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Abstract

Topics in theoretical condensed matter physics

by

Chaitanya R. Murthy

We investigate various topics in theoretical quantum condensed matter physics. First,

we show that a one-dimensional quantum wire with as few as 2 channels of interacting

fermions can host metallic Luttinger liquid states of matter that are stable against all

perturbations up to qth-order in fermion creation/annihilation operators for any fixed

finite q. The leading relevant perturbations are thus complicated operators that are

expected to modify the physics only at very low energies, below accessible temperatures.

The stability of these Luttinger liquid fixed points is due to strong interactions between

the channels, which can (but need not) be chosen to be purely repulsive. Our results

might enable elementary physical realizations of these phases, and may also serve as a

useful paradigm for thinking about higher-dimensional non-Fermi liquids.

Separately, we present an elementary but general description of relaxation to gaussian

and equilibrium generalized Gibbs states in lattice models of fermions or bosons with

quadratic hamiltonians. Our analysis applies to arbitrary initial states that satisfy a

mild condition on clustering of correlations. We obtain quantitive, model-independent

predictions for how quickly local quantities relax in such systems. These predictions can

be tested in near-term quantum gas experiments.

Finally, we study chaotic many-body quantum systems that obey the eigenstate ther-

malization hypothesis (ETH). We show that a known bound on the growth rate of the

out-of-time-order four-point correlator in such systems follows directly from the general

ETH structure of operator matrix elements. This ties together two key paradigms of

ix



thermal behavior in isolated many-body quantum systems. We also consider a biparti-

tion of the system, and study the entanglement properties of an energy eigenstate with

nonzero energy density. When the two subsystems have nearly equal volumes, we find a

universal correction to the entanglement entropy that is proportional to the square root

of the system’s heat capacity (or a sum of capacities, if there are conserved quantities in

addition to energy).
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Chapter 1

Introduction and outline

The branches of physics are differentiated by the nature and scale of the phenomena that

they seek to explain. Condensed matter physics concerns itself with phenomena whose

basic length scales range from nanometers to centimeters. These encompass the vast

majority of material phenomena—that is, phenomena involving inanimate objects—that

we humans encounter in our everyday experience 1. The fundamental equations governing

all ordinary matter are known; these are the equations of electrodynamics and quantum

theory (for most purposes one can also ignore relativity and incorporate only its leading

corrections, such as spin-orbit coupling). But we cannot solve the equations in general.

To quote P. W. Anderson, “the ability to reduce everything to simple fundamental laws

does not imply the ability to start from those laws and reconstruct the universe,” or—

more succinctly and famously—“more is different” [1].

Since the behavior of large and complex “many body” systems is not easily under-

stood by extrapolation of the properties of systems involving a few particles, organizing

1I adopt a suitably broad definition of “condensed matter physics” that includes fluid dynamics,
materials science, and some parts of chemistry. Research in condensed matter often admits a further
coarse classification into either “soft” or “hard” varieties, depending on whether the researchers’ preferred
value for Planck’s constant is h̄ = 0 or h̄ = 1, respectively. In this dissertation, h̄ = 1.
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Introduction and outline Chapter 1

principles are needed [2]. Some of the most important of these, for the physics of many-

body systems near equilibrium, are: 1a) symmetry/symmetry breaking, 1b) topological

order, 2) the notion of elementary excitations, and 3) the renormalization group and

universality. To place the results of this dissertation in a suitable broader context, I now

briefly discuss these basic principles in turn.

Symmetry plays a central role in all branches of physics. In condensed matter, it forms

the basis for the conventional Landau paradigm for describing phases of matter [2]. In

this paradigm, phases are distinguished by a local order parameter that characterizes the

various symmetries that the phase breaks. The Landau paradigm is hugely successful, but

incomplete: there are phases of matter that it fails to describe. Its completion involves the

more modern notion of topological order [3], which may be caricatured mathematically

as “homotopy theory in the space of gapped Hamiltonians” or physically as “the study of

patterns of entanglement in the ground state” (more on entanglement later). Together,

the principles of symmetry breaking and topological order appear to give a satisfactory

theoretical classification of most known phases of matter.

The many body problem in full generality is intractable because it involves a large

number of particles that interact strongly with one another. In many cases, however, it

is possible to describe the low-energy physics of a system of many strongly interacting

particles in terms of some other effective degrees of freedom that are weakly interacting;

the latter are called the elementary excitations of the system [4]. Such a description,

when it exists, is hugely powerful. The prototypical example is Landau’s Fermi liquid

theory, which describes a high-density gas of fermions with strong repulsive interactions in

terms of weakly interacting fermionic quasiparticles (defined only near the Fermi surface)

and long-wavelength bosonic collective modes [5, 6]. Fermi liquid theory explains the

success of the naive Drude-Sommerfeld “free electron” theory of conduction in metals:

2



Introduction and outline Chapter 1

the eponymous “free electrons” are really quasielectrons, whose residual interactions are

weak enough to be treated in the relaxation time approximation [7]. In addition, many

other low-temperature phases can be quantitatively understood as instabilities of the

Fermi liquid, most famously in the BCS theory of superconductivity and its various

extensions [8]. The modern conception of Fermi liquid theory [9] places it within the

general framework of the renormalization group, to which we now turn (historically,

Landau arrived at it via different arguments [10]).

The renormalization group (RG) describes changes in the theory of a physical system

when the system is viewed at different scales [11]. We start with the observation that a

well-defined physical theory describes physics only up to some high-energy “cutoff” scale

2. Then, one can in principle “integrate out” high-energy modes to get a theory that

describes the same system but at lower energy scales. The key insight of the RG is that

it is generally better to do this “integrating out” in many small steps, rather than all

at once 3. In the limit of infinitesimal steps, we obtain a continuous flow (“RG flow”)

in the abstract space of theories. The question of how the physical theory changes as

we change energy scale is thereby mapped to a dynamical systems problem in theory

space, and can be analyzed as such [12]. In particular, one concentrates on the RG flow

in the vicinity of its fixed points; these represent theories that are scale-invariant. Near

a fixed point, the RG flow can be linearized 4. Its eigendirections define a preferred set

of scaling operators at the fixed point, and its eigenvalues define the scaling dimensions

of the associated coupling constants. In some directions the RG flow will be directed

towards the fixed point, in other directions it may be directed away from it, and in

2For the sake of exposition, I consider energy scales, but one could consider length scales instead (the
resulting RG transformation may differ), or something else entirely. The basic principle is the same.

3In other words, the insight is that “physics is local in scale”.
4In some cases, one is forced to retain higher-order terms to properly describe the topology of the

flow in the vicinity of the fixed point (e.g. the Kosterlitz-Thouless transition). The analysis of such
exceptional cases can be systematized using normal form theory [13].

3



Introduction and outline Chapter 1

yet others it may stagnate. These directions correspond to irrelevant, relevant, and

marginal perturbations of the fixed point theory, respectively. Any fixed point which has

few relevant directions and a large basin of attraction 5 is of special importance: the

associated effective theory captures the universal low-energy physics of many distinct

physical systems (all those whose microscopic theories lie in the basin of attraction). If

an effective theory turns out to be a weakly coupled field theory, then the quanta of its

fields may be identified with the elementary excitations discussed earlier [14].

In the RG framework, Fermi liquid theory describes marginal deformations of the

Fermi gas fixed point in spatial dimensions d > 1. Its great success is indicative of a

large basin of attraction. Metallic systems which fall outside the basin—whose properties

cannot be reconciled with Fermi liquid theory—are called non-Fermi liquids. The canon-

ical example of a non-Fermi liquid is the interacting electron gas in d = 1 dimension [15].

The special kinematics of d = 1 preclude well-defined fermionic quasiparticles, but allow

for well-defined bosonic collective modes. The universal physics is then controlled by a

different manifold of fixed points, collectively called Luttinger liquid theory [16], which

is a solvable theory of these bosonic modes.

In Chapter 2, we consider the general question of stability—in the linearized RG sense

discussed above—of multi-component Luttinger liquids (LLs). The one-component LL is

quite fragile: it can always be destabilized by disorder-induced localization or proximity-

induced superconductivity (or both) [15]. We show that this is the exception rather than

the rule. For any number of components N ≥ 2, we find families of LLs that are robust:

the perturbations that might destabilize them can be made arbitrarily complicated, and

hence are expected not to affect the physics at energy scales of practical interest (one

cannot create an infinitely large system and cool it to absolute zero). Our results build

(in particular) on earlier work [17] in which it was shown that, in principle, 23-component

5More precisely, basin of attraction of a small ball in theory space around the fixed point.

4



Introduction and outline Chapter 1

LLs exist that are completely stable (i.e. admit no relevant gap-opening perturbations).

The new results described in Chapter 2 of this thesis provide experimentally realizable

approximations to this “perfect metal” that may provide a valuable platform to study

non-Fermi liquid physics in experiments. The analysis of Chapter 2 is based on the

(standard) technique of Abelian bosonization; for completeness, I have included a short

review of this technique in the technical appendices following the chapter.

In Chapters 3–5, we move away from relative safe haven of low-energy equilibrium

physics and venture into the territory of far-from-equilibrium physics, where significantly

less is known. Here, far from the ground state of the system, the powerful organizing

principles described earlier can no longer be relied upon. The principles that replace them

are still being discovered, and many basic questions remain unanswered. Nevertheless,

one can can still hope to find results that are universal in the sense of broad applicability

and insensitivity to microscopic details. The results described in Chapters 3–5 all have

this flavor of universality.

One of the most venerable puzzles in statistical physics, which has occupied physi-

cists and philosophers since the time of Boltzmann, concerns how to properly reconcile

microscopic determinism with the obvious tendency of most macroscopic systems to ir-

reversibly approach thermal equilibrium. In my opinion, a satisfactory answer to this

question appears only when one realizes that thermalization is a property not of a sys-

tem alone but of the preferred class of physical observables relative to that system 6. In

the case of isolated quantum many-body systems, this leads to the Eigenstate Thermal-

ization Hypothesis (ETH) [18, 19]. The ETH is an ansatz, motivated by quantum chaos

theory, that describes the coarse structure of matrix elements, in the energy eigenstate

basis, of observables in a chaotic quantum system [20]. It has not been proven rigorously,

6This is most obvious in quantum mechanics: projectors onto eigenstates of the Hamiltonian do not
evolve with time, so if they were physically observable, the system would never thermalize. It is equally
true in classical mechanics.
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Introduction and outline Chapter 1

but it is supported by a variety of analytical arguments and by extensive numerical stud-

ies on small systems [21, 22]. The ETH is sufficient to ensure thermalization (in the sense

stated above) from generic physical initial conditions [20].

Having understood (at some level) the eventual fate of a generic thermalizing sys-

tem, we would next like to understand the dynamics of thermalization. This problem is

difficult, and remains very much unsolved. Dynamics is easier to study in integrable sys-

tems, but the same integrability that permits their analysis also ensures that they retain

too much memory of the initial state to ever truly thermalize [23]. Instead, integrable

systems are expected to relax to more complicated equilibrium states, called generalized

Gibbs ensembles (GGEs) [24]. In Chapter 3, we provide a complete analysis and de-

scription of this relaxation process in the simplest class of integrable models: those that

are quadratic in a set of fermion or boson operators. Our analysis is general—we treat

arbitrary initial states that satisfy a weak condition on clustering of correlations—and

leads to a simple and appealing physical picture of the relaxation process. We also obtain

quantitive, model-independent predictions for how quickly local quantities relax in such

systems. Finally, we extend our analysis to cover periodically driven (Floquet) systems.

In Chapter 4, we return to chaotic quantum systems. A defining property of clas-

sical chaos [25] is sensitive dependence on initial conditions, colloquially termed “the

butterfly effect”. In quantum systems, similar sensitivity can be diagnosed using out-of-

time-order four-point correlators (OTOCs), which probe how operator insertions inhibit

cancellation between forward and backward time evolution [26]. In some systems with a

suitable hierarchy of time scales, the OTOC exhibits exponential behavior ∝ eλt at early

times, and the exponent λ may be regarded as a quantum analogue of the Lyapunov

exponent [27]. Maldecena et al. [28] conjectured a sharp bound on how rapidly chaos

can develop in such quantum systems, λ ≤ 2π/β, and were able to prove this “bound

6



Introduction and outline Chapter 1

on chaos” under certain assumptions. The bound is saturated in the SYK model, and

in large-N conformal field theories with gravitational duals, where it is related to the

physics of information scrambling in black holes [29]. In Chapter 4, we show that the

bound λ ≤ 2π/β can be derived from ETH in systems that obey it (and also have the

required hierarchy of time scales). Our proof relies on a quite different set of physical

and mathematical assumptions than that of Maldecena et al., and it ties together two

important paradigms of thermal behavior in chaotic quantum systems.

In contrast to chaos, which manifests both classically and quantumly, entanglement

is uniquely quantum mehcanical [30]. In recent decades, entanglement has played an

increasingly important role in our understanding of phases of matter and the general

low-energy properties of quantum many-body systems [31]. In Chapter 5, we analyt-

ically study the entanglement structure of highly excited eigenstates (at finite energy

density) of lattice models that obey ETH. In the past, Deutsch [32] and others have con-

vincingly argued that the leading term in the bipartite entanglement entropy of a typical

eigenstate of a chaotic quantum system equals the thermodynamic entropy of the smaller

subsystem at the same energy density 7. In Chapter 5, we show that there is a universal

correction to this result that appears when the two subsystems have nearly equal size,

and which is proportional to
√
C, the square root of the heat capacity of the system.

In odd spatial dimensions, this correction therefore scales with a half-integer power of

the linear dimensions of the system (whereas naively, one would expect all corrections

to the entanglement entropy to scale with integer powers of the system size). We also

calculate corrections to the Rényi entropies, obtaining new results for Rényi index n < 1.

In addition, we generalize all of the above results to the case of generic systems that have

a finite number of conserved quantities in addition to the energy.

7In a system with bounded Hilbert space, the infinite-temperature limit of this result agrees with
the well known fact that randomly chosen states in a bipartite Hilbert space are typically maximally
entangled between the subsystems, up to an order-one correction [33].

7



Introduction and outline Chapter 1

In closing, Chapter 6 contains some thoughts regarding promising directions for future

research, based on the work presented in each of the earlier chapters.

1.1 Permissions and Attributions

The content of Chapter 2 is the result of a collaboration with Chetan Nayak, and

has previously appeared in Physical Review Letters [34]. Excluding Appendix 2.A, it is

c© 2020 American Physical Society. The content of Chapters 3, 4, and 5 is the result

of a collaboration with Mark Srednicki; Chapter 4 has previously appeared in Physical

Review Letters [35], while Chapters 3 and 5 have previously appeared in Physical Review

E [36, 37]. The content of these chapters is c© 2019 American Physical Society. All

content is reproduced here with the permission of the American Physical Society (https:

//journals.aps.org/copyrightFAQ.html).
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Chapter 2

Almost perfect metals in one

dimension

In this chapter, we show that a one-dimensional quantum wire with as few as 2 channels

of interacting fermions can host metallic Luttinger liquid states of matter that are stable

against all perturbations up to qth-order in fermion creation/annihilation operators for

any fixed finite q. The leading relevant perturbations are thus complicated operators that

are expected to modify the physics only at very low energies, below accessible temper-

atures. The stability of these Luttinger liquid fixed points is due to strong interactions

between the channels, which can (but need not) be chosen to be purely repulsive. Our

results might enable elementary physical realizations of these phases.

2.1 Introduction

Metallic states of matter are gapless and often unstable to either insulating behavior

or superconductivity. This is especially true in one-dimensional systems, where the lo-

calizing effects of disorder are particularly strong [38]. For a single channel (i.e. a single

9



Almost perfect metals in one dimension Chapter 2

propagating mode of each chirality at the Fermi energy), disorder-induced localization

can only be avoided when the interaction is strongly attractive, while proximity-induced

superconductivity can only be avoided when it is strongly repulsive [15]. The situation is

more complicated—and much more interesting—when there are multiple channels. We

will show that, surprisingly, even for N = 2 channels, it is possible to have a metallic state

that is stable against all perturbations up to qth-order in fermion creation/annihilation

operators for any fixed finite q (but not q =∞), which we call (absolute) q-stability.

Gapless phases of interacting fermions in one dimension are described at low en-

ergies by Luttinger liquid (LL) theory [16]. They exhibit a remarkable and universal

phenomenology that distinguishes them from Fermi liquids, but this is often obscured in

experiments due to dimensional crossover, ordering, or localization [15]. Thus, a physi-

cally realizable stable LL is not only interesting as a matter of principle, but also for the

practical reason that it would provide a useful experimental platform to study non-Fermi

liquid physics.

For N = ∞, it was shown two decades ago in Refs. [39, 40, 41, 42, 43, 44, 45, 46]

that there exist “sliding Luttinger liquid” phases which are stable against many, but not

all, low-order perturbations; it was argued that the relevant perturbations are likely to

have small bare values 1. More recently, it was discovered that it is possible for a one-

dimensional metal to be stable against all non-chiral perturbations (without restriction

on the order) [17]. An explicit construction was given for N = 23 which exploited the

properties of integral quadratic lattices. In this chapter, we show that a slight relaxation

of the condition of complete stability to the weaker condition of q-stability brings the

required number of channels down from 23 to 2, thereby greatly increasing the chances

of experimental realization.

1We restrict attention in this chapter to systems with short-ranged interactions. Long-ranged inter-
actions can also stabilize a Luttinger liquid against a 2kF potential and disorder [47]

10



Almost perfect metals in one dimension Chapter 2

The basic observation underlying the results of this chapter and of Ref. [17] is that

the possible perturbations of an N -channel LL can be represented as lattice points in a

fictitious 2N -dimensional space equipped with two different metrics: the mixed-signature

(N,N) metric diag(−IN , IN) and the Euclidean metric I2N , where IN is the N ×N iden-

tity matrix. The mixed-signature interval from the origin to a lattice point measures the

chirality of the associated perturbation, while the Euclidean interval measures its scaling

dimension; points sufficiently far from the origin are irrelevant in the renormalization

group (RG) sense. The lattice is naturally graded into “shells” consisting of perturba-

tions of a given order; low-order perturbations belong to the inner shells. The effect of

interactions is to deform the lattice by an SO(N,N) transformation 2. For N = 1, the de-

formation is a Lorentz boost that is “aligned” with the lattice; such a boost unavoidably

pulls one of the innermost lattice points closer to the origin, enhancing the susceptibility

of the system to either localization or induced superconductivity. For N ≥ 2, on the

other hand, the boosts can be “misaligned” with the lattice planes in such a way that

all lattice points in the innermost q shells are pushed away from the origin, making the

corresponding perturbations irrelevant.

Remarkably, these absolutely q-stable phases can occur even for purely repulsive

interactions. Two-channel repulsive LLs can occur in a number of different contexts.

One simple example, with sufficient generality to permit the phases described here, is

a single-spinful-channel quantum wire with strong spin-orbit coupling. In this case, the

two Fermi points of each chirality have different Fermi momenta and velocities, and

the interactions between the densities at the different Fermi points are not excessively

constrained by symmetries. Our construction shows that, for any fixed finite q, there exist

purely repulsive local interactions for which such a metallic state is absolutely q-stable.

2The Lie group SO(N,N) consists of all matricesA ∈ R2N×2N that satisfyAKAT = K and detA = 1,
where K = diag(−IN , IN ).
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2.2 Model and Definitions

Consider a system of interacting fermions in a 1D quantum wire. At low energies,

the effective theory of the system involves 2N chiral spinless Dirac fermions ψI , where

ψ†I (ψ†I+N) creates a right-moving (left-moving) excitation about the Fermi point kF,I

(kF,I+N), with Fermi velocity vI > 0 (vI+N < 0). The index I distinguishes different

bands, accounting for both spin and quantization of the transverse motion. The effective

action is given by Seff = S0 + Sint + Spert, where

S0 + Sint =

∫
dt dx

[
ψ†I i(∂t + vI∂x)ψI − UIJ ρI ρJ

]
. (2.1)

Here, the indices I, J are implicitly summed from 1 to 2N , ρI ≡ ψ†IψI , and the real

symmetric 2N × 2N matrix U parametrizes all density-density interactions. All other

interaction terms, as well as any quadratic terms accounting for dispersion nonlinearities,

are packaged into Spert. If the system is perturbed in any way, for instance by introduc-

ing disorder or by proximity-coupling the wire to an external 3D superconductor, the

appropriate terms are also included in Spert.

The first part of the action, S = S0 + Sint, describes a gapless N -channel Luttinger

liquid. S can be treated non-perturbatively via the method of bosonization [48]. For

completeness, we review it in Appendix 2.A. Introducing a chiral boson φI for each chiral

fermion ψI , we obtain the bosonic representation

S =
1

4π

∫
dt dx

[
KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ

]
, (2.2)

with K = diag(−IN , IN) and VIJ = |vI |δIJ + 1
π
UIJ . The fermion operators are given

in terms of the bosons by ψ†I = (2πa)−1/2e∓iφIγI , where the sign is − (+) for I ≤ N

(I > N), a is a short-distance cutoff, and the Klein factors γI satisfy γIγJ = −γJγI for

12
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I 6= J .

The LL action (2.2) is a fixed point under RG flow, parameterized by the symmetric

positive definite 2N×2N matrix V . Our results are based on a systematic linear stability

analysis of these fixed points S[V ]. A generic perturbation of S[V ] has the form

S ′ =

∫
dt dx

[
ξ(x)O(t, x) + ξ∗(x)O†(t, x)

]
, (2.3)

where O is a local bosonic operator and ξ(x) is an appropriate function. It is natural to

distinguish three types of perturbation: (i) global perturbations, in which ξ(x) = geiα is

constant in space, (ii) random ones, in which ξ(x) is a Gaussian random variable with

ξ(x) = 0 and ξ∗(x)ξ(x′) =
√
g δ(x−x′), and (iii) local ones, in which ξ(x) = geiαδ(x−x0)

acts only at a point. In each case, the linearized RG equation specifying how the coupling

constant g changes with the energy scale Λ is

d ln g

d ln Λ
= ∆− deff, (2.4)

where deff = 2, 3
2
, 1 for global, random, or local perturbations respectively, and where ∆

is the scaling dimension of O. The perturbation is relevant if ∆ < deff, marginal (at

tree-level) if ∆ = deff, and irrelevant if ∆ > deff.

The quadratic action (2.2) can be destabilized by localization or the opening of a gap,

either of which can be caused by a relevant perturbation (2.3) if O is a vertex operator

Om ≡ eimIφI , where m ∈ Z2N (we suppress cutoff factors for brevity) 3. The operator

3Besides vertex operators, the other local bosonic operators in the theory are the currents ∂xφI . These
have dimension ∆ = 1, so terms linear in ∂xφI are relevant. In fermionic language, they correspond to
chemical potential terms. However, such terms can be removed from the action via an appropriate x-
dependent shift of the fields φI (correspondingly, a shift of the Fermi wavevectors kF,I). Terms quadratic
in ∂xφI are exactly marginal; these are already included in S[V ]. Cubic and higher terms are irrelevant.
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Om is bosonic if and only if its conformal spin,

K(m) = 1
2
mTKm, (2.5)

is an integer. At the fixed point S[V ], the scaling dimension of Om is

∆(m) = 1
2
mTMm, (2.6)

where M = ATA, and A ∈ SO(N,N) diagonalizes the interaction matrix, AVAT =

diag(ui); for a derivation of Eq. (2.6), see Appendix 2.A.6. Although V does not uniquely

determine A by this criterion, it does uniquely determine M = ATA, so the right side of

Eq. (2.6) is well-defined (a proof of this assertion, and a detailed characterization of the

map from V to M , is given in Appendix 2.B). Given any M , the set of corresponding

interaction matrices can be parameterized as

V = M−1/2

X 0

0 Y

M−1/2, (2.7)

where X and Y are arbitrary symmetric positive definite N × N matrices, and M−1/2

is the unique positive definite square root of M−1 (see Appendix 2.B for details; in

particular, Lemma 3 proves the validity of the parameterization (2.7), and Section 2.B.2

provides some intuition for it). This parameterization of V is closely related to, but

distinct from, the one used in Refs. [49, 50].

Note that, since K = AKAT and
∣∣zTKz

∣∣ ≤ ‖z‖2, where ‖·‖ denotes the Euclidean

norm, the quadratic forms ∆(m) and K(m) obey the inequality

∆(m) ≥ |K(m)|. (2.8)
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Thus, only perturbations that involve operators Om with conformal spin K(m) = 0,±1

have a chance of being relevant; those with K(m) = ±2 can be at most marginal at

tree-level, while higher-spin perturbations are irrelevant on the entire manifold of fixed

points S[V ].

We define two notions of stability of a LL fixed point S[V ]. We say that it is ∞-

stable if all non-chiral (i.e. K(m) = 0) perturbations are irrelevant at S[V ]. We say

that it is absolutely ∞-stable if all chiral (i.e. K(m) 6= 0) perturbations are irrelevant

as well 4. The scaling dimensions are continuous functions of V , so each stable fixed

point belongs to a stable phase. ∞-stable phases cannot exist when the LL has only

N = 1 channel. They can be shown to exist—by explicit construction—when N ≥ 23

[17]. In the intermediate range, 1 < N < 23, the existence of∞-stable phases remains an

open question at this time. Meanwhile, upper bounds on the density of high-dimensional

sphere packings [51] imply that absolutely ∞-stable phases cannot exist with N < 11

channels. It is again possible to show—by explicit construction—that they do exist when

N is sufficiently large. For completeness, we discuss these matters in more detail in

Appendices 2.E and 2.F.

From a physical point of view, however, the notions of stability introduced above are

unnecessarily restrictive. If there are physical reasons to expect the bare value g0 of a

relevant coupling to be small, then although this coupling will eventually destabilize the

metallic state, this will only happen at very low temperatures T ∼ Λ0 g
1/(deff−∆)
0 . We

expect g0 to be small for perturbations that are sufficiently high-order in the fermion

fields. This is based on the assumption that such terms are not appreciably generated

during RG flow from the underlying microscopic theory (which only has terms up to

quartic order) to the effective theory Seff which describes the system at energies ∼ Λ0.

4Chiral perturbations cannot themselves lead to an energy gap, but one might worry that such
perturbations, if relevant, will grow large enough to affect the scaling dimensions of nonchiral operators.
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Each vertex operator Om in the bosonic formulation corresponds to terms that are

|m|th-order in the fermion fields, where |m| ≡ ∑2N
I=1 |mI |. We say that the fixed point

S[V ] is q-stable if q is the largest integer such that all non-chiral perturbations of S[V ]

with |m| ≤ q are irrelevant. We say that it is absolutely q-stable if q is the largest

integer such that all perturbations with |m| ≤ q are irrelevant. Our earlier notions of

stability are the limiting cases q =∞. Based on the comments in the previous paragraph,

it is plausible that, in any real system, there will be no observable difference between

q-stability and ∞-stability at accessible temperatures if q is sufficiently large 5.

