

(A.48)

where we abbreviated ρµ ≡ φC6
(0, 0, 0)µ. Plug the expression (A.48) in Eq. (A.21b), we

get the condition

• When wC6
= 0,

6ρ0 = 2(ρ1 + ρ2 + ρ3) + χC6T1
+ χC6T2

+ χC6T3
= χC6

; (A.49)

• when wC6
= 1,

χC6
= χC6T1

+ χC6T2
+ χC6T3

= 0. (A.50)

Plug the result (A.44) in Eqs. (A.21e) and Eq. (A.21f), we get

∆1φS(rµ) = χ1(r1 − r2 + δµ,1 − δµ,2) + (−1)wS(−χST1 + χST3), (A.51a)

∆2φS(rµ) = χ1(2r1 − (−1)wSr1 − r2 + 2δµ,1 − δµ,2) + (−1)sW (−χST2 + χST3), (A.51b)

∆3φS(rµ) = χ1((1 + (−1)wS)(r1 − r2) + δµ,1 − δµ,2) + (−1)wSχST3 . (A.51c)

Consistency conditions for φS similar to (A.46) give

(−2 + (−1)wS)χ1 = χ1, (1 + (−1)wS)χ1 = 0, 0 = −(1 + (−1)wS)χ1, (A.52)
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therefore when wS = 0, χ1 = 0 or π; when wS = 1, χ1 = 0, π
2
, π or 3π

2
. And

φS(rµ) =

(
(r1 + 1)r1

2
− (r2 + 1)r2

2
− r1r2

)
χ1

+ [(δµ,1 − δµ,2)χ1 + (−1)wS(χST3 − χST1)] r1

+ [(2δµ,1 − δµ,2)χ1 + (−1)wS(χST3 − χST2)] r2

+ [(δµ,1 − δµ,2)χ1 + (−1)wSχST3 ] r3

+ θµ,

(A.53)

where we abbreviated θµ = φS(0, 0, 0)µ. Plug the result (A.53) and (A.44) into Eq. (A.21c),
we get

• When wS = 0,

χST3 = 0, (A.54a)

θ0 + θ3 = 2θ1 − χ1 + χST1 = 2θ2 + χ1 + χST2 = χS; (A.54b)

• When wS = 1,

2χ1 + 2χST1 − χST3 = 2χ1 − 2χST2 + χST3 = 0, (A.55a)

−θ0 + θ3 + χST3 = −χ1 − χST1 + χST3 = χ1 − χST2 + χST3 = θ0 − θ3 = χS.
(A.55b)

At this point we are left with two equations, (A.21g) and (A.21h). Depending on the Z2

value of wC6
and wS we have the following four cases:

• (wC6
, wS) = (0, 0): Eq. (A.21g) gives

χC6T1
+ χC6T2

+ χC6T3
+

3∑
µ=0

(ρµ + θµ) = χC6S
, (A.56)

and Eq. (A.21h) gives

2χST1 − 3χC6T1
+ 3χC6T2

− χC6T3
= 2χST2 − 3χC6T1

− χC6T2
+ 3χC6T3

= 0,
(A.57a)

θ0 + θ3 + 3ρ0 + ρ1 + ρ2 + ρ3 + χC6T2
+ χC6T3

= 2θ1 + 2(ρ1 + ρ2 + ρ3) + 2χC6T1
+ 2χC6T3

= 2θ2 + 2(ρ1 + ρ2 + ρ3) + 2χC6T1
+ 2χC6T2

= χSC6
. (A.57b)

• (wC6
, wS) = (0, 1): Eq. (A.21g) gives

− θ0 − θ1 + θ2 + θ3 + ρ0 − ρ1 + ρ2 − ρ3 + χC6T1
− χC6T2

− χC6T3
= χC6S

, (A.58a)
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θ0 + θ1 − θ2 − θ3 − ρ0 + ρ1 − ρ2 + ρ3

− 2(χST1 − χST2 + χST3) + χC6T1
− χC6T2

− χC6T3
= χC6S

, (A.58b)

2(−χST1 + χST2 − χST3) + 2(χC6T1
− χC6T2

− χC6T3
) = 0, (A.58c)

where the second equation can be obtained from the first and the third. Eq. (A.21h)
gives

− χST3 + χC6T1
− χC6T2

− χC6T3
= 0, (A.59a)

− θ0 + θ3 + 3ρ0 − ρ1 − ρ2 − ρ3 − χC6T2
− χC6T3

= −χST3 + χC6T1
− χC6T2

− χC6T3

= θ0 − θ3 − 3ρ0 + ρ1 + ρ2 + ρ3 + χC6T2
+ χC6T3

= χSC6
, (A.59b)

• (wC6
, wS) = (1, 0): Eq. (A.21g) gives

2(χST1 − χST2 + χST3) + 2(χC6T1
− χC6T2

− χC6T3
) = 0, (A.60a)

− θ0 − θ1 + θ2 + θ3 − ρ0 + ρ1 − ρ2 + ρ3 + χC6T1
− χC6T2

− χC6T3

= θ0 + θ1 − θ2 − θ3 + ρ0 − ρ1 + ρ2 − ρ3 − χC6T1
+ χC6T2

+ χC6T3

= χC6S
, (A.60b)

this gives 2χC6S
= 0 so χC6S

= 0 or π. Eq. (A.21h) gives

χST3 − χC6T1
− χC6T2

− χC6T3
= 0, (A.61a)

− θ0 + θ3 − ρ0 + ρ1 − ρ2 + ρ3 − χC6T2
− χC6T3

= 0 = χSC6
. (A.61b)

• (wC6
, wS) = (1, 1): Eq. (A.21g) gives

3∑
µ=0

(θµ − ρµ) = χC6S
, (A.62)

and Eq. (A.21h) gives

− 2χST1 + χST3 = −2χST2 + χST3 = 0, (A.63a)

θ0 + θ3 − ρ0 − ρ1 + ρ2 − ρ3 + χC6T2
+ χC6T3

= 2θ1 − 2ρ1 − 2ρ2 + 2ρ3 − 2χC6T2

= 2θ2 + 2ρ1 − 2ρ2 − 2ρ3 − 2χC6T3
= χSC6

. (A.63b)

We now choose a gauge to fix some of the phases. This gauge applies to all four
classes above. First, under gauge transformation W (rµ) = 1 for µ = 0, W (ri) = eiσ

3ψiri

for i = 1, 2, 3, where ψi is any constant phase, the values of χC6T1
, χC6T2

and χST2 change.
This means they are ineffective in labeling the PSG classes, and by properly choosing ψi
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we can set them to be

χC6T1
= 0, χC6T2

= 0, χST2 = 0. (A.64)

Then, we can use the IGG freedom (the freedom of choosing a global U(1) phase) to set

ρ0 = θ2 = 0 ⇒ χC6
= 0. (A.65)

Finally, using the “sublattice” gauge transformation

W (rµ) = eiφµ (A.66)

where φµ is any constant phase, WC6
(rµ) for µ = 1, 2 and WS(rµ) for µ = 0 will transform

as

(iσ1)wC6eiφC6
(r1)σ3 → eiφ1σ3

(iσ1)wC6eiφC6
(r2)σ3

e−iφ3σ3

= (iσ1)wC6ei((−1)
w
C6φ1+φC6

(r1)−φ3)σ3

, (A.67a)

(iσ1)wC6eiφC6
(r1)σ3 → eiχ1σ3

(iσ1)wC6eiφC6
(r2)σ3

e−iφ1σ3

= (iσ1)wC6ei((−1)
w
C6φ2+φC6

(r2)−φ1)σ3

, (A.67b)

(iσ1)wSeiφS(r0)σ3 → eiφ0σ3

(iσ1)wSeiφS(r0)σ3

e−iφ3σ3

= (iσ1)wSei((−1)wSφ0+φS(r0)−φ3)σ3

. (A.67c)

Then, by properly choosing φ0,1,2,3 we are able to set

ρ1 = ρ2 = θ0 = 0. (A.68)

Eqs. (A.64), (A.65) and (A.68) significantly simply Eqs. (A.56)–(A.63), and furthermore
allow them to be solved without any ambiguity. The final result is presented in Table
5.1.

A.7 Solving fermionic Z2 PSG equations

In solving the Z2 PSG equations (A.21), all the χ ∈ {0, π}, therefore we introduce a
short hand notation

η = eiσ
3χ = ±1 for χ’s in Eq. (A.21) (A.69)

The general form for WC6
(rµ) and WS(rµ) is given in Eqs. (5.1b) and (5.1c). Here, in

order to clearly distinguish different notations, we will rewrite the SU(2) matrices at the
origin WO,µ using a different symbol

gO,µ ≡ WO,µ for O = C6, S. (A.70)
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The solution is in complete parallel to the U(1) PSG case which we briefly review below.
First solve Eq. (A.21a): using gauge freedom as in the U(1) case, we get

WT1(rµ) = 1, WT2(rµ) = ηr11 , WT3(rµ) = ηr13 η
r2
2 . (A.71)

Then solve Eq. (A.21d): plugging in the solution (A.71), we have

WC6
(rµ)W−1

C6
[T2(rµ)]ηr11 = ηC6T1

, (A.72a)

WC6
(rµ)η

−(r2+δµ,2)
1 W−1

C6
[T3(rµ)]ηr13 η

r2
2 = ηC6T2

, (A.72b)

WC6
(rµ)η

−(r2+δµ,2)
3 η

−(r3+δµ,3)
2 W−1

C6
[T1(rµ)] = ηC6T3

. (A.72c)

Consistency condition requires η1 = η2 = η3 and we get

WC6
(rµ) = gC6,µ

η
r1(r2+r3)
1 · (ηC6T3

η
δµ,2+δµ,3
1 )r1ηr2

C6T1
(ηC6T2

η
δµ,2
1 )r3 . (A.73)

Then solve Eq. (A.21e) and Eq. (A.21f): plugging in the solution (A.71), we have

WS(rµ)W−1
S [T1T

−1
3 (rµ)]η

−(r1+r2+1)
1 = ηST1 , (A.74a)

WS(rµ)η
−(r1+δµ,1)
1 W−1

S [T2T
−1
3 (rµ)]η

−(r1+r2+1)
1 ηr11 = ηST2 , (A.74b)

WS(rµ)η
−(r1+r2+δµ,1+δµ,2)
1 W−1

S [T−1
3 (rµ)]η

−(r1+r2)
1 = ηST3 . (A.74c)

The consistency condition is always satisfied, and we have

WS(rµ) = gS,µη
(r1+r2)(r1+r2+1)

2
1 (ηST1ηST3η

δµ,1+δµ,2
1 )r1(ηST2ηST3η

δµ,2
1 )r2(ηST3η

δµ,1+δµ,2
1 )r3 .

