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STOPPING POWER, RANGE, AND TERMINAL IONIZATION OF
ANY NUCLEUS WITH 0.01 TO 500 MeV/amu IN
ANY NONGASEOUS MATERIAL, INCLUDING NUCLEAR EFFECTS

Roger Wallace, Gérald M Litton, and Palmer G Steward

University of Califcrnia
Lawrence Radiation Laboratory
Berkeley, California

April 29, 1969
SUMMARY

Sevefal methods are combined to provide the range, stopping power
and Bragg peak data for any heavy ion with energy lying betWeén 0.01 and
500 MeV per amu when incident on any nongaseous stopping medigm; A
Fortran IV program providing both nﬁmerical data and machine plots is
available, so that any new f)article or new stopping medium whether'—a'h
element or a é@mpound can be quickly'evaluated in detail. -

For ions at low energy with 7<10, the program uses experimental
data. For ions with Z=10, the nuclear and electronic stopping-power
theory developed by Lindhard et al. is adjusted to fissi.on—proauct range
data at low energy; for intérmediate energies, charge-state data developed
from experimental Ar range-energy data in Al is extended to other ions
and stopping media. Bethe's theory is used for all ions af high e,nergvy.
Bloch's: th‘eo‘ry is discussed, although it is not used in the methed.

The particle ranges calculated by the method are pathlength ranges
and do not include the effects of multiple scattering.

Using the c‘alcdlated rangé energy'and energy loss data, a method
is described to calculate Bragg curves, flux curves,vand ener'gy spectra,
Energy loss from electronic and nucle.ar elastic collisions, nuclear '
attenuation, small-angle multiple scattering, straggling initial energy,
and angular spreads of the beam are all taken into consideration. ‘

Contributions from secondary particles have been estimated.
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'It is found that fbr‘r; glven range fin a particular_target, the pe.ak— |
to-plateau dose ratio goes through a maximum as the atomic number of
incident ions . increases. Similarly, the Bragg peak full width at half-
maximum goes throdgh a minimum. In addition for a given rénge, the
average energy pef atorr;ﬁc‘mass unit at the Bragg peak is nearly indepéndent
of the bombarding ion, and also of the_ target material,

Calculated results agree well with experimevntal data for those cases
in which secondary-particle production is of minor importance. Even
when secondaries are a la.rge contributing factor, the method yields
valuable information regarding the variation in energy deposition by the
primary particles. The results are found to be quite sensitive to the

degree of ang'ular and energy spread of the initial beam.

v
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STOPPING POWER, RANGE, AND TERMINA L IONIZATION OF
ANY NUCLEUS WITH 0.01 TO 500 MeV/amu IN
ANY NONGASEOUS MATERIAL, INCLUDING NUCLEAR EFFECTS

Roger Wallace, Gerald M. Litton, and Palmer G. Steward
University of California

Lawrence Radiation Laboratory
Berkeley, California

Part I. Stopping Power and Range

1. Introduction

The purpose of the research reported in Part Iis to provide
estimates of the stopping power and ranges of all charged particles
from hydrogen through uranium to any specific energy up to four to
five hundred MeV/amu.

‘Throughout this paper we refer to MeV/amu, represented by
the symbol €, as a unit of specific energy. It is a unit intermediate
between velocity and energy. The relationship to velocity is given by:

e=931[(1 - ﬁz)‘l/zfl], or
e (e N/2

931 {931+2) ]

B = " ;
79—?;-1-7{'1

and the relationship to energy is given by:

f g = E .
: Ay

The slowing-down mechanism of a charged particle in matter is .

similar throughout any plane of constant velocity in (V, Z _, ZZ) space.

Since & is a function of velocity only, the same statement can be

‘made regarding any plane of constant specific energy in (g, Z 1, ZZ‘)

space. This statement cannot be made for a plane of constant energy
in (E, Zl’ ZZ) space. In this paper, we use specific energy as the
independent variable rather than velocity or energy. Thus we use a
unit which is a natural variable of the stopping-power process in the
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same sense that velocity is, while at the same time we have. a simple
relationship between this unit and a common unit of energy. - '

We find it convenlent in this re port to discuss 1nformat10n in
terms of (g, Zl, 2) space. For instance in Fig. 1 the slabs cover-
ing the bottom and part of the back of the box represent the volume of
this space for which present accelerators can provide heavy particles.
Alpha particles, as indicated in the figure, can be accelerated by the
184-Inch Synchrocyclotron to 230 MeV/amu. Protons, represented by
the bottom slab, although only shown up to 500 MeV, can be acceler-
ated far above 500 MeV, The computational method incorporated into
our computer programs can supply stopping power and range data for
Z ) and Z, greater than 92 and for & upto 1200 MeV/amu. In this
paper, however, the boundaries of the space we consider are given by:
0.0l= &= 500, 1= 2, =92, 1= Z, = 92. The slab along the back of
" the box descrlbes the capabilities of the Hilac at Berkeley, which can
give ions with- Zl ~ 20a specific energy of up to 10.4 MeV /amu.

U51ng this (8, Zy, Z ) space as a device for restating the purpose
of this research, we may say that'it is our aim in this report, to
provide a computational method for filling the box in Fig. 1 with range
and stopping-power data.” The range we calculate is the total path-
length mean range and does not take into consideration the shortening
of the projected range due to coulomb multiple scattering.

Relative dose, particle energy spectrum, LET spectrum and
beam width all are calculated as a function of depth by means of intro-
ducing the effects of straggling, removal of particles due to nuclear
collisions, and multiple coulomb scattering, thus the characteristics of
the Bragg peak are determined. '

The approximate limits of the only useful experimental stopping-
power or range data available are illustrated in Fig. 1. The three
slabs of (¢, Z|, Z,) space in which experimental stopping power has
been accumulated by means of presently accelerated particles are shown.
The two lines on the back of the box in Fig. | represent experimental
fission product range values in aluminum and uranium respectively.

- Since the experimental data from these small regions must be extra-
polated throughout the entire volume of the box, it is clear that the
first guideline must be to include enough physical theory in order to

"make this extrapolation effective. The theory that we normalize to the
experimental data is general enough to allow extrapolation to remote
regions cf (g, Z1, 'ZZ) space.
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Fig. 1. A geOmetricvview of that part of (e, Zl’ ZZ) space for which
0.01 = e=1500, 1< Z,=92, and 1 = Z, = 92. The regions of
this subspace for which experimental stopping power is available
are indicated by the slabs covering the bottom and part of the back

&3

.. of the box (accelerated particle data) and the two lines on the back

of the box (fission product range data).
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2. Theory

The interactions of energetic heavy charged particles with matter
has been of great interest for over half a century. Bohr developed the
semj —glassmal stopping - -power theory using impact parameters in 3,4
1913, Bethe pubhshed his purely quanturn mechanical theory in 1930

Each of those theories is valid in only part of the (¢, Z |, Z,)
space. Bohr's theory is.valid only When the following inequalities are
satisfied. 5 ‘

z’z << 1378, (1
(Z; rzl)1/3<<137ﬁ, ‘ - (2)
——=— << screening distance of scattering
mV :
atom, and : ? (3)
zl>>137;3, , : - o (4)

The screening distance of an atom is the distance from its nucleus to
the radius where the screening by its electron cloud has reduced the
effective nuclear charge to 1/e of its true value. :

The expression 13783 is the ion 'velocity in units of the Bohr
orbital K shell velocity of the hydrogen atom. When discussing the
interactions of charged particles with matter, this is a very convenient
unit of velocity. Since the K shell electron velocity of the one-electron
atom is proportional to the charge of the nucleus, inequality (1) can be
restated: '"In order for Bohr's theory to be valid, the velocity of the
ion must be greater than the K shell electron velocity of the stopping
medium." Similarly, inequality (4) limits the ion velocity to less
than its own K shell electron velocity, Therefore Bohr's theoryis
limited to that region of (¢, Z ., ZZ) space where the ion carries along
~with it its own electron cloud. This limits the usefulness of Bohr's
theory to the few cases for which adequate charge-state data is available.