2.3 Relation to Integral Quadratic Lattices

As described in the Introduction to this chapter, there is a beautiful geometric picture

associated with all of this. To any interaction matrix V diagonalized by A ∈ SO(N,N),

we associate a lattice AZ2N ≡ {Am | m ∈ Z2N} in a fictitious R2N equipped with

two metrics: the mixed-signature (N,N) metric K = diag(−IN , IN) and the Euclidean

metric I2N . The scaling dimension of an operator is equal to half the Euclidean interval

from the origin to the associated lattice point, ∆(m) = 1
2
‖Am‖2. There are three

“spheres of relevance” centered at the origin, with Euclidean radii
√

2deff = 2,
√

3,
√

2;

any lattice point inside these spheres represents a perturbation that is relevant if it is

global, random, or local, respectively. The chirality (i.e. conformal spin) of an operator

is equal to half the mixed-signature interval from the origin to the associated lattice

point; chiral operators correspond to “spacelike” or “timelike” intervals, and non-chiral

operators to “lightlike” (null) intervals. The lattice is naturally graded into “shells” of

fixed |m| ≡∑2N
I=1 |mI |, which equals the order of the corresponding perturbation Om in

5Even if this assumption turns out to be false, a q-stable phase can be expected to exhibit novel and
exotic instabilities, since all the usual instabilities correspond to operators with small |m|.
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Figure 2.1: Lattice of perturbations for an N = 1 channel LL. Large dots are bosonic
operators, while small gray dots are fermionic ones; the latter can be ignored. A per-
turbation is relevant if it falls within the appropriate circle ( global, random,

local). The lattice shown is Z2, corresponding to the noninteracting fixed point,
λ = 0. With attractive interactions, λ < 0, the lattice deforms as indicated by the
flow field. With repulsive interactions, λ > 0, the flow is in the opposite direction.

the fermion fields. Bosonic operators have even |m|. The fixed point S[V ] is q-stable if no

lightlike even lattice point in the innermost q shells falls within the sphere of Euclidean

radius 2 centered at the origin. It is absolutely q-stable if the same also holds for spacelike

and timelike even lattice points in these shells.

Figure 2.1 illustrates these ideas in the simplest case, that of N = 1 channel. The

matrix A ∈ SO(1, 1) then describes a boost (hyperbolic rotation) of the plane, and

can be parameterized as A(λ) = e−(λ/2)σx . At the noninteracting fixed point, λ = 0,

the most relevant perturbations couple OSC ≡ ψ†Rψ
†
L ∼ ei(−φ1+φ2) to an external 3D

superconductor, or OCDW ≡ ψRψ
†
L ∼ ei(φ1+φ2) to a periodic potential. The corresponding

lattice points are m = (−1, 1) and m = (1, 1) respectively. When λ = 0, both operators

have ∆ = 1, so both perturbations are relevant; the associated instabilities are induced

superconductivity (SC) and a pinned charge density wave (CDW) respectively. When
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interactions are turned on, so that λ 6= 0, the lattice deforms to A(λ)Z2 as indicated

in the Figure. Thus, λ < 0 makes OCDW less relevant but OSC more relevant, while

λ > 0 does the opposite. The interaction matrix V can be parametrized as in Eq. (2.7),

with X = u1 > 0, Y = u2 > 0, and M1/2 = A(−λ) = e(λ/2)σx ; its off-diagonal element

is V12 = 1
2
(u1 + u2) sinhλ. Thus, λ < 0 (λ > 0) corresponds to attractive (repulsive)

interactions, and we reproduce the well-known phenomenology of the 1-channel Luttinger

liquid [15]. Clearly, stability is impossible with just N = 1 channel.

2.4 Stable Luttinger Liquids

We now turn to the general case of N channels. Our approach is to study all pos-

sible scaling dimension matrices M . After we have identified some M ’s of interest, we

reconstruct the corresponding V ’s using Eq. (2.7).

A useful structure theorem for SO(N,N), called the hyperbolic cosine-sine (CS) de-

composition [52], ensures that M can be written as a product of independent boosts in

orthogonal planes:

M =

QT
1 0

0 QT
2


 C −S

−S C


Q1 0

0 Q2

 , (2.9)

where Q1, Q2 ∈ SO(N), C = diag(coshλi), and S = diag(sinhλi), with λi ∈ R, i =

1, 2, . . . , N .

The crucial geometric fact distinguishing N ≥ 2 from N = 1 is that the boost planes

of M can be rotated out of alignment with the lattice planes of Z2N by suitably chosen

Qi. As a consequence, we have:

Theorem 1. For N ≥ 2, absolutely q-stable phases exist for any finite q.

Proof. Take λi = λ in the expression (2.9) for M , and let m = (mR,mL), with mR/L ∈
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ZN . If either mR or mL vanishes, then ∆(m) = 1
2
‖m‖2 coshλ > 2 for λ > arccosh 2. If

neither mR nor mL vanishes, we can rewrite the inequality ∆(m) > 2 as

∣∣m̂T
RQm̂L

∣∣ < f
(‖mR‖
‖mL‖

)
cothλ− 2 cschλ

‖mR‖‖mL‖
, (2.10)

where Q ≡ QT
1Q2 ∈ SO(N), m̂ν ≡ mν/‖mν‖ and f(x) ≡ 1

2
(x + x−1). There are a

finite number of vectors m ∈ Z2N that satisfy |m| ≤ q, so the unit vectors m̂R/L in

Eq. (2.10) belong to a finite set Ωq. This set cannot fill the unit sphere densely, so there

exists Q ∈ SO(N) and ε > 0 such that |m̂T
RQm̂L| < 1 − ε for all m̂R/L ∈ Ωq. But

f(x) cothλ > 1 for any x, λ > 0, while cschλ → 0 as λ → ∞. Thus the right side of

Eq. (2.10) is greater than 1− ε for sufficiently large λ.

In the N = 2 channel case, M is parameterized, according to Eq. (2.9), by two

rapidities (λ1, λ2) and two angles (θ1, θ2, where θi is the rotation angle of Qi ∈ SO(2)).

It is convenient to write these as

λ1,2 = δ ± λ, θ1,2 = 1
2
(θ ∓ α). (2.11)

In the limit δ → 0, the dependence on α disappears. The full parameterization of M is

written down explicitly in Appendix 2.H.1.

We construct an “absolute q-stability phase diagram” for the 2-channel LL by as-

signing to each point (λ, δ, θ, α) in the resulting parameter space its absolute q-stability

value, q. Figure 2.2 shows the δ = 0 slice of this diagram; other slices may be found

in Appendix 2.I. Each point in the phase diagram corresponds to a 6-parameter family

of interaction matrices V , which can be obtained using Eq. (2.7). The resulting general

expression for V is given in Appendix 2.H.2. Here, we concentrate on the particular case

in which the diagonal blocks VRR and VLL are equal, and δ = 0 (see Appendix 2.H.3 for
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Figure 2.2: A slice of the absolute q-stability phase diagram for the N = 2 channel
LL. Each point on the plot is assigned the largest integer q such that all perturbations
with |m| ≤ q are irrelevant for those parameter values (λ, θ). The diagram is identical
for θ 7→ θ + nπ/2.

details). In this case,

V =



v+ w c+ c0

w v− c0 c−

c+ c0 v+ w

c0 c− w v−


, (2.12)

where v± = v ± u,

c± = (w sin θ ± v± cos θ) tanhλ, (2.13a)

c0 = v sin θ tanhλ. (2.13b)

The parameters v, u, and w do not affect scaling dimensions; they can be chosen arbi-

trarily subject only to the constraint that V must be positive definite, which requires
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v > 0 and

(u sin θ − w cos θ)2 cosh2λ+ (u cos θ + w sin θ)2 < v2. (2.14)

If in addition θ ∈ [0, π] and

u cos θ + w sin θ ≥ v|cos θ|, (2.15)

then every entry in the V matrix is nonnegative. Note that the above inequalities can

be satisfied simultaneously—the first defines the interior of an ellipse in the (u/v, w/v)

plane, and the second selects a segment of this ellipse. Thus, we can realize any of the

absolutely q-stable phases in Figure 2.2 with purely repulsive interactions.

The 2-channel LLs defined by Eqs. (2.2) and (2.12–2.15) can in principle be realized

in a single-spinful-channel quantum wire with either time-reversal or spatial inversion

symmetry, but not both; see Appendix 2.C for details. (We hasten to emphasize that

these LL phases are q-stable with respect to perturbations that break the symmetry as

well.) If the system also has spin-rotation symmetry about some axis, one can reformulate

the effective action in terms of non-chiral charge and spin fields [15], as described in

Appendix 2.G. In the time-reversal invariant case, the corresponding Hamiltonian takes

the form

H =
1

2π

∫
dx

[
vcKc(πΠc)

2 +
vc
Kc

(∂xϕc)
2 + vsKs(πΠs)

2 +
vs
Ks

(∂xϕs)
2

+ d+(πΠc)∂xϕs + d−(πΠs)∂xϕc

]
, (2.16)

where ϕc(s) is the charge (spin) phase field, with conjugate momentum density Πc(s). The

parameters vc(s), Kc(s), d± are simple functions of v±, w, c±, c0; the expressions are given

in Appendix 2.G. The q-stable phases identified in this work require d+ 6= d−. Standard
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treatments of a spin-orbit-coupled LL, such as Ref. [53], make the additional assumption

that interactions are pointlike; this leads to Eq. (2.16) with d+ = d−. However, d+ 6= d−

is perfectly consistent with the symmetries of the problem, and appears naturally if one

allows for more general short-range interactions.

2.5 Conclusions

As we have seen in this chapter, the 1-channel Luttinger liquid is the exception. For

any number of channels N > 1—including even N = 2—there are parameter regimes

in which, for any desired finite q, all instabilities up to q-th order in electron operators

are kept at bay. These phases are, in some sense, better examples of non-Fermi liquids

than the 1-channel LL since they do not have a tendency to order frustrated only by low

dimension. We cannot take q = ∞, so these states will eventually be unstable, but this

may not occur until unobservably low temperatures. Moreover, it is much more likely

that it will be possible to tune the parameters of an N = 2 channel Luttinger liquid

into the necessary regime in an experiment than it would be for N = 23, which appears

to be necessary for q = ∞. Thus, the work described in this chapter may facilitate the

observation of these phases in experiments and may serve as a useful paradigm for think-

ing about higher-dimensional non-Fermi liquids. Our results can also be translated into

statements about stable phases of classical 2-dimensional or layered 3-dimensional sys-

tems; it would be interesting to explore the consequences for particular classical systems

of experimental interest.
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Appendices

2.A Abelian bosonization

In this section, I review the method of abelian bosonization, following the constructive

approach described by von Delft and Schoeller [48] (who in turn mostly followed and

simplified Haldane [16]). I set h̄ = 1 throughout. I work everything out in detail for a

single chiral fermion. The generalization to multiple species is a straightforward exercise

in bookkeeping, and I merely state the results. Note that my normalization and sign

conventions differ from those of Ref. [48] in several places.

2.A.1 Setup of the (fermionic) problem

The starting point is a set of fermion operators ck indexed by a discrete and unbounded

momentum index k ∈ (2π/L)Z (this is appropriate for periodic boundary conditions; I

ignore most boundary effects). These operators obey the standard anti-commutation

relations

{ck, ck′} = 0, (2.17a)

{ck, c†k′} = δkk′ . (2.17b)
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The associated number operators are

n̂k ≡ c†kck. (2.18)

The fermion vacuum |0〉 is defined as the Dirac sea with all k > 0 levels empty and

all k ≤ 0 levels occupied:

ck |0〉 = 0 for k > 0, (2.19a)

c†k |0〉 = 0 for k ≤ 0. (2.19b)

Note that |0〉 is the (grand canonical) ground state, at chemical potential µ = 0, of

any hamiltonian of the form H0 =
∑

k εkn̂k, as long as εk is a monotonically increasing

function of k that changes sign at k = 0+. The fermion Fock space H is (heuristically)

the set of states obtained by acting on |0〉 with arbitrary combinations of the ck’s and

c†k’s. Fermion-normal-ordering is defined with respect to |0〉; to fermion-normal-order a

function of the ck’s and c†k’s, one moves all ck’s with k > 0 and all c†k’s with k ≤ 0 to

the right of all other operators. The fermion-normal-ordered form of an operator A will

be denoted :A:. The operator that counts the total number of fermions, relative to the

Dirac sea |0〉, is

N̂ ≡
∑
k

:n̂k: . (2.20)

Here and below,
∑

k means a sum over all k ∈ (2π/L)Z.

The set of all states with N̂ -eigenvalue N is called the N-particle Hilbert space HN .

The full Fock space splits as H =
⊕

N∈ZHN . The N-particle ground state |N〉 ∈ HN is
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defined as:

|N〉 ≡


c†kN · · · c

†
k2
c†k1
|0〉 if N > 0,

|0〉 if N = 0,

ckN+1
· · · ck−1ck0 |0〉 if N < 0,

(2.21)

where kn ≡ 2πn/L. Thus, |N〉 is indeed the N -particle ground state of H0, with N

measured relative to |0〉.

The fermion field ψ(x) is defined in terms of the ck’s as

ψ(x) ≡ 1√
L

∑
k

eikxck, (2.22)

where x ∈ [−L/2, L/2]. The inverse transformation is

ck =
1√
L

∫
dx e−ikxψ(x). (2.23)

Here and below,
∫
dx is shorthand for

∫ L/2
−L/2 dx. The fermion field obeys the anti-

commutation relations

{ψ(x), ψ(x′)} = 0, (2.24a)

{ψ(x), ψ†(x′)} = δ(x− x′). (2.24b)

Note that, with the definitions above, the fermion field ψ(x) is right-moving ; in the

Heisenberg picture of H0 =
∑

k vk n̂k, one has ψ(x, t) = ψ(x− vt, 0).
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2.A.2 Bosonic operators and their properties

One can define bosonic particle-hole operators indexed by q ∈ (2π/L)Z+:

bq ≡ −i
(

2π

Lq

)1/2∑
k

c†k−qck. (2.25)

Again, these are only defined for q > 0. They obey the commutation relations

[bq, N̂ ] = 0, (2.26a)

[bq, bq′ ] = 0, (2.26b)

[bq, b
†
q′ ] = δqq′ . (2.26c)

The first one is obvious, since each term in bq commutes with N̂ . The second is straight-

forward to verify. The third requires some care; one can only cancel terms that are

normal-ordered (otherwise each term might be infinite). This is only an issue when

q = q′:

[bq, b
†
q] =

2π

Lq

∑
k

(
c†kck − c†k+qck+q

)
=

2π

Lq

∑
k

(
:n̂k: − :n̂k+q: + 〈n̂k〉0 − 〈n̂k+q〉0

)
.

The normal-ordered terms cancel upon shifting k → k − q in the second one. The

remaining sum gives 1 (since 〈n̂k〉0 − 〈n̂k+q〉0 = 1 for k ∈ [−q, 0) and 0 otherwise).

Acting on |N〉, the operator b†q creates a linear combination of particle-hole excitations

with momentum q. The bq’s annihilate the N -particle ground states:

bq |N〉 = 0. (2.27)
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Boson-normal-ordering is defined with respect to these states: to boson-normal-order a

function of the bq’s and b†q’s, one moves all bq’s to the right of all b†q’s. The boson-normal-

ordered form of a bosonic operator B will be denoted :B:. It is easy to check that an

expression consisting purely of boson operators is boson-normal-ordered if and only if it

is fermion-normal-ordered (hence the same notation).

Let FbN denote the set of states obtained by acting on |N〉 with arbitrary combinations

of the b†q’s. FbN is spanned by the set of orthonormal basis states

|N ; {mq}〉 ≡
∏
q>0

(b†q)
mq√
mq!
|N〉 . (2.28)

Here and below,
∏

q>0 means a product over all q ∈ (2π/L)Z+. The justification for the

entire bosonization technique rests on the following result (a self-contained proof is given

later, in Appendix 2.A.7):

Theorem 2. FbN = HN .

To complete the bosonic representation, one needs Klein factors F † and F that raise

or lower the total fermion number by one (and thus connect the different HN sectors) 6.

These may be defined in the basis (2.28) as:

F ≡
∑
N∈Z

∑
{mq}

|N − 1; {mq}〉〈N ; {mq}| . (2.29)

6Note that, in the main text of the chapter, we denoted the Klein factors by γ instead of F .
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The Klein factors obey

[N̂ , F †] = F †, (2.30a)

[bq, F
†] = [b†q, F

†] = 0, (2.30b)

FF † = F †F = 1. (2.30c)

At this stage, the bosonic representation has been established in principle. By acting

on |0〉 with suitable combinations of the Klein factors and the b†q’s, we can reach any

state in the fermionic Fock space H. It follows that the ck’s and c†k’s have bosonic

representations. In practice, however, it is more convenient to work with the Fourier

transforms (field operators).

The hermitian bosonic field is defined as

φ(x) ≡ ϕ(x) + ϕ†(x), (2.31)

where

ϕ(x) ≡
∑
q>0

(
2π

Lq

)1/2

eiqx−aq/2 bq. (2.32)

Here and below,
∑

q>0 or
∑

q mean a sum over all q ∈ (2π/L)Z+ or all q ∈ (2π/L)Z,

respectively. a > 0 is an infinitesimal UV regularization parameter. According to Hal-

dane, a “in no way plays the role of a cut-off length.” However, 1/a can be interpreted

as a kind of “effective band-width” [16, 48].

The boson fields obey the commutation relations

[ϕ(x), ϕ(x′)] = 0, (2.33a)

[ϕ(x), ϕ†(x′)] = − log
(
1− e−2πz̄/L

)
, (2.33b)
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where z̄ is the complex conjugate of

z ≡ a+ i(x− x′). (2.34)

The argument of the logarithm is always in the right half plane; the branch cut can be

taken along the negative real axis. As L→∞,

[ϕ(x), ϕ†(x′)] ∼ − log(2πz̄/L). (2.35)

It follows from Eq. (2.33) that

[φ(x), φ(x′)] = log

(
1− e−2πz/L

1− e−2πz̄/L

)
= log(z/z̄)− π

L
(z − z̄) + · · ·

∼ 2i arctan

(
x− x′
a

)
− 2πi

L
(x− x′). (2.36)

In the limit a→ 0, this reduces to

[φ(x), φ(x′)] ∼ iπ sgn(x− x′)− 2πi

L
(x− x′). (2.37)

Finally, differentiating Eq. (2.36) with respect to x′, we obtain

[φ(x), ∂x′φ(x′)] ∼ −2πi

[
1

π

a

(x− x′)2 + a2
− 1

L

]
. (2.38)

As a→ 0, the first term in brackets reduces to δ(x−x′). The 1/L correction ensures that

the commutator is consistent with
∫
dx′ ∂x′φ(x′) = φ(L/2) − φ(−L/2) = 0, as required

by periodic boundary conditions. When performing calculations it is always safest to use

the commutator formulae with a finite, and to only take a→ 0 (if possible) at the end.
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Note that, with the definitions above, the boson fields are also right-moving ; in the

Heisenberg picture of H0 =
∑

k vk n̂k, one has ϕ(x, t) = ϕ(x − vt, 0), as can be verified

using Eqs. (2.25) and (2.32).

2.A.3 The bosonization formulae

The fundamental “bosonization formula” expresses the fermion field ψ(x) in terms of

operators that have simple representations in the bosonic basis (2.28): the boson field

φ(x), Klein factor F , and total number operator N̂ . Almost as useful (and much easier

to derive) is the bosonic representation of the normal-ordered electron density,

ρ(x) ≡ :ψ†(x)ψ(x): =
1

L

∑
q

eiqx
∑
k

:c†k−qck: (2.39)

(the summand is already normal-ordered for q 6= 0). In terms of the boson operators,

one has

ρ(x) = i
∑
q>0

( q

2πL

)1/2 (
eiqxbq − e−iqxb†q

)
+

1

L

∑
k

:nk:,

and thus

ρ(x) =
1

2π
∂xφ(x) +

N̂

L
. (2.40)

This is the first “practical formula” of bosonization. It holds for a→ 0 on the right side

of the equation. In the limit L→∞, the second term can be dropped (since N̂ measures

fermion number relative to the Dirac sea).

The bosonic representation of ψ(x) is derived by studying its action on arbitrary

states in HN , starting with the N -particle ground state |N〉. It is easy to verify (from
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the definitions) that

[bq, ψ(x)] = αq(x)ψ(x), (2.41a)

[b†q, ψ(x)] = α∗q(x)ψ(x), (2.41b)

where

αq(x) ≡ i

(
2π

Lq

)1/2

e−iqx. (2.42)

Since bq |N〉 = 0, this implies

bqψ(x)|N〉 = αq(x)ψ(x)|N〉 . (2.43)

Thus ψ(x)|N〉 is a simultaneous eigenstate of all the bq’s, with eigenvalues αq(x). It must

therefore have a coherent state representation of the form

ψ(x)|N〉 = λN(x)F e
∑
q>0 αq(x)b†q |N〉 , (2.44)

where λN(x) is a complex-valued function of N and x, and the Klein factor F is needed

to decrease the total number of fermions in the state by one. Projecting the equation

onto |N − 1〉, and noting that 〈N − 1|F e
∑
q>0 αqb

†
q = 〈N |, we obtain

λN(x) = 〈N − 1|ψ(x)|N〉 =
eikNx√
L
, (2.45)

where kN = 2πN/L. Thus, in the limit a→ 0,

ψ(x)|N〉 =
1√
L
Fei2πN̂x/L eiϕ

†(x) |N〉 . (2.46)

Here, I commuted the factor eikNx past F and wrote it as an operator acting on |N〉. It
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is convenient to define

F (x) ≡ Fei2πN̂x/L (2.47)

and to regard the exponential as the x-dependence of the Klein factor.

Having determined the action of ψ(x) on |N〉, one can determine its action on an

arbitrary state in HN . By Theorem 2, any state in HN can be written as f({b†q}) |N〉,

for some function f . Using Eq. (2.41b), one has

ψ(x)b†q = (b†q − α∗q(x))ψ(x). (2.48)

Therefore,

ψ(x)f({b†q}) |N〉 = f({b†q − α∗q(x)})ψ(x) |N〉

=
1√
L
F (x)eiϕ

†(x)f({b†q − α∗q(x)}) |N〉 .

The second equality holds because F (x) and ϕ†(x) commute with the b†q’s. From the

definition of ϕ(x), one has, in the limit a→ 0:

[ϕ(x), b†q] = iα∗q(x), (2.49)

and so

eiϕ(x) b†q e
−iϕ(x) = b†q − α∗q(x). (2.50)

Thus,

f({b†q − α∗q(x)}) |N〉 = eiϕ(x)f({b†q}) e−iϕ(x) |N〉

= eiϕ(x)f({b†q}) |N〉 .
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The second equality holds because ϕ(x) annihilates |N〉. Combining this with the inter-

mediate result above, one gets

ψ(x)f({b†q}) |N〉 =
1√
L
F (x)eiϕ

†(x)eiϕ(x)f({b†q}) |N〉 .

This holds for arbitrary states of the form f({b†q}) |N〉. By Theorem 2, these states span

the fermion Fock space H. Thus the bosonization formula

ψ(x) =
1√
L
F (x)eiϕ

†(x)eiϕ(x) (2.51)

holds as an operator identity in H. The right hand side is normal-ordered, and can be

evaluated with a = 0. There is also the (more common) un-normal-ordered version:

ψ(x) =
1√
2πa

F (x)eiφ(x). (2.52)

This form obviously requires a > 0. The equivalence of Eqs. (2.51) and (2.52) follows from

the Baker-Campbell-Hausdorff (BCH) formula and Eq. (2.35); eiϕ
†
eiϕ = ei(ϕ

†+ϕ)− 1
2

[ϕ†,ϕ] =

( L
2πa

)1/2eiφ. In the limit L→∞, the x-dependence of the Klein factor can be dropped.

Our earlier formula for the normal-ordered electron density, Eq. (2.40), can be re-

covered from Eq. (2.52). To do this, we “point-split” the otherwise singular product of

operators ψ†(x)ψ(x) and compute

ρ(x) = lim
a→0

:ψ†(x+ a)ψ(x):

= lim
a→0

:
1

2πa
e−iφ(x+a)eiφ(x):

= lim
a→0

:
1

2πa
e−iφ(x+a)+iφ(x)e

1
2

[φ(x+a),φ(x)]:

= lim
a→0

:
1

2πa

(
1− ia∂xφ(x) + · · ·

)
eiπ/2: =

1

2π
∂xφ(x), (2.53)
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which agrees Eq. (2.40) in the limit L→∞ (one can also recover the 1/L term by being

more careful). Here, the second equality uses F †F = 1, the third uses the BCH formula,

and the fourth uses Eq. (2.37) for the commutator. Finally, normal ordering gets rid of

the infinite constant term 1/2πa.

2.A.4 Bosonization of the free fermion hamiltonian

We could bosonize the free fermion hamiltonian by carefully point-splitting and ap-

plying the bosonization identity, Eq. (2.51). However, the algebra involved is somewhat

tricky and quite tedious (see Appendix G of Ref. [48] for this derivation). Luckily, there

is a simpler and more direct method. First consider the case of linear dispersion,

H0 ≡
∑
k

k :c†kck: =

∫
dx :ψ†(x)(−i∂x)ψ(x): . (2.54)

Recall that the N -particle ground state |N〉 ∈ HN has all k > kN levels empty and all

k ≤ kN levels occupied, where kN ≡ 2πN/L. Hence, by inspection,

H0 |N〉 = π
L
N(N + 1) |N〉 . (2.55)

Furthermore, a simple calculation using the definition (2.25) of the bosonic operators bq

shows that

H0b
†
q = b†q(H0 + q). (2.56)

Now, the fact that the b†q’s acting on |N〉 span the entire N -particle Hilbert space HN

(Theorem 2) implies that H0 must have a unique representation in terms of the bosonic

34



Almost perfect metals in one dimension Chapter 2

variables. The only bosonic operator that satisfies both of the preceding conditions is

H0 =
∑
q

q b†qbq +
π

L
N̂(N̂ + 1) =

1

4π

∫
dx :(∂xφ(x))2: +

π

L
N̂(N̂ + 1). (2.57)

The second form is easily seen to be equivalent to the first by using the definition of

the boson field φ(x). In the limit L → ∞, the second term can be dropped (since N̂

measures fermion number relative to the Dirac sea).

