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EPIGRAPH 

 
 

There are places I'll remember 
All my life though some have changed 

Some forever not for better 
Some have gone and some remain 

All these places have their moments 
With lovers and friends I still can recall 

Some are dead and some are living 
In my life I've loved them all 

 
--In My Life 
 
Lennon/McCartney 

 
 

 

After taking every detour 
Getting lost and losing track 

So that even if I wanted 
I could not find my way back 
After driving out the memory 

Of the way things might have been 
After I'd forgotten all about us 

The song remembers when 

      --The Song Remembers When 

      Hugh Prestwood 
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ABSTRACT OF THE DISSERTATION 

 
 

Computational Modeling of Adult Neurogenesis in the Dentate Gyrus 
 

by 
 

James Bradley Aimone 
 

Doctor of Philosophy in Neurosciences 
Specialization in Computational Neuroscience  

 
University of California, San Diego, 2009 

 
Professor Fred Gage, Chair 

Professor Jeffrey Elman, Co-Chair 
 

The incorporation of new neurons into the adult brain is a form of plasticity that has only 

recently been appreciated in neuroscience.  The localization of adult neurogenesis to the dentate 

gyrus (DG) area of the hippocampus is of particular interest, given the hippocampus’s observed 

role as a structure crucial for memory formation.  In the rodent, thousands of new neurons are 

born daily, and research into this process has revealed a complex maturation process, with 

newborn neurons showing unique physiological and anatomical features at different stages of 

development.   Despite these findings regarding the biology of the neurogenesis process itself, a 

functional role for new neurons has remained elusive.   

This dissertation will describe the design, implementation, and testing of a biologically 

driven computational model of the adult neurogenesis process in the DG.  In this model, new 

neurons are incorporated into the DG circuit according to the process revealed by previous 

biological studies.  Ultimately, this work provides evidence for three separate functions for new 

neurons that are both novel and experimentally testable.  The first hypothesis is that immature 
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neurons are more likely to contribute to the encoding of new memories than mature neurons.  

This increased activity provides a pattern integration component to the global pattern separation 

function of the DG.  The second hypothesis is that the continuing maturation of these young 

neurons makes this pattern integration role temporally dependent.  As such, memories encoded 

close in time will be associated, while memories encoded far apart in time will be separated.  

Third, the results suggest that continual neurogenesis results in a DG network that is a cumulative 

representation of events experienced throughout life.   

Finally, this dissertation will discuss how neuromodulation may affect the neurogenesis 

process and its relationship with hippocampal function and will include a description of how 

modulatory neurotransmitters can be considered in the computational model, and the specific 

example of dopamine will show how preliminary data regarding the effects of modulators on 

neurogenesis can be incorporated into the modeling framework. 
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CHAPTER I: INTRODUCTION 

 

Does the adult brain generate new neurons?  For much of the 20th century, this was a 

greatly debated topic.  While biology textbooks claimed that no neurons were born after 

childhood and most neuroscientists operated under that assumption, there were an increasing 

number of observations of the very process not believed to exist.   

Today, the question is no longer whether new neurons are generated in the brain after 

development, but what those new neurons do and what they represent.  From a clinical point of 

view, adult neurogenesis represents a new opportunity - the adult brain is not fundamentally 

averse to regeneration.  The difficulty in repairing other brain regions may be a challenge specific 

to the local environment, not a basic property of central nervous system tissue itself.  

Furthermore, the generation of new neurons implies a source of multipotent neural stem cells in 

the postnatal brain, a population of cells already located within the brain that may represent an 

ideal target for regenerative therapy.  The clinical applications derived from adult neurogenesis 

and adult neural stem cells are still years away, but their promise continues to grow. 

In contrast, the answer to the question of what the neurons born into the adult brain do 

has still remained elusive.  The circumstances of the adult neurogenesis process are appealing to 

neuroscientists.  New neurons are only incorporated into two regions of the brain: the olfactory 

bulb and the hippocampus.  The latter region, in particular, excites the imagination.  The 

hippocampus has been referred to as the “gateway to memory,” and is believed to be essential to 

the formation of episodic memory.  All memories of past events in one’s life, from childhood 

friends to restaurants visited last week, would pass through the very region that is incorporating 

these new neurons.  Do these new cells each encode a new memory?  Are they maintaining old 

memories or helping to forget them?   
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Unfortunately the biological examination of neurogenesis function has struggled to assign 

a role to these newly born neurons.  Our understanding has grown – experimental observations 

have suggested potential contribution of new neurons in cognition, such as learning and memory 

and affect, including antidepressant action.  There is little mechanistic evidence to explain these 

general roles, however.  While the biological details of the process can help frame the possible 

range of functions, these realities have only recently begun to be applied to exploration of 

function, and their application has been limited.   

Difficulty in finding a function experimentally – a role for computational neuroscience 

Biology has historically looked to the “knockout” experiment for confirmation of 

function.  Whether a genetic knockout of a gene or the lesion of a brain region, observing that a 

system can no longer do something that it previously could has long been the “gold standard” in 

describing functionality.  Adult neurogenesis is not an exception to this pursuit, and many 

methods for reducing or eliminating the birth of new neurons have been developed in the past 

decade.  While there is room for improvement in these methods, the challenge appears to lie in 

the other half of the canonical “knockout” experiment – finding a function or behavior that is no 

longer present after neurogenesis is eliminated.   

As is sometimes the case with functional studies relying on eliminating the process of 

interest, these studies of adult neurogenesis have hit a roadblock.  While the general experimental 

structure of knocking out neurogenesis and testing animal behavior on specific tasks will likely 

prove effective, the challenge has become finding the appropriate behavioral tasks with which to 

test the neurogenesis knockout animals.  In essence, the experiments designed to find a function 

are struggling for clear results because the function to test for is unknown.  The behavioral assays 

designed to test hippocampal function have appeared either unaffected by elimination of 

neurogenesis or insensitive to the knock-down.  In retrospect, this is unsurprising, since 

neurogenesis likely accounts for less than 1% of hippocampal neurons at any given time.  
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Regardless, the field continues to struggle with finding a task well-suited for the neurogenesis 

question. 

Without a strong working hypothesis as a guide, many functional experiments in 

neuroscience, such as those looking for functions of neurogenesis, have been essentially relying 

on serendipity to find answers.  The brain is a highly complex system, and in many ways our 

realization of this complexity is growing faster than our understanding of the system.  The 

number of possible functions is so large and the noise of behavioral experiments so great that 

without reference to a clear theoretical framework, it is very difficult to glean useful information 

from experimental observations.   

Computational neuroscience is one of several theoretical subfields of neuroscience that 

seek to improve the conceptual understanding of the brain.  Computational models of 

neuroscience differ in scope, goals, and structure; but their general approach is to use 

computational tools to explore the biological system’s capabilities.  Whether the contribution is to 

predict novel behaviors or to demonstrate a system’s ability to perform a given function, a 

computational model is often a valuable tool in investigating systems too complex to monitor or 

to manipulate biologically.  The development of a strong conceptual framework involves the 

consolidation of many aspects of the biological system, including the underlying anatomy of the 

neural networks, the physiology of individual neurons, and an understanding of the system’s 

function.   

Importantly, the rise of computational neuroscience is not intended to supplant 

experimental biology, but rather is intended to complement it.  Ultimately, it is unlikely that any 

computational study can demonstrably “prove” hypotheses about neuroscience in the same 

manner for which classical biological approaches are often well-suited.  The interaction between 

computational and biological approaches to studying neuroscience will hopefully be one of 
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synergy, with the strengths of each complementing one another to accelerate the understanding of 

the brain. 

Computational modeling of adult neurogenesis 

Adult neurogenesis is in many ways an ideal system to apply computational neuroscience 

in the search for a function.  The hippocampus is among the best understood regions of the brain, 

with both the anatomy and physiology being well characterized.  The dentate gyrus, the subregion 

where new neurons integrate, has a relatively simple architecture as well as straightforward inputs 

and outputs.  Both the hippocampus and dentate gyrus have long been examined computationally, 

and these models are often considered success stories for the computational field. Additionally, 

while the neurogenesis process has only been a recent subject of study, many aspects of the 

neurogenesis process have been described experimentally.   

Neurogenesis does provide unique challenges to computational modeling, however.  The 

biggest challenge is developing modeling frameworks to allow new neurons to enter into the 

network.  Similar to much of neuroscience, most computational approaches have been developed 

without regard for the possibility that new neurons are incorporated into the network.  Most 

biologically-inspired neural network models utilize a static architecture, with synaptic weight 

changes being the only form of plasticity typically incorporated.  Development, if considered at 

all, is treated as a process unique from the functional phase.  While the hippocampus has been a 

model system for computational models, the widely-held theories of hippocampal function have 

generally developed without acknowledgment of the presence of adult neurogenesis in the dentate 

gyrus. 

This dissertation describes the development of a computational neural network model of 

the dentate gyrus that incorporates new neurons.  The model is biologically derived, with most of 

the architecture and functional parameters designed to approximate the biological system as 

closely as possible.  While a simplification of the actual dentate gyrus system, the model is 
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capable of capturing much of the previously theorized pattern separation function of the dentate 

gyrus, and by incorporating neurogenesis it allows computational experimentation to investigate 

functions otherwise essentially impossible to test biologically. 

The goal of this computational work was to generate novel hypotheses for the function of 

adult neurogenesis in the dentate gyrus.  Ideally, these hypotheses will be the foundation for 

future experimental work seeking a functional role of new neurons.  Three distinct possible 

functions for new neurons will be described, each of which has cognitive and behavioral 

implications.  The first hypothesis is that immature neurons contribute to the pattern separation 

function of the dentate gyrus by adding similarity between memories, a process referred to as 

pattern integration.  The second is that this pattern integration function is temporally dependent – 

new memories are only associated if they are temporally proximal.  Such temporal separation 

may be responsible for adding “when” information to episodic memory formation.  The third 

potential function concerns the long-term role of neurogenesis, whereupon new neurons survive 

to integrate into the network in a specialized manner, creating a highly specialized dentate gyrus 

network over a lifetime. 

In addition to the generation of functional hypotheses, the model was used to explore the 

effects of the modulatory regulation of neurogenesis.   Both alteration of neurogenesis rates and 

direct modulation of the dentate gyrus physiology were able to affect the functional contribution 

of new neurons in the computational model.  These results provide a perspective for how 

modulatory neural systems can impact cognition by interacting with the adult neurogenesis 

process. 
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CHAPTER II: OVERVIEW AND BACKGROUND 

 

Section I: The neurobiology of the dentate gyrus and hippocampus 

Overview 

The potential importance of new neurons to cognition is determined by the type of new 

neurons born and the region into which they incorporate.  The observation that neurogenesis is 

generally limited to two regions of the adult mammalian brain suggests that there is something 

unique about those regions that either requires or benefits from new neurons.  It is possible that 

these two regions (the olfactory bulb and the dentate gyrus) perform a similar computation that 

benefits from neurogenesis, but it is just as plausible that their functions are different yet both 

require new neurons.  However, it is clear that there is something about these regions that sets 

them apart from the majority of the brain, including other sensory systems and cognitive regions. 

The dentate gyrus (DG) is the more studied of these two neurogenic regions, and is a key 

part of the hippocampus, which is historically one of the most heavily studied regions of the 

brain.  Although the cortex is generally considered the site of cognition and thought, the 

hippocampus is widely believed to be the critical site for memory formation.  Studies in the 

1950’s on the famous patient H.M., whose treatment for epilepsy consisted of a temporal lobe 

lesion [1], followed by decades of studies on other lesion patients have reliably shown that 

individuals lacking a hippocampus and neighboring regions have dramatically impaired memory 

[2].  In addition to observations in human psychology, the hippocampus has been a focus for 

physiology research.  Long-term potentiation (LTP) - still considered the major substrate of 

learning in the brain - was first observed in the dentate gyrus [3, 4].  In vivo physiology was 

pioneered in the hippocampus, and was accelerated by the discovery of place cells [5].  Also, the 
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relationship between interneurons and principal neurons has been most heavily characterized in 

the hippocampus, particularly in the CA1.   

Ultimately, the functional relevance of adult neurogenesis will be shaped by how the 

dentate gyrus affects hippocampus function, and the role of the hippocampus itself in cognition 

and memory formation.  The following sections will summarize several of the theories of 

hippocampus and dentate gyrus function that represent the framework with which the results of 

subsequent neurogenesis model will be interpreted.   

Hippocampus 

The hippocampus is physically located at the developmentally most extreme end of the 

nervous system.  The entorhinal cortex flows into the subiculum and ultimately into the CA 

regions of the hippocampus.  Due to the curvature of the brain, however, in rodents the 

hippocampus is internal to the cortex – occupying the space above the thalamus and posterior of 

the striatum.  In primates, the hippocampus lies in the medial temporal lobe, along with the 

entorhinal and perirhinal cortices.   

The hippocampus receives direct inputs from the cortex, but these are almost entirely 

from the entorhinal cortex (EC).  The EC receives inputs from throughout the rest of cortex, both 

directly and indirectly.  The EC also receives inputs from the amygdala, thalamus, and other 

forebrain regions [6].  Layers II and III of the EC project to the hippocampus, and layer V 

receives direct hippocampal inputs from the CA1 and indirect inputs through the subiculum. 

In addition to this cortical input, there is a substantial direct subcortical input to the 

hippocampus.  Much of this input passes through the fornix, which connects the hippocampus to 

basal forebrain regions such as the septum, diagonal band of Broca (DBB), mammary bodies, and 

the hypothalamus.  There is a substantial cholinergic projection from the septum and the DBB to 

the hippocampus.  Likewise, many other modulatory systems project to the hippocampus, 
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including dopaminergic (ventral tegmental area), serotonergic (dorsal and median raphe), and 

noradrenergic (locus coerelius).    

For the purposes of this work, the hippocampus is defined as the DG and the CA fields 

(CA3, CA2, and CA1).  This system (with the exclusion of CA2) is the basis for the classic “tri-

synaptic circuit,” where information ideally flows unidirectionally through the DG, into CA3, and 

then into CA1, before being passed back into cortex.  This description is a significant 

oversimplification, but represents a first-order approximation of the network.   

Hippocampus function: Behavior, Physiology, Computational Studies 

The hippocampus has been studied functionally from several different perspectives.  

Psychological studies on human patients with hippocampal lesions, such as those on H.M., have 

focused on the hippocampus (and the medial temporal lobe in general) as key structures for 

episodic memory.  Patients with lesions in the hippocampus and neighboring areas show potent 

amnesic effects, with severe lesions leading to complete inabilities to form new declarative 

memories [1, 2].   

Behavioral and electrophysiological studies on rodent models have tended to focus on the 

hippocampus’s role in spatial cognition.  This function was originally motivated by the discovery 

of “place cells” in the rat hippocampus and their observation in other species [5].  CA1 and CA3 

neurons, when isolated during in vivo recording, show a strong activity preference for particular 

regions of space, known as a place field.  Neurons within other structures of the hippocampal 

formation, including the entorhinal cortex, DG, and subiculum, have place behaviors as well, 

though their place fields are not as structured or as well understood as those in CA3 and CA1 [7-

11].  The spatial function of the hippocampus has been extensively studied using a range of 

behavioral tasks designed to test spatial cognition, such as the Morris water maze (MWM) [12], 

the Barnes maze [13], radial-arm maze, and object-place association tasks. 
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Finally, the anatomical observation that the hippocampus is highly connected to limbic 

regions such as the amygdala, hypothalamus, and other subcortical regions, has led to possible 

consideration of the hippocampus in affective processing.  The ventral hippocampus, in 

particular, is believed to be involved in and affected by stress, depression, and other affective 

disorders.   

These three functions for the hippocampus (episodic memory, spatial cognition, and 

affective processing) have often been studied in isolation, but they are likely each a different 

perspective on a general role for the hippocampus in processing information for memory 

formation.  For example, information regarding the affective state of an animal must be 

incorporated into memory along with spatial information.   

General computational framework for hippocampus 

Computational models have long been used in studying the hippocampus.  Marr’s model 

in 1970 integrated much of the anatomical knowledge of the hippocampus into a general 

functional theory that still influences hippocampal modeling [14].  The key to Marr’s theory of 

hippocampal function was the recurrent network structure in the CA3 and its ability to store 

discrete memories.  Subsequent models of the hippocampus have continued to assign a memory 

storage or formation role to the CA3 network due to this associative connectivity.  These include 

models by McNaughton and Morris [15], Treves and Rolls [16-18], Hasselmo and colleagues 

[19], and many others, which have all treated the auto-associative network of the CA3 as the key 

feature of hippocampus function.  

The mathematical considerations of the CA3 as an associative network was advanced by 

the work of Hopfield in his analysis of fully recurrent neural networks [20].  The CA3 is one of 

the brain’s regions whose connectivity is most similar to an ideal “Hopfield network,” which is an 

abstract network containing full connectivity between all of the neurons.  Hopfield’s approach 
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demonstrated how the memory storage properties of associative networks could be quantified 

analytically.  By demonstrating the mathematical structure of attractor states in a network, this 

work allowed the requirements and limitations of recurrent networks during memory formation to 

be better understood [21]. 

While the CA3’s presumed function has been generally consistent across most 

computational models, the conjectured functions of the DG and CA1 have been more varied, and 

often the differences between models can be attributed to different functional roles assumed for 

these subregions.  Functions for these subregions have been dissociated by several modeling, 

physiology, and behavioral studies [7, 22].   

Dentate Gyrus 

As described above, the DG is considered the primary input layer to the hippocampus, 

although there are significant direct cortical inputs to the other layers as well.  Although most 

theoretical functions for the DG are related to its location as the input to the CA3, there have been 

several differing propositions for what role the DG plays in hippocampal function.  The next few 

sections will describe the architecture and key features of DG anatomy and describe the 

possibilities regarding the functional relationship between the DG and CA3. 

Anatomy of the Dentate Gyrus 

The dentate gyrus, sometimes referred to as fascia dentata, is so named due to its ‘V’ or 

‘U’ shaped structure that has the appearance of a tooth [23].  As with other hippocampal regions, 

the shape of the DG occurs in most views of the hippocampus.  In the following description of the 

DG, ‘outer’ will refer to the outside of the ‘V’, and ‘inner’ refers to the inside of the ‘V’.  

Although most brain slices will reveal this ‘V’ shape, in those preparations that do not, ‘inner’ 

refers to the area of the DG near CA3.  The DG is typically divided into three regions, listed here 
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from outside inward: the molecular layer (ML, stratum moleculare), the granule cell layer (GCL, 

stratum granulosum), and the hilus (polymorphic layer).  Both the ML and the GCL are often 

further subdivided, as discussed below.   

Molecular Layer (MOPP Cells) 

The ML region of the DG is principally important because it is the location of most 

synaptic transmission onto mature granule cells.  The name “molecular” derives from the fact that 

it contains few cell bodies, and is thus very sparsely labeled under the majority of histological 

stains.  Mostly the space is filled by the dendrites of granule cells and perforant path axons from 

the entorhinal cortex and mossy cells (as well as other hilar neurons).   

The ML is divided into the outer, middle, and inner thirds, which correspond to different 

axon termination zones in the rodent.  The outer third is the termination zone of the lateral 

perforant path (lPP).  Axons in the lPP originate from glutamatergic neurons in layer II of the 

lateral entorhinal cortex (lEC).  Similarly, the middle third of the ML receives input from the 

medial perforant path (mPP), which originates from Layer II of the medial entorhinal cortex 

(mEC) [24].  While perforant path axons are restricted to the outer two-thirds of the ML, the inner 

molecular layer also has many axon terminals.  These axons arise from mossy cells located in the 

hilus and are known as the commisural/associative pathway.  Interestingly, these mossy cell 

projections are mostly from distant locations along the dorsal/ventral axis of the DG. 

Although the ML is predominantly filled by neuronal processes, the ML is not 

completely devoid of neuron soma – there are several small populations of interneurons that 

reside there.  Of particular interest are the MOPP cells (“molecular onto perforant path”), which 

are GABAergic interneurons whose axons and dendrites stay in the molecular layer [25, 26].  

These MOPP cells appear to be well situated to contribute to feed-forward inhibition to the 

network. 
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Granule Cell Layer (Granule Cells, Basket Cells) 

The GCL is the principal neuron layer of the DG, and the two terms (DG and GCL) are 

often used interchangeably.  While some studies break the GCL into similarly defined sublayers, 

the most typically identified subregion of the GCL is the subgranular zone (SGZ) which is 

important as both the location of several interneuron classes as well as the presumed location of 

adult neural stem cells. 

There are several different cell types located within the GCL.  The principal neuron of the 

layer, and of the DG in general, is the granule cell neuron.  They are small neurons (~10 μm in 

diameter) and are densely packed into the GCL (~ 1 million per DG in rat).  Structurally, granule 

cells appear to follow the classic design for neurons – they are highly polarized, with an apical 

dendrite extending into the ML where it ramifies into several branches, and a single axon that 

goes the opposite direction through the hilus and into CA3.  The dendrites are very spiny, and 

each granule cell receives thousands of glutamatergic synaptic inputs, mostly from the perforant 

path of the entorhinal cortex. 

Perhaps the most distinguishing anatomical characteristic of granule cells are their axons, 

known as mossy fibers.  Mossy fibers give rise to three types of synapses, depending on the post-

synaptic target.  The most recognized are the “thorny excrescences,” the large axon terminals that 

contact the proximal dendritic regions of CA3 pyramidal cells.  These boutons often encompass 

several spines, and have unique physiological properties, including a strongly facilitating release 

probability and significant potency after a burst of spikes [27].  Although the thorny excrescences 

are often considered the main output of the DG, there are relatively few of them per granule cell.  

More common are en passant axon terminals onto interneurons in the CA3 and hilus.  These 

smaller synapses have distinct physiological properties from the thorny excresences; in particular 

these are depressing synapses that appear more effective at transmission for single spikes as 

opposed to bursts.   Finally, mossy fibers make a separate form of synapse onto distal dendrites of 
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mossy cells (in addition to thorny excrescences proximal to mossy cell somata).  Several studies 

have considered the relative effects of these different types of granule cell axon terminals[28, 29].  

Physiologically, granule cells appear to be very quiet, believed to be caused by both the 

physical properties of the cells as well as a high level of tonic inhibition.  In slice preparations, 

recordings of granule cells are difficult in the absence of GABA blockade.  In vivo recordings 

and immediate early gene studies have confirmed that granule cells are not very active in the 

network [30, 31], though the nature of their selectivity is debated [11, 32].   

There are several classes of interneurons that reside in the GCL [26].  These include 

several types of basket cells and chandelier cells.  Basket cells are of significant computational 

interest because they appear to receive both feed forward input from perforant path axons as well 

as feedback excitation from granule cells.  The axons of basket cells terminate very close to the 

soma of granule cells and are well positioned to provide a very potent inhibitory signal.  Different 

populations of basket cells have been identified based on histological staining; the two principal 

types are parvalbumin-positive (PV+) basket cells and cholecystokinin-positive (CCK+) basket 

cells.  While basket cells connect to one another by both synapses and gap junctions, the networks 

generated by these two classes (PV and CCK) appear to be distinct.  Furthermore, these classes 

receive distinct afferent inputs:  PV+ basket cells receive strong cholinergic inputs from the 

septum, yet little other modulatory drive.  CCK+ basket cells have been shown to be modulated 

by many other factors, including serotonin and cannabinoids [33]. 

Chandelier cells, which are sometimes referred to as axo-axonic interneurons, appear to 

comprise a sparser population in the GCL, and have not been as well studied physiologically.  

Anatomic observations show that their axon terminals are near the axon hillock of granule 

neurons, suggesting that these neurons can be powerful suppressors of granule cell output [34, 

35]. 

Hilus (Mossy Cells, Hilar Interneurons) 



14 
 

The hilus, which is periodically referred to as the polymorphic layer or CA4, is the region 

internal to the ‘V’ formed by the GCL.  While the hilus is not densely packed with neurons like 

the GCL, it has substantially more neuron somata than the ML.  Most granule cell axons pass 

through the hilus, and it is likely that these mossy fibers provide the bulk of the excitatory drive 

to the region.  In addition, the hilus is the target of many extrinsic projections.  While there is no 

direct cortical input to the hilus, projections from many subcortical regions like the septum and 

raphe nuclei heavily ramify in the region.  There is also a “backprojection” from the CA3 which 

appears to target hilar neurons [36].   

There are many different neuronal populations in the hilus.  The one class that has been 

identified as glutamatergic are the mossy cells [37, 38].  The dendrites of mossy cells appear to be 

limited to the hilus, though there are examples showing branches extending into the ML.  Their 

axons have a very unusual projection pattern; while they avoid the longitudinal region of the DG, 

they project heavily to distal regions of the DG.   The axons terminate within the inner molecular 

layer.  Because of their unusual topography, there remains a significant debate whether the 

primary downstream targets of mossy cells are basket cells or granule cells; thus it is unclear 

whether their activation has a net inhibitory or excitatory effect on the DG [39].  Importantly, in 

rodents mossy cells contribute to a significant commissural projection to the other half of the 

brain, but it appears that in primates their axons are unilateral. 

Physiology studies suggest that mossy cells are likely to be considerably more active in 

the network than granule cells, though there is no in vivo data available to draw conclusions 

about their behavioral activity.  In addition, they appear to be sensitive to input from modulatory 

neurotransmitters, such as acetylcholine.  Their position in the network as well as their axonal 

distribution suggests that their function may be important in modulating or controlling overall DG 

activity, though future work is necessary to elucidate how they affect DG function. 
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In addition to the excitatory mossy cells, the hilus is the location of several different 

GABAergic interneuron classes.  These interneurons represent a broad category, as efforts to 

label different populations have had mixed results.  Anatomically, there are different populations 

whose axons project to the outer two-thirds of the molecular layer (HIPP) and those that project 

to the IML (HICAP).  Histologically, there are substantial populations that are labeled with 

somatostatin, NPY, calbindin, along with several other markers.  These chemically defined 

populations are neither exclusive nor overlapping with each other or with the anatomical classes, 

though it appears that many of the HIPP cells are somatostatin positive.  There have been several 

observations of these interneurons projecting axons to extra-hippocampal areas, which is 

relatively uncommon for GABAergic populations. 

Generally, the dendritic arborizations of these hilar interneuron populations suggest that  

they receive most of their excitatory input in the hilus, either from granule cells or mossy cells.  

Their axons likely project widely throughout the molecular layer, suggesting they serve a 

feedback inhibition role in the network.  In addition, as with basket cells, it appears that hilar 

interneurons synapse onto each other in a specific manner [40], suggesting that there are distinct 

interneuron “meshes” in the DG.   

Function of the Dentate Gyrus  

Although the functions of many regions of the brain were initially understood from 

experimental observations, the dentate gyrus is a region where computational models and theories 

have driven much of the biological exploration.   

Computational modeling of DG – pattern separation 

As described above, the dentate gyrus has often been treated as the initial component of 

the hippocampal tri-synaptic circuit [14].  One of the first models to give the DG a more 

specialized role was developed by McNaughton and Morris in 1987 [15].  The McNaughton 
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model of the DG treated granule cells as “detonator neurons” that are important for loading 

memories into the CA3. 

Treves and Rolls expanded on this function considerably in 1992 by demonstrating how 

sparse coding by the DG with powerful synapses onto the CA3 is ideally suited to load memories 

into the associative CA3 network [16-18].  The Treves and Rolls framework considered the dual 

inputs to the CA3 layer, the direct perforant path inputs from EC and the indirect pathway 

through the DG.  Because the direct EC synapses onto CA3 pyramidal neurons are individually 

weak but numerous, they are unable to provide sufficient signal over the “noise” contributed by 

the feedback recurrent CA3 projections.  Essentially, the divergent EC projection is incapable of 

forming a new attractor in the CA3 without disrupting existing attractors.  However, according to 

the Treves and Rolls theory, the very powerful yet sparse DG projection is well suited for 

selecting a small subset of CA3 neurons with which to store a memory.  This activation of a CA3 

subset will be accompanied by heterosynaptic plasticity of both the CA3 recurrent network and 

the EC-CA3 projection.  During recall, the now trained EC-CA3 projection is sufficient to pattern 

complete to the original memory trace, whereas partial activation of the DG-CA3 projection will 

not work, due to its sparsity. 

O’Reilly and McClelland expanded on the pattern separation function by the DG, 

demonstrating that the sparse coding in the DG is capable of considerably reducing network 

similarity in memories formed in downstream areas [41].  According to the O’Reilly and 

McClelland framework, the properties of the DG and its mossy fiber projection to CA3 are well 

suited to optimally separate inputs to the hippocampus in a two tier fashion – the EC to DG 

provides a potent initial separation and this is compounded by the subsequent DG to CA3 

projection.  Although their modeling results are generally consistent with the Treves and Rolls 

framework discussed above, they do not rule out a possible role for DG in recall, suggesting that 
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LTP in the DG region may allow the DG to contribute to the pattern completion function 

generally assigned to the CA3 [41].   

