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Information-Theoretic Deconvolution Approximation of

Treatment Effect Distribution

Ximing Wu∗ & Jeffrey M. Perloff†

Abstract

This study proposes an information-theoretic deconvolution method to approximate

the entire distribution of individual treatment effect. This method uses higher-order

information implied by the standard average treatment effect estimator to construct a

maximum entropy approximation to the treatment effect distribution. This method is

able to approximate the underlying distribution even if it is entirely random or depen-

dent on unobservable covariates. The asymptotic properties of the proposed estimator

is discussed. This estimator is shown to minimize the Kullback-Leibler distance be-

tween the underlying distribution and the approximations. Monte Carlo simulations

and experiments with real data demonstrate the efficacy and flexibility of the proposed

deconvolution estimator. This method is applied to data from the U.S. Job Training

Partnership Act (JTPA) program to estimate the distribution of its impact on individ-

ual earnings.

Keywords: treatment effect distribution; deconvolution; maximum entropy density

∗Department of Agricultural Economics, Texas A&M University; email: xwu@ag.tamu.edu
†Department of Agricultural and Resource Economics, University of California at Berkeley; email:

perloff@are.berkeley.edu
We want to thank Jeffrey Smith for providing the JTPA data and helpful suggestions. We thank partici-

pants at University of Toronto seminar, the Midwest Econometrics Group 2005 meeting and the Econometrics
Society 2006 winter meeting, especially Tong Li and Kevin Song, for valuable comments and suggestions.
Financial support from the Social Science and Human Research Council of Canada for Wu and from the
Institute for Research on Labor and Employment at UC Berkeley for Perloff are gratefully acknowledge.



1 Introduction

The past two decades have seen a surge in econometric work on evaluating program ef-

fects. Prior to the last few years, the literature has focused on the average treatment effect.

However, the average treatment effect, which is the first moment of the treatment effect dis-

tribution, may mask important distributional changes. Recently, researchers have developed

new methods to estimate heterogeneous treatment effects and the distribution of treatment

outcome. In this study, we present a novel estimator that approximates the entire individual

treatment effect distribution based on the standard average treatment effect model.

Suppose one is interested in evaluating the effect of receiving or not receiving a binary

treatment under the assumption that the treatment satisfies some form of exogeneity. In the

counterfactual framework of program evaluation, an individual i has two potential outcomes:

Yi,1 in the presence of the treatment and Yi,0 in the absence of the treatment. The individual

treatment effect is then defined as ∆i = Yi,1 − Yi,0. In a non-experimental setup, because

an individual cannot be in both states, one does not observe Yi,0 and Yi,1 at the same time.

Therefore, ∆i is not observable and the problem of estimating individual treatment effect is

essentially a missing data problem.

Since individual treatment effect is not identifiable, the literature has focused on the

average treatment effect (ATE).1 Generally given certain assumptions, the average treatment

effect, conditional on observed covariates X, is identified by

ATE = E (Yi,1 − Yi,0|Xi) = E (∆i|Xi) .

Although of fundamental importance, the ATE only reflects certain aspects of the treatment

effect distribution. As Heckman et al. (1997) observe, some important questions cannot be

answered by the ATE. For example, to use the median voter model, we need to know if more

than 50% of the population will benefit from the program. Without knowing the distribution

of individual treatment effect, we are unable to answer this question. Also, merely examining

1The literature on estimating the average treatment effect and other related concepts is abundant. For
recent reviews on this topic, see Imbens (2004) and Heckman and Vytlacil (2005).
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the ATE might sometimes lead to misleading conclusions. Suppose the treatment effect is

heterogeneous such that the positive effects and negative effects offset each other and so

that the ATE is roughly zero. Although a zero ATE does not imply zero treatment effects,

sometimes researchers mistakenly draw this conclusion.

Some recent work has tried to estimate the distribution of potential outcomes. In an

instrumental variable setting, Abadie et al. (2002) and Chernozhukov and Hansen (2005)

estimate the differences in quantiles of the potential outcome distributions. Under the un-

confoundedness assumption, Firpo (2005) develops an estimator for quantile treatment ef-

fect. An alternative “Change-in-Change” method, recently proposed by Athey and Imbens

(2006), estimates the entire counterfactual distribution nonparametrically. Denote Y1 and

Y0 the distributions of potential outcomes with and without treatment respectively, and ∆

the distribution of individual treatment effect. Both the quantile-based method and the

Change-in-Change estimator focus on estimating the potential outcome distributions Y0 and

Y1, but not the distribution of individual treatment effect ∆. Generally, the differences in the

quantiles of two potential outcome distributions are different from the individual treatment

effect as individual’s rank within the distribution before and after the treatment may not

remain the same. Even with complete knowledge of the two potential outcome distributions

Y0 and Y1, we cannot infer ∆ from them as we do not know their joint distribution (Y0, Y1).
2

Only under the assumption of rank invariance is the quantile treatment effect equal to the

individual treatment effect (see Firpo, 2005 and references therein).

In this study, we present a method to approximate the distribution of individual treatment

effects based on the standard ATE model. Consider the model

Yi = f (Xi) + ∆iDi + εi,

where f (Xi) is a consistent estimator of the potential outcome in the absence of the treat-

ment, Di is the treatment status indicator, and εi is an iid error which is independent of

2Heckman et al. (1997) discuss how to obtain bounds of var(∆) under certain statistical and behavioral
assumptions.
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Xi. Denote ri = ∆iDi + εi. One can estimate the distribution of the error from the control

group, and the distribution of ∆i + εi from the treatment group. Under the unconfounded-

ness assumption that (Y0, Y1) ⊥ D|X, for the treatment group, ri is the convolution of two

independent random variables, ∆i and εi. To estimate the target density ∆ from r and ε is

thus the classical deconvolution problem.

The deconvolution problem has been traditionally solved using the empirical character-

istic function approach. For applications of this method in econometrics, see for example

Horowitz and Markatou (1996) and Heckman et al. (1997). However, Carroll and Hall

(1988) and Fan (1992) show that the convergence rate of optimal deconvolution can be slow,

which makes it practically impossible to consistently estimate the deconvolution. Instead

of trying to estimate the target distribution consistently, Carroll and Hall (2004) propose

deconvolution methods to estimate a low-order approximation of the target density. In this

study, we propose an information-theoretic estimator of deconvolution approximation.