Nonlinearity of the dispersion relation of the fermions gives rise, in the bosonic hamil-

tonian, to interaction terms that are proportional to higher powers of ∂xφ [16]. For in-

stance, a quadratic term ∝ k2 in the fermion dispersion relation gives rise to a (∂xφ)3

interaction, while a cubic nonlinearity ∝ k3 gives rise to a (∂xφ)4 interaction. These

interaction terms can all be derived by simply repeating the steps above with a general

dispersion law, ε(k) ∼ c1k + c2k
2 + c3k

3 + · · · . Very heuristically, a kn nonlinearity cor-

responds to ψ†(−i∂x)nψ, and each derivative acting on ψ ∼ eiφ pulls down an additional

factor of ∂xφ, leading to a term ∝ (∂xφ)n+1 in the boson hamiltonian. These interaction

terms are all irrelevant in the RG sense, and can be neglected for the purposes of this

chapter. However, when one considers dynamic quantities these terms are often danger-

ously irrelevant and cannot be handled using naive perturbation theory. For a deeper

discussion of dispersion nonlinearities in Luttinger liquids, and how to properly treat

them, see Ref. [54]. We will also touch on this topic again briefly in Chapter 3 of this

thesis (Section 3.4.4), in the context of understanding relaxation to equilibrium following

a quantum quench.

2.A.5 Multiple fermion species

The preceding results may be easily generalized to the case of multiple fermion species,

distinguished by an index I. If the species are all (mathematical) right-movers, the
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formulae simply acquire an extra species index I. The only nontrivial change occurs in

the definition of Klein factors, which must now capture the anti-commutation of fermions

belonging to different species. Instead of Eq. (2.29), we have

FI ≡
∑
N

∑
{mq}

|N− 1I ; {mq}〉〈N; {mq}| (−1)
∑I−1
J=1NJ . (2.58)

These Klein factors obey

[N̂I , F
†
J ] = δIJF

†
J , (2.59a)

[bqI , F
†
J ] = [b†qI , F

†
J ] = 0, (2.59b)

{FI , F †J} = 2δIJ (with F †IFI = 1), (2.59c)

{FI , FJ} = 0 for I 6= J. (2.59d)

We may introduce left-moving fields by simply noting that if ψI(x) is a right-mover,

then ψ̃I(x) ≡ ψI(−x) is a left-mover (we should also change k → −k and q → −q

for the left-movers if we want these quantities to consistently label quasimomentum).

The corresponding left-moving bosonic fields are defined as φ̃I(x) ≡ −φI(−x); the extra

minus sign in this definition ensures that there is no minus sign in the formula ρ̃I(x) ≡

:ψ̃†I(x)ψ̃I(x): = 1
2π
∂xφ̃I(x). Dropping tildes, we have

ψI(x) =
1√
2πa

FI(x)e±iφI(x), (2.60)

where the sign is + (−) for right-movers (left-movers). Also, as just discussed,

ρI(x) ≡ :ψ†I(x)ψI(x): =
1

2π
∂xφI(x) (2.61)
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holds for both right- and left-movers. The free fermion hamiltonian with linear dispersion,

H0 ≡
∑
I

∑
k

vIk :c†kIckI : =

∫
dx
∑
I

:ψ†I(x)(−ivI∂x)ψI(x):, (2.62)

where vI > 0 (vI < 0) for right-movers (left-movers), has bosonic representation

H0 =
1

4π

∫
dx
∑
I

|vI | :(∂xφI(x))2: +
π

L

∑
I

N̂I(N̂I + 1). (2.63)

Again, nonlinearities in the dispersion relation give rise to (∂xφI)
3 and (∂xφI)

4 interaction

terms that are irrelevant (although dangerously so for dynamic quantities).

The part of the full hamiltonian describing “forward scattering” interactions between

the electron densities ρI at the different Fermi points can be immediately bosonized using

the identity ρI = 1
2π
∂xφI :

H1 ≡
∫
dxUIJρI(x)ρJ(x) =

1

4π2

∫
dxUIJ ∂xφI(x) ∂xφJ(x). (2.64)

Thus,

H ≡ H0 +H1 =
1

4π

∫
dx VIJ ∂xφI(x) ∂xφJ(x), (2.65)

where VIJ ≡ |vI |δIJ + 1
π
UIJ . The associated action is given by S =

∫
dt (
∑

I Π̃I∂tφI−H),

where the Π̃I ’s are conjugate fields satisfying [φI(x), Π̃J(x′)] = (i/2)δ(x − x′); the extra

factor of 1/2 is because the φI ’s are chiral. From Eq. (2.38), we identify Π̃I = ∓ 1
4π
∂xφI ,

where the sign is − (+) for right-movers (left)-movers. In this way, we arrive at Eq. (2.2),

S =
1

4π

∫
dt dx

[
KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ

]
, (2.66)

whereKIJ = κIδIJ and κI = − (+) for right-movers (left-movers). There are several other
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ways to derive this action. One is to demand that δS/δφI = 0 give the correct equations

of motion for the densities ρI ∝ ∂xφI when U = 0: right-movers obey (∂t + ∂x)ρI = 0,

while left-movers obey (∂t − ∂x)ρI = 0. This fixes the first term in S.

Finally, any other terms in the fermion hamiltonian can also be bosonized by applying

the bosonization formula ψI ∼ e±iφI . For example, ψ†LψR + ψ†RψL ∼ cos(φL + φR).

2.A.6 Correlation functions and scaling dimensions of vertex

operators

As usual in many-body theory, the generating functional of imaginary time-ordered

correlation functions of the boson fields at zero temperature may be written as a func-

tional integral,

Z[h] =

∫
[dφ] e−SE [φ] +

∫
d2xhI(x)φI(x). (2.67)

Here x ≡ (τ, x), the integral
∫
d2x is over all x ∈ R2, the hI(x)’s are source fields, SE is

the Euclidean version of the action S,

SE[φ] =
1

4π

∫
d2x

[
− iKIJ∂τφI∂xφJ + VIJ∂xφI∂xφJ

]
, (2.68)

and the functional integral
∫

[dφ] is over all field configurations φ(x); the measure is

normalized so that Z[0] = 1. Recall that K ≡ diag(κj) with diagonal entries κj = ±1,

while the matrix V is positive definite.

We are free to change integration variables in Eq. (2.67) from φI(x) to φ̃I(x) =

φJ(x)(A−1)JI , where A is any invertible matrix with detA = 1; the Jacobian of this

transformation is 1. Doing so, we obtain

Z[h] =

∫
[dφ̃] e−S̃E [φ̃] +

∫
d2x h̃I(x)φ̃I(x), (2.69)
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where h̃I(x) ≡ AIJhJ(x) and

S̃E[φ̃] =
1

4π

∫
d2x

[
− i(AKAT )IJ∂τ φ̃I∂xφ̃J + (AV AT )IJ∂xφ̃I∂xφ̃J

]
. (2.70)

Assume that we can choose A so that AKAT = K and AV AT = diag(uj), with uj > 0.

Then the action S̃E simply describes a collection of free chiral bosons with velocities κjuj,

S̃E[φ̃] =
1

4π

∫
d2x

∑
j

[
− iκj∂τ φ̃j∂xφ̃j + uj(∂xφ̃j)

2
]
. (2.71)

Consequently, Eq. (2.69) yields

Z[h] = exp

(
1

2

∫
d2x

∫
d2x′

∑
j

h̃j(x)g̃j(x− x′)h̃j(x
′)

)
, (2.72)

where g̃j(x− x′) is the propagator of the free chiral boson φ̃j,

g̃j(x− x′) =
δ2Z

δh̃j(x)δh̃j(x′)

∣∣∣∣
h=0

= 〈φ̃j(x)φ̃j(x
′)〉. (2.73)

Computing this propagator in any of the usual ways (e.g. by expanding the field in

Fourier modes and explicitly performing the field integral, by returning to the hamiltonian

formulation, or by solving the appropriate differential equation), we obtain [48]

g̃j(x) = − log
(2π

L
[(ujτ − iκjx) sgn τ + a]

)
. (2.74)

Now consider the vertex operator Om(x) ≡ Nme
imIφI(x), where Nm is a normalization

factor. The imaginary time-ordered correlation function of a pair of vertex operators is

〈Om(x1)On(x2)〉 =

∫
[dφ] e−SE [φ]Om(x1)On(x2). (2.75)
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Comparing this expression with Eq. (2.67), we notice that

〈Om(x1)On(x2)〉 = NmNn Z[hI(x) = imIδ(x− x1) + inIδ(x− x2)]. (2.76)

The right side can be easily evaluated using Eq. (2.72) with h̃I(x) = AIJhJ(x):

〈Om(x1)On(x2)〉 = NmNn e
− 1

2

∫
d2x

∫
d2x′

∑
j [m̃jδ(x−x1)+ñjδ(x−x2)]g̃j(x−x′)[m̃jδ(x′−x1)+ñjδ(x

′−x2)]

= NmNn

∏
j

e−
1
2

(m̃2
j+ñ

2
j )g̃j(0)− 1

2
m̃j ñj [g̃j(x1−x2)+g̃j(x2−x1)], (2.77)

where m̃I ≡ AIJmJ and ñI ≡ AIJnJ . Using Eq. (2.74) for the propagator g̃j(x), we get

〈Om(x1)On(x2)〉 = NmNn

∏
j

(2πa

L

) 1
2

(m̃2
j+ñ

2
j )
(2π

L
[(ujτ − iκjx) sgn τ + a]

)m̃j ñj
, (2.78)

where τ ≡ τ1 − τ2 and x ≡ x1 − x2. A correlation function of physically meaningful

operators should not depend on the UV regularization parameter a when the separation

between the operators is large compared to a. Therefore, we choose the normalization

factors to be

Nm ≡ a−
1
2

∑
j m̃

2
j = a−

1
2
mTATAm. (2.79)

With this choice 7, the expression for the correlation function reduces to

〈Om(x1)On(x2)〉 =
(2π

L

) 1
2

∑
j(m̃j+ñj)

2 ∏
j

[
(ujτ − iκjx) sgn τ + a

]m̃j ñj . (2.80)

Clearly the correlation function is nonzero in the limit L → ∞ only if ñ = −m̃ (or

equivalently, since A is invertible, only if n = −m). This is as it should be. The action

SE[φ] is invariant under a shift φI(x) → φI(x) + constant, so the same is expected of a

7Notice that the normalization factor is precisely Nm = a−∆(m), where ∆(m) is the scaling dimension
of Om; this makes sense dimensionally.
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correlation function of two properly normalized exponentials of the boson fields. This is

only true for a correlator ∝ 〈eimIφIeinJφJ 〉 if n = −m. In the limit L→∞,

〈Om(x1)On(x2)〉 = δn,−m
∏
j

[
(ujτ − iκjx) sgn τ + a

]−m̃2
j , (2.81)

where, as before, τ ≡ τ1 − τ2 and x ≡ x1 − x2.

The scaling dimension of the vertex operator Om, ∆(m), is encoded in the transfor-

mation of its two-point correlation function when we uniformly scale spacetime:

〈Om(λx1)O−m(λx2)〉
〈Om(x1)O−m(x2)〉 = λ−2∆(m). (2.82)

It follows from Eq. (2.81) that

∆(m) =
1

2

∑
j

m̃2
j =

1

2
mTATAm, (2.83)

where the matrix A satisfies detA = 1, AKAT = K and AV AT = diag(uj). In the case

K = −IN ⊕ IN , this yields Eq. (2.6) in the main text.

2.A.7 Proof of Theorem 2

Recall that HN is the set of states in the fermion Fock space H with N̂ -eigenvalue

N , while FbN is the set of states obtained by acting on |N〉 with arbitrary combinations

of the bosonic b†q’s. The states |N ; {mq}〉 defined in Eq. (2.28),

|N ; {mq}〉 ≡
∏
q>0

(b†q)
mq√
mq!
|N〉 ,
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form an orthonormal basis for FbN . We need to prove that FbN = HN . I follow Haldane

[16].

It is obvious that FbN ⊂ HN , because the bosonic operators are themselves functions

of the fermionic ones, and [b†q, N̂ ] = 0. To prove that, in fact, FbN = HN , we count states.

The overall strategy is as follows. Let TrN denote the trace on HN , and TrbN the trace

on FbN . Given any positive definite operator ρ̂ : HN → HN whose trace is finite, we can

define ZcN ≡ TrN(ρ̂) and ZbN ≡ TrbN(ρ̂|FbN ), where ρ̂|FbN denotes the restriction of ρ̂ to

FbN . Since ρ̂ is positive definite, it is clear that ZbN = ZcN if and only if FbN = HN .

A suitable operator is ρ̂ ≡ e−βĤ , where

Ĥ ≡
∑
k

(k − π
L

) :n̂k: . (2.84)

Let us first compute

ZbN ≡ TrbN(e−βĤ |FbN ). (2.85)

Recall that the state |N〉 ∈ HN has all k > kN levels empty and all k ≤ kN levels

occupied, where kN ≡ 2πN/L. Hence,

Ĥ |N〉 = π
L
N2 |N〉 .

Also note that

Ĥb†q = b†q(Ĥ + q),

which follow directly from the definitions (2.84) and (2.25). Therefore, each |N ; {mq}〉
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is an eigenstate of Ĥ:

Ĥ |N ; {mq}〉 =

(∏
q>0

(b†q)
mq√
mq!

)(
Ĥ +

∑
q>0

q mq

)
|N〉0

=

(
π

L
N2 +

∑
q>0

q mq

)
|N ; {mq}〉 ;

the sum is over all q ∈ (2π/L)Z+. Consequently,

ZbN =
∑
{mq}

e−β( π
L
N2+

∑
q>0 qmq)

= e−(βπ/L)N2
∏
q>0

( ∞∑
m=0

e−βqm
)
.

Summing the geometric series, we obtain

ZbN = wN
2
∞∏
n=1

(1− w2n)−1, (2.86)

where w ≡ e−βπ/L.

Next, we compute

ZcN ≡ TrN(e−βĤ). (2.87)

As before, let kN ≡ 2πN/L. Consider the fermion occupation number basis forHN . Each

state in this basis is obtained from |N〉 by creating some number of particles and an equal

number of holes. Call this number r. The particles must occupy levels k+
i = kN +2πai/L,

where ai ∈ {1, 2, . . . }. The holes must deplete levels ki = kN − 2πbi/L, where bi ∈

{0, 1, 2, . . . }. The state can be uniquely labeled by the pair of vectors a = (a1, a2, . . . , ar)

and b = (b1, b2, . . . , br). Clearly, one must have ai 6= aj and bi 6= bj for i 6= j. Explicitly,
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the basis states are

|a,b〉 ≡
r∏
i=1

c†kN+2πai/L

r∏
j=1

ckN−2πbj/L |N〉 .

It is easy to see that

Ĥ |a,b〉 =

(
π
L
N2 + 2π

L

r∑
i=1

(ai + bi)

)
|a,b〉 .

Therefore,

ZcN =
∑
a,b

e−(βπ/L)[N2+2
∑r
i=1(ai+bi)]

= wN
2
∑
a,b

w2
∑r
i=1(ai+bi),

where, as before, w ≡ e−βπ/L. We can write this as

ZcN = wN
2
∞∑
`=0

α(`)w2`, (2.88)

where α(`) counts the different ways of expressing the integer ` ≥ 0 as

` =
r∑
i=1

(ai + bi),
1 ≤ a1 < a2 < · · · ,

0 ≤ b1 < b2 < · · · ,
(2.89)

for some r ≥ 0.

Miraculously, the sum in (2.88) equals the product in (2.86). This can be proven

using some elegant combinatorics, which I now describe.

First, some terminology. The partition number p(`) counts the distinct partitions of
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`, where a partition is a way of writing ` as a sum of positive integers,

` =
ν∑
j=1

dj, 1 ≤ d1 ≤ d2 ≤ · · · (2.90)

for some ν ≥ 1. By convention, p(0) ≡ 1.

A simple graphical argument, adapted from Ref. [55], shows that α(`) = p(`). The

argument is as follows. Every partition (2.90) of ` is uniquely associated to a Young

diagram, consisting of ` boxes arranged in ν rows of length dj. For instance, the diagram

represents the partition 27 = 8 + 8 + 6 + 4 + 1. Now decorate the diagram by coloring

all boxes on or below the main diagonal:

The colored set consists of r columns, each with ai boxes. Because the diagonal is

included, ai ≥ 1. Because of the slope of the top edge, ai 6= aj for i 6= j.

The uncolored set consists of r rows, each with bi boxes. Because the diagonal is

excluded, bi ≥ 0. Because of the slope of the left edge, bi 6= bj for i 6= j.

Thus, the colored diagram gives a decomposition of ` of the form (2.89). Conversely,

given a decomposition (2.89) of `, we can construct its associated colored diagram and

then forget the coloring to obtain a partition (2.90) of `. This procedure establishes a
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one-to-one correspondence between decompositions of ` of the form (2.89) and those of

the form (2.90). Thus, α(`) = p(`), as claimed.

The upshot of this combinatorial interlude is that

ZcN = wN
2
∞∑
`=0

p(`)w2`,

where p(`) counts the number of distinct partitions of `, with p(0) ≡ 1.

Now, every partition of ` can be uniquely associated to a vector m = (m1,m2, · · · ),

where mn ∈ {0, 1, 2, · · · } counts how many times n appears in the partition. For instance,

5 = 2 + 1 + 1 + 1 corresponds to (3, 1, 0, . . . ). Conversely, every such vector m labels a

unique partition of the integer ` =
∑

nmnn. It follows that

∞∑
`=0

p(`)x` =
∑
m

x
∑∞
n=1mnn

=
∞∏
n=1

( ∞∑
m=0

xnm
)
.

Summing the geometric series, and taking x = w2, we finally obtain

ZcN = wN
2
∞∏
n=1

(1− w2n)−1 = ZbN .

Note that, in the literature, equality of ZcN and ZbN is typically established by con-

sidering the corresponding grand canonical partition functions Zc and Zb, and using the

Jacobi triple product identity to show that these are equal for any value of the chemical

potential µ. The proof given here is longer because it is self contained (in fact, it gives

the Jacobi triple product identity as a corollary).
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2.B Properties of the map ϕ : V 7→ M from interac-

tion matrices to scaling dimension matrices

Let PN denote the set of real symmetric positive definite N × N matrices, and let

MN ≡ SO(N,N) ∩P2N . The map ϕ from interaction matrices V ∈ P2N to “scaling

dimension matrices” M ∈MN is defined as

ϕ : P2N →MN ,

ϕ : V 7→ ATA,

(2.91)

where A ∈ SO(N,N) and AVAT = D is diagonal.

2.B.1 General properties

The first and second lemmas below show that ϕ is well-defined. The third, fourth and

fifth lemmas characterize the inverse images ϕ−1(M), and yield the parameterization of

V matrices used in the main text of the chapter. All of these results are elementary, but

we record them here for completeness.

Lemma 1. If V ∈ P2N , then there exists A ∈ SO(N,N) such that AVAT = D is

diagonal and positive definite.

Proof. (by construction). Let V 1/2 denote the unique symmetric positive definite square

root of V , so that

V 1/2 = (V 1/2)T , V 1/2 > 0, (V 1/2)2 = V, (2.92)

and let V −1/2 ≡ (V 1/2)−1 = (V −1)1/2. The matrix V −1/2KV −1/2 (where K = −IN ⊕ IN)

is symmetric, and can therefore be diagonalized by some Q ∈ SO(2N). Furthermore,

47



Almost perfect metals in one dimension Chapter 2

Sylvester’s theorem of inertia [56] ensures that V −1/2KV −1/2 has N positive and N

negative eigenvalues. Thus, Q can be chosen so that

QV −1/2KV −1/2QT = D−1K, (2.93)

where D is diagonal and positive definite (this can be arranged by re-ordering the rows

of Q and, if necessary, multiplying one row by −1 to maintain detQ = +1). Taking

the determinant of both sides of Eq. (2.93), we have detV = detD. Therefore A ≡

D1/2QV −1/2 satisfies the desired properties: AKAT = K, detA = 1, and AVAT = D.

Lemma 2. If Ai ∈ SO(N,N) and AiVA
T
i = Di is diagonal for i = 1, 2, then AT1A1 =

AT2A2.

Proof. Note that every A ∈ SO(N,N) is invertible, with A−1 = KATK, where K =

−IN⊕IN (this follows immediately from the defining condition for the group, AKAT = K,

and the fact that K2 = I2N .). Thus, to prove the lemma it suffices to prove the equivalent

statement that D2 = AD1A
T implies ATA = I2N , where A ≡ A2A

−1
1 ∈ SO(N,N).

Using AT = KA−1K, the equation D2 = AD1A
T can be rewritten as

D2K = A(D1K)A−1. (2.94)

Thus, the matrices D2K and D1K are similar. But similar diagonal matrices can differ

only by a permutation of the diagonal elements. Taking account of the sign structure

due to K, one must have D2 = PD1P
−1, with P = P (1)⊕P (2), where the P (i) are N ×N

permutation matrices. Defining B ≡ P−1A, Eq. (2.94) reduces to

D1K = B(D1K)B−1. (2.95)
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This implies that B preserves each eigenspace of D1K. Hence it must (at the very least)

have the block form B = B(1)⊕B(2), where the B(i) are N ×N matrices. Since A = PB,

and P has a similar block structure, one must also have A = A(1) ⊕ A(2), where the

A(i) are N ×N matrices. Then the condition AKAT = K implies A(i) ∈ O(N), so that

ATA = I2N .

Lemma 3. V ∈ ϕ−1(M) if and only if

V = M−1/2

X 0

0 Y

M−1/2 (2.96)

for some X, Y ∈ PN , where M−1/2 denotes the unique positive definite square root of

M−1.

Proof. (=⇒): Assume that ϕ(V ) = M . Every M ∈ MN = SO(N,N) ∩P2N has a

unique positive definite symmetric square root M1/2 ∈ MN . Furthermore, any matrix

A that satisfies ATA = M can be written as A = RM1/2, for a suitable R ∈ O(2N).

If A ∈ SO(N,N), then we must have R ∈ O(2N) ∩ SO(N,N) = O(N) × O(N)/Z2.

Therefore, ϕ(V ) = M implies that (RM1/2)V (RM1/2)T = D for some diagonal positive

definite D and some R ∈ O(N)×O(N)/Z2; equivalently, V = M−1/2RTDRM−1/2, which

is of the form indicated.

(⇐=): Assume that V has the form indicated. Then there exist R1, R2 ∈ SO(N) that

diagonalize X, Y respectively. Let A ≡ [R1⊕R2]M1/2. Then A ∈ SO(N,N), AVAT = D

is diagonal, and ATA = M . Thus ϕ(V ) = M .

The scaling dimension matrix M ∈ MN can, by the hyperbolic CS decomposition,
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be written as [Eq. (2.9)]:

M =

QT
1 0

0 QT
2


 C −S

−S C


Q1 0

0 Q2

 , (2.97)

where Q1, Q2 ∈ O(N), C = diag(coshλi), and S = diag(sinhλi), with λi ≥ 0, i =

1, 2, . . . , N . Note that we can equivalently take Q1, Q2 ∈ SO(N) if we allow one of the

λi’s to be negative, as done in the main text of the chapter.

Lemma 4. V ∈ ϕ−1(M) if and only if

V =

X + F Y F T XF + F Y

F TX + Y F T F TXF + Y

 , (2.98)

for some X, Y ∈PN , where

F ≡ QT
1 diag(tanh(λi/2))Q2. (2.99)

Proof. According to Lemma 3, V ∈ ϕ−1(M) iff V = M−1/2[X̃ ⊕ Ỹ ]M−1/2 for some

X̃, Ỹ ∈PN . From Eq. (2.97), it follows that

M−1/2 =

C̃1 S̃

S̃T C̃2

 , (2.100)

where C̃ν = QT
ν diag(cosh(λi/2))Qν (ν = 1, 2) and S̃ = QT

1 diag(sinh(λi/2))Q2. Thus,

V =

 C̃1X̃C̃1 + S̃ Ỹ S̃T C̃1X̃S̃ + S̃ Ỹ C̃2

S̃TX̃C̃1 + C̃2Ỹ S̃
T S̃TX̃S̃ + C̃2Ỹ C̃2

 . (2.101)
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Now define X ≡ C̃1X̃C̃1 and Y ≡ C̃2Ỹ C̃2. These maps from X̃, Ỹ ∈PN to X, Y ∈PN

are bijections, because C̃ν ∈PN . Noting that S̃C̃−1
2 = C̃−1

1 S̃ = F , we obtain the claimed

result, Eq. (2.98).

We now write the interaction matrix in block form as

V =

VRR VRL

VLR VLL

 , (2.102)

where VRR, VLL ∈PN and VLR = V T
RL.

Lemma 5. V ∈ ϕ−1(M) if and only if

VRR ∈PN , (2.103a)

VRR − VRL V −1
LL V

T
RL ∈PN , (2.103b)

VRL + F V T
RLF − VRRF − FVLL = 0, (2.103c)

where F is defined in Eq. (2.99) above.

Proof. Equations (2.103a) and (2.103b) are the Schur complement condition for posi-

tive definiteness of a symmetric matrix [57]; V ∈ P2N iff these equations hold. By

Lemma 3, V ∈ ϕ−1(M) iff M1/2VM1/2 = X̃ ⊕ Ỹ for some X̃, Ỹ ∈PN . In the notation

of Eq. (2.100), one has

M1/2 =

 C̃1 −S̃

−S̃T C̃2

 . (2.104)

Conjugating the equation M1/2VM1/2 = X̃⊕Ỹ by the positive definite matrix C̃−1
1 ⊕C̃−1

2 ,

it becomes  IN −F

−F T IN


VRR VRL

V T
RL VLL


 IN −F

−F T IN

 =

X 0

0 Y

 , (2.105)
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where X ≡ C̃−1
1 X̃C̃−1

1 and Y ≡ C̃−1
2 Ỹ C̃−1

2 . These maps from X̃, Ỹ ∈PN to X, Y ∈PN

are bijections. Therefore, V ∈ ϕ−1(M) iff Eq. (2.105) holds for some X, Y ∈ PN . The

off-diagonal block of Eq. (2.105) yields Eq. (2.103c). The diagonal blocks of Eq. (2.105)

are automatically satisfied, because the matrix on the left side is positive definite (it was

constructed by conjugating V ∈P2N by other matrices in P2N).