Behavioral exploration of DG function 

The function of the DG has been explored behaviorally primarily using lesion studies in 

rats.  Granule cells are selectively sensitive to colchicine, a natural toxin, allowing it to be used 

for targeted DG knockouts in many of these studies.  Rats with lesioned DG (DG-KO rats) have 

impaired performance on several tasks.  Consistent with its location as the main structural input to 

the hippocampus, DG-KO rats have been shown to have impaired performance on many tasks 

associated with hippocampal function, including working memory in the 8-arm radial maze and 

as well as in the MWM [42-44].  However, tasks showing that a DG lesion is at times comparable 

to a hippocampal lesion are not sufficient to describe DG function, rather that it is an important 

part of the hippocampus. 

To dissociate DG function from global hippocampal function, Kesner and colleagues 

developed spatial tasks designed to measure pattern separation, the suggested function of DG 

emerging from many computational models of the hippocampus [45].  In one task, rats were 

tested on a delayed-match-to-sample paradigm where the animal was first exposed to an object in 

one location, and on the test phase exposed to two identical objects, one at the previous location 

and one at a novel location some distance away.  Rats without a DG had difficulty determining 

the familiar location when the objects were spatially close to one another, while all animals could 

determine the familiar location for distant objects [46]. 

In addition to the pattern separation function, many models of hippocampus have 

postulated that the main role of the DG is in the encoding phase of memory formation, and that it 

is not necessary during retrieval.  A series of tasks by Lee and Kesner [47-49] have demonstrated 

that DG-KO rats show impairments in the acquisition phase of certain tasks, including the Hebb-
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Williams maze and context fear conditioning.  When rats were lesioned after the acquisition 

phase of these tasks, however, their performance was comparable to controls on the test phases. 

Molecular techniques have been used to control DG function.  Mice with a conditional 

knockdown of the NMDA receptor in granule cells have impaired synaptic plasticity [50].  

Presumably, DG function that is not dependent on this plasticity is maintained, though 

neurogenesis is also likely affected in these animals.  Behavioral studies on these transgenic mice 

showed normal learning on many hippocampal tasks, such as MWM and context fear 

conditioning, but impaired performance on a context fear conditioning task that required the 

animals to dissociate between safe and unsafe contexts. 

Activity measures of DG function 

The activity of DG granule cells during animal behavioral tasks has been measured by 

both in vivo electrophysiology techniques as well as histological labeling of immediate early 

genes (IEGs), such as c-fos, arc, and zif [30].  In vivo recordings of neurons in the GCL have 

confirmed that granule cells are sparsely active.  Monitoring place behavior of recorded cells 

revealed that the firing rates of isolated neurons, presumably granule cells, are generally low [11, 

31].  Furthermore, these studies qualitatively observed that these neurons are difficult to find and 

to record from.  The sparse coding and high information content of active neurons observed by 

Jung is consistent with a pattern separation function [31].  The Leutgeb results were less clear - if 

correlations between neurons are considered for different spatial locations, recorded DG neurons 

are effective at separation.  However, unlike neurons in CA3 (and contrary to most DG theories), 

the population of active neurons does not change significantly between environments [11].   

The second requirement for the pattern separation function of the DG is the ability for 

granule cells to be powerful activators of CA3 pyramidal neurons even when sparsely active.  The 

Buzsaki laboratory demonstrated that a single granule cell could induce activity in a target 

pyramidal neuron during in vivo conditions [27].  This is consistent with the McNaughton and 
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Morris “detonator” synapse idea, and along with the in vivo observations about sparse coding, 

suggestive of the Treves and Rolls framework.  The mossy fiber pathway does appear 

considerably more complicated than a simple detonator synapse, however.  Future work will be 

necessary to understand the nature of the relationship between mossy fibers and CA3 and hilar 

interneurons. 

Section II: The Neurobiology of Adult Neurogenesis 

Overview and History 

The controversy over whether new neurons functionally integrate into the adult brain has 

been largely settled in the past decade.  Neurogenesis in the dentate gyrus (DG) was extensively 

characterized during the 1990’s, and capped off by the observation by Eriksson et al. (1998) that 

adult neurogenesis occurs at significant levels humans [51].  Although the debate over 

neurogenesis has continued in other regions, such as frontal cortex [52-56], hypothalamus [57], 

and piriform cortex [58], adult neurogenesis in the DG has proved a robust finding that has 

resulted in considerable widespread interest. 

Prior to this burst of studies on neurogenesis during the mid 1990’s, research into adult 

neurogenesis was sparse and was often met with considerable skepticism.  Perhaps the earliest to 

systematically study the adult neurogenesis phenomenon was Joseph Altman, who in a series of 

papers throughout the early 1960’s [59, 60], characterized the development of the DG using 

tritiated thymadine (Thy-H3), a radioactive nucleotide analogue which incorporated into dividing 

cell nuclei allowing them to be subsequently birthdated.  Altman believed these radio-labeled 

cells were new neurons, and continued to characterize the process as such, though his work did 

not separate adult neurogenesis from postnatal neurogenesis, but rather as simply a 

developmental process that continued well into adulthood.  However, the lack of histological 

proof that the labeled cells were neurons limited the widespread acceptance of the observation.  
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Other work followed in subsequent years, a key example being that of Michael Kaplan, who 

showed that the Thy-H3 labeled cells were neurons using electron microscopy [61-63].  This 

work too was generally ignored by the neuroscience community [64].  Eventually, the isolation of 

neural stem cells from the adult hippocampus [65], along with studies investigating the regulation 

of proliferation in the hippocampus after stress [66-69] and with learning, exercise, enrichment, 

and aging [70-73] in the 1990s, brought research regarding adult neurogenesis to the forefront of 

neuroscience.  The observation of adult neurogenesis in the human hippocampus and later 

demonstration of functional integration into the hippocampal circuitry were significant steps in 

the general acceptance of the process. 

Biological Process of Dentate Gyrus Adult Neurogenesis 

Today, two regions of the adult brain are widely accepted as having significant 

neurogenesis – the olfactory bulb (OB) and the dentate gyrus (DG).  The process by which new 

neurons emerge from neural stem cells is fundamentally different between these two regions.  

The new neurons that enter into OB circuitry are actually born in the subventricular zone (SVZ).  

Neural progenitors born in the SVZ pass through several stages of differentiation that are closely 

associated with the nearby ventricle.  Once committed to a neuronal lineage, these neural 

precursors migrate a long distance from the ventricle to the OB via the rostral migratory stream.  

Once in the OB, these cells differentiate into several different types of neurons:  GABAergic 

granule cells and periglomerular cells that release GABA and/or dopamine.   

While migration is a major feature of the SVZ/OB neurogenesis process, DG 

neurogenesis is localized to the inner part of the granule cell layer and the subgranular layer 

(SGL).  Although the origin of new neurons is not fully understood, one working model is that 

radial glial cells residing in the SGL are the ultimate source of new neurons.  These relatively 

quiescent radial glial cells are similar to astrocytes and have a unique morphology including a 
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process that extends into the molecular layer, where they presumably monitor local activity.  By 

some unknown method, these radial glial cells give rise to a smaller rapidly dividing neural 

progenitor cell, which then divides several times symmetrically.  These neural precursors may 

then migrate small distances into the inner granule cell layer, where they complete their 

differentiation into neurons and begin maturation.  

Once a precursor cell differentiates into the neuronal lineage, it begins a slow maturation 

process that will ultimately result in a mature granule cell.  These states each appear important for 

their integration into the network and ultimate survival.   

Neuroblast stage – Less than 1 week old 

It is difficult to demarcate exactly when a progenitor cell becomes committed to the 

neuronal lineage, since cell type is essentially defined by its future – once “differentiated” it will 

no longer divide and eventually become a neuron if it survives.   These neuron precursors, or 

neuroblasts, initially show little neuronal morphology, and are typically localized in the SGZ near 

the stem cell population.  Initially, these young neurons lack the polarity and processes typical of 

neurons.  Within several days they begin to extend neurites and by the end of the first week they 

orient themselves appropriately in the network (with proto-dendrites extending toward the 

molecular layer)[74].   

These very immature neurons likely have no functional impact on the network, since it is 

very unlikely that they have any efferent connections.  Nonetheless, they appear to be sensitive to 

the activity of the local environment.  In particular, GABA appears to be a critical 

neurotransmitter at this stage [75, 76].  Although these neurons do not receive any direct synaptic 

inputs, they are sensitive to bath application of GABA as well as local activity, suggesting that 

they are responsive to GABA diffusing from nearby synapses [77].  Because these neurons and 

their neurites tend to be localized within the inner region of the GCL at this stage, if the source of 



22 
 

this GABAergic depolarization is local, it likely originates from one of the basket cell 

populations.   

GABA depolarization and early growth – 1 - 2 weeks old 

After the second week of age, the immature neurons have a distinct neuronal 

morphology, but are still considerably smaller than mature GCs.  Their dendrites approach the 

molecular layer, but have minimal branching and lack spines and Their axon begins to extend into 

the hilus [74].   

Electrophysiologically, neurons at this stage are still depolarized by GABA, but the 

GABAergic input is now predominantly synaptic [77-79].  There is still little glutamatergic input, 

which is consistent with the observation that they lack spines on their dendrites.  Direct current 

injection is capable of inducing action potentials, which are broad and incapable of bursting like 

mature GCs.  It is unclear whether GABAergic depolarization is sufficient to induce an action 

potential, or whether the neurons form any downstream connections at this point.   

Dendritic expansion and axonal expansion – ~2-4 weeks old 

By about 16 days after the final cell division, immature neurons are beginning to 

integrate into the network.  By this time, their general morphology is certainly neuronal, and 

spine formation is beginning [74].  By 21 days, the immature neurons will have roughly 25% of 

the number of spines as a mature neuron.  In addition to spine development, the dendrite 

elaborates considerably by 21 days.  Electron microscopy (EM) shows that immature neuron 

filopodia (the precursor to spines) appear to grow toward existing synapses [80].   

The timescale of axon outgrowth is similar to that of dendritic development.  Although 

axons can be observed early in development, they do not extend fully into the CA3 until roughly 

two weeks of age, which is comparable to when spine formation is beginning in the molecular 

layer [74].   



23 
 

Electrophysiologically, neurons change considerably between two and four weeks of age.  

GABA becomes inhibitory during this time, and the glutamatergic input onto neurons begin to 

develop.  Spike-shapes become more similar to mature neurons, and by four weeks, neurons are 

bursting similarly to mature granule cells.  Membrane resistance drops during this time and 

capacitance increases, consistent with the increasing surface area and number of receptors on 

young neurons.  The resting potential of neurons begins to drop as well, from the relatively high 

levels of immature neurons towards the very hyperpolarized resting state of mature granule cells 

[77, 81]. 

In addition to having different basic electrophysiological properties, immature neurons 

have a different capacity for LTP [82].  Under several different paradigms, LTP is easier to 

induce in young neurons, either birthdated with GFP [83] or labeled with PSA-NCAM [84].  The 

changes in LTP are likely related to the increased spine dynamics seen in microscopy studies [74, 

80].  Increased LTP by young neurons is also consistent with observations that animals with 

neurogenesis removed by irradiation have significantly impaired in vivo LTP [85]. 

Later maturation - >4 weeks old 

After about one month of age, immature neurons have morphologies and physiological properties 

generally consistent with those of mature GCs, but still have some differences [74, 77, 81].  The 

physiology of neurons continues to develop for several months, though this development has not 

been as systematically explored.  Neurons between 4-6 weeks old continue to show a stronger 

LTP phenotype than mature neurons, with easier acquisition than mature neurons and higher 

amplitude than younger neurons [83].     

Regulation of Adult Neurogenesis 

Unlike much of embryonic and postnatal neural development, which is guided by the 

environment but intended to be robust to many external environmental conditions, adult 
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neurogenesis is highly regulated by the animal’s experience.  Regulation of neurogenesis can 

occur at both the proliferation stage and the maturation stage.  Proliferation can be either 

accelerated or slowed, and in doing so affects the rate of new neurons entering the population.  

Many factors have been shown to increase or decrease neurogenesis rates, and these factors tend 

to be systemic and relate to the general state of the animal.  Some of the most potent regulators of 

neurogenesis rates are physical activity, stress, and aging [67, 70, 72, 73].   

Regulation of the maturation and survival of new neurons appears to be more specific to 

experience and the information being processed by the hippocampus.  A large proportion of 

adult-born neurons die under standard laboratory conditions [86].  The survival of new neurons 

can be dramatically altered by many factors, and many of these factors suggest that as these 

neurons develop, their behavior will ultimately determine whether they live or die.  Experience, 

particularly by the use of enriched environments, has been demonstrated to be effective at 

inducing the survival of adult born neurons [72, 87].  This survival appears to be dependent on 

NMDA activation [88]. 

An important observation about neurogenesis is that the effects of regulatory signals will 

be temporally delayed.  Since new neurons are likely not affecting function for several weeks 

after they begin differentiation, changing the rate of neurogenesis at the proliferation stage 

probably will not have an effect for days or weeks.  Regulation of survival likely has a more 

immediate effect on the system and is likely more specific to individual neurons.   

Behavioral models of neurogenesis function 

Several biological techniques have been developed to investigate neurogenesis function.  

The first section will review the techniques that have been developed to reduce proliferation and 

will summarize their efficacy and drawbacks.  The second section will then discuss the different 

behavioral assays that have been examined using these various knockdowns.   
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Methods for knocking out neurogenesis 

Three general types of approaches have been used to knockout neurogenesis: anti-

proliferative drugs, irradiation, and molecular techniques.  Almost every knockdown technique 

has been designed to act at the proliferation stage of the neurogenesis process, meaning that any 

behavioral effect of the knockdown would be expected to occur sometime after treatment.  Each 

of these methods has advantages and disadvantages, and the search for the ideal knockdown 

continues. 

The first study to knockout neurogenesis used methylazoxymethanol acetate (MAM), 

which is a chemotherapy drug that blocks cell proliferation, including neural stem cells in the DG 

[89, 90].  MAM has the advantage that it is easy to deliver and can be administered to rats.  It is 

also fast-acting – unlike other knock-out methods, MAM treated animals can be tested anytime 

after treatment – and fairly effective (80% knockdown of BrdU labeled cells after treatment).  

The principal drawback to MAM is its nonspecificity.  Because it impairs cell division, many 

other proliferative populations of cells are affected as well, and can cause subject animals to 

become ill or die.  Indeed, experimental evidence suggests that doses of MAM high enough for a 

more complete knockdown of neurogenesis are too high for the overall health of the animals, thus 

complicating the interpretation of behavior [91]. 

The second approach to knocking out neurogenesis has been to use irradiation.  Both 

mice and rats have been used in irradiation studies [92-98].  In addition to directly affecting the 

neural progenitor population, irradiation alters the local microenvironment of the SGZ, greatly 

attenuating the capacity for future neurogenesis.  Irradiation is a very effective knockdown 

technique, almost entirely eliminating the number of new neurons produced.  However, there are 

several significant drawbacks to its use as a behavioral tool.  First, there is no clear evidence that 

the side effects of the process are not impacting function.  Even when irradiation is focally 

limited to the DG, post-radiation inflammation may affect local circuit behavior [98].  Second, 
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animals are typically given a considerable amount of time to recover after irradiation, essentially 

limiting the experimentation to the study of a chronic neurogenesis knockdown.   

The specificity concerns regarding irradiation and MAM have led to several transgenic 

mouse models that can conditionally eliminate neurogenesis.  One strategy that has been used is 

to develop mice that express the viral thymadine kinase (TK) gene under a stem cell specific 

promoter, such as GFAP [92].  When animals are given ganciclovir, it is phosphorylated by TK 

and ultimately induces cell death.  Mice have also been generated with the Tlx gene conditionally 

removed using a CreER system [99].  When given tamoxifen, the Tlx gene is removed from cells 

throughout the brain, essentially blocking neurogenesis, which is dependent on Tlx. A third 

molecular knockdown model uses bigenic Tet-Bax/nestin-rtTA mice [100].  When these animals 

are given doxycylcine, Bax, a pro-apoptotic gene, is specifically expressed at high levels in 

nestin-positive cells.   

The main drawback to these genetic models is that they are essentially limited to mice.  

The range of assays available for testing behavior in mice is considerably more limited than for 

rats.  For example, the majority of the tasks that investigate pattern separation were designed for 

rats [46] and their utility in a mouse model is unclear.  The second drawback to genetic models is 

that their levels of knockdown are considerably lower than what is observed after irradiation.  

Despite these concerns, molecular models provide an improved level of control for a knock-out 

model.  While they are usually not 100% specific, there are fewer concerns about side effects than 

with irradiation or drugs.   

One possible alternative to transgenic implementation of molecular knockdown is the use 

of viruses to deliver genes that decrease neurogenesis.  The proliferation of neural stem cells is 

dependent on the family of extracellular signaling Wnt proteins.  If stem cells are saturated with a 

dominant-negative version of Wnt (dnWnt), proliferation is markedly decreased [101].  Because 

dnWnt is a secreted molecule, it can be delivered virally to animals, including rats [102].  If 
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expressed at high enough levels, dnWnt can block neurogenesis.  The main drawbacks to this 

viral system are the extent of knockdown, which is highly variable, and specificity.  Wnt genes 

are also believed to be important in other forms of plasticity, making it difficult to interpret 

whether the effects of dnWnt are specific to the lack of new neurons. 

Behavioral results of neurogenesis knockdown 

A wide range of tasks have been investigated with these neurogenesis knockdowns.  The 

bulk of these studies have investigated the hippocampus’s role in memory and spatial processing, 

and as such have utilized tasks designed to measure general hippocampal function.  The MWM 

has been one of the most widely used tasks in examining neurogenesis’s role in spatial memory.  

A wide range of knockdown models have been tested on the MWM task with highly variable 

results.  Several studies have observed deficits on the MWM task, though impairments were 

observed either at the learning phase [99, 100] or during the memory phase when tested with 

probe trials [103].  Other studies have been unable to see any deficit in MWM [89, 94-96].  

Learning in MWM has been correlated to neurogenesis levels [104], though another group has 

argued that this effect is independent of neurogenesis [96]. 

Context fear conditioning is the other task most commonly investigated in knockdown 

models.  Like MWM, some laboratories have observed a significant deficit [94, 95] whereas other 

groups have failed to see an effect [89, 99, 100], although other fear conditioning paradigms were 

implicated by Shors [90].   

Not all tasks have shown impairments in neurogenesis knockdowns.  Using a working 

memory paradigm, Saxe and colleagues showed that irradiated mice had increased performance 

on a working memory version of the radial arm maze, where animals were trained to choose the 

novel arm when forced to select between two arms, one of which had been previously visited 

[92].   
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The wide variation between results emphasizes several concerns with the utility of these 

behavioral tasks for examining neurogenesis.  First, it appears as if the method of knockdown is 

of considerable importance, with no behavioral result proving to be consistent across knockdown 

approaches.  This is not particularly surprising, given that the different techniques have widely 

varying levels of reduction of proliferation, and are testing either a chronic or acute loss of 

neurogenesis.  Second, tasks such as MWM and context fear conditioning are highly dependent 

on experimental conditions, making experimenter and location differences an important factor.  

Finally, these tasks are likely not sufficiently sensitive for examining neurogenesis.  Most of these 

tasks were developed for understanding memory using hippocampal or other large scale lesions, 

and there is no strong a priori rationale for why neurogenesis may be playing a role in any of 

these tasks.  Therefore, negative or noisy results leave several possibilities: that neurogenesis is 

not involved in that task, that its contribution is minor and below the noise inherent in the 

behavioral data, or that neurogenesis is used, if available, but other compensatory mechanisms 

can be recruited given sufficient time without new neurons. 

Computational models of adult neurogenesis 

Over the past ten years, there have been several computational studies that have modeled 

the neurogenesis process.  These models range in their incorporation of biological detail, level of 

study, and ultimate conclusions.  This section will summarize the existing models of dentate 

gyrus neurogenesis, organizing them generally by their motivation and level of abstraction. 

Abstract models of neuronal replacement in memory networks 

The first models designed to investigate the functional role of neurogenesis focused on 

the role of replacing neurons in multi-layered, feed-forward networks.  Two similar studies 

presented models along these lines in 2004. 
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The Chambers study, as well as its follow-up studies [105-107], investigated the role of 

neurogenesis in the learning of letters of alphabets in an artificial neural network.  In their model, 

the shapes of different letters of the Roman alphabet were presented as the input to their three-

layer network, and the network was trained using backpropagation to provide a readout in the 

final layer representing the letter position (i.e., ‘A’ as an input activates Neuron #1 in the output; 

‘B’ activates Neuron #2, etc).  The middle ‘hidden’ layer represents the DG, and the input and 

output are the EC and CA3, respectively.   

The authors show that after training the network to accurately map the letter shape to 

letter number, the network is very slow in subsequently learning a new alphabet with different 

mappings, in this case the Greek alphabet.  However, when there is neurogenesis (which is 

modeled by simple replacement of a DG layer neuron or resetting of synaptic weights to and from 

a random DG layer neuron), the network can more quickly learn the new Greek alphabet.  

Importantly, the old Roman alphabet is forgotten faster.   

The results of this study were followed by several others that increased the sophistication 

of the model and investigated the role of different neurogenesis parameters in function.  The 

Crick and Miranker study incorporated lateral inhibition, biologically realistic Hebbian learning, 

and non-random apoptosis.  In addition to replicating many of the Chambers findings in a more 

biologically realistic network, their results showed that functionally-directed apoptosis allows 

more effective learning [106].  Chambers and Conroy later used the model to show that 

neurogenesis rates can be optimally tailored to the difficulty of the network’s task.  Re-training a 

network to learn a second distinct alphabet, such as Hebrew after learning Roman, required 

higher rates of neurogenesis than learning an alphabet more similar to the first one [105]. 

At roughly the same time of the first Chambers study, Deisseroth and colleagues included 

a computational model in a larger paper about the activity dependence of neural progenitor 

proliferation [108].  While the general structure of the two models is the same (learning of 
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patterns using three-layered networks with neural replacement), the Deisseroth study was both 

considerably larger (500 ‘DG’ neurons as opposed to less than 32) and also used unsupervised 

Hebbian learning.  Despite these differences, the results were generally the same: neural 

replacement in a hidden layer increases learning of new memories and clearance of old memories. 

Although the relationship of these abstract studies to DG function is not clear, they 

provide strong evidence that neurogenesis can have a potent effect on network function, and that 

under certain conditions it is more effective at acquiring new information than simple synaptic 

plasticity.  The results regarding increased learning rates and forgetting were robust to 

architecture and network size.  Importantly, however, the utility of these results is unclear in the 

context of more general hippocampal theories, where the function of the DG is typically not one 

of memory storage, rather one limited to memory encoding.   

Neurogenesis models designed to examine specific hypotheses 

Several of the models of neurogenesis were designed specifically to examine a priori 

hypotheses for neurogenesis function.  In general, because these models were constructed with 

specific questions in mind, they contain biologically realistic components, but the degree to 

which they can predict other functionality is unclear. 

Wiskott and colleagues explored the possibility that the continuous addition of new 

neurons into the system enables it to avoid catastrophic interference in memory storage [109].  

Catastrophic interference is basically a process by which the memory attractors in feed forward 

networks collapse due to overloading [110, 111].  If the number of memories trained into a 

network exceeds its capacity, the attractors in the network will begin to collapse, even if the 

information encoded by each attractor is unrelated.  This will lead to failure in both the encoding 

of new memories as well as the elimination of old memories.  New neurons added to the DG/CA3 

network provide locations for new attractors that are independent from previous states, keeping 

new memories from interfering with old memories.   
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A different hypothesis has been pursued in a series of studies by Butz and colleagues 

[112-114].  Their goal was to investigate how new neurons provide a continuous pool of newly 

available synapses in a synaptic homeostatic system. Synaptic homeostasis, according to this 

framework, allows a recurrent network to eliminate and add synapses to offset changes in the 

strength of inputs.  Their models of these homeostatic systems, which range from abstract 

recurrent networks to biologically motivated DG-like networks, are capable of maintaining stable 

levels of activity without neurogenesis and cell death if the variation of inputs is limited.  

However, in responses to very large shifts in input activity, the high levels of synaptic plasticity 

provide an effective substrate for absorbing or amplifying synaptic inputs.   

Hippocampal models with neurogenesis 

Although there is an extensive history of neural network modeling in the hippocampus, 

few of these biologically derived models implement neurogenesis.  One example of a 

hippocampus model with neurogenesis is that of Becker in 2005 [115].  In a full model of the 

hippocampus (EC->DG->CA3->CA1->EC), Becker investigated the role of new neurons (along 

with a novel implementation of synaptic plasticity) in a model that emphasized the DG’s role in 

memory encoding as opposed to memory storage.  With random connectivity, the network’s 

capacity showed that the presence of neurogenesis in the DG allows the system to better encode 

similar information in the network without interference in downstream layers. 

While the Becker model has some interesting insights regarding neurogenesis function, 

its relevance to the biological process is unclear.  The function for which neurogenesis had the 

most value – encoding similar data – was benefited most by complete turnover in the network.  

Since biological neurogenesis is occurring at a much lower rate, and appears to be an addition 

process as opposed to a turnover process, it is possible that there is some aspect of DG function 

that is not adequately captured by the Becker model.  Despite these questions, the Becker model 
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is useful in demonstrating that neurogenesis can affect processing when measured at the 

hippocampal level. 

In a later theoretical work, Becker and Wojtowicz extended the interpretation of these 

results in consideration of the observation that new neurons are born in temporal clusters, and that 

this integration of several new neurons for a given environment allows different features of the 

environment to be encoded in parallel and independently [116].  They argue that neurogenesis 

may be important for associations of positive contexts to new memories, a process that is 

impaired in affective conditions such as depression, where neurogenesis is thought to be low. 

Summary of computational models 

The computational models of adult neurogenesis described in this section demonstrate 

several possible roles new neurons may play in artificial neural networks designed to represent 

the hippocampus.  One general feature that is consistent across many models is that new neurons 

allow networks to form new memories easier, often without disrupting existing memories.  The 

Wiskott, Chambers, and Deisseroth models each demonstrate how new neurons, whether by 

replacement or addition, can help the network form new memories, and in some cases delete old 

memories, without dramatically affecting the remaining memory structure.  Similarly, the Becker 

model demonstrates how neurogenesis’s presence at the encoding phase of hippocampal memory 

formation can enable the system to store new information in downstream hippocampal areas. 

While these approaches have provided several insights regarding how new neurons can 

improve memory capacity in neural networks, there are several aspects where these existing 

models fall short in describing the DG neurogenesis process.  The first is their relevance to the 

hippocampal system.  With the exception of Becker’s model of the hippocampus, most of the 

models investigate the role of neurogenesis in more abstract network, and are investigating 

network memory as the principal feature that neurogenesis may optimize.  Given the DG’s 
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proposed role in memory encoding and pattern separation, it is not clear that memory storage by 

the DG is a proper readout for neurogenesis function. 

The second limitation to the existing computational models is their minimal inclusion of 

the biological details of the neurogenesis process itself.  It is increasingly clear that the integration 

of new neurons into the network is considerably more sophisticated than the simple replacement 

or addition processes used in these studies.  The slow time-scale of the neurogenesis process 

suggests that there may be aspects of new neuron maturation that should be considered 

functionally important [74, 77].  In addition, the presence of immature and mature neurons within 

the same network suggests that the DG network is actually far more heterogeneous that typically 

considered [79, 82].  While some of the computational models have considered certain aspects of 

new neuron maturation (e.g., Wiskott’s young neurons are more plastic; the spine dynamics of 

young neurons are different in the Lehman and Butz models), for the most part these models do 

not emphasize the details of the neurogenesis process.   

Overall these studies are modeling the functional significance of replacing or adding new 

neurons into artificial neural networks as opposed to modeling the specific question regarding 

what the gradual incorporation of GC into the DG means to hippocampal function.  One goal of 

the work described in this dissertation is to complement these existing studies on what 

neurogenesis may be doing in the abstract situation by focusing the model directly on the DG and 

its purported pattern separation function and by specifically modeling the specific features of the 

neurogenesis process.   
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CHAPTER III: THEORY BACKGROUND AND REVIEW: REPRINT OF “POTENTIAL ROLE FOR 
ADULT NEUROGENESIS IN THE ENCODING OF TIME IN NEW MEMORIES” – AIMONE, WILES & 
GAGE; 2006 

 

The following is a reprint of the Perspective article “Potential Role for Adult 

Neurogenesis in the Encoding of Time in New Memories” published in Nature Neuroscience in 

June, 2006[1].  This article is theoretical in scope, describing how the details of the biophysical 

maturation of new neurons may affect the presumed pattern separation function of the dentate 

gyrus.  The hypotheses described in this article were developed in parallel to the modeling work 

that is described in later chapters and illustrates the development of the theoretical framework 

used in the interpretation of the subsequent modeling results. 