Bethe's theory is limited bY the less restrictive. of

_er <ZZ_ (5)

or .
rf) << 1378 : (6)
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Thus, since the K shell velocity of the ion is approximately g = Z}/137
the use of Bethe's theory is essentially restricted to the region of

(e, Z 1 ZZ) space wWhere the ion is completely ionized; although for
very low energy when r~0 the theory is agaln vahd

The Block6 theory is restricted by

(Z 1)”2«137;3

(7)

in addition to inequality ( )

Bloch's theory provides a bridge between Bethe's and Bohr's theories
in the sense that Bloch's theory agrees with Bohr's theory in the limit
of inequality (4) and with Bethe's theory in the limit of inequality (6).

The usefulness of any of these theories is limited for 137 B =7
because for these low velocities the ion carries along its own electron
cloud. Lindhard, et al. 758 have recently developed the only generally
useful theory valid at low ion velocities. Lindhard has made use of the
Thomas-Fermi description of the electron clouds of the ion and stopping

‘ atom to give a formula for the stopping power due not only to excitation
and ionization of the stopping atoms, but also to the elastic coulomb
collisions of ion and nucleus of the stopping atom. The volume of

(&, Z1, Z3) space for which this theory is valid is given by '

Z, and Z, >>'1 and - - (8)
1/3 , .
z, =137, _ (9

In Fig, 2 we illustrate the volume of(e, Zq, 2) space in which
each of the above four theories is valid. The boundaries separating
each of the regions are somewhat arbitrarily placed. Lindhards theory
is valid over a plane across most of the back of the box. (It is actually
a slab of thickness given by 0,01 <~ £ 0.5 MeV/amu), Bethe's theory
with shell corrections is valid throughout perhaps a third of the box.

It is valid over essentially all of the box for which r is unity. There
is a small region in which Bloch!'s: or Bohr's theory is valid and
Bethe's theory is not valid., However, in this region r is less than
one and uncertain., Thus the advantage of Bloch's or Bohr's theory
over Bethe's in any region of the box is questionable. It is clear, at
any rate, that over a large portion of the box there is no valid theory
and no experimental data (see Fig. 1).
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O

(d)

XBL684-2529

Fig. 2. In these four views of (e, Zl' ZZ) space we depict the
regions of validity of four different theories. The theories are:

o ' 3,4
(a) Lindhard et al.8 ; (b) Bohrl’2 : {c) Bloc:h6 ; and (d) Bethe .
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4.. These Calculations:

The unique aspect of the research reported here is that nowhere
else has stopping power and range been generated for such a large
continuous volume of (g, Zl’ z ) space where active charge exchange
between ion and stopping medmm occur. We have generated stopping
power and ranges for all ions from hydrogen through uranium in any
nongaseous stopping medium over the velocity interval from 0,01 to
500 MeV /amu continuously, Over this velocity interval the charge on
the ion varies from less than 10% to 100% of its nuclear charge. The
dE/dR maximum is contained in this interval for all ions. The
generation of accurate stopping power for the very heavy ions in the

‘region of dE/dR maximum is at this time a difficult undertaking. The

technique. developed here is a first order attempt to supply this data,

- There have been several efforts to produce stopping power tables
for use by researchers, but these tables usually do not give values
which are valid for that difficult and large region of (g, Z 1’ Zz) space
in which active charge exchange occurs. (See ref.(13)).

In developing our method for generating stopping power, itis
' convenient for us to divide (g, Zl’ ZZ) spac'e into four regions. We
develop for each region its own technique and strive for continuity in
stopping power at the boundaries. The first boundary is the plane
Zl = 10, For Z 1= 10 experimental data are generally available
where active charge exchange occurs. Itis important to utilize these
data, because it is not possible to treat this region well theoretically.
Experimental data for Zi > 10 is very incomplete, '

We subdivide the region defined by Z; = 10 into two éubregions'.
For € < 10 MeV/amu and Z; = 10 we make maximum use of experi-
mental data from the Hilac and similar accelerators. We dewise:a
technique in this subregion for generating stopping power which is not
theoretically rigorous, but which does accurately duplicate available
experimental data. Experlmental data compiled by Northeliffe 104
heavily relied upon in this region, For €= 10 MeV/amu and Z| = 10,
the ion is completely stripped of electrons and the application of Bethe's
theory is straightforward. A polynomial fit to Bethe's theory developed
by Barkas and Berger9 is used :

We subdivide the region defmed by Z; > 10 1nto f017r subregions,
In the low-specific-energy region defined by 137 p= 275 we generate
stopping power using Lindhard's 7,8 theories which are very slightly
modified to conform to experimental fission product range data obtained
from Hydél-l and Aras. !2 Into the narrow medium-low-specific-energy
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region defined by 21/3 <'137 B=. 9 we merely extend the data genera—

ted in the adjacent regions by means of a polynomial function,

In the medium-high-specific-energy region defined by 9 <137 p = 32,
we develop a technique for estimating the charge state of the heavy
ions as a function of velocity, r(B). We then obtain-the stopping power
using this charge state with Bethe's theory. In the high-specific-
_energy region, defined by 1378 > 3 Z the ion is again completely
stripped of its electrons and Bethe's theory is used.

5. Results

The computer program described by Steward 13 has generated
a samplmg of ranges and stopping powers, some of which are displayed
in this section. The ions chosen are hydrogen, helium4, carbon12
neonzo, arg0n40, krypton84, xenonl?’l, and radon?22, Data are
presented for each of these ions 1nc1dent upon water and uranium.

. In Figs. 3 and 4 stopping power is plotted as a function of
specific energy. The increasing contributions of the nuclear coulomb
stopping-power term as Z; increases and ¢ decreases causes the slope
of the curves to decreasé under these conditions. According to
Lindhard et al. 8 the assumption that the nuclear and electronic stopping
powers are separable may lead to a systematic overestimation of the
stopping pcwer in this low-specific-energy region. The smoothed
experimental stopping pOWer which we try to duplicate with our method
for Z, = 10 does not usually show a decreasing slope for decreasing
velocity because the scatter of the experimental points is usually too
great to permit the resolution of such fine detail, Thus the decreasing
slope for decreasing velocity may be overestimated for Ar ions and
underéstimated for Ne ions, leading to a discontinuity in the systematic
change of behavmr across the Z; = 10 boundary.

In Flgs, 5: andaé the stopp1ng pOWer is plotted as a- function-
of ion residual pathlength range. Points of constant specific energy
are indicated by symbols-at 0,01, 0.1, and 1.0 MeV/amu and by
curves at 5, 10, 50, 100, 200, 300, and 500 MeV/amu. From Fig. 5,
for instance, we see that a 5 MeV/amu 20Ne in water has a LET of _
7500 MeV/(g/cm?) and a range of 100 microns. The discontinuity in -
behavior acress the Z, =10 boundary discussed above is apparent here
also,

The H-He, C-Ne, and Xe-Rn crossovers of Fig. 5 are not as
bizarre as they probably appear, bécause velocity and not residual
range is the natural variable of stopping power. The reasons for these
crossovers, which are possibly artifacts of the calculational techmque, )
are discussed by Steward. 13 ' :
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In Figs. 7 and 8 the velocity is plotted as a function of residual
range. The discontinuity in the systematic change of behavior across
the Z; = 10 boundary, as discussed above, is apparent in these curves
below 0.1 MeV/amu.
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. Fig. 3, Stopping-power curves as a function of specific energy for
various ions in water as calculated by the computer .program. At the
top of the figure, values of B =V/c are displayed. The Ne and C

~ curves touch at about 0.04 MeV/amu due to an inaccuracy in the
program which is apparent from Table VIC and D. Our method over-
estimates the experimental stopping power for carbon ions in hydro-
gen at 0.04 MeV/amu.by 4% and underestimates it for Ne ions by 6%.
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Partl
NOTATION
Symbol '_ Description of Symbol
g o " o - The specific energy of the ion in
units of MeV per atomic mass
unit of the ion,
Z, _ _ - The atomic number of the ion
' (projectile). '
" Zsy : The atomic number of the 'stopping
medium (target). :
B | The ratio of the velocity of the
' ion to that of light in a vacuum.
A 1' Atomic weight of the ion,
v ‘ ' The velocity of the ion.
E : Energy of the ion in units of -
MeV,
r The ratio of the root mean square
' of the ion Z1 to that of its nucleus.
m : : ' The mass of the ion.
g_E_? | Stopping power in units of
dR : MeV/(g/cm?2).

c » | ' The velocity of light.
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Part II. Bragg Peaks, Flux and Spectra

1. Introduction

. We will now consider a beam of monoenergetic particles incident o:n
é slab of material'whose transverse dimensions are lérge compared with the
beam dimensions and with the depth of penetration of the beam. As these
particles traverse the medium they lose energy through a variety of.processes,
the predominant ones being ionization energy loss, nuclear interactions, and
small-angle multiple scattering. Other processes, including large-angle .
Coulomb scéttering and elastic.nuclear scattering, are usually of secondary
importance when the initial energy of the beam particles is significantly

-greater than a few MeV per amu.