2.B.2 Intuition for the parameterization (2.7) of V , and its il-

lustration in the case of N = 1 channel

To gain some intuition for the parametrization (2.7) of V furnished by Lemma 3,

V = M−1/2

X 0

0 Y

M−1/2, (2.106)

first consider the limit M = I2N . Then the interactions encoded in X simply mix the

right-movers amongst themselves, leading to new modes with renormalized velocities,

while Y does the same with the left-movers. All scaling dimensions (being determined

by M alone) remain equal to their values at the free fixed point. Next consider a different

limit, X = Y = IN . Now V = M−1 is itself in SO(N,N), and its inverse gives the scaling

dimensions directly. To connect these two limits, consider the Euclidean space of all

symmetric N×N matrices, RN(N+1)/2. The positive definite matrices occupy the interior

of a convex cone PN ⊂ RN(N+1)/2. The space of interaction matrices is V = P2N .

According to Eq. (2.106), V should be regarded as a bundle of lower-dimensional convex

cones PN ×PN (parameterized by X, Y ) as fibers over the N2-dimensional submanifold

MN ≡ SO(N,N)∩P2N (parameterized by M). The scaling dimensions ∆(m), regarded

as functions from V → R, are then constant on each fiber. Each Luttinger liquid phase,

defined in terms of its instabilities (or lack thereof), thus extends over the interior of a
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solid cone emanating from the vertex of V .

The N = 1 channel case again provides a nice illustration of these general ideas. The

set V = P2 consists of all 2× 2 matrices

V =

α + β γ

γ α− β

 (2.107)

with (α, β, γ) ∈ R3 and α > (β2 + γ2)1/2. This is quite clearly the interior of a circular

cone in R3. The parameterization (2.106), with M = e−λσx ∈M1, corresponds to

α = 1
2
(x+ y) coshλ, (2.108a)

β = 1
2
(x− y), (2.108b)

γ = 1
2
(x+ y) sinhλ, (2.108c)

where x, y > 0. For fixed λ, the image of the resulting map (x, y) 7→ (α, β, γ) is a

slice of the cone P2, in a plane parallel to the β-axis and at an angle arctan(tanhλ)

from the α-axis. Each such slice is the interior of a cone in R2, with an opening angle

that decreases with increasing |λ|. In terms of stability with respect to clean SC and

CDW perturbations, V = P2 splits into four regions: λ < − log 2 (∆SC < 2 < ∆CDW),

− log 2 < λ < 0 (∆SC < ∆CDW < 2), 0 < λ < log 2 (∆CDW < ∆SC < 2), and λ > log 2

(∆CDW < 2 < ∆SC). These regions indeed take the form of solid cones emanating from

the vertex of P2, as illustrated in Figure 2.B.1.
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Figure 2.B.1: Phase diagram for the N = 1 channel Luttinger liquid, in terms of
stability with respect to global SC and CDW perturbations. The hatched region is
unphysical (V is not positive definite for these parameter values).

2.C Restrictions on the interaction matrix V imposed

by symmetries

Consider the effective theory of a system that is invariant under one or more sym-

metries that interchange right and left-movers, such as time-reversal (T ), and/or spatial

inversion (P). On general grounds, T must be implemented in the effective theory by

an anti-unitary operator that squares to −1 when acting on fermionic operators. Spatial

inversion P must be implemented by a unitary operator that squares to +1.

2.C.1 T symmetry but no P symmetry

First consider the case in which the system has time-reversal symmetry but no inver-

sion symmetry. The chiral boson fields φI can be chosen to transform as follows under
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time-reversal (here the index I = 1, 2, . . . N):

T :


φI(x, t) −→ φI+N(x,−t),

φI+N(x, t) −→ π + φI(x,−t).
(2.109)

In addition, T complex conjugates i→ −i. Then, T correctly interchanges right- and left-

movers, and squares to −1 when acting on the fermion fields ψI ∝ e∓iφIγI . (Alternatively,

one could omit the π in Eq. (2.109) and have the Klein factors γI transform nontrivially.)

In this representation, T symmetry imposes that the interaction matrix V must satisfy

ΣV Σ = V, (2.110)

where Σ ≡ σx ⊗ IN and σx is the usual Pauli matrix. Thus, V must have the block form

V =

V1 V2

V2 V1

 , (2.111)

where Vi = V T
i . Conversely, any 2N × 2N positive definite matrix V of this form can

serve as the interaction matrix of a T -symmetric N -channel Luttinger liquid.

2.C.2 P symmetry but no T symmetry

Next consider the case in which the system has inversion symmetry but no time-

reversal symmetry. The chiral boson fields φI can be chosen to transform as follows
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under spatial inversion (again the index I = 1, 2, . . . N):

P :


φI(x, t) −→ −φI+N(−x, t),

φI+N(x, t) −→ −φI(−x, t).
(2.112)

Then, P correctly interchanges right- and left-movers, and squares to +1 when acting on

the fermion fields ψI . In this representation, P symmetry imposes that the interaction

matrix V must satisfy Eq. (2.110), and hence that it must have the block form (2.111).

Conversely, any 2N × 2N positive definite matrix V of the form (2.111) can serve as the

interaction matrix of a P-symmetric N -channel Luttinger liquid.

2.C.3 Both T and P symmetry

Finally, consider the case in which the system has both time-reversal symmetry and

inversion symmetry. The transformation laws (2.109) and (2.112) correspond to different

representations of the fermion fields in terms of bosons, and hence cannot be used simul-

taneously. As is well known, symmetry with respect to PT enforces a twofold degeneracy

of the bands at each point in k-space. Therefore, the low-energy effective theory now

involves 4N chiral spinless Dirac fermions ψI , where I = 1, 2, . . . , 2N labels right-movers

and I = 2N + 1, . . . , 4N labels left-movers. The corresponding chiral boson fields φI

can be chosen to transform as follows under time-reversal and spatial inversion (here the
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index I = 1, 2, . . . N):

T :



φI(x, t) −→ φI+2N(x,−t),

φI+N(x, t) −→ φI+3N(x,−t),

φI+2N(x, t) −→ π + φI(x,−t),

φI+3N(x, t) −→ π + φI+N(x,−t),

(2.113a)

P :



φI(x, t) −→ −φI+3N(−x, t),

φI+N(x, t) −→ −φI+2N(−x, t),

φI+2N(x, t) −→ −φI+N(−x, t),

φI+3N(x, t) −→ −φI(−x, t).

(2.113b)

Now, T symmetry and P symmetry respectively impose that the interaction matrix V

must satisfy

(T ) Σ1V Σ1 = V, (2.114a)

(P) Σ2V Σ2 = V, (2.114b)

where Σ1 ≡ σx ⊗ I2 ⊗ IN and Σ2 ≡ σx ⊗ σx ⊗ IN . Thus, V must have the block form

V =



V1 V2 V3 V4

V2 V1 V4 V3

V3 V4 V1 V2

V4 V3 V2 V1


, (2.115)
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where Vi = V T
i . Conversely, any 4N × 4N positive definite matrix V of this form can

serve as the interaction matrix of a T - and P-symmetric 2N -channel Luttinger liquid.

2.D Restrictions on the scaling dimension matrix M

imposed by symmetries

Let P be any permutation matrix that satisfies P 2 = I2N and PKP = −K. Let

SP ≡ {A ∈ R2N×2N | PAP = A}. Then, the following results hold:

Lemma 6. If V ∈P2N ∩SP and M = ϕ(V ), then M ∈ SP .

Proof. Pick some A ∈ SO(N,N) such that AVAT = D is diagonal, and define B ≡ PAP .

It is easy to check that BKBT = K and detB = 1, so B ∈ SO(N,N). Also, BVBT =

PDP is diagonal, since P is a permutation matrix. Thus, M = BTB = PATAP =

PMP .

Lemma 7. Assume M ∈ MN ∩ SP . Then V ∈ ϕ−1(M) ∩ SP if and only if V =

M−1/2ZM−1/2 for some Z ∈ (PN ×PN) ∩SP .

Proof. Lemma 3 implies that V ∈ ϕ−1(M) iff V has the specified form with Z ∈PN ×

PN . Note that PM±1/2 = M±1/2P . Thus V and Z are conjugates of one another by an

invertible matrix that commutes with P . It follows that PV P = V iff PZP = Z.

Taking Z = I2N shows that ϕ−1(M)∩SP is nonempty for any M ∈MN ∩SP . Thus,

the set of interaction matrices V that satisfy the constraint PV P = V maps (under ϕ)

onto the set of scaling dimension matrices M that satisfy the constraint PMP = M .

The constraints on V derived in Section 2.C are precisely of the form PV P = V (with

P = Σ, Σ1 or Σ2). Hence the allowed scaling dimension matrices M for a system with

time-reversal (T ) and/or spatial inversion (P) symmetry may be characterized as follows.
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2.D.1 T symmetry or P symmetry, but not both

First consider the case in which the system has either time-reversal symmetry or

inversion symmetry, but not both. We choose the 2N chiral bosons φI to transform

according to Eq. (2.109) in the former case, and according to Eq. (2.112) in the latter.

Then, in either case, the scaling dimension matrix must satisfy

ΣMΣ = M, (2.116)

where Σ ≡ σx ⊗ IN (with no further constraints). Imposing this constraint on the

hyperbolic CS decomposition of M , Eq. (2.97), yields the conditions

QCQT = C, (2.117a)

QSQ = S, (2.117b)

where Q ≡ Q1Q
T
2 . Assume, without loss of generality, that there are m distinct rapidities

λα with multiplicities Nα (satisfying N1 + · · · + Nm = N), ordered so that C = coshL,

S = sinhL, and L = λ1IN1 ⊕ λ2IN2 ⊕ · · · ⊕ λmINm . Then the conditions above require

that

Q = R1 ⊕R2 ⊕ · · · ⊕Rm, (2.118)

where Rα ∈ O(Nα) and Rα = RT
α (i.e. each Rα is an Nα ×Nα reflection matrix). In the

special case in which all rapidities are equal, one has

M =

 IN coshλ −R sinhλ

−R sinhλ IN coshλ

 , (2.119)

where R ∈ O(N) and R = RT .
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2.D.2 Both T and P symmetry

In the case that the system has both time-reversal and inversion symmetry, we choose

the 4N chiral bosons φI to transform according to Eq. (2.113). Then, the scaling dimen-

sion matrix must satisfy

(T ) Σ1MΣ1 = M, (2.120a)

(P) Σ2MΣ2 = M, (2.120b)

where Σ1 ≡ σx ⊗ I2 ⊗ IN and Σ2 ≡ σx ⊗ σx ⊗ IN (with no further independent con-

straints). We can again impose these constraints on the hyperbolic CS decomposition of

M , Eq. (2.97), to obtain an explicit parameterization of all scaling dimension matrices

that are consistent with both T and P symmetry. However, the general parameterization

is somewhat cumbersome, so we will omit it. In the special case in which all rapidities

are equal, one finds

M =

I2N coshλ −R sinhλ

−R sinhλ I2N coshλ

 , (2.121)

where R ∈ O(2N) has the block form

R =

R1 R2

R2 R1

 , (2.122)

with Ri = RT
i (i.e. R is a 2N × 2N reflection matrix with this particular block form).
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2.E Construction of ∞-stable (absolutely ∞-stable)

Luttinger liquid phases with N ≥ 23 (N ≥ 52),

following Plamadeala et al. (2014)

In this section we review the approach introduced in Ref. [17] to construct ∞-stable

and absolutely∞-stable phases. Note that this construction, while elegant, is not neces-

sarily optimal, so that ∞-stable or absolutely ∞-stable phases with fewer channels than

the ones constructed below may exist.

Consider the field redefinition φI = WIJ φ̃J , where W ∈ SL(2N,Z), the group of

2N×2N matrices with integer entries and determinant 1. This transformation permutes

the integer vectors labelling vertex operators:

Om = eimIφI = eim̃I φ̃I , (2.123)

where m̃ = W Tm ∈ Z2N . Meanwhile, the fixed-point action S [Eq. (2.2)], written in

terms of the φ̃ fields, reads

S =
1

4π

∫
dt dx

[
K̃IJ∂tφ̃I∂xφ̃J − ṼIJ∂xφ̃I∂xφ̃J

]
, (2.124)

where K̃ = W TKW and Ṽ = W TVW . The conformal spin of the operator Om = eim̃I φ̃I

is easily seen to be

K(m) = 1
2
m̃T K̃−1m̃. (2.125)

Its scaling dimension is

∆(m) = 1
2
m̃T ÃTÃ m̃, (2.126)

where Ã ∈ GL(2N,R) simultaneously diagonalizes K̃ and Ṽ ; ÃK̃ÃT = K, ÃṼ ÃT =
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diag(ũi).

Now assume that K̃ and Ṽ are both block-diagonal:

K̃ = −K̃R ⊕ K̃L, (2.127a)

Ṽ = ṼR ⊕ ṼL, (2.127b)

with K̃ν and Ṽν positive definite (ν = R/L). Then we can take Ã = Q̃RK̃
−1/2
R ⊕Q̃LK̃

−1/2
L ,

where Q̃ν ∈ SO(N) diagonalizes K̃
−1/2
ν ṼνK̃

−1/2
ν ; it follows that

ÃTÃ = K̃−1
R ⊕ K̃−1

L . (2.128)

Thus, if K̃ and Ṽ are both block-diagonal, the conformal spin and the scaling dimension

are given by

K(m) = ∆̃L
m − ∆̃R

m, (2.129a)

∆(m) = ∆̃L
m + ∆̃R

m, (2.129b)

where

∆̃R
m ≡ 1

2
m̃T

R K̃
−1
R m̃R, (2.130a)

∆̃L
m ≡ 1

2
m̃T

L K̃
−1
L m̃L (2.130b)

are the right and left scaling dimensions of the operator. Here, we have split m̃ =

(m̃R, m̃L), with m̃R/L ∈ ZN .

By construction, K̃ν (ν = R/L) is a positive-definite integer matrix with determinant

1, and so the same is true of its inverse. Thus, K̃−1
ν can be regarded as a Gram matrix of
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an N -dimensional unimodular integral lattice Γ̃ν with positive definite inner product (see

Ref. [58] for the basic terminology of lattices). Concretely, one can take the columns of

K̃
−1/2
ν to form a basis for Γ̃ν , so that the lattice vectors are ṽν = K̃

−1/2
ν m̃ν , m̃ν ∈ ZN . The

right/left scaling dimensions are equal to half the norm-squared of these lattice vectors,

(∆̃R
m, ∆̃

L
m) = (1

2
|ṽR|2, 1

2
|ṽL|2). (2.131)

Non-chiral operators have ∆̃R
m = ∆̃L

m and hence |ṽR| = |ṽL|. Thus, if all nonzero lattice

vectors in Γ̃R or in Γ̃L have norm-squared > 2 (i.e. if at least one of the two lattices is

“non-root”), then the corresponding Luttinger liquid phase is ∞-stable. There are of

course chiral operators for which only one of ṽR or ṽL is nonzero. Therefore, to obtain

an absolutely ∞-stable phase, the lattices Γ̃R/L must both have minimum norm-squared

> 4.

Unimodular integral lattices are self-dual, so K̃ν is also a Gram matrix of Γ̃ν (possibly

with respect to a different basis). Therefore, K̃ = −K̃R ⊕ K̃L is a Gram matrix of

the unimodular integral lattice Γ̃R ⊕ Γ̃L of signature (N,N). Conjugating the Gram

matrix K̃ by W ∈ SL(2N,Z) corresponds merely to a basis change in this lattice. Thus,

Γ̃R ⊕ Γ̃L ∼= Z2N , the signature (N,N) lattice with Gram matrix K = −IN ⊕ IN .

Let us summarize what we have accomplished so far. We have reduced the construc-

tion of ∞-stable (absolutely ∞-stable) phases of an N -channel Luttinger liquid to the

identification of N -dimensional unimodular integral lattices Γ̃R/L with minimum norm-

squared > 2 (> 4), subject to the constraint that Γ̃R⊕ Γ̃L ∼= Z2N as a lattice of signature

(N,N).

We now make use of two mathematical facts. The first fact is that there is a unique

signature (N,N) unimodular lattice of each parity (even/odd), where an integral lattice is

even if the norm-squared of all lattice vectors is an even integer, and is odd otherwise [58].
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The lattice Z2N with Gram matrix K = −IN ⊕ IN is clearly odd. Thus, Γ̃R ⊕ Γ̃L ∼= Z2N

if (and only if) at least one of Γ̃R/L is odd.

The second fact is that, for any positive integer µ, there exists an N -dimensional

positive definite unimodular lattice whose shortest nonzero vector has |v|2 = µ [59]. The

required dimension N increases with µ; a theorem of Rains and Sloane [60] states that

µ ≤ 2bN/24c+ 2, (2.132)

unless N = 23, in which case µ ≤ 3. Here bxc denotes the integer part of x (i.e. x

rounded down). Thus, to obtain µ = 3 requires N ≥ 23, and to obtain µ = 5 requires

N ≥ 48.

In N = 23 dimensions, the shorter Leech lattice Λ23 has minimum norm-squared

µ = 3. Correspondingly, there is an ∞-stable 23-channel Luttinger liquid with Γ̃R =

Γ̃L = Λ23, dubbed the “symmetric shorter Leech liquid” [17]. The “symmetric” modifier

distinguishes this phase from the “asymmetric shorter Leech liquid” which has Γ̃R = Λ23

and Γ̃L = Z23, and which is also ∞-stable. These phases are discussed in more detail in

Ref. [17], and the remarkable transport properties of the latter were analyzed in Ref. [61].

In N = 52 dimensions, the lattice G52 has µ = 5 [62], and there is a corresponding

absolutely ∞-stable 52-channel Luttinger liquid with Γ̃R = Γ̃L = G52.

2.F Sphere packing bounds and the non-existence of

absolutely ∞-stable phases for N < 11

The sphere packing problem [58] is to find the densest possible packing of non-

overlapping spheres into Rn. The density of a packing is the fraction of space that

is contained inside the spheres. Given any lattice Γ ⊂ Rn, we can obtain an associated
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sphere packing by placing spheres at each lattice point, with radii equal to half the length

of the shortest lattice vector. If Γ has a unit cell of volume Ω and shortest nonzero vector

of length 2r, then the density of the associated packing, dΓ, equals the volume of an

n-ball of radius r, divided by Ω:

dΓ =
1

Ω

πn/2 rn

Γ(n/2 + 1)
. (2.133)

Hence, upper bounds on the density of sphere packings in Rn yield upper bounds on the

length, 2r, of the shortest nonzero vector in Γ.

For an N -channel Luttinger liquid, the scaling dimensions of bosonic vertex operators

are given by ∆(m) = 1
2
‖Am‖2, with A ∈ SO(N,N) and m ∈ D2N , the “checkerboard

lattice” D2N ≡ {m ∈ Z2N : |m| ∈ 2Z}. D2N has unit cell volume Ω = 2. Since detA = 1,

the same holds for the deformed lattice Γ ≡ AD2N ⊂ R2N . Absolute∞-stability requires

every nonzero vector in Γ to have norm-squared > 4, which corresponds to r > 1. Thus,

the corresponding sphere packing would have density

dΓ >
1

2

πN

Γ(N + 1)
. (2.134)

For N < 11, this contradicts known upper bounds on the density of sphere packings [51].

Hence, absolutely ∞-stable phases cannot exist with N < 11 channels.

2.G Representation of 2-channel Luttinger liquid in

terms of charge and spin fields

A single-spinful-channel quantum wire provides the simplest example of a 2-channel

Luttinger liquid. Standard treatments of this problem [15] are usually phrased in terms
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of non-chiral charge (c) and spin (s) fields, ϕc and ϕs, and their canonical conjugates,

Πc ≡ 1
π
∂xϑc and Πs ≡ 1

π
∂xϑs respectively. These fields are related to the slowly varying

parts of the charge density, ρc, and spin density, ρs, via ρc = − 1
π
∂xϕc and ρs = − 1

π
∂xϕs

(we follow the normalization and sign conventions of Ref. [15]). Our analysis in this

chapter, meanwhile, has been phrased in terms of chiral boson fields φI , which are related

to the densities at each Fermi point via ρI = 1
2π
∂xφI .

A rigorous reformulation of the bosonic effective theory in terms of charge and spin

fields is possible when the system is invariant under spin rotations about some axis n̂.

(Note that such a symmetry, by itself, imposes no constraints on the interaction matrix

V .) Then, the component of the spin along n̂ is a good quantum number, and it labels

the different Fermi points. One possibility for this labelling is

(φ1, φ2, φ3, φ4) = (φR↑, φR↓, φL↓, φL↑), (2.135)

where R/L distinguishes right movers from left movers, and ↑ / ↓ denotes the spin

component along n̂. With the choice (2.135), the fields transform under time-reversal T

according to Eq. (2.109).

Another possibility is to take

(φ1, φ2, φ3, φ4) = (φR↑, φR↓, φL↑, φL↓). (2.136)

With the choice (2.136), the fields transform under spatial inversion P according to

Eq. (2.112).
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In either case, one has



ϕc

ϑc

ϕs

ϑs


=

1

2
√

2



−1 −1 −1 −1

1 1 −1 −1

−1 1 −1 1

1 −1 −1 1





φR↑

φR↓

φL↑

φL↓


, (2.137)

and the inverse relation

φR↑

φR↓

φL↑

φL↓


=

1√
2



−1 1 −1 1

−1 1 1 −1

−1 −1 −1 −1

−1 −1 1 1





ϕc

ϑc

ϕs

ϑs


. (2.138)

Then, ρs = − 1
π
∂xϕs is indeed the slowly varying part of the density of excess spin in the

n̂-direction.

If spin rotation symmetry is completely broken, on the other hand, one cannot easily

reformulate the bosonic effective theory in terms of charge and spin fields. One can

of course still use the above formulae to define non-chiral fields ϕs and ϑs as linear

combinations of the φI , but in general these non-chiral fields will have nothing to do with

the physical spin.

Now consider a 2-channel Luttinger liquid with effective action specified by Eqs. (2.2)

and (2.12):

S =
1

4π

∫
dt dx

[
KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ

]
, (2.139)
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where K = diag(−I2, I2), and

V =



v+ w c+ c0

w v− c0 c−

c+ c0 v+ w

c0 c− w v−


. (2.140)

To shorten subsequent expressions, let

v± ≡ v ± u, (2.141a)

c± ≡ c± b. (2.141b)

As discussed earlier, the V matrix (2.140) describes a system that has either time-reversal

(T ) symmetry or spatial inversion (P) symmetry, but not both. Assuming that the

system also has spin-rotation symmetry about some axis n̂ (as mentioned above, this

assumption does not constrain V at all), one can use Eqs. (2.135–2.138) to write down

the corresponding effective Hamiltonian H in terms of charge and spin fields.

In the case of T symmetry, we use Eqs. (2.135) and (2.138). The result is

H =
1

2π

∫
dx

[
vcKc(∂xϑc)

2 +
vc
Kc

(∂xϕc)
2 + vsKs(∂xϑs)

2 +
vs
Ks

(∂xϕs)
2

+ d+∂xϑc∂xϕs + d−∂xϑs∂xϕc

]
, (2.142)
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where

vc(s) ≡ [(v ± w)2 − (c± c0)2]1/2, (2.143a)

Kc(s) ≡
[
v ± w ∓ c− c0

v ± w ± c+ c0

]1/2

, (2.143b)

d± ≡ −2u± 2b. (2.143c)

Using Πc ≡ 1
π
∂xϑc and Πs ≡ 1

π
∂xϑs, we recover Eq. (2.16).

In the case of P symmetry, we use Eqs. (2.136) and (2.138) instead. The result is

then

H =
1

2π

∫
dx

[
vcKc(∂xϑc)

2 +
vc
Kc

(∂xϕc)
2 + vsKs(∂xϑs)

2 +
vs
Ks

(∂xϕs)
2

+ d+∂xϕc∂xϕs + d−∂xϑc∂xϑs

]
, (2.144)

where

vc(s) ≡ [(v ± w)2 − (c± c0)2]1/2, (2.145a)

Kc(s) ≡
[
v ± w − c∓ c0

v ± w + c± c0

]1/2

, (2.145b)

d± ≡ 2u± 2b. (2.145c)
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2.H Explicit parameterization of matrices for the 2-

channel Luttinger liquid

2.H.1 Scaling dimension matrix M

Let Q(φ) denote the SO(2) rotation matrix

Q(φ) ≡

 cosφ sinφ

− sinφ cosφ

 , (2.146)

let R(φ) denote the O(2) reflection matrix

R(φ) ≡

 cosφ sinφ

sinφ − cosφ

 , (2.147)

and let

L ≡

δ + λ 0

0 δ − λ

 . (2.148)

The parameterization of M ∈ M2 ≡ SO(2, 2) ∩P4 described in Eqs. (2.9) and (2.11)

corresponds to

M =

QT( θ−α
2

) 0

0 QT( θ+α
2

)


 coshL − sinhL

− sinhL coshL


Q( θ−α

2
) 0

0 Q( θ+α
2

)

 , (2.149)
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where each entry is a 2× 2 matrix. Performing the matrix multiplication, we can write

the result as

M =

 I2 coshλ −R(θ) sinhλ

−R(θ) sinhλ I2 coshλ

 cosh δ +

R(θ − α) sinhλ −Q(α) coshλ

−QT(α) coshλ R(θ + α) sinhλ

 sinh δ,

(2.150)

where I2 is the 2×2 identity matrix. The dependence on α disappears in the limit δ → 0,

as stated in the main text. Similarly, the dependence on θ disappears in the limit λ→ 0.

2.H.1.1 T symmetry or P symmetry, but not both

If the system has either time-reversal symmetry or inversion symmetry, but not both,

the scaling dimension matrix must satisfy ΣMΣ = M , where Σ ≡ σx ⊗ I2. Applied to

Eq. (2.150), this condition requires α = 0. Hence, in this case,

M =

QT(θ/2) 0

0 QT(θ/2)


 coshL − sinhL

− sinhL coshL


Q(θ/2) 0

0 Q(θ/2)

 (2.151a)

=

 I2 coshλ −R(θ) sinhλ

−R(θ) sinhλ I2 coshλ

 cosh δ +

R(θ) sinhλ −I2 coshλ

−I2 coshλ R(θ) sinhλ

 sinh δ.

(2.151b)

Note in particular that the presence of T symmetry or P symmetry (but not both si-

multaneously) places no restrictions on the allowed values of the parameters λ, δ, and θ.

Changing the sign of λ is equivalent to shifting θ by π, so we can assume λ > 0.
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2.H.1.2 Both T and P symmetry

If the system has both time-reversal and inversion symmetry, the scaling dimension

matrix must satisfy ΣiMΣi = M for i = 1, 2, where Σ1 ≡ σx ⊗ I2 and Σ2 ≡ σx ⊗ σx.