Abstract 

The dentate gyrus in the hippocampus is one of two brain regions with lifelong 

neurogenesis in mammals.  Despite an increasing amount of information about the characteristics 

of the newborn granule cells, the specific contribution that their robust generation plays in 

memory formation by the hippocampus remains unclear. We describe here a possible role that 

this population of young granule cells may play in the formation of temporal associations in 

memory.  Neurogenesis is a continuous process; the newborn population is only composed of the 

same cells for a short period of time.  As time passes, the young neurons mature or die and others 

are born, gradually changing the identity of this young population.  We discuss the possibility that 

one cognitive impact of this gradually changing population on hippocampal memory formation is 

the formation of the temporal clusters of long-term episodic memories seen in some human 

psychological studies. 

Introduction 
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The past decade has seen a dramatic increase in our understanding of the mechanisms 

involved in, and the extent of, the continuing addition of new neurons in the adult brain[2, 3].  

The persistent lifetime incorporation of new granule cells into the dentate gyrus has been 

demonstrated in rodents, primates and humans[4, 5].  The effects of environment and behavior on 

the dynamics of the neurogenesis process are being revealed[6-8], but animal studies focusing on 

the impact of neurogenesis on behavior have been inconclusive[9].     

In this Perspective, we have taken a somewhat different approach to investigate the 

function of adult neurogenesis.  By applying recent findings about the developmental properties 

of newborn granule cells to what is known about the surrounding circuit, we have developed an 

idea for one role that continuous neurogenesis would have in the function of the dentate gyrus.  

Mounting evidence that immature granule cells are possibly more “excitable,” with a stronger 

propensity for LTP than fully mature neurons, suggests that these cells may have a unique role in 

the processing of the dentate gyrus circuit[10, 11].  By considering the dentate gyrus’s theorized 

role in hippocampal processing, we are able to make specific predictions about how immature 

neurons may be affecting hippocampus-dependent learning and memory formation[12]. 

Notably, new neurons are not integrating into a cell layer thought to be involved in 

memory storage, but rather into a hippocampal structure with the theoretically straightforward 

role of pattern separation.  While there are many hypotheses about how the hippocampal circuit 

functions in memory formation, storage, and retrieval, the idea that the dentate gyrus provides 

distinct codes to the network via the granule cells’ mossy fibers has been one of the least 

controversial[13-15].  This function appears computationally inevitable due to its highly 

divergent input structure (~200,000 entorhinal cortex cells project to >1 million dentate gyrus 

granule cells in rat) and the sparse, powerful mossy fiber projection to the CA3[16, 17].  Sparse 

activity in the dentate gyrus following exposure to spatial environments has been observed 

experimentally with both implanted electrodes[18] and immediate-early gene studies[19], with 
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the latter study suggesting that different sets of granule cells are activated in response to exposure 

to two distinct environments.  

The necessity of sparse, orthogonal (distinct) inputs into the hippocampus has been well 

described computationally[20], and it has been suggested biologically that the powerful dentate 

gyrus projection drives how the CA3 responds to its entorhinal and recurrent inputs[21, 22].  

Behaviorally, there is evidence that dentate gyrus-specific lesions can disrupt the acquisition of 

some spatial memories, despite the remaining direct entorhinal to CA3 input[23, 24].   However, 

neurogenesis knock-downs are most likely not the equivalent of a full dentate gyrus lesion, and 

there is no reason to believe that neurogenesis is required for the dentate gyrus to produce sparse 

codes.  Notably, the dentate gyrus was considered to be the hippocampus’s source of sparse-code 

generation long before the existence of adult neurogenesis was widely recognized[20].  

Consistent with the idea that neurogenesis may not be required for all dentate gyrus functions, 

experiments that repress neurogenesis have generally failed to show the same short-term 

acquisition deficits that dentate gyrus lesions show[25]. 

Effects of Neuron Addition on Dentate Gyrus Coding 

Several recent studies have looked at the computational effects of neurogenesis within the 

biological context of the hippocampus[26, 27].  Mathematically, it is unclear what effect the 

continuous addition of neurons to a sparsification layer would have on the structure of codes 

produced by the dentate gyrus, but it has been suggested that the increased number of possible 

distinct codes would ultimately increase hippocampal memory capacity[27] or reduce 

interference between existing memories[26].  While these functions are plausible implications of 

replacing neurons in this circuit, the increasing evidence suggesting that these new neurons are 

not functionally identical to the existing granule cells during their development has additional 

implications for their function within the dentate gyrus[28](Fig. 1).  Although it is still unknown 
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when or how these new neurons begin to influence CA3 pyramidal neurons, it is known that they 

form mossy fiber connections onto the CA3 early in development [29, 30] and exhibit action 

potentials within 3 weeks [31].  On the other hand, the new neurons’ electrophysiological 

properties appear to remain different from mature granule cells even when they are over a month 

old[32].  Newborn granule cells have lower activation thresholds, higher resting potentials, and 

increased levels of LTP compared to fully developed granule cells [10, 11].  Furthermore, 

immediate early gene studies (an indicator of cellular activity) suggest that these cells are more 

responsive to novel environments (H. Makino, A. Tashiro, and FHG, Soc. Neurosci. Abst. 141.3, 

2005).   

What would this increased activity of new cells mean for the sparsification performed by 

the dentate gyrus?  Immediately, the activity patterns of the dentate gyrus would become 

somewhat less sparse, as there would be several thousand new neurons responding to a wider 

range of inputs.  Presumably, the function of the dentate gyrus is to provide not just sparse codes 

but codes that are orthogonal, or distinct, to the CA3[20].  However, the inclusion of 

neurogenesis might have the opposite effect on the separation of two events.   If the newborn 

neurons are more likely to fire than mature cells, they would provide a disproportionately larger 

part of the dentate gyrus's sparse code.  Two unique and novel events would have the same subset 

of neurons disproportionately represented in their sparse codes.   The production of less sparse 

codes by the newborn neurons would result in more overlap in their outputs in response to 

different events.  As a result, the overall overlap between codes for two distinct events would be 

substantially increased. 

For example, when a novel event occurs, a sparse subset of neurons (referred to here as a 

“pattern”) in the dentate gyrus will respond (Fig. 2a, 1st frame).   These granule cells in turn 

project to a limited set of CA3 pyramidal neurons, which are connected to one another and form a 

new CA3 pattern.  According to conventional hippocampal theory, a different novel event will 
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then induce a different pattern of dentate gyrus granule cells, which in turn will create a new 

pattern in the CA3 (Fig. 2a, 2nd frame).  Now these two events are encoded in highly independent 

patterns by the recurrent network in the CA3 (Fig. 2a, 3rd frame).  This creation of distinct 

patterns within the CA3 has long been the assumed role of the dentate gyrus[20]. 

The inclusion of more responsive new neurons would alter this mechanism.  When the 

dentate gyrus responds to a novel event, young neurons are included in the sparse pattern that is 

generated (Fig. 2b, 1st frame).  However, these same young neurons are likely to be included in 

the coding for the other events as well (Fig. 2b, 2nd frame).  Since these new cells also have 

connections to the CA3, a subset of CA3 pyramidal cells exists that would be included in both 

events.  As a result, the patterns generated within the CA3 are no longer independent; rather, they 

overlap because each event’s pattern includes the pyramidal cells activated by the newborn 

neurons (Fig. 2b, 3rd frame). 

This rough analysis would suggest that neurogenesis is detrimental to the proposed goal 

of separating similar inputs into distinct codes for the hippocampus.  But this would only be the 

case transiently.  It is important to consider that these newborn neurons make up a dynamic, 

constantly changing subset.  The neurons mature out of this group, ultimately becoming less 

active and almost indistinguishable from the other granule cells[31].  New neurons are constantly 

being born, forming unique downstream connections, and passing through periods of higher 

activity compared to more mature cells.  Eventually, those that survive are destined to become 

sparse coders themselves.  Therefore, although newborn neurons may be included in encoding a 

novel event (Fig. 2c, 1st frame), those neurons will mature or die and a different set of newborn 

neurons (with different CA3 projections) will be involved in the encoding of different events that 

occur at later times (Fig. 2c, 2nd frame).  As a result, two events that occur far apart in time will 

not form the same degree of overlap as two events that occur close in time (Fig. 2c, 3rd frame). 
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From these empirical observations and analytical conclusions, we are able to hypothesize 

that there are two functional populations of granule cells.  One is the set of mature granule cells, 

creating highly sparse representations of entorhinal inputs and, in so doing, providing distinct 

codes to the downstream CA3.  The other group is a constantly changing set of newborn neurons 

that respond to entorhinal inputs in a less discriminatory manner, thus adding a component of 

temporal similarity to the codes sent to the CA3.  The CA3, driven by mossy fiber input, may not 

distinguish between these two populations.  The implications of such a hypothetical binding are 

substantial.  It is plausible that these similarities in dentate gyrus outputs would result in a parallel 

subset of recurrently connected pyramidal cells in the CA3, and this subset would in turn be 

included in the CA3 representations of the events that are occurring.  As the subset of immature 

granule cells changes, so would the CA3 subset.  Once such codes exist in the CA3, this effect 

would theoretically propagate to downstream regions – the CA1, subiculum and ultimately back 

to the deep layers of the entorhinal cortex.  In this manner, time-associated patterns could become 

fully integrated into the hippocampal processing based on temporal information provided not by 

sensory information, but by the intrinsic rate of neurogenesis.  

How long would this time-association occur within the sparse codes produced by the 

dentate gyrus?  The maturation of newborn neurons takes approximately one to two months in 

rodents[33], but there are several phases of this maturation process[2].  The excitability of 

newborn neurons most likely decreases from the time spinogenesis begins (~16 days), which is 

around the same time GABA may begin to have an inhibitory influence on the neuron[31].   

While there are indications that newborn neurons remain more responsive than fully mature cells 

for some time[10], the maturation of dendritic arborizations and reduced spine formation by one 

month of age[30] probably make the neurons respond more selectively.  Because the subset of 

newborn neurons is constantly changing, the similarity in coding would be greatest for events 

occurring at about the same time, when each event would activate a similar newborn neuron 
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population (Fig. 2b).  As days and weeks pass, the young neurons would mature or die and others 

would be born, changing the newborn neuron subset, thereby reducing the similarity between the 

two events.  After several weeks, the population of young neurons would be completely different 

(Fig. 2c). 

Structure of Temporal Information in Human Memory 

What we have described here is a biological mechanism by which temporal associations 

can form in the outputs of the dentate gyrus.  While the physical incorporation of such 

information into neural networks is a novel concept biologically, the existence of “time” in our 

memories has been debated for centuries.  The actual manner in which long-term memories are 

associated has been a matter of contention psychologically for over a century and philosophically 

for much longer.  Aristotle’s On Memory and Reminiscence, for example, discusses the 

association of memories by time.  However, while it has long been evident that human memories 

have a temporal component, it is not at all clear how this information is encoded. 

Psychology research over recent decades has led to several distinct hypotheses of how 

time is associated with autobiographical memories[34].  Although these studies suggest that 

conventional dates are most likely not “tagged” onto most memories, there is increasing evidence 

that important events, or temporal landmarks, are either encoded with conventional dates[35] or 

have dates that are predictable, such as birthdays and holidays[36].  Furthermore, there is 

increasing evidence that proximal memories somehow remain associated with one another later in 

life[37, 38](Fig. 3).  Consistent with this finding, it appears that priming with an unrelated but 

proximal dated memory rapidly improves our ability to date less important autobiographical 

memories.  For example, an individual may not be able to provide a date for a memory but may 

be able to use nearby memories with known dates to approximate an answer[36].  
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Most psychological theories that have shown that time is encoded into autobiographical 

memory are based on interviews and diary studies and do not focus on the biological mechanism 

by which this encoding takes place.  Although there is little biological understanding of how 

specific mnemonic associations are formed, neurological observations over the past century have 

indicated where in the brain long-term memories are physically formed and eventually stored in 

humans[39, 40],  with the hippocampus being recognized as one of the critical structures in the 

establishment of long-term memories[41, 42].  It is our hypothesis that an overlap in dentate 

gyrus sparse codes initiates these temporal associations in the hippocampus during early stages of 

memory formation.  This temporal association memory may be permanently coupled with the 

sensory information to contribute to the formation of memories that are temporally tied into the 

individual's autobiography.   

The dentate gyrus is presumably only involved in the initial encoding of information.  

Little is known about how memories are stored long-term and retrieved beyond the observation 

that, at some point, these new memories become independent of the hippocampus[39, 40, 43].  

How information storage occurs remains unclear, though there is evidence that prefrontal cortical 

regions are involved in the consolidation, storage and retrieval of long-term memories, and it is 

likely that combinations of the prefrontal and other cortical regions are involved in the ability to 

recall remote memories[39, 44].  If this temporal information is initially encoded by the 

hippocampus, as we are proposing, its long-term storage and eventual retrieval (as shown in Fig. 

3) would most likely occur in other regions and no longer involve the newborn neurons that 

originally took part in its encoding.    

Future Testing of Temporal Association Memory Hypothesis 

The experimental observation of the process outlined here will most likely not be a trivial 

task.  Temporal associations in memories have been described mostly in humans, but our 
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understanding of human neurogenesis is limited[5].  Human neurogenesis has only been 

definitively studied post-mortem, and there has been no rigorous quantitative analysis of 

neurogenesis levels in young adults.  One possibility is to look to several neurological 

observations as an opportunity to test this hypothesis, as there is a large body of research 

suggesting that neurogenesis levels are altered in numerous animal models of human conditions.  

Neurogenesis has been shown to decrease substantially in animal models of aging, depression, 

and alcoholism[45-47] -  conditions that have all been associated with memory loss in 

humans[48-50].  Although each of these conditions is associated with widespread neurological 

pathologies, with the role of neurogenesis in each being poorly defined, it would still be 

interesting to see if these conditions are also accompanied by a degraded ability to remember 

temporal associations in memories formed during putatively low-neurogenesis periods.  Not all 

neurological conditions exhibit a decrease in hippocampal neurogenesis – for example, some 

seizures and neurodegenerative disorders are accompanied by increased levels of 

neurogenesis[2].  It may also be interesting to monitor whether temporal association memory is 

enhanced in any such conditions that do not lead to general cognitive impairments.   

Likewise, because neurogenesis has been characterized primarily in rats and mice, it 

would be beneficial to find an appropriate behavioral task that tests temporal associations in these 

animals.  Testing rodents on complex memory tasks is difficult for numerous reasons[40], and to 

our knowledge temporal associations between tasks have never been studied at this level.  It may 

be possible to design a behavioral paradigm that relies on temporal associations between two 

hippocampus-dependent tasks in which the role of neurogenesis can be fully ascertained in 

conditions that either amplify or knock down neurogenesis. 

It should also be emphasized that the hypothesis presented here focuses exclusively on 

newborn granule cells at the specific developmental time between their initial involvement in the 

network and full maturation.  Determining when newborn neurons begin to communicate to the 
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CA3 will be interesting, as it appears that their axons reach CA3 when the GABAergic inputs are 

excitatory[30] – though there are indications that GABA-driven cells may not exhibit action 

potentials[31].   Fully characterizing the duration of maturation and whether it is behaviorally 

modulated will help us further understand the impact of developing new neurons.  The long-term 

survival of adult-born granule cells suggests an additional long-term function for these cells, since 

once the excitability of newborn neurons returns to the level of “mature” granule cells, the time 

coding function would presumably be complete.  Therefore, it is likely that the long-term impact 

of these cells is quite different from that during their early period of increased excitability. 

Although this later function remains unclear, we feel that this early property of neurogenesis is a 

possible explanation of one of the long-standing problems facing our understanding of memory – 

how do we remember when things happened? 
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Figures 

 

Figure III-1:  Growth and maturation of adult newborn granule cells.   
At 3 days, newborn cells have few projections and are migrating to their final location.  At 1 
week, early non-oriented dendrites appear, coupled with the onset of somatic GABA inputs (red 
neurons), and by 1 ½ weeks the primary apical dendrite extends to the molecular layer.  2 week-
old neurons have aspiny, developed dendritic arborizations with extensive GABA input.  By 2 ½ 
weeks, spines have begun to appear, indicating the onset of entorhinal input, though not at the 
densities seen in fully mature cells.  By 2 months, neurons have arborizations and 
electrophysiology similar to mature neurons. GABA is excitatory in immature neurons but 
becomes inhibitory around the time the excitatory glutamatergic synapses are established.  The 
bar labeled “excitability” indicates the time period when immature neurons have a distinct 
physiology, such as more depolarized resting potentials, and demonstrate increased levels of LTP.   
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Figure III-2:  Schematic showing how newborn granule cells may encode temporal 
memories in the hippocampus. 
(a) Without neurogenesis, two distinct events would activate separate sparse populations of 
dentate gyrus granule cells (red and blue).  These patterns would result in two highly distinct CA3 
patterns (red and blue).  (b) With neurogenesis, two events that occur at about the same time (for 
example, within a week of each other) would activate the same population of newborn neurons 
(green) in addition to the distinct patterns (red and blue) formed within the mature granule cell 
population.  As a result, the CA3 patterns for the two memories, while different, now partially 
overlap.  (c) Events that are temporally remote would encounter different populations of newborn 
neurons (green and purple).  As a result, the memories formed within the CA3 no longer overlap. 
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Figure III-3:  Cartoon example of how temporal associations may exist in long-term human 
memories.   
The reactivation of an old memory – such as hearing a hit song again years later – can induce the 
recollection of other memories that were formed at the same time.  According to this hypothesis, 
these memories would have been originally encoded in part by the same set of young neurons, 
although this recall would most likely be hippocampus-independent.  Some memories may be 
general to the time of life – a summer internship, for example.  Others may be repeated events 
that also occurred during that time period, such as visiting a relative.  Finally, meaningful 
personal events may be recalled, such as meeting someone important for the first time.   
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CHAPTER IV: METHODOLOGY: COMPUTATIONAL MODELING OF ADULT NEUROGENESIS 

 

Overview and Objectives of Modeling 

This chapter will describe in detail the computational model used to obtain the results 

described in subsequent chapters.  The computational details here were described in the 

Supplemental Text of Aimone et al., 2009 [1].  Computational models can exist at very different 

levels of detail.  As such, the complexity of the model is often dictated by the questions being 

asked and the type of answers desired.  In the design of the computational model described here, 

there were several important project constraints that motivated how to approach the modeling. 

Objective #1: Biological Realism 

The primary constraint in designing the model was to ensure that the model was 

representative of the dentate gyrus and the neurogenesis process in particular.  There are several 

reasons to emphasize this realism.  First, it was important for the model to make biologically 

testable predictions.  Second, it was important that the model design and results of the model 

could be communicated effectively to neuroscientists, as it is that community that would choose 

whether to follow up on the results experimentally.  Finally, a well-designed biologically realistic 

model can be updated in response to changing scientific literature, whereas this may be more 

difficult in models that generalize from the literature. 

It is important to observe that none of these constraints mandate a complex modeling 

approach.  For instance, simple models can produce biologically testable predictions and often 

reveal fundamental features of the system, as well as being easier describe to non-experts.  

Furthermore, because most models are abstractions of a real system, the biological realism of all 

models is at some level limited.  However, the more abstract a model is, the less confident one is 
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that the results emerged from the biology in the model as opposed to the simplifications involved 

in its generation. 

Objective #2: Minimize assumptions about neurogenesis function 

Adult neurogenesis is an unusual process in that there are no widely accepted theories for 

its function.  Scientists have considered that new neurons may have roles in memory formation 

and spatial processing, but there is little consensus for the actual mechanism.  While there have 

been several computational models that were designed to examine specific hypotheses for 

neurogenesis function [2-4], there has not been a substantial movement to validate their 

conclusions biologically.   

The drawback to building a model to test a particular hypothesis is that a bias is built into 

the work.  Because models can exist in a wide variety of forms, it is often not unexpected that the 

hypothesis will be supported.  Such results demonstrate computational sufficiency (i.e., 

neurogenesis can help avoid catastrophic interference), but it is practically impossible to show 

necessity.  Furthermore, the sufficiency argument only applies to the actual model used, not the 

system that has been modeled.  In essence, claiming that a “model designed to do X in fact does 

X” may be interesting from an academic perspective, but it is not necessarily a strong indicator of 

the underlying function. 

While it is important that a priori notions about function not affect model design, it is also 

important to minimize their influence on testing of the model.  To some extent, it is impossible to 

avoid such bias, because there must be some focus of study.  However, it is possible to commit to 

examining the types of functions already studied in the larger system.  For example, with DG 

neurogenesis one can begin a study with pattern separation, which is widely accepted as the 

function of DG.  While such an approach may limit the results of the study to pattern separation 

effects, the broader literature gives reason to believe that such effects may exist. 
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Objective #3: Make model computationally tractable 

A more practical consideration when determining the model scope is that it is important 

to limit the complexity of the model to what can be simulated in a reasonable amount of time and 

for a reasonable cost. Many computational models have been designed to capture all biological 

details, only to be too resource intensive for simulation [5].  While increasing computer power 

partially alleviates this problem, there are still practical limits to what can be simulated and 

analyzed under standard conditions. 

Similarly, there is natural belief that increasing the complexity of a model increases the 

precision of the results.  This is often not the case.  As complexity increases, the number of 

approximations necessary grows.  Even if there is a strong amount of confidence with such 

approximations, when there are many assumptions errors can accumulate quickly.   

Along these lines, the availability of biological data is a limiting factor in choosing the 

level at which to model.  While there is substantial anatomical and structural data available for 

many neurons in the DG that can be incorporated into a sophisticated model [5-8], comparable 

data does not exist for the neurogenesis system.  Since neurogenesis is the feature of interest, it is 

only feasible to model at the level of precision offered by anatomical and physiology studies on 

adult-born neurons [9-17]. 

Level of detail in model 

Given the above goals in the design of this model, the decision was made to model 

neurogenesis in the DG at a relatively sophisticated level, but at a step less detailed than other 

models [6, 18].  Neurons were simulated at broad time steps (25ms), because data at the 

conductance level is not available for immature neurons and the time scale of neurogenesis 

(weeks and months) is many orders of magnitude greater than that used in spiking models. 

Anatomically, the model incorporates many of the neuron populations present in the DG, 

as in the case with other DG models [5, 6].  However, because the networks were simulated over 
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longer time windows, size was a limiting factor in the computational feasibility of the design.  

Therefore, the model used on the order of 2,000 neurons, about 100-fold reduction from the 

mouse DG.  At this size, several neuronal populations (i.e., axo-axonic neurons) were fractionally 

represented, and therefore removed from the model.   

Future work will investigate the scalability of the model, in both architecture size and 

temporal resolution, as computational resources become available.  

General Structure of Model Simulations 

Building the model 

Prior to simulation, the model is initially generated with a population of immature GC 

neurons and full populations of all other cell layers.  All connections that are independent of the 

GC layer were initialized at onset, while all connections involving the GC layer are formed 

during simulation. 

1> Load basic model parameters 

2> Initialize all neuron layers   

3> Initialize non-GC connections  

 
“Growing” the model 

The model was then simulated with a specific input structure for many events to permit 

the original neurons GC layer to mature and further GC neurons to be born (neurogenesis).  This 

is referred to as “growing” the model.   

A full run through the model during training takes the following form: 

1> Load model 

2> Determine how inputs will look in experiment  

3> Advance through time – each full loop through model considered an “event” 
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1. Update all neurons’ physiology properties based on age and connectivity 

2. Calculate inputs for event (or time-vector of inputs)  

3. Compute neuronal activity  

1. Neuronal activity was calculated for a series discrete time “steps” 

4. Synaptic Learning  

5. Mature immature neurons  

6. Add new neurons 

7. Cell death  

4> Export grown model & activity history 

Experiments 

The model was tested within different environments at many different locations.  During 

testing, there was no neurogenesis, maturation, learning or cell death (a “static” model) so there is 

no interaction between different test trials.  A full run through the model during testing takes the 

following form: 

 
1> Load model 

2> Determine how inputs will look in experiment  

3> Simulate model at different locations 

a. Update all neurons’ physiology properties based on age and connectivity  

b. Calculate inputs for event at current position  

c. Compute neuronal activity 

1. Neuronal activity was calculated for a series discrete time “steps” 

4> Export grown model & activity history 

 

Table I shows the general model parameters used in the study. 
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Table IV-1: General Model Parameters 
Parameter Value 
EvtDay 10 events 
EvtWeek 70 events 
tstep 25 ms 
tevent (training) 10 s 
tevent (testing) 500 ms 
Range 40% 

 
 

EvtDay is the number of simulated events in each day 
EvtWeek is the number of simulated events in each week 
tstep is the length of each discrete time-interval for which activity is calculated  
tevent (training) is the length of time that each event is simulated during training 
tevent (testing) is the number of time that each event is simulated during testing 
Range is the septotemporal extent of the model used in these experiments 

 

Simulation details 

Simulations and all subsequent analysis was performed using MATLAB 7.4 running on a 

Linux platform and were performed on a cluster of four Dell Precision 490n machines (2 x Dual 

Core Xeon 5130 2Ghz; 16GB RAM), for a total of 16 independent processors using the 

MATLAB Distributed Computing Engine.   

The model contains involves considerable usage of random variables.  Random numbers 

were either generated from a uniform distribution, using the rand()function in MATLAB, or 

from a Gaussian distribution, using the randn()function in MATLAB, which returns a random 

value from a normal distribution with mean 0 and standard deviation of 1.  To attain a random 

value,η, from a different Gaussian distribution (mean = μ, standard deviation = σ), the following 

equation was used 

( ) (), randn×+= σµσµη   (IV-1) 

The random seed was initialized to a unique value (current date/time) prior to all 

simulations. 
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Statistics 

For each of the simulation runs described below, eight different model networks were 

generated and simulated independently.  While the initialization parameters were the same for 

each network, the environments used and their growth differed across runs, resulting in 

considerably different networks at the point at which they were examined.   

Error bars plotted in the data represent the standard deviation across the different model 

networks.   

Model Architecture and Layout 

Neuron classes and parameters 

The DG model consists of six classes of neurons, referred to as “layers” (Figure IV-1).  

Each layer contains many neurons, with the cell numbers selected in order to reflect the 

underlying biological system (see Chapter II).  Each neuron in the model was defined by a set of 

physical and physiology parameters and has a set of dynamic variables used to calculate activity 

within events.  For non-neurogenic cell layers, many of the physiology parameters were uniform 

across like neurons, but because neurogenesis introduces heterogeneity, the physiology 

parameters were tracked separately for each neuron within the GC layer.  The following sections 

will describe the type of neuron parameters, and then summarize how these parameters were 

determined for each neuron type.    

It is important to observe that including only six layers of neurons is a substantial 

simplification of the actual biological system.  Nearly a dozen different interneuron types have 

been identified in the DG, however the classifications of these classes often overlap.  For 

example, GABAergic neurons in the hilus have been divided into at least somatostatin-positive, 

NPY-positive, “HIPP”, and “HICAP” in varying classification schemes.  Due to the limited 

ability to separate these neuron types, these interneurons are combined into the generic “hilar 
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interneurons” group in the model.  Likewise, there are at least two different populations of basket 

cell interneurons, located at the base of the GCL (PV and CCK positive neurons).  Although these 

two types of basket cells may have a complex network interaction, particularly in response to 

acetylcholine, they are combined into a single neuron layer in the model.  Other cell types (MOPP 

interneurons, axo-axonic interneurons, etc) were left out of the model because they have 

relatively low numbers in the network compared to other neuron types and have not been as 

extensively studied, particularly physiologically.  This is not to say that these neurons are not 

important.  Rather, their functions may be integral to understanding DG function, particularly 

when modulatory neurotransmitters such as ACh are considered.   

Neuron physical parameters 

The following physical parameters were determined for each individual neuron and were 

stable within events, but may be dynamic over longer periods of time due to maturation. 