This paper makes two contributions. First, we propose an alternative deconvolution

method, which our Monte Carlo simulations indicate compare favorably to existing meth-

ods, especially for the important case when the unknown target distribution deviates from

the normal distribution. Only the first few moments of the convoluted data and the noise are

required to implement the proposed method. Compared to the orthogonal series method by

Carroll and Hall (2004), the proposed method offers some advantages: (i) the density esti-

mate is positive everywhere, whereas the density estimates from the empirical characteristic

function approach and Carroll and Hall’s orthogonal series approximation sometimes pro-

duce negative densities; (ii) this method provides a well-defined quasi-maximum likelihood

estimator that minimizes the Kullback-Leibler distance between the target density and the

parametric family of the estimator (see White (1982) for a discussion of the quasi-maximum

likelihood estimator and its asymptotic properties.)

Second, we use this new deconvolution estimator to approximate the entire distribution

of the individual treatment effect. The distribution function has a simple functional form yet

is flexible enough to impose few restrictions on the shape of the distribution. The proposed
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method extends the standard average treatment effect estimator in a straightforward manner

by utilizing not only the ATE, but also implied higher-order moment information. Without

structural assumptions on the distribution of the treatment effect, this method can estimate

the treatment effect distribution even if it is entirely random or dependent on unknown

covariates.

The next section presents the model and the method to estimate moments of the target

distribution from the standard ATE model. Section 3 introduces the maximum entropy

density, a method that constructs density estimate based on a given set of moment conditions.

It then applies this method to deconvolution estimation. The asymptotic properties of the

proposed method are discussed. Section 4 uses Monte Carlo simulations to demonstrate the

numerical performance of the proposed deconvolution method. It then applies this method to

pseudo program evaluation data constructed from real data. Section 5 applies the proposed

method to estimate the distribution of treatment effects of the U.S. Job Training Partnership

Act. The final section draws conclusions.

2 The model

In this section, we show how to obtain consistent moment estimates of individual treatment

effect distribution based on the standard ATE model. As is done in the ATE model, we

assume that individual treatment effect is additive.

Assumption 2.1 The model is known to be

Yi = f (Xi) + Di∆i + εi, i = 1, . . . , n, (1)

where {Xi} is a sequence of uniformly bounded, fixed 1 ×m vectors, f (Xi) is a consistent

estimator of Yi,0|Xi, and {εi} is a sequence of iid random variables with E (εi) = 0, E (ε2
i ) <

∞.

Assumption 2.2 X ⊥ ε and ∆ ⊥ ε.

Assumption 2.3 (Y0, ∆) ⊥ D|X.
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Assumption 2.4 0 < Pr (D = 1|X) < 1.

Assumption 2.1 ensures that f(Xi) is a well-defined, consistent estimator of Yi,0. Since

Y1 = Y0 + ∆, under Assumption 2.2, Assumption 2.3 is equivalent to the standard uncon-

foundedness assumption that (Y0, Y1) ⊥ D|X.3 Assumption 2.4 is the overlap assumption

that ensures the validity of extrapolation between the treatment and control groups. We do

not impose any additional assumptions beyond those of the standard ATE model.4 Although

it is often (implicitly) assumed in the standard ATE model that the treatment effect is con-

stant, we allow heterogeneous individual treatment effect in our model. If we are interested

in estimating the average treatment effect, we can simplify the model to the standard ATE

model Yi = f (Xi) + DiE∆i + εi.

Following the standard practice, we assume that X is observed. However, we do not rule

out the possibility that the individual treatment effect ∆ is determined by a set of variables

Z, provided that Z ⊥ ε. There is no restriction on the relationship between X and Z, so that

all the following scenarios are possible: (1) X and Z are identical; (2) one is a strict subset

of the other; (3) they are different and have a non-zero intersection; (4) they are mutually

exclusive. When all variables in Z are observed, we can model ∆ (Zi) explicitly in principle.

However, if some variables in Z are not observable, this method will suffer from omitted

variable bias.

Instead, we propose a method to approximate the underly treatment effect distribution,

which does not require structural knowledge or assumptions on ∆. Our method is based the

higher-order information of ∆ and ε provided by the standard ATE model. Noting that

the ATE model ignores information other than changes in the mean, Athey and Imbens

(2006) propose a method where all changes in the distribution of Yi across subpopulations

are given a structural interpretation and used to estimate the entire counterfactual outcome

distributions in the presence or absence of the treatment. Although their method identi-

fies the outcome distributions, the distribution of individual treatment effect is not directly

3Sometimes a weaker mean independence assumption is assumed in the place of the unconfoundedness
assumption. However, under the mean independence assumption, one cannot necessarily identify average
treatment effects on all transformations for the original outcome.

4Imbens (2004) discusses the plausibility of the unconfoundedness and overlap assumptions.
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inferrable from the two marginal distributions, without knowledge about their joint distri-

bution. Our approach is conceptually different. Instead of estimating the potential outcome

distributions, we estimate the distribution of the individual effect ∆i = Yi,1 − Yi,0 using a

deconvolution estimator. Since consistent deconvolution estimation of ∆ is practically insol-

uble, the goal of our method is to approximate ∆ under a minimum set of assumptions and

information requirements. Taking a middle ground between the standard ATE model that

only uses the first moment of the outcome distributions, and the Athey and Imbens (2006)’s

nonparametric model that uses all the changes between the subgroups, we base our analysis

on the first few moments of ri = Di∆i + εi from the control and treatment group.

When Di = 0 such that ri = εi, we can estimate the moments of εi from the control

group. On the other hand, when Di = 1, ri = ∆i + εi. Denote the kth moment of ∆i and εi

by µk and νk respectively. Since ∆ ⊥ ε, it follows that

E (∆i + εi)
k

=E

{
k∑

j=0

k!

(k − j)!j!
∆k−j

i εj
i

}

=
k∑

j=0

k!

(k − j)!j!
µk−jνj. (2)

Therefore, we can estimate the moments of ∆i from the moments of εi and ∆i + εi. Denote

Ŷi,0 = f̂ (Xi) from model (1), we obtain r̂i = Yi − Ŷi,0. We further assume that

Assumption 2.5 E |εi|K+δ < ∞ and E |∆i|K+δ < ∞, where K is a positive integer and

δ > 0.