(A.75)
Now we are left with Eqs. (A.21b), (A.21c), (A.21g), and (A.21h). Plugging the solution

for WT1,2,3,C6,S
that we just obtained in these equations, we are led to the following

constraints

ηC6T1
ηC6T2

ηC6T3
= 1, (A.76a)

ηST3 = 1, (A.76b)

and the following equations to solve

g6
C6,0

= (gC6,1
gC6,3

gC6,2
)2 = ηC6

, (A.77a)

g2
S,1ηST1η1 = g2

S,2ηST2η1 = gS,3gS,0 = ηS, (A.77b)

gC6,0
gS,0gC6,3

gS,2gC6,2
gS,1gC6,1

gS,3 = ηC6S
, (A.77c)

ηC6T1
g3
C6,0

gS,0gC6,3
gC6,2

gC6,1
gS,3 = ηSC6

, (A.77d)

gC6,1
gC6,3

gC6,2
gS,1gC6,1

gC6,3
gC6,2

gS,1 = ηSC6
, (A.77e)

gC6,2
gC6,1

gC6,3
gS,2gC6,2

gC6,1
gC6,3

gS,2 = ηSC6
, (A.77f)
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gC6,3
gC6,2

gC6,1
gS,3g

3
C6,0

gS,0ηC6T1
= ηSC6

. (A.77g)

First let us use the IGG gauge freedom to simplify these equations. We can always set
ηS = ηC6T1

= ηC6T2
= 1, and by Eq. (A.76a) we also have ηC6T3

= 1. Then, under the
“sublattice” gauge transformation (A.66), we can fix gC6,1

= 1, gC6,2
= 1, and gS,0 = 1.

Note this also implies gS,3 = 1. To summarize, gauge fixing gives

gC6,1
= gC6,2

= gS,0 = gS,3 = 1. (A.78)

Now Eq. (A.77) is simplified to

g6
C6,0

= g2
C6,3

= ηC6
, (A.79a)

g2
S,1ηST1η1 = g2

S,2ηST2η1 = 1, (A.79b)

gC6,0
gC6,3

gS,2gS,1 = ηC6S
, (A.79c)

g3
C6,0

gC6,3
= ηSC6

, (A.79d)

gC6,3
gS,1gC6,3

gS,1 = ηSC6
, (A.79e)

gC6,3
gS,2gC6,3

gS,2 = ηSC6
. (A.79f)

Next we claim that

ηST1 = ηST2 . (A.80)

The proof proceeds as follows: If ηC6
= 1 then Eq. (A.79a) gives gC6,3

= ±1, which
together with Eqs. (A.79e) and (A.79f) proves (A.80) in Eq. (A.79b). If ηC6

= −1, then
gC6,3

= ia·σ for some unit vector a, and we proceed to prove ηST1 = ηST2 by contradiction:
without loss of generality we assume ηST1η1 = 1 = −ηST2η1, then gS,1 ≡ ηS,1 = ±1 and
gS,2 = ib · σ for some unit vector b. Therefore Eq. (A.79e) gives ηSC6

= −1, and
Eq. (A.79f) gives [(ia ·σ)(ib ·σ)]2 = −1, which implies a ⊥ b and that gC6,3

gS,2 = −ic ·σ
with c = b× a. Then from Eq. (A.79c) we get gC6,0

= ic · σηSC6
ηS,1, which contradicts

Eq. (A.79d) given that c ⊥ a. Therefore Eq. (A.80) holds.
Next, depending on the value of ηSC6

, ηC6
, ηST1 and η1, we have the following cases:

• If η1ηST1 = 1, then gS,1 = ±1 and gS,2 = ±1, then we have

ηSC6
= g2

C6,3
= ηC6

, (A.81)

meaning that Eq. (A.79c) to the cubic power gives g3
C6,0

= g−3

C6,3
ηSC6

gS,2gS,1; to-

gether with Eq. (A.81) we see that

gS,1gS,2 = ηC6S
. (A.82)

We have the following two cases after gauge fixing:
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– When ηSC6
= ηC6

= 1,

(gC6,0
, gC6,3

, gS,1, gS2) = (1, 1, 1, ηC6S
); (A.83)

– When ηSC6
= ηC6

= −1,

(gC6,0
, gC6,3

, gS,1, gS2) = (−iσk, iσk, 1, ηC6S
), (A.84)

where σk can be any of the three Pauli matrices.

• If η1ηST1 = −1, we have gS,1 = in1 · σ and gS,2 = in2 · σ for some unit vectors n1

and n2. We have:

– If ηC6
= 1, then gC6,3

= ±1 therefore ηSC6
= −1. Combine (A.79c) and

(A.79d) we get (gS,2gS,1)−3 = −ηSC6
, which gives gS,2gS,1 = ei

π
3
jn·σ for some

unit vector n, and j = 1, 3 for ηC6S
= 1 while j = 0, 2 for ηC6S

= −1. This

then implies n2 · n1 + i(n2 × n1) · σ = −eiπ3 jn·σ. After gauge fixing, we get

(gC6,0
, gC6,3

, gS,1, gS,2)

= (−σk(cos
πj

3
σk + sin

πj

3
σk+1), 1, iσk, i(cos

πj

3
σk + sin

πj

3
σk+1)),

(A.85)

where σk can be any of the three Pauli matrices. This gives eight classes
depending on the values of η1, ηC6

and j.

– if ηC6
= −1, we have gC6,3

= in3 · σ for some n3, and g3
C6,0

= −in3 · σηSC6
.

Define gC6,0
= eiθn0·σ, then we have cos 3θ = 0, θ = π(2j+1)

6
, which gives gC6,0

=

e−i
π(2j+1)

6
(−1)jηSC6

n3·σ, with independent j = 0, 1, 2. Choose gauge fixing such
that gS,1 = iσk where σk is any of the three Pauli matrices (we denote the

corresponding n1 as xk) and gS,2 = eiφσ
k−1
iσk for some φ, then equation

(A.79e) requires that n3 be either parallel (anti-parallel) or perpendicular to
xk, depending on the value of ηSC6

. After gauge fixing, we obtain the following
form:

∗ If ηSC6
= 1, we have

(gC6,0
, gC6,3

, gS,1, gS,2) = (iσk, iσk, iσk, ηC6S
iσk), (A.86)

the parameters ηC6S
and η1 give four independent classes.

∗ If ηSC6
= −1, we have

(gC6,0
, gC6,3

, gS,1, gS,2)

= (ei
π(2j+1)

6
(−1)jσk−1

, iσk−1, iσk,−ηC6S
iσkei(

π
2

+
π(2j+1)

6
(−1)j)σk−1

),
(A.87)
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where j = 0, 1 together with ηC6S
and η1 gives eight independent classes.

The final result is presented in Table 5.2.

A.8 Fermionic U(1) PSG: adding time reversal

There is one complication when considering time reversal T . Acting on spins, it is the
anti-unitary operator

T : Ŝ → iσyKŜ(−iσyK), (A.88)

where K is the complex conjugation operator that complex conjugates everything on its
right. This induces an action on Ψ as

T : Ψ→ (iσy)KΨ. (A.89)

Introducing a gauge field associated to T , we have

GT ◦ T : Ψ(rµ)→ (iσy)KΨ(rµ)WT (rµ). (A.90)

Now we apply this to a mean-field bond:

GT ◦ T : Hα
rµ,r′ν

→Tr
[
(σα)∗(iσy)KΨ(rµ)WT (rµ)uαrµ,r′νW

†
T (r′ν)Ψ

†(r′ν)(−iσy)K
]

= Tr
[
(σα)∗σyΨ(rµ)W ∗

T (rµ)
(
uαrµ,r′ν

)∗
W T
T (r′ν)Ψ

†(r′ν)σ
y
]
,

(A.91)

where we have noted that both the bond uαrµ,r′ν and σα are complex-conjugated by K.

However we can get rid of this complex conjugation by defining a new gauge field W̃T (rµ)
by

WT (rµ) ≡ iσ2W̃T (rµ). (A.92)

Using the identity σ2uσ2 = u∗ for u ∈ SU(2), we have W ∗
T (rµ) = W̃T (rµ)iσ2 and

σ2
(
u0
rµ,r′ν

)∗
σ2 = −u0

rµ,r′ν
,

σ2
(
u

(i)
rµ,r′ν

)∗
σ2 = u

(i)
rµ,r′ν

, i = x, y, z,
(A.93)

and

σ2(σ0)∗σ2 = σ0,

σ2(σi)∗σ2 = −σi, i = x, y, z,
(A.94)
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we see that the form (5.6) is specially designed so that

GT ◦ T : Hα
rµ,r′ν

= Tr
[
σαΨrµu

α
rµ,r′ν

Ψ†r′ν

]
→ −Tr

[
σαΨrµW̃T (rµ)uαrµ,r′νW̃

†
T (r′ν)Ψ

†
r′ν

]
.

(A.95)

Therefore, with the redefined gauge W̃T , T̃ = GT ◦ T can be regarded as a unitary
operation with an additional sign flip for the mean-field parameters (this sign flip keeps
track of the anti-unitarity of T ).

For the rest of the appendices and in the main text, we will remove the “˜” in W̃T
and call it WT for simplicity. It is then easy to see that in a time reversal symmetric
ansatz Eq. (A.95) leads to Eq. (5.9).