χx is the relative dorsal-ventral axis position (0≤χx≤1) 

χy is the relative transverse axis position (0≤χy≤1) 

χy is the within layer depth (0≤χz≤1) 

δx is the spatial radius (dorsal-ventral axis) of the dendritic arborization (0≤δx≤0.2) 

δy is the spatial radius (transverse axis) of the dendritic arborization (0 ≤δy≤0.2) 

δz is the dendritic length (0.1≤δz≤3) 

For non-neurogenic neuron layers, the neurons were uniformly distributed along the 

dorsal-ventral axis (χx), and have randomly distributed in the χy and χz axes.  All non-neurogenic 

neurons have fully developed dendritic arborizations: δ=δMAX.   

For the neurogenic layer (the GC layer), when the model is initialized a bulk population 

of immature neurons were provided.  As with other cell layers, the neurons were uniformly 

distributed along the dorsal-ventral axis (χx), and have randomly distributed in the χy and χz axes.  

However, the immature GC neurons have no dendritic arborization: δ=δMIN.  The maturation 
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process used to grow the dendrites is described below.  Subsequent neurons added to the layer 

were provided with random χx and χy locations, though they were biased to the inner GC layer 

(χz<mean(χz)) and also have minimum dendrites.   

The neurogenic layer also tracks several other physical parameters over time: 

Age is the age of the neuron (weeks) 

Rmem is the membrane resistance (G-Ohms; estimated from number of synapses) 

Vol is the approximate volume of the neuron (estimated from size of neuron) 

These parameters were not directly used in calculating activity, but were important for 

calculating maturation-dependent physiology parameters (see below). 

Neuron physiology and activity parameters 

The following physiology parameters are user-defined values for individual neurons in 

the model.  These parameters were static within an event, but may be dynamic over longer 

periods of time due to maturation.  Their use will be described in subsequent sections: 

VThreshold
 is the voltage (relative to rest) above which the neuron fires 

dF/dV is the change in firing rate for each mV above threshold 

Fmax is the maximum firing rate for the neuron 

Fmin is the minimum firing rate for the neuron (neurons that burst) 

E*
GABA is a maturation dependent parameter that represent the neuron’s relative sensitivity 

to GABA, relative to glutamate  

E*
Glutamate  is the parameter that represent the neuron’s relative sensitivity to glutamate and 

is set to be equal to 1. 

τ is the membrane time constant of the neuron 

Agefire is the age at which the immature firing rate is estimated 
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For all non-neurogenic cell layers, these neurons were initialized to values in Table IV-2, 

and they remain constant throughout the study.  For the neurogenic cell layer (GC only), most of 

these parameters were initialized at immature values and slowly approach their mature levels. 

The following variables for individual neurons were dynamic within an event and were 

used to determine the activity of the neurons: 

V is the voltage (relative to rest) of neuron i 

f is the firing of neuron in the previous time step 

PFire is the potential for that neuron to fire in that time step 

κ is a tracking variable that distributes spiking according to the firing rate.   

Summary of neuron layers 

Table IV-2 shows details regarding the numbers of neurons in each cell layer, compared 

to the numbers observed anatomically [5, 19], and also provides the neurogenesis rate used in the 

model for GC. 

Table IV-2: Neuron layer numbers and neurogenesis rates 
 

Cell Layer Cell Number 
(Nlayer) 

Actual Cell 
Number 

(approximate) 

Neurogenesis 
rate (cells/day) 

Death rate 
(kdeath) 

(for inactive 
neurons only)  

lEC 200 100,000 -- -- 
mEC 200 100,000 -- -- 
BC 120 10,000 -- -- 
MC 220 30,000 -- -- 
HI 220 30,000 -- -- 
GC 800 (start) 

~1600 (test) 
1,000,000 10/day 

(~15%/month) 
.0015 

(~1.5%/day) 

 

Table IV-3 shows the physiology parameters utilized in the model for each neuron layer.  

These parameters were based on biological recordings from several sources that have investigated 

the physiological properties of granule cells, mossy cells, and interneurons [6, 20-22].    
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Table IV-3: Neuron activity parameters 
Cell Layer VThreshold 

(mV) 
dF/dV 

(Hz/mV) 
Fmax 
(Hz) 

Fmin 
(Hz) 

E*
GABA τ 

(ms) 
Agefire 

(weeks) 
lEC 25 .008 20 0 -1 20 -- 

mEC 25 .008 20 0 -1 20 -- 
BC 12 .043 230 0 -1 10 -- 
MC 20 .048 50 0 -1 30 -- 
HI 15 .088 69 0 -1 30 -- 

GC – immature 20  30 0 2 ~160 4 
GC – mature 35 .083 72 20 -1 40 -- 

 

Connection types and parameters 

There are 11 different connections in the model.  The DG, as with most hippocampal 

areas, does not have a full connection matrix.  Rather, there is a substantial degree of topological 

specificity that determines neuron connectivity.  Most connections are sparse globally, with any 

single neuron being relatively unlikely to synapse upon a random neuron in its target layer.  

However, locally the probability of synapses can be much higher.   

As was mentioned above in describing the selection of neuron types for inclusion in the 

model, there was a necessary degree of filtering the number of connection types in the model.  

Major connection pathways were included; however minor pathways and those that have only 

been described qualitatively were not included.  For instance, a very recent study (Larimer and 

Strowbridge, 2008) was the first to systematically describe connections between hilar neurons 

(specifically, mossy cells and hilar interneurons).  Although such connections had long been 

suspected, there was at the time no direct evidence to justify their inclusion in the model as 

described here. 

Connection parameters 

Like neuron types, different connections in the model were described by a set of static 

parameters and a set of experience-dependent variables.  Each synapse type has general 
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parameters describing the structure of the connection within the network.  Connections were 

made using a normal distribution around a target zone.   

μsyn (Target)  – The average dorsal-ventral location of the synapse relative to source 

neuron’s soma. 

σsyn (Range) – The spatial variance of the dorsal-ventral synapse location  

ρsyn,local (Density) – The density of synapses at the center of synapse distribution 

ρsyn,ideal (Ideal Density) – The relative density of synapses in the whole network 

wmax – The maximum synaptic strength for the connection 

wmax,immature – The maximum synaptic strength for the connection onto an immature 

neuron 

ksynapse – The rate at which synapses mature (independent from neuron maturation rates) 

kcomp is the rate that synaptic competition winners are determined 

δz,syn – The size of an immature neuron’s dendrite required for that synapse to be formed 

δx,max is the spatial width (dorsal-ventral axis) of the dendritic arborization of a fully 

mature neuron 

δy,max is the spatial width (transverse axis) of the dendritic arborization of a fully mature 

neuron 

ageref  is the reference age (weeks) approximating when non-spiny synapses are first 

present 

kconn is the approximate number of weeks required for connection to fully develop 

(weeks) 

At runtime, the parameters μsyn and σsyn are adjusted for the Range over which the model 

is simulated.  As the model is only simulating a thick slice of the dentate gyrus, rather than the 

whole structure, the parameters must be rescaled accordingly.  The scaling is as follows: 
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Range
syn

syn

0µµ =  (IV.2) 

Range
syn

syn

0σσ =  (IV.3) 

Range is a number between 0 and 1, and set to equal 0.4 in these simulations.   In the case 

of the long-range MC to GC projection , the scaling of μsyn and σsyn is also constrained by the 

additional equalities (-0.50≤μsyn≤0.50) and (σsyn ≤0.30) to ensure that the source neuron  

Variable parameters 

For spiny synapses (those that are capable of learning), the strength of the synapse, wij, 

was determined by both a fixed and a variable component that were specific to each synapse and 

change over time.  These parameters were initialized for each synapse between neurons i and j as 

follows: 

ij
fixed

ij ww ×= 5.0~  (IV.4) 

ij
iable

ij ww ×= 5.0~ var  (IV.5) 

( )ij
lost
ij ww −×= 15.0~  (IV.6) 

where: 

wij is the strength of the connection from neuron i to neuron j’  

 iable
ijwvar~  is the plastic component of existing synaptic strength  

 fixed
ijw~  sets the lower limit of strength below which the synapses may not shrink 

 lost
ijw~  sets the upper limit of strength above which the synapse cannot grow 

 

The network was also run in a local region of the DG, rather than over the full 

longitudinal axis, in order to better view the orthogonalization by the DG.  The pattern separation 
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ability of the DG is thought to be effective even in local areas where most neurons have similar 

connections, and only the subtle differences lead to activity.  To adjust the network for 

wider/narrower ranges of the hippocampus, the ‘range’ parameter was scaled accordingly.  In 

addition, connection strengths were modified to account for the different number of resulting 

synapses (broader network = sparser projections). 

Summary of connection types 

Table IV-4 outlines the parameters used for each connection type in the model.  In some 

cases, as with the lateral perforant path (lEC to GC) and medial perforant path (MC to GC) 

synapses, the relative strengths of synapses has been discussed in previous studies[23].  Other 

synapses have not been as well described physiologically, however other aspects of connectivity 

have been well characterized [5, 19, 22, 24-26].  Figure IV-2 shows the topographical structure of 

the connections of a fully developed model. 
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Table IV-4: Connection parameters 

Connection μ
0
syn 

Target 
σ0

syn 
Range 

ρsyn,local 
Density ρsyn,ideal wmax (mV) wmax- immature    

  

Granule Cell Afferents 
lEC to GC 0 0.14 75% 0.105 1.7 1.7      

mEC to GC 0 0.14 75% 0.105 2.2 2.2      
MC to GC +/-0.3 0.15 50% 0.15 2.8 2.8      
BC to GC 0 0.2 50% 0.1 2.2 -1.0      
HI to GC 0 0.1 100% 0.1 3.0 -3.0      

Basket Cell Afferents 
lEC to BC 0 0.14 75% 0.105 2.4 --      

mEC to BC 0 0.14 75% 0.105 3.2 --      
MC to BC +/-0.3 0.15 50% 0.15 1.7 --      
GC to BC 0 0.05 100% 0.05 32.7 2.2      

Hilar Neuron Afferents 
GC to MC 0 0.05 100% 0.05 5.6 2.2      
GC to HI 0 0.05 100% 0.05 5.6 2.2      

 

 

Table IV-5: Connection parameters (continued) 

Connection ksynapse 
(%/event) kcomp δz,syn 

ageref 
(weeks) 

kconn 
(weeks) 

Granule Cell Afferents 
lEC to GC 0.05 0.1 3 3 2.5 

mEC to GC 0.05 0.1 2.5 3 2.25 
MC to GC 0.05 0.1 2 3 4 
BC to GC -- -- 0 1 4 
HI to GC -- -- 3 2 2.5 

Basket Cell Afferents 
lEC to BC -- -- -- -- -- 

mEC to BC -- -- -- -- -- 
MC to BC -- -- -- -- -- 
GC to BC -- -- 1.5 2 2 

Hilar Neuron Afferents 
GC to MC -- -- 1.5 2 2 
GC to HI -- -- 1.5 2 2 

Synapse Initialization 

Synapses were created according to the following equations.  Note: because the network 

is initialized with only immature granule cells, synapses to and from the GC layer were created 

during the maturation process and not during initialization.  The following equations describe 
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how synapses were chosen at both times.  Figure IV-2 shows the topographical distribution of 

connections to neurons. 

For each neuron in the source layer, the number of synapses that the neuron connects to, 

Nsynapses, is determined by: 

idealsyntargetsynapses NN ,ρ×=  (IV.7) 

where: 

 Ntarget is the number of neurons in the target cell layer 

 ρsyn,ideal is the ideal density of that projection 

Once the number of synapses required for the source neuron was determined, a set of 

non-repeating target (or source) neurons were selected by the following equation which was 

repeated until Nsynapses were found for each neuron 

( )synsyntargetNtar σµη ,×=  (IV.8) 

where: 

η(μsyn,σsyn) represents a random number from a Gaussian distribution of standard 

deviation σsyn around the target zone μsyn.   

Importantly, only one synapse was permitted between two neurons, if a synapse already 

existed with the selected neuron equation (IV.8) was repeated. 

Each cell layer was treated as a “circle” in order to eliminate boundary effects in the 

number of synapses each neuron receives.  That is, if a projection field of a neuron extended 

beyond the edge of the cell layer, the target (or source) neuron was selected from the opposite end 

of the network, as follows: 

targettarget NtartarNtarif −=→> )(  (IV.9) 

tarNtartarif target +=→< )1(  (IV.10) 
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This simplification reduces errors associated with simulating only a “slice” of 

hippocampus, but precludes the ability to make any conclusions about trans-laminar behavior that 

may emerge.  This approximation will not be needed in larger scale models that extend the full 

septotemporal length of the hippocampus.   

The initial synaptic strength, wi,tar, of each synapse from the source neuron i onto its 

target neuron, tar, was calculated by the following equations: 

( )








=−
≤≤=

1
9.025.0,5.01.0

,

,

tari

tari

wspinenon
wspine

if
η

 (IV.11) 

where: 

spine indicates that the synapse type utilizes dendritic spines (lEC to GC, mEC to 

GC, MC to GC) 

non-spine indicates that the synapses is not spiny 

η(0.5, 0.25) represents a random number from a Gaussian distribution of standard 

deviation 0.25 around a mean of 0.5.  This value is constrained by an upper limit 

of 0.9 and a lower limit of 0.1.   

Model Function 

Motivation 

Neurons in neural networks can be simulated at many different degrees of complexity.  

While there is considerable interest in developing highly sophisticated biologically-motivated 

neuron models, such as Hodgkin-Huxley models, this level of detail is accompanied by several 

significant drawbacks.  The primary drawback is simulation time, which can be considerable, 

however a second drawback is the necessity to assign biological values to the many parameters.  

Although these values have been determined experimentally for many systems, the conductances 

of different ion channels have not been thoroughly characterized for all the different neuron 
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classes in the DG, nor have they been studied during the development of new neurons.  There are 

other faster approaches to modeling at millisecond resolution, such as the Izhikevich model [27], 

which approximate the appropriate dynamical equations based on action potential profiles.  The 

Izhikevich approach allows the investigation of dynamics of large neuron populations at high 

resolution, however it also requires detailed biological observations at different stages (in this 

case spike trains). 

The other extreme consists of firing rate models that essentially sum inputs and estimate a 

firing rate for the target cell.  While these models are quick to simulate and can provide 

significant insight about the relationship of different neuron populations, they tend to average out 

the effects of network dynamics by assuming that the system always exists at steady state.   

For this model, it was necessary to determine a level of neuron simulation that was both 

computationally feasible and biologically-derived, yet with sufficient resolution to reveal 

interesting behaviors.  Of particular concern was the time-scale of the experiments.  Most 

conductance based models are typically designed for simulations of systems for at most several 

seconds [6] and look at behaviors on the order of milliseconds.  This is in contrast to 

neurogenesis, which likely requires simulation over behavioral time scales (many seconds) and 

investigating model responses over many “months.”   

Mathematical description 

The model used in this study is referred to as a digitized firing rate model (DFR; Figure 

IV-3).  Its name derives from its mechanism of estimating the ideal firing rate for a neuron given 

its synaptic inputs, and then calculating the number of spikes that would occur within the 

simulation time window.  As a result, the model is a hybrid of a spiking model and a firing rate 

model, thus allowing simulation at intermediate time scales (~25 ms time steps). 

 

There are three steps to the DFR model: 
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1. Sum synaptic inputs to neurons 

 

 

∑

∑

=

=

−

××−×

+××−×+−×=

K

k
kikiGABA

J

j
jijiGlutamatei

t
i

wwtfE

wwtfEtVetV istep

1
max

*
,

1
max

*
,

/

)1(

)1()1()( τ

(IV.12) 

where for each neuron i: 

‘j=1…J’ are Glutamatergic neurons 

‘k=1…K’ are GABAergic neurons.   

τi is the membrane time constant of neuron i 

E*
Glutamate,i and E*

GABA,i are maturation dependent parameters that represent the 

neuron’s sensitivity to glutamate and GABA, respectively.   

fj(t-1)/fk(t-1) is the firing of neuron j/k in the previous time step 

wmax is the maximum strength for that synapse type 

wj,i  (wk,i) is the relative strength of the connection from neuron j(k) to neuron i  

2. Estimate short-term firing rate & spiking 

Whether a neuron fires or not (f(t)) was computed by the following equations: 

( )

( ) ( )
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 (IV.13) 

( ) )1()( −=→∆≤ tPVtVif Firethreshold κ  (IV.14) 

)(round)( FirePtf =  (IV.14) 

)()( tfPt Fire −=κ  (IV.15) 



79 
 

where for each neuron i: 

PFire is the potential for that neuron to fire in that time step 

ΔVThreshold
 is the voltage (relative to rest) above which the neuron fires 

FMax is the maximum firing rate for the neuron 

FMin is the minimum firing rate for the neuron 

κ is a tracking variable that distributes spiking according to the firing rate.   

dF/dV is the change in firing rate for each mV above threshold 

When PFire >0.50, the neuron spikes (f(t)=1; IV.14), and the tracking variable κ is lowered 

(IV.15), thereby reducing the likelihood of a spike in the next timestep.  In the event that 0<PFire 

<0.5, then neuron does not spike (f(t)=0), but the κ of the neuron persists until the next time step, 

making a spike then more probable.   

In the model, the κ term was randomized within a very narrow range (η(0.025,0.05)) at 

the beginning of each event to account for variations in the initial state of the neurons. 

3. Reset neurons and track parameters 

 

mVtVmVtVif 10)()10)(( −=→−<  (IV-16) 

thresholdthreshold VtVVtVif ∆=→∆> )())((  (IV-17) 

Theta oscillations in model 

Activity in the model was assumed to be occurring during periods known to exhibit theta 

rhythm.  Theta is believed to be an oscillating inhibitory influence on the network, though the 

actual mechanism by which it occurs is unclear.  Theta was implemented by including an 8Hz 

oscillating dampening effect on the voltage neurons carry over from one time step to another.  

This has the effect of gradually “resetting” the network every 125ms.   
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))0),125/)((cosine(maximum1()()( 0 mstttVtV stepii ×+−×= θ  (IV-18) 

The phase of theta (θ0) is uniformly random at the beginning of each event. 

Commentary on other types of neuron models 

Ideally, the level that a system is modeled at should be sufficient for capturing the 

dynamics and behavior necessary to address the specific question asked.  All modeling 

approaches have limitations - the DFR model used here does not permit the observation of 

network dynamics at short time scales (within 25 ms), and the investigation of other dynamics 

requiring high temporal resolution, such as network oscillations, is difficult.  However the 

experiments described here focus on the activities of neurons at long time scales (~seconds).  It 

cannot be ruled out that a network behavior missed in this model may have substantial effects at 

larger time scales, but most likely the resolution of the model is sufficient for capturing the long-

term effects of neurogenesis dynamics.   

Neurogenesis and Maturation 

Overview 

The addition of new neurons to the network is the focus of this study, so the model was 

designed to best reflect what is known about the maturation process. 

New neurons were born into the network randomly and in a raw form.  Initially, they 

have no synapses and very unique physiological properties.  Over time, the neurons matured by 

gradually increasing in size, which in turn permitted the gradual addition of new synapses.  A 

schematic of this growth process is shown in Figure IV-4. 

Addition of new neurons 

The model ran at a user-defined neurogenesis rate (New neurons / day).  After each 

activity event, there was a random chance that a new neuron will be added.  The new neuron was 
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simply added to the existing layer in a random location, and the sizes of the connection matrices 

were adjusted accordingly, however with no initial connections.  The physiology of the new cells 

was initialized at levels observed in new neurons (Table IV-3).   

General maturation of immature neurons 

After each activity event, neurons which are less than 10 weeks of age were considered 

immature neurons and part of the maturation process.  Furthermore, there was an activity 

dependent aspect to the maturation, as new neurons can only mature if they were effectively 

being integrated into the network.   

During maturation, the following happens to immature neurons: 

1. Age of neuron increases – the age of each neuron, Age, is measured in weeks and is 

updated after each experienced event: 

 

Week
ii EvtAgeAge 1+=

 (IV.19) 

where i are all neurons that are less than ten weeks old. 

2. Neurons grow in size (activity dependent) – the relative size of granule cells was 

tracked in the model, and used during synapse formation.  One parameter tracked how far into the 

molecular layer the primary dendrite reaches (δz), and the other two parameters determined the 

transverse (δy) and longitudinal breadth (δx) of the dendritic arborization.  

 For all neurons i that were depolarized during the previous event, the size of the neuron’s apical 

dendrite grew at a fractional rate: 

 

Week
iziz Evt

5.1
,, += δδ

 (IV.20) 
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The dendrite’s arborization (x,y spread) only grew after the apical dendrite reached the 

molecular layer (δz,i>2) 

Week
ixix Evt

2.0
,, += δδ

 (IV.21) 

Week
iyiy Evt

2.0
,, += δδ

 (IV.22) 

(in the model, the full z-extent is arbitrarily 3, and the full x/y radii are 0.2: 20% of the 

longitudinal axis) 

Maturation of synaptic connectivity 

3. Addition of synapses (size dependent) – Immature neurons became capable of forming 

synapses at different times in their development.  The probability of forming a new synapse was 

related to both the length (δz) and width (δx) of the dendritic arborization.  The probability that a 

particular type of synapse will be generated onto or from an immature neuron, i, is given by the 

following equations: 

sourceettidealsynidealsyn NN /arg,, ×= ρ  (IV.23) 
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where: 

Ntarget/source is the total number of source / target neurons for the connection 

ρsyn,ideal is the ideal density for that connection 

spine indicates that the post-synaptic structure of the synapse is a spine.  Only 

lEC, mEC and MC inputs onto GC are classified as spiny. 
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non-spine indicates that the synapse does not use normal spines.  All GC outputs 

and HI and BC synapses onto GCs are non-spiny 

δx is the spatial width of the dendritic arborization of neuron i 

δx,max is the spatial width of the dendritic arborization of a fully mature neuron 

Nsyn,i is the current number of synapses for the neuron 

N*
syn,i is the ideal number of synapses for the neuron 

Nsyn,ideal is the ideal number of synapses for a fully mature neuron 

δz is the dendritic length of neuron i 

δz,syn is the minimum dendritic length requirement for each synapses type 

kconn is the rate of synapse formation  

EvtWeek is the number of simulated events in each week 

For instance basket cells, which target the soma, could synapse early in maturation, 

whereas EC inputs, which are at the distal ends of dendrites, required the neuron to be fully 

grown.  For spine-based synapses, the extent of the dendritic arborization determines how many 

synapses are desired. For instance, if a fully mature neuron has 50 synapses, then one with 50% 

of the “volume” will have a target number of 25 synapses.  If the neuron has less than the target 

number of synapses, it may gain a new synapse, the probability of which scales with the drive.  

For example, if the neuron has 20 synapses with an ideal of 25, then it will have a strong 

probability of gaining a new synapse.   

When a new synapse is to be formed, an appropriate neuron in the target/source layer is 

selected.  This selection of the partner neuron is dependent on two factors: the topography of the 

projection is taken into account (would an axon/dendrite of the partner neuron be nearby the new 

neuron?) and that there is not already a connection between those two neurons.  Once selected, a 

new synapse is formed between the two neurons and is initialized at a random strength.  The 

equations used were the same as discussed in the connection setup description (Equations IV.2-
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IV.11).  The development of downstream efferent connections of GCs is shown in Figure IV-5, 

and the development of afferent connections to new GCs is shown in Figure IV-6. 

4. Addition of Competitive Synapses:  For spiny synapses, once a source neuron is 

selected, there is a possibility that the synapse formed will “compete” with an existing 

synapse[28].  The probability that this occurs is related to the relative density of the projection 

and the number of possible competitors.  The set of possible competitors for a synapse from 

projecting neuron j is determined by: 

{ }4.0, ≤−∪≠= iyy χχCompSynS jPossComp  (IV.27) 

where: 

Synj represents all neurons that receive a synapse from neuron j, 

Comp represents those synapses that are already competing (not allowed for 

second competition) 

|χy-χy,i| is the transverse distance (within slice) between the possible competitor  

and the immature neuron i  

Essentially, possible competitors were restricted to those neurons already receiving a 

non-competitive input from the source neuron, and the immature neuron and possible competitor 

must be close enough to have overlapping dendritic arborizations. 

Once the possible list of competitors is chosen, the probability that a competitive synapse 

is formed, Pcomp, is given by: 
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where:  

NSyn,Total is the total number of synapses of that connection type 

NSource is the total number of source neurons for that connection 

NTarget is the total number of target neurons for that connection 

ρsyn,ideal is the ideal density for that connection 

NPossComp is the number of neurons in the set available for competition  (SPossComp) 

Pcomp is then compared to a random number to determine if the new synapse is 

either competitive with an existing synapse or formed de novo. 
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If the synapses is selected to be competitive, a random neuron from SPossComp is selected 

to be its competitor. 

5. Determining Winner of Competitive Synapses - The ultimate ‘winner’ of the 

competition is decided by comparing the relative activities of the two competing neurons, the 

overall activity level of the cell layer, and the strengths of the synapses.  At any given time, only 

neurons whose activity is below a certain activity threshold are susceptible to losing a connection: 

ffthreshf σµ −=    (IV.32) 

where:  

fthresh is the firing rate below which neurons may lose synapses 

μf is the average firing rate for the cell layer 

σf is the standard deviation of the cell layer’s firing rate  

If one neuron is below threshold, and the other is above this threshold, then the 

probability that it loses the synapse is given by: 
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where: 

 w1 is the synaptic weight of the source neuron onto the low-firing neuron 

 kComp is the rate that synaptic competition winners are determined 

 ~f1 is the time-weighted average firing rate of the low-firing neuron  

 ~f2 is the time-weighted average firing rate of the high-firing neuron 

If both neurons are firing below fthresh, then the probability for each to lose is calculated 

by the following equation (same for both neurons): 
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It is possible for both neurons to lose at the same time, though this is rare.  Finally, it is 

also possible that both synapses ‘win’ – in essence the synapse splits into two separate synapses.  

This can only occur if both synapses are very strong: 

Comp
win k

wwPwwif
×
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25.

)5.0),(min( 21
2,1,21  (IV.35) 

where: 

 w1 and w2 are the synaptic weights onto both neurons 

When two synapses cease to be competitive, the ‘winning’ synapses are simply 

reassigned to being non-competitive, whereas the losing synapses are removed from the network 

entirely.  The relationship of synaptic competition to neuron age is shown in Figure IV-7. 

6. Maturation of non-plastic synapses - Non-spiny synapses, including all inhibitory 

synapses and GC outputs, are all initialized with a fixed synaptic weight that does not change 
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over time.  The age of the immature neuron does impose a bias on the synaptic strength that 

gradually disappears as the neuron matures.  The realized strength of non-spiny synapses, w, is 

calculated by: 
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k
kAgeAge
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where:  

bias is the degree that the synapse weight is adjusted due to the neuron’s age 

Age is the age of the GC 

Ageref  is the age of the neuron when it begins to receive connections of that type 

kconn is the number of weeks that the synapse requires for maturation 

wmature is the strength of the fully mature synapse 

wimmature is the strength of the synapse when those synapses first appear on the 

newborn neurons. 

Maturation of physiology parameters 

Prior to any event being processed by the network, the physiology of each individual 

neuron is calculated from its age and physical parameters (i.e., size, # of synapses). 

Mature granule cells have a standard physiology which is shown in Table III.  New 

neurons, however, have distinct properties during their early maturation [13, 16, 17, 29, 30].  The 

properties that have been well described include membrane resistance (Rmem), capacitance (Cmem), 

resting potential (Vrest), firing rate (fmax), and response to GABA.  Some of these electrical 

properties can be attributed in part to the physical dimensions of the neuron – for example, 

capacitance scales with neuron volume and resistance is inversely related to number of synapses.  
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From studies looking at this maturation process, the development of the other key properties to 

the model can be estimated as well for each neuron: 
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where:  

 NConnections is the total number of synapses that the neuron makes 

NConnections,max is the total number of synapses that a fully connected neuron would 

make 
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NSpines is the total number of spiny synapses that the neuron makes (lEC, mEC, 

and MC afferents onto GCs) 

Vol is the estimated volume (arbitrary units).  Proportional to capacitance 

 Rmem is the estimated membrane resistance (GΩ)  

 τ is the estimated membrane time constant (ms) 

 E*
GABA is the relative response to GABA 

ΔVthreshold is the voltage (relative to rest) required for the neuron to reach 

threshold (mV) 

FMax is the maximum firing rate of the neuron 

FMin is the minimum firing rate of the neuron (i.e., any firing is bursting) 

Agefire is the age at which the immature neuron firing rate is estimated  

dF/dV is the change in firing rate for each mV above threshold 

Because the properties such as synapse number and volume are scaled arbitrarily, the 

values are computed in without units and then compared to the corresponding values for mature 

neurons with their known physiology correlates.  The physiological maturation of neurons in the 

model is shown in Figure IV-8. 