The following Lemma establishes the consistency of the moment estimates.

Lemma 1. Define, for k = 1, . . . , K,

ν̂k =

∑n
i (1−Di) r̂k

i∑n
i (1−Di)

,

$̂k =

∑n
i Dir̂

k
i∑n

i Di

.
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Given Assumption 2.1 to 2.5,

|ν̂k − νk|
as→ 0,

|ω̂k − ωk|
as→ 0,

where ωk = E (∆i + εi)
k .

All proofs are presented in Appendix.

When k = 1, if we substitute ω̂1 and ν̂1 into Equation (2) and solve for µ1, we obtain

µ̃1 = ω̂1 − ν̂1 = ω̂1 since ν̂1 = 0. When k = 2, substituting ω̂2 and ν̂2 into Equation (2), we

obtain µ̃2 = ω̂2− ν̂2. We can solve for higher-order moments recursively in a similar manner.

The third and fourth moments are computed as

µ̃3 = ω̂3 − 3µ̂1ν̂2 − ν̂3,

µ̃4 = ω̂4 − 6µ̂2ν̂2 − 4µ̂1ν̂3 − ν̂4.

Note that all terms involving ν̂1 vanish because, given that the estimates are consistent,

Eν̂1 = 0.

The following theorem establishes the consistency of µ̃k, estimated moments of the treat-

ment effect distribution, for k = 1, . . . , K.

Theorem 2. Given Assumption 2.1 to 2.6, |µ̃k − µk|
as→ 0 for k = 1, . . . , K.

Certain restrictions on the estimated moments can be used as specification tests on the

independence assumption ∆ ⊥ ε. For example, ω2 = E
[
(∆ + ε)2] = µ2 + ν2 + 2E [∆ε]

implies that µ2 = ω2 − ν2 − 2E [∆ε] . Suppose ∆ and ε are negatively correlated, we might

have µ2 = ω2− ν2− 2E [∆ε] > 0, but ω2− ν2 < 0. If we incorrectly assume ∆ ⊥ ε, we would

obtain µ2 = ω2 − ν2 < 0 so that the second moment of ∆ is negative. Therefore, a negative

µ̃2 clearly indicates a violation of Assumption 2.2. Similarly, if we find that µ̃4 < 0, we reject

the independence assumption. In addition, the relationship between moments also provides

testable restrictions. For example, for any standardized random variable, it is known that
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µ4 > 1 + µ2
3. Therefore, we can use this relationship between the third and fourth moments

to test the “admissibility” of estimated moments.

We next proceed to construct an estimate of the target density ∆ based on its first K

estimated moments. Although there may exist an infinite number of distributions satisfying

a given set of moment conditions, in the next section, we introduce an information-theoretic

method of distribution construction, which leads to a unique, least biased distribution esti-

mator based some moment conditions.

3 Information-Theoretic Deconvolution

In this section, we present a deconvolution estimator that is a low-order approximation to

the target density. This density estimator is obtained by maximizing entropy subject to a

given set of moment conditions. With a slight abuse of notation in this section, we denote

the target density to estimate by p0 (X). For the maximum entropy density estimation in

section 3.1, we assume that the first K moments of X are known or can be consistently

estimated. For the deconvolution problem in section 3.2, we do not observe X, but observe

data on Y and Z = X + Y, where X ⊥ Y.

3.1 Maximum Entropy Density

Suppose one is to construct a probability distribution using limited information, in our

case, moments. The principle of maximum entropy (maxent) states that one should choose

the probability distribution, consistent with given information, that maximizes Shannon’s

measure of entropy. According to Jaynes (1957), the resulting maximum entropy distribution

is “uniquely determined as the one which is maximally noncommittal with regard to missing

information, and that it agrees with what is known, but expresses maximum uncertainty

with respect to all other matters.”
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The maxent density is obtained by maximizing Shannon’s information entropy measure

W = −
∫

p (x) log p (x) dx,

subject to K known moment conditions

∫
xkp(x)dx = µk, k = 1, . . . K.

Using Lagrange’s method, we can obtain a unique global maximum entropy solution to this

problem:

p(x, θ) =

exp

(
−

K∑
k=1

θkx
k

)
∫

exp

(
−

K∑
k=1

θkvk

)
dv

, (3)

where θk is the Lagrange multiplier for the kth moment constraint and θ = (θ1, . . . , θK).5

Zellner and Highfield (1988) and Wu (2003) discuss the estimation of maxent density

subject to moment constraints. Generally this problem has no analytical solution. To solve

for the Lagrange multipliers, we use Newton’s method to iteratively update

θ(1) = θ(0) +H−1b,

where bk = µk −
∫

xkp (x, θ) dx, and H is the K by K Hessian matrix of the form, for

1 ≤ k, j ≤ K,

Hkj =

∫
xk+jp (x, θ) dx−

∫
xkp (x, θ) dx

∫
xjp (x, θ) dx. (4)

This maximum entropy method is equivalent to a maximum likelihood approach where

the likelihood function is defined over the exponential distribution and therefore the esti-

mated coefficients are asymptotically consistent and efficient (see Golan et al., 1996 for a

5The existence and uniqueness of the solution is guaranteed, because the Hessian of the optimization
problem, which is given by Equation (4), is positive definite.
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discussion of the duality between these two approaches). Most of the well-known distri-

butions used in mathematical statics may be characterized as maxent densities subject to

certain moment constraints. For example, the normal distribution is a maxent density with

characterizing moments x and x2, the gamma distribution is characterized by x and log x

for x > 0, and the beta distribution by log(x) and log(1− x) for 0<x<1.

Next we derive the asymptotic properties of p (x, θ) defined in Equation (3). Suppose

Xi, i = 1, . . . , n, is an iid sample from a distribution with density function p0 (x) . As discussed

above, the maxent density is equivalent to the MLE of p (x, θ) . When the partial derivatives

of the log-likelihood function exist, we define the matrices

An (θ) =
1

n

n∑
i=1

∂2 log p (Xi, θ)

∂θk∂θj

,

Bn (θ) =
1

n

n∑
i=1

∂ log p (Xi, θ)

∂θk

∂ log p (Xi, θ)

∂θj

.

Assuming their expectations exist, we define

A (θ) = E [An (θ)] ,

B (θ) = E [Bn (θ)] .

The following theorem provides the asymptotic properties of the maxent density estimate.