The SU(2) equations associated with Eqs. (A.4j) snd (A.4i) are

WT (rµ)WTi(rµ)W−1
T [T−1

i (rµ)]W−1
Ti

(rµ) = eiσ
3χT Ti , (A.96a)

WT (rµ)WC6
(rµ)W−1

T [C
−1

6 (rµ)]W−1

C6
(rµ) = eiσ

3χT C6 , (A.96b)

WT (rµ)WS(rµ)W−1
T [S−1(rµ)]W−1

S (rµ) = eiσ
3χT S , (A.96c)

W 2
T (rµ) = eiσ

3χT , (A.96d)

where all the χ ∈ [0, 2π) for U(1) IGG, and χ ∈ {0, π} for Z2 IGG.
The above analysis explains the general strategy of treating the projective time re-

versal operation. Below we specialize to case of a U(1) gauge group and solve the corre-
sponding PSG equations (A.96). The general form of WT is

WT (rµ) = (iσ1)wT eiφT (rµ)σ3

, (A.97)

where wT = 0 or 1. We now discuss these two cases separately.
When wT = 0, Eq. (A.96a) gives

φT (rµ) = φT (0µ) +
3∑
i=1

χT Tiri. (A.98)

Then look at Eq. (A.96d). We can use the IGG freedom to set χT = 0. This requires

2φT (0µ) = 2χT Ti = 0, µ = 0, 1, 2, 3 and i = 1, 2, 3. (A.99)

Plug the form (A.98) in Eqs. (A.96b) and (A.96c), we get

(−1)wC6χT T3 + χT T1 = (−1)wC6χT T1+χT T2 = (−1)wC6χT T2 + χT T3 = 0, (A.100a)

φT (00)((−1)wC6 − 1) = (−1)wC6φT (03)− φT (01)

= (−1)wC6φT (01)− φT (02)

= (−1)wC6φT (02)− φT (03)

= −χT C6
, (A.100b)
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−χT T1((−1)wS + 1) + (−1)wSχT T3 = −χT T2((−1)wS + 1) + (−1)wSχT T3

= χT T3((−1)wS − 1) = 0, (A.100c)

φT (03)(−1)wS − φT (00)− χT T3(−1)wS = φT (01)((−1)wS − 1)− χT T1(−1)wS

= φT (01)((−1)wS − 1)− χT T1(−1)wS

= φT (00)(−1)wS − φT (03)

= −χT S, (A.100d)

Eqs. (A.100a) and (A.100c) only give zero solution χT T1 = χT T2 = χT T3 = 0 for any
combinations of wC6

= 0, 1 and wS = 0, 1. Then, Eqs. (A.100b) and (A.100d) have
the only solution φT (00) = φT (01) = φT (02) = φT (03); and by further using the IGG
freedom of time reversal we can set this phase to zero. Therefore the final solution for
wT = 0 is WT (rµ) = 1. However, this implies uαrµ,r′ν = −uαrµ,r′ν according to Eq. (5.9),
which gives vanishing mean-field ansätze. This indicates that wT = 0 is not physical.

Next consider the case wT = 1. We again solve Eq. (A.96a) first: consistency condition
requires −2χ1 = 0, therefore χ1 = 0 or π, and we have

φT (rµ) = φT (0µ)−
3∑
i=1

χT Tiri. (A.101)

Then we solve Eqs. (A.96b) and (A.96c). In all four cases given by wC6
= 0 or 1 and

wS = 0 or 1, we have 2χC6T1
= 2χC6T2

= 2χC6T3
= 2χST1 = 2χST2 = 2χST3 = 0. Then,

since χ1 = 0 or π and χST1 = 0 or 2π/3 are the only possible values in the space group
PSG solution, we see that

χC6T1
= χC6T2

= χC6T3
= χST1 = χST2 = χST3 = 0. (A.102)

Furthermore, analogous to the wT = 0 case, we obtain χT T1 = χT T2 = χT T3 = 0 and
φT (00) = φT (01) = φT (02) = φT (03). Then we can always set this phase to zero using
the IGG freedom of time reversal. This further implies

χT C6
= χT S = 0. (A.103)

In conclusion, in the U(1) PSG case, adding time reversal symmetry does not introduce
additional PSG parameters but further restricts χ1 = 0 or π, and χST1 = 0. The time
reversal gauge part has the form (in our choice of gauge fixing)

WT (rµ) = iσ1. (A.104)

The final result is presented in Table 5.1.
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A.9 Fermionic Z2 PSG: adding time reversal

In this subsection we assume that all the space group PSG equations have been solved
(and gauge-fixed). We then add time reversal to the PSG and solve all the PSG equations
containing time reversal: just as in the U(1) case, we are solving Eqs. (A.96), but now
the right-hand sides of these equations are ±1. From Eq. (A.96a) we get

WT (rµ) = gT ,µη
r1
T T1

ηr2T T2
ηr3T T3

, (A.105)

where we followed the notation in the last appendix: gT ,µ ≡ WT ,µ. Plug the form (A.105)
in Eqs. (A.96b)–(A.96d), we obtain

ηT T1 = ηT T2 = ηT T3 = 0 (A.106)

and

gT ,0gC6,0
g−1
T ,0g

−1

C6,0
= gT ,1gC6,1

g−1
T ,3g

−1

C6,1

= gT ,2gC6,2
g−1
T ,1g

−1

C6,2
= gT ,3gC6,3

g−1
T ,2g

−1

C6,3
= ηT C6

, (A.107a)

gT ,0gS,0g
−1
T ,3g

−1
S,0 = gT ,1gS,1g

−1
T ,1g

−1
S,1

= gT ,2gS,2g
−1
T ,2g

−1
S,2 = gT ,3gS,3g

−1
T ,0g

−1
S,3 = ηT S, (A.107b)

g2
T ,µ = ηT . (A.107c)

Eq. (A.106) means that WT (rµ) = gT ,µ, which only depends on the sublattice indices.
We now claim that ηT = −1. Otherwise ηT = 1, then gT ,µ has the form of a sign factor
ηT ,µ = ±1 times the identity matrix. Plugging this form in Eqs. (A.107a) and (A.107b)
gives 1 = ηT ,1ηT ,3 = ηT ,2ηT ,1 = ηT ,3ηT ,2 = ηT C6

and ηT ,0ηT ,3 = 1 = ηT S, meaning that
all the sublattice signs ηT ,µ must be the same. As was argued in Appendix A.8 this will
lead to a vanishing mean-field ansätze. Therefore we must have ηT = −1.

Recall that in classifying the space group PSG in Appendix A.7 gauge fixing already
gives gC6,1

= gC6,2
= gS,0 = gS,3 = 1. Then Eqs. (A.107a) and (A.107b) enforce

gT ,1 = ηT C6
ηT SgT ,0, gT ,2 = ηT SgT ,0, gT ,3 = ηT SgT ,0, (A.108)

and the two equations reduce to

gT ,0gC6,0
= ηT C6

gC6,0
gT ,0, gT ,0gC6,3

= ηT C6
gC6,3

gT ,0,

gT ,0gS,1 = ηT SgS,1gT ,0, gT ,0gS,2 = ηT SgS,2gT ,0.
(A.109)

gT ,0 is then determined by gC6,0
, gC6,3

, gS,1, gS,2 and there are five cases listed below.

• In the case (η1ηST1 , ηC6
, ηSC6

) = (1, 1, 1), we have (gC6,0
, gC6,3

, gS,1, gS,2) = (1, 1, 1, ηC6S
),

we see we must have ηT C6
= ηT S = 1, and it is easy to use the remaining global

SU(2) gauge freedom to set e.g. gT ,0 = iσk, where σk can be any of the three Pauli
matrices.
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• In the case (η1ηST1 , ηC6
, ηSC6

) = (1,−1,−1), we have (gC6,0
, gC6,3

, gS,1, gS,2) =

(−iσk, iσk, 1, ηC6S
), it is easy to see from the expression of gS,1 and gS,2 that ηT S = 1.

Then time reversal is either gT ,0 = iσk which gives ηT C6
= 1, or gT ,0 = iσk−1 which

gives ηT C6
= −1. Note we have used the gauge freedom (rotating along σk axis) to

set gT ,0 = iσk−1.

• In the case (η1ηST1 , ηC6
, ηSC6

) = (−1, 1,−1), we have (gC6,0
, gC6,3

, gS,1, gS,2) =

(−ηC6S
ei
πj
3
σk−1

, 1, iσk, iσkei
πj
3
σk−1

). When ηC6S
= 1, we get j = 1, 3, and when

ηC6S
= −1, we get j = 0, 2. We always have ηT C6

= 1. If j = 1 or 2, then we must
have gT ,0 = iσk−1, and ηT S = −1; if j = 0 or 3, then we can have gT ,0 = iσk or
gT ,0 = iσk−1 (after gauge fixing), which gives gT S = 1 or gT S = −1, respectively.

• In the case (η1ηST1 , ηC6
, ηSC6

) = (−,−,+), gC6,0
= iσk, gC6,3

= iσk, gS,1 = iσk,

gS,2 = ηC6S
iσk. Two solutions exist: we can have either gT ,0 = iσk corresponding

to ηT C6
= ηT S = 1, or gT ,0 = iσk−1 (after gauge fixing), corresponding to ηT C6

=
ηT S = −1.

• Lastly, in the case (η1ηST1 , ηC6
, ηSC6

) = (−1,−1,−1), gC6,0
= ei

π(2j+1)
6

(−1)jσk−1
,

gC6,3
= iσk−1, gS,1 = iσk, gS,2 = ηC6S

iσk+1ei
π(2j+1)

6
(−1)jσk−1

. When j = 0 we

must have ηT C6
= 1 and g = iσk−1, which gives ηT S = −1; when j = 1 three

solutions exist: we can have g = iσk−1 corresponding to (ηT C6
, ηT S) = (1,−1), or

g = iσk corresponding to (ηT C6
, ηT S) = (−1, 1), or g = iσk+1 corresponding to

(ηT C6
, ηT S) = (−1,−1).

The final result is presented in Table 5.2.

A.10 0-flux symmetry properties

In this Appendix we study the symmetry transformation of the Hamiltonian and oper-
ators in the 0-flux ansätze in more detail. Under an arbitrary symmetry operation O,
following Eq. (1.33) we have

GO ◦ O : Ψrµ → U †OΨO(rµ)WO,µe
iσ3φO[O(rµ)], (A.110)

In the case of U(1) PSG (with or without time reversal) and time reversal symmetric
Z2 PSG in our chosen gauge, we can always write, with the help of the Z2 parameter
wO, WO,µ = (iσ1)wOeiσ

3φ0
O,µ , where φ0

O,µ is some phase that can be absorbed into the

definition of φO(rµ), and we call φ̄O(rµ) = φO(rµ) + φ0
O,µ. We have

GO ◦ O :

(
frµ
f †rµ

)
→ VO,wOe

iτ3φ̄O[O(rµ)]

(
fO(rµ)

f †O(rµ)

)
, (A.111)
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with

VO,wO =

(
U †O

UT
O

)
(−iτ 2σ2)wO , (A.112)

where we defined Pauli matrices τ 1,2,3 to act on the subspace of frµ and f †rµ . Note that

f †rµ is understood as (f †rµ)T =
(
f †rµ↑, f

†
rµ↓

)T
.