Synaptic Plasticity 

The dentate gyrus is the site of significant synaptic plasticity, with substantial amounts of 

LTP having been shown in the perforant path input.  In the model, synapse classes which are 

excitatory and utilize spines experience learning (EC to GC, MC to GC), whereas aspiny neurons 

and GABAergic synapses do not learn.  The plasticity rule used in the model is shown in Figure 

IV-9. 

Synaptic plasticity learning rule 
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A simple spike-timing covariance learning algorithm was used to train the network.  This 

STDP learning was implemented after each event by filtering the input layer spike train with a 

STDP profile, making time before each spike positive and time after each spike negative.  This 

filtered input signal was then compared to spike train of the downstream neuron, and the 

covariance of the two neurons was used to determine the direction of learning. [31] 
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where: 

 fi is the spike train of the source neuron 

 fj is the spike train of the target neuron 

 if̂  is the STDP filtered signal from the source neuron 

 stdp is the spike-timing dependent plasticity filter used 
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ijCov  is the covariance between the filtered source neuron trace and the spike train of the 

target neuron 

 iable
ijwvar~  is the plastic component of existing synaptic strength  

 free
ijw~  represents the potential range into which the synapse can grow 

 possible
ijw~  is the total potential of the synapse for plasticity 

 fixed
ijw~  sets the lower limit of strength below which the synapses may not shrink 

 lost
ijw~  sets the upper limit of strength above which the synapse cannot grow 

As dendritic spines mature in the model, their relative level of plasticity decreases.  This 

is accomplished by transferring a portion of the variable strength to fixed strength, and a portion 

of free strength to lost strength. 
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Plasticity in immature neurons 

Immature neurons have been shown to have a significantly different response to LTP.  In 

particular, the potentiation seen in 4 to 6 week old neurons is considerably higher than that seen 

before and afterwards [9, 32].  This increased ability for learning is not simulated directly in the 

model, rather the increased number of younger, more plastic synapses in immature neurons leads 

to a profile of potential LTP that heavily biases younger neurons. 
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Cell Death 

Cell death in the model is limited to the GC layer.  This cell death is activity dependent – 

if a cell fires substantially less than the average activity in the network, there is a small 

probability that the neuron may die [33].  There is no enforced rate of death, if no cells qualify for 

dying, then no cells will die.  Mature cells can die, but do so rarely.   
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where: 

 μf is the average firing rate of the neuron layer 

 σf is the standard deviation of the firing rates of the neuron layer 

 fthreshis the firing rate threshold below which a neuron may die 

 Age is the age of the neuron (in weeks) 

NSpines is the total number of spiny synapses onto the neuron (lEC, mEC, MC 

afferents onto GC) 

μSpinesis the average number of spiny synapses onto that type of neuron 

σSpinesis the standard deviation of the number of spiny synapses onto that type of 

neuron 

~f is the filtered firing rate of the neuron  

PDie is the probability that the neuron may die 

kdeath is the rate at which neurons susceptible to death may die 
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When a cell dies, its connections are eliminated and the neuron is noted as dead in the 

network, which precludes the possibility of future growth and activity in the network.  The 

relationship between cell death and neuron age in the model is shown in Figure IV-10. 

Entorhinal Cortex Simulation 

The model is controlled during simulations and testing by modifying the two entorhinal 

cortex layers.  Medial entorhinal cortex (mEC) neurons show a distinct “grid cell” behavior 

during spatial exploration [34-36].  The model implemented properties of the mEC’s spatial 

response, including the relationship of grid size to dorsal-ventral position and the fixed 

relationship between different grid cells across environments.  Lateral entorhinal cortext (lEC) 

responses are less well understood, but it is likely that they provide the hippocampus highly 

processed representations of contextual feature and object information – the “what” to the mEC 

grid cells’ “where.”  The lEC input was constant at different spatial locations but varied 

considerably across different contexts.  The different control of the two inputs means that 

switching environments changed the spatial response of the grid cells and activated a different set 

of lEC neurons, whereas changing position within a single environment only affected the mEC 

neurons’ response (Figure IV-11).   

lEC neurons were chosen to depolarize at different levels for each environment. 
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where: 
  VlEC is the depolarization of a lEC neuron for that environment 

  Vthresh is the depolarization required to fire 

df/dV is the increase in firing rate per unit of increased depolarization 
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η(0,1) is a random number selected from a Gaussian distribution with a mean of 

zero and a standard deviation of one.  The absolute value was taken to make this 

variable positive. 

mEC inputs were generated using a previously described method [37].   

Each mEC neuron was assigned three parameters: grid size/frequency (λ), grid orientation 

(θ), and spatial offset (φ).  Grid size varied with the dorsal-ventral location of the neuron (χx), 

while orientation and offset were random.  As with biological observations, the orientation and 

offset varied between environments, but the inter-neuronal relationships (φ 1- φ 2 & θ1-θ2) 

remained constant.  Therefore, the generation of a new environment involved the random 

selection of an environmental orientation (θenv) and offset (φenv). 

The calculation of an mEC neuron’s relative response, G,  for a spatial location (x,y) is 

given by: 
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As with lEC neurons, mEC neurons also have an space-independent environmental bias 

that this spatial gain is added to. 
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Basic Description of Experimental Design 

Input Structure and Experimental Design 

During training and growth, each “event” experienced in the model involves the network 

‘moving’ along a path within that context for twenty seconds.  The mEC neurons fire according 

to the spatial location at each instant, whereas the lEC neurons fire at rates determined by the 

environment’s context. 

During the testing phase, the network is successively placed in static locations within that 

environment for either 500ms.  During this time, mEC and lEC firing rates remain constant.  

These trials completely tile the environment and the responses of the model are recorded for each 

location. 

The training and testing paradigms are shown schematically in Figure IV-12. 

Growth phase of experiment 

After the model is initialized with , the model then “grows” in a series of environments 

(Figure IV-13).  Each environments had a separately calculated lEC activity vector, as well as a 

random mEC activity vector and shifted grid loci (θenv and φ env). 

Each environment is used for a total of 40 days, which allows considerable growth of the 

GC layer as well as experience-dependent maturation to the environments.  Each day consists of 

10 separate training events that consist of the animal moving along a random path for 10 seconds.   



96 
 

Description of initialized networks 

Each of the studies described in the following chapters has the same basic experimental 

design.  The GC layer was initialized with a large number of immature neurons, and these, as well 

as all later newborn neurons, matured and developed connections according to the maturation 

process described above.  Initially the GC layer had twice the number of input EC neurons, 800 

GC compared to 400 EC neurons (including both the mEC and lEC layers), but after full growth 

the GC layer had approximately five times the total number of EC neurons (Figure IV-14).  This 

ratio corresponds to the ratio observed in the developed rat DG (200,000 EC neurons to 1 million 

GC [19]).  New neurons were born at a rate of 10 per day - though not all survived (Figure IV-

10).  At the time of testing, the model GC layer grew at roughly 10% per month, similar to what 

has been estimated in young rats (~6% [38]). 

After initialization, the input layers provided highly structured inputs representing 

different “environments” for the equivalent of 120 days, during which time each network grew by 

generating new neurons and integrating them in the circuit in an activity-dependent manner 

(Figure 1D).  At 120 days, the network was duplicated, with one network continuing to grow with 

neurogenesis (“NG” network) while the other network ceased to have new neurons born (“No 

NG” network).  These two networks were presented with a fourth environment for 40 days before 

experimentation.   

Figure IV-15 shows sample responses from a subset of neurons from each of the input 

layers (mEC and lEC) and the GC layers.   

 

Chapter VII, in part, includes material that was published in the article “Computational 

Influence of Adult Neurogenesis on Memory Encoding,” Aimone, James B; Wiles, Janet; and 

Gage, Fred H.; Neuron, January 2009.  The dissertation author was the primary investigator and 

author of this paper. 
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Figures 

 

Figure IV-1: Network Architecture 
Simplified block di agram of  ne twork a rchitecture. The lateral e ntorhinal c ortex a nd medial 
entorhinal cortex are the controlled input layers, the granule cells are the neurogenic, excitatory 
principal neurons of the DG, the basket cells and hilar cells are inhibitory interneurons, and the 
mossy cells are excitatory interneurons.  Solid lines refer to excitation, dotted lines to inhibition. 
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Figure IV-2: Connection architecture 
Probability that two neurons were connected given as a function of relative distance.  The x-axis 
of each panel refers to the difference between two neuron’s location along septo-temporal axis.  
The y-axis of each panel represents to the ratio of existing synapses to potential synapse sites.  
The increase of connection densities for long distances in some of the panels is due to the ringed 
layer structure - neurons on the edges of the network layers were permitted to project to the 
opposite edge. 
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Figure IV-3: Schematic of Firing Calculation in Model 
How neuron activity was calculated in the model using a digitized firing rate model.  The voltage 
(blue) was calculated for each 25 ms time step.  If the voltage surpasses an activation threshold, 
the firing rate of the neuron was calculated which may lead to a spike at that time.   

 

Figure IV-4: Schematic of Neurogenesis Maturation Process 
Sketch of newborn granule cell (GC) maturation process implemented in model.  Maturation was 
implemented continuously, with new neurons passing through several stages of physiology and 
structural maturation. 
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Figure IV-5: Synapse Maturation – GC Efferents 
Timeline of axonal connectivity development for maturing GCs in model.   

 

 

Figure IV-6: Synapse Maturation – GC Afferents 
Timeline of dendritic connectivity development for maturing GCs in model. 
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Figure IV-7: Synapse Maturation – Excitatory Synapse Competition 
Proportion of synapses of each type that were competitive for different maturation ages. 
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Figure IV-8: Physiological Maturation of Granule Cells in Model 
 (A) Resting potential decreased as volume increases (Equation IV.43).  (B) Relative effect of 
GABA on immature neurons was age dependent (Eqn. IV.42).  (C) Maximum firing rate of 
neuron increased with age.  Neurons must receive glutametergic synapses to fire (Eqn. IV.44).  
(D) Membrane capacitance was proportional to the volume of the neuron.  The size of the neuron 
(and the volume) increased with age and the growth of connections (Eqn. IV.38). (E) Membrane 
resistance decreased as number of connections increases (Eqn. IV.39). (F) The membrane time 
constant τ was a function of resistance, volume, and the mature time constant (Eqn. IV.40).  The 
maximum τ was set at 4 times the time constant of mature neurons. 
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Figure IV-9: Schematic of Synaptic Learning  
For each synapse, the spiking of the pre-synaptic neuron was filtered with a STDP curve and 
compared to the spike-train of the post-synaptic neuron.  The temporal covariance of the pre- and 
post-synaptic neurons was used to determine the amount the synapse learns.   

 

 

 

 

Figure IV-10: Cell Death in Model 
Proportion of newly born GCs that survived to given age in model under standard maturation 
conditions. 
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Figure IV-11: EC input structure 
Sample input neuron activity in different environments (Env).  Medial entorhinal cortex (mEC) 
neurons (top) had a spatial response, lateral EC (lEC) neurons (bottom) fired at equal rates at all 
spatial locations. 

 

 

 

Figure IV-12: Illustration of Environment Structure during Training and Testing   
During training (top), model “explored” random paths within an environment.  During testing 
(bottom), network activity was measured in a series of spatial locations that tile the environment. 
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Figure IV-13: Timeline of Model Initialization and Growth 
For all studies, the model was initialized on day 0 with only immature GCs, and the networks 
were grown, with neurogenesis, until day 120.  Environments were changed every 40 days.  
Neurogenesis was stopped in No NG networks after day 120, and continued in NG networks.  
Testing began on day 160. 

 

 

 

Figure IV-14: Growth of the GC layer and cell death 
Networks were initialized with 800 immature GCs and proceed to grow in multiple environments 
for 120 days.  On day 120, NG and No NG networks were separated, and only the NG network 
continued to grow with neurogenesis.  Shown in green and light blue is the cumulative number of 
dead cells in the model over time. 
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Figure IV-15: Neuron behavior in model 
The spatial responses of several sample neurons from the lEC, mEC, and GC neuron layers in 
response to four familiar environments (1-4) and one novel environment (5).  Each column 
represents the same neuron’s responses in different environments.  Note the spatial properties of 
mEC neurons (top right) and the lack of spatial responses in lEC neurons (which differ in firing 
rates between environments).  Grey = no firing, blue = light firing, red = heavy firing. 
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CHAPTER V: STUDY 1: PATTERN INTEGRATION AND TEMPORAL CODING 

 

Introduction 

The presumed pattern separation function of the DG has been examined biologically at 

several different levels [1, 2].  Behaviorally, rats whose DG has been lesioned with colchicine 

demonstrate an impaired ability to perform certain behavioral tasks in which spatial separation is 

the experimental variable [3].  Mice conditionally lacking the NR1 receptor in the DG (thus 

having no learning in GC neurons) show behavioral deficits in a fear conditioning task that 

requires the mice to distinguish between two different contexts[4].  Physiologically, the in vivo 

activation of DG neurons is consistent with a pattern separation role[5-7], but the nature of this 

separation is unclear [8, 9]. 

The main drawback to both behavioral and physiological studies investigating pattern 

separation is that quantifying separation requires an ability to measure input similarity.  

Computationally, the pattern separation hypothesized for the DG involves the separation of input 

signals from the EC [10].  In most biological experiments, the similarity between different inputs 

to the hippocampus is assumed to be dependent on the extent that two test events or environments 

are different [9].  However, with the exception of studies on mEC grid cells, the degree to which 

EC inputs change based on behavioral inputs is not clear.  This presents a dilemma in 

experimentally assessing the DG’s ability to pattern separate; without knowing the extent to 

which a contextual or behavioral shift changes the network’s input, there is no proper reference to 

assess DG function. 

In contrast to the difficulty of measuring similarity in biological contexts, the 

quantification of pattern separation is straightforward in a computational modeling domain.  A 
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simple but effective quantification of separation is to measure the similarity between network 

inputs and compare them to the similarity of network outputs [10].   

Experimental Procedures 

The experiments performed on the computational model that are described in this and 

subsequent chapters have the same initial design.  Networks were initialized with fully connected 

layers of non-neurogenic neurons and 400 immature neurons.  After initialization, the networks 

were grown in a series of three separate environments for 40 days each.  On day 120, the 

networks were replicated and one network continued to grow in a fourth environment with 

neurogenesis (NG) and the other grew without neurogenesis (No NG).  Both networks retained 

full synaptic plasticity, neuron maturation, and cell death.  After day 160, the behavior of the NG 

and No NG networks was then examined in various tasks.  During the test phase of the model, the 

networks had no plasticity (synaptic plasticity, maturation, neurogenesis, and cell death were 

turned off).   

Pattern separation was tested in the network by generating test environments that spanned 

a large range of input similarities.  These test environments were generated by creating a random 

environment (Env 1) and then calculating the most orthogonal lEC representation possible with 

the same activity distribution for a second environment (Env 2).  This was performed by ranking 

all the lEC neurons’ activities in the environment (most active to least active), and inverting those 

activities for the lEC neurons in the second environment; i.e., the most depolarized neuron in Env 

1 is the least depolarized in Env 2, the 2nd most depolarized in Env 1 is the 2nd least in Env 2 and 

so on until the least depolarized in Env 1 is the most depolarized in Env 2.  After generation of 

these two distinct environments, a series of intermediate environments were also generated.  

These environments were weighted combinations of activities from the original two 

environments.  For example, an environment that is 80% Env 1 vs. 20% Env 2 would have 80% 
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of its lEC neurons responding at Env1 rates and 20% responding at Env 2 rates.  Grid cell 

positions and activities were unchanged between networks, so different mEC activities were 

obtained by varying the spatial location used in testing.   

The networks were then tested in 400 different spatial locations within that environment.  

These locations uniformly tiled the environment, ensuring that many distinct combinations of grid 

cells were activated.  The network was exposed for 500 milliseconds (ms) (20 time steps in the 

model).  The activities of the EC and GC neurons were summed up over the duration of this 

experimental period.  After exposure to each of the test environments, the responses to different 

spatial locations and different environments were compared to one another using the normalized 

dot product (described below) to compute similarity.   The DG similarities from events with 

comparable EC similarity were averaged together to determine the DG output similarity for a 

given input similarity.   

Normalized dot product 

The normalized dot product (NDP) was used in this study to measure pattern separation.  

NDP was chosen over other similarity measures such as correlation and distance for several 

reasons.  First, NDP is a bounded parameter due to its normalization.  This is in contrast to 

distance and covariance, whose scales are determined by the dimensionality and scale of the 

vectors being compared.  Since the model uses layers of different (and continuously changing) 

sizes and different activity levels, a measure such as distance would be difficult to compare across 

layers.  Secondly, unlike correlation, the mean response of each neuron is not subtracted from the 

signal.  Therefore, NDP is independent of zeros.   

NDP, which is also known as cosine similarity, is the dot product of two vectors 

normalized by the mean of each vector (norm) 
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Where:  

xi is the ‘i’th vector of neuron responses  

xj is the ‘j’th vector of neuron responses  

||xi|| is the norm of the ‘i’th (‘j’th) neuron response vector.  The norm corresponds to the 

length of the vector from zero (square root of the sum of the vector values squared) 

 

NDP does have limitations in analyzing network activities.  One limitation arises from its 

normalization.  For instance, consider the following vectors a, b, and c: 

 

a=[0, 0, 0, 0, 0, 1, 0] 

b=[1, 1, 1, 1, 1, 0, 0] 

c=[0, 0, 0, 0, 0, 0, 1] 

 

The NDP between any two of these vectors is 0.  However, by other similarity or distance 

measures, a and c would be substantially closer to each other than to b.  Which measure is most 

appropriate depends on the function and requirements of the structure receiving the information, 

which is unclear in the case of the CA3.  Therefore, while NDP is used exclusively for measuring 

similarity in the following studies, it is important to consider that other similarity measures may 

have different responses.   

Temporal separation experiment 

In the second part of the study, networks continued to grow in between testing days.  For 

ten separate days, the model was grown in a fifth environment (distinct from the test 
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environment).  At the end of each model day, the system was tested in the same environments 

used in the pattern separation study.  As in the previous study, during the testing of the model, 

there was no plasticity of any kind.  Therefore, although the response of the networks to test 

environment was measured multiple times, the environment was always “novel” to the network. 

The responses of the networks to the test environments were collected each day, and then 

the similarities of the networks’ inputs and outputs were tested across different days.  The neuron 

responses in each location/environment combination were compared to the responses of every 

other location/environment combination from different days.   

Responses separated by the same amount were pooled together (e.g., days 2 and 4 were 

two day apart, as were days 5 and 7).  As with the study above, for each number of days apart, the 

output similarities between events with comparable EC similarities were averaged together, 

giving an estimate of separation by the DG network.  This allowed pattern separation to be 

measured for events separated by a prescribed number of days.  By this definition, the study in 

the first experiment concerned pattern separation for event separated by zero days.   

Pattern Separation Results 

After the NG and No NG networks were grown, pattern separation was tested in the 

model by measuring the response of the network to multiple locations in a series of test 

environments.  These environments were designed to test a range of input similarities in both the 

lEC layer, which conveys environmental context information, and the mEC layer, which contains 

information about spatial location.  Based on previous studies (O’Reilly and McClelland, 1994), 

the DG’s outputs were expected to be substantially less similar than the inputs.   

The networks’ responses to these test environments confirmed that both the NG and No 

NG models were capable of strong pattern separation (Figure V-2).  For highly similar EC inputs 

(similar spatial and contextual inputs), the NG and No NG networks performed comparably at 
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pattern separation, both providing outputs that were significantly more distinct than the inputs.  

However, when the EC inputs were dissimilar (Figure V-2, left), the separation of outputs was 

different for NG and No NG networks.  No NG networks were still effective at pattern separation, 

but the degree of separation was reduced because the inputs were already quite distinct.  NG 

networks, on the other hand, were significantly worse at separating inputs than the No NG 

networks (NG vs. No NG; p<0.01; Figure V-2).  This effect in the NG networks actually 

appeared to result in outputs that were more similar than the inputs for very separated EC inputs.  

These effects of input similarity on network separation were independent of which EC layer was 

providing the similarity that was separated by the DG (Figure V-3).  The effect of neurogenesis 

was most pronounced when comparing two events for which the encoding by both EC layers was 

very distinct.  

To determine which neurons in the network were contributing to the effect of NG on 

pattern separation, immature neurons were removed from the analysis of the NG networks’ 

responses.  Without the inclusion of young neurons (<6 weeks old) in the similarity calculation, 

the NG networks were then equally effective at pattern separation (Figure V-4).  This suggests 

that the young neurons in the network were responsible for affecting the population pattern 

separation capability of the DG.  The degree to which the similarity of NG networks differed 

from that of the No NG networks was dependent on the rate of neurogenesis: as would be 

expected, the greater the neurogenesis rate, the larger the effect on pattern separation (Figure V-

5).  

Temporal Separation Results 

As described in Chapter III, the dynamics of the neurogenesis process may have an effect 

on this added similarity contributed by immature neurons during memory encoding.  Because the 

immature neuron population is continuously changing in time, one possibility is that this 
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similarity is temporally dependent: while events close in time may utilize the same immature 

neurons, events encoded farther apart in time will encounter distinct sets of immature neurons, 

increasing the separation between events encoded by the DG. 

To examine whether this proposed effect actually occurs in the model, the networks’ 

responses to the test environments were measured on different days, with the networks continuing 

to grow in a separate environment in between test sessions (Figure V-6).  After the growth phase 

on each day, the network was tested in each of the previous test environments at the 400 distinct 

locations used in the previous study.  The separation of input and output responses was then 

calculated, but now with time between events as a controlled variable.  The NG networks’ ability 

to separate EC inputs was dependent on the time elapsed between events (Figure V-7, Figure V-

8).  If two events occurred within a short time of one another, the pattern separation was similar 

to what was observed in the previous pattern separation study (Figure V-3).  However, if events 

were far apart in time, the separation was considerably stronger.  No NG networks lacked this 

time dependence, with events occurring far apart in time separated similarly to events occurring 

at the same time (Figure V-9). 

The time dependence of the separation of events with a given input similarity was tracked 

as time elapsed between event presentations (Figure V-10).  As observed above, for each level of 

input similarity inspected, events close in time (less than two days) were encoded considerably 

more similarly in NG networks than events occurring farther apart in time (interaction of 

neurogenesis and time; p<0.05).  The No NG networks did not reveal any contribution of time to 

output similarity.  Importantly, this change in pattern separation was not a direct effect of network 

learning, since there was no plasticity during the test phase when the networks were exposed to 

the test environments.   

There was an effect of input similarity on the temporal separation of information.  

Immature neurons did not contribute much similarity to events whose inputs were very similar 
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(80% input similarity, Figure V-10, top), as these events were strongly separated by mature cells 

in the network.  However, over time, the changing of the immature neuron population is able to 

make pattern separation stronger in NG networks as opposed to No NG networks.  This long-term 

contribution to pattern separation by new neurons was reduced when inputs were moderately 

similar (50%, Figure V-10, middle), and separation was essentially the same for NG and No NG 

networks during the encoding of highly dissimilar events separated in time (10%, Figure V-10, 

bottom).  The effect of input similarity for events close in time was reversed, with immature 

neurons having a greater effect on pattern separation for highly dissimilar inputs, and less of an 

effect for highly similar inputs. 

Discussion 

Pattern separation 

These results suggest that new neurons have several significant effects on the pattern 

separation properties of the DG network.  While the DG model is quite effective at pattern 

separation, the presence of immature neurons increases the similarity between information 

outputted by the GC layer.  The effect of young neurons is most prominent when comparing 

responses to information that is already very separated.  The effect of young neurons on pattern 

separation can be referred to as pattern integration (Figure V-11).   

Young neurons appear to be disrupting pattern separation by virtue of their increased 

activity in the network.  The physiological properties of immature neurons may make them more 

responsive, in particular when they are either depolarized by GABA or only weakly inhibited by 

it.  This lower threshold for responsiveness will cause the neurons to fire to a wider range of 

events. This is in contrast to the older GC population, which is highly inhibited by GABA and 

generally kept quiet in the network [1, 7].  Only inputs very specific to their synaptic complement 

will activate mature neurons, making them potent pattern separation devices.  Within a system 
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where most neurons are tightly tuned and only responsive to a small fraction of inputs, the young 

neurons’ indiscriminate responses will have a potent effect on the overall population response 

similarity. 

From a functional point of view, this pattern integration may help to form associations in 

the CA3 during memory formation. This pattern integration effect is different from the pattern 

completion function that has been proposed for downstream hippocampal areas [9, 11, 12].  

Pattern completion produces the same output from related but different inputs, allowing the 

reconstruction of a memory from a partial cue, whereas pattern integration, as described here, 

limits the amount of separation of very distinct inputs.  The CA3 network is believed to have both 

pattern completion and pattern separation functions [11].  The CA3 “completes” input patterns 

when the information is similar to a previously stored memory, but when the input is distinct 

from previous information, it is believed to encode it more distinctly [9, 12].  The presence of a 

DG network upstream that is separating inputs, but ensuring that information is not overly 

separated (via pattern integration), may interact with this CA3 encoding to provide an interesting 

combined effect on memory encoding (Figure V-12). 

Temporal separation 

The pattern integration function contributed by immature neurons may have several 

important roles in cognition and memory formation (see full discussion in Chapter IX).  However, 

a decrease of pattern separation can be accomplished by other, more simpler, mechanisms.  

Importantly, the neurons providing this function are not static.  Over time, the population of 

immature neurons adding similarity to the network is continuously changing.  Events occurring at 

different times (many days apart), would be expected to activate the population of immature 

neurons at those times, providing an additional mechanism of separation between events (Figure 

V-13). 
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The results of this study investigating how pattern separation changes as time passes 

between events confirms that new neurons provide an interesting temporal dynamic to the system.  

While events encoded at the same time see a strong pattern integration effect, the effect 

diminishes substantially as time passes between events.  After three to four days pass between 

events, the effect of neurogenesis is essentially negated.  Beyond that period, the neurogenic DG 

is sometimes actually better at separating events than the non-neurogenic networks.  This 

increased separation is due to the fact that all GC neurons are performing pattern separation: old 

neurons separating by context, young neurons separating by time. 

 

Chapter V, in part, includes material that was published in the article “Computational 

Influence of Adult Neurogenesis on Memory Encoding,” Aimone, James B; Wiles, Janet; and 

Gage, Fred H.; Neuron, January 2009.  The dissertation author was the primary investigator and 

author of this paper. 
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Figures 

 

Figure V-1: Schematic of Pattern Separation Experiment 
After initialization, networks were grown in a series of three environments for 40 days each.  On 
Day 120, NG and No NG networks were generated and grown in a 4th environment for 40 days.  
On Day 160, pattern separation was examined by measuring the networks’ responses to multiple 
spatial locations in different environments. 
 
 
 
 

 

Figure V-2: Pattern Separation in NG and No NG Networks 
Effect of EC similarity (x-axis) on the similarity between DG outputs (y-axis).  In networks with 
neurogenesis (NG, red), very low input similarity resulted in relatively higher DG similarity, an 
effect referred to as pattern integration. Pattern integration did not occur in non-neurogenic 
networks (No NG,blue).  Similarity was measured by the normalized dot product (NDP).  The 
difference between NG and No NG networks was significant (p<0.01).  Error bars represent 
standard deviation in this and all following figures. 
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Figure V-3: Pattern Separation of Different EC Layers 
The decrease in pattern separation with neurogenesis occurred with both spatial (medial EC) and 
contextual (lateral EC) inputs.  NG separation is red (overlayed on top), No NG separation is blue 
(bottom). 
 

 

Figure V-4: Pattern Separation by Mature Neurons in NG Networks 
The full population of GC showed the pattern integration effect at low levels of input similarity 
(red), whereas the mature neurons (>6 weeks of age, green) remained very effective at pattern 
separation.  
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Figure V-5: Effect of Neurogenesis Rate on Pattern Integration 
Pattern integration was measured for different rates of new neurons integrating into the network.   

 

Figure V-6: Schematic of Temporal Separation Study 
The model continued to grow with maturation, neurogenesis and cell death between testing 
sessions, at which time the response of the model was measured at different environments and 
spatial locations. 
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Figure V-7: Effect of Time on Pattern Separation Curves in NG Networks 
Pattern separation got stronger as more time elapses between inputs to the network.  Dashed lines 
represent DG similarity contours for NDPs of 0.1, 0.2, 0.3, 0.4, and 0.5 from bottom to top.  