Assumption 3.1 The independent random sample Xi, i = 1, . . . , n, has a common

joint distribution function P0 on Ω, a measurable Euclidean space, with measurable density

p0 = dP0/dv, which is continuously differentiable, positive and uniformly bounded on its

support.

Assumption 3.2 The family of distributions P (x, θ) has density functions p (x, θ) =

dP (x, θ) /dv which are measurable in x for every θ in Θ, a compact subset of a K-dimensional

Euclidean space, and continuous in θ for every x in Ω.

Assumption 3.3 (a) E [log p0 (Xi)] exists and |log p (x, θ)| ≤ m (x) for all θ in Θ, where

m is integrable with respect to P0; (b) I (p0 : p, θ) has a unique minimum at θ∗, which is
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interior to Θ.

Assumption 3.4 ∂ log p (x, θ) /∂θk, k = 1, . . . , K, are measurable functions of x for each

θ in Θ and continuously differentiable function of θ for each x in Ω.

Assumption 3.5 (a) |∂2 log p (x, θ) /∂θj∂θk| and |∂ log p (x, θ) /∂θj · ∂ log p (x, θ) /∂θk| ,

j, k = 1, . . . , K are dominated by functions integrable with respect to P0 for all x in Ω and

θ in Θ; (b) B (θ∗) is non-singular; (c) θ∗ is a regular point of A (θ) .

Note that due to the duality between the maxent method and the MLE approach, these

assumptions are essentially identical to the regularity conditions for the MLE. Denote θ̂ the

maximum likelihood estimate, which is equivalent to the maxent estimate subject to the first

K moment constraints.

Theorem 3. Given the regularity conditions 3.1 to 3.5,

√
n
(
θ̂ − θ∗

)
∼ N

(
0, A (θ∗)−1 B (θ∗) A (θ∗)−1) .

Moreover, An

(
θ̂
)

as→ A (θ∗) and Bn

(
θ̂
)

as→ B (θ∗) element by element.

The following collorary establishes the asymptotic distribution of the estimated density.

Corollary 4. Given the regularity conditions 3.1 to 3.5,

√
n
(
p
(
x, θ̂
)
− p (x, θ∗)

)
∼ N

(
0,G (x, θ∗) A (θ∗)−1 B (θ∗) A (θ∗)−1 G (x, θ∗)

′
)

,

where G (x, θ∗) = ∇θp (x, θ∗) with Gk (x, θ∗) =
{
xk − µk (θ∗)

}
p (x, θ∗) , k = 1, . . . , K. More-

over, Gk

(
x, θ̂
)

as→ Gk (x, θ∗) .

Since θ∗ is not observable, we replace it with its estimate in the calculation of covariance

matrix. Denote µ̂k = 1
n

∑n
i=1 Xk

i and µk (θ) =
∫

xkp (x, θ) dx. Note that

log p (Xi, θ) = −
K∑

k=1

θkX
k
i − log

∫
exp

(
−

K∑
k=1

θkv
k

)
dv.
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It follows that

∂ log p (Xi, θ)

∂θk

= −Xk
i +

∫ vk exp
(
−
∑K

k=1 θkv
k
)

∫
exp

(
−
∑K

k=1 θkvk
)

dv
dv

= −Xk
i + µk (θ) ,

and

∂2 log p (Xi, θ)

∂θk∂θj

=

∫
vk

−vjp (v, θ) +
exp

(
−
∑K

k=1 θkv
k
) ∫

vj exp
(
−
∑K

k=1 θkv
k
)

dv(∫
exp

(
−
∑K

k=1 θkvk
)

dv
)2

 dv

= −µk+j (θ) + µk (θ) µj (θ) .

We then have

An = −µk+j

(
θ̂
)

+ µk

(
θ̂
)

µj

(
θ̂
)

= −µk+j

(
θ̂
)

+ µ̂kµ̂j,

Bn =
1

n

n∑
i=1

{
Xk

i − µk

(
θ̂
)}{

Xj
i − µj

(
θ̂
)}

= µ̂k+j − µ̂kµj

(
θ̂
)
− µ̂jµk

(
θ̂
)

+ µk

(
θ̂
)

µj

(
θ̂
)

= µ̂k+j − µ̂kµ̂j.

The last equality hold since µk

(
θ̂
)

= µ̂k for 1 ≤ k ≤ K.

Since the density (3) only approximates the true distribution p0 (x), generally µk

(
θ̂
)
6=

µ̂k, except for 1 ≤ k ≤ K because the maxent density matches its first K moments to those of

p0 (x). Therefore generally An +Bn 6= 0, as µk+j

(
θ̂
)
6= µ̂k+j for k + j > K. This discrepancy

between the information matrix and the outer product of the gradient is discussed in details

in White (1982). Define the Kullback-Leibler distance between two densities f (x) and g (x)

I (f : g) =

∫
f (x) log {f (x) /g (x)} dx,
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which is non-negative and equal to zero if and only if f (x) = g (x) everywhere. The esti-

mated maxent density is well-defined and it is in fact the unique quasi-maximum likelihood

estimator that minimizes the Kullback-Leibler distance between the target density and the

parametric family to which the maxent density belongs.

Theorem 5. Define p(x, θ) = exp

(
−

K∑
k=1

θkx
k

)
/
∫

exp

(
−

K∑
k=1

θkv
k

)
dv. The maxent esti-

mate p
(
x, θ̂
)

obtained by maximizing the entropy subject to the first K moments of p0 (x)

minimizes the Kullback-Leibler distance I (p0 : p (x, θ)) =
∫

p0 (x) log {p0 (x) /p (x, θ)} dx.

Theoretically, we can approximate a distribution arbitrarily well by increasing the number

of moments (Cobb et al., 1983 and Barron and Sheu, 1991). However in practice, empirical

moments higher than the fourth order are rarely used or needed. Because higher-order sample

moments are sensitive to outliers, so are density estimates involving higher-order moments.