Applied to Eq. (2.150), these conditions require α = 0 and θ = π/2. Hence, in this case,

M =

QT(π/4) 0

0 QT(π/4)


 coshL − sinhL

− sinhL coshL


Q(π/4) 0

0 Q(π/4)

 (2.152a)

=

 I2 coshλ −σx sinhλ

−σx sinhλ I2 coshλ

 cosh δ +

 σx sinhλ −I2 coshλ

−I2 coshλ σx sinhλ

 sinh δ. (2.152b)

2.H.2 Interaction matrix V (general expressions)

We parameterize the interaction matrix V ∈P4 using Lemma 4. Let

V =

VRR VRL

V T
RL VLL

 . (2.153)

Lemma 4 states that V ∈ ϕ−1(M) if and only if

VRR = X + F Y F T , (2.154a)

VLL = Y + F TXF, (2.154b)

VRL = XF + F Y (2.154c)
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for some X, Y ∈P2. The 2× 2 matrix F corresponding to the M given in Eqs. (2.149)

or (2.150) is

F = QT( θ−α
2

)

tanh
(
δ+λ

2

)
0

0 tanh
(
δ−λ

2

)
Q( θ+α

2
)

=
sinhλ

coshλ+ cosh δ
R(θ) +

sinh δ

coshλ+ cosh δ
Q(α), (2.155)

where Q(φ) and R(φ) are defined in Eqs. (2.146) and (2.147).

The matrices X, Y ∈P2 can be conveniently parameterized as

X =

x0 + x1 x2

x2 x0 − x1

 , (2.156a)

Y =

y0 + y1 y2

y2 y0 − y1

 , (2.156b)

where (x0, x1, x2) ∈ R3, x0 > (x2
1 + x2

2)1/2, and (y0, y1, y2) ∈ R3, y0 > (y2
1 + y2

2)1/2. Using
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Eqs. (4.5) and (2.156) in Eq. (2.154), we obtain

VRR =

x0 + x1 x2

x2 x0 − x1

 +
sinh2λ

(coshλ+ cosh δ)2

y0 + y1 cos 2θ + y2 sin 2θ y1 sin 2θ − y2 cos 2θ

y1 sin 2θ − y2 cos 2θ y0 − y1 cos 2θ − y2 sin 2θ



+
2 sinhλ sinh δ

(coshλ+ cosh δ)2

y1 cos(θ + α) + y2 sin(θ + α) + y0 cos(θ − α) y0 sin(θ − α)

y0 sin(θ − α) y1 cos(θ + α) + y2 sin(θ + α)− y0 cos(θ − α)



+
sinh2δ

(coshλ+ cosh δ)2

y0 + y1 cos 2α+ y2 sin 2α y2 cos 2α− y1 sin 2α

y2 cos 2α− y1 sin 2α y0 − y1 cos 2α− y2 sin 2α

 , (2.157a)

VLL =

y0 + y1 y2

y2 y0 − y1

 +
sinh2λ

(coshλ+ cosh δ)2

x0 + x1 cos 2θ + x2 sin 2θ x1 sin 2θ − x2 cos 2θ

x1 sin 2θ − x2 cos 2θ x0 − x1 cos 2θ − x2 sin 2θ



+
2 sinhλ sinh δ

(coshλ+ cosh δ)2

x1 cos(θ − α) + x2 sin(θ − α) + x0 cos(θ + α) x0 sin(θ + α)

x0 sin(θ + α) x1 cos(θ − α) + x2 sin(θ − α)− x0 cos(θ + α)



+
sinh2δ

(coshλ+ cosh δ)2

x0 + x1 cos 2α− x2 sin 2α x1 sin 2α+ x2 cos 2α

x1 sin 2α+ x2 cos 2α x0 − x1 cos 2α+ x2 sin 2α

 , (2.157b)

VRL =
sinhλ

coshλ+ cosh δ

(x1 + y1 + x0 + y0) cos θ + (x2 + y2) sin θ (x0 + y0 + x1 − y1) sin θ − (x2 − y2) cos θ

(x0 + y0 − x1 + y1) sin θ + (x2 − y2) cos θ (x1 + y1 − x0 − y0) cos θ + (x2 + y2) sin θ



+
sinh δ

coshλ+ cosh δ

(x0 + y0 + x1 + y1) cosα− (x2 − y2) sinα (x2 + y2) cosα+ (x1 − y1 + x0 + y0) sinα

(x2 + y2) cosα+ (x1 − y1 − x0 − y0) sinα (x0 + y0 − x1 − y1) cosα+ (x2 − y2) sinα

 .
(2.157c)

Equation (2.157) gives a complete and explicit parameterization of the possible in-

teraction matrices V ∈ P4 of a 2-channel Luttinger liquid, in terms of the ten real

parameters (λ, δ, θ, α, x0, x1, x2, y0, y1, y2). Of these, only the first four (λ, δ, θ, α) affect

scaling dimensions; they determine the scaling dimension matrix M via Eq. (2.150).

The remaining six parameters can be chosen arbitrarily, subject only to the constraints

x0 > (x2
1 + x2

2)1/2 and y0 > (y2
1 + y2

2)1/2 (if either of these inequalities is violated, the

resulting V will fail to be positive definite).
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2.H.2.1 T symmetry or P symmetry, but not both

When symmetries are present, it is convenient to parameterize the interaction matrix

V ∈ P4 using Lemma 7 instead. In the present case, Lemma 7 gives V = M−1/2[X ⊕

Y ]M−1/2 with X, Y ∈ P2 satisfying Σ[X ⊕ Y ]Σ = X ⊕ Y , where Σ ≡ σx ⊗ I2; the

condition fixes Y = X. Thus, V = M−1/2[X ⊕ X]M−1/2 with X ∈ P2. The scaling

dimension matrix M is given by Eq. (2.151). Thus,

M−1/2 =

QT(θ/2) 0

0 QT(θ/2)


cosh(L/2) sinh(L/2)

sinh(L/2) cosh(L/2)


Q(θ/2) 0

0 Q(θ/2)

 . (2.158)

The inner factors of Q(θ/2) in the product V = M−1/2[X ⊕X]M−1/2 may be absorbed

into X, since the latter is an arbitrary element of P2. Doing so, we obtain

V =

QT(θ/2) 0

0 QT(θ/2)


cosh(L/2) sinh(L/2)

sinh(L/2) cosh(L/2)


X 0

0 X


×

cosh(L/2) sinh(L/2)

sinh(L/2) cosh(L/2)


Q(θ/2) 0

0 Q(θ/2)

 . (2.159)

We can parameterize X ∈P2 as

X = ζ

1 + a −b

−b 1− a

 , (2.160)
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where ζ > 0 and (a, b) ∈ R2, a2 + b2 < 1. Performing the matrix multiplications in

Eq. (2.159), we obtain

V = ζ

V1 V2

V2 V1

 cosh δ + ζ

V2 V1

V1 V2

 sinh δ, (2.161)

where

V1 =

coshλ+ a cos θ coshλ+ b sin θ a sin θ coshλ− b cos θ

a sin θ coshλ− b cos θ coshλ− a cos θ coshλ− b sin θ

 , (2.162a)

V2 =

a+ cos θ sin θ

sin θ a− cos θ

 sinhλ. (2.162b)

Equations (2.161) and (2.162) gives a complete and explicit parameterization of the

possible interaction matrices V ∈ P4 of a 2-channel Luttinger liquid with either time-

reversal symmetry or inversion symmetry (but not both), in terms of the six real pa-

rameters (λ, δ, θ, a, b, ζ). Of these, only the first three (λ, δ, θ) affect scaling dimensions;

they determine the scaling dimension matrix M via Eq. (2.151). The remaining three

parameters can be chosen arbitrarily, subject only to the constraints a2 + b2 < 1 and

ζ > 0 (if these inequalities are violated, the resulting V will fail to be positive definite).

Note that ζ is an irrelevant overall scale factor.

2.H.2.2 Both T and P symmetry

As above, we parameterize the interaction matrix V ∈ P4 using Lemma 7. In this

case, Lemma 7 gives V = M−1/2[X ⊕ Y ]M−1/2 with X, Y ∈ P2 satisfying Σi[X ⊕

Y ]Σi = X ⊕ Y for i = 1, 2, where Σ1 ≡ σx ⊗ I2 and Σ2 ≡ σx ⊗ σx. The conditions fix

Y = X = x0I2 + x1σx, with (x0, x1) ∈ R2, x0 > |x1|. Thus, V = M−1/2[X ⊕ X]M−1/2
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with X of the form specified. The scaling dimension matrix M is given by Eq. (2.152).

Thus,

M−1/2 =

QT(π/4) 0

0 QT(π/4)


cosh(L/2) sinh(L/2)

sinh(L/2) cosh(L/2)


Q(π/4) 0

0 Q(π/4)

 . (2.163)

Writing X = ζ(I2 + aσx) with ζ > 0, |a| < 1, and performing the matrix multiplications

in V = M−1/2[X ⊕X]M−1/2, we obtain

V = ζ

V1 V2

V2 V1

 cosh δ + ζ

V2 V1

V1 V2

 sinh δ, (2.164)

where

V1 =

1 a

a 1

 coshλ, (2.165a)

V2 =

a 1

1 a

 sinhλ. (2.165b)

Equations (2.164) and (2.165) gives a complete and explicit parameterization of the

possible interaction matrices V ∈ P4 of a 2-channel Luttinger liquid with both time-

reversal and inversion symmetry, in terms of the four real parameters (λ, δ, a, ζ). Of these,

only the first two (λ, δ) affect scaling dimensions; they determine the scaling dimension

matrix M via Eq. (2.152). The remaining two parameters can be chosen arbitrarily,

subject only to the constraints |a| < 1 and ζ > 0 (if these inequalities are violated, the

resulting V will fail to be positive definite). Note that, as before, ζ is an irrelevant overall

scale factor.
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2.H.3 Interaction matrix V with T or P symmetry (but not

both), in the special case δ = 0

In the limit δ → 0, Eqs. (2.161) and (2.162) together yield

V =



v+ w c+ c0

w v− c0 c−

c+ c0 v+ w

c0 c− w v−


, (2.166)

where

v± = v ± u, (2.167a)

v = ζ coshλ, (2.167b)

u = ζ(a cos θ coshλ+ b sin θ), (2.167c)

w = ζ(a sin θ coshλ− b cos θ), (2.167d)

c± = ζ(a± cos θ) sinhλ, (2.167e)

c0 = ζ sin θ sinhλ. (2.167f)

We assume λ > 0 (without loss of generality), and identify the values of a, b for which all

matrix elements of V are nonnegative. The diagonal elements of a positive definite matrix

are necessarily positive, so v± > 0 is automatic. c0 ≥ 0 requires θ ∈ [0, π]. Nonnegativity

of the remaining matrix elements, c± and w, requires

a ≥ |cos θ|, (2.168a)

a sin θ coshλ ≥ b cos θ. (2.168b)
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In fact, Eq. (2.168b) is superfluous, because it follows from Eq. (2.168a) and the positive

definiteness condition a2 + b2 < 1; assuming the latter, we have |b| < (1 − a2)1/2 ≤

|sin θ| ≤ |cos θ tan θ| coshλ ≤ a|tan θ| coshλ, which implies Eq. (2.168b) if θ ∈ [0, π]. We

conclude that the V matrix given above is positive definite with all entries nonnegative

if λ > 0, θ ∈ [0, π], a2 + b2 < 1, and a ≥ |cos θ|.

These results are completely equivalent to the ones stated in the main text. Indeed,

using Eq. (2.167), one can verify that the following linear relations hold:

c± = (w sin θ ± v± cos θ) tanhλ, (2.169a)

c0 = v sin θ tanhλ. (2.169b)

These are precisely the relations that one obtains by using Eq. (2.166) and F = Q(θ) tanh(λ/2)

in Eq. (2.103c) of Lemma 5. Therefore, we can regard (v, u, w), instead of (ζ, a, b), as the

independent variables parameterizing V . From Eq. (2.167), we have

u/v
w/v

 =

cos θ sin θ sechλ

sin θ − cos θ sechλ


a
b

 . (2.170)

Inverting this linear system,

a
b

 =

 cos θ sin θ

sin θ coshλ − cos θ coshλ


u/v
w/v

 . (2.171)

Thus, the conditions a2 + b2 < 1 and a ≥ |cos θ| translate to:

(u sin θ − w cos θ)2 cosh2λ+ (u cos θ + w sin θ)2 < v2, (2.172a)

u cos θ + w sin θ ≥ v|cos θ|. (2.172b)
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These conditions are stated in the main text of the chapter as Eqs. (2.14) and (2.15).

2.I Absolute q-stability phase diagram for N = 2 chan-

nel Luttinger liquid

The interaction matrix V ∈ P4 of a 2-channel Luttinger liquid depends on ten real

parameters; these can be chosen according to Eq. (2.157). Of the ten, only the four

parameters ξ ≡ (λ, δ, θ, α) affect scaling dimensions; they determine the scaling dimension

matrix M(ξ) via Eq. (2.150), which in turn determines ∆(m; ξ) ≡ 1
2
mTM(ξ)m.

Let q(ξ) denote the absolute q-stability value of a Luttinger liquid with parameters

ξ. By definition, q(ξ) is the largest integer such that ∆(m; ξ) > 2 for all nonzero m ∈ Z4

with K(m) ∈ Z and |m| ≤ q(ξ), where K(m) ≡ 1
2
mTKm, K ≡ I2 ⊕ −I2. Because

of the inequality ∆(m) ≥ |K(m)|, one can restrict attention to those m for which

K(m) = 0,±1,±2. Thus, an equivalent definition of q(ξ) to the one given above is:

q(ξ) is the smallest positive integer such that ∆(m; ξ) ≤ 2 for some m ∈ Z4 with

K(m) ∈ {0,±1,±2} and |m| = q(ξ) + 1.

We use the second definition to determine the phase diagram numerically. The al-

gorithm is straightforward: at each point ξ, compute ∆(m; ξ) for all integer vectors m

with K(m) ∈ {0,±1,±2} in shells of increasing |m|, until either a vector m∗ is found

for which ∆(m∗; ξ) ≤ 2, or |m| passes a specified cutoff value q∗. Set q(ξ) = |m∗| − 1 in

the former case, and q(ξ) = q∗ in the latter. The shells of vectors with |m| = 2, . . . , q∗

can be tabulated in advance, and the matrix M(ξ) only needs to be computed once at

each point ξ. Figure 2.2 of the main text and Figure 2.I.1 below were obtained by this

method, with cutoff q∗ = 22.
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Figure 2.I.1: Various slices of the absolute q-stability phase diagram for the N = 2
channel Luttinger liquid (compare Figure 2.2).
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Chapter 3

Relaxation to equilibrium in systems

with quadratic hamiltonians

In this chapter, we present an elementary, general, and semi-quantitative description

of relaxation to gaussian and generalized Gibbs states in lattice models of fermions or

bosons with quadratic hamiltonians. Our arguments apply to arbitrary initial states

that satisfy a mild condition on clustering of correlations. We also show that simi-

lar arguments can be used to understand relaxation (or its absence) in systems with

time-dependent quadratic hamiltonians, and provide a semi-quantitative description of

relaxation in quadratic periodically driven (Floquet) systems.

3.1 Introduction

In recent years, there has been much work on understanding the nature of the equi-

librium state, and the dynamics of the relaxation to this state, in quantum many-body

systems with an extensive number of local conservation laws. The motivation for the

study of these integrable models is twofold. First, beautiful cold-atom experiments have
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successfully realized many such models and studied their nonequilibrium dynamics (for

reviews, see Refs. [63, 64, 22, 65]). Second, integrable models are much easier to analyze

theoretically than their non-integrable brethren (for reviews, see Refs. [66, 67]).

When prepared in a generic initial state, an integrable system does not thermalize in

the usual sense of the word, due to the extensive number of local conserved quantities.

Instead, the stationary behavior at late times can be described by an appropriate gen-

eralized Gibbs ensemble (GGE). For our purposes, the “GGE conjecture” put forth in

Ref. [24] and subsequently refined by many authors ([22] and references therein), asserts

the following: assuming that local observables in an integrable many-body system relax

to stationary values, these values may be computed using the density matrix

ρ̂GGE =
1

ZGGE

exp

(
−
∑
m

λmÎm

)
, (3.1)

where {Îm} is the set of all local conserved quantities (here locality means that each Îm

is a sum of local densities), ZGGE = Tr(e−
∑
m λmÎm) is the partition function needed for

normalization, and {λm} are Lagrange multipliers chosen so as to satisfy the constraints

Tr(Îm ρ̂GGE) = 〈Îm〉(t = 0). The density matrix ρ̂GGE is readily obtained by the general

prescription [68] of maximizing the entropy S = −Tr(ρ̂ log ρ̂) subject to these constraints.

In this chapter we consider the simplest class of integrable models: those whose hamil-

tonians can be expressed as quadratic forms in a set of canonical particle creation and

annihilation operators. Such so-called non-interacting integrable models describe not only

truly non-interacting particles, but also mean-field approximations to models of interact-

ing particles. In view of this, we will refer to the models of interest as “quadratic” rather

than “non-interacting integrable”. In one dimension, certain other integrable models—

some spin chains and systems of hard-core particles—can be mapped to quadratic ones.

However, simple observables in the original model often map to complicated operators

83



Relaxation to equilibrium in systems with quadratic hamiltonians Chapter 3

in the quadratic model, and one must take this into account when using the mapping to

study relaxation [69].

In quadratic models, the local conserved charges Îm are also typically quadratic (we

demonstrate this explicitly in Section 3.5.1), and therefore the GGE density operator

ρ̂GGE is gaussian. It is thus quite natural to divide relaxation in quadratic models into

two process: (i) relaxation of the initial state to a gaussian one, and (ii) relaxation of

the gaussian state to the appropriate GGE. Our arguments will make clear that these

two processes occur for fundamentally distinct physical reasons, and also that the first

process often (but not always) occurs faster than the second. We will also show that

similar arguments can be used to understand relaxation in systems with quadratic time-

periodic hamiltonians. Considering the great recent interest in driven quantum systems

([70, 71] and references therein), we believe that this is a useful synthesis of ideas.

Recently, Gluza et al. [72] have argued that the first process mentioned above (which

they term “gaussification”) can be understood as a consequence of exponential clustering

of correlations in the initial state, together with “delocalizing transport” (the sufficiently

rapid suppression of the component of an operator on any given site, due to its “spreading

out” over a large area), and have rigorously proven this implication for fermionic lattice

systems with quadratic time-independent hamiltonians. The importance of clustering

of correlations in the initial state for relaxation had earlier been emphasized by Cramer

and Eisert [73], and by Sotiriadis and Calabrese [74], who had shown that it is in fact a

necessary and sufficient condition for relaxation to GGE in a broad class of translation-

invariant quadratic models. Other early studies of the validity of the GGE in quadratic

systems (e.g. [75, 76]) typically assumed gaussian initial states, and hence addressed only

the second process described in the previous paragraph. Our results are consistent with,

and generalize, the results of these earlier works.
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Note that, in the decade since Ref. [24] appeared, the validity of the GGE has been

the subject of a large number of theoretical and numerical investigations, of which the

works cited above comprise only a handful. For a reasonably complete summary and

critical discussion of all these efforts, we refer the reader to one of the recent reviews of

the field, e.g. Refs. [22, 66, 67].

Here, we distill the basic ideas present in Ref. [74] and especially in Ref. [72], and

give an elementary, general, and semi-quantitative description of relaxation in quadratic

lattice models. To state our results, we need to introduce some notation. Let ψ̂ax denote

the particle creation (a = +) or annihilation (a = −) operator for the site at position x.

Under Heisenberg time-evolution with any time-dependent quadratic hamiltonian Ĥ(t),

these operators evolve linearly:

ψ̂ax(t) =
∑
b=±

∑
y

Gab
xy(t)ψ̂

b
y. (3.2)

This equation defines the single-particle propagator Gab
xy(t), which plays a central role in

the following.

For most of this work, we assume delocalizing dynamics:

∣∣Gab
xy(t)

∣∣→ 0 as t→∞. (3.3)

The terminology is adapted from Ref. [72]. Equation (3.3) may be interpreted as saying

that a particle (or hole) created at x has vanishing probability amplitude to be found at

any given y after infinite time, because its wavefunction “spreads out” indefinitely. In

the case of bosons, we also require the quasiparticle spectrum of Ĥ(t) to be uniformly

bounded and positive-definite. Note that we do not restrict the hamiltonian to be time-

independent in general.
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We treat arbitrary initial states that satisfy a mild condition on (algebraic) clus-

tering of correlations:

〈〈ψ̂a1
x1
ψ̂a2
x2
· · · ψ̂anxn〉〉 = o(|xi − xj|−(d+ε)) as |xi − xj| → ∞, (3.4)

for some ε > 0. Here, 〈〈· · ·〉〉 denotes the connected correlation function in the initial

state, and d is the spatial dimension. We emphasize that the initial state is not assumed

to have any relation whatsoever to the hamiltonian under which the system subsequently

evolves. In particular, the initial state may be strongly interacting. We also emphasize

that the cluster decomposition property (3.4) is an extremely weak constraint on the

state; one can expect it to hold for most initial states of interest. In fact, a stronger

version of (3.4) has been rigorously proven for large classes of states, including ground

states of interacting local hamiltonians with a spectral gap [77, 78], as well as thermal

states of arbitrary short-ranged fermionic lattice models at sufficiently high temperature

[79].

Our emphasis throughout this chapter is on simplicity and physical transparency

rather than on mathematical rigor; the reader in search of the latter is encouraged to

consult Refs. [72, 80] and similar works in parallel with our treatment. Nevertheless,

we believe that most of the arguments presented here can serve as sketches for rigorous

proofs.

Our main technical results are summarized below.

1. “Gaussification” under general conditions: In any lattice system of fermions or

bosons prepared in an initial state satisfying (3.4) and evolving under a quadratic hamil-

tonian Ĥ(t) that leads to delocalizing dynamics (3.3), all local (n > 2)-point connected
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correlation functions vanish at late times:

〈〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉〉 → 0 as tj →∞. (3.5)

Following Ref. [72], we refer to this vanishing as “gaussification”, because it is equivalent

to the dynamical recovery of Wick’s theorem—the distinguishing property of a gaussian

state. This result significantly generalizes that of Ref. [72], where gaussification was

proven for time-independent fermion lattice models and initial states with exponential

clustering of correlations.

2. Universal power-law gaussification: In many cases of interest one can identify, for

each x, a, and t, a definite volume Vax(t) of y-space in which the single-particle propagator

Gab
xy(t) is meaningfully supported. In these cases we obtain a more quantitative version

of Eq. (3.5):

〈〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉〉 ∼ [V(t)]−(n/2−1) as t→∞, (3.6)

where t ≡ (t1 + · · · + tn)/n. This asymptotic result holds in the limit |ti − tj| � t,

with V(t) :≈ Vaixi (ti) ≈ V
aj
xj (tj). Typically, V(t) grows like a power of t. Thus, Eq. (3.6)

gives power-law decay of the connected correlation functions in time, with exponents that

depend only on n and on how fast the single-particle propagator of the system spreads.

3. Gaussianity of GGE: We prove that all local conserved quantities of a time-

independent quadratic hamiltonian with delocalizing dynamics (3.3) are also quadratic,

and therefore that the associated GGE density matrix is indeed gaussian. In past work

this property appears simply to have been taken for granted.

4. Relaxation to GGE: For any time-independent hamiltonian that satisfies (3.3),

and any initial state that satisfies (3.4) and an additional assumption to be described
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below, we show that the system relaxes to the GGE; for any local operator Ô,

〈Ô(t)〉 → 〈Ô〉GGE as t→∞. (3.7)

This result is consistent with and generalizes existing proofs of relaxation to the GGE

to a larger class of models and initial states. The additional assumption is formulated

precisely in Section 3.5.3 (Eq. (3.134)). Roughly speaking, it excludes situations in

which the initial profiles of local conserved densities are inhomogeneous on length scales

comparable to the system size. In such cases, the GGE conjecture fails for a trivial

reason: it takes infinitely long for the locally conserved density to flow across the whole

system in the thermodynamic limit. A mathematically rigorous version of this result has

recently been proven in Ref. [80], but under somewhat more stringent conditions than

those assumed here.

5. Universal power-law relaxation: Under the conditions of the previous result, we

also obtain quantitative estimates for how the local 2-point function relaxes to its GGE

value. Consider the instantaneous deviation

δCab
xy(t) ≡ 〈ψ̂ax(t)ψ̂by(t)〉 − 〈ψ̂axψ̂by〉GGE. (3.8)

Assume, as is often the case, that the density of quasiparticle states of Ĥ near the band

edge has the form g(ε) ∼ εs. We show that, generically,

δCab
xy(t) ∼ t−α(1+s) as t→∞, (3.9)

where α = 1 if there is a density wave of one or more of the conserved quantities in

the initial state, and α = 2 if not. In particular, for translation-invariant quadratic
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hamiltonians in d dimensions,

δCab
xy(t) ∼ t−αd/2 as t→∞, (3.10)

where α is defined above. Note that this result holds for generic hamiltonians and initial

states of the types considered; different exponents can and do occur if the hamiltonian

and/or initial state is fine-tuned. Again, a mathematically rigorous version of the result

(3.10) was recently proven in Ref. [80], in the form of a bound
∣∣δCab

xy(t)
∣∣ ≤ t−γ, but under

somewhat more stringent conditions than those assumed here, and with γ < αd/2 in

general; Eq. (3.10) represents a more accurate asymptotic result.

6. Floquet-GGE: For any time-periodic quadratic hamiltonian Ĥ(t) = Ĥ(t+ T ) that

satisfies (3.3), we prove that all local conserved quantities of the associated Floquet

hamiltonian ĤF are quadratic, and hence that the Floquet-GGE [81] density matrix,

ρ̂F , is gaussian. For any initial state that satisfies the assumptions of result 4 above,

we show that the system eventually relaxes to this (time-periodic) Floquet-GGE. In the

limit T → 0 of fast driving, we expect to observe power-law relaxation to ρ̂F , with

the exponents given by results 2 and 5 above applied to ĤF . In the opposite limit

T →∞ of slow driving, we expect to observe power-law relaxation toward a GGE of the

instantaneous hamiltonian Ĥ(t), followed by much slower exponential relaxation ∼ e−t/T

toward ρ̂F . Our results are consistent with, and generalize, the original treatment of this

problem by Lazarides et al. [82] (in which the initial state was assumed to be gaussian,

and no estimates like the ones above were given for the relaxation process itself).