The energy loss of a beam of ions results primarily from many collisions
between the beam ions and the electrons of the medium, causing a net transfer .
of energy to the medium. This process is referred to as ionization energy
loss.

There are many facets to the highly complex process of charge‘exchange
- and iohization energy loss, but a wealth of experimental evidence backs up
a great deal of theoretical work. Consequently, very good estimates are
.available for the rate of ionization energy loss of many ions in many
different materials. The state of knowledge with regard t?Oheavy-ion

ionization energy loss has been sﬁmmarized by Northcliffe.

At very high partlcle energies, nuclear reactions can play an 1mportant
‘role in the energy-loss process. A great many different reactions occur,
and the total process is exceedingly complex. In some of the collision
-processes, many different secondary particles can be produced, and each of
these gives up energy to the medium by the processes of ionization loss
(charged particles only) and nuclear interaction (all particles).

The total cross section for nuclear interactions is known reasonably’
well over‘moét energies of interest in this work. From this, attenuation
- factors cah_be calculated for the beam particles at all penetration
‘distances. v ‘ '

Although the effect of nuclear attenuation on the flux, dose, and
spectral curves is taken into account, the additional terms due to the
secondary particles produced by the nuclear interactions are neglected in

this work.
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Elastic scattering 6f the - beam ions by fhe'nuclei of the target causes

 a small frécfion'of the total energf deposition in certain regions of the
ion energy, in the form of kinetic energy of the recoil target nuclei. This
effect ié includéd as a correction term in the calculation df”the total
stopping pover. ' ‘ ' | '

In additibn"to this elastic‘process, both the incident ion and the
target nucleus@can.be raised to an excited state during an interaction in
which the two bodies do not actually merge to produce a single compound
nucleus. .Thié effect is commonly referred to as Coulomb excifation, and as
a resultIOf such an interaction, each of the twd_bodies may be réisedias high
as an MeV or twd'aboﬁe ifs respeétive ground state. FYor the energies of
interest in this_work, the contribution from Coulomb excitation to the

‘total stopping power is negligible.

‘ The‘;proce_sé of small-angle mulfiple scattering leads to a divergence
of the beam. As a result, the mean range of the particles decreases somewhé.t,
and the range distribution is broadened. The basic scattering law is well
known, so that it is possible to make reasonably accurate _estimates of the

- multiple4scattering effects.

The process of ionization-ene;gy loss occurs in discrete steps, rather
.than being continuous. This‘process leads to the general conCépt of
- straggling, Whereby a given particlé energy does not correspond to a unique
distance of travel. Ihstead; for a given distance of travel, there is a
distribution of particle energies, and for a given pérticle enefgy, fhere
is a distribution df distances of travel. This distance distribution is of

paramount importance in calculating Bragg curves.

Various other processes which are not important influence the passage
of charged particles through matter; they include large-angle Rutherford
scattering, energy trans pbrt via fast secondary electrons (gamma -rays),

and Cerenkov radiation.

. . . 14
The classical method of calculating Bragg curves is described by Evans.

This simple method is based on the assumption that the processes of nuclear

attenuation and multiple scattering can be neglected, and that oniy range

I
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straggling need be considered. Although useful for low-energy beams,
this miethod is of little utility for the work described here; for the beams

of interest here, both nuclear interactions and -‘multiple scattering must

be considered.
15

Co_mplete;'detail,é of these calculatiohs are given by Litton et al.

{
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2. Theory

A. Number Density

We first consider the problem of deriving an expression which describee
the attenuation;of a bean of particles as they_traverse.a‘medium. The beam .
particles are all assumed to have an inifialjenergy E_, to be perfectly
collimated, and‘to strike the surface of the medium in a direction parallel to
the surface normal. The medium is assumed to be homogeneous, with transverse
dimensions large compared both.with the beam dimensions and with the depth of
penetration of the beam particles.
_ The medium is assumed to be characterized by a total nuclear-reaction
macroscopic cross section Z(E) (in em” ) and by a stopping power, or specific

energy loss, £(E) (in MeV-cm /g) -

The path of the beam particles is characterized by the dimension s(E),
which is defined as the mean distance traveled by particles which have gone
from an initial energy E to an energy E. Consider those pafticles that‘
have reached an energy E denoted by the function N, (E). 1In traversing an
incremental distance As, these particles lose on the average an energy (per
amu,) AE. Since f(E) is the total energy lost by each particle in a unit
distance of travel, then the relation between AE and As -is .

AE/As = f(E)/A R (10)
where Ap is the atomic weight. of ‘the beam particles.- ' ‘ ‘

For this group of particles, the fractional decrease in their numbers
in going from E.to E-AE is given by the macroscopic reactionvcross section
nultiplied by the mean distance traveled in losing this energy. Thus, we have

AN ‘ : .
—= (E) ~ -Z(E) *4s. (11)

Using Eqs. 19andl¥ we obtain
' an

. Z(E) , o _
_ﬁz_ (E) = A BT s __ (12)

where we have taken the limit as AR tends to zero.

EquationIZ thus gives the fractional decrease in the number of

particles in losing the increment of energy dE.
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Integration of Eq.l2 yiélds the number density of a given energy within

the slab,

W (B) = N (E)-exn(-a, [ © [5('/r(a)lazt), (13)
' E

where NO(EO) is the number of incident particles, all of which have an energy

E .
o]

1. Mean Path Length of Travel
A very good approximation to the mean path length traveled by particles

that have gone'from energy EO to energy E 1is obtained by direct integration of

”Eq.lO,:}

_ rE, | '
\‘KS(E) = Apf [l/f(E')]qE'. , (14)
E B

2. A Limiting Case
If the reaction cross section is energy-independent, it may be removed

from under the integral sign in Eq.13, Then, we have

E,
- . - o 1 t .
Ne(E_).- NO(Eb) exp{ Apzf [1/£(E*)]aE 3.
_ } .
By using Eq. 14. this becomes simply
Ne(E) = N (E ) exp(-2-5(E)},

which is a well-known result.
B. Path-Length Distribution

To obtainan expression for the energy deposition and for the flux ata particular

distance of travel s, we must relate the energy of an icn to its position.
This is done by Qefining a path-length distribution function as followé{
For a group of particles, each wifh energy E, M(s,g)ds is the fraction
of these particles that have traveled a distance's, where s is the mean
distance %ﬂ?veled by particles of energy Eo and 1s given by Eq..l4.
Lewis has shown that if the path-length distribution is & result of
statistical fluctuations in the energy-loss process, then the distribuEion

funetion should be well represented by a Gaussian.

i
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Therefore, the pathelength distribution function is written in the

_form

- 2

M( ,E) =w__;_l;____ . exé - __E_;Ji__., ds. . i (15)
° Jar o(E,E,) Je o(E,E,) :

The quantity [o(E E )] is the variance in the path-length distribution for

perticles slow1ng down from energy E to energy E

Note that there may be a small range of energies near E for which Eq 15
does not hold Thus, consider an energy E near Eo' If c(E,EO)-is not
sufficiently large, then the distribution function cannot be symmetric,
because s can never be less than zero (no path length).
Thus, for Eq. 15 to be valld, we require that E be small enough so
that the 1nequallty

s(E) >»>W2 o(E,E,_)

is satisfied.