In this study, we use the first four moments for density approximation. The maxent density

then takes the form

p (x, θ) =
exp

(
−
∑4

k=1 θkx
k
)∫

exp
(
−
∑4

k=1 θkvk
)
dv

. (5)

Although simple in functional form, this maxent density based on the first four moments is

flexible enough to approximate distributions of various shapes. For example, it allows for

both uni-modal and multi-modal distributions.6

3.2 Deconvolution Approximation

In this section, we present the maxent approximation to the target density p0 (x) through

the deconvolution of Zi = Xi + Yi, i = 1, . . . , n. Suppose we also observe a separate sample

Yt, t = 1, . . . , T. In addition to Assumption 3.1 to 3.5 on Xi, we also assume

Assumption 3.6 The independent random sample Yi, i = 1, . . . , n, has a common joint

distribution function P (y) on Ψ, a measurable Euclidean space; E |Yi|2K+δ < ∞, δ > 0.

Assumption 3.7 X ⊥ Y.

6Cobb et al. (1983) discuss the relationship between number of modes and the moment conditions.
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Since X is not observed, we use moment information from Y and Z to approximate

the distribution of X. Define µ̂k (z) = 1
n

∑n
i=1 Zk

i and µ̂k (y) = 1
T

∑T
t=1 Y k

t . Given µ̂k (y) and

µ̂k (z) , we can estimate µ̃k (x) , the moments for the target density p0 (x) , using the recursive

method described in Section 2. We then use the maxent density method described in the pre-

vious section to approximate the target density based on µ̃ (x) = {µ̃1 (x) , . . . , µ̃K (x)} . De-

note the resulting maxent density by p
(
x, θ̃
)

. The following theorem establishes its asymp-

totic normality.

Theorem 6. Given assumption 3.1 to 3.7,

√
n
(
θ̃ − θ∗

)
∼ N

(
0, A (θ∗)−1 B (θ∗) A (θ∗)−1) .

Moreover, An

(
θ̃
)

as→ A (θ∗) and Bn

(
θ̃
)

as→ B (θ∗) element by element.

The asymptotic normality of the estimated maxent density follows immediately by the

following collorary.

Corollary 7. Given assumption 3.1 to 3.7,

√
n
(
p
(
x, θ̃
)
− p (x, θ∗)

)
∼ N

(
0,G (x, θ∗) A (θ∗)−1 B (θ∗) A (θ∗)−1 G (x, θ∗)

′
)

,

where G (x, θ∗) = ∇θp (x, θ∗) with Gk (x, θ∗) =
{
xk − µk (θ∗)

}
p (x, θ∗) , k = 1, . . . , K. More-

over, Gk

(
x, θ̃
)

as→ Gk (x, θ∗) .

Although A (θ∗) and B (θ∗) are not observable, they can be estimated consistently from

the data by

An = −µk+j

(
θ̃
)

+ µ̃kµ̃j,

Bn = µ̃k+j − µ̃kµ̃j,

for 1 ≤ j, k ≤ K.

The proposed method offers several advantages over conventional methods. The con-

ventional deconvolution method is based on the estimation of the empirical characteristic
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function of Xi, which is computed as the ratio of the estimated empirical characteristic func-

tions of Zi and Yi. Inverse Fourier transform is then employed to convert the estimated

characteristic function to a density. This method has two difficulties. First, the nonpara-

metric estimation of empirical characteristic function may be sensitive to the selection of

bandwidth. Second, the density obtained from the empirical characteristic function through

inverse Fourier transform is not guaranteed to be positive. Carroll and Hall (2004) propose

two alternative methods, involving kernel and orthogonal series methods, to obtain a low-

order approximation of the target density rather than its consistent estimate. Their methods

only require knowledge of the first few moments of Y and Z. Although our estimator is also

a low-order approximation to the target density, it is equivalent to the quasi-maximum likeli-

hood estimator and minimizes the Kullback-Leibler distance between the target density and

the parametric family (3) to which the proposed estimator belongs.

Lastly, we note that for the deconvolution approximation of the treatment effect distribu-

tion discussed in Section 2, a complication arises as we do not directly observe ri = Di∆i+εi,

though we have an estimate from a regression. Nonetheless, according to White and McDon-

ald (1980), Corollary 2 ensures that under regularity conditions 2.1 to 2.5, when we replace

ri by r̂i, the estimated densities follow the same asymptotic distribution as prescribed by

Corollary 6.

We use Equation (5) for the deconvolution approximation in this study. Because the

maxent density subject to the first two moments is the normal density, if we use only the

first two moments, the proposed estimator is equivalent to a random coefficient model where

the the random coefficients are distributed normally. We also note that the Pearson family

distributions can be completely characterized by their first four moments. Biddel et al.

(2003) use the Pearson family to approximate the treatment distribution. However, their

estimator only allows uni-modal distributions, which limits the applicability of their method.

Our proposed maxent estimator is more flexible and imposes few restrictions on the shape

of the distribution.

16



4 Numerical Performance

In this section, we first present Monte Carlo simulations on the numerical performance of the

proposed deconvolution approximation. We then apply the estimator to a pseudo program

evaluation data to assess its performance of approximating the distribution of individual

treatment effect.

4.1 Monte Carlo Simulations

Following Carroll and Hall (2004), we set E∆ = Eε = 0, σ2
∆ = 4/3 and σ2

ε = 1/3 for all the

distributions. For the target density ∆, we consider the normal distribution, the skew-normal

distribution with skewness parameter 5 and density function 2 φ (x) Φ (5x),7 and a normal

mixture with equal probability of N (1.2, 0.5) and N (−1.2, 0.5). The normal distribution is

the usual baseline case; the skew-normal distribution is used to show the performance of the

estimator under skewness; the mixed normal case demonstrates that the estimator works for

bi-modal distribution. The distributions of the error term include the normal distribution

and the uniform distribution in [−1, 1]. All distributions are scaled to have the prescribed

variances.

In each experiment, we generate two random vectors ∆ and ε of size n, and then set

ri = ∆i + εi, i = 1, . . . , n. The first four moments of ri and εi are used in the deconvolution

to approximate the distribution of the target density ∆. We experiment with two sample

sizes, n = 250 and n = 500. Each experiment is repeated 500 times. For comparison, we

also report the results of Carroll and Hall’s (2004) orthogonal series estimator, which they

show outperforms traditional methods. Their method approximates the target distribution

using the Gram-Charlier expansion through Hermite polynomials, which is also based on the

estimated moments discussed earlier. One drawback of the Gram-Charlier expansion, like

the closely-related Edgeworth expansion, is that it does not guarantee positive densities.