7. Effects/non-effects of localized states: We find that dynamics generated by a

quadratic fermion hamiltonian Ĥ whose quasiparticle spectrum includes discrete localized

levels (so that Eq. (3.3) is violated) will still lead to gaussification and equilibration to an
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appropriate GGE, as long as (i) the initial state has a finite correlation length ξ, and (ii)

the spatial distance between any pair of localized levels is large relative to ξ. This result

should be viewed as an interesting (but easily understandable; see Section 3.6) exception

to the general rule [83, 84] that the GGE fails if the spectrum of Ĥ contains a pure-point

part coming from localized levels. If either of the conditions (i) or (ii) above is violated,

we recover the expected failure of gaussification and of the GGE. Thus, our results are

fully consistent with those of Ziraldo et al. [83, 84], who considered the case that Ĥ is

disordered; in this case condition (ii) will typically be violated.

Organization of the chapter

In Section 3.2 we introduce our arguments in a simple and concrete setting: a 1d tight-

binding model of spinless fermions. In Section 3.3 we define the general problem and fix

terminology and notation. In Section 3.4 we present our argument for gaussification in

arbitrary quadratic models (of particles), and predict the exponents of the power law

decay in time of all higher-point connected functions. In Section 3.5 we describe the

manner in which, for time-independent hamiltonians, the gaussian state equilibrates to

the GGE. In Section 3.6 we describe how discrete localized levels in the spectrum of

the hamiltonian affect relaxation. In Section 3.7 we consider quenches to time-periodic

quadratic hamiltonians, and describe relaxation to the Floquet-GGE. In Section 3.8 we

briefly comment on the application of our arguments to spin models that can be mapped

onto quadratic fermion models. Finally, in Section 5.6 we summarize our results.
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3.2 Example: Relaxation in a nearest-neighbor tight-

binding chain

In this section we introduce our arguments by working them out carefully in a simple

and concrete example, while emphasizing the key ideas. This will also serve to motivate

the subsequent general development.

3.2.1 Setup

Consider a tight-binding model of spinless fermions in d = 1 dimensions, with nearest-

neighbor hopping. The hamiltonian is

Ĥ0 = −1

2

L∑
x=1

(
ĉ†xĉx+1 + ĉ†x+1ĉx

)
, (3.11)

where ĉ†x and ĉx respectively create and annihilate a fermion on the site at position x.

These operators obey the standard anti-commutation relations

ĉxĉ
†
y + ĉ†y ĉx = δxy, (3.12a)

ĉxĉy + ĉy ĉx = 0. (3.12b)

We have set the lattice spacing equal to 1 and hopping energy equal to 1/2. We will also

set h̄ = 1. Periodic boundary conditions are assumed (site L + 1 is identified with site

1).

Imagine a quench in which the system is prepared in some non-equilibrium initial

state, represented by the density operator ρ̂0, at time t = 0, and subsequently evolved

with the hamiltonian Ĥ0 of Eq. (3.11). For the majority of this example (up to and

including Section 3.2.5), we make only two assumptions about ρ̂0.
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The first assumption is very important: ρ̂0 must obey the principle of cluster de-

composition [85]. Roughly speaking, this principle requires correlations between local

operators in the state ρ̂0 to factorize as the operators are taken far apart from one an-

other. We will make this precise in Eq. (3.42) (we use a stronger version of the principle

in this section than we do in our general treatment).

The second assumption is not important, and we impose it only to simplify the

example. We assume that the initial state conserves total particle number:

[
N̂ , ρ̂0

]
= 0, (3.13)

where

N̂ =
∑
x

ĉ†xĉx. (3.14)

In the general treatment of Section 3.3 onwards, we make no assumption like Eq. (3.13).

In the last part of this example, Section 3.2.6, we will add a third assumption about

ρ̂0, Eq. (3.65). Nothing in Sections 3.2.2 through 3.2.5 relies on this extra assumption;

it is only needed for the analysis of Section 3.2.6. Therefore, we do not state it here.

We will study whether and how local observables of the system relax to their values

in an appropriate generalized Gibbs ensemble as time progresses. We first discuss the

construction of this GGE density operator.

3.2.2 Conserved quantities and GGE density operator

The hamiltonian (3.11) can be diagonalized by introducing quasi-momentum mode

operators:

ĉx =
1√
L

∑
k

eikxĉ(k), (3.15)
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where k runs over all integer multiples of (2π/L) within the Brillouin zone (−π, π]. In

terms of these mode operators,

Ĥ0 =
∑
k

ω(k) ĉ†(k)ĉ(k), ω(k) = − cos k. (3.16)

The various mode occupation number operators,

n̂(k) = ĉ†(k)ĉ(k), (3.17)

clearly commute with Ĥ0 and with each other. Furthermore, by forming appropriate

linear combinations of them, we can define an extensive set of local conserved quantities

in involution:

Î2m =
∑
k

cos(mk)n̂(k) =
1

2

L∑
x=1

(
ĉ†xĉx+m + ĉ†x+mĉx

)
, (3.18)

and

Î2m+1 =
∑
k

sin(mk)n̂(k) =
(−i)

2

L∑
x=1

(
ĉ†xĉx+m − ĉ†x+mĉx

)
. (3.19)

where m = 0, 1, 2, . . . . These clearly commute with Ĥ0 and with one another:

[
Ĥ0, Îm

]
= 0, (3.20a)[

Îm, Îm′
]

= 0 (3.20b)

(in fact, Ĥ0 = Î2, so the second equation implies the first). They are local because their

densities,

∝
(
ĉ†xĉx+m ± ĉ†x+mĉx

)
,

act nontrivially only on finite intervals of length m.

The set of local conserved quantities {Îm} defined in Eqs. (3.18) and (3.19) has the
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further property of being maximal : any local conserved quantity Î that commutes with

all of the Îm can be expressed as a linear combination of them,

[
Îm, Î

]
= 0 ∀ m =⇒ Î ∈ span({Îm}), (3.21)

where

span({Îm}) ≡
{∑

m

amÎm

∣∣∣∣∣ am ∈ R

}
. (3.22)

This claim is easy to verify if we assume that Î is a quadratic operator; the only quadratic

operators that commute with n̂(k) for all k are indeed of the form Î =
∑

k f(k)n̂(k) for

some function f . However, once we drop this assumption, the validity of the claim is

much less obvious. One can certainly write down many nonlocal conserved quantities that

violate Eq. (3.21)—products of mode occupation numbers, such as n̂(k)n̂(k′)—and one

might wonder whether it is possible to build a local quantity out of linear combinations

of these, à la Eqs. (3.18) or (3.19). We will address this concern later in our general

treatment: in Section 3.5.1, we prove that, for a wide class of quadratic hamiltonians (to

which Ĥ0 belongs), all local conserved quantities Î are themselves quadratic. The claim

follows.

Thus, one is tempted to assert that the GGE density operator for the tight-binding

chain has the form

ρ̂GGE =
1

ZGGE

exp

(
−
∑
m

λmÎm

)
(3.23a)

=
1

ZGGE

exp

(
−
∑
k

µ(k)n̂(k)

)
, (3.23b)
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where the Lagrange multipliers {λm} are fixed by requiring that

Tr
(
Îm ρ̂GGE

)
= Tr

(
Îm ρ̂0

)
; (3.24)

this in turn fixes the function µ(k), which is in general unrelated to the function ω(k)

appearing in Ĥ0.

One may also consider truncated GGEs in which only the “most local” conservation

laws are taken into account (i.e. only Îm with m ≤ 2` are retained in the density matrix)

[86]; this is equivalent to truncating the Fourier series of µ(k) at order `. More generally,

in the limit of infinite system size, L → ∞, one can require that λm decay in a certain

manner as m→∞; this is equivalent to placing a smoothness condition on µ(k). Thus,

the GGE (truncated or not) can be defined either in terms of the local charges Îm or in

terms of the mode occupation numbers n̂(k) [86].

Actually, ρ̂GGE is not uniquely given by Eq. (3.23) for this model. Although the set

{Îm} defined by Eqs. (3.18) and (3.19) is maximal, it is not complete: there exist local

conserved quantities Î ′ that cannot be expressed as linear combinations of the Îm. A

simple example [66] of such a quantity is

Î ′ =
∑
x

(−1)x
(
ĉxĉx+1 + ĉ†x+1ĉ

†
x

)
. (3.25)

In k-space, Î ′ takes the form

Î ′ =
∑
k

e−ik ĉ(π − k)ĉ(k) + h.c.. (3.26)

This quantity is conserved because the mode spectrum ω(k) = − cos k of the hamiltonian
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Ĥ0 of Eq. (3.16) has the symmetry

ω(k) = −ω(π − k). (3.27)

One can verify that Î ′ does not commute with the Îm, so its existence does not contradict

maximality of {Îm}.

Note that the symmetry (3.27) is actually a degeneracy of the spectrum |ω(k)| =

|cos k| of positive-energy quasiparticles of Ĥ0. In general, the existence of “extra” local

conserved quantities such as Î ′—and the associated ambiguity in the definition of the

GGE—is related to degeneracies in the quasiparticle spectrum of the hamiltonian [87].

We discuss the general relationship in Section 3.5.2.

One way to deal with an incomplete maximal set {Îm} is to simply complete it by

adding to {Îm} additional local conserved quantities, such as Î ′. This is the approach

advocated by Fagotti [87], who studied this problem in significant detail. The operators

comprising the expanded set will no longer be in involution, but one can still assign to

each one a Lagrange multiplier and define ρ̂GGE by maximizing the entropy subject to

all constraints. We obtain an expression identical to Eq. (3.23a), but where the index m

ranges over the complete set. This maneuver is valid because local conserved quantities

satisfy a closed algebra [87] (of which the various maximal sets are maximal abelian

subalgebras). The advantage of this approach is that the resulting ρ̂GGE depends on the

initial state only through the Lagrange multipliers {λm}. The primary disadvantage is

that one can no longer write ρ̂GGE in terms of a single set of mode occupation numbers,

as in Eq. (3.23b).

Our approach to this problem, which we describe in Section 3.5.2, is slightly different.

In short, we retain ρ̂GGE in the original form (3.23), but allow the maximal commuting

set {Îm}, or equivalently the set of mode occupation numbers {n̂α}, to depend on the
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initial state. In this approach, ρ̂GGE always has a mode number representation similar to

Eq. (3.23b); however, different classes of initial states lead to inequivalent GGEs.

For now, we can ignore these subtleties, because we assumed that the initial state ρ̂0

conserves total particle number (Eq. (3.13)). For this class of initial states, the GGE is

correctly given by Eqs. (3.23) and (3.24), with Îm defined in Eqs. (3.18) and (3.19), and

n̂(k) in Eq. (3.17). We leave the proof of this assertion as an exercise for the reader.

3.2.3 Relaxation of local observables: preliminaries

Having defined the GGE, we turn to the relaxation of local observables. It is conve-

nient to work in the Heisenberg picture. The operators representing observables evolve

according to

Ô(t) = eiĤ0tÔe−iĤ0t, (3.28)

while the density operator is always ρ̂0. The expectation value of an observable at time

t is

〈Ô(t)〉 ≡ Tr
(
Ô(t) ρ̂0

)
. (3.29)

By a local observable we mean any bosonic hermitian operator Ô that acts nontrivially

only on a finite interval (at time t = 0). Consider the quantity

RO(t) ≡ lim
L→∞

[
〈Ô(t)〉 − 〈Ô〉GGE

]
, (3.30)

where

〈Ô〉GGE ≡ Tr(Ô ρ̂GGE). (3.31)
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We say that the system relaxes (locally) to the GGE if

RO(t)→ 0 as t→∞ (3.32)

for every local observable Ô.

Now, any number-conserving local observable has a unique expansion of the form

Ô = O(0) +
∑
x,y

O(1)
xy ĉ
†
xĉy +

∑
x,x′,y,y′

O(2)
xx′yy′ ĉ

†
xĉ
†
x′ ĉy ĉy′ + · · · , (3.33)

where locality implies that all sums over positions are restricted to a finite interval, and

therefore that the expansion terminates at a finite order (because the space of operators

supported on a finite interval in a system of fermions is finite dimensional). Our sim-

plifying assumption (3.13) on the initial state means that we do not need to consider

non-number-conserving observables; their expectation values vanish identically.

Thus, it is sufficient to study the relaxation of local static 2n-point correlation func-

tions :

〈ĉ†x1
(t)ĉ†x2

(t) · · · ĉ†xn(t)ĉy1(t)ĉy2(t) · · · ĉyn(t)〉. (3.34)

More generally, one might also consider dynamic correlation functions, in which the

various t’s are allowed to be different. These describe, for instance, the response of the

system to an external probe.

For systems with a Lieb-Robinson bound [88], there is a general result [89] which

states that, if the system relaxes to a stationary state ρ̂stat as t → ∞ (as measured by

local static correlations), then all local dynamic correlations are also described by ρ̂stat

as t → ∞. In this section, we will simply appeal to this result and concentrate on

static correlations. But in fact, most of our arguments apply equally well to dynamic

correlations, and we will work directly with the latter in the general treatment from
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Section 3.3 onwards. We will do this, despite the result of Ref. [89], for two reasons:

firstly, to keep our arguments self-contained, and secondly, because we are interested not

just in the limiting behavior of quantities as t → ∞, but also in the manner in which

they relax to those limits.

Note that the density operator ρ̂GGE is gaussian—it is the exponential of a quadratic

form in the creation and annihilation operators. Therefore, all correlation functions

computed with respect to ρ̂GGE Wick factorize into products of two-point functions, and

are determined entirely by the latter:

〈ĉ†x1
· · · ĉ†xn ĉy1 · · · ĉyn〉GGE =

∑
P

sgn(P ) 〈ĉ†x1
ĉyP (n)

〉GGE · · · 〈ĉ†xn ĉyP (1)
〉GGE, (3.35)

where sgn(P ) is the sign of the permutation

P : (1, 2, . . . , n) 7→ (P (1), P (2), . . . , P (n)). (3.36)

For instance,

〈ĉ†x1
ĉ†x2
ĉx3 ĉx4〉GGE = 〈ĉ†x1

ĉx4〉GGE 〈ĉ†x2
ĉx3〉GGE − 〈ĉ†x1

ĉx3〉GGE 〈ĉ†x2
ĉx4〉GGE. (3.37)

Since the initial state ρ̂0 need not be gaussian, the real correlation functions certainly

need not behave in this manner at early times. To show relaxation to the GGE, we

therefore need to show that, as time progresses, (i) Wick factorization is recovered, and

(ii) two-point correlation functions approach their stationary GGE values.

In any state, such as ρ̂0, one can also define the connected 2n-point correlation func-

tion. Roughly speaking, this is the part of the 2n-point correlation function that fails to
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factorize into lower-point correlation functions. For instance,

〈〈ĉ†x1
ĉ†x2
〉〉 = 〈ĉ†x1

ĉ†x2
〉, (3.38)

and

〈〈ĉ†x1
ĉ†x2
ĉx3 ĉx4〉〉 = 〈ĉ†x1

ĉ†x2
ĉx3 ĉx4〉 − 〈ĉ†x1

ĉx4〉 〈ĉ†x2
ĉx3〉+ 〈ĉ†x1

ĉx3〉 〈ĉ†x2
ĉx4〉. (3.39)

The general definition of connected functions is reviewed in Appendix 3.A. The vanishing

of all connected (2n > 2)-point correlation functions is equivalent to Wick factorization,

as is evident from the formulae above:

(
〈ĉ†x1
· · · ĉ†xn ĉy1 · · · ĉyn〉 Wick factorizes ∀ n

)
⇐⇒

(
〈〈ĉ†x1
· · · ĉ†xn ĉy1 · · · ĉyn〉〉 = 0 ∀ n ≥ 2

)
. (3.40)

Therefore, we are led to study the relaxation of static local connected 2n-point cor-

relation functions:

〈〈ĉ†x1
(t)ĉ†x2

(t) · · · ĉ†xn(t)ĉy1(t)ĉy2(t) · · · ĉyn(t)〉〉. (3.41)

These functions, and their dynamic brethren, will be the primary objects of study in this

chapter.

We can now state precisely the cluster decomposition condition that the initial state

ρ̂0 is assumed to satisfy (in this section). We assume that

〈〈ĉ†x1
· · · ĉ†xn ĉxn+1 · · · ĉx2n〉〉 = o(e−|xi−xj |/ξ) as |xi − xj| → ∞, (3.42)

for any pair of indices i, j ∈ 1, 2, . . . , 2n, where ξ is some finite correlation length, and
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where “f(x) = o(g(x)) as x → a” means that f(x)/g(x) → 0 as x → a. In the general

treatment of Section 3.3 onwards, we will significantly weaken this assumption, and

require only algebraic decay (rather than exponential) of the initial connected correlation

functions (Eq. (3.42) will be replaced by Eq. (3.83)).

3.2.4 The single-particle propagator

Because Ĥ0 is quadratic, the fermion operators

ĉx(t) = eiĤ0tĉxe
−iĤ0t (3.43)

evolve linearly; they obey

ĉx(t) =
∑
y

Gxy(t)ĉy, (3.44)

where

Gxy(t) =
1

L

∑
k

eik(x−y)+it cos k. (3.45)

It follows from Eq. (3.44) that

〈0|ĉx(t)ĉ†y(0)|0〉 = Gxy(t), (3.46)

where |0〉 is the fermion vacuum, specified by

ĉx |0〉 = 0 ∀ x. (3.47)

Thus, Gxy(t), which is defined as the coefficient appearing in Eq. (3.44), may be identified

as the single-particle propagator (the amplitude for a particle added to the vacuum at

site y to be found after time t at site x).
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Figure 1: Magnitude of the single-particle propagator |Gxy(t)| = |Jx−y(t)| for the
model described by Eq. (3.11).

Equation (3.44) also implies that

Tr
([
ĉx(t), ĉ

†
y(0)

]
+
ρ̂0

)
= Gxy(t), (3.48)

where
[
â, b̂
]

+
≡ âb̂+ b̂â denotes the anticommutator. Thus, Gxy(t) can also be identified

with the retarded single-particle Green’s function (if the hamiltonian is quadratic, this

quantity is independent of the state ρ̂0).

These interpretations are useful for guessing properties of Gxy(t) in situations in which

one cannot write down a simple expression for it. We will not need to rely on intuition

in this section, however. In the limit L→∞, one has

Gxy(t) =

∫ π

−π

dk

2π
ei(x−y)k+it cos k = ix−yJx−y(t), (3.49)

where Jn(z) is the Bessel function of order n ∈ Z. The magnitude of the propagator,
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|Gxy(t)|, is plotted for various values of t in Figure 1.

We will show in the following that the leading late-time behavior of the connected

(2n ≥ 4)-point functions (3.41) is actually determined by very basic properties of the

propagator. Basically, all that matters is how the propagator “spreads out” with time.

Let us characterize this “spreading out” more precisely.

Although |Gxy(t)| itself is a rapidly oscillating function of x− y at fixed t, its smooth

envelope is nonzero and slowly varying inside the “lightcone” |x− y| < t, and decays

exponentially to zero for |x− y| > t. Qualitatively, this can be seen by glancing at

Figure 1. More quantitatively, one can apply the method of stationary phase [90] to the

integral expression in Eq. (3.49) to obtain

|Gxy(t)| ∼
[

4

π2(t2 − r2)

]1/4 ∣∣∣cos
(
π
2
(r − 1

2
)− r arcsin(r/t)−

√
t2 − r2

)∣∣∣
as t→∞ if

|r|
t
< 1−O(t−1/3), (3.50)

and

|Gxy(t)| = o(t−n) ∀ n as t→∞ if
|r|
t
> 1 +O(t−1/3), (3.51)

where r = x− y. The |cos(· · ·)| factor in Eq. (3.50) describes the lattice-scale oscillations

of |Gxy(t)|; we replace it with a constant to obtain the smooth envelope.

The two relevant properties of the propagator are that the interval of |x− y| values

over which Gxy(t) is non-negligible grows linearly with t, and that the matrix elements of

Gxy(t) inside this interval have a typical magnitude ∝ t−1/2. The second property can be

extracted from Eq. (3.50), but it can also be deduced very simply from the first property,

as follows. Unitarity of time-evolution implies that G(t) is a unitary matrix:

1 =
∑
y

|Gxy(t)|2. (3.52)
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We can restrict the sum to the interval over which |Gxy(t)| is non-negligible:

1 ≈
x+t∑

y≈x−t

|Gxy(t)|2. (3.53)

Since the envelope of |Gxy(t)| is nonzero and slowly varying within this interval, and since

the interval grows linearly with t, one must have |Gxy(t)| ∼ t−1/2.

3.2.5 Decay of local connected (n ≥ 4)-point functions. “Gaus-

sification”

We are now in a position to understand why Wick factorization is recovered as t

increases. Consider the equal-time connected 4-point function 〈〈ĉ†x1
(t)ĉ†x2

(t)ĉx3(t)ĉx4(t)〉〉.

Equation (3.39) shows that this function measures the extent to which the 4-point func-

tion 〈ĉ†x1
(t)ĉ†x2

(t)ĉx3(t)ĉx4(t)〉 fails to Wick factorize. Using Eq. (3.44) and its adjoint to

express the operators at time t in terms of operators at time zero,

〈〈ĉ†x1
(t)ĉ†x2

(t)ĉx3(t)ĉx4(t)〉〉 =
∑
y1···y4

G∗x1y1
(t)G∗x2y2

(t)Gx3y3(t)Gx4y4(t) 〈〈ĉ†y1
ĉ†y2
ĉy3 ĉy4〉〉. (3.54)

We can estimate the magnitude of this quantity by multiplying the number of significant

terms in the sum by the typical magnitude of each one. We have already seen that

|Gxy(t)| is negligible outside the lightcone |x− y| ∼ t, and that it has typical magnitude

|Gxy(t)| ∼ t−1/2 inside. By our assumption (3.42) on exponential clustering of correlations

in the initial state, the function 〈〈ĉ†y1
ĉ†y2
ĉy3 ĉy4〉〉 is negligible whenever |yi − yj| > ξ, where

ξ is the finite correlation length. As a result, the sum over y = (y1 · · · y4) in Eq. (3.54) is

restricted to a region of size ∼ ξ3t (this is illustrated in Figure 2):

Vol
{
y
∣∣[G∗x1y1

(t)G∗x2y2
(t)Gx3y3(t)Gx4y4(t) 〈〈ĉ†y1

ĉ†y2
ĉy3 ĉy4〉〉

]
non-negligible

}
∼ ξ3t, (3.55)
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x1 x2 x3 x4
t

0
y3 y1 y2 y4

ξ

∼ 2t

� ξ

Figure 2: Schematic showing spreading of operators in the model of Eq. (3.11), and
how this leads to the decay of connected correlation functions as time t increases. The
points xj are the locations of the operators on the left side of Eq. (3.54); the points
yj are for a representative term in the sum on the right side of this equation. Each
yj must lie inside the backward light-cone of xj in order for the propagator Gxjyj(t)
to be nonzero. Configurations of the y’s in which the distance between any pair is
much greater than the correlation length ξ (as is the case in the figure) give negligible
contributions due to clustering of correlations in the initial state. This effectively
restricts the sum over y1 · · · y4 to a region of size ∼ ξ3t (Eq. (3.55)).

while each term in the sum is of order

|Gxy(t)|4 ∼ t−2. (3.56)

Hence the right hand side of Eq. (3.54) is of order ∼ t−1 and the connected function on

the left vanishes in this manner as t→∞.

As t increases, there will be additional constructive or destructive interference between

different terms in the sum of Eq. (3.54), that we have not taken into account in our crude

accounting. Thus, we expect in general that

〈〈ĉ†x1
(t)ĉ†x2

(t)ĉx3(t)ĉx4(t)〉〉 ∼
z(t)

t
as t→∞, (3.57)

where z(t) is some oscillatory function of time.
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A similar argument shows that

〈〈ĉ†x1
(t) · · · ĉ†xn(t)ĉxn+1(t) · · · ĉx2n(t)〉〉 ∼

zn(t)

tn/2−1
(3.58)

as t→∞, where the zn(t) are some other oscillatory functions of time.

Thus, as t → ∞, only the fully disconnected parts of local correlation functions

survive (the parts that factorize into products of 2-point functions); in other words, we

recover Wick factorization as t→∞. As mentioned above, this is the defining property

of a gaussian density matrix. We conclude that, as t→∞, the “local state of the system”

may be described by a density matrix of the form

ρ̂1(t) =
1

Z1(t)
exp

(
−
∑
x,y

ĉ†xKxy(t)ĉy

)
, (3.59)

where Kxy(t) is chosen such that

Tr
(
ĉ†x(t)ĉy(t)ρ̂1(t)

)
= 〈ĉ†x(t)ĉy(t)〉 (3.60)

for all sites x, y with |x− y| finite in the limit L→∞, and Z1(t) ensures normalization.

As long as Kxy(t) is chosen to satisfy this condition at each time t (actually, Eq. (3.60)

only needs to hold up to terms of order ∼ t−1), we have

〈Ô(t)〉 ∼ Tr
(
Ô(t)ρ̂1(t)

)
+O(t−1) as t→∞, (3.61)

for all local observables Ô.

We have shown that the state becomes “locally gaussian” at late times. Following

Ref. [72], we refer to this process as “gaussification”. In Section 3.4 we describe gaussifi-

cation in arbitrary quadratic lattice models by generalizing the chain of reasoning leading
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from Eq. (3.44) to Eq. (3.58).

3.2.6 Equilibration of the local 2-point function to its GGE

value

It remains to compute the local equal-time 2-point function, and to verify that it

relaxes to its stationary GGE value. By definition of the GGE, Eq. (3.23), this stationary

value is

〈ĉ†x1
ĉx2〉GGE =

1

L

∑
k

e−ik(x1−x2)〈n̂(k)〉, (3.62)

where 〈n̂(k)〉 is the expectation of the mode occupation number n̂(k) in the initial state.

The results of this subsection depend on a third assumption about the initial state ρ̂0,

in addition to Eqs. (3.13) and (3.42). Roughly speaking, we want to exclude situations

in which the initial profiles of local conserved densities are inhomogeneous on length

scales comparable to the system size—for instance, an initial state in which sites x =

1, 2, . . . , L/2 are occupied by fermions and the rest are empty. True local equilibration

in such cases occurs on timescales of order L, simply because that is how long it takes a

locally conserved density to flow across the system.