 

 

Figure V-8: Effect of Time on Pattern Separation in NG Networks 
Pattern separation for inputs varying with both mEC and lEC inputs in NG networks for events 
separated by 1 (red), 3 (purple), and 9 (yellow) days.   
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Figure V-9: Effect of Time on Pattern Separation in No NG Networks 
Pattern separation for inputs varying with both mEC and lEC inputs in No NG networks for 
events separated by 1, 3, and 9 days.  The three profiles are overlapping, and thus not discernable. 
 
 
 

 

Figure V-10: Effect of Time on Separation of Events of Specific Input Separation 
Effect of time between events on pattern separation of inputs that are 80% (top), 50% (middle), 
and 10% (bottom) similar.  Note how DG similarities between events separated in time were 
lower than those tested on the same day.  Both the decrease in similarity over time and the 
interaction between time and NG/No NG groups were significant for each of the input similarity 
groups (p<0.01).   
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Figure V-11: Cartoon Schematic of Pattern Integration Function 
In neurogenic network, events are separated by the DG when the inputs are highly similar, while 
events that are dissimilar gain associations.  In No NG networks (not shown), the distinct EC 
inputs would also be separated. 

 

 

 

Figure V-12: Potential Interaction of Pattern Separation, Integration, and Completion 
The effects of neurogenesis in the DG will likely affect the pattern completion and separation 
functions in the CA3.  When the outputs of the DG (left panel) are used as the inputs to the CA3 
(middle panel), a complex interaction arises (right panel), suggesting that CA3 outputs are never 
completely separated, but only completed for very similar inputs.   

 

 



126 
 

 
 
 
 
 

 

Figure V-13: Cartoon Schematic of Temporal Separation Function 
While distinct events that are close in time can be pattern integrated by a NG network (left), 
events that are distinct in time are separated.  This increase in separation is provided by the 
dynamics of neurogenesis in the network. 
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CHAPTER VI: STUDY 2: LONG-TERM FUNCTION OF NEW NEURONS 

 

Section I: Long-Term Specialization of New Neurons 

The functions for neurogenesis described in Chapter V derive from the possibility that 

immature neurons are more active in the DG network than mature neurons and that this 

heterogeneity is dynamic in that the population of broadly tuned neurons is continuously 

changing.  If the role of neurogenesis only included pattern integration and temporal separation, 

the only requirement for the network would be a population that turns over constantly.  For these 

functions, it would not matter if adult-born neurons survived in the network.  This is not the case 

biologically, however.  While there is considerable cell death in the network, a significant 

fraction of new neurons survive indefinitely [1].   

The survival of new neurons does not appear random; rather there is considerable 

evidence that experience is critical to survival.  Exposure to an enriched environment is one of the 

most potent survival cues [2], with neurons exposed between the first and second weeks after 

differentiation receiving the strongest survival boost [3].  This “critical period” for survival is 

temporally consistent with a survival dependence on NMDA activation via the NR1 receptor [4].  

Coupled with the additional observation that immature neurons have increased synaptic plasticity 

relative to mature neurons [5, 6], it is reasonable to suspect that immature neurons are maturing to 

encode the environments that animals experience during maturation. 

Consistent with this idea, several studies using immediate early genes (IEGs), such as c-

fos and Zif, suggest that immature neurons are more likely to respond to an environment or task 

that it had been previously exposed to while maturing.  After demonstrating that enrichment 

boosts the survival of 1-2 week old neurons, Tashiro and colleagues showed that those neurons 

are more likely to respond to that environment upon re-exposure than to other environments [3].  
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A similar study investigating when new neurons are used in spatial learning suggested that six 

week old neurons preferentially incorporate into those circuits involved in water maze learning 

[7].   

These IEG studies provide good evidence that new neurons are incorporating information 

during their maturation stage for use later in life.  However, IEGs have limitations as a functional 

tool.  First, their relationship to neuronal activity is not fully understood, though their presence is 

also believed to be correlated to activity associated with plasticity, such as LTP [8].  However, 

whether non-plasticity-inducing activity shows IEG activation is unclear, further leaving unclear 

whether a c-fos negative neuron is negative because it did not fire, or because it did not 

experience synaptic plasticity within that particular environment.  This is particularly important in 

the case of the DG, where the relationship between synaptic plasticity and DG function is 

unknown [9, 10].  Second, the translational response of IEGs can really only be investigated in 

one environment at a time.  Finally, it is unclear whether immature neurons are capable of 

expressing IEGs and under what conditions [11].   

This computational model of DG provides an alternative method to view the long-term 

responses of adult-born neurons.  The following section describes an approach to investigate what 

new neurons respond to long after their maturation.  The model permits the observation of all 

neurons in the network in response to multiple different environments at different times, 

providing a complement to IEG studies and suggesting what future biological experimental 

designs should look for.   

Experimental Design for Measuring Long-Term Function 
To investigate the long-term functional role of new neurons in the DG, model networks 

were initialized and grown to day 160 in four separate environments, as described in Chapter V.  

Briefly, networks were initialized with 400 immature GC and proceeded to mature in four 
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separate environments that are defined by distinct lEC response vectors and mEC grid 

arrangements.  At day 120, after the third environment, each network was replicated, with one 

network continuing to grow with neurogenesis (‘NG’ network), and the other without further 

neurogenesis (‘No NG’ network). 

After the networks had developed to day 160, the system was then tested in its response 

to each of the familiar environments (FEs) as well as a novel environment (NE).  The model was 

simulated in 400 separate locations in each environment that uniformly tiled the virtual space.  

Firing rates for mEC neurons at the coordinates for each location was determined by calculating 

grid cell activity for that location.   lEC neurons each fired at the  specific firing rate for that 

environment.  The system remained static in that location for 20 time steps (equivalent to 500 

ms).  The firing rate for each GC in that spatial location was determined by summing its 

cumulative response over that 500 ms time interval.   

After testing in all five locations (four FEs and one NE) at day 160, the networks then 

continued to develop within the NE with full plasticity (the No NG networks still had no 

neurogenesis) until day 200.  At day 200, each network was tested in the four FE’s as well as the 

NE (though this is now actually a familiar environment as well). 

During this testing, all plasticity was halted (no neurogenesis, maturation, cell death, or 

synaptic plasticity).   

Neuron Specialization Results 

Specialization in neurogenic networks 
The response of a typical NG network to the five test environments (four FEs and one 

NE) at day 160 is shown in Figure VI-1.  Neurons are displayed in different columns and are 

ordered by age (the oldest neurons are on the left, the youngest on the right).  The graph shows 

responses to different spatial locations within each environment (rows).   
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There are several notable features of this network’s response.  First, while neurons of all 

ages are activated by each of the environments, there are distinct groups of neurons visible that 

appear to preferentially respond to certain environments.  These apparently specialized neurons 

are clustered by age – neurons of the same approximate age respond greatest to the same FE.  

Second, only the FEs have these specialized groups of neurons, whereas the network did not 

show any specialization to the NE, which had not been experienced prior to this point.  In 

addition, the fourth FE, which was experienced immediately prior to testing, appears to be 

developing a specialized group of neurons, but this group is not as well-formed as those of the 

other FEs.   

Plotting the activity of neurons by date of birth (with responses of neurons of similar ages 

averaged together), it is apparent that the GC that responded to a given FE were those that were 

maturing within that environment (Figure VI-2).  For instance, the neurons with the highest 

response to environment 1 were those that were initialized at the onset of the simulation (shown 

at Day 0) and those neurons born within the first 20 days.  Even though neurons born between 

day 20 and day 40 were born within environment 1, they actually specialized to environment 2.  

This suggests that neurons in the model do not specialize to the environment of birth, but rather 

the environment that they were maturing within while 2-3 weeks old.  While environments 

presented to the network switched at days 40, 80, and 120, the switch in specialization occurs for 

neurons born around days 20, 60, 100, and 140.   

In addition to the populations of specialized neurons visible in Figures VI-1 and VI-2, 

there is a population of immature neurons that shows increased activity in all environments.  This 

group is labeled by an asterisk in each figure.  This population is the same set of broadly tuned 

neurons whose activity causes the effects on pattern separation described in Chapter V.  Their 

response is indicative of the indiscriminant activity of these very young neurons – while their 
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individual firing rates are lower than mature cells firing to their preferred environment, they fire 

generally to everything. 

After the testing phase at day 160, the networks were then grown in the NE that was 

previously tested.  Maturing in this environment meant that the NE went from being novel to 

being familiar.  After 40 days (day 200), the networks were then tested again on the five 

environments.  A sample response is shown in Figure VI-3 and the average response broken 

down by age is shown in Figure VI-4.  By day 200, the response to the fourth FE is now as robust 

as the response to the other FEs.  In addition, the NE is now developing a specialized population 

of neurons.  This is particularly evident in Figure VI-4, where the NE response now shows a 

group of neurons dedicated specifically to that environment.   

Importantly, the neurons that comprised the indiscriminant group at day 160 became 

many of the neurons specialized to the NE at day 200.  This suggests that while immature neurons 

are firing broadly to many inputs, they are also acquiring the information necessary for 

specialization later.   

Specialization in non-neurogenic networks  
Looking at specialization in networks without neurogenesis shows that the development 

of networks is dependent on the presence of new neurons.  When No NG networks were tested at 

Day 160 (40 days after neurogenesis was stopped), there are strong specialized responses to the 

first three FEs, just as in the NG networks (Figure VI-5; Figure VI-6).  Importantly, neurogenesis 

was still active in these networks during the initial presentation of these environments.  Although 

there was no neurogenesis during the networks’ experience of the fourth FE (Env 4), a specialized 

population of neurons still appears to be developing.  Figure VI-6 shows that the neurons 

developing some specialization to environment 4 were those that had been born immediately 

prior to the cessation of neurogenesis, so they were maturing during the presentation of that 

environment. 
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While mature neurons in the No NG network still showed specialization to FEs, there 

was a conspicuous lack of the indiscriminate population of GC seen in the NG networks.  The 

lack of this population is consistent with the inability for No NG networks to pattern integrate.  

This missing population also appeared to be the same set of neurons in the Day 160 NG network 

that became specialized to the NE by Day 200.  Indeed, inspection of the No NG response to the 

FEs and NE at day 200 shows that no set of neurons preferentially specialized to the NE (Figure 

VI-7; Figure VI-8).   

 
Section II: Dimensional Analysis of Long-term Network Responses 

Overview of dimensional analysis of network responses 
The growth of groups of neurons that prefer previously experienced environments 

suggests that the network is increasing the dimensionality of its response in a specialized manner.  

The addition of new neurons into the network is by definition increasing the dimensionality of the 

network (each neuron corresponds to a dimension), but it is unclear from this qualitative 

perspective how independent these dimensions are.  It is possible that new neuron dimensions are 

redundant to other neurons, either just mimicking the response of other neurons or some linear 

combination of them.  The other possibility is that they are independent, responding at least partly 

in a way that is distinct from the other neurons in the GC layer. 

Principal components analysis (PCA) is a type of dimensional analysis tool that can be 

used to quantify the independence of the dimensions represented by new neurons.  PCA is an 

analytical tool that isolates combinations of firing patterns, or principal components (PCs), that 

differentiate between different locations and environments.  For example, a subset of neurons that 

fire in unison when the network is presented with one environment but not to any other 

environments would form a principal component partly explaining the variance in the network’s 

response to different environments.  While the absolute dimensionality of a network is defined by 



134 
 

the number of neurons, overlaps in neuronal responses can reduce the realized dimensionality of 

the response, an effect that is revealed by a decrease in the number of principal components that 

are necessary to explain the network’s behavior. 

PCA was used to determine the extent that network growth in the NE would result in the 

creation of new dimensions that were orthogonal, or independent, from those the network used to 

encode the FEs.  Several steps were necessary to measure this independence (Figure VI-10).  

First, the PCs for the cumulative response of the network in different spatial locations within all 

four FEs were computed.   The power of each PC in describing the network’s output to a given 

location can be determined by computing the dot product of the PC vector and the network’s 

response at that location, a process known as “projection.” The response to each environment (the 

four FEs + the NE) was then projected onto this set of PC vectors.  Figure VI-11 shows an 

example where different locations within each environment are locally dispersed in the space 

described by the first three PCs; in this graph, the different environments occupy separate regimes 

of PC space. 

The network’s response to an environment can be then reconstructed from the projection 

onto the PCs and the PCs themselves.  The projection of the network’s response to the novel 

inputs onto the familiar basis set will be “complete” (i.e., the response that is reconstructed from 

the projection will be identical to the original response) if the PCs contain the necessary 

dimensionality to encode the information.   The alternative is that the projection is incomplete and 

the reconstruction will fail to account for the entire original signal.  The difference between the 

original response and the reconstruction (the “residual” response) is, by definition, orthogonal to 

the response captured by the existing PCs.  By comparing the residual variance to the variance of 

the original response, it is possible to quantify the extent of dimensional independence for that 

response, that is, the percentage of variance explained by dimensions that were not used in other 

environments. 
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Methods for dimensional analysis 
PCA was performed on the aggregate of the responses of the model to 400 locations 

within each of the four environments used during initial growth (X=[A, B, C, D]). The set of 

eigenvectors returned by PCA (VX) represented the orthonormal basis for these responses that 

best explained the variance of the data.   

PCA of the X data matrix is performed by normalizing the response of each neuron to 

that neuron’s average response 

   (VI-1) 

   (VI-2) 

where: 

x1 … xm are the vectors of each neuron’s responses to the familiar environments 

X* is the mean-corrected data matrix 

Once mean corrected, the covariance of the data (CX) is then calculated 

   (VI-3) 

where: 

 n is the number of total number of locations measured 

 X*T is the transpose of X* 

The principal components of the data matrix X are determined by performing eigenvalue 

decomposition on the CX: 

   (VI-4) 

 

 Where:  

 VX is the matrix of eigenvectors of the network’s response.   



136 
 

λ is the vector of eigenvalues of the decomposition, and represent the variance 

associated with each eigenvector 

 

The response of the network during the encoding of a NE was then examined to 

determine whether the novel environment was indeed using the dimensions described by the FEs.  

The model was tested at different spatial locations in an environment that had not been used 

during training.  The resulting output, Y, was then projected onto the basis determined by PCA of 

the trained environments.  This projection, YX, is given by 

 

 ( ) T
XXX VVYY ××=     (VI-5) 

 

where: 

 Y represents the responses of the network to the NE environment 

VX represents the basis of the responses to the FEs environments 

VX
T is the transposed matrix of the earlier basis VX. 

The additional dimensionality present in the response to the novel environment (Y) is 

found by performing PCA on the difference between the original data and the X-compressed data 

(Y-YX).  Since the remainder matrix (Y-YX) is by definition the data that is unaccounted for in the 

compressed data (YX), the basis vectors found by PCA(YX) and PCA(Y-YX) are orthogonal and 

therefore their contributions to explaining the variance can be summed.  The contribution of each 

basis set to the overall data response, ρY, was found by the following: 
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where:  

 λYx is the vector of the eigenvalues from the projection of  Y onto VX  

λY-Yx is the vector of the eigenvalues of the response unexplained by the familiar 

environments.   

Because the eigenvectors associated with these eigenvalues (VY-Yx and VX) are 

orthogonal, the associated eigenvalues (λY-Yx and λYx ) are independent and thus the relative 

contribution of each basis set can be determined.   

Results   
The development of neurons specific to the NE during training in that environment 

suggests that the network may also be creating new components specifically to encode the NE.  

The degree to which the network’s response to the NE utilized unique dimensions was 

determined (as opposed to those dimensions used to encode the FEs) by projecting the response 

to the NE onto the set of components defined by the familiar responses (Figure VI-11-13).  The 

dimensional independence of the network’s response to the NE at day 160 (prior to training in the 

NE) was not found to be significantly different from zero (Figure VI-14).  This result indicates 

that the entire response to the NEs already existed in the response of the network to previous 

environments, suggesting that aspects of new environments were essentially encoded as some 

combination of aspects of previous environments.  FEs, on the other hand, retained some 

dimensions unique from all of the other contexts while sharing other dimensions.   

The dependence of the NE on FEs changed when the network was subsequently grown in 

that context; the longer the network experienced that environment, the higher that environment’s 

dimensional independence became (Figure VI-14).   This effect was greatly attenuated if 

neurogenesis was stopped prior to training in this NE, with the dimensional independence of No 
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NG networks staying around zero.  By day 200, the reconstruction of the NE from just the 

response to the four FEs is no longer accurate, with the residual response indicating that the 

reconstruction using the FE PCs fail to utilize neurons that matured to the NE (marked by an ‘*’) 

while generally overestimating the involvement of neurons dedicated to other environments 

(Figure VI-15).   

In addition to comparing the networks’ responses to one environment to the responses to 

other environments, this analysis can be used to compare the response to earlier encoding.  In this 

analysis, the past response is used to define the basis dimensionality, and the current response is 

compared to that (Figure VI-16).   Growing in the NE increased the dimensionality of the FEs 

with respect to their previous encoding, but to a lesser extent than the increased dimensionality 

used to encode the NE (Figure VI-17).  This suggests that the dimensional structure of the 

encoding of FEs continues to change after the network stops experiencing the environment 

because of neurogenesis.  When the No NG networks experience a novel event, their encoding of 

the NE only creates minimal unique dimensionality, and the FE encoding is essentially restrained 

to the previous dimensionality (Figure VI-18). 

These results suggest that the development of dedicated populations of neurons by 

neurogenesis results in the development of unique dimensions that are specifically created to 

encode new contexts.  It remains to be seen if the generation of new dimensions for encoding is 

critical in the transition from novel to familiar.  

Discussion 

The development of these dedicated populations suggests that the continual growth of the 

DG is not simply the random addition of new dimensions, but rather a process by which young 

GC form dimensions specialized to environmental features experienced during maturation (Figure 

VI-18).  Starting with the large population of GC maturing at birth, the DG appears to be growing 
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into a structure designed to process information in the context of what the network has 

experienced in the past.  In such a network, new events will be encoded using the dimensions 

defined by previous events.  Importantly, because there may be aspects of new events that are 

fundamentally novel (thus not being accounted for by existing GC), neurogenesis allows the DG 

to adapt by adding new dimensions.   

Dimensional analysis revealed that the neurons integrating into the DG are forming 

dimensions that are independent from those dimensions that encode previous memories.  This did 

not necessarily need to be the case – new neurons could integrate into the system into dimensions 

that are redundant to those provided by existing GC.  If a neuron simply represented a more 

efficient combination of several mature neurons, it would not appear as increased dimensionality, 

but rather a combination of existing dimensions.   

 

Chapter VI, in part, includes material that was published in the article “Computational 

Influence of Adult Neurogenesis on Memory Encoding,” Aimone, James B; Wiles, Janet; and 

Gage, Fred H.; Neuron, January 2009.  The dissertation author was the primary investigator and 

author of this paper. 
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Figures 

 

Figure VI-1: Schematic for Long-term Specialization Study 
Networks were grown in multiple different environments, changing every 40 days.  The response 
of each network to the familiar environments (Envs 1-4; FEs) and the novel environment (Env 5; 
NE) was tested on Days 160 and 200. 
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Figure VI-2: Response of an NG network to familiar environments on day 160. 
Response shown for all GC neurons to 400 spatial locations in four familiar environments (FEs, 
Envs. 1-4) and on novel environment (NE, Env. 5).  Gray:>2Hz; green:>4Hz; blue:>6Hz; firing at 
2Hz and below not shown.  Neurons are sorted on x-axis by age (oldest on left, youngest on 
right). 

 

Figure VI-3: Response of NG network neurons by age on day 160. 
Average firing rate of GCs born at different times in response to the four FEs and the NE in the 
NG network on day 160. The asterisk indicates the group of highly active neurons that responded 
indiscriminately to all environments. 
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Figure VI-4: Response of an NG network to familiar environments on day 200. 
Response shown for all GC neurons to 400 spatial locations in four familiar environments (FEs, 
Envs. 1-4) and on novel environment (NE, Env. 5).  Gray:>2Hz; green:>4Hz; blue:>6Hz; firing at 
2Hz and below not shown.  Neurons are sorted on x-axis by age (oldest on left, youngest on 
right). 

 

Figure VI-3: Response of NG network neurons by age on day 200. 
Average firing rate of GCs born at different times in response to the four FEs and the NE in the 
NG network on day 200. The asterisk indicates the group of highly active neurons that responded 
indiscriminately to all environments. 
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Figure VI-6: Response of a No NG network to familiar environments on day 160. 
Response shown for all GC neurons to 400 spatial locations in four familiar environments (FEs, 
Envs. 1-4) and on novel environment (NE, Env. 5).  Gray:>2Hz; green:>4Hz; blue:>6Hz; firing at 
2Hz and below not shown.  Neurons are sorted on x-axis by age (oldest on left, youngest on 
right). 

 

Figure VI-7: Response of No NG network neurons by age on day 160. 
Average firing rate of GCs born at different times in response to the four FEs and the NE in the 
No NG network on day 160.  
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Figure VI-8: Response of a No NG network to familiar environments on day 200. 
Response shown for all GC neurons to 400 spatial locations in four familiar environments (FEs, 
Envs. 1-4) and on once novel, now familiar environment (NE, Env. 5).  Gray:>2Hz; green:>4Hz; 
blue:>6Hz; firing at 2Hz and below not shown.  Neurons are sorted on x-axis by age (oldest on 
left, youngest on right). 

 

Figure VI-9: Response of No NG network neurons by age on day 200. 
Average firing rate of GCs born at different times in response to the four FEs and the NE in the 
No NG network on day 200.  
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Figure VI-10: Schematic of dimensional analysis experiment 
After network growth, responses to the four FEs were combined analyzed with principal 
components analysis (PCA).  PCA provided a set of orthogonal dimensions (“basis set”) that 
represent combinations of network neurons used in the encoding of information about the 
environments.  The response to the NE, which was not included in the original PCA analysis, was 
projected into the FE basis set.  This projection may not be complete, as a “residual” component 
of the NE response that is not encoded by any of the basis dimensions may remain.  The size of 
this residual response was compared over time as the network grew in the NE. 
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Figure VI-11: Sample of projection of responses onto PCA bases 

 

Figure VI-12: Sample of projection of responses onto PCA bases 
Rotation of image shown in Figure VI-11 

 

Figure VI-13: Sample of projection of responses onto PCA bases 
Rotation of image shown in Figure VI-12 
 



147 
 

  

 

Figure VI-14: Extent of dimensional independence of NE from basis set determined by FE 
response 
The network’s response to the NE was compressed through the basis set calculated from the FE 
responses from the same day.  The presence of neurogenesis enabled the networks to use 
dimensions for the encoding the NE that were unique from those dimensions used to encode the 
previously experienced FEs. 
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Figure VI-15: Reconstruction and residual of NE response using FE basis dimensions 
The response of the network to the NE (top panel) was projected into the basis set determined by 
the response to the FE environments.  The reconstruction of the NE response (middle panel) 
captured much of the structure of the original NE response, but appeared to over-estimate the 
response of many neurons in the system.  The residual response (bottom panel) was determined 
by subtracting the reconstruction from the actual network response.  The residual reveals that 
most of the error was in assigning function to the younger neurons in the network (far right).   
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Figure VI-16: Extent of dimensional independence of NE from FE basis set determined on 
day 160 
The network’s response to the NE was compressed through the basis set calculated from the FE 
responses on day 160.  The day 160 basis did not include neurons born after that time, causing the 
dimensional independence to grow considerably as new neurons are added to the system.   
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Figure VI-16: Extent of dimensional independence of NE and FEs from FE basis set 
determined on day 160 
The network’s response to all the environments, including the FEs, continued to become more 
dimensionally independent from the basis set determined on day 160, even for the FEs which 
were not experienced by the network after the basis set was calculated.   

 

Figure VI-16: Extent of dimensional independence of NE and FEs from FE basis set 
determined on day 160 without neurogenesis 
The network’s response to all the environments only gained a limited amount of dimensional 
independence from the basis set determined on day 160 without the presence of new neurons.      



151 
 

References 
 

1. Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M., and Gage, F.H., Early 
determination and long-term persistence of adult-generated new neurons in the 
hippocampus of mice. Development, 2003. 130(2): p. 391-9. 

 
2. Kempermann, G., Kuhn, H.G., and Gage, F.H., More hippocampal neurons in adult mice 

living in an enriched environment. Nature, 1997. 386(6624): p. 493-5. 
 
3. Tashiro, A., Makino, H., and Gage, F.H., Experience-specific functional modification of 

the dentate gyrus through adult neurogenesis: a critical period during an immature 
stage. J Neurosci, 2007. 27(12): p. 3252-9. 

 
4. Tashiro, A., Sandler, V.M., Toni, N., Zhao, C., and Gage, F.H., NMDA-receptor-

mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 2006. 
442(7105): p. 929-33. 

 
5. Ge, S., Yang, C.H., Hsu, K.S., Ming, G.L., and Song, H., A critical period for enhanced 

synaptic plasticity in newly generated neurons of the adult brain. Neuron, 2007. 54(4): p. 
559-66. 

 
6. Schmidt-Hieber, C., Jonas, P., and Bischofberger, J., Enhanced synaptic plasticity in 

newly generated granule cells of the adult hippocampus. Nature, 2004. 429(6988): p. 
184-7. 

 
7. Kee, N., Teixeira, C.M., Wang, A.H., and Frankland, P.W., Preferential incorporation of 

adult-generated granule cells into spatial memory networks in the dentate gyrus. Nature 
Neuroscience, 2007. 10(3): p. 355-362. 

 
8. Bramham, C.R., Worley, P.F., Moore, M.J., and Guzowski, J.F., The immediate early 

gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci, 2008. 28(46): p. 
11760-7. 

 
9. Niewoehner, B., Single, F.N., Hvalby, O., Jensen, V., Meyer zum Alten Borgloh, S., 

Seeburg, P.H., Rawlins, J.N., Sprengel, R., and Bannerman, D.M., Impaired spatial 
working memory but spared spatial reference memory following functional loss of NMDA 
receptors in the dentate gyrus. Eur J Neurosci, 2007. 25(3): p. 837-46. 

 
10. McHugh, T.J., Jones, M.W., Quinn, J.J., Balthasar, N., Coppari, R., Elmquist, J.K., 

Lowell, B.B., Fanselow, M.S., Wilson, M.A., and Tonegawa, S., Dentate gyrus NMDA 
receptors mediate rapid pattern separation in the hippocampal network. Science, 2007. 
317(5834): p. 94-9. 

 
11. Jessberger, S. and Kempermann, G., Adult-born hippocampal neurons mature into 

activity-dependent responsiveness. Eur J Neurosci, 2003. 18(10): p. 2707-12. 
 
 

 
  



152 
 

CHAPTER VII:  STUDY 3: EFFECT OF NEUROGENESIS MODULATION ON DG FUNCTION 

 

Introduction 

One of the most distinguishing features of adult neurogenesis is its extensive regulation 

by several different intrinsic and extrinsic factors.  The proliferation and survival of new neurons 

are modulated by many different factors.  This regulation can either be positive or negative, 

leading to either more or fewer new neurons in the system.  Many of the factors that have been 

shown to induce changes in neurogenesis rate or survival of new neurons have also been shown to 

have effects on cognition.  Such strong correlations between neurogenesis and cognition often 

suggest a causal role, but direct evidence linking the regulation of new neurons and learning has 

been lacking. 

Two of the most studied regulators of neurogenesis function are aging and stress.  Both of 

these processes decrease the number of granule cell precursor cells that are born in the DG, 

thereby lowering the rate of the incorporation of new neurons into the network.  The relationship 

between an animal’s age and its neurogenesis levels has been investigated since the work by 

Altman and Bayer [1], who showed that the levels of postnatal neurogenesis in the DG continued 

to decrease, but did disappear entirely, in the weeks after an animal’s birth.  Kuhn and colleagues 

systematically studied the effect of aging on neurogenesis specifically in older rats[2], showing 

that the proliferation rates were considerably lower in aged animals.  Comparable observations 

have been made in mice as well [3].  These studies on aging have reliably shown that 

neurogenesis decreases considerably by the time mice and rats are “middle aged” (roughly 6 

months old), and after a year old (an age where rodents are typically considered aged) 

neurogenesis almost disappears in the absence of other factors to offset the decrease.  This 

decrease in neurogenesis is correlated with deficits in learning tasks - behavioral studies have 
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demonstrated that age-related decreases in cognitive abilities are partially correlated with the 

magnitude of the age-related decrease of neurogenesis in those animals [4]. 

Many factors likely affect this age-dependent reduction of new neurons[5].  Decreased 

proliferation is partially alleviated by removal of the adrenal glands, suggesting that increased 

stress with aging plays a role [6].  Changes in the local neurogenic niche and stem cell potency 

also have been implicated [7].  The effects of aging can be mitigated by other factors, including 

enrichment and running [3].  While aging is an irreversible process that all animals experience, 

stress is an experience dependent process that can come and go.   