Then, Fourier transform gives(
fµ,k
f †µ,−k

)
=

1√
N

∑
r

e−ik·rµ
(
frµ
f †rµ

)
GO◦O−−−→ VO,wO√

N

∑
r

e−ik·rµeiτ
3φ̄O[O(rµ)]

(
fO(rµ)

f †O(rµ)

)
=
VO,wO√
N

∑
r

e−i[k·O
−1(rO(µ))−τ3φ̄O(rO(µ))]

(
frO(µ)

f †rO(µ)

)
,

(A.113)

Using the general structure

φ̄C6
(rµ) = φC6T3

r1 + ρµ, φ̄S(rµ) = −φST1r1 + 3φST1r2 + θµ, (A.114)

we have[
k · O−1(rO(µ))− τ 3φ̄O(rO(µ))

] ∣∣∣
O=C6

=
(
C6(k)− τ 3φC6T3

b̂1

)
· r − k · eµ − τ 3ρC6

,

(A.115a)[
k · O−1(rO(µ))− τ 3φ̄O(rO(µ))

] ∣∣∣
O=S

=
(
S(k)− τ 3(−φST1 b̂1 + 3φST1 b̂2)

)
· r − k · eµ − τ 3θC6

,

(A.115b)

we have

GC6
◦ C6 :

(
fµ,k
f †µ,−k

)
→ VC6,wC6

ei(k·eµ+ρC6(µ))

(
fC6(µ),C6(k)−φC6T3

b̂1

f †
C6(µ),C6(−k)−φC6T3

b̂1

)
, (A.116a)

GS ◦ S :

(
fµ,k
f †µ,−k

)
→ VS,wSe

i(k·eµ+θS(µ))

(
fS(µ),S(k)+φST1

(b̂1−3b̂2)

f †
S(µ),S(−k)+φST1

(b̂1−3b̂2)

)
. (A.116b)
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Appendix B

Gauge-field calculations

B.1 Gauge invariance at one-loop level

It is know that for a generic Hamiltonian couple to a U(1) gauge field, gauge invariance
requires that 1) the photon self energy Π(q) vanishes when the photon external momen-
tum q vanishes and that 2) Ward identity holds. These statements holds perturbatively
at each loop level. Here we explicitly proof these two statements for non-interacting
fermions coupled to a U(1) gauge field at one-loop level. For a generic tight binding
Hamiltonian

H0 =
∑
rµ,r′ν

c†rµhrµ,r′νcr′ν , (B.1)

the U(1) gauge coupling is introduced via the Peierl’s substitution:

H[A] =
∑
rµ,r′ν

c†rµhrµ,r′νe
iArµ,r

′
ν cr′ν +

∑
rµ

A0,rµnrµ (B.2)

the spatial fluctuation of the gauge field is small at short distance, suggesting that we
can expand the exponential for the gauge field. To quadratic order of A we obtain

H[A] =H0 +
∑
k,q

Ai(−q)c†k+q/2

∂h(k)

∂ki
ck−q/2 +

∑
k,q

iA0(−q)c†k+q/2ck−q/2

+
∑
k,q

Ai(q)Aj(q′)c†k+q′
∂2h(k)

∂kj∂ki
ck−q +O(A3),

(B.3)

up to this order we have the usual minimal coupling vertex Ac†c as well as a diamagnetic
vertex A2c†c. These two vertices lead to the two diagrams at one-loop shown in Fig. 5.2:
the usual vacuum polarization bubble (left) and the “tadpole” diagram (right). Note that
the diamagnetic term vanishes for a Dirac Hamiltonian since it is linear in momentum. In
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the following we show that the contribution of these two one-loop diagrams cancel each
other at q = 0, and furthermore the sum of the them at finite momentum and frequency
satisfies the Ward identity.

The vacuum polarization bubble diagram in Fig. 5.2 originates from the Ac†c term.
The vertex expression γµ(k) = δµ0 + δµ,i∂kih, i.e. the vertex is unity for the temporal
component µ = 0 and is ∂kih for the spatial component. The “tadpole” diagram originates
from the A2c†c term. The vertex expression is γµν(k) = δµ,iδν,j∂ki∂kjh, i.e. the vertex
only exists for µ, ν both being spatial indices, with vertex expression ∂ki∂kjh. The two
diagrams have the following expression

Π
(1)
1,µν(q) =

∫
d4k

(2π)4
Tr[γµ(k)G0(k + q/2)γν(k)G0(k − q/2)],

Π
(1)
2,µν(q) =

∫
d4k

(2π)4
Tr[γµν(k)G0(k − q)].

(B.4)

We now show that Π
(1)
1,µν(q = 0) + Π

(1)
2,µν(q = 0) = 0. First of all, when one of the µ, ν is

a temporal component, say ν = 0, then Π
(1)
2,µν = 0 and we are only left with Π

(1)
1,µ0(q = 0):

in the following we write k0 = ω. We have

Π
(1)
1,µ0(q = 0) =

∫
d4k

(2π)4
Tr[γµ(k)G2

0(k)] =

∫
d4k

(2π)4
Tr

[
γµ(k)

(
1

ω − h(k)

)2
]

= −
∫

d4k

(2π)4
Tr

[
γµ(k)

∂

∂ω

(
1

ω − h(k)

)]
= −

∫
d3k

(2π)4
Tr

[
γµ(k)

1

ω − h(k)

] ∣∣∣∣∣
ω=+∞

ω=−∞

= 0,

(B.5)

where we have used the fact that if h is diagonalized as h = U †ΛU , then 1
(ω−h)2 =

U † 1
(ω−Λ)2U = U †

(
− ∂
∂ω

(
1

ω−Λ

))
U = − ∂

∂ω

(
1

ω−h

)
. We therefore see that Π

(1)
1,µ0(q = 0) = 0

for any µ. This means that Π
(1)
1,0ν(q = 0) = 0 for any ν. Then, we look at spatial
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components (note we have suppressed the arguments k below):

Π
(1)
1,ij(q = 0) + Π

(1)
2,ij(q = 0)

=

∫
d4k

(2π)4
Tr

[
∂kih

1

ω − h∂kjh
1

ω − h

]
+

∫
d4k

(2π)4
Tr

[
∂ki∂kjh

1

ω − h

]
=

∫
d4k

(2π)4
Tr

[
∂kih

1

ω − h∂kjh
1

ω − h

]
−
∫

d4k

(2π)4
Tr

[
∂kjh∂ki

(
1

ω − h

)]
=

∫
d4k

(2π)4
Tr

[
∂kih

1

ω − h∂kjh
1

ω − h

]
−
∫

d4k

(2π)4
Tr

[
∂kjh

1

ω − h∂kih
1

ω − h

]
= 0,

(B.6)

where we have used the fact that ∂(K−1) = −K−1(∂K)K−1 for any (non-singular)
matrix K. Therefore we have proved that the photon self-energy vanishes at one-loop
level when photon external momentum is zero.

Next we show that Ward identity holds at one-loop level qµ

(
Π

(1)
1,µi(q)− Π

(1)
2,µi(q)

)
= 0.

First, only the vacuum polarization diagram contributes to the µ0 component:

qµΠ
(1)
1,µ0(q) =

∫
d4k

(2π)4
Tr

[ −q0 + qi∂kih(k)

(k0 + q0/2− h(k + q/2))(k0 − q0/2− h(k − q/2))

]
, (B.7)

note that

(k0 + q0/2− h(k + q/2))− (k0 − q0/2− h(k − q/2)) = q0 − qi∂kih(k) + o(q), (B.8)

this means that

qµΠ
(1)
1,µ0(q) =

∫
d4k

(2π)4
Tr

[
1

k0 + q0/2− h(k + q/2)
− 1

k0 − q0/2− h(k − q/2)

]
, (B.9)

which gives zero since the two terms only differ by a shift. Similarly, we have

qµΠ
(1)
1,µi =

∫
d4k

(2π)4
Tr

[(
−q0 + qj∂kjh(k)

) 1

k0 + q0/2− h(k + q/2)
∂kih(k)

1

k0 − q0/2− h(k − q/2)

]
,

(B.10)
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and similar to the µ0 component case, we get

qµΠ
(1)
1,µi =

∫
d4k

(2π)4
Tr

[
∂kih(k)

(
1

k0 + q0/2− h(k + q/2)
− 1

k0 − q0/2− h(k − q/2)

)]
,

(B.11)
on the other hand we have 1

2
qi∂ki∂kjh(k) = ∂kjh(k+ q/2)− ∂kjh(k) + o(q) = ∂kjh(k)−

∂kjh(k − q/2) + o(q), and

qjΠ
(1)
2,ji =

∫
d4k

(2π)4
Tr

[
qj∂kj∂kih(k)

k0 − q0 − h(k − q)

]
=

∫
d4k

(2π)4
Tr

[
∂kjh(k − q/2)− ∂kjh(k − q) + ∂kjh(k − q)− ∂kjh(k − 3q/2)

k0 − q0 − h(k − q)

]
=

∫
d4k

(2π)4
Tr

[
∂kjh(k)− ∂kjh(k − q/2)

k0 − q0/2− h(k − q/2)

]
+

∫
d4k

(2π)4
Tr

[
∂kjh(k + q/2)− ∂kjh(k)

k0 + q0/2− h(k + q/2)

]
,

(B.12)

where we have shifted the integral variables. Therefore we see that (denote Π
(1)
2,0µ = 0)

qµ

(
Π

(1)
1,µi(q)− Π

(1)
2,µi(q)

)
=

∫
d4k

(2π)4
Tr

[
∂kih(k + q/2)

k0 + q0/2− h(k + q/2)
− ∂kih(k − q/2)

k0 − q0/2− h(k − q/2)

]
,

(B.13)
which gives zero on the Brillouin zone. Therefore Ward identity holds at one-loop level.