In order to formulate this assumption precisely, recall that the local conserved quan-

tities (Eqs. (3.18) and (3.19)) are of the form

Îm =
L∑
x=1

Îm,x, (3.63)

where the density Îm,x is supported on a finite interval of length bm/2c near site x.
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Define the “local excess density”

δIm(x0;L0) ≡ 1

L0

x0+L0/2∑
x=x0−L0/2

〈Îm,x〉 −
1

L
〈Îm〉. (3.64)

We assume that these excess densities can be made small by taking L0 sufficiently large

(but finite and independent of L as L→∞):

∃L0 : δIm(x0;L0) = O
( 1

L0

)
∀ x0,m as L→∞. (3.65)

We emphasize that the results of the previous subsections hold even when this assump-

tion is violated. In particular, the system still “gaussifies” as described in Section 3.2.5.

Thus, if the initial state violates Eq. (3.65), the natural description of the local state of

the system at late times is in terms of a time-dependent gaussian density matrix, given

by Eqs. (3.59) and (3.60).

To study relaxation of the 2-point function, we will finally need to use the diagonal

form (3.16) of the hamiltonian Ĥ0, or equivalently, the full form (3.44) of the propagator

Gxy(t). We may write

〈ĉ†x1
(t)ĉx2(t)〉 =

1

L

∑
k1,k2

e−i(k1x1−k2x2)e−i(cos k1−cos k2)t F (k1, k2), (3.66)

where

F (k1, k2) ≡ 〈ĉ†(k1)ĉ(k2)〉. (3.67)

We begin by showing that, under the assumptions we have made, the function F

108



Relaxation to equilibrium in systems with quadratic hamiltonians Chapter 3

must have the form

F (k1, k2) = δk1,k2〈n̂(k1)〉+

jmax∑
j=1

δk1−qj ,k2 fj(k1) +
1

L
f(k1, k2), (3.68)

where each qj 6= 0 remains finite in the limit L → ∞, and where 〈n̂(k)〉, fj(k), and

f(k, k′) are smooth O(1) functions. The various Kronecker deltas contain all of the

singular dependence of F (k1, k2) on its arguments.

We arrive at Eq. (3.68) as follows. Invert the Fourier transformation and write

F (k1, k2) =
1

L

∑
y1,y2

ei(k1y1−k2y2)〈ĉ†y1
ĉy2〉

=
1

L

∑
y1,y2

ei(k1+k2)(y1−y2)/2 ei(k1−k2)(y1+y2)/2 〈ĉ†y1
ĉy2〉. (3.69)

The sums over y1 and y2 in Eq. (3.69) may be performed with respect to the central

coordinate (y1 +y2)/2 and relative coordinate (y1−y2). Due to clustering of correlations,

the sum over the relative coordinate converges absolutely (it is effectively restricted to a

finite window |y1 − y2| . ξ), and consequently F must be a smooth function of (k1 +k2).

On the other hand, the central coordinate is summed over the whole system, and so F

can depend in a singular manner on (k1−k2). In particular, F (k1, k2) is O(1) if and only

if the terms in the sum over the central coordinate add constructively. This occurs when

(k1 − k2) = 0 (in which case the phase factor in Eq. (3.67) is independent of the central

coordinate), but it may also occur for (k1 − k2) = q 6= 0 if the initial state has a density

wave with wavevector q, so that 〈ĉ†y1
ĉy2〉 ∝ e−iq(y1+y2)/2. Our extra assumption on the

initial state, Eq. (3.65), implies that q 6→ 0 as L → ∞. This establishes the validity of

Eq. (3.68).
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Using Eq. (3.68) in Eq. (3.66), we obtain

〈ĉ†x1
(t)ĉx2(t)〉 =

1

L

∑
k

e−ik(x1−x2)〈n̂(k)〉+

jmax∑
j=1

δC(j)
x1,x2

(t) + δCx1,x2(t), (3.70)

where

δC(j)
x1,x2

(t) =
1

L

∑
k

e−ik(x1−x2)−iqjx2e−i[cos k−cos(k−qj)]t fj(k), (3.71)

and

δCx1,x2(t) =
1

L2

∑
k1,k2

e−i(k1x1−k2x2)e−i(cos k1−cos k2)t f(k1, k2). (3.72)

When t � 1, we may apply the method of stationary phase to estimate the time-

dependent pieces. The cleanest way to do this is to first take L → ∞, so that 1
L

∑
k →∫

dk
2π

, and only then take t large, and that it what we will do here. However, we note in

passing that it is also possible to perform a similar analysis without first taking L→∞;

one can use the Poission summation formula to represent 1
L

∑
k as a sum of integrals—

each integral corresponding to a translated copy of the finite system—and then estimate

each of these integrals by stationary phase. As long as t < L/vmax, where vmax is the

maximal group velocity of particles in the system, the extra translated integrals generate

only exponentially small (in t) corrections to the L→∞ result.

For completeness, let us briefly review the method of stationary phase. This method

is described in detail in many standard texts, such as Ref. [90]. A nice heuristic and

mathematically elementary treatment may be found in Section 3.3 of Ref. [91]. In the

limit L→∞, Eqs. (3.71) and (3.72) are both of the general form

I(t) =

∫
ddk

(2π)d
a(k) eiϕ(k)t, (3.73)

where a and ϕ are smooth functions. The k-integral is one-dimensional in Eq. (3.71)
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and two-dimensional in Eq. (3.72). In both cases, the integral is over a compact region

without boundary. As t→∞, the dominant contributions to the I(t) integral come from

the vicinity of points k∗ at which ∇k ϕ(k∗) = 0, called critical points of ϕ. A critical

point k∗ is nondegenerate if the Hessian matrix at that point,

Hab(k∗) ≡
∂

∂ka

∂

∂kb
ϕ(k∗), (3.74)

is invertible. Each isolated nondegenerate critical point kj gives a contribution Ij(t) to

I(t) that can be obtained (to leading order in t) by expanding the phase function ϕ(k)

up through quadratic order in (k − kj), extending the limits of the k-integral to infinity,

and performing the resulting gaussian integral; the result is

Ij(t) =
ei(π/4)sj

(2πt)d/2 |det H(kj)|1/2
a(kj) e

iϕ(kj)t + · · · , (3.75)

where sj is the signature (number of positive eigenvalues minus number of negative

eigenvalues) of the symmetric matrix H(kj). The dots are subleading terms proportional

to higher derivatives of a(k) evaluated at kj. Terms with n derivatives are suppressed

relative to the leading term by an additional factor of t−n/2.

We obtain I(t) by simply adding up these contributions (assuming ϕ has no other

critical points):

I(t) ∼
∑
j

Ij(t). (3.76)

Thus, whenever the phase function ϕ has a finite number of critical points, all of which

are nondegenerate (and assuming that the amplitude function a(k) does not vanish at

all of these points),

I(t) ∼ t−d/2 as t→∞. (3.77)
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This is the generic situation.

If, however, ϕ does have degenerate critical points, their contributions must also be

accounted for. The power of t associated with such a contribution can often be estimated

very simply as follows. Assume that k∗ is a critical point at which ϕ(k) − ϕ(k∗) has a

zero of order m, while a(k) has a zero of order n (that is, the Taylor expansions of

these functions about k = k∗ start with monomials of order m and n respectively). In

spherical coordinates centered at k∗, we would have ϕ(k∗ + k) ≈ ϕ(k∗) + |k|mΦ(θ) and

a(k∗ + k) ≈ |k|nA(θ), where Φ and A are appropriate functions of the angular variables,

collectively denoted θ. Thus the leading contribution from the critical point is of the

form

Ij(t) ∼
∫
kd−1 dk

(2π)d

∫
dΩ knA(θ) eik

mΦ(θ)t. (3.78)

Scaling t out of the integral by changing integration variables to p = t1/mk, we obtain

the estimate

Ij(t) ∼ t−(d+n)/m as t→∞. (3.79)

Note that larger m leads to slower decay. Thus, in the (non-generic) case that ϕ has

degenerate critical points, the “most degenerate” of these will typically dominate the

t→∞ behavior of I(t). This concludes our brief mathematical interlude.

For a given qj 6= 0, the phase function ϕ(k; qj) = cos(k − qj) − cos(k) appearing in

Eq. (3.71) has precisely two distinct nondegenerate critical points: k = k± = 1
2
(qj ± π).

Thus, assuming that fj(k) does not vanish at these points, the method of stationary

phase yields

δC(j)
x1,x2

(t) ∼ t−1/2 as t→∞. (3.80)

A similar analysis applies to Eq. (3.72). In this case, the phase function ϕ(k1, k2) =

cos k2 − cos k1 has precisely four distinct nondegenerate critical points: (k1, k2) = (0, 0),
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(0, π), (π, 0), and (π, π). Thus, assuming that f(k1, k2) does not vanish at these points,

δCx1,x2(t) ∼ t−1 as t→∞. (3.81)

Note that the locations of the critical points in k-space are determined by the dispersion

relation of the hamiltonian Ĥ0, whereas the functions fj(k) and f(k1, k2) are determined

by the initial state. Therefore, these functions will only vanish at the critical points

for special, fine-tuned, choices of the initial state. We conclude that, for generic initial

states, as t→∞,

〈ĉ†x1
(t)ĉx2(t)〉 ∼ 〈ĉ†x1

ĉx2〉GGE +Rx1x2(t), (3.82)

where the remainder Rxy(t) is of order t−1/2 if the initial state has a density wave, i.e. if

〈c†(k)ĉ(k − q)〉 is sharply peaked at one or more nonzero wavevectors q, and is of order

t−1 if not.

We have now explicitly shown that, for any initial state ρ̂0 that satisfies Eqs. (3.13),

(3.42) and (3.65), all local observables of the system relax to their values in the GGE

(3.23) as t→∞ under time evolution generated by Ĥ0. Furthermore, we have obtained

the exponents of the power laws governing the relaxation processes. We have shown that

if the initial state has a density wave, then we generically expect the system to relax

first to a (time-dependent) gaussian state like ∼ t−1, and then to relax to the GGE

like ∼ t−1/2. In Section 3.4 we describe relaxation of the local 2-point function—and

hence relaxation of a gaussified state to the GGE—in arbitrary quadratic models, by

generalizing the chain of reasoning leading from Eq. (3.66) to Eq. (3.82).

Although we derived them for the specific model of Eq. (3.11), the relaxation expo-

nents 1/2 and 1 are actually generic for quenches to clean quadratic fermion models in

one dimension. Different exponents may be obtained if the final hamiltonian is fine-tuned
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(so that the dispersion relation has degenerate critical points) and/or if the initial state

is fine-tuned (so that the functions fj(k) and f(k1, k2) vanish at the critical points). For

instance, Ref. [92] studied parameter quenches in a dimerized chain and in the Kitaev

model of a 1d spinless p-wave superconductor, and obtained parameter-dependent relax-

ation exponents for the 2-point function. In all cases, however, the exponents can be

associated to degenerate critical points and/or to the vanishing of fj(k) or f(k1, k2) at

the critical points, and their values agree with the simple estimate (3.79) (the authors of

[92] perform a more sophisticated steepest descent analysis to also obtain the prefactors).

Moreover, one can easily verify that generic small perturbations of the pre-quench state

and post-quench hamiltonian cause the exponents to return to the parameter-independent

values 1/2 and 1.

Finally, we briefly comment on relaxation from initial states that violate Eq. (3.65).

One might still expect the conclusions of this section to apply locally, so that the system

relaxes as described above toward a “local GGE” in which the Lagrange multipliers are

slowly varying functions of position and time. This “local GGE” would in turn relax—

over timescales comparable to the system size—to the global GGE of Eq. (3.23), in a

manner consistent with a generalized theory of hydrodynamics [93]. This is certainly

a tempting picture, but because one cannot associate a timescale to local power-law

relaxation, it is not immediately clear that such a description—based on separation of

timescales—is self-consistent. We will not explore these questions further in this thesis.
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3.3 General treatment. Setup and basic definitions

3.3.1 System

We consider a lattice system of fermions or bosons in d dimensions, with one orbital

per lattice site and N sites in total (the generalization to multiple orbitals per site is

straightforward, and merely complicates the bookkeeping). Let ψ̂−x and ψ̂+
x = (ψ̂−x )†

denote the annihilation and creation operators respectively for the site at position x.

Although we work on a lattice, we believe that many of our arguments also apply

in the continuum limit, if the symbols in the equations are reinterpreted correctly; in

particular ψ̂±x should be regarded as the operator that creates or destroys a wavepacket

at position x. With this in mind, we will also make statements about relaxation in

systems of massless particles, etc.

3.3.2 Initial state

At time t = 0, the system is prepared in some non-equilibrium initial state represented

by the density matrix ρ̂0. For the majority of this chapter, the only condition that we

impose on ρ̂0 is that it have the cluster decomposition property [85]:

〈〈ψ̂a1
x1
ψ̂a2
x2
· · · ψ̂anxn〉〉 = o(|xi − xj|−(d+ε)) as |xi − xj| → ∞ (3.83)

for any pair of indices i, j ∈ 1, 2, . . . , n, where ε > 0 is some positive real number.

Here 〈〈· · ·〉〉 denotes the connected correlation function or cumulant of the operators

ψ̂a1
x1
· · · ψ̂anxn in the state ρ̂0 (the definition of connected correlation function is reviewed

in Appendix 3.A). Equation (3.83) says that the connected function vanishes at least as

rapidly as |xi − xj|−(d+ε) when |xi − xj| → ∞, for some ε > 0. The cluster decomposi-

tion property ensures that correlations in the state ρ̂0 factorize as groups of operators
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are taken far away from one another, and it is quite reasonable from a physical stand-

point. The cluster decomposition property (in fact a stronger exponential version of

it) has been rigorously proven for large classes of initial states. These include ground

states of interacting local hamiltonians with a spectral gap [77, 78], as well as thermal

states of arbitrary short-ranged fermionic lattice systems at sufficiently high temperature

[79]. We emphasize again that the initial state ρ̂0 need not be related in any way to the

hamiltonian of the system. For instance, it can be the ground state or thermal state of

some completely different interacting hamiltonian; the only requirement is that it satisfy

Eq. (3.83).

In Sections 3.5.3, 3.6.4 and 3.7.3, we will require the initial state to satisfy a second

condition, in addition to cluster decomposition. This extra assumption is needed in

these three sections and nowhere else, so we state it when it first becomes relevant, in

Section 3.5.3. In the rest of the chapter, only Eq. (3.83) is assumed.

3.3.3 Hamiltonian

For t > 0, the evolution of the system is governed by a quadratic, possibly time-

dependent, hamiltonian of the form

Ĥ(t) =
∑
x,y

[
ψ̂+
x hxy(t)ψ̂

−
y + 1

2

(
ψ̂+
x ∆xy(t)ψ̂

+
y + h.c.

)]
, (3.84)

where h∗xy = hyx and ∆xy = ±∆yx for bosons/fermions respectively. This is the most

general possible form of a quadratic hamiltonian. The term involving h accounts for

hopping and on-site potentials, while the term involving ∆ allows for pairing. In the

bosonic case, we assume that any linear terms have been eliminated by appropriately

shifting the operators, and that the quasiparticle spectrum of Ĥ(t) is positive-definite.
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It is often convenient to organize the annihilation and creation operators into a 2N -

component column vector Ψ̂. If one orders the sites in some manner from 1 to N , and

temporarily denotes the operators acting on site number j by ψ̂±j , then

Ψ̂ = (ψ̂−1 , ψ̂
−
2 , · · · , ψ̂−N , ψ̂+

1 , ψ̂
+
2 , · · · , ψ̂+

N)T . (3.85)

The hamiltonian can then be written in the form (column vector times matrix times row

vector):

Ĥ(t) = 1
2
Ψ̂†H(t)Ψ̂ + constant, (3.86)

where

H(t) =

 h(t) ∆(t)

±∆∗(t) ±h∗(t)

 , (3.87)

and where the plus (minus) signs apply to bosons (fermions). H(t) is a 2N×2N hermitian

matrix whose blocks are the matrices h = h† and ∆ = ±∆T with components hxy and

∆xy (ordered to match the operators). In the bosonic case, we requireH(t) to be positive-

definite at each t (this is equivalent to requiring the quasiparticle spectrum of Ĥ(t) to be

positive-definite).

In general, we will refer to any 2N × 2N matrix M as a canonical hermitian matrix

if it is of the form

M =

 X Y

±Y ∗ ±X∗

 , M =M†. (3.88)

We find it preferable to work in the Heisenberg picture throughout our analysis, so

that the operators ψ̂ax(t) evolve with time t, while the unspecified density matrix ρ̂0 does

not.
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3.3.4 Observables and relaxation

The observables of interest are local correlation functions ; by this we mean any n-

point function 〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉 in which |xi − xj| � L for all pairs of indices i, j ∈

1, 2, . . . , n, where L is the physical extent of the system (assumed to be of the same order

of magnitude in each spatial direction). This notion of locality can be made precise in

the thermodynamic limit L→∞, by requiring that all distances |xi − xj| remain finite.

We say that the system (whose true state in the Heisenberg picture is always given

by ρ̂0) relaxes to a state described by the density matrix ρ̂1(t) if the latter reproduces all

local correlation functions at late times.

3.3.5 Gaussian density matrices

A density matrix ρ̂ is gaussian if it is of the form

ρ̂ =
1

Z
exp
(
−1

2
Ψ̂†K Ψ̂

)
, (3.89)

where K is a 2N × 2N canonical hermitian matrix (that is, it satisfies Eq. (3.88)). The

quadratic form 1
2
Ψ̂†K Ψ̂ may be regarded as a “statistical hamiltonian” for the gaussian

state (compare Eq. (3.86)).

A density matrix ρ̂′ is gaussian if and only if, for each n 6= 2, all connected n-point

functions with respect to ρ̂′ vanish (this is equivalent to Wick’s theorem). Any gaussian

state is therefore entirely determined by its 2-point functions.

3.4 “Gaussification” of the initial state

We will first study the relaxation, in the sense defined above, of a system prepared in

the initial state ρ̂0 and evolving according to the quadratic hamiltonian (3.84), to a state
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described by a gaussian density matrix. Following Ref. [72], we refer to this process as

“gaussification”.

This section can be regarded as generalizing the logic that led from Eq. (3.44) to

Eq. (3.59) in Section 3.2.

3.4.1 Spreading of operators. General properties of the propa-

gator

As stated earlier, we work in the Heisenberg picture. Since the hamiltonian (3.84) is

quadratic, the Heisenberg equations of motion for ψ̂ax(t) yield a system of linear ordinary

differential equations. These may be written in matrix form, following the notation of

Eq. (3.86), as

∂

∂t
Ψ̂(t) = −iM(t)Ψ̂(t), (3.90)

where

M(t) =

 h(t) ∆(t)

−∆∗(t) −h∗(t)

 . (3.91)

Recall that h† = h and ∆T = ±∆ for bosons (fermions). Thus, for fermions, the matrix

M(t) = H(t) is always hermitian, whereas for bosons it is only hermitian if ∆ = 0. In

either case, one may immediately integrate this matrix differential equation to obtain

Ψ̂(t) = G(t)Ψ̂(0), (3.92)
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which defines the propagator G(t); in general G(t) is the time-ordered exponential of the

matrix-valued function M(t):

G(t) =

G−−(t) G−+(t)

G+−(t) G++(t)

 = T e−i
∫ t
0 M(t′)dt′ . (3.93)

One always has G++(t) = [G−−(t)]∗ and G−+(t) = [G+−(t)]∗. The matrix G(t) is unitary

in the case of fermions (or bosons with ∆ = 0), since in these cases it is the time-ordered

exponential of a hermitian matrix-valued function. For bosons in general, G(t) is instead

pseudo-unitary ; it satisfies G†η G = η, where η = IN ⊕−IN and IN is the N ×N identity

matrix. We will at first restrict attention to the cases in which G(t) is unitary, and

postpone the discussion of the slightly more subtle case of bosons with nonzero pairing

(with ∆ 6= 0) to Section 3.4.5.

Equation (3.92) can be written in component form as

ψ̂ax(t) =
∑
b=±

∑
y

Gab
xy(t)ψ̂

b
y, (3.94)

where ψ̂by = ψ̂by(0). The components Gab
xy(t) of the propagator may be interpreted as

giving the amplitude for a particle (b = −) or hole (b = +) added to the “vacuum” at

position y to be found, after time t has elapsed, as a particle (a = −) or hole (a = +) at

position x. Gab
xy(t) also equals the retarded single-particle Green’s function of the system

(both normal and anomalous parts); with a quadratic hamiltonian Ĥ(t), this Green’s

function is independent of the state ρ̂0.

Unitarity of the matrix G(t) ensures that

∑
b=±

∑
y

|Gab
xy(t)|

2
= 1. (3.95)
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In accordance with the interpretation of Gab
xy(t) given above, this equation may be un-

derstood as expressing conservation of probability of particles along with holes.

Our argument for “gaussification” depends only on very coarse properties of the

propagator—on whether and how rapidly it “spreads” as time progresses. Let us make

these notions precise. Following the terminology used in Ref. [72], we say that the

dynamics are delocalizing at (x, a) if

|Gab
xy(t)| → 0 as t→∞ ∀ (y, b); (3.96)

otherwise we say that the dynamics are localizing at (x, a).

If the dynamics are delocalizing at (x, a), then for any c > 0, at sufficiently late times

t one has |Gab
xy(t)| < c for all (y, b). In order to satisfy Eq. (3.95), |Gab

xy(t)| must then be

nonzero for at least 1/c2 pairs (y, b). Thus, “delocalizing dynamics” requires spreading

of the propagator. In order to quantify how rapidly this spreading occurs, consider the

smooth envelope G̃ab
xy(t) of |Gab

xy(t)| , obtained by coarse-graining the latter in x and y

(in the example of Section 3.2, for instance, we obtain G̃xy(t) by averaging the curves in

Figure 1 over their rapid oscillations on the lattice scale). For given position x, index a,

time t, and constant δ > 0, define

Dax(t; δ) ≡
{
y
∣∣ G̃a+

xy (t) > δ or G̃a−
xy (t) > δ

}
(3.97)

and

Vax(t; δ) ≡ Voly[Dax(t; δ)]. (3.98)
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By choosing δ small enough, we can ensure that, to any desired accuracy,

∑
y∈Dax(t;δ)

∑
b=±

|Gab
xy(t)|

2
=: 1− ε2(t, δ) ≈ 1, (3.99)

where the first equality defines ε(t, δ). Thus, whenever Gab
xy(t) is present in a sum over

y, we may restrict the sum to y ∈ Dax(t; δ) while only making an error of order ε(t, δ).

In what follows, we will assume that δ = δ∗(t) has been chosen small enough so that the

error ε(t, δ∗(t)) is negligible, and suppress it in writing

Dax(t) = Dax(t; δ∗(t)) (3.100)

and

Vax(t) = Vax(t; δ∗(t)). (3.101)

In many cases of interest, including lattice systems with Lieb-Robinson bounds [88,

94, 72], Vax(t; δ) depends much more weakly on δ than does ε(t, δ) in the limit δ → 0 (a

glance back at Figure 1 shows that this is true in the example of Section 3.2). In order

to satisfy Eq. (3.99), the non-negligible components Gab
xy(t), which belong to the region

y ∈ Dax(t), must then have magnitude

|Gab
xy(t)| ∼ [Vax(t)]−1/2 for typical y ∈ Dax(t). (3.102)

If the dynamics are delocalizing, one must have Vax(t)→∞ as t→∞.

Usually, the dimension d′ of the region Dax(t) equals the dimension d of the ambient

space. However, there are also cases in which d′ < d. For instance, for a system of massless

particles with an isotropic dispersion relation, Dax(t) is the d′ = (d−1)-dimensional surface

of a d-dimensional sphere centered at x.
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Before proceeding, let us comment on three generic ways in which the dynamics may

fail to delocalize:

1. The most obvious one is that Ĥ describes a system that is Anderson localized [95]; in

this case the dynamics are localizing at all points x.

2. More generally, imagine that the quasiparticle spectrum of Ĥ includes a level whose

wavefunction is exponentially localized in space near position x0. The propagator

Gab
xy(t) will then include a term, due to the localized state, that does not vanish as

t→∞. However, this contribution will be exponentially small in the distances |x− x0|

or |y − x0| if either of these is large. Thus, to an excellent approximaiton, the dynamics

will only be localizing very near x0, and will remain delocalizing elsewhere. We will

discuss the special effects that arise when the quasiparticle spectrum of Ĥ contains

one or more localized states, in addition to extended states, in Section 3.6. For the

remainder of the chapter, we exclude this possibility. Because we define relaxation

as a local phenomenon, however, our general conclusions also apply to systems with

localized states, as long as we consider a region of space that is sufficiently far from

them.

3. Finally, consider a system of non-interacting particles moving in two dimensions in a

constant perpendicular magnetic field. In this case, the dynamics are again localizing;

the propagator G(t) is a periodic function of time [96]. This may be inferred from the

fact that, in the classical problem, all particles move in circular orbits at the cyclotron

frequency ω0 = eB/mc, regardless of their initial velocity (here m is the mass and e

the charge of each particle, B is the magnitude of the magnetic field, and c is the speed

of light). Consequently, the wavefunction of a single particle prepared in a wavepacket

at some point r0 simply expands and contracts rhythmically with period 2π/ω0.
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3.4.2 Decay of connected correlation functions. “Gaussifica-

tion”

Using Eq. (3.92), any time-dependent connected n-point function can be expressed

as a linear combination of connected n-point functions at time zero:

〈〈ψ̂a1
x1

(t1)ψ̂a2
x2

(t2) · · · ψ̂anxn(tn)〉〉 =
∑

b1···bn=±

∑
y1···yn

Ga1b1
x1y1

(t1) · · ·Ganbn
xnyn(tn) 〈〈ψ̂b1y1

ψ̂b2y2
· · · ψ̂bnyn〉〉.

(3.103)

We are interested in local correlation functions, so we assume that the xj’s are all close

to one another (relative to the size of the system). We can estimate the magnitude of

the connected n-point function by simply multiplying the number of significant terms in

the sum by the typical magnitude of each one. Based on the discussion in Section 3.4.1,

the summand is negligible unless each yj is contained in the appropriate region Dajxj (tj).

Assume for a moment that the initial state ρ̂0 obeys a strong version of cluster decom-

position, and has a finite correlation length ξ such that 〈〈ψ̂b1y1
ψ̂b2y2
· · · ψ̂bnyn〉〉 is negligible

whenever |yi − yj| � ξ. Then, the summand at y = (y1, y2, . . . , yn) is significant only if

y ∈ D({xi, ti}), where

D({xi, ti}) ≈
{
y
∣∣ yj ∈ Dajxj (tj) ∀ j and |yi − yj| < ξ ∀ i, j

}
, (3.104)

and the number of significant terms in the sum, N (t), is proportional to the volume, in

y-space, of D({xi, ti}).