‘Many authors have adopted'the convention of using the quantity
called the straggllng parameter, equal to NE: o(E,E ), rather than the
standard deviation o(E E, ) '

We now transform the‘distribution‘M(s,E) as-follows. Defining the
variable U as '
s - 3(E)

U(E) = )
Je o(E,E_)

(.16)

- we can write

U2

M(s,s)ds = M(U) au = e au. ' ' an)
»fn : _

The distribution M(U)dU may now be interpreted as the fraction of
particles of energy E that have traveled a distance s such that the

normalized difference between s and the mean distance of trevel E(E) is
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within an incrément au of U, and U is the normaelized difference given by Eq. 16
. Therefore, given the total number of particles Ne(E), as calculated from Eg. 13

the number of those having traveled a distance s is glven as
dN(s,E) = N, (E)-M(U)au, (18)

where U is an 1mpllcit function of E and is given by Eq. 16,
' C. Flux and Dose Distributions
The total flux at a distance s 1s now obtained by integration of Eq. 18

from U(EO) to U(0). Using Eqs.23 and I7 and changing the variable of inte-

gration from U to E, we obtain the total flux at a distance s:

Z(E' . -U2 au 4
N(s) = No(Eo)y/‘ o exp .-Apu/\»o %%ET% dE e 3E dE . (19)
. : _ N

The mean range of the particles, R(E ), is given by Eq. I4 with E =
The quantity o (E ) is the variance for particles hav1ng come to rest. - It
- is equlvalent to o (E E, ) with E = 0; that is o

o (EO) =g (O,EO).

 We also wish to calculate thé total dose at s. If dN(s) represents a
certain number of particles of energy E, as given by Eq.18, then dN(s)f(E)
is the dose per unit distance of travel of these particles at s. Thus, the
total dose is ' .
D(s).=f aN(s,E) £(E).

AL E
Using Egs.13,¥7,andl8 we then have

D(s) = NO(EO)f ° f ° %E—,ycm' e"' jE) (-dU/dE)dE.. 20)

T

T+ should be noted that in Eqs.-19 and 20 the independent variable E
appears, as well as the variable U. In order to perform the integration,
one of these mﬁSt be expressed in terms of the other. This is easily done,
inasmuch as the unique relatiohship beﬁween them is given by Eq. l6.

D. Energy Spectrum

At any given p051tlon s, the total flux may be written as

() = f (s,e) aE,

All E
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where N(E,s)dE is the number of particles having energies within 4E of E.
Comparing this expression with that given by Eq,. 19, we deduce that the

spectrum &+ any position is given as

N(E §) = N (E ) exp { -A f ° 27%-:-;-&-3' e 2 (av/aE),

:rt

with U given by Eq.lé;
' E. Some Simplifying Cases

Suppose that the cross section is independent of energy. Then, as
before, we may remove X from beneath the integral in both Egs. 19 and 20.
When Eq.14 is used, the expressions for the flux and the dose simplify to

N(s) = N (E,) exp (-[55(z) + v7)) {8UAE) 4 e
() = f w (e + v S | _
end | | ) |
D(s) = No(Eo)f ° exp (-[55(8) + 1) 2B (aujam)ar 0 e2)
. - Jro .

The integrals in both Egs.21 &miZZ-mnsﬁ be evaluated numerically. v
A further simplification is obtained in the limiting case, where the Hb
attenuation due to nnclear’intereCtions is negligible, as it would be for -
ions of sufficiently low energy. In that case, the cross section is assumed

-~to go to zero, and the expressions for the flux and the dose reduce to

N(s) = N, (E )f U dU dB) am : v.(z-3)
end |
D(s) = N(E,) f(E) (8U/4E) ;5.
° ( JF J} )

The latter expression for the flux is equivalent to the classical expression,

1 , .
derived by Evans -and others. It can be obtained from basic principles as
follows.

We assume that the distribution of ranges for particles with initial

energy E_ is Gaussian, with a variance.[o(Eo)]2:

2
P(R) = -1 exp ¢ - _B:Biggl

NEE: o(EO) We o(Eo?
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where-R(Eo) is the mean range. The flux at a given distance s is contributed
to by all particles whose range is greater than s. If the initial flux is
NO(EO) at s = 0, then the -flux at s is given as '

| I 1 [»-RE) |
N(S) I#°(E°),~s[ Vax o e o(E,) d? ¢ )_

If we change variables from R to W, where W is given as
. R-R(E))
W= —-_____—
NE U(E )

Eq.24 becomes
.N.(s —N(E)f 'ngﬂ,
s-R(E) Vo
Jé o(E_)

which is equivalent to Eq. 23,

F. Nuclear Interactions

Energy deposition from nuclear interactionsvarises from two sources --
direct andvindirect, The direct contribution comes from the deexcitation of
the compound nucleus formed by the interaction of the target atom with the |
bombarding ion. 'A certain fraction of this deexcitation energy is released .

at the point of impact, and it is this fraction which comprises the direct

-cohtribution. The indirect portion aroses from secondaries. produced at

points within the medium other than the position of interest.

1. Direct Contribution

The total number of interactions, per unit length of travel, of ions.

with energy E, due to those particles whose initial energy is Eo’ is given by

r°(E,s) = N(E,s) =(E).

The total energy releasé at s from the direct contribution is then

D, (s) =fE° N(E,s) Z(E) G(E) az,

. o

where G(E) is the energy deposited at s pér nuclear interaction with a
particle of energy E. i '

2. Indirect Contribution

Let H(E',s' —s) be the energy released at s due to a nuclear interaction

I
|
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of an ion of energy E' at §'. Then the totel indirect contrlbution to the

linear energy transfer, denoted D (s), is given by

Dn(s,) =fd_s'de'N(E',s')z(E') H(E',s® -+s).' . (25)
The simple form of Eq. 25 belies the inherenf difficulties involved with its
evaluation; although, as will be-ihdicated,.N(E,s) can be calculated, thee
 function Z(E) is usually not well known. Furthermore, even less is known
about the function’ H(E',s' —8). _ ) |
' For the work in this report, we neglect the contributions to the dose -
and flux from gecondary particles.

‘G. Variance of the Path-Length Distribution

1. EnergyeLoss Fluctuations

The process of ionization-energy loss occurs in a random- fashion,'soi"
that one expects that, over a finite energy interval, the path-length

vdlstrlbutlon of particles with given energy will be Gaus51an

16, o
Suppose that a particle has an energy Etot' From Lewis, ‘the average

number of cbllisipns experienced by the particle per unit distance of travel,
in which an energy loss T occurs, is given by the expression ‘

k 4T

NT(T)-dT = ——————755 50 R e ;I o (26),

2 Etot

where constant k is given as

= 27 ne ZP Mp e /m >

and where ne'ié the number of electrons per unit volume of the target and.

Mp and.Zp are the mass and atomic number of the incident particle. The
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function NT(T) is often referred to as the collision spectrum.

Now, in tréygrsing an increment of distance As, the average number of
collisions in which an energy loss T occurs is given by
- - kdl
Np(T) dT]As P
“tot

Os.

Since the collisions occur randomly, the standard deviation associated with
the average number N (T)aT is equal to the square root of that number. The

variance (N ) in the number of collisions is therefore equal to
2 k 47

W)= P
2 Bpot,

Because each collision is associated with an energy loss T, the variance in

Os.

the total energy loss over the distance &s is given'as

(B ) =T (N7 = 555 .. (27)
tot

For eachivalue of T, there is a corresponding vafiance given by Eq. 27.

Inasmuch'as the collisiohs associated with each value of T are independent,

the variances for all values of T are additive. Therefore,_thé net variance

in the totel energy loss associated with an increméntal distance As is given

by the sum
k 4T
Eio "E: 2 By, s,
Al T
and in the limit, by
(a b/NTMAX ——92——-As. (28)
tot A

It can be shown that the maximum energy loss in a 51ngle collision is given

| by € Et £ where

hm/m(l+mm 1.: | (29)

A dlscu551on of the lower llmlt is glven by Bloch, who shows that it
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' 17 ' : . N
can usually be neglected. Integrating Eq. 28 using Eq.29 we have
| ‘ byn Z ge’+ ' o ‘
(pEE ) = €p As. (30)
tot ‘
(1+m /M

Equationn3@ gives the variance in ‘the energy loss produced by collisions in Os.
Evanslqéives an argument to show that the relatlonshlp between an energy

variance and the correspondlng variance in the path length distribution is

given as
‘ 2
(oE°) = ——l———-g- (A EL i) (31)
(£(E)]
where Etot is the mean energy of the particles in'questiqn.