B.2 Deriving the photon vacuum bubble: scaling

analysis

We study the 00 component of the vacuum polarization diagram: after completing the
frequency integral, we have (again in imaginary time)

D(q) ≡ Π
(1)
1,00(q) = −πRe

[∫
d3k

(2π)3

1− d̂k+q/2 · d̂k−q/2
|dk+q/2|+ |dk−q/2|+ iq0

]
, (B.14)

with d̂ = d/|d|. To separate the contribution along the nodal line and that in the
vicinity of the Γ point, we use the identity 1 = x

a+x
+ a

a+x
, where we set a = cq2 and

x = |dk+q/2|+ |dk−q/2|+ iq0, so that

D(q) = D1(q) +D2(q), (B.15)
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with

D1(q) = −πRe

[∫
d3k

(2π)3

1− d̂k+q/2 · d̂k−q/2
|dk+q/2|+ |dk−q/2|+ iq0 + cq2

]
, (B.16a)

D2(q) = −πRe

[∫
d3k

(2π)3

cq2(1− d̂k+q/2 · d̂k−q/2)

(|dk+q/2|+ |dk−q/2|+ iq0)(|dk+q/2|+ |dk−q/2|+ iq0 + cq2)

]
,

(B.16b)

the choice of a = cq2 is made to agree with the scaling dk ∝ q2 near the Γ point (see
Eq. (5.35)) and guarantees that D2 extracts the contribution in vicinity of the Γ point.
Having in mind that at small q the leading order q result is isotropic in q. Therefore we
choose a specific direction for q: q = qzẑ.

We first look at D2(q): since D2(q) is supported in vicinity of the Γ point, we expand
dk as in Eq. (5.35). Rescaling k = xqz and dk = q2

zεk, we have

D2(q) ∼ −cπ|qz|Re

[∫
d3x

(2π)3

1− ε̂x+ẑ/2 · ε̂x−ẑ/2
(|εx+ẑ/2|+ |εx−ẑ/2|+ iq0/q2)(|εx+ẑ/2|+ |εx−ẑ/2|+ iq0/|q|+ c)

]
+O(q2),

(B.17)
First look at the case of q0 = 0. In this case, the integral in D2(q) is well behaved, which

can be easily seen in the original expression (B.16b): the only singularity comes from
|dk+q/2| + |dk+q/2| = 0, or |εk+q/2||εk−q/2| = 0, which gives isolated points (x1, x2, x3) =
(±1/2,±1/2, 0). Expand around these points: x1 = ±1/2 + ηξ1, x2 = ±1/2 + ηξ2, and
x3 = ηξ3, we see that |εk+q/2||εk−q/2| ∼ ηf(ξ1, ξ2, ξ3) where the function f is well behaved;
therefore these singularities are integrable. We can also relax the integral for x to the
infinite plane and still get finite results. Therefore the integral in D2(q) is well behaved,
and D2(q, q0 = 0) scales linearly with |q|.

Next, we need to extract the scaling behavior at finite frequency; analytic continuation
iq0 → ω + iδ is needed. First, the real part of D2(q) is of the form D2(q) = |q|f(ω/q2),
where f is a well-behaved function whose value is always finite (according to the q0 = 0
analysis above). However it might be useful to see how the actual scaling looks like.
What we care is when w = ω/q2 � 1 since this is the regime that D2(q) has both real
and imaginary parts. In this regime, 1 − ε̂x+ẑ/2 · ε̂x−ẑ/2 is finite (numerically verified),

therefore the scaling is determined simply by
∫

d3x
(2π)3

1
(|εx+ẑ/2|+|εx−ẑ/2|±(w+iδ))

. The result

is ∼
∫

r2dr
r±(w+iδ)

∼ (∓wr + r2/2 + w2 ln(±w + r))|R0 + iπw2sgn(w), we see that we have

scaling w2 ln |w| + iπw2sgn(w). Note that the real part w2 ln |w| is in addition to other
contributions in f(w). Therefore in the limit ω → 0, we recover the scaling D2(q) ∼ |qz|.

Next we deal with D1(q). The numerator can be simplified: notice that d2
k+q/2 +

d2
k−q/2−2|dk+q/2||dk−q/2| = (|dk+q/2|−|dk−q/2|)2 ∼ (sin q sin k)2, and (dk+q/2−dk−q/2)2 =
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8 sin2 kz sin2 qz
2

, therefore we can substitute

1− d̂k+q/2 · d̂k−q/2 =
−(|dk+q/2| − |dk−q/2|)2 + (dk+q/2 − dk−q/2)2

2|dk+q/2||dk−q/2|
∼ sin2 q sin2 k

2|dk+q/2||dk−q/2|
.

(B.18)
since D1(q) receives contribution mainly along the line, we can make the rescaling
k1 = k3+qx1, k2 = k3+qx2 and the approximation |dk±q/2| = |q|| sin k3|f±(x1, x2)+O(q3),

where f±(x1, x2) =
√

(1∓ 2(x1 + x2) + 4x2
1 + 4x2

2 − 4x1x2)/2, we further have

1− d̂k+q/2 · d̂k−q/2 ∼
1

f+(x)f−(x)
. (B.19)

Then after analytic continuation to real frequency we have

D1(qẑ, ω) =− |q|
2π2

∫
d2x

1

f+(x)f−(x)
×∫ π

0

dk3

(
1

| sin k3|(f+ + f−) + ω
|q| + c|q|+ iδ

+
1

| sin k3|(f+ + f−)− ω
|q| + c|q| − iδ

)
,

(B.20)
the first integral gives (here we only consider ω � q � 1)

D
(1)
1 = −|q|

π2
ln

(
1

| ω|q| + c|q||

)
C0−i

|q|
2π2

∫
d2x

Θ(0 < − ω
|q| − c|q| < f+ + f−)

f+(x)f−(x)
√

(f+(x) + f−(x))2 − ( ω
|q| + c|q|)2

,

(B.21)
where we defined

C0 =

∫
d2x

1

f+(x)f−(x)(f+(x) + f−(x))
. (B.22)

the imaginary part vanishes for |ω| � q2 since in this regime the Heaviside function has
zero support. When |q| � ω � q2, we can ignore the c|q|2 term, and we have

D1(qẑ, ω) = −|q| ln
(

1

|c2q2 − ω2

q2 |

)
C0−i|q|sgn(ω)

[
g

(
ω

|q|

)
Θ(|q| � |ω| > cq2) +

ω2

q4
Θ(|ω| � q2)

]
,

(B.23)
where g(x) is a function of x = ω/g. We verify numerically that g( ω

|q|) = C0 + 1
2
( ω
|q|)

2.
As we will show in the next appendix, a pure nodal line approximation can recover the
calculation here by introducing a cutoff θ0 for integrals along the nodal line at the Γ
point of the form θ0 ∼ q.

To summarize, the 00 component D(q) = Π00(q) receives contribution of D2(q) ∼
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|q|f(ω/q2) near the Γ point and receives contribution D1 = −|q| ln
(

1
|c2|q|2−ω2/q2|

)
−

i|q|g(ω/q)Θ(|q| � |ω| > cq2) along the nodal lines. At small frequency ω � q2, D(q) is
real and is dominated by the nodal line (q ln(1/q) vs q).

The 0i and ij components can be analyzed in the same way. We have

Π
(1)
1,0i(q) = −iπRe

∫ d3k

(2π)3

|dk+q/2|−|dk−q/2|
|dk−q/2|+|dk+q/2|

Ci(k,q)
|dk−q/2||dk+q/2|

− Di(k,q)
|dk−q/2||dk+q/2|

|dk+q/2|+ |dk−q/2|+ iq0

 q0 sin ki,

(B.24a)

Π
(1)
1,ii(q) = −2πRe

[∫
d3k

(2π)3

1− B̂i(k, q)

|dk+q/2|+ |dk−q/2|+ iq0

]
sin2 ki, (B.24b)

Π
(1)
1,ij(q) = πRe

[∫
d3k

(2π)3

1− 2B̂i(k, q)− 2B̂j(k, q)

|dk+q/2|+ |dk−q/2|+ iq0

]
sin ki sin kj, (B.24c)

where (it is understood i+ 3 ≡ i)

B̂i = d̂k−q/2 · d̂k+q/2 − 3d̂ik−q/2d̂
i
k+q/2, (B.25a)

Ci =
1

2
[(di+2

k−q/2 + di+2
k+q/2)− (di+1

k−q/2 + di+1
k+q/2)], (B.25b)

Di =
1

2
[(di+2

k−q/2 − di+2
k+q/2)− (di+1

k−q/2 − di+1
k+q/2)], (B.25c)

Due to the appearance of sin ki coming from the vertex expressions, the Γ point will
contribute at a much higher order: Π

(1)
1,0i ∼ q2, and Π

(1)
1,ij ∼ q3. Furthermore, the nodal

line contribution becomes

Π
(1)
1,0i = −iq0

1

2π2

∫
d2x

c0i(x)

f+(x)f−(x)
×∫ π

0

dk3

(
1

| sin k3|(f+ + f−) + ω
|q| + c|q|+ iδ

+
1

| sin k3|(f+ + f−)− ω
|q| + c|q| − iδ

)
(B.26)

Note that the numerator of Eq. (B.24a) gives

∼ sin q sin k

|dk+q/2||dk−q/2|
(B.27)

(c.f. Eq. (B.18)), therefore it requires an extra |q| and an extra sin ki to cancel the
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|q|2 sin2 k3 coming from |dk+q/2||dk−q/2| in Eq. (B.27). Then, for the ij components

Π
(1)
1,ij =− |q|

2π2

∫
d2x

cij(x)

f+(x)f−(x)
×∫ π

0

dk3

(
sin2 k3

| sin k3|(f+ + f−) + ω
|q| + c|q|+ iδ

+
sin2 k3

| sin k3|(f+ + f−)− ω
|q| + c|q| − iδ

)
(B.28)

which gives

Π
(1)
1,0i ∼ ωn0i(q̂) ln(1/|w|2) + iωg(w),

Π
(1)
1,ij ∼ |q|

(
nij(q̂)(2− πw) +mij(q̂)w2 ln(1/w)

)
− i|q|w2g(w),

(B.29)

where w = ω/|q| � 1 and |q| � |ω| � cq2 (The discrete poles when |ω| � q2 are
not included here). We see that the nodal line contribution also dominates in these
components. Note the above expressions hold only in the scaling sense; for example, the
|q| factor in Π

(1)
1,ij must have a component dependent form in order for Ward identity

to hold. On the other hand, these expressions already have the right scaling for Ward
identity to hold. The detailed form of these scaling functions can be found in the next
section.