We use the integrated squared errors
∫
{p0 (x)− p̂ (x)}2 dx to gauge the goodness-of-fit,

7With a skewness parameter α, the skew-normal distribution with density 2φ (x) Φ (αx) has mean µ =
α
√

2π/
√

(1 + α2) and variance σ2 = 1− µ2.
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where p0 (x) and p̂ (x) are the theoretical and estimated target densities respectively. The

results are reported in Table 1. Also reported is the mean squared errors (MSE) of the

inter-quartile range, an alternative robust measure of dispersion.

For n = 250, the maxent estimator outperforms the orthogonal series except when the

target density is normal. The better performance of the orthogonal series estimator for

the normal density is to be expected as the Gram-Charlier expansion works best when the

underlying distribution is normal or near-normal. However in empirical work, we have no

reason to assume an unknown distribution is normal. As the target density deviates from

the normal distribution, the performance of the orthogonal series estimator deteriorates

rapidly. When the target density is skewed as in the case of skewed-normal distribution, the

integrated squared errors of the maxent estimator are only about 85% of those of orthogonal

series estimator. For the bi-modal mixed-normal density, this ratio is below 25%. The

performance of both deconvolution estimators is slightly better when the noise distribution

is uniform rather than normal, reflecting the difficulty in filtering the Gaussian noise.

In columns (b) of Table 1, we report the mean squared errors (MSE) of the inter-quartile

range of the two estimated densities. For the normal distribution, the orthogonal series

estimator performs better as it is implicitly based on normal distribution. For the skew-

normal distribution, the MSE of the maxent estimator is about 75% of that of the orthogonal

series estimator. For the bi-modal mixed normal distribution, the MSE of the maxent

estimator is less than 10% of that of the orthogonal series estimator.

The results for n = 500 are qualitatively similar to those for n = 250. Now the two esti-

mators perform nearly equally well even when the target density is the normal distribution,

where the orthogonal series estimator is expected to be competitive.

Overall, our experiments show that the proposed estimator is able to approximate the

target density well and often substantially outperforms existing methods, especially for the

important cases when the target density deviates from the normal distribution.
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4.2 Experiments with Pseudo Program Evaluation Data

In this section, we apply the proposed method to examine a pseudo program evaluation

problem constructed from real data. The data are extracted from the Current Population

Survey Outgoing Rotation Group file of April, 2004. Our sample is restricted to prime-aged,

full-time workers with hourly wage between 5 and 100 dollars. We use the logarithm of wages

in the experiments.

We construct our pseudo program data according to the standard assumptions of the

popular difference-in-difference estimator, where there are two periods, before and after the

treatment, and two randomly assigned groups, the control and treatment group. Hence, to

each individual in the sample, we randomly assign two independent Bernoulli variables with

a 50% probability of success, one indicating “Time” (Ti) and the other indicating “Group”

(Gi). Thus, we randomly divide the sample into four mutually exclusive and exhaustive

groups: a control group in the first period (Ti = 0, Gi = 0), a control group in the second

period (Ti = 1, Gi = 0), a treatment group in the first period (Ti = 0, Gi = 1), and a

treatment group in the second period (Ti = 1, Gi = 1). The sample has 4,266 observations,

so that each group averages slightly over 1,000 observations. The treatment indicator is

Di = TiGi, with Di = 1 if the individual receives the treatment.

To introduce a time effect and a group effect to our data, we add 0.1 to the wage of

each observation with Ti = 1 and 0.1 to that of those with Gi = 1. We then regress

the constructed wage on a vector of social-economic control variables, including: age, age

square, education, education square, sex, union status, plus the time and group dummies.

A normally distributed error term with mean zero and standard deviation 0.1 is added to

the fitted wage from the regression. This constructed wage has a mean 2.59 and a standard

deviation 0.27. Lastly, for each treated individual (those in the treatment group of the second

period), we add a hypothetical treatment effect to the constructed wage. We experiment

with different signal/noise ratios in four experiment designs.

To summarize, the experiment procedure is

1. For individual i in the sample, assign random group and time status Gi and Ti;
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2. Set wi = wi,0 + 0.1Gi + 0.1Ti, where wi,0 is logarithm of original wage rate of the ith

individual in the sample;

3. Regress wi on the social-economic control variables and time and group dummies using

the OLS, denote the fitted value ŵi;

4. Set w∗
i = ŵi +Di∆i + εi, where Di = TiGi, ∆i is the hypothetical individual treatment

effect, and εi is a normal random error with mean zero and variance 0.1.

We use the standard ATE model as the first step of our estimation:

w∗
i = β0 + Xiβ + α1Gi + α2Ti + Di∆̄ + εi, (6)

where Xi is a vector of social-economic characteristics, α1 and α2 capture the group and time

effect, and ∆̄ is the average treatment effect. By construction, the treatment status Di is

independent of the treatment effect ∆i, and the error term is independent of the treatment

status and individual treatment effect. After we compute the moments of the treatment effect

distribution from the residuals of model (6). We estimate the treatment effect distribution

using the maxent density based on the estimated moments.

In our experiments, we consider four different designs for the distribution of individual

treatment effect. First, we randomly generate treatment effects distributed according to

N (0.1, 0.1). The top panel of Figure 1 shows the histogram of the randomly generated

treatment effects used in this experiment and the estimated maxent density. The estimated

density tracks the data closely.

The second experiment involves a non-normal random treatment effect distribution. The

data are generated according to the log-normal distribution, the exponential of which has

mean -2 and standard deviation 0.5. The generated random effect sample for the treatment

group has a mean 0.15 and standard deviation 0.08. The results are reported in the bottom

panel of Figure 2. The approximation is surprisingly good even though the maxent density

subject to the first four moments does not nest the log-normal distribution.8

8The log-normal distribution is a maxent density characterized by moments of log(x) and log(x)2 for
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In the third experiment, we assume that individual treatment effect depends on years of

schooling. We generate a non-random heterogeneous treatment effect distribution according

to the following hypothetical formula

∆i = 0.1 + 0.1× educi − 0.01× educ2
i ,

where educ is the years of schooling. The generated treatment sample has mean 0.17 and

standard deviation 0.17. The top panel of Figure 3 plots the estimated treatment effect dis-

tribution, which is very close to the data used in the experiment. The two modes correspond

to the clusters of high school and college graduates.