Substituting the expression given by Eq. 30 into Eg. 31 we obtain

. 2L
)"‘ 1
(ARE) ) nnezpe ] As

(1em M)° [2(E))°

which is the contribﬁtion to the variance in the path length due to collisions
in As. Since collisions within each increment As are independent from those

_ ih any other increment, the net variance over a group Asi will be the sum |
of the_individual variances. As the Asi approaches zero, the sum becomes

an integral, and we obtain

. 2 4
5 hnneZ e’ .u/\Ee ds

(4R7) = —_—s .
(24m /)" [£(&)°
Using Eq.10, we have
: b 7% b E -
‘(ARQ) = _229_2___5 A 2 ;__§§_§., (32)
(Lom ) F g (FE) o

This is the expression for the contribution to the variance in the

path-length distribution for pafticles going from an energy E2 to an energy El.
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The final expression for the variance due to fluctuatlons in

the 1on1zatlon energy—loss process is therefore

ePp

1.3027 X 10™"“n_Z°A on 1+ H(E’) aR" . (33)

HEY) g3

2
(o) = -

. E ,
with the function H(E) given by H(E) = [MOCZ'/(E‘I'MOCZ)]Z-
2. Initial Energy Spread of the Beam

The relationship between an energy interval AEO and
the corresponding distance of travel As is given by Eq. 10, If we interpret -
AEO as the ‘uncertainty in the initial energy, then the corresponding ’

uncertalnty in the path length is given as
. AEO
ASO = p'f—(-ﬁ(:)—e
This 1s a constant uncertainty over the entire path length of the partiéles.'
The associated variance in the path-length distribution is therefore '
A 2
2y _ | 'p , 2
<Aso) - [fiEOSJ <.AEO>°
Strictly speaking, a Gaussian distribution in the initial energy of the beam
can lead to a Gau551an distribution in the path lengths only 1f f(E) is’

constant over the energy range of the dlstrlbution.

3. Multlple-Scattering Contrlbutlons

As a charged particle travels through a medium, it undergoes what is

commonly termed small-angle multiple scatterlng. This arises principally
from electromagnetic interactions between the charged particle and the
nucleus . . o ' ' o B
In order to arrive at expressions for the dose and flux in terms of.‘
the penetration distance x, we must convert from the distribution M(s,g) -
to a distribution M'(x,s). This is defined as the fraction of particles,

all having slowed down to energy E from energy Eo’ that are at a penetration

distance x. To do this we proceed by calculating the mean square difference
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between the path length s and the penetration distance x, as a function of s,
denoted as ((s-x) ).
Referring to Pig. 9,. we can deduce the relationship between a small

change As in the distance of travel of a glven partlcle, and the corresponding

change Ax in the penetration distance,

&x = Os cos O,
where ¢ is the angle that the particle makes withthe x direction. The

change in the square ef the difference (s-x)2 is therefore given approximately

as

“A(s - x)2 = [as(1l - cos 5)]2, _
where 5 is the mean angle of the particles within ds. Again, making the
assumption of independence of events, the net value of the mean square differ-

S

ence is given as the sum

((s - x)e) =Z[(l - cos 5)[_.\5;]2. : (34)

We now proceed to the development of the penetratlon-dlstance distri-
: butlon For a glven distance of travel, the distribution function of the- |
' dlfference (s - x) may be approx1mated by a Gaussian. The quantlty

,((s - x) ) given by Eq. 34 is then an estimate of the variance of this
dlstrlbution Since we: are considering a particular value of s, then

{((s - x) ) also represents the variance in the distribution of penetratlon
distances correspondlng to the distance of travel s.

Thus, if the distribution in (s - x) is given as
P(s - x) - -i—-exp {-[(s - x) - DO]2/2K2},
: Nan _ ' :
“where the vafiance K2 is the mean square difference given by Eq 34, and
DO is the mean about whlch the distribution is centered, then the dlstrlbutlon

in penetratlon distances is

P(x) = £ exp {-[x - ;]2/202}.
NEE:

The quantity X is the mean value of the penetration distance, and is

estimated simply as the difference between s and the mean difference between
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s and x. Thus,

3~ 2\ 1/2 : | ;
~s -{{(s - x)7)} /2, . ©(35)
We may summarize as follows. For a given value of the energy E, the
mean penetration distance is given by Eq. 35; the contribution to the

variance in the penetration distance dlstrlbutlon from multiple scatterlng
is given by Eq. 34

H. DNuclear Reactions

- For most of thé cases of interest -- namely véry heavy ions with‘
energies on the order of a few hundred MeV per amu -- experimental data are -

essentially nonexistent; 'cons‘equently, we must rely on theoretical considerations.

If we let R re present the radius of the’ geometrlc cross section, :

then at suff1<:1ent1y high energies the microscopic cross section is given

n=nR.
The radius of a nucleus may be expressed in the form

r = ro-A;/3 - SKT,

where A is the atomic weight of the nucleus, T, is the nuclear unit radius,

and SKT may be interpreted as an overlap parameter. Since the radiué ofv

the geometric cross section is simply the sum of the radii of the incoming

particle and the target nucleus , we have

R = T, + T, ' . (36)
where the subscripts "p" and "t" refer to the particle and target, respectively.

At low energies, the Coulomb barrliser obviously plays a role in the

interaction process. It can be shown  that if R, given in Eq. 36 in this

i‘.‘
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case, is the classical distance of closest approach, and V(R) represents the

potential at this distance, then the cross section is given by

- V(R)
1 = nR [l - E__ ] for E, > V(R), and
. o (37)
n=0 for B, < V(R),
where EC o is the total energy of the particle in the center-of-mass
system. The potential is given by
' S z ztee'
v(R) - 2t | (38)
R .
vhere Z, is the nuclear charge. Equation 37 reflects the fact that

classically the potential barrier cannot be crossed with less than a given
amount of energy. _

The exact form of the Coulomb correction is of secondary importance,

. since for almost all cases of interest in this study, Ec.m. is much greater
than V(R). Hence, the presence of the Coulomb barrier has almost no effect
on the cross section for the energies of interest. '

We must now consider the fact that the incoming particle exhibits wave
properties, especially in the energy‘region where the equivalent wavelength
is not trivially small. If the wavelength is denoted by X, then the uhcertainty
in the positipn of the particle is also given by XA. Hence, one would.expect
that the "effective radius" of the particle-plus-target cross section would
be enhanced by this amdunt. Thus, a better estimate of thevcross section is

n = xR+ %)° [1MJ .

E
c.m.

At very high energies, X approadies zero and the cross section is given simply
by nRg. As ﬁhe energy decreases, the cross section increases as the wave
length becomes important. Finally, there is a sharp drop in the cross

section near energies comparable to the potential threshold. Using Egs. 36
and 38 we obtain the complete expressioh for the regction cross section: -
7,7 e

L P (39)

N = ﬂ[ro(A;/3+iA:/3)i-erSI(T]2 1- —73 173 ~1
E [ro(A, " 7+A " Fx]
c.Mm. t T
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It is convenient to express both the particle wa?elength .and center-ofa
mass total energy in terms of the laboratory energy E, in units of MeV per

amu. These are glven by the relatlonshlps

X = . fic ' and
A?(2E°M5c? NV

A_A

‘ - Pt
Emm.— A+%; B

where (M e ) is the rest mass of an amu expressed in energy unlts (approx 931

MeV) Substltutlng numerlcal values, we obtaln
' =11

% = 1.977 X 10 S o _  »mm

A (1862 ® + i2)L/2

The Values of ro and SKT

Most important in the use of Eq.39 is the value of the nuclear unit
" radius r . In general, r_ varies somewhat from one nucleus +o another;
however, inasmuch as the concept of a nuclear radius is somewhat vague, it
is perm1SSﬂble to use a single value of rS for all nuclei.