Therefore in photon thermodynamics we just have to concentrate on the nodal line
and not the Γ region. This validates the QED calculation in the next section.

Finally, we mention that the momentum dependent part of Π2,ij starts to contribute
at quadratic order in q2: this is because due to the special form of h(k) we have

Π
(1)
2,ij =

∫
d4k

(2π)4
Tr

[
∂ki∂kjh(k)

k0 − q0 − h(k − q)

]
=

∫
d4k

(2π)4
Tr

[
∂ki∂kjh(k + q))

k0 − h(k)

]
= δij

∫
d4k

(2π)4
Tr

[
∂2
ki
h(k + q)

k0 − h(k)

]
,

(B.30)

since h(−k) = h(k), if we expand ∂2
ki
h(k+ q), the term linear in q is odd in k vanishes

after the integral over k, leaving the leading order contribution quadratic in q.

B.3 Deriving the photon vacuum bubble: nodal line

approximation

We concluded in the last Appendix that the calculation of photon self-energy at one-loop
level amounts to calculating the momentum dependent part of the vacuum polarization
bubble. This is the diagram resulted from the minimal coupling termAi(−q)∂kiH(k)ψ†k+q/2ψk−q/2.

The expressions for this diagram and the vertex have been given in Eqs. (5.41) and (5.42).
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The bare Green’s function for the spinons has the explicit form

G0(k) =
1

ik0 −H
=

ik0 +H
−k2

0 − E2

=− ik0 + cos k1(σ2 − σ3) + cos k2(σ3 − σ1) + cos k3(σ1 − σ2)

k2
0 + (cos k1 − cos k2)2 + (cos k2 − cos k3)2 + (cos k3 − cos k1)2

.

(B.31)

To evaluate the vacuum polarization bubble near the nodal star region, we first need
to write the momentum in local coordinates. Denote the nodal line by (ς1, ς2, ς3), where
ς1,2,3 = ±1 labels different nodal lines. For each nodal line, we denote

ε3 =
1√
3

(ς1x̂+ ς2ŷ + ς3ẑ), ε1 =
1√
2

(ς1x̂− ς2ŷ), ε2 =
1√
6

(ς1x̂+ ς2ŷ − 2ς3ẑ), (B.32)

any momentum will be expanded in these coordinates: denote k = k1x̂ + k2ŷ + k3ẑ =
cε3 + a(ε1 cos θ + ε2 sin θ) + b(−ε1 sin θ + ε2 cos θ), then we have

k1 = ς1

(
c√
3

+ η

(
a√
2

+
b√
6

)
cos θ + η

(
a√
6
− b√

2

)
sin θ

)
, (B.33a)

k2 = ς2

(
c√
3

+ η

(
− a√

2
+

b√
6

)
cos θ + η

(
a√
6

+
b√
2

)
sin θ

)
, (B.33b)

k3 = ς3

(
c√
3
− η 2b√

6
cos θ − η 2a√

6
sin θ

)
. (B.33c)

First, expand the Hamiltonian (5.34a) to first order of η and then set η = 1, we obtain

H = sin
c√
3

(
(−a+

√
3b) cos θ + (

√
3a+ b) sin θ√

2
σ1 − (a+

√
3b) cos θ + (

√
3a− b) sin θ√

2
σ2

+
√

2(a cos θ − b sin θ)σ3
)
,

(B.34)
with the energy E2(k) = 3 sin2 c√

3
(a2 +b2) = v2(a2 +b2) where we defined v ≡

√
3 sin c√

3
.

From now on, for any k dependent function f = f(k), we will introduce the notation
f± ≡ f(k ± q/2).

Using the Feynman parameterization we have

Πµν(q) =

∫
d4k

(2π)4

∫ 1

0

du
Zµν(k, q)[

u(k2
0+ + v2

+(a2
+ + b2

+)) + (1− u)(k2
0− + v2

−(a2
− + b2

−))
]2 ,
(B.35)
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where we defined

Zµν = Tr[Γµ(k)(i(k0 + q0/2) +H(k + q/2))Γν(k)(i(k0 − q0/2) +H(k − q/2))]. (B.36)

In local coordinates, Πµν(q) then can be written as

Πµν(q) =
ς1ς2ς3
(2π)4

∫
dκ0

∫
d2κ⊥
g

∫
dκ‖

∫ 1

0

du
Zµν(k, q)

(κ2
0 + κ2

⊥ + ∆)
2 , (B.37)

where we defined

κ0 = k0 + (u− 1/2)q0, κ⊥ =
√
g

(
k⊥ +

1

2
fq⊥

)
, κ‖ =

c√
3
, (B.38)

with

g = uv2
+ + (1− u)v2

−, h = uv2
+ − (1− u)v2

−,

f =
h

g
=
uv2

+ − (1− u)v2
−

uv2
+ + (1− u)v2

−
, ∆ = u(1− u)q2

0 +
1

4
(1− f 2)gq2

⊥.
(B.39)

The denominator has spherical symmetry with respect to (κ0,κ⊥). If we set v+ = v− ≡ v
then the isotropic (i.e. relativistic) limit is recovered: κ⊥ = k⊥+(u−1/2)q⊥ which agrees
with κ0 = k0 + (u−1/2)q0; and 1

4
g(1−f 2)q2

⊥ → u(1−u)q2
⊥ which agrees with u(1−u)q2

0.
Now we simplify the numerator Zµν . The vertex Γµ in principle needs expansion

according to powers of η, however for our purpose it suffices to keep the zeroth order, i.e.
Γ1(k) = sin k1(σ2 − σ3) ∼ ς1 sin c√

3
(σ2 − σ3), and similarly Γ2(k) ∼ ς2 sin c√

3
(σ3 − σ1),

and Γ3(k) ∼ ς3 sin c√
3
(σ1− σ2). For later convenience we further define ς0 ≡ 1. This way

in Zµν there will be prefactors of

ςµςν

(
sin

c√
3

)δµ6=0+δν 6=0

= ςµςν

(
v√
3

)δµ6=0+δν 6=0

.

We then apply Eq. (B.38) and Zµν will be written as polynomials of κ, up to quadratic
order. Then only the constant terms in κ and the squared terms in κ needs to be kept
since the other terms integrate to zero. The integral over d3κ = dκ0d

2κ⊥ can then be
evaluated. Using dimensional regularization∫

d3κ
{κ2, 1}

(κ2 + ∆)2
= 4π

∫
dκ
{κ4, κ2}

(κ2 + ∆)2
= π2{−3∆1/2,

1

∆1/2
} (B.40)

where the divergent part of the first term has been subtracted (this part is independent
of the external momentum q and will cancel the divergence from the “tadpole” diagram).
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We then have

Πµν(q) =
ς1ς2ς3
(2π)4

∫
dκ‖ςµςν

(
v√
3

)δµ6=0+δν 6=0
∫ 1

0

duIµν(κ‖, q), (B.41)

where (note we have put back in Iµν the extra 1
g

in Eq. (B.37) resulted from the change

of integral variables)

I00 = 4π2

(
−I1q

2
0 + I2q

2
0v−v+ −

1

6
I2Q

2v2
−v

2
+ +

1

2
I3Q

2v3
−v

3
+

)
, (B.42a)

I0i = −4π2q0Qiv−v+
v− + v+

2
√

3
I2, i ∈ {1, 2, 3}, (B.42b)

I ii = 4π2

(
2I1q

2
0 +

1

3
I2Q

2v2
−v

2
+ −

1

3
I3Q

2
iiv

3
−v

3
+

)
, i ∈ {1, 2, 3}, (B.42c)

I ij = −4π2

(
I1q

2
0 +

1

6
I2Q

2v2
−v

2
+ +

1

3
I3Q

2
kkv

3
−v

3
+

)
, {i, j, k} = {1, 2, 3}, (B.42d)

where the definitions of Q, Qi and Qii are in Eqs. (5.51), and we defined

I1 =
(1− u)u√

∆g
, I2 =

(1− u)u√
∆g2

, I3 =
(1− u)u√

∆g3
. (B.43)

We note that the integrals
∫ 1

0
I1,2,3du for general v+ 6= v− can be evaluated, and the result

is written in terms of the Elliptic functions. However we are allowed to set v+ = v− = v
in I1,2,3 since the q dependence in v± does not affect the leading order of the photon self
energy Π1 which is linear in q. Then we have

∫ 1

0

I1du =
π

8v2

√
q2

0 + Q2

3
v2

,

∫ 1

0

I2du =
π

8v4

√
q2

0 + Q2

3
v2

,

∫ 1

0

I3du =
π

8v6

√
q2

0 + Q2

3
v2

,

(B.44)
This allows us to write

∫ 1

0

Iµνdu =
π3

2
√
q2

0 + Q2

3
v2

×


1
3
Q2 − q0Q1√

3v
− q0Q2√

3v
− q0Q3√

3v

− q0Q1√
3v

2
q2
0

v2 + 1
3
Q2 − 1

3
Q2

11 − q2
0

v2 − 1
6
Q2 − 1

3
Q2

33 − q2
0

v2 − 1
6
Q2 − 1

3
Q2

22

− q0Q2√
3v
− q2

0

v2 − 1
6
Q2 − 1

3
Q2

33 2
q2
0

v2 + 1
3
Q2 − 1

3
Q2

22 − q2
0

v2 − 1
6
Q2 − 1

3
Q2

11

− q0Q3√
3v
− q2

0

v2 − 1
6
Q2 − 1

3
Q2

22 − q2
0

v2 − 1
6
Q2 − 1

3
Q2

11 2
q2
0

v2 + 1
3
Q2 − 1

3
Q2

33

 .