In the last experiment, we assume that individual treatment effect depends on the size of

the local labor market, which is captured by the population size of Metropolitan Statistical

Area (MSA). In addition, we allow random noise in the heterogeneous treatment effect. The

key difference from the previous example is that this treatment effect depends on an unknown

variable and therefore cannot be modeled directly even if we know the true data generating

process. We generate this noisy heterogeneous treatment effect using the formula

∆i = 0.05× log(MSAi) + vi,

where MSAi is the size of the metropolitan statistical area in which individual i lives and

vi is an iid random error generated according to a normal distribution with mean zero and

variance 0.1. This constructed individual treatment effect has a mean 0.27 and standard

deviation 0.06. The estimated distribution of the treatment effect is plotted in the bottom

panel of Figure 2. The estimation captures the underling distribution remarkably well, even

though the signal/noise ratio is substantially smaller in this experiment than in the previous

one.

The above experiments show that the proposed method is able to approximate the dis-

tribution of individual treatment effect of various types with a simple functional form. An

x > 0.
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important feature of this method is that one can approximate the distribution closely based

on the higher-order information implied by the ATE model even if the heterogeneous treat-

ment effect depends on variables not included in the first step ATE model and unknown to

the researchers.

5 Empirical Application

In this section, we use the proposed estimator to estimate the impact distribution on earnings

by the U.S. Job Training Partnership Act (JTPA), a large scale U.S. training program.

We use the 4,317 observations in the recent National JTPA Study (NJS). Heckman et al.

(1997) use the same dataset to estimate heterogeneous treatment effects. In the JTPA

program, approved applicants were randomly assigned to treatment or control group. The

treatment included classroom training, on-the-job training and job search assistance to the

disadvantage. The control group was prohibited from receiving JTPA services for 18 months.

Following Heckman et al. (1997), we focus on the earnings of adult women, where the

outcome variable is individual earnings 18 months after the treatment.

We consider three specifications:

1. Unconditional: we compute the unconditional moments of the treatment effect.

2. Conditional: we estimate the moments of treatment effect distribution conditional on

some observable social-economic control variables, including: age, sex, education, race,

marital status, number of children, total family income, past work and welfare history,

and experiment site dummies.

3. Conditional with Interactions: in addition to the variables in (2), we include interac-

tions between the treatment status and age and education.9

The estimated moments of the treatment distribution are reported in Table 2. Consis-

tent with Heckman et al. (1997), all the even moments are positive and therefore we do

9The regression results are available from the authors upon request.
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not reject the independence assumption ε ⊥ ∆ based on estimated moments. Also, the esti-

mated standardized moments satisfy the relationship µ4 > 1 + µ2
3, a necessary condition for

all distributions. All three estimated variances are statistically different from zero, indicat-

ing that the treatment effect is heterogeneous. The conditional variance is slightly smaller

than the unconditional one. Adding the interaction terms with the treatment status barely

changes the variance. Statistical tests do not reject the hypothesis that the three variances

are identical, indicating that most of the variation in the treatment effect distribution can-

not be explained by the covariates used in the interaction terms of our model. Therefore in

this case, the observed individual characteristics offers little insight into the distribution of

individual treatment effect. In contrast, the proposed estimator is suitable for this task as

it imposes few restrictions on the shape of the distribution and is able to approximate the

underlying distribution well, whether the distribution is entirely random or dependent on

unknown factors.

Since all three specifications produce similar results, we focus our discussion on condi-

tional moment estimates without interactions. Figure 3 plots the estimated treatment effect

distribution (solid) with the asymptotic standard errors (dotted). The shape of the dis-

tribution is close to the one reported in Heckman et al. (1997), which use the empirical

characteristic function approach for deconvolution. Also plotted is a normal distribution

with the same mean and variance. The treatment distribution is more concentrated than

the normal but skewed to the right. The Jarque and Bera test of normality rejects the

hypothesis of normality at the 1% level. Hence, the conventional error component estimator

assuming a normal treatment effect distribution will fail to capture some important features

of the underlying impact distribution.

We can use this estimated treatment distribution to answer some interesting questions

about the distributional impact of the program. For example, the median impact is $327,

less than the average treatment effect of $844, suggesting that a relatively small group of

people have received disproportionately large benefits from this program. According to the

estimated treatment effect distribution, 51% of the sample benefit from this program.10

10Using unconditional estimates, Heckman et al. (1997) report that 56% of the population benefit from
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6 Conclusion

The commonly used estimators for program evaluation focus on the average treatment effect.

However, these estimators fail to capture important features of the distribution of heteroge-

nous treatment effects, knowledge of which is instrumental in answering important policy

questions.

In this study, we propose an information-theoretic deconvolution method to approximate

the entire distribution of treatment effect. The method uses higher-order moment infor-

mation implied by the standard average treatment effect estimator and estimates a flexible

distribution using a maximum entropy method. By so doing, one can estimate the distribu-

tion of treatment effect, even if it is entirely random or dependent on unknown covariates.

We derive the asymptotic properties of the proposed deconvolution estimator. Monte Carlo

and numerical examples demonstrate the effectiveness of the proposed estimator as a general

deconvolution method and its promising performance when applied to a program evaluation

problem.

We apply the proposed method to data from the JTPA experimental training program

to estimate the distribution of the treatment effects on individual earnings. Our results

suggest that little variation in the individual treatment can be explained by observables,

highlighting the importance of modeling the treatment effect distribution as a flexible random

process. Slightly more than 50% of the treated population is projected to benefit from this

training program. We find that the impact distribution is substantially right-skewed, so that

the average treatment effect is 2.6 times larger than the median treatment effect. Hence,

examining the entire distribution provides valuable information that is not captured by the

average effect.

this program.
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Appendix

Proof of Theorem 1. Under Assumption 2.1, 2.5 and 2.6, we have for integer k with 1 ≤ k ≤

K,

1

n

n∑
i=1

ε̂k
i

as→ Eεk
i ,

1

n

n∑
i=1

(1−Di)
as→ Pr (Di = 0) > 0.

Then under Assumption 2.3, it follows that

∑n
i=1 (1−Di) r̂k

i∑n
i=1 (1−Di)

as→
1
n

∑n
i=1 ε̂k

i Pr (Di = 0)

Pr (Di = 0)

as→ Eεk
i .