Most earlier analyses of nuclear interactions have been made u51ng.a
simpler model in ‘which the parameter SKT was not considered. With this model
many attempts ha#e been made to assign a value to ry- Evané4:has summarlzed
the various methods utilized prior to 1955. These include:

a. Analys1s of the B decay of certain isotopes to infer the value. of
the classical Coulomb-energy radius; _
b. Quantum-mechanical correctlons to the classical Coulomb-energy radius,
leading to an équlvalent electromagnetic radius;19 -
" c¢. Analysis of isotopic shift in line spectra;
d. Measurement of the charaCterlstlc electromagqetlc radiations from
u-mesonic atoms19 21,22 ‘
e. Aralysis of fine-structure splitting of electronic x-fay levels in
heavy atoms;'2 -

' ‘ 24
f. Measurement of the lifetime of & ray emitters;
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g. Analysis of anomalous seattering of a particles;z3
'h. Measurement of the cross seetions for nuclear reactions;

1. Measurement of the elastic scattering of fast neutrons by nuclei.

By the use of several early works as guidelines, and by mdking use
of the analysis of nuclear charge distribuion by Hofstadtef%s ‘a set of
values for ro and SKT wae found that fitted reasonably well the literature
data. These values, 1.4 F for r and 0.4 F for SKT, were used in obtaining
all the calculated results presented in thls work

1. Scatterlgg Law e

The gquantity P(6)as ig defined as the number of collisions per unit
distance of travel of e‘particle, which deflect the trajectory of the
particle by an angle which is within dé of 6. The class%%el Rutherford
’scatterlng formula for this probablllty is given by Rossi as

oy - e, b | tagne s @
t c.m. ~ sin (6/2)

' where Na is Avogadro's number, r. is the classical electfon radius, m, is
the electron mass, and P..m. is the momentum of the particle. This equation
applies to the c.m. system of coordinates; it may be valid in the lab systenm
if the mass of the incident particle is much less than.that of the atoms of
the medium. Since for many cases of interest to this study this is not so,
Eq.41 must instead be considered in the c.m. system only.

For the purposes of this treatment, it will be convenient to leave the
eangle 6 in the c.m. system, but to transform the momentum term into the lab
system. | . .__ . ’
From the expressiohs derived by Halliday,27_the relation between the

momentum in the lab and c.m. systems 1is

Pem. “ IT+ 75> ' (42)
- where B Y= Ap/At |
Using Eq.42"in Eq.4! and dropping the subscript on the leb momentum term,
we have
Tt N Z2 i méc - sin 6 46 ‘ 2 '
P(0)as = 3 —AP— rol | n (L+9)° . (43)
t p sin (6/2) . :

The limitations on the validity of Eq.43 must be discussed. At

extremely small angles, this equation fails because the electrons of the
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scattering atém screen the particle from the field of the nucleus. Ross:iz9
states that Eq. 43 is valid for angies significantly larger than 1/ra, where-%
is the de Broglie wavelength of the_incident particle divided by 2x and ré is
the radius of the atom; whereas, for angles less than fyra, Eq. 43 grossly
overestimates the scattering probability. In fact, one can see that the
e@uafion is singular for»9_= 0. ' '

Various.gttempts have been made to modify Eg. 43 in order to take intd
‘accoupt the séreéﬁing,effect. Using an atomic potential of the form
V = (Ztheg/r) exp (;r/ra), Goudsmit and Saunderson28’29show that the
scattering-probability law takes the form

2.2 2 : .
: 8nN 7.7 m.c = '
a Pt e sin 6 46 2 : ny
P(6)df = ———— r 1+ : . - (44)
() - —=—= =, \g-| T2z G0, . 44)
. _ : _ 1
where : 91 = K/ré . | _ _ ,:(45)
By use of the expression in Eq. 40 and the classical expression for rs
r. ==r_ 2 B
. with ' Q= eg/‘hc ,
Eq.45 . is tranSformed’to
| | ' Z%/3 m.c . ' o ‘
0, = 77 5 (L+7). : - (46)

Note that 91 is in c.m., Whereas p is the lab moméntum.

Williems has derived corrections to the scattering law given in Eq. 44
for ligh energies, using a simple model for the charge distribution within
thé nucleus. He shows that the fact that the charge 1s not concentrated
iﬁfa'Single dimensionless point does not materially affect the scattering

“law for angles less than 62 Rfﬁ/rn, where r is an.assumed radius for thef
‘nucleus. On the other hand, for 6 >‘K/rn, the scattering probability goes
to zero much more rapidly than predicted by Eq. 43. Using for T the

expression
_ 1/3
r = 0.49 r AT
we can estimate an wioer limit, 02, for nonzero values of the scattering

probability:
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6, = —73 = 280 A —_— (1 + 7) (47)
',"2 O.1+9I'Al3 p : _

It is convenlent to express the various quantltles appearing in Egs. 44
46 and 47 in energy rather than momentum units. To do this, we use the
relativistic relation between momentum and energy,
o2 = 28°M E + ACES/cS, | | (48)
bo P :
Where E is in units of energy per amu, and Mo. is the rest mass per amu.

The quantity B in terms of E is

Mbce 271/2 .
p=1-| —= . - ©(49)
' E + M c o
U51ng Egs. 48 and 49 in 44, 46, and47 , and rearranging terms, we obtain
: Z222 | :
6do t ' 2 :
- P(6)as = (8nN r )(m c ) HH(E) SIn =3 g (1L + ) (50)
: [9 + 61] Ap‘At
with
[ﬁ(E s 2 M c2) 2 :
HH(E) = ; (51)
|\E+Mc2 . S
Zi;/S (L + 7) mec2
9 — .
1 137 &, (5(5 + oM 212
' m 02
~280(1+y) e
~and 6, =
f | 2 A;/3-A [B(E + 2 e ) 7z
If we substitute numerlcal values, these equatlons reduce to
2 .
7°7 \ - .
L 2 in 6 d6 o )
P(8)d6 = 0.3139 S )t HH%E) gin 2 48, | (52)
A-A ] (6~ + 671
pt 1
o E(E + 18652) 2
with B HH(E) = —E—ngi—— ;
l .
1073 b P 7) 1

: ' D [E(E + 1862)]
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- 4 143 1 (1 + y) 1 o |
a : 9 . . _ (54)
= t/3 A.p (E(E + 1862)]172

2. Mean Squere Angle of Deflection

We are now ready to calculate the mean square angle of deflection,vdenoted
(@2), as a function of distance of travel. Since each scattering is inde-.
pendent and represents a very small fraction of the total scattering angle,

the change in (w ) in a distence element 4s is

| (g% ~AsfchP (ch ag, , o | (55)
where @, is the scatterlng angle of a single collision (lab), and P (mL)

is- the corresponding probablllty of occurrence per unit length " In the limit

as s - 0 we have

I N O R O
where'Qi is the mean square angle change per unit distance of travei.
Now, since all expressions describing'the scattering process are in
the c.m. system, we must transform Eq.56  as follows. Since there is a
_ unlque relation between an angle L lab and the correspondlng angle 6 in

the c.m. system, we may write

P. (ch)dcpL P(6)d

Substituting into Eq. 56, then, we obtain

ﬁejw %wﬁeMG | )
where the fgnctional dependence of @, on 6 is indicated. | 30
We now seek a simple means of relating @, to the c.m. angle. Halliday-
has shown that this relationship is given by the expression
tan @ = _sind : ‘ (58)
cos 6 + 7 S
From an examination of the expression for 62 given by Eq. 54, we can

conclude that for nearly all cases of interest, 6, is less than unity.

2
Further, one can show that for those small energies for which 92 exceeds

unity, the corresponding residual range of the ions is so small that the

T ’ 3
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‘and HH(E) is given by Eq.51 . .Note that if 6
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multiple-scattering effects within that range are negligible. Therefore, we

may replace Eq.58 by the simpler expression

. 6
Substituting this expression for,GL into Eq. 57 we obtain
2 1 % 2 | '
- —E u/‘ 62p(6)a6. | 59)
1

The integral in Egq. 59 is easily evaluated by using the expression for

P(6) given by Eq.52. The result is

2 zizi 1 %5 °
¢, = 0.1569%6 ——— - TH(E) Inf|g| *+1| -1 , (60)
A 1 o ;

and 92/9l is, from Egqs. 53 and 54,
| | 3.836 x10% o - :
(6,/6,) = = - 61).
271 (A 7 )173
t7t - S
, as calculated from Eq.54 is
greater than n, then the value 6f192 is to be taken as = instead. In that

case, the térm 92/6l is

8&272-AP[E(E + 1862)]1/2

6,/6, = (62)
T2l Tl 2173(1 + 7) '
'Using these expressions for ¢i, we can proceed with the calculation df‘the ‘
mean square angle of deflection. v
From Eq.56, we have
2 2 ' ' -
& (@) = o (), . ©3)

‘where we have indicated the dependence of @2 on the particle energy. This

unique dependence on the energy is established by Eg. 60,

As an initial condition, we specify that

<cp2)|S=O = 9.