(B.45)
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The matrix on the right has two zero eigenvalues and two nonzero eigenvalues, 3π3

2v2

√
q2

0 + Q2

3
v2

and 3π3

2v2

q2
0+ 1

9
Q2v2√

q2
0+Q2

3
v2

. And we have

Πµν(q) =
ς1ς2ς3
(2π)4

∫
dκ‖

π3

2
√
q2

0 + Q2

3
v2

×


1
3
Q2 −ς1 q0Q1

3
−ς2 q0Q2

3
−ς3 q0Q3

3

−ς1 q0Q1

3
2
3
q2

0 + v2

9
(Q2 −Q2

11) −ς1ς2
[
q2
0

3
+ v2

18
(Q2 + 2Q2

33)
]
−ς1ς3

[
q2
0

3
− v2

18
(Q2 + 2Q2

22)
]

−ς2 q0Q2

3
−ς1ς2

[
q2
0

3
+ v2

18
(Q2 + 2Q2

33)
]

2
3
q2

0 + v2

9
(Q2 −Q2

22) −ς2ς3
[
q2
0

3
+ v2

18
(Q2 + 2Q2

11)
]

−ς3 q0Q3

3
−ς1ς3

[
q2
0

3
+ v2

18
(Q2 + 2Q2

22)
]
−ς1ς2

[
q2
0

3
+ v2

18
(Q2 + 2Q2

11)
]

2
3
q2

0 + v2

9
(Q2 −Q2

33)

 .

(B.46)

The matrix now has two zero eigenvalues and two nonzero eigenvalues
π3(q2

0+ 1
3
Q2)

2

√
q2
0+Q2

3
v2

and

π3

2

√
q2

0 + Q2

3
v2.

The final integral is over κ‖. To do this, cutoff must be imposed in the vicinity of Γ
and L points where the Dirac velocity vanishes:∫ π−θ0

θ0

dκ‖
1√

A+ sin2 κ‖

=
F (π − θ0,− 1

A
)− F (θ0,− 1

A
)√

A
, (B.47a)

∫ π−θ0

θ0

dκ‖
sin2 κ‖√
A+ sin2 κ‖

=
√
A

(
E(π − θ0,−

1

A
)− E(θ0,−

1

A
)− F (π − θ0,−

1

A
) + F (θ0,−

1

A
)

)
,

(B.47b)

with A =
q2
0

Q2 . Note that we can safely set θ0 = 0 in the second integral.
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[12] Jean-Sébastien Bernier, Michael J. Lawler, and Yong Baek Kim. Quantum or-
der by disorder in frustrated diamond lattice antiferromagnets. Phys. Rev. Lett.,
101:047201, Jul 2008.

[13] Matthew S. Block, D. N. Sheng, Olexei I. Motrunich, and Matthew P. A. Fisher.
Spin bose-metal and valence bond solid phases in a spin-1/2 model with ring ex-
changes on a four-leg triangular ladder. Phys. Rev. Lett., 106:157202, Apr 2011.

[14] Mitchell M Bordelon, Eric Kenney, Chunxiao Liu, Tom Hogan, Lorenzo Posthuma,
Marzieh Kavand, Yuanqi Lyu, Mark Sherwin, Nicholas P Butch, Craig Brown,
et al. Field-tunable quantum disordered ground state in the triangular-lattice an-
tiferromagnet NaYbO2. Nature Physics, 15(10):1058–1064, 2019.

[15] Mitchell M. Bordelon, Chunxiao Liu, Lorenzo Posthuma, Eric Kenney, M. J. Graf,
N. P. Butch, Arnab Banerjee, Stuart Calder, Leon Balents, and Stephen D. Wilson.
Frustrated heisenberg J1−J2 model within the stretched diamond lattice of LiYbO2.
Phys. Rev. B, 103:014420, Jan 2021.

[16] Mitchell M. Bordelon, Chunxiao Liu, Lorenzo Posthuma, P. M. Sarte, N. P. Butch,
Daniel M. Pajerowski, Arnab Banerjee, Leon Balents, and Stephen D. Wilson. Spin
excitations in the frustrated triangular lattice antiferromagnet NaYbO2. Phys. Rev.
B, 101:224427, Jun 2020.

[17] DF Bowman, E Cemal, T Lehner, AR Wildes, L Mangin-Thro, GJ Nilsen, MJ Gut-
mann, DJ Voneshen, D Prabhakaran, AT Boothroyd, et al. Role of defects in deter-
mining the magnetic ground state of ytterbium titanate. Nature communications,
10, 2019.

[18] S. T. Bramwell, M. J. Harris, B. C. den Hertog, M. J. P. Gingras, J. S. Gardner,
D. F. McMorrow, A. R. Wildes, A. L. Cornelius, J. D. M. Champion, R. G. Melko,
and T. Fennell. Spin correlations in Ho2Ti2O7: A dipolar spin ice system. Phys.
Rev. Lett., 87:047205, Jul 2001.

[19] ST Bramwell and MJ Harris. Frustration in ising-type spin models on the py-
rochlore lattice. Journal of Physics: Condensed Matter, 10(14):L215, 1998.

[20] Steven T Bramwell and Michel JP Gingras. Spin ice state in frustrated magnetic
pyrochlore materials. Science, 294(5546):1495–1501, 2001.

265



[21] C Broholm, RJ Cava, SA Kivelson, DG Nocera, MR Norman, and T Senthil.
Quantum spin liquids. Science, 367(6475), 2020.

[22] Finn Lasse Buessen, Max Hering, Johannes Reuther, and Simon Trebst. Quan-
tum spin liquids in frustrated spin-1 diamond antiferromagnets. Phys. Rev. Lett.,
120:057201, Jan 2018.

[23] F. J. Burnell, Shoibal Chakravarty, and S. L. Sondhi. Monopole flux state on the
pyrochlore lattice. Phys. Rev. B, 79:144432, Apr 2009.

[24] Y. Q. Cai, Q. Cui, X. Li, Z. L. Dun, J. Ma, C. dela Cruz, Y. Y. Jiao, J. Liao,
P. J. Sun, Y. Q. Li, J. S. Zhou, J. B. Goodenough, H. D. Zhou, and J.-G. Cheng.
High-pressure synthesis and characterization of the effective pseudospin S = 1/2
XY pyrochlores R2Pt2O7 (R = Er, Yb). Phys. Rev. B, 93:014443, Jan 2016.

[25] B. Canals and C. Lacroix. Pyrochlore antiferromagnet: A three-dimensional quan-
tum spin liquid. Phys. Rev. Lett., 80:2933–2936, Mar 1998.

[26] JR Chamorro, L Ge, J Flynn, MA Subramanian, M Mourigal, and TM McQueen.
Frustrated spin one on a diamond lattice in NiRh2O4. Phys. Rev. Materials,
2(3):034404, 2018.

[27] J. D. M. Champion, A. S. Wills, T. Fennell, S. T. Bramwell, J. S. Gardner, and
M. A. Green. Order in the heisenberg pyrochlore: The magnetic structure of
Gd2Ti2O7. Phys. Rev. B, 64:140407, Sep 2001.

[28] Lieh-Jeng Chang, DJ Huang, WH Li, Sang-Wook Cheong, W Ratcliff, and
JW Lynn. Crossover from incommensurate to commensurate magnetic orderings
in CoCr2O4. Journal of Physics: Condensed matter, 21(45):456008, 2009.

[29] Gang Chen. “magnetic monopole” condensation of the pyrochlore ice u(1) quantum
spin liquid: Application to Pr2Ir2O7 and Yb2Ti2O7. Phys. Rev. B, 94:205107, Nov
2016.

[30] Gang Chen. Quantum paramagnet and frustrated quantum criticality in a spin-one
diamond lattice antiferromagnet. Phys. Rev. B, 96:020412, Jul 2017.

[31] Lei Chen, Dai-Wei Qu, Han Li, Bin-Bin Chen, Shou-Shu Gong, Jan von Delft,
Andreas Weichselbaum, and Wei Li. Two-temperature scales in the triangular-
lattice heisenberg antiferromagnet. Phys. Rev. B, 99:140404, Apr 2019.

[32] Xuliang Chen, Zhaorong Yang, Yuanmiao Xie, Zhonghao Huang, Langsheng Ling,
Shile Zhang, Li Pi, Yuping Sun, and Yuheng Zhang. Coexistence of incommensurate
and commensurate spiral orders and pressure effect on polycrystalline CoCr2O4.
Journal of Applied Physics, 113(17):17E129, 2013.

266



[33] Li Ern Chern and Yong Baek Kim. Magnetic order with fractionalized excitations
in pyrochlore magnets with strong spin-orbit coupling. Scientific reports, 9(1):1–10,
2019.

[34] Ting-Pong Choy and Yong Baek Kim. Classification of quantum phases for the
star-lattice antiferromagnet via a projective symmetry group analysis. Phys. Rev.
B, 80:064404, Aug 2009.

[35] A V Chubukov and D I Golosov. Quantum theory of an antiferromagnet on a trian-
gular lattice in a magnetic field. Journal of Physics: Condensed Matter, 3(1):69–82,
jan 1991.

[36] Y. Cui, J. Dai, P. Zhou, P. S. Wang, T. R. Li, W. H. Song, J. C. Wang, L. Ma,
Z. Zhang, S. Y. Li, G. M. Luke, B. Normand, T. Xiang, and W. Yu. Mermin-
wagner physics, (h, t) phase diagram, and candidate quantum spin-liquid phase in
the spin-1

2
triangular-lattice antiferromagnet Ba8CoNb6O24. Phys. Rev. Materials,

2:044403, Apr 2018.

[37] Peng-Ling Dai, Gaoning Zhang, Yaofeng Xie, Chunruo Duan, Yonghao Gao, Zihao
Zhu, Erxi Feng, Zhen Tao, Chien-Lung Huang, Huibo Cao, Andrey Podlesnyak,
Garrett E. Granroth, Michelle S. Everett, Joerg C. Neuefeind, David Voneshen,
Shun Wang, Guotai Tan, Emilia Morosan, Xia Wang, Hai-Qing Lin, Lei Shu, Gang
Chen, Yanfeng Guo, Xingye Lu, and Pengcheng Dai. Spinon fermi surface spin
liquid in a triangular lattice antiferromagnet NaYbSe2. Phys. Rev. X, 11:021044,
May 2021.

[38] Lei Ding, Pascal Manuel, Sebastian Bachus, Franziska Grußler, Philipp Gegen-
wart, John Singleton, Roger D. Johnson, Helen C. Walker, Devashibhai T. Adroja,
Adrian D. Hillier, and Alexander A. Tsirlin. Gapless spin-liquid state in the struc-
turally disorder-free triangular antiferromagnet NaYbO2. Phys. Rev. B, 100:144432,
Oct 2019.