Along with aging, stress was one of the earliest factors shown to dramatically affect 

neurogenesis levels.  During stressful experiences, regions such as the pre-frontal cortex and 

amygdala will activate the hypothalamic-pituitary-adrenal (HPA) system (for review of the stress 

response, see [8]).  This activation of the HPA axis will lead to the release of glucocorticoids 

from the adrenal glands into the bloodstream. Glucocorticoids have effects on many systems 

throughout the body, including significant effects on many neural systems.  The hippocampus is 

both tightly coupled to the HPA axis and greatly affected by the stress response, and this 

relationship is affected during chronic stress states, including depression [8, 9]. 

The effects of stress on neurogenesis are profound, with strong decreases observed after 

many different stress paradigms in many different species (reviewed in [10]).  Both acute and 

chronic stress decrease the birth and initial survival of adult-born neurons by marked levels [10-

12].  Importantly, once the stressors are removed, the animal’s neurogenesis rates can be 

recovered, either naturally [11] or with the use of antidepressants [13].  This regulation of new 

neurons by stress is believed to be a key component of the relationship between depression, 

neurogenesis, and antidepressant treatment. 

In addition to their effects on neurogenesis, aging and stress have both been associated 

with various cognitive impairments, including memory deficits.  While both of these are complex 
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conditions likely affecting many neural systems, the model provides an opportunity to determine 

how their effect on neurogenesis would affect the function of the DG.  In this study, simple 

decreases in neurogenesis rates were used to investigate what the general effects of changing 

neurogenesis rates could be on memory formation.   

Experimental Procedures 

Aging and stress were both simulated by decreasing the rate of new neurons “born” into 

the network.  In the aging experiment, after growing with a constant neurogenesis rate to day 120, 

the neurogenesis rate was decreased by 5% every 10 days:   

 
95.0)10()( ×−= dNGdNG    (VII.8) 

 
where d is the current day of the simulation.   

The control network maintained a constant neurogenesis rate throughout the experiment.  

As with previous studies, environments were changed every 40 days until the networks were 520 

days old, for a total of 13 trained environments.  During growth, pattern separation was tested 

every 40 days, temporal separation was measured at the onset of aging (day 120) and at the end of 

growth (day 520), and network specialization was measured at day 520. 

Stress was simulated by an acute 75% drop in the rate of neurogenesis on day 120 (2.5 

neurons/day).  This low rate was maintained in the network for 60 days (until day 180), where the 

rate was returned to baseline (10 neurons/day).  The rate of neurogenesis (NG) was measured in 

new neurons/day according to the following equations: 
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where d is the day of the simulation. 
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As with the aging study, environments changed every 40 days, and the network continued 

growing until day 280.  Pattern separation was measured every 5 days, and temporal separation 

was measured on day 120 (stress onset), day 180 (stress end), and day 280 (experiment end).  

Network specialization was measured at day 280.  All results were compared to a network 

growing up to day 280 at a constant rate of neurogenesis. 

Pattern separation was measured in these networks in the same manner as is described in 

Chapter V.  Briefly, all plasticity in the network was turned off (no synaptic learning, 

neurogenesis, maturation, or cell death).  The response of the networks was measured at multiple 

locations tiling a series of test environments.  These environments were designed to span a range 

of lEC and mEC similarities.  The normalized dot product (NDP) similarity was calculated 

between EC and GC responses from different locations/environments.  This permitted a 

comparison of input (EC) and output (GC) similarities.  For each network, the mean of all 

responses with comparable EC similarities represented the separation by the DG for that level of 

input similarity.  In addition, unlike the experiments described above, the environment used for 

testing pattern separation was not entirely random, but chosen from a set of random environments 

to ensure that the environment used for each network was minimally similar to the previously 

experienced familiar environments in order to reduce bias due to the effects of specific network 

learning.  Ten potential test environments were selected, and the one with the least overlap 

(measured by NDP – eq. VII.7) with the training environments was chosen to use as the first test 

environment.  The vector representing this environment was then shuffled to create the second 

environment for the pattern separation experiment.   

Temporal separation was determined by a procedure similar to pattern separation, but the 

networks were grown in between measuring the responses to the test environments (a test-grow-

re-test procedure, see Chapter V).  The similarity of the networks’ responses to different events 
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occurring at different times was then measured.  The results were then computed by comparing 

the separation ability of the networks for different intervals of time between events. 

Neuron specialization was observed according to the method described in Chapter VI.   

After growth in multiple environments, the responses of the network were measured to multiple 

locations tiling the previously experienced familiar environments (FEs).  Total activity of each 

neuron in these environments after a 500ms exposure was then calculated.  Finally, the 

cumulative responses for each neuron were plotted at each location for each environment.   

Effect of aging on neurogenesis function 

The effect of aging on neurogenesis function was measured by testing the three network 

behaviors described in Chapters V and VI.  At the time of testing, the aged networks were 

considerably larger than the networks tested in previous studies, even in the networks with 

decreasing neurogenesis rates (Figure VII-1).   

The pattern separation function of the model DG was the first behavior examined in the 

aged networks.  Since neurogenesis rates were considerably lower by the end of aged growth, the 

expectation was that the aged networks would lack the pattern integration component seen in 

younger networks with neurogenesis.  When measured at different times during the long-term 

growth of these networks, the networks with constant neurogenesis integrate highly dissimilar 

inputs at greater levels than networks with a gradually decreasing neurogenesis rate (Figure VII-

3).  Importantly, however, even the “aged” networks are pattern integrating rather than pattern 

separating, in spite of their almost nonexistent neurogenesis rates at this point.   

This maintenance of pattern integration despite losing the population of immature 

neurons after aging is evident from looking at the full pattern separation curves of older networks.  

If neurogenesis rates are not decreased, pattern separation decreases as the network grows (Figure 

VII-4).  Although not specifically investigated, this reduction of pattern separation is likely due to 
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the size of the GC layer in the network, whose larger size likely has implications in activating the 

feedback layers.  The gradual decrease of neurogenesis used in the aging simulation actually 

maintains the younger pattern separation ability of the network (Figure VII-5), suggesting that 

one possible effect of the aging-induced decrease in neurogenesis may be the maintenance of 

pattern separation ability. 

Even though pattern integration was not eliminated in the aged networks, investigation of 

the temporal separation ability of the network revealed that without neurogenesis, the amount of 

time elapsed between memories did affect the pattern integration (Figure VII-6).  Rather, it 

appears that the pattern integration occurring in aged networks is not temporally dependent, but 

simply a function of the global network state.  Networks without a decrease in neurogenesis rate 

maintained their ability to temporally separate information (Figure VII-7), consistent with their 

retention of a dynamic neurogenesis process. 

Finally, the response of the network to each of the environments experienced during its 

maturation was measured.  Without “aging,” the growth in the multiple successive environments 

did not show a marked change in the network’s response to familiar environments (FEs) (Figure 

VII-8).  In contrast, the continuous decline in neurogenesis rates in the aged networks results in a 

dramatic reduction in the size of the specialized neuron population for FEs experienced later 

during growth (Figure VII-9). 

Effect of stress on neurogenesis function 

In contrast to the slow decline in neurogenesis rates used in the aging study, stress was 

modeled by an acute decrease in neurogenesis rate (75% reduction), a chronic state of low 

neurogenesis for 60 days, followed by an acute recovery.  The behavior of this “stressed” network 

was compared to networks with constant neurogenesis over that time period.   
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Unlike the aging study, where the aging network initially had similar neurogenesis levels 

to the control network, the acute drop in neurogenesis rates in the stressed network led to a 

substantial decrease in pattern integration (Figure VII-12).  This drop did not occur until about 

two weeks after the neurogenesis rate was affected, consistent with the role of 2-3 week old 

neurons in the pattern integration function.  Pattern integration did not return until about two 

weeks after recovery of neurogenesis levels, again suggesting that a time delay is necessary for 

the effects of strong changes in neurogenesis rate to be seen behaviorally.  Measuring the full 

pattern separation curves (Figure VII-13) revealed that during the stress period the network had 

stronger pattern separation overall.  In addition, the stress may have helped stave off some of the 

global lowering of pattern separation seen in the control network with continuous neurogenesis 

(Figure VII-14). 

As with the aging study, the temporal separation ability of the network was mostly 

eliminated during the stressed period (Figure VII-15; VII-16).  Events occurring proximal in time 

at day 180, which was at the end of the stress period, were not separated.  Recovery of the pattern 

integration ability in a once-stressed network returns the temporal separation function as well.   

As suggested by Chapter VI, growth in successive environments with constant 

neurogenesis continues to form populations of GCs that are specialized to the FEs.  However, just 

as the aging-induced decrease in neurogenesis led to FEs not being encoded towards the end of 

the aging process, stress led to a sharp decline in the development of specialized GCs to FEs that 

were experienced during times of stress (Figure VII-17).  In particular, FE-5, which would have 

been experienced between days 160 and 200, failed to develop many specialized neurons.  This 

finding is consistent with the greatly reduced levels of proliferation between days 120 and 180.  

FE-6, which the system was exposed to beginning on day 200, adequately developed a 

specialized set, demonstrating that the recovery of neurogenesis after stress leads to the future 
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recovery of DG specialization.  As with the aging control network, the control network for the 

stress condition showed full environmental specialization (Figure VII-18). 

Discussion 

The effects of aging and stress on the previously described neurogenesis functions in the 

model indicate that long-term perturbations of neurogenesis can have significant ramifications on 

memory formation in the model.  The reduction of neurogenesis in both cases affects the pattern 

integration and temporal separation functions described in the previous chapters.  Interestingly, 

the model’s results suggest that without an aging-related drop in neurogenesis, DG pattern 

separation becomes less effective, suggesting a possible purpose for decreasing neurogenesis 

rates.  However, while the lack of neurogenesis keeps pattern separation effective in the aged DG, 

the temporal relationships between events encoded by the DG are lost, suggesting that memories 

dependent on temporal information would be most at risk under these conditions. 

Stress’s effects on neurogenesis function are more pronounced.  The acute drop in 

neurogenesis rate essentially eliminates the pattern integration ability of the model, albeit with a 

brief time-delay after the onset of stress. Recovery of neurogenesis is sufficient to restore the 

pattern integration ability of the network.  As with aging, temporal separation is greatly affected 

by this drop in neurogenesis, with temporal relationships being eliminated for events occurring 

during the stress period.  Like the pattern integration effect, recovery of neurogenesis is sufficient 

to restore the temporal coding effect. 

The observation that the long-term specialization of the DG is significantly different 

when neurogenesis is either absent or weakened due to stress or aging emphasizes an important 

point about the neurogenesis process.  One of the concerns sometimes raised regarding assigning 

a significant role for neurogenesis in hippocampal function is that the number of young neurons 

at any given time is only a fraction of the much larger DG and especially hippocampal neuron 
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populations.  Over the course of months, the immature neurons that are lost due to chronic stress 

or aging begin to represent a substantial number, and the result is that extended periods of the 

model’s past fail to be encoded into the DG network.  Further work is required to ascertain what 

the role of such network specialization may be, but if the purpose of these dedicated populations 

of neurons is to optimize encoding of those environments at later times, the network will be at a 

significant disadvantage if neurogenesis is lacking.   

Both aging and stress have been associated with memory impairments [4, 9, 14].  It is 

difficult to directly attribute these psychological observations to neurogenesis, especially since 

both conditions are known to affect many brain regions.  Nevertheless, loss of neurogenesis does 

provide a possible mechanism for these cognitive conditions, and importantly may be a potential 

target for therapies to treat these symptoms.  While the baseline drop in neurogenesis due to aging 

is irreversible, positive neurogenesis behaviors, such as running and enrichment, may be 

strategies for mitigating aging’s effects on neurogenesis-dependent memory.  Likewise, in 

addition to the elimination of stressors, antidepressants may play a key role in recovering much of 

the loss functionality due to stress’s effects on neurogenesis. 

 

Chapter VII, in part, includes material that was published in the article “Computational 

Influence of Adult Neurogenesis on Memory Encoding,” Aimone, James B; Wiles, Janet; and 

Gage, Fred H.; Neuron, January 2009.  The dissertation author was the primary investigator and 

author of this paper. 
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Figures 

 

Figure VII-1: Schematic for Aging Study 
In aging networks, neurogenesis was decreased gradually (10% drop in rate per week).  As with 
other studies, environments were changed every 40 days.  In control networks (not shown), the 
neurogenesis rate remained constant. 
 

 

Figure VII-2: Plot of GC Size over Time with Aging 
The drop in neurogenesis rate in aging networks limited the size that networks grow.  Control 
networks, with constant neurogenesis, were substantially larger at later time points.   
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Figure VII-3: Pattern Separation in Aged Networks with Constant Neurogenesis 
Pattern separation gradually lessens in networks with constant neurogenesis rates.  The longer the 
network has grown with neurogenesis, the weaker the pattern separation ability of the DG. 
 
 

 
 

Figure VII-4: Pattern Integration Changes over Time with Aging 
Temporal drift of pattern integration (pattern separation at 10% EC similarity) ability of networks 
with constant neurogenesis (blue) and gradually decreasing neurogenesis (red).  Networks with 
constant neurogenesis rates showed significantly higher pattern integration than aged networks 
with decreasing neurogenesis rates. 
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Figure VII-5: Pattern Separation in Aged Networks with Decreasing Neurogenesis 
The gradual reduction of neurogenesis in aging networks mitigated the long-term drift in pattern 
separation in older networks (see Figure VII-3).  Even though neurogenesis was very low at the 
end point (green, Day 520), the network still pattern integrated, unlike neurogenesis knockouts in 
younger networks (Figure V-2). 
 
 

 

Figure VII-6: Temporal Separation in Aged Networks with Decreasing Neurogenesis 
The temporal relationship between DG outputs was markedly reduced in aged networks with 
decreasing neurogenesis (dotted line) compared to younger networks (solid line).   
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Figure VII-7: Temporal Separation in Aged Networks with Constant Neurogenesis 
The temporal relationship between DG outputs was maintained in older networks with constant 
neurogenesis (dotted line) compared to younger networks (solid line).  The worse pattern 
separation by older networks was apparent for all durations between events. 
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Figure VII-8: Environment Specialization in Aged Networks with Constant Neurogenesis 
Older networks with continuous neurogenesis continued to form specialized populations of GC to 
environments experienced during maturation. 
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Figure VII-9: Environment Specialization in Aged Networks with Decreasing Neurogenesis 
Aged networks with decreasing neurogenesis failed to form strong specialized populations of GC 
to later environments experienced during maturation, but they did form smaller specialized 
groups to events earlier in network aging. 
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Figure VII-10: Plot of Neurogenesis Rates with Stress 
Stress was modeled by an acute drop in neurogenesis rate (red), followed by an acute recovery 60 
days later.  The control networks (blue) maintained constant neurogenesis. 
 

 

 

Figure VII-11: Size of GC Layer in Stress Study 
Stressed networks showed only minimal growth during stress period, however after recovery the 
network size resumed growth. 
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Figure VII-12: Effect of Stress on Pattern Integration over Time 
Pattern integration (DG similarity at EC input similarity of 10%) was significantly lower for 
networks during the stress period with reduced neurogenesis.  The drop in pattern integration was 
delayed by approximately 20 days from change in neurogenesis rate. 
 
 

 

Figure VII-13: Pattern Separation in Stressed Network 
The drop in neurogenesis rate caused by stress increased the pattern separation in the Stressed 
network.  After recovery, the pattern separation decreased and showed the size-related effects 
observed in the aging study. 
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Figure VII-14: Pattern Separation in Non-stressed Network 
Control networks growing through the same time as the stressed network showed only a gradual 
decrease in pattern separation due to network size increasing.  
 
 

 

Figure VII-15: Temporal Separation in Stressed Network 
Temporal separation was impaired during the stress period, with events separated in time showing 
strong pattern separation that was temporally independent. 
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Figure VII-16: Temporal Separation in Non-stressed Network 
Temporal separation was unchanged in control networks. 
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Figure VII-17: Environment Specialization in Stressed Network 
The stress period for stressed networks, which occured during environment 4 and 5, results in few 
neurons specializing to the stressed environments, particularly environment 5.  
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Figure VII-18: Environment Specialization in Non-stressed Network 
The control, unstressed networks showed no differences in specialized environments. 
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CHAPTER VIII: STUDY 4: INTERACTION OF DOPAMINE AND NEUROGENESIS 

 

Background 

Overview of neuromodulation and neurogenesis 

Although much of the research into neurogenesis, as with the rest of the hippocampus, 

has focused on the standard excitatory glutamatergic and GABAergic connections between 

neurons, there is strong reason to consider the effects of other neurotransmitters on neurogenesis 

function.  The hippocampus, the DG in particular, is the recipient of many projections from 

subcortical regions that release the neurotransmitters acetylcholine, serotonin, dopamine, and 

norepinephrine [1, 2].  The information relayed from these subcortical areas is most likely related 

to the affective state of the animal, and acts on a longer time scale than the contextual and spatial 

information provided by the cortical inputs to the hippocampus.  Furthermore, these 

neurotransmitters often act through metabotropic receptors which interact with intracellular 

signaling cascades, such as Ca2+ and cAMP, that are known to be important for progenitor cell 

differentiation and survival [3, 4]. 

Of these modulatory neurotransmitters, serotonin has been the most studied in relation to 

neurogenesis.  Neurogenesis has been implicated in the antidepressant actions of selective 

serotonin reuptake inhibitors (SSRIs), both as a target of the drugs - SSRIs increase neurogenesis 

[5] – and as a mechanistic requirement – neurogenesis is required for the efficacy of SSRIs [6].  

The serotonin system has been directly implicated, as lesions of the raphe nucleus lower 

neurogenesis levels [7] and 5HT1A receptor activation has been shown to induce proliferation of 

neural precursors [6, 8].    

While serotonin has been of particular interest due to the interaction of neurogenesis and 

SSRIs, other neurotransmitters affect neurogenesis proliferation and survival as well.  Dopamine 
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denervation lowers the rate of neurogenesis [9].  Knockouts of the nicotinic acetylcholine 

receptors [10, 11] and damage to the cholinergic forebrain areas [12, 13] show decreased 

neurogenesis, and infusion of the acetylcholinesterase inhibitor donepezil increases the number of 

new neurons one month after BrdU labeling, whereas chronic infusion of the muscarinic receptor 

inhibitor scopolamine decreases the number of new neurons [14].  Norepinephrine may also have 

an effect on neurogenesis, as dexefaroxan, an antagonist to α2-adrenoceptors, increases the 

survival of adult-born neurons [15].  

Dopamine and adult neurogenesis 

Despite evidence that different neuromodulators have an effect on adult neurogenesis, 

there is little physiological evidence about their direct effect on immature neurons.  Recently, 

Yangling Mu in the Gage Laboratory has acquired data concerning the effects of dopamine (DA) 

on adult-born granule cells (Mu et al., in preparation).  Since this data is unpublished, it will be 

briefly summarized here.   

Despite the relatively sparse dispersion of axons in the DG, Mu’s data suggests that DA 

has a strong effect on both adult-born GCs of several ages as well as mature GCs.  Specifically, 

transient application of DA leads to a long lasting decrease in the firing rate of GCs in response to 

perforant path stimulation.  This depression effect is not a function of intrinsic neuron properties, 

as direct current application can continue to induce reliable firing after DA application, 

suggesting that the mechanism for depression is synaptic.   

Mu subsequently isolated the individual receptors responsible for this effect.  Application 

of the D1 agonist SKF38393 specifically decreases EPSCs from the perforant path in only 

immature neurons at roughly 4 weeks post injection (wpi).  After a 5 minute exposure, the agonist 

is washed out, with synaptic current gradually decreasing to about 25% less than baseline.  This 

depression is maintained for the duration of the recording (~1 hour).  Application of the D2 

agonist quiniprole does not have an effect on young neurons.  The paired pulse ratio of EPSCs 
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was not affected by SKF38393 in immature neurons, suggesting that the effect is not a function of 

pre-synaptic release.  This suggests that the EPSC depression observed in immature neurons may 

have a post-synaptic source. 

In contrast to 4 wpi neurons, 8 wpi and mature neurons were selectively depressed by 

quiniprole.  The effect of D2 agonism was similar to that of the D1 agonist in immature neurons: 

EPSCs were decreased by roughly 25% for a prolonged amount of time after transient application 

of the agonist.  However, unlike D1 agonism in immature neurons, D2 agonism in older GCs 

does increase PP ratio considerably.  This suggests that the depression observed in older neurons 

is manifested by a pre-synaptic mechanism that decreases synaptic release.   

Modeling dopamine’s effect on the DG 

The electrophysiology data presented here suggests that the effects of DA on synaptic 

transmission onto immature and mature neurons are comparable, albeit through different 

receptors.  This observation would appear to suggest that there is no interaction between DA and 

neurogenesis function under these conditions.  However, the results in previous chapters suggest 

that the effects of neurogenesis on dentate gyrus function is complex.  Therefore, while both 

young and old granule cells are suppressed by DA, it is possible that the cumulative effect on the 

network is biased toward either young or old neurons.   

To investigate the population effects of DA in the DG, the DA-induced decrease in EPSC 

amplitude was included in the computational model.  The effects of DA on pattern separation was 

of particular interest, since the decrease of EPSC amplitudes from the lEC and mEC inputs should 

result in a sparser activation of GC neurons in the model.  Since the pattern separation function of 

the DG arises, in part, from the sparse activity of the GC layer, it is likely that the depression 

brought on by DA results in increased pattern separation.  Since DA affects immature neurons 

similarly to mature neurons (at least in the experimental conditions outlined here), at the onset of 
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the experiment it was unclear whether the neurogenesis effect on pattern separation would be 

affected. 

Modeling Dopamine in the Computational Model 

In order to test how DA affects pattern separation, DA modulation was incorporated into 

the existing DG model.  Although DA affected young neurons and mature neurons via D1 and D2 

receptors, respectively, the effect of DA was the same for all neurons: an indefinite decrease in 

the synaptic weights of the input PP pathways.  As in the previous studies, the model developed 

within a series of environments with full neurogenesis and without DA, and then continued to 

develop within a fourth environment either with (NG) or without (No NG) neurogenesis.  Once 

fully developed, the networks were then examined in an environment designed to test the effect of 

DA on network activity.   

After the NG and No NG networks were developed (day 160), pattern separation was 

examined as described previously.  Briefly, the activity of GC neurons was measured in a range 

of environments designed to cover a large range of EC similarities.  The similarity of GC layer 

activity (as measured by normalized dot products) was then measured between responses to 

different locations and environments.   

In addition to measuring the similarity between the NG and No NG networks, the 

responses of the outputs and the similarity of the responses was measured for cases where lEC 

and mEC synaptic inputs were decreased.  This decrease represented the effects of DA in the 

system.  Pattern separation was measured by testing the networks for 500 ms in 400 locations 

within a series of seven environments.   

Temporal separation was measured by growing the network for one day (with plasticity) 

between testing sessions (without plasticity).  Pattern separation was then measured between 

events occurring at different times.  On day 5 of the temporal separation study, the networks were 
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tested both with and without DA to examine how the presence of DA in the encoding of an event 

affects how it is temporally associated with other events.  DA was simulated during the test phase 

by decreasing perforant path inputs (lEC to GC and mEC to GC) by 10%.  In the pattern 

separation study, DA responses were only compared to other DA responses, essentially 

measuring separation only within that event.  In the temporal separation study, responses to DA 

events were compared to responses to non-DA events occurring at different days. 

Results 

The effects of DA on DG activity were examined by incorporating the observed effects 

on synaptic transmission into the computational model.  As in the previous studies, artificial DG 

networks were generated using a biologically-derived neurogenesis process.  After the equivalent 

of 120 “days” in three successive environments (for 40 days each), neurogenesis was suppressed 

in some networks (No NG networks) and retained in other networks (NG networks).  After 

growing for another 40 days in a fourth environment, the behavior of the model was then 

examined.   

The significant effects of DA on GC activity by attenuating perforant path EPSCs by 

10% indicated that the overall network activity would be reduced considerably when synaptic 

transmission was weakened to simulate DA’s effects.  Indeed, neuronal activity in the model is 

considerably lower in all GC neurons (0.3Hz Vs 0.144 Hz; p<0.01) as well as in young GC 

neurons (0.16 Hz vs. 0.11 Hz; p<0.05) (Figure VIII-2).   

The pattern separation ability of the networks was then tested with and without DA.  The 

proposed pattern separation function of the DG is believed to emerge from the low activity levels 

of granule cells in the network.  Therefore, the expected implication of the reduced activity of 

GCs due to DA would be significantly stronger pattern separation in the network.  Consistent 

with this hypothesis, pattern separation was much stronger in the networks after DA than before 
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(Figure VIII-3).  The effects of DA on pattern separation appear to remove the pattern integration 

contribution by immature neurons, as NG networks with DA have greater pattern separation than 

No NG networks without DA (although the No NG networks with DA have even stronger pattern 

separation). 

Dopamine and temporal separation 

The effects of DA on temporal separation were then measured in the model.  The results 

described in Chapter V suggested that the presence of new neurons caused events close in time to 

have increased similarity during encoding.  This effect is symmetrical, with events before and 

after a reference event (without DA) being associated by the immature neuron population (Figure 

VIII-4).  The reduction of DG activity by DA affects how DA events are encoded relative to other 

temporally proximal events.  Events that occur prior to DA release show increased similarity to 

temporally proximal events without DA, causing a retroactive bias in the temporal relationships if 

there is more DA for later events compared to earlier ones (Figures VIII-5-6).  This temporal bias 

would potentially cause events that induce DA release to be associated with prior events as 

opposed to following events.   

Likewise, when DA is present for an event preceding the reference event, the reference 

event will have stronger temporal associations to events that follow it as opposed to the DA 

events before (Figures VIII-7-8).  It appears that DA provides a disruption of the temporal 

contiguity of information passing through the DG, and that its effects are order dependent. 

While the presence of DA before or after a non-DA reference event affects the temporal 

symmetry of the reference event, the temporal symmetry of the similarities around the DA event 

is unchanged (Figure VIII-9).  Notably, the temporal associations around a DA event are weaker 

than those around a reference event without DA.  As with networks without DA, the temporal 

associations present in DA networks are dependent on neurogenesis (Figure VIII-10). 
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Discussion 

There are two key findings in these results.  First, DA acts as a potent sparsifier, 

dramatically increasing the separation of GC outputs.  This large drop in global DG activity 

(50%) is due to only a minor 10% decrease in EPSC amplitude.  The sensitivity of GCs is 

consistent with the premise that their tuning is very tight.  Even though different GCs in a local 

region may receive inputs from a similar cohort of EC neurons, the level of tonic inhibition in the 

network is so high that only those neurons that are heavily depolarized by a given input will be 

activated.  When DA has depressed perforant path inputs to the network, an even smaller set of 

neurons whose inputs were sufficiently strong to overcome the decrease in EPSCs will be 

activated.  This tight tuning of GC neurons suggests that even minor global alterations to synaptic 

inputs can have substantial implications on DG function.   

The second important aspect of these results is that the drop in similarity caused by DA 

disrupts the temporal structure of memories encoded by the DG.  Because DA decreases pattern 

separation in the network, marginalizing the pattern integration contribution by new neurons, the 

DA events are not temporally associated as strongly as non-DA events.  According to these 

results, events encoded under DA conditions are encoded without the temporal reference that 

other events typically are encoded with.   

Overall, the model suggests that decreased activity of GC neurons will result in greater 

pattern separation and no temporal relationships for memories formed with DA-induced synaptic 

depression.  Importantly, because of the time course observed in the DA physiology, these effects 

would be expected after an actual DA-releasing event, such as a rewarding stimulus.  This 

suggests that there may be a significant difference for how the DG would encode memories 

before and after DA release.  Events prior to a major reward (or punishment) would be encoded 

normally, whereas information for a time period after the event would be encoded more sparsely 

and separately, and without temporal context.   
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Dopamine modeling considerations 

There are several caveats to this modeling result.  First, it is unclear whether the 

concentration of DA used in the physiology study is comparable to the biological concentrations 

present in typical dopaminergic activity in vivo.  There is considerable evidence that DA has 

dose-dependent effects arising from differential binding affinities for the D1 and D2 receptors, 

which have opposing functionality in certain systems [16].  Although the dose-dependence of DA 

on the DG system is unclear (and a focus of current experimental work), the possibility does exist 

that lower concentrations of DA will result in a fundamentally different type of behavior. 