Integrating Eq. 63 then, from s = O to some value s, we have
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2 2 2 : '
= + ] 1 . -
(97) = 9 f ¢ (E')ds , | |
, o ' - ‘
E0 )
M .2 : 4r! 2
= + 1),
and _, (@) = q Apf ET o_(E')
: - - E .
- For a perfeetly'collimated beém, @o-is Zero. HoWever, if the initial
beam has an angular distribution that can be represented by a Gaussian with
some standard deviation, then @ is equal to this standard deviation.

The mean angle of deflection w is estimated to be the square root of
the mean square angle. Thus we write

! - 2,.1/2 | |
?= [{¢°)] / . _ . \
3. Scattering for Multiple Materials

The difficulty involved in treating a target composed of more than
one type of atom is that there is no unique relationship between the c.m{

and lab systems. That 1s, for each type of target atom, there is a

different c.m. system. Consequently, it is necessary to resort to,further

approximations in'order to arrive at results that are applicable in the

lab system. The method used is as fallows.
" The scatterlng probability function given by Eq. 50 is rewrltten

' 2
‘ Nop R v Z_Z .
2] 8 46 Pt 2\ 1
P(6)as ="|-2— 8ﬂr (m c ) St 1+7)7) =,
A_t HH(Ej- [92 + 62]2 A | - p.7 .

where (N p/A) is the number of atoms of the scatterer per cub1c centlmeter,
and p is the total dens1ty of the scatterlng medlum The term in the braces'

is then interpreted as the probability of scatterlng into d6(8) per atom
of " scattering material.

- The scatterlng probability for scattering atom type "i"

is hence: R
87y | z2.(1+7.) P ' |
5 i 2.2 i i 1 sin 6 46
Pi(e>d9 =5 (re e ) A ) 2 2.2
P HH(E) [67 + 6]]

where N, is the number of type "i" atoms per cubic centimeter, and p is the

total density of the medium.

The mean $quare angle change per unit distance, due to type "i" atoms,
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is then

S 2 s \2
' N\ [zz | 6 :
2y o g «25 [d) | Zp7if 1 2 .
(97), = 2.606 x 10 | D 1n 5 +1f -1p,

where the results embodied in Eq. 60 have been used. Also, by use of Egs.
61 and 62, we have o '

B N

“52 _ 3.836 ; %0 for 6, < x
‘1 ‘ /i (Aizi) .
| o)) A e(e + e t?
. 2| . 8o 2173 - for 92 > .
S A P z;/ 21+ 7y)

We now consider the problem of obtaining an estimate of the net mean

square scattering angle. Equation 56 may be written as

@ [ - ), e

where the Pi(mL) are the probabilities due to the various scattering’épegies.
The mean square angle at s is then obtained, as before, by integration

of Eq. 64 from s = Ovto's. | ' |

L. Multiple-Scattering Effects

Earlier, it was shown that the scattering process leads to a contri-

bution to the variance in the path-lengfh distribution. Other effects that
can be calculated from the equations describing the scattering are discussed
below. '

‘a. Radial Spreading |

of particuiar interest is the function (ye), which is defined as the

mean square distance of fraVel in a direction perpendicular to the initial
direction of travel, and is a function of the mean distance of travel s. For
simplicity, it is.denotéd as the mean square radial spread. This function
characterizes the general shape of the beam within the medium, and can be
used to estimate the minimum beam size necessary to.ensure against excessive
effects due to spreading. 4

Suppose the mean-square beam spread'at some pbsitions in the medium is
given as (yg). Clearly, then, if the initial dimensions of the beam are

much greater than [<y2>]1/2, the effect of radial spreading will be small.
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That is, the fractional change in the beam dimensions will be mich less than

unity.

[

.On the other hand, if the beam radius, say, is much smaller than the
- value of (y ) at some dlstance s, then the beam at that point will have
smeared out to the extent that the shapes of the- flux and dose curves are’
grossly altered from what they would be for a large-dlameter beam. '

' We proceed to the calculation of the function (y ). Referring to Flg 9
._we can express the change in the mean=-square  radial spread at x' due to a

.ehange in the mean angle of deflection ¢ at some x < x'. Thus, we have

ty = [A<y2>]-l/2 = (x' - ) 5

so that . A(yg) = (x' - x)2 A&¢?) : - (65)
" The change in the mean square angle is given by Eq.55 and substltutlng
into Eq. 65 we have
AP = xf e s
Recognizing that the contributions to the mean sqﬁarelradial spread
are additive, we obtain ' '
- o 55 4E! o
@) =n | e iy ) en
where we have 1nterchanged the varlables x and x' for convenience. The
quantlty (Ay ) is the contribution to the radlal spread variance atvx1due_
to an initial angular spread of the beam particles. Thus, if @ is the
1n1t1al mean angle of the beam particles, then reference to Fig. 9 and. Eq. 66
shows that (Ay )

(A‘fo)e = xzspi s
where (Ayo)2 is evaluated at.a penetration distance x.
It is shown later that, in many cases, the term (Ayb)g dominates
the right-hand side of Eq.67 , even for quite small values for ¢_. In
other words, the mean beam deflection can be a strong function of the
initial angular spread. Numerical examples are presented in the section
dealing with resﬁlts.

The variable x' is related:to the energy E' through the expressions in
gs. 35 andl4.
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Equation 67 thus gives an expression for the variance in the radial
spread distribution for partlcles having reached an energy - E.» We may define
a mean beam deflection as the square root of (y Y. This is another measure
of the amount of radial spreading of the beam. '

_b. Beam-Spreading Attenuation '

As the beam spreads, there may be an effective geometrie attenuation of
the flux ahd dose; i.e., the particles are spread out over a larger area.
A very rough estimate of this effect is given as follows.
' Let Yo be the radius of the initial beam. At some penetration distance
X, suppose that the mean-square radial spread is (y ). Then at that point,
one can say that the beam "effective radlus is estimated to be Yo + v, |
where y is the mean beam deflection. Therefore, the attenuation factor w1ll
be simply ' ‘ '

2 2
Y : 1

O

As the ratio y/yO increases, one would expect this function to more
‘nearly represent the attenuation of the center-line flux and dose.

For the experimental situation in which the sensitive-area dimensions
of a detector are much larger than the meximum value of y, there is no
attenuation of the form given by Eq.68 . Similarly, if the beam were very
broad and the diameter of the sensitive area of the detector were small, no
attenuation would result. On the other hand, the function £ would be
expected to'gi#e the proper attenuation for the situation in which (1) the
ratio y/yo is large, and (ii)‘the counter diameter is small compared with'yo.

c. Range Shortening

Because the particles follow curved paths, the effective range in the
medium is somewhat less than if the particles all traveled in straight |
lipes. If R is the effective range of the particles and SR.is the
corresponding mean distance of travel, then Eg. 35 gives their relationship

.as

R=8, - (s = x)| , o (69).
R 5 .

where (s - X)IR is the mean diffefence at the range.
The choice of definition of the range is somewhat arbitrary, and
several are in common usage. For the purposes of evaluating the expression

in Eq. 69, the value chosen for the range is immaterial, since (s - x) is
>
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virtually constant in the vicinity'of the end of the range;"Thax this is
so follows frbm the fact. that when the mean angle of defleétidn becomes
significant, the mean energy is so low that the residual range isla minuté
fraction of the tota; range. That is, although ﬁhe particles are traﬁeling :
at large oblique‘éngles, theif remaining distance of travel is so small
that the contributions to (s - x)l are negligible.

The degree of range shortenlng is often expressed in terms of a quantlty
' 'called the percentage detour factor, which is defined by Berger and Sel’c'zer:‘;'1
as |
100 (s - x)IR

Sx

) "v'_D=
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_ "IV. RESULTS -
Presented in this section are the results of calculations based on

the analyses presented in the preceding sections. For ;%e most part, these

calculations were performed by using the program BRAGG, which was written

to solve the various equations developed in this work.

A.,Bragg, Flux, and Spectral Curves for Monoenergetic Beams

In this section, results are presented for the case in which the

initial beam of pafticles is assumed to be perfectly collimated (zero angular
spread) and to be monoenergetic. In later sections, the effects due t?

finite energy and angular Spreads are discussed.