[39] Dominic V. Else and Ryan Thorngren. Topological theory of lieb-schultz-mattis
theorems in quantum spin systems. Phys. Rev. B, 101:224437, Jun 2020.

[40] N. Elstner and A. P. Young. Spin-1/2 heisenberg antiferromagnet on the kagome´
lattice: High-temperature expansion and exact-diagonalization studies. Phys. Rev.
B, 50:6871–6876, Sep 1994.

[41] Patrik Fazekas. Lecture notes on electron correlation and magnetism, volume 5.
World scientific, 1999.

[42] Junwu Gan and Eugene Wong. Non-fermi-liquid behavior in quantum critical
systems. Phys. Rev. Lett., 71:4226–4229, Dec 1993.

267



[43] Bin Gao, Tong Chen, David W. Tam, Chien-Lung Huang, Kalyan Sasmal,
Devashibhai T. Adroja, Feng Ye, Huibo Cao, Gabriele Sala, Matthew B. Stone,
Christopher Baines, Joel A. T. Verezhak, Haoyu Hu, Jae-Ho Chung, Xianghan
Xu, Sang-Wook Cheong, Manivannan Nallaiyan, Stefano Spagna, M. Brian Maple,
Andriy H. Nevidomskyy, Emilia Morosan, Gang Chen, and Pengcheng Dai. Exper-
imental signatures of a three-dimensional quantum spin liquid in effective spin-1/2
Ce2Zr2O7 pyrochlore. Nature Physics, 15(10):1052–1057, July 2019.

[44] Shang Gao, Oksana Zaharko, Vladimir Tsurkan, Yixi Su, Jonathan S White,
Gregory S Tucker, Bertrand Roessli, Frederic Bourdarot, Romain Sibille, Dmitry
Chernyshov, et al. Spiral spin-liquid and the emergence of a vortex-like state in
MnSc2S4. Nature Physics, 13(2):157–161, 2017.

[45] Jason S Gardner, Michel JP Gingras, and John E Greedan. Magnetic pyrochlore
oxides. Reviews of Modern Physics, 82(1):53, 2010.

[46] V. Ovidiu Garlea, Liurukara D. Sanjeewa, Michael A. McGuire, Cristian D. Batista,
Anjana M. Samarakoon, David Graf, Barry Winn, Feng Ye, Christina Hoffmann,
and Joseph W. Kolis. Exotic magnetic field-induced spin-superstructures in a mixed
honeycomb-triangular lattice system. Phys. Rev. X, 9:011038, Feb 2019.

[47] J. Gaudet, D. D. Maharaj, G. Sala, E. Kermarrec, K. A. Ross, H. A. Dabkowska,
A. I. Kolesnikov, G. E. Granroth, and B. D. Gaulin. Neutron spectroscopic study of
crystalline electric field excitations in stoichiometric and lightly stuffed Yb2Ti2O7.
Phys. Rev. B, 92:134420, Oct 2015.

[48] J. Gaudet, K. A. Ross, E. Kermarrec, N. P. Butch, G. Ehlers, H. A. Dabkowska, and
B. D. Gaulin. Gapless quantum excitations from an icelike splayed ferromagnetic
ground state in stoichiometric Yb2Ti2O7. Phys. Rev. B, 93:064406, Feb 2016.

[49] J. Gaudet, E. M. Smith, J. Dudemaine, J. Beare, C. R. C. Buhariwalla, N. P.
Butch, M. B. Stone, A. I. Kolesnikov, Guangyong Xu, D. R. Yahne, K. A. Ross,
C. A. Marjerrison, J. D. Garrett, G. M. Luke, A. D. Bianchi, and B. D. Gaulin.
Quantum spin ice dynamics in the dipole-octupole pyrochlore magnet Ce2Zr2O7.
Phys. Rev. Lett., 122:187201, May 2019.

[50] L Ge, J Flynn, Joseph AM Paddison, Matthew B Stone, S Calder, MA Sub-
ramanian, AP Ramirez, and M Mourigal. Spin order and dynamics in the
diamond-lattice heisenberg antiferromagnets CuRh2O4 and CoRh2O4. Phys. Rev.
B, 96(6):064413, 2017.

[51] M J P Gingras and P A McClarty. Quantum spin ice: a search for gapless quantum
spin liquids in pyrochlore magnets. Reports on Progress in Physics, 77(5):056501,
may 2014.

268



[52] H.-M. Guo and M. Franz. Three-dimensional topological insulators on the py-
rochlore lattice. Phys. Rev. Lett., 103:206805, Nov 2009.

[53] A. M. Hallas, J. Gaudet, N. P. Butch, M. Tachibana, R. S. Freitas, G. M. Luke,
C. R. Wiebe, and B. D. Gaulin. Universal dynamic magnetism in Yb pyrochlores
with disparate ground states. Phys. Rev. B, 93:100403, Mar 2016.

[54] A. M. Hallas, J. Gaudet, M. N. Wilson, T. J. Munsie, A. A. Aczel, M. B. Stone,
R. S. Freitas, A. M. Arevalo-Lopez, J. P. Attfield, M. Tachibana, C. R. Wiebe,
G. M. Luke, and B. D. Gaulin. Xy antiferromagnetic ground state in the effective
S = 1

2
pyrochlore Yb2Ge2O7. Phys. Rev. B, 93:104405, Mar 2016.

[55] Alannah M. Hallas, Jonathan Gaudet, and Bruce D. Gaulin. Experimental in-
sights into ground-state selection of quantum XY pyrochlores. Annual Review of
Condensed Matter Physics, 9(1):105–124, 2018.

[56] M. J. Harris, S. T. Bramwell, P. C. W. Holdsworth, and J. D. M. Champion.
Liquid-gas critical behavior in a frustrated pyrochlore ferromagnet. Phys. Rev.
Lett., 81:4496–4499, Nov 1998.

[57] MJ Harris and MP Zinkin. Frustration in the pyrochlore antiferromagnets. Modern
Physics Letters B, 10(10):417–438, 1996.

[58] J. W. Harter, Z. Y. Zhao, J.-Q. Yan, D. G. Mandrus, and D. Hsieh. A parity-
breaking electronic nematic phase transition in the spin-orbit coupled metal
Cd2Re2O7. Science, 356(6335):295–299, 2017.

[59] Yuta Hashimoto, Makoto Wakeshima, and Yukio Hinatsu. Magnetic properties of
ternary sodium oxides NaLnO2 (Ln=rare earths). Journal of Solid State Chemistry,
176(1):266–272, 2003.

[60] J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Yoshida,
Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung, D. G. Nocera, and Y. S. Lee. Spin
dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Phys.
Rev. Lett., 98:107204, Mar 2007.

[61] Christopher L. Henley. Ordering due to disorder in a frustrated vector antiferro-
magnet. Phys. Rev. Lett., 62:2056–2059, Apr 1989.

[62] M. Hermanns, I. Kimchi, and J. Knolle. Physics of the kitaev model: Fractionaliza-
tion, dynamic correlations, and material connections. Annual Review of Condensed
Matter Physics, 9(1):17–33, 2018.

[63] Michael Hermele, Matthew P. A. Fisher, and Leon Balents. Pyrochlore photons:
The U(1) spin liquid in a S = 1

2
three-dimensional frustrated magnet. Phys. Rev.

B, 69:064404, Feb 2004.

269



[64] Max Hirschberger, Peter Czajka, SM Koohpayeh, Wudi Wang, and N Phuan
Ong. Enhanced thermal hall conductivity below 1 kelvin in the pyrochlore magnet
Yb2Ti2O7. arXiv preprint arXiv:1903.00595, 2019.

[65] Max Hirschberger, Jason W. Krizan, R. J. Cava, and N. P. Ong. Large thermal hall
conductivity of neutral spin excitations in a frustrated quantum magnet. Science,
348(6230):106–109, 2015.

[66] Biao Huang, Wonjune Choi, Yong Baek Kim, and Yuan-Ming Lu. Classification
and properties of quantum spin liquids on the hyperhoneycomb lattice. Phys. Rev.
B, 97:195141, May 2018.

[67] Biao Huang, Yong Baek Kim, and Yuan-Ming Lu. Interplay of nonsymmorphic
symmetry and spin-orbit coupling in hyperkagome spin liquids: Applications to
Na4Ir3O8. Phys. Rev. B, 95:054404, Feb 2017.

[68] Kyusung Hwang, Tyler Dodds, Subhro Bhattacharjee, and Yong Baek Kim. Three-
dimensional nematic spin liquid in a stacked triangular lattice 6H-B structure.
Phys. Rev. B, 87:235103, Jun 2013.
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P. Čermák, A. Schneidewind, S. Yano, J. S. Gardner, Xin Lu, Shun-Li Yu, Jun-
Ming Liu, Shiyan Li, Jian-Xin Li, and Jinsheng Wen. Spin-glass ground state in a
triangular-lattice compound YbZnGaO4. Phys. Rev. Lett., 120:087201, Feb 2018.

[102] Gregory J MacDougall, Delphine Gout, Jerel L Zarestky, Georg Ehlers, Andrey
Podlesnyak, Michael A McGuire, David Mandrus, and Stephen E Nagler. Ki-
netically inhibited order in a diamond-lattice antiferromagnet. Proceedings of the
National Academy of Sciences, 108(38):15693–15698, 2011.

[103] Saptarshi Mandal and Naveen Surendran. Exactly solvable kitaev model in three
dimensions. Phys. Rev. B, 79:024426, Jan 2009.

[104] Casey A Marjerrison, Cole Mauws, Arzoo Z Sharma, Christopher R Wiebe, Shahab
Derakhshan, Chad Boyer, Bruce D Gaulin, and John E Greedan. Structure and
magnetic properties of KRuO4. Inorganic Chemistry, 55(24):12897–12903, 2016.

[105] V. S. Maryasin and M. E. Zhitomirsky. Triangular antiferromagnet with nonmag-
netic impurities. Phys. Rev. Lett., 111:247201, Dec 2013.

[106] Laura Messio, Claire Lhuillier, and Grégoire Misguich. Time reversal symmetry
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