A second caveat is the unknown effect of DA on other neurons in the network.  Although 

DA’s effect was limited to perforant path EPSCs in this study, it is possible, or even likely, that 

DA affects different DG neuron populations differently, as is the case with serotonin and 

acetylcholine [17].  If DA is affecting other populations as well as the GC layer, it is possible that 

the decreased input to GC neurons can be offset by an accompanying decreased level of 

inhibition.  Such a possibility would lower the sparsity of the GC layer and attenuate the observed 

pattern separation effect.   

In addition to the effects of concentration and other neuron populations, there is a 

fundamental drawback to modeling DA in isolation.  DA release typically coincides with 

norepinephrine release [18].  Indeed, it is believed that DA release in cortical areas may originate 

as much from terminals releasing norepinephrine as well as DA-specific terminals [19].  

Norepinephrine has been shown to have distinct effects on perforant path synapses, suggesting 

that there may be an interaction between DA, NE, and the mPP and lPP inputs to GCs [2].  

Similarly, serotonin and acetylcholine (as well as less studied peptides, such as opiates) have both 

been associated at times with reward and salience signaling.  Such a caveat applies to most 

physiology and modeling studies in the brain, but it is nonetheless important to acknowledge 

when considering the effects of DA on DG function. 
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Dopamine and signaling to CA3 

The effects of DA on DG output must be considered with reference to the DG’s function 

in CA3.  The dramatic increase in pattern separation due to very sparse activity would likely have 

a significant effect on how memories are formed in the associative CA3 network.  According to 

the Treves and Rolls schema that suggests that the DG dictates which CA3 neurons learn a given 

cortical input [20, 21], the expectation would be that a more separate, sparser DG signal would 

result in sparser, more distinct CA3 attractor states.   

However, there may be drawbacks to having a sparser attractor network in CA3.  

Ultimately, the amount of information stored in a given memory is a function of the number of 

neurons responsible for its encoding, essentially the size of the attractor.  If a memory is 

comprised of fewer neurons, it would be more difficult to associate with other events and would 

possibly be more sensitive to disruption.  

In addition to the direct effects of a sparser DG output, there is also the direct effect of 

DA on DG to CA3 transmission.  A recent study [22] showed that application of DA and the D1 

agonist SKF81297 affects the release probability of some mossy terminals onto CA3 neurons.  

This function is important in the context of the general perception that DG transmission to CA3 is 

gated by the bursting behavior of the mossy fiber.  Recordings from CA3 neurons show that 

single mossy fiber spikes have a very low probability of release, whereas bursting of a single 

mossy fiber axon input is sometimes sufficient for firing of the CA3 pyramidal cell [23].  In 

contrast, mossy fiber synapses onto CA3 interneurons are initially effective and have depressing 

inputs.  This dichotomy suggests that a weak GC signal (e.g., a single spike) will preferentially 

activate the feed-forward interneuron populations of the CA3, inhibiting much of the network, 

whereas a bursting GC neuron will preferentially activate its target CA3 pyramidal cells at a level 

that can overcome the feed-forward inhibition [24, 25].  
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If DA is decreasing GC activity dramatically, one possibility is that signals that otherwise 

would activate pyramidal neurons would instead activate the inhibitory network in the presence 

of DA.  The Kobayashi results suggest a mechanism that may counteract this possible side effect, 

allowing the sparser GC output to be more effective in activating CA3 principal neurons.  An 

alternative interpretation of the Kobayashi results is that the bias observed is actually occurring 

on immature neuron axons.  This possibility is supported by the observation that the increase in 

release probability is dependent on D1 receptors, which is responsible for DA’s effects on 

immature GC physiology.  In addition, not all axons show the DA induced potentiation.   

 

Chapter VIII, in part, includes material that is being prepared for publication. Mu, 

Yangling; Aimone, James B, and Gage, Fred H.  The dissertation author was the primary 

investigator and author of those aspects of this manuscript that are included in this chapter. 
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Figures 

 

Figure VIII-1: Schematic of Dopamine Study 
Networks were initialized and grown similar to previous studies.  After growth in 3environments, 
neurogenesis (NG) and no neurogenesis (No NG) networks were generated.  After day 160, 
pattern separation was tested with and without dopamine (DA).  Temporal separation was tested 
by growing the network to Day 170 and measuring network responses daily.  DA was simulated 
by decreasing EC inputs to the model by 10%. 

 

 

Figure VIII-2: Effect of Dopamine on DG Activity Levels 
DA decreased the firing rate of all GCs in the model (left) as well as young neurons (<6 weeks 
old).  Both differences are significant (p<0.05). 
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Figure VIII-3: Pattern Separation in DG with and without Dopamine 
Compared to control networks, pattern separation was increased in networks lacking 
neurogenesis.  Dopamine made pattern separation stronger in both NG and No NG networks, with 
the networks with DA and neurogenesis having stronger pattern separation than simple 
neurogenesis knockouts. 
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Figure VIII-4: Symmetry of Temporal Responses around Reference Event on Day 5, 
Dopamine on Day 5 
Temporal relationships are shown between GC patterns of a reference event occurring at Day 5 
without dopamine and other events occurring on other days before and after.  The relationship of 
the reference event to a DA event occurring on Day 5 is shown. 

 

Figure VIII-5: Temporal Similarities around Reference Event on Day 3, Dopamine on Day 
5 
Temporal relationships are shown between GC patterns of a reference event occurring at Day 3 
without dopamine and other events occurring on other days before and after.  The relationship of 
the reference event to a DA event occurring on Day 5 is shown. 
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Figure VIII-6: Temporal Similarities around Reference Event on Day 4, Dopamine on Day 
5 
Temporal relationships are shown between GC patterns of a reference event occurring at Day 4 
without dopamine and other events occurring on other days before and after.  The relationship of 
the reference event to a DA event occurring on Day 5 is shown. 

 

Figure VIII-7: Temporal Similarities around Reference Event on Day 6, Dopamine on Day 
5 
Temporal relationships are shown between GC patterns of a reference event occurring at Day 6 
without dopamine and other events occurring on other days before and after.  The relationship of 
the reference event to a DA event occurring on Day 5 is shown. 
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Figure VIII-8: Temporal Similarities around Reference Event on Day 7, Dopamine on Day 
5 
Temporal relationships are shown between GC patterns of a reference event occurring at Day 7 
without dopamine and other events occurring on other days before and after.  The relationship of 
the reference event to a DA event occurring on Day 5 is shown. 
  



190 
 

 

Figure VIII-9: Temporal Similarities around DA and No DA Reference Events on Day 5 
Temporal relationships are shown between GC patterns of a reference event occurring at Day 5 
with (green) and without dopamine (red) and other events occurring on other days before and 
after.   
 

 

Figure VIII-10: Temporal Similarities around DA Reference Events on Day 5, NG and No 
NG 
Temporal relationships are shown between GC patterns of a reference event occurring at Day 5 
with (green) dopamine for networks with (green) and without neurogenesis (light blue).  
Relationships are shown with other events encoded without neurogenesis.  
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CHAPTER IX - DISCUSSION OF MODEL RESULTS  

 

Summary of hypotheses for neurogenesis function 

The studies described here suggest that adult-born GC have multiple functions during 

their development (Figure IX-1).  The results in Chapter V show that the electrophysiology 

properties of new GC may alter the pattern separation function of the DG by providing a level of 

similarity to events that would otherwise be separated.  This process is referred to as pattern 

integration, and implies that pattern separation is limited for events that utilize the same 

population of immature neurons.  The subsequent maturation of this immature population over 

several days reduces this integration effect, suggesting that the contribution of immature neurons 

to memory encoding is dependent on when the event is encoded.  With reference to the DG’s 

pattern separation function, it appears that immature neurons are contributing to temporal 

separation of memories. 

Chapter VI describes results that suggest that the immature neurons involved in these 

pattern integration and temporal separation functions eventually mature into unique dimensions 

that may be used to improve memory encoding in the future.  Further analysis using dimensional 

reduction techniques, such as PCA, suggests that immature GCs grow into unique dimensions 

that are distinct from those used to encode previous environments.  In contrast, without 

neurogenesis, novel environments are encoded using combinations of mature neurons.   

Although these functions for new neurons occur at different times during their 

development, they are not independent.  Each emerges from the young neurons’ experience-

dependent maturation process.  During maturation, new GC transition from progenitor cells to 

fully functional neurons.  For the first few weeks of this process, the electrical properties of 

immature neurons are quite different from those of mature GC [1].  The pattern integration 
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function emerges from the observation that the immature neurons with increased excitability may 

decrease the separation function performed by the DG.   The transition of these immature neurons 

out of this increased excitability phase, provides the mechanism for encoding the temporal 

relationship between events.   

While a significant fraction of immature neurons dies before they are fully mature, a non-

trivial proportion of them remains alive indefinitely [2-4]. In the model, the activity-dependent 

maturation of these surviving neurons results in the generation of specialized groups of GC that 

may improve the encoding of that environment in the future, consistent with biological studies 

using immediate-early genes that showed that neurons responded preferentially to events that 

occurred during their maturation [2, 5].  These results suggest that these populations of neurons 

may represent new dimensions that the DG can use to encode new memories – dimensions that 

are “custom-built” for the information contained in those memories.  Indeed, the same neurons 

that perform pattern integration between events when they are young in the model ultimately 

comprise the new dimensions to better encode those events when they are older.  While pattern 

integration is adding similarity to the encoding of current events, the new neurons are gaining 

specificity that will lead them to improve the encoding of future events.   

In addition to the dynamics of maturation possibly leading to new neuron function, the 

model suggests that outside dynamics acting on the neurogenesis process itself can lead to effects 

on hippocampal function.  The results in Chapter VII suggest that changes in neurogenesis rate 

due to chronic conditions such as aging and stress may affect the DG’s function over long periods 

of time.  These results suggest that the memory problems associated with aging may be partially 

due to significant changes in DG structure and function due to the diminishing levels of 

neurogenesis.  Furthermore, the recovery of neurogenesis after stress rescues the model’s 

phenotype from the low-neurogenesis stress state, suggesting a possible mechanism for the 

cognitive effects of anti-depressants, which are known to increase neurogenesis [6, 7].   
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In addition to systemic effects on neurogenesis, behavior and experience may have direct 

modulatory effects on immature neurons.  Chapter VIII describes how dopamine in the network 

can have a complex interaction with the neurogenesis system in the DG.  The slice physiology 

observation that dopamine decreases perforant path input to GCs were applied to the model, 

revealing that this decrease in network inputs can have a significant effect on increasing the 

separation of the dopamine event from other events.  Even though immature neurons were less 

affected by dopamine directly in the modeling results, their effect on DG pattern separation was 

somewhat marginalized due to population effects.   

Relationship of results to theories of hippocampal function  

The idea that DG sparse coding leads to pattern separation has been developed over 

recent decades.  Modeling studies have provided clear arguments for why pattern separation is 

useful, or even necessary, for hippocampal function [8-11].  By producing sparse, orthogonal 

codes the DG is an ideal input to the downstream CA3, which is believed to be store memories in 

its associative network.   

Many of these theoretical notions of DG function have been confirmed by observations 

that GCs are sparsely active [12], and are capable of strongly depolarizing downstream CA3 

neurons [13].  Behavioral studies have also implicated pattern separation as a possible function 

for DG [14-16].  Not all evidence is as clear, in vivo recording during spatial exploration of 

different environments suggest that DG neurons are not as contextually discriminant as other 

hippocampal neurons, though still can be considered “pattern separating” at a spatial, population 

level [17]. 

The results presented here support the possibility that mature neurons in the DG perform 

pattern separation.  However, the presence of neurogenesis in the model suggests that this 

function is not as straightforward as other models suggest.  The separation effect in the model is 
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significantly affected by immature neurons in the GC layer, whose broad tuning serves to act 

counter to the strong separation in the network by older neurons for temporally proximal events, 

but not temporally distinct events.  This contribution by young neurons makes the pattern 

separation function of the neurogenic DG in this model more sophisticated than that previously 

considered.  These differences may have significant effects on hippocampal function. 

First, with neurogenesis, the extent that the DG can pattern separate any two inputs at a 

given time is bounded.  Regardless of how distinct two inputs may be, there would likely be some 

overlap in the population of immature neurons activated.  Given that the CA3 is itself believed to 

be capable of pattern separating largely dissimilar inputs[17], the effect of immature neurons 

would likely not be disruptive.  However, the presence of some residual similarity in the DG 

signal may be important to ensure that associations can be formed between events if necessary.  

Therefore, one possible function for pattern integration may be to ensure that pattern separation 

does not overwhelm the system. 

Second, while the hippocampus has long been considered critical for the encoding of 

temporal information, these studies have focused mostly on recurrent network dynamics in the 

CA3 and spike-timing dependent plasticity [18, 19].  Both these effects operate at time scales 

considerably shorter (seconds and milliseconds) than the temporal associations proposed here 

(hours and days).  If an associative memory network is designed to capture possible sources of 

causation in its associations, then it is necessary for the system to detect relationships occurring at 

a wide range of time scales.  Causal relationships between events would be expected to be far 

more common for events occurring within very short time frames, which would explain why 

many regions of the brain have plasticity operating at these time scales.  But there are important 

relationships occurring between more temporally distant events, and it is not surprising that a 

structure critically involved in memory formation would have a mechanism that has dynamics at 

the time scale of neurogenesis.   
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Finally, in addition to adding a lower-bound and temporal separation to the pattern 

separation function of DG, the long-term incorporation of new neurons into the network has the 

potential to have a more global effect on its function.  The results suggesting that new neurons 

specialize to environments indicate that at an individual level new neurons may be learning about 

their environments.  But at a population level, the effect is far more pronounced.  As opposed to 

previous computational and theoretical models of DG, where the networks are initialized 

randomly or neuron activity simply follows a Poisson process [10], these results suggest that most 

DG neurons develop specifically to capture features of their environments.  Experience-

dependent development of brain structure is a process studied in many systems [20], but most of 

these systems are capturing basic statistics about the world.  Embryonic-born and developing DG 

neurons probably develop to encode basic aspects of the world, but the large populations of post-

natal and adult-born GCs are most likely capturing more individually-dependent features of the 

world.  While every animal may be expected to learn the statistics associated with color range and 

auditory range, the events experienced by animals diverge substantially after birth.  The DG, in 

contrast to almost all other brain regions, is well situated to acquire those unique characteristics.    

Relationship of results to other models of neurogenesis 

The “bottom-up” approach to modeling adult neurogenesis described here differs 

considerably from that of previous models of adult neurogenesis (for review, see [21]).  These 

distinctions likely underlie the differences between these results and previous theoretical results.  

The model presented here has at least three major features that distinguish it from previous 

modeling studies: (1) the inclusion of details about the maturation process; (2) simulation over 

long time scales, allowing successive generations of new neurons to populate the DG; and (3) 

assaying DG function by measuring pattern separation while using biologically derived inputs.  

The extent of biological detail included in this model is in contrast to previous computational 
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studies of neurogenesis that investigated the effect of either neuron addition or turnover on 

specific network functions in less complicated models.  While those models have revealed several 

possible functions for the addition of new neurons in simple network architectures, the inclusion 

of biological details was likely important for the observation of several network behaviors 

heretofore not described.   

In some cases, the results were similar to those of other models.  For example, FEs 

attaining dimensional independence due to the maturation process is similar to the hypotheses put 

forth by two previous computational studies that suggested that new neurons protect old 

memories by increasing the capacity available for encoding new memories [22, 23]. However, 

these studies suggest that the acute effects of stopping neurogenesis would be substantial, 

potentially leading to the collapse of previously encoded memories, whereas this model predicts 

that the cessation of neurogenesis would result in a more subtle deficit: new environments would 

continue to be encoded using a combination of previous environments, but their transition to 

being familiar would be impaired.   

Relationship of neurogenesis hypotheses to animal behavioral studies 

As described extensively in the overview (Chapter II), behavioral studies on neurogenesis 

knockdown studies in rodents have provided mixed results.  The variability associated with these 

studies likely arises from several sources, including species differences, neurogenesis levels in 

different mouse strains [24], different knockout approaches, and methodological differences.  

While many of the behavioral tasks designed to dissociate functions for hippocampal subregions 

were motivated by computational theories regarding these functions [16, 25-30], neurogenesis 

studies have relied mostly on general hippocampal tasks, such as water maze and context fear 

conditioning.   
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Although previous behavioral studies of neurogenesis have lacked specific theoretical 

motivation, several studies have results that may be explained by the theoretical results presented 

here.  Of the previous behavioral results using knockdown models of neurogenesis, perhaps the 

most relevant to the model is the observation that irradiated animals have improved performance 

on a working memory [31].  One prediction of the pattern integration hypothesis is that reducing 

neurogenesis might result in an increase of pattern separation during memory encoding.  As a 

result, behaviors that benefit from greater separation may show an improvement after the 

elimination of new neurons.  One interpretation of the working memory results is that normal 

mice have difficulty distinguishing between the current trial and recent trials, whereas irradiated 

mice have a better ability to segregate their current actions from those of the past.  While pattern 

integration may make pattern separation more difficult, it may be necessary for other behaviors 

that require the animal to integrate information across several learning trials.   

Design of new behavioral tasks to examine the model 

Explicit testing of these hypotheses will require the design of new behavioral tasks.  One 

possibility for testing the model is to simultaneously examine both pattern integration and 

temporal associations.  The hypotheses suggest that events occurring close in time will be 

associated with one another, whereas events occurring several days apart will be encoded 

separately.  An example behavioral paradigm using fear conditioning would be to present 

multiple contexts to an animal over time with one context coupled to an aversive stimulus (i.e., 

shock).  The model would predict that animals would fear both the context where the shock 

occurred and those contexts that were proximal in time.  One drawback to this specific example is 

that context fear conditioning is affected in neurogenesis knockdowns in certain conditions, so 

care must be taken to ensure the underlying fear memory is present. 

The final hypothesis - that adult-born neurons mature to encode new dimensions - can 

also be examined behaviorally.  One implication of developing specialized groups of GCs may be 
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an increased ability to acquire new memories that can utilize those new dimensions.  Animals that 

live extensively within an enriched environment have an increased survival of new neurons that 

may specialize to features of that environment [2, 4].  Given the DG’s presumed role in memory 

encoding, one would predict that these animals may have a greater ability to learn within that 

environment than animals for which the environment is novel.  One possible behavioral task 

would be to pre-expose an animal to several contexts over several weeks, which should induce 

populations of specialized GC.  Later, the animal would be trained to fear one of these contexts, 

but not the others.  The prediction would be that neurogenesis would improve the discrimination 

of the feared context from the other pre-exposed environments. 

Relationship of neurogenesis hypotheses to human memory  

Ultimately, the relevance of a neurogenesis function will be judged by whether the role of 

new neurons can be demonstrated in human memory.  Experiments on the structure and 

mechanism of human memory are fundamentally different from the studies performed in rodent 

models that have motivated much of the theoretical work on the hippocampus.  With the 

exception of intracranial recordings performed alongside diagnostic medical procedures and gross 

lesion studies, most human experimentation is limited to extracranial imaging studies that provide 

limited temporal and spatial resolution.  These limitations are offset by the significantly greater 

range of cognitive tasks.  The development of functional imaging measures that are believed to 

correlate with adult neurogenesis [32] provide an opportunity to associate neurogenesis levels 

performance on psychological tasks that investigate the structure of human memories [33-35].   

As with the examination of neurogenesis function in animal models, studies of 

neurogenesis in humans would benefit from having specific hypotheses relating to neurogenesis 

to examine.  The hypotheses presented here suggest that while the dentate gyrus pattern 

separation function would be preserved, there would be some specific changes in how 
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information is encoded.  As such, effects would be substantially more moderate than what is 

observed in hippocampal lesion patients, but may still be significant when studied properly.  In 

addition to the functional hypotheses outlined here, the model studies regarding aging and stress 

demonstrate what functions of the neurogenesis process would be expected to be compromised 

during these conditions.  Since both aging and stress are associated with memory deficits in 

individuals, these conditions may represent natural knock-down models for human neurogenesis.   

How pattern integration may be manifested in human memory 

Although most hippocampal network theories assume the DG’s role is limited to pattern 

separation, some more general ideas for the structure of human memories suggest a use for the 

added similarity that pattern integration provides.  One example is the “constructive memory 

hypothesis,” which postulates that memories are composed of distinct elements that are stored 

separately and reconstructed at the time of retrieval, as opposed to a pure reproduction of a past 

event [36].  If memories are indeed stored in a distributed form, there is probably a requirement 

for some additional information that binds the distributed pieces together.  While the pattern 

completion circuitry in the hippocampus would be effective at forming and recapitulating 

associations between items that occur at the same time or in sequence [27], complex memories 

might require a different mechanism to bind distributed components together.  Although the 

classical view of the DG is that it would separate context from this information, immature 

neurons may limit the amount of separation performed at the time of encoding.  Memories 

encoded by the network would still be adequately separated to the extent that effective attractors 

could be formed, but the attractor states of these memories would remain related to one another.  

Additionally, such associations would only be meaningful if the added similarity was temporally 

constrained, as there would be little benefit if all memories were linked to one another.   

The results presented here suggest that the acute drop in neurogenesis due to stress 

greatly eliminates the pattern integration provided during memory encoding.  In the 
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aforementioned constructive memory framework, one could anticipate that this lack of pattern 

integration may result in a decreased ability to combine distinct memory components into 

uniform memories and may be revealed by an improved performance on tasks designed to 

confuse information with contextual clues.  The effect of aging on pattern integration is less 

dramatic in this model; however, the increased similarity occurring in older networks is not 

temporally dependent, suggesting that, while the ability to bind memories together remains with 

aging, this process loses its temporal precision. 

How temporal separation may be incorporated into human memory 

The structure of temporal information in human memory is unclear.  Although the 

constructive memory framework suggests that memories consist of separate pieces that are 

associated in the generation of a coherent episode, the theory is somewhat agnostic to where those 

associations come from.  Research into the structure of temporal information has focused more on 

the psychological domain as opposed to biological mechanisms.  Friedman collated ten properties 

of temporal memory observed from psychological studies [37].  These properties relate to the 

relationships between different memories in time and under what conditions time is accurately 

recalled or encoded.  In addition, the evidence suggests that temporal information is not a simple 

“time-stamping” process; rather, time is encoded more relatively.  This perspective on how time 

would be encoded is consistent with time simply being one component of a larger, more 

sophisticated memory framework.  How the temporal memory described in Chapters III and V 

relates to psychological studies of memory remains to be determined [38, 39].  One of the key 

features from these studies, however, is that temporal information is complex and appears to exist 

at multiple time scales.  This is consistent with neurogenesis being only one type of neural 

dynamic that may provide temporal information to the system.   

While these previous psychological studies have sought to explore how time is encoded, 

this theory makes specific predictions about how neurogenesis may contribute to the temporal 
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structure of memories.  One prediction would be that subjects with putative low neurogenesis 

conditions, such as depressed individuals pre-treatment or patients following radiation therapy, 

would have difficulty in encoding temporal relationships between past events.  The design of 

such studies would need to account for the information available during memory formation, as 

there are substantial contextual cues that may allow later reconstruction of temporal relationships.   

How dimensional specialization of the DG affects human memory 

In addition to a role for pattern integration, the possibility that novel environments are 

encoded using a combination of neurons previously used to encode familiar environments also 

fits nicely into the constructive memory framework.  Consistent with the idea that memories are 

encoded in a distributed manner, the DG’s representation of an FE included not only those 

neurons that matured within that environment, but also neurons that showed a preference for 

other, previously experienced, environments (Chapter VI).  One possibility is that those neurons 

that are used in multiple environments encode features that are invariant between the two 

contexts.  Furthermore, NEs were initially encoded entirely by using “familiar” dimensions.  

Without having developed a set of neurons customized to the current inputs, it appears that the 

network approximated the entire context by utilizing other neurons that matured in previous 

environments.  Such a process is similar to recent proposals about the process of imagination: that 

thinking about the future consists of constructing a new combination of old memories into a new 

package [36].  These results suggest that recently experienced environments will not transition to 

being familiar after aging, as there are few new neurons to commit to those contexts.  A failure of 

environments to transition to familiar may affect how memories are formed in aged or chronically 

stressed individuals; even environments that should be familiar may be considered novel if there 

is little neurogenesis available when previously experienced.     

Limitations of the computational approach  
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While the complexity of this model was important for the generation of novel, 

behaviorally testable predictions, both the accuracy and completeness of the model are issues that 

remain to be addressed by both biological studies and future modeling work.  Adult neurogenesis 

is a dynamic area of research and, as is the case with all computational models, future results may 

make it necessary to revisit certain assumptions made in the model.  This caveat does not negate 

the validity of the results proposed here, but it underscores the importance of future biological 

investigation of these hypotheses, as described in the next section.   

This modeling and theoretical work has focused principally on the DG, and it is possible 

that neurogenesis has unknown implications on other hippocampal regions.  For example, the 

relationship between GC and CA3 neurons is complex, as it appears that CA3 pyramidal neurons 

and interneurons respond differentially to bursting of GC [13, 40].  If new neurons do not fire in 

the same manner as mature cells, it is possible that the CA3 will not respond as predicted. Until 

the mossy fiber projection is fully investigated in vivo, the precise effect new neurons have on 

CA3 is not entirely clear, though recent work has shown that they make functional connections 

[41].   

In addition to mechanistic details, it is not yet clear how changing the pattern separation 

function in the DG will affect information processing in the rest of the hippocampus.  While 

generally considered an associative network, the CA3 has been shown to also contribute to 

pattern separation, though this is believed to be fundamentally different from the separation 

function of the DG [17].  Neurogenesis would appear to be one source of this difference, as these 

results suggest that DG is separating inputs according to time as well as specific features of the 

events.  In addition, further modeling work may reveal how neurogenesis affects the network 

dynamics of the DG.  A more sophisticated understanding of the network dynamics associated 

with pattern separation in the DG network may clarify how this separation function affects the 

attractor dynamics in the CA3. 
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In addition to more complex analyses of the network dynamics, continued examination of 

the model’s behavior considering other perspectives on hippocampal function will be revealing, 

particularly with regard to how neurogenesis affects the hippocampal representation of space and 

neurogenesis’ relationship to depression.  The DG is believed to be important in the formation of 

hippocampal place representations, and GC have distinct spatial behaviors, though how they 

affect hippocampal spatial processing is still unclear [17].  Similarly, the role of DG in affective 

conditions, such as depression, is unknown, though a strong relationship between neurogenesis 

and certain anti-depressant drugs suggests that adult-born neurons play a role in affective state 

[42].  The functional role of neurogenesis in encoding space and affect is unknown, and further 

work is required to relate the results of the model to these hippocampal functions. 

Finally, as with other computational models, this study is limited by details of the system 

that have not yet been fully described.  For instance, although the spatial properties of mEC 

neurons have been well characterized [43], the structure of the lEC input to the DG remains 

unclear [44].  For instance, GC in this model has a spatial structure that is obviously influenced 

by the grid structure of the mEC neurons.  While in vivo studies have shown spatial structure to 

GC responses, it has not been reported as significantly grid-like [12, 17].  This difference in 

model behavior emerges from the grid cells being the only input population with a spatial 

structure.  Furthermore, more examination is required to determine how immature neurons 

influence in vivo measurements of DG neurons during behaviors and exploration.   

Conclusion 

In summary, the studies described here provide the computational basis for several new 

hypotheses, both for the function of neurogenesis during cognition as well as the interactions of 

neurogenesis with other neurobiological processes.  According to these hypotheses, new neurons 

born within the adult brain may make several contributions to memory formation, such as 
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temporal separation and long-term specialization, which have not previously been considered 

important features of memory.  The results describing how aging, stress, and reward state may 

affect these functions demonstrate the complexity of the relationship between the neurogenesis 

process and the overall cognitive and physical state. 

As with any new hypothesis, the potential functions proposed here require direct 

biological examination.  These results will hopefully encourage the development of new 

behavioral and psychological approaches for examining these newly proposed aspects of 

memory. While this validation process and future experimental observations may require that 

certain aspects of the model be revisited, the process of testing and updating the theoretical 

framework will be a powerful process for advancing the understanding of neurogenesis.    

 

Chapter IX, in part, includes material that was published in the article “Computational 

Influence of Adult Neurogenesis on Memory Encoding,” Aimone, James B; Wiles, Janet; and 

Gage, Fred H.; Neuron, January 2009.  The dissertation author was the primary investigator and 

author of this paper. 
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Figure 

 

Figure IX-1: Schematic of different functions for immature neurons over time 
Mature neurons in the DG are capable of separating events in memory.  Immature 
neurons will pattern integrate over those events that occur during their youth (for the 
top neuron, the blue events, for the bottom neuron, the red events).  Different 
populations will encode different events, leading to temporal separation.  At later times, 
the previously experienced events can utilize the now mature neurons for more 
specialized encodings. 
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