In a discu831on of Bragg curves, there are two quantities of particular
interest. One is the ratio of the dose at the peak to that at the incident
Surface, denoted as the peak-to-plateau ratio. The other is the width of
the Bragg pesk, measured at those two points at which the dose is equal to -
one-half the dose'at the. peak. This is called the full width at helf o
maximum, which we shall ebbreviate te the '"pesk width" for convenience.

| Alse of conSiderable_importance‘is the shape of the spectrum at the
Bragg peak. Of particular interest are the 5verage energy &t the peek and
the full width at half maximum.

We consider first the case in which the target material is water.
Figurelo,shows the Bragg curves for various ions in water, with the Bragg
peak at 5.0 g/cm?. Figurefﬂishows the flux curves for the same ions and
Fig.12 shows the spectra at the peek. Also, the peak-to-plateau ratio and the
Bragg peak width are plotted as functions of the atoric number of the beam in
Figs. 13 and‘i4. '

As shown by these figures, the peak-to-plateau dose ratio reaches a
maximum value for a value of the beam atomic number Between 6 and 8. BeyOnd
a value of 10, fhe dose ratio falls off monotonically.

On the other hand, the peak width falls off extremely raﬁidly with
increasing atomic number, up to a value'of approximately 20. For greater
values of atomic number the width increases quite slowly. This behavior can
in part be explained by considering the effective charge of the ions as they

traverse the medium.
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Effect of Different Energies _ v
‘Suppose one wishes to produce Bragg peaks at various penetration depths

within a given medium, using a given ion. It would be useful to be able
to predict the changes in the various features of the physiéal process as
functions of the depth at which the peak is produced, or alternatively,

as functions of the initial beam energy. This section presents results
that depict these functional dependences. .

v We consider two separate systems: protons incident on a water target,

. gnd neon ions incident on a water target. These cases serve to demonstrate
the relationship between the initial. beam energy and such quantities as the
peak-to—plateau dose ratio and the Bragg peak width.

" The results for ‘the two systems are embodled in Figs.lS through 18

In general, the peak-to-plateau dose ratio goes through a maximum and o
then decreases nnoﬁotonicaﬂy'Wiﬂlincreasing energy. The peak width and

peak average energy are. 1ncrea51ng functions of the initial energy.

B, Consqugnces of Initial Energy and Angular Spreads »
'Actually, no beam can be perfectly collimated or monoenergetic.

: Generélly, the energy distribution is approximately Gaussian and has a

T very narrow width. Also, as a .result of many factors, there is a smali

. angular d{stribution in the particles as they impinge upon the target. It

| will be shown that even very small widths in the initial energy and angular
distributions can have strong influences on fhe shape of the Bragg and flux
curves, and on the energy spectra. | _

We consider the case of protons and neon ions incident on water targets,

with the Bragg peaks at 5 g/cm2, and study the effects due to changes in
the initial energy distribution. Figures 19,20, and21 show the Bragg,
flux, and spectral curves for protons incident on water, for various values

of the standard deviation in the 1n1tial energy dlstributlon. Figures 22

and 23 show s1m11ar results for neon ions 1nc1dent on water.

In general, these results show that a value for the standard deviation’
of less than 1 percent of the mean initial energy can alter the Bragg and
spectral curves significantly. Consider the neon case as an example. An

initial standard deviation of O.S_MEV per amu, or approximately 0.25 percent
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of the initial energy,}produces a change in.the peak-to-piateau ratio of
approximately 25 percent, a,change in the average energy at the peak of
approximately 35 percent, and a change in the peak width of -nearly 100
-percent. Interestingly enough, there is very little effect bn the shape of

the flux curve for the given changes in the standard deviation.
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Neon ions in water
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Fig. 17, Bragg curves in water for neon ions with
initial energies ranging from 50 to 500
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V. CONCLUSIONS AND RECOMMENDATIONS

The methods developed.here.for computing Bragg, flux, and spectral
curves are extremely flexible, in that the calculationsvare done directly
in terms of energy-dependent functions for the ionization energy loss and
total nuclear-reaction cross section. Thus, the method is directly appli-
cable to any situation in which the important energy-loss processes are
-1onization and nuclear interactions. | '

The methods are also more general than previous ones, in that they are
able to make corrections for multiple scattering for systems in Wthh the 1ab
and c.m. coordinate systems are not equivalent. Also, effects due to
'initial angular and energy spreads of the beam have been included in a
natural manner. ' '

Calculations have demonstrated that the nature of the initial beam can
strongly influence the shapes of the Bragg and flux curves for a given '
range in a spec1f1ed material, but the average energy at the Bragg peak 1s
__'found to be relatively insensitive to the type of ion used.

‘ W1th1n experimental uncertainties, excellent agreement is obtained-
betWeen experimental Bragg, flux, and peak spectral curves and the corres-
ponding theoretically calculated curves.

The resolving of the uncertainty in some of the experimental data
presented here as to the presence or absence of singificant events due to
secondary particles would be an important contribution

In all calculations in this work, it was assumed that the various v
processes, such as ionization energy loss and multiple scattering, led to
distributions that could be represented by Gaussians. In general, this
assumption‘is well founded. However, in oertain'limiting cases, deviations
from Gaussian distributions are significant. For example, at very low _
energies, plural scattering could cause skewing of the angular distribution
of the beam particles. It would therefore be useful to examine the limits
within which the assumptions of Causgian distributions are valid, although
for this work there is little doubt as to the validity of these assumptions.

One_limitation of this work is in the assumption of a single, homo-
geneous target medium. An extremely useful extension would be to multiple-
slab geometry, allowing more realistic representations of physical systems.

Anotherlbasic limitation of these results is that they do not include

effects due to secondary particles. Research is being carried on in this



-63- : g _ UCRL-19391

direction, and results including these effects are expected in the near

future. .



N(s)
N(E,s)

Total energy in the coordinate system, in MeV

. Number of electrons per cm
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Part II

NOTATION
Description of Symboi -

Atomic weight of the 1ith species in the target
Atomic weight of beam parficles

Atomic weight of target

Velocity of light

Percentage detour factor _

Dose at distance s, in MeV/sec-gm

Beam particle energy,bin MeV/amu

Initial energy of beam particles, in MeV/amu

Total energy of a particle, in MeV

Electron charge

Variance of initial beam?energy distribution
Attenuation factor due tc beam spreading

Stopping power, in MeV per g/cm2

» Binding-effect correction factor

Electron mass

Mass of beam particle

Rest ehergy per amu, =~ 931 MeV
Path-length distribution function
3 in an absorber

Avogadro's number' A

Atomic density of the ith species in the terget, in atoms/cm3 :
Numbervof partieles of energy E ”

Initial particle flux, in particles/cm2-sec

Total flux af s, in particles/cme-sec

Energy flux at s, in particles per unit energy at E, per cme-sec
Beam particle momentum '

Scattering probability

Atomic radius

Classical electron radius

Radius of nucleus

Nuclear unit radius, in fermis

Meanlrange of particles in g/cm2

Contribution to variance in path-length distribution due to
energy-loss fluctuations
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Effective overlap parameter
Distance of travel in an absorber, in g/cm
Mean distance traveled by particles of energy E, in g/cme

Contribution to variance in path-length dlstrlbutlon due to
initial energy spread

Penetration distance into the target, in g/cm2
Mean beam deflection, in g/cm2

Initial beam radius

Mean square radial spread, in g/cm

Contribution to the variance in the radial-spread dlstrlbutlon due
to initial angular spread

Atomic number of the ith species in the target
Atomic number of beam particles

Atomic number of target

" Velocity ratio

Beam-particle--target-atom mass ratio

Scattering angle in the c.m. system

Lower limit.on scattering probability

Upper limit on scattering probability
Wavelength of beam particles, in cm

Density of target, in g/cm3

Total microscopic nuclear-reaction cross sectlon

Standard deviation in the range distribution for partlcles of
initial energy E

Standard dev1atlon in the path-length distribution- for particles
of energy E

Total macroscopic reaction cross section, in‘cm-
Mean laboratory-system angle of deflection of beam particles
Scattering angle in the laboratory system '

Standard deviation of initial angular spread

Mean square change in angle of deflection per unit distance

Mean square angle of deflection

~
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