Similarly, under Assumption 2.1 to 2.6, we have

1

n

n∑
i=1

(
∆̂i + ε̂i

)k as→ E (∆i + εi)
k ,

1

n

n∑
i=1

Di
as→ Pr (Di = 1) > 0.

It follows that

∑n
i=1 Dir̂

k
i∑n

i=1 Di

as→
1
n

∑n
i=1

(
∆̂i + ε̂i

)k

Pr (Di=1)

Pr (Di=1)

as→ E (∆i + εi)
k .

Proof of Corollary 2. Substituting ω̂k and ν̂k into the left and right hand side of Equation

(2) and applying Theorem 1 gives the results immediately.

Proof of Theorem 3. The detail proof can be found in White (1982). Basically, given as-

sumption 3.1 to 3.5,

E∇θ log p (Xi, θ
∗) = 0.
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Applying Taylor’s expansion to 1
n

∑n
i=1∇θ log p

(
Xi, θ̂

)
= 0 yields

√
n
(
θ̂ − θ∗

)
+ A (θ∗)−1 n−1/2

n∑
i=1

∇θ log p
(
Xi, θ̂

)
P→ 0.

It then follows that

√
n
(
θ̂ − θ∗

)
d→ N

(
0, A (θ∗)−1 B (θ∗) A (θ∗)−1) .

Given Assumption 3.5, An (θ∗)
as→ A (θ∗). Since θ̂

P→ θ∗ as is proved above, we then have

An

(
θ̂
)

as→ A (θ∗) .

Similarly, we have Bn

(
θ̂
)

as→ B (θ∗) .

Proof of Corollary 4. This corollary is a direct application the delta method.

Proof of Theorem 5. This theorem is implied by Csiszár’s (1975) information projection the-

orem. Since the densities are positive, we have

log
p0 (x)

p (x, θ)
= log

p0 (x)

p
(
x, θ̂
) + log

p
(
x, θ̂
)

p (x, θ)
.

Taking expectation with respect to p0(x) on both sides of yields

∫
p0 (x) log

p0 (x)

p (x, θ)
dx =

∫
p0 (x) log

p0 (x)

p
(
x, θ̂
)dx +

∫
p0 (x) log

p
(
x, θ̂
)

p (x, θ)
dx,

which is equivalent to

D (p0 (x) : p (x, θ)) = D
(
p0 (x) : p

(
x, θ̂
))

+

∫
p0 (x) log

p
(
x, θ̂
)

p (x, θ)
dx.
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Note that

∫
p0 (x) log

p
(
x, θ̂
)

p (x, θ)
dx

=

∫
p0 (x) log p

(
x, θ̂
)

dx−
∫

p0 (x) log p (x, θ) dx

=

∫
p0 (x)

{
K∑

k=1

θ̂kx
k − log

[∫
exp

(
K∑

k=1

θ̂kv
k

)
dv

]}
dx

−
∫

p0 (x)

{
K∑

k=1

θkx
k − log

[∫
exp

(
K∑

k=1

θkv
k

)
dv

]}
dx

=

∫
p
(
x, θ̂
){ K∑

k=1

θ̂kx
k − log

[∫
exp

(
K∑

k=1

θ̂kv
k

)
dv

]}
dx

−
∫

p
(
x, θ̂
){ K∑

k=1

θkx
k − log

[∫
exp

(
K∑

k=1

θkv
k

)
dv

]}
dx

=

∫
p
(
x, θ̂
)

log p
(
x, θ̂
)

dx−
∫

p
(
x, θ̂
)

log p (x, θ) dx

=D
(
p
(
x, θ̂
)

: p (x, θ)
)

.

The third equality holds because p
(
x, θ̂
)

shares the same first 2K moments with p0 (x) . We

then have the Pythagorean-like identity

D (p0 (x) : p (x, θ)) = D
(
p0 (x) : p

(
x, θ̂
))

+ D
(
p
(
x, θ̂
)

: p (x, θ)
)

.

Since D
(
p
(
x, θ̂
)

: p (x, θ)
)
≥ 0, it follows that

D
(
p0 (x) : p

(
x, θ̂
))

≤ D (p0 (x) : p (x, θ)) ,

where the equality holds if and only if p
(
x, θ̂
)

= p (x, θ) everywhere.

Proof of Theorem 6. Under Assumption 3.1 to 3.7, we have µ̃k
as→ µk for k = 1, . . . , K. The

proof then follows exactly as that of Theorem 3.

Proof of Collorary 7. The proof is identical to that of Collorary 4.
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Table 1. Simulation results 

   Maxent  
Density 

Orthogonal 
Series 

N Δ  ε (a) (b) (a) (b) 
250 Normal Normal 0.002 0.011 0.001 0.006 
250 Normal Uniform 0.002 0.011 0.001 0.006 
250 Skew-Normal Normal 0.042 0.643 0.051 0.855 
250 Skew-Normal Uniform 0.042 0.644 0.050 0.837 
250 Mix-Normal Normal 0.029 0.058 0.117 0.688 
250 Mix-Normal Uniform 0.023 0.058 0.118 0.704 
500 Normal Normal 0.001 0.005 0.001 0.003 
500 Normal Uniform 0.001 0.006 0.001 0.003 
500 Skew-Normal Normal 0.041 0.601 0.051 0.861 
500 Skew-Normal Uniform 0.041 0.615 0.051 0.859 
500 Mix-Normal Normal 0.023 0.048 0.117 0.695 
500 Mix-Normal Uniform 0.019 0.048 0.118 0.698 
(a): Integrated squared errors 
(b): Mean squared errors of inter-quartile range 
 
 
 
 
 
Table 2.  Estimated moments of the treatment distribution (unit: $1,000) 

 μ1 μ2 μ3 μ4 s.e. 

Unconditional 0.77 8.75 185.86 6280.52 2.86 

Conditional 0.84 8.61 173.20 7609.69 2.81 

Interaction 0.75 8.51 176.39 7712.65 2.82 
μi: the ith moment of individual treatment effect distribution, i=1,2,3,4 
s.e.: the standard error of individual treatment effect distribution 
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Figure 1: Estimation of random treatment effect distribution
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Figure 2. Estimation of heterogenous treatment effect distribution 
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Figure 3: Estimated treatment effect distribution (solid) with asymptotic standard errors 
(dotted), and normal distribution with identical mean and variance (dashed); unit: $1,000 
 