With delocalizing dynamics, each region Dajxj (tj) grows without bound as t → ∞,

so that Vajxj (tj) � ξd at late times. In this case, it is easy to see that the number of
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∼ r(t)

∼ ξ

x1

x2

x3

x4

y1

y2 y3

y4

∼ r(t)

x1

x2

x3

x4

y1

y2
y3

y4

� ξ

Figure 3: Schematic showing how the spreading of operators in d = 2 dimensions
causes the connected 4-point function 〈〈ψ̂a1

x1
(t)ψ̂a2

x2
(t)ψ̂a3

x3
(t)ψ̂a4

x4
(t)〉〉 to decay as time t

increases. As in Eq. (3.103), this function is expressed as a weighted sum of connected
4-point functions at time zero, 〈〈ψ̂b1y1

ψ̂b2y2
ψ̂b3y3

ψ̂b4y4
〉〉. Cluster decomposition ensures that

only configurations of the y’s of the form depicted in the left panel contribute to
the sum; configurations like that shown in the right panel do not, because the con-
nected function 〈〈ψ̂b1y1

ψ̂b2y2
ψ̂b3y3

ψ̂b4y4
〉〉 is negligible. This restriction in allowed phase space

is ultimately responsible for the power-law decay of all connected 3- and higher-point
functions, as explained in the text.

significant terms in the sum is

N (t) ∼ V(t)ξ(n−1)d′ , (3.105)

where

V(t) = min{Va1
x1

(t1),Va2
x2

(t2), · · · ,Vanxn (tn)}. (3.106)

The factor of V(t) comes from a sum over the central coordinate ȳ = 1
n
(y1 +y2 + · · ·+yn),

while the (n− 1) factors of ξd
′

come from sums over the relative y-coordinates; the latter

are restricted by cluster decomposition, while the former is not. This straightforward

geometric argument is illustrated in Figure 3.

Meanwhile, eachGab
xy(tj) factor in the summand has typical magnitude∼ [Vax(tj)]

−1/2 .
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[V(t)]−1/2. We conclude that |〈〈ψ̂a1
x1

(t1)ψ̂a2
x2

(t2) · · · ψ̂anxn(tn)〉〉| . [V(t)]−(n/2−1) as t → ∞.

If the various times tj are comparable (quantitatively, if the time differences |ti − tj| are

small compared with the average time t̄ = (t1 + t2 + · · · + tn)/n), then we expect that

Vajxj (tj) ≈ V(t), and we may boldly promote this bound to an asymptotic estimate of the

relaxation rate: 〈〈ψ̂a1
x1

(t1)ψ̂a2
x2

(t2) · · · ψ̂anxn(tn)〉〉 ∼ [V(t)]−(n/2−1) as t → ∞. This estimate

ignores all interference between terms in the sum in Eq. (3.103). We briefly comment on

some of these neglected interference effects at the end of this section.

With localizing dynamics (as in quenches to disordered hamiltonians in d = 1 or 2

dimensions), the result depends crucially on the ratio of the localization length ξloc to ξ. If

ξloc � ξ, the conclusions of the previous paragraph are essentially unchanged, except that

V(t)→ (ξloc)
d′ as t→∞. Thus, the connected functions still relax like [V(t)]−(n/2−1), but

to a finite value of order ∼ (ξloc)
−(n/2−1)d′ , rather than to zero, and subsequently oscillate

forever. If ξloc < ξ, then the y-sums in Eq. (3.103) are always restricted to regions of size

∼ (ξloc)
d′ , cluster decomposition plays no role, and one expects little or no relaxation to

occur. One can also consider the intermediate case in which the dynamics has both a

localizing and a delocalizing component. We study this in some detail in Section 3.6.

A slight refinement of the argument just presented allows us to handle initial states

in which the correlation length ξ is infinite, but which nevertheless obey the weaker

algebraic form of cluster decomposition (3.83). Thus, assume that 〈〈ψ̂b1y1
ψ̂b2y2
· · · ψ̂bnyn〉〉 ∼

|yi − yj|−(d+ε) as |yi − yj| → ∞, with ε > 0. Let ξ now denote the length scale beyond

which this power law is valid. Each propagator Gab
xy(t) factor in Eq. (3.103) still has

typical magnitude . [V(t)]−1/2. We may rewrite the sum over y1 · · · yn as a sum over one

central coordinate ȳ and (n− 1) relative coordinates zj. The sum over ȳ is unrestricted

by cluster decomposition, and yields a factor ∼ V(t) as before. In order to estimate the

sums over the relative coordinates, assume that each region Dajxj (tj) is d-dimensional, and
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let r(t) denote some typical length scale of these regions. Then,

∑
z1···zn−1

∣∣〈〈ψ̂b1y+z1
ψ̂b2y+z2

· · · ψ̂bny−(z1+z2+···+zn−1)〉〉
∣∣ ∼ ξ(n−1)d +

(∫ r(t)

ξ

|z|d−1 d|z|
|z|d+ε

)n−1

∼ ξ(n−1)d + ξ−(n−1)ε/ε, (3.107)

where we have retained only the leading terms in the limit r(t) � ξ (if the dynamics

are delocalizing, r(t) → ∞ as t → ∞, so this limit will be reached at late times). The

important point is that this leading term is a constant independent of t. Consequently,

our earlier asymptotic estimate of the relaxation rate of the connected n-point function

is not modified. If instead the regions Dajxj (tj) are d′-dimensional (with d′ < d), the

requirement that each yj lie on the appropriate d′-dimensional manifold places some

additional constraints on the zj’s, but this is a detail that does not affect the main

conclusion.

Thus, whenever the initial state obeys cluster decomposition, as defined in Eq. (3.83),

we expect that ∣∣〈〈ψ̂a1
x1

(t1)ψ̂a2
x2

(t2) · · · ψ̂anxn(tn)〉〉
∣∣ ∼ [V(t)]−(n/2−1), (3.108)

with V(t) given by Eq. (3.106). Our arguments suggest that this result holds whenever

V(t) � ξd
′
, where d′ ≤ d is the effective dimension of the regions Dajxj (tj), and ξ is an

appropriate length scale in the initial state (either the correlation length, if this is finite,

or the length scale beyond which the initial connected n-point functions exhibit the power

law decay required by cluster decomposition).

Notice that Eq. (3.108) does not give any information about the relaxation behavior

of the 2-point function, since the exponent of V(t) vanishes when n = 2. This is easily

understood. As we saw in the example of Section 3.2, and as we will show later in
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generality, the relaxation of the 2-point function is governed by interference between

the terms in the sum in Eq. (3.103). This interference was completely ignored in our

derivation of Eq. (3.108), which relied only on gross phase space arguments. For n > 2, we

hypothesize that the neglected interference effects merely lead to an additional oscillatory

time-dependence about the power-law decay exhibited in Eq. (3.108), without modifying

the exponent of the power law itself.

3.4.3 Relaxation power laws

Equation (3.108) gives estimates of the leading time-dependence of all local (n > 2)-

point connected functions of the system in terms of the coarse spreading behavior of

the propagator (as encoded in the function V(t)). Although a detailed study of possible

spreading behaviors is beyond the scope of this chapter, we describe some generic types

of spreading below.

Typical spreading behaviors fall into two broad classes. In the first class, which

we call “volume spreading”, the smooth envelope G̃ab
xy(t) of the propagator (as defined

in Section 3.4.1) is non-negligible for most points y inside a d-dimensional region of

characteristic size r(t) centered at position x, so that V(t) ∼ [r(t)]d. In the second class,

which we call “area spreading”, G̃ab
xy(t) is non-negligible only for points y near the (d−1)-

dimensional surface of such a region of size r(t) centered at x, so that V(t) ∼ [r(t)](d−1).

In either case, the dynamics are delocalizing if r(t) → ∞ as t → ∞, and localizing if

not (with the exception of area spreading in d = 1, a case that we discuss separately in

Section 3.4.4 below).

We expect behavior of the “volume” type for massive particles in a slowly varying po-

tential (dispersive spreading) and of the “area” type for massless particles (non-dispersive

spreading). In both these cases, r(t) ∼ vt, where v is the maximum local group veloc-
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“Dispersive”

𝑟 𝑡 	~	𝑣𝑡

“Non-dispersive”

𝑟 𝑡 	~	𝑣𝑡
𝒱 𝑡 	~	𝑡' 𝒱 𝑡 	~	𝑡(')*)

“Diffusive”

𝑟 𝑡 	~	 𝐷𝑡
𝒱 𝑡 	~	𝑡'/.

“Localized”

𝑟 𝑡 	~	𝜉loc
𝒱 𝑡 	~	𝑡3	

Figure 4: Paradigmatic spreading behaviors of 1-particle propagators. This list is
certainly not exhaustive, but the spreading behaviors shown may be regarded as
“typical”.

ity of the particles. In the presence of weak disorder, we again expect behavior of the

“volume” type. In d ≥ 3 dimensions, the expectation is diffusive spreading of the form

r(t) ∼
√
Dt (here D is the diffusion constant), while in d = 1 and 2 dimensions the

expectation is that r(t) saturates at a finite localization length, r(t) ∼ ξloc as t→∞ [38].

These four paradigmatic spreading behaviors are depicted schematically in Figure 4. The

corresponding relaxation exponents may be easily obtained using Eq. (3.108).

For a time-independent hamiltonian Ĥ with a Lieb-Robinson bound [88, 94], we ex-

pect the propagator to generically behave in one of these manners; in the example of

Section 3.2, for instance, the propagator exhibited what we are now calling dispersive

spreading (of course, there are exceptions, such as the pathological ones noted in Sec-

tion 3.4.1). More complicated behavior is certainly possible for time-dependent hamilto-

nians Ĥ(t), but generically we expect that these will still lead to spreading of either the

“volume” or “area” types, with some characteristic size r(t) that must be computed on

a case-by-case basis.

If the hamiltonian Ĥ contains non-local terms, so that there is no Lieb-Robinson

bound, we cannot say as much about the envelope of the propagator. However, the

unitarity condition (3.95) still relates the typical magnitude of non-negligible matrix

elements Gab
xy(t) to the volume V(t) of the region on which the propagator is meaningfully
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supported: Gab
xy(t) ∼ [V(t)]−1/2. Since, in the absence of a Lieb-Robinson bound, we

expect V(t) to grow quite rapidly, the basic argument of Section 3.4.2 still applies, and

we expect the system to “gaussify” rapidly (as measured by local operators).

Therefore, if the hamiltonian describes a delocalized system in the sense that r(t)→

∞ as t → ∞, then all local (n ≥ 3)-point connected functions decay with the power

laws obtained above, and the system can be described at late times by a gaussian density

matrix. As mentioned earlier, there is one important exception to this result, which we

now discuss.

3.4.4 Non-dispersive spreading in d = 1 dimension: absence of

gaussification

Recently, Sotiriadis [97] has analytically studied the quench dynamics of a massless

free bosonic scalar field in one spatial dimension, and has shown that the system always

retains significant memory of non-gaussian initial correlations. Thus, the system fails to

relax to the corresponding bosonic GGE, which is gaussian. A very similar result was

obtained earlier by Ngo Dinh et al. [98].

This result can be understood very easily within the framework that we have estab-

lished above. The propagator of massless particles is supported entirely along the light

cone. In d = 1 dimension, at each instant of time, the light cone simply consists of two

points. Therefore, unitarity implies that the propagator can never decay; it follows from

the analogue of Eq. (3.103) that higher connected correlation functions never relax to

zero.

More generally, for any system whose propagator exhibits “area spreading”, we have

V(t) ∼ [r(t)](d−1), and so |Gxy(t)| ∼ [r(t)]−(d−1)/2. In d = 1 dimension, these factors

are constant, implying that higher connected correlation functions fail to relax, and the
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system fails to “gaussify”. This conclusion is special to 1 dimension; in d > 1 dimensions,

the same type of system will relax to a gaussian state. It is important to keep in mind,

however, that the observables for massless particles are typically not correlation functions

of the fields themselves, but rather—as discussed in Chapter 2 of this thesis—correlation

functions of vertex operators (exponentials of the fields) or of derivatives of the fields.

Therefore, the precise arguments and decay rates for these systems are slightly different.

We will not delve into these details here.

Many properties of (seemingly diverse) gapless systems in one spatial dimension can

be obtained within the unifying framework of Luttinger liquid theory [16], which, in its

simplest incarnation, can be formulated as a theory of non-interacting massless bosonic

fields, as we did in Chapter 2. However, this formulation relies on linearization of the

single-particle dispersion relation, and while this is innocuous for most static properties,

it is clearly dangerous when considering relaxation behavior: even a slight dispersion

nonlinearity will cause a crossover from non-dispersive to dispersive spreading of the

propagator at late enough times, and hence lead to the relaxation that is absent in

the free massless bosonic field theory. Thus, any consistent description of the quench

dynamics of a one-dimensional system (even an exactly integrable one) using Luttinger

liquid theory must account for dispersion nonlinearities [54, 99], unless the initial state

is itself gaussian in terms of the bosonic fields [100].

These points were emphasized by Ngo Dinh et al. [98], and also by Sotiriadis [101]

in follow-up work to Ref. [97]. These references contain a comprehensive analysis of

relaxation in the Luttinger model, and conclude that any weak nonlinearity of the dis-

persion would ultimately lead to gaussification, in agreement with the intuitive argument

sketched above. We refer the reader to these works for a detailed discussion of most of the

issues mentioned in this subsection, and to Ref. [100] for a general pedagogical discussion
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of quenches in the Luttinger model.

3.4.5 Bosons with pairing

We now comment on how our “gaussification” results are modified in the case of

bosons with pairing. As noted in Section 3.4.1, the propagator for bosons has the general

form

G(t) = T e−i
∫ t
0 M(t′)dt′ , (3.109)

where

M(t) =

 h(t) ∆(t)

−∆∗(t) −h∗(t)

 , (3.110)

and where h† = h and ∆T = ∆. When ∆ 6= 0, the propagator is not unitary, but rather

pseudo-unitary ; it satisfies G†η G = η, where η = IN ⊕−IN and IN is the N ×N identity

matrix. Consequently, the right hand side of Eq. (3.95) is no longer simply 1, but rather

some function of time: ∑
b=±

∑
y

|Gab
xy(t)|

2
= gax(t) > 0. (3.111)

The non-negligible matrix elements ofGab
xy(t) thus have typical magnitude∼ [Vax(t)]−1/2[gax(t)]

1/2.

Repeating the phase-space arguments of Section 3.4.2, we obtain the appropriately mod-

ified form of Eq. (3.108):

〈〈ψ̂a1
x1

(t1)ψ̂a2
x2

(t2) · · · ψ̂anxn(tn)〉〉 ∼ [g(t)]n/2

[V(t)]n/2−1
, (3.112)

where

g(t) =
[
ga1
x1

(t1)ga2
x2

(t2) · · · ganxn(tn)
]1/n

. (3.113)
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In general, g(t) could be a complicated function of time, whose form is difficult to pre-

dict without some further knowledge of M(t). However, if the hamiltonian is time-

independent, we can easily derive the bound (see Appendix 3.B for details)

1 ≤ g(t) ≤
(
ωmax

εmin

)2

, (3.114)

where ωmax is the largest boson mode energy, and εmin > 0 is the smallest eigenvalue of the

hermitian matrix H that defines the hamiltonian via Eq. (3.86) (recall that, for bosons,

we require H to be positive-definite). In this case, although the relaxation behavior

described by Eq. (3.112) is complicated, it has a power-law envelope determined entirely

by V(t).

Time-evolution in bosonic systems approximately described by unstable or metastable

quadratic hamiltonians (those whose mode spectra are not positive-definite) has been

studied in Ref. [102].

3.5 Equilibration to the GGE

We have shown in Section 3.4 that, if the initial state has the cluster decomposition

property (3.83), and if the dynamics are delocalizing in the sense of Eq. (3.96), then, as

t→∞, all local (n > 2)-point connected correlation functions relax to zero in a manner

given by Eq. (3.108). Thus, as t → ∞, local correlation functions themselves Wick

factorize and are determined entirely by the local 2-point function 〈ψ̂ax(t)ψ̂by(t)〉, up to

corrections of order 1/V(t). All the results of Section 3.4 hold for general time-dependent

quadratic hamiltonians Ĥ(t).

If Ĥ is time-independent, we can go further—as we do now—and show that the system

locally equilibrates to the appropriate GGE. In Sections 3.5.1 and 3.5.2, we construct the
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GGE density operator and show that it is gaussian; these sections generalize and complete

the discussion in Section 3.2.2. In Section 3.5.3, which generalizes Secton 3.2.6, we study

equilibration of the local 2-point function to its GGE value. Combined with the results

summarized in the previous paragraph, this analysis proves equilibration to the GGE for

a wide class of quadratic lattice models, and also furnishes predictions for the leading

time-dependence of local observables as t → ∞. A similar analysis is carried out for

time-periodic Ĥ(t) in Section 3.7.

3.5.1 Conserved quantities

Consider any quadratic time-independent hamiltonian Ĥ which gives rise to delocal-

izing dynamics. We begin by showing that in this case all local conserved quantities Îm

are themselves quadratic in the particle creation and annihilation operators.

By definition of the conserved quantities, we must have Îm(t) = Îm(0). Without

loss of generality, we can take Îm to have a definite order n in terms of creation and

annihilation operators, because the latter evolve linearly:

Îm =
∑
{xj}

∑
{aj=±}

Ia1a2···an
x1x2···xn ψ̂

a1
x1
ψ̂a2
x2
· · · ψ̂anxn . (3.115)

Locality (recall that this means that the Îm are sums of local densities) requires that the

coefficients Ia1···an
x1···xn vanish unless all |xi − xj| � L. Using Eq. (3.92), we have

Îm(t) =
∑
{xj ,yj}

∑
{aj ,bj=±}

Ia1···an
x1···xn G

a1b1
x1y1

(t) · · ·Ganbn
xnyn(t) ψ̂b1y1

ψ̂b2y2
· · · ψ̂bnyn . (3.116)
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The conservation condition Îm(0) = Îm(t) then requires that

Ib1···bny1···yn =
∑
{xj}

∑
{aj=±}

Ia1···an
x1···xn G

a1b1
x1y1

(t) · · ·Ganbn
xnyn(t). (3.117)

The same “phase space” arguments that we used in the previous section to show de-

cay of all local connected (n ≥ 3)-point functions also apply to the right hand side of

Eq. (3.117); locality of the coefficients Ia1···an
x1···xn here plays the role of cluster decomposition.

We conclude that for n ≥ 3, the right hand side of Eq. (3.117) must vanish as t→∞ if

the dynamics are delocalizing. The left hand side, however, is obviously time-independent

and finite. This contradiction proves the claim.

Thus, all local conserved quantities of Ĥ must be of the form

Îm = 1
2
Ψ̂†ImΨ̂, (3.118)

where Im is a canonical hermitian 2N × 2N matrix in which each block is banded to

ensure locality.

3.5.2 GGE density operator

A quadratic hamiltonian Ĥ = 1
2
Ψ̂†HΨ̂ (with H positive definite in the case of bosons)

can always be diagonalized by a Bogolyubov transformation [103]; we can introduce new

canonical “quasiparticle” operators {γ̂±n } that obey the same (anti)commutation relations

as the {ψ̂±x }, and are related to the latter by a linear transformation,

Ψ̂ = S Γ̂, (3.119)
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where

Γ̂ = (γ̂−1 , γ̂
−
2 , · · · , γ̂−N , γ̂+

1 , γ̂
+
2 , · · · , γ̂+

N)T . (3.120)

The transformation S has the block form

S =

U V ∗

V U∗

 (3.121)

(to preserve adjoints), satisfies S†S = I for fermions, or S†ηS = η for bosons, where

η = IN ⊕−IN (to preserve the operator algebra), and is diagonalizing:

S†HS = Ω ≡ diag(ω1, . . . , ωN ,−ω1, . . . ,−ωN) (3.122)

for fermions, or

S†HS = ηΩ (3.123)

for bosons. In terms of the quasiparticle operators, we have

Ĥ = E0 +
N∑
j=1

ωjn̂j, (3.124)

where

n̂j = γ̂+
j γ̂
−
j (3.125)

and ωj ≥ 0 (in the case of bosons, ωj > 0 is required for physical stability).

The mode occupation number operators n̂j commute with Ĥ and with one another.

If the spectrum {ωj} is nondegenerate (that is, if ωi = ωj implies i = j), then the set of

operators {n̂j} is uniquely defined, and forms a linear basis for the set of all quadratic

conserved quantities of Ĥ. We have already shown (in the previous section) that all
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local conserved quantities Îm of Ĥ are quadratic if Ĥ gives rise to delocalizing dynamics.

Therefore, in this case we may conclude that the GGE density operator has the form

ρ̂GGE =
1

ZGGE

exp

(
−
∑
m

λmÎm

)
(3.126a)

=
1

ZGGE

exp

(
−
∑
j

µjn̂j

)
, (3.126b)

where only the Lagrange multipliers {λm}, or equivalently {µj}, are left to be determined

by the initial state. We emphasize again that this conclusion relies on two assumptions

in addition to Ĥ being quadratic: (i) that the dynamics are delocalizing and (ii) that the

mode spectrum {ωj} is nondegenerate.

If the mode spectrum is degenerate, on the other hand, there is some freedom in

the choice of diagonalizing canonical transformation S, and consequently in the mode

operators and conserved quantities. For instance, if ω1 = ω2, consider the family of

quasiparticle operators defined by

α̂−1
α̂−2

 = Q

γ̂−1
γ̂−2

 , (3.127)

where Q ∈ U(2) is any 2× 2 unitary matrix. It is clear that the new number operators

n̂′1 = α̂+
1 α̂
−
1 , n̂′2 = α̂+

2 α̂
−
2 (3.128)

also commute with the hamiltonian Ĥ. However, they do not in general commute with

the old n̂1, n̂2 operators:

[
Ĥ, n̂′j

]
= 0 but

[
n̂i, n̂

′
j

]
6= 0 (i, j = 1, 2). (3.129)
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Therefore, the primed (n̂′) and unprimed (n̂) operators yield inequivalent sets of con-

served quantities. This ambiguity is fundamental [87]—it is present whenever the mode

spectrum is degenerate—and it leads, in principle, to additional dependence on the initial

state, as we now describe.

Each inequivalent set of conserved quantities gives rise to its own family of GGE

density operators (parameterized by the Lagrange multipliers of that set of quantities).

Given an initial state ρ̂0, we must chose the canonical transformation S to also diagonalize

the correlations within each degenerate subspace; that is, we must choose S so that, for

all pairs i 6= j such that ωi = ωj, we have

〈γ̂+
i γ̂
−
j 〉 ≡ Tr

(
γ̂+
i γ̂
−
j ρ̂0

)
= 0. (3.130)

In the case of fermions, we must also choose S to ensure that, whenever ωi = ωj = 0,

〈γ̂+
i γ̂

+
j 〉 = 0. (3.131)

It is always possible to find a canonical transformation S that diagonalizes Ĥ and also

satisfies these conditions. The GGE density operator can then be constructed using the

associated mode operators in the usual manner, following Eq. (3.126b).

Thus in general ρ̂GGE, written in the form (3.126b), depends on the initial state ρ̂0

in two distinct ways: (i) the definition of the occupation numbers operators {n̂j} corre-

sponding to degenerate modes {ωj} of Ĥ, and (ii) the values of the Lagrange multipliers

{µj}.

The general construction of the GGE density operator that we have outlined in this

section can be applied to any quadratic hamiltonian Ĥ that gives rise to delocalizing

dynamics; it will indeed yield a density operator ρ̂GGE that correctly describes all local

138



Relaxation to equilibrium in systems with quadratic hamiltonians Chapter 3

observables of the system at late times (as we demonstrate in the next section). However,

we have in some sense “cheated” by phrasing our general construction in terms of the

mode occupation numbers {n̂j} rather than in terms of the local conserved quantities

{Îm}. Since we are studying local relaxation, the latter are really the quantities of

fundamental importance.

From a more fundamental point of view, then, a set {n̂j} is admissible only if, by

taking linear combinations of the n̂j, one can construct a maximal set of local conserved

quantities {Îm} (recall that the set {Îm} is maximal if any local conserved quantity Î that

commutes with all of the Îm can be expressed as a linear combination of them). Given a

maximal set {Îm}, we can always obtain a corresponding admissible set {n̂j} by finding

the Bogolyubov transformation S that simultaneously diagonalizes the Îm. Sets {n̂j}

that are inadmissible can—regardless of the initial state—be ignored for the purpose of

writing down ρ̂GGE, and one only needs to use initial correlations to distinguish between

admissible sets. Thus, the construction outlined in this section, although valid, might

overestimate the degree to which the GGE depends on the initial state.

3.5.3 Relaxation of the local 2-point function

Having constructed the GGE density operator, we now study relaxation towards it

by analyzing the long-time behavior of the local 2-point function. As in the example of

Section 3.2, this part of the analysis requires us to make an additional assumption about

the initial state ρ̂0; roughly speaking, we need to exclude situations in which the initial

profiles of local conserved densities are inhomogeneous on length scales comparable to

the system size. True local equilibration in such cases occurs on timescales of the order

of the linear dimension L of the system, simply because that is how long it takes a locally

conserved density to flow across the system.
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In order to formulate this assumption precisely, recall that the local conserved quan-

tities are of the form

Îm =
∑
x

Îm,x, (3.132)

where the density Îm,x is supported in a finite region centered at position x. Define the

“local excess density”

δIm(x0; r) ≡ 1

Vol(Br)

∑
x∈Br(x0)

〈Îm,x〉 −
〈Îm〉

Vol(Sys)
, (3.133)

where Br(x0) is the d-dimensional ball of radius r centered at x0, Vol(Br) is the volume

of this ball, and Vol(Sys) is the volume of the entire system.

We assume that these excess densities can be made small by taking r sufficiently large

(but keeping r fixed as Vol(Sys)→∞):

∃ r : δIm(x0; r) = O(r−d) ∀ x0,m as Vol(Sys)→∞. (3.134)

We emphasize that the “gaussification” results of Section 3.4 hold even when this

assumption is violated (the results of Sections 3.5.1 and 3.5.2 hold as well). Thus, if the

initial state violates Eq. (3.134), the natural description of the local state of the system

at late times is in terms of a time-dependent gaussian density matrix, of the form

ρ̂1(t) =
1

Z1(t)
exp
(
−1

2
Ψ̂†K(t)Ψ̂

)
, (3.135)

where K(t) is a canonical hermitian matrix (it satisfies Eq. (3.88)) that must be chosen

so that

Tr
(
ψ̂ax(t)ψ̂

b
y(t) ρ̂1(t)

)
= 〈ψ̂ax(t)ψ̂by(t)〉 (3.136)
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for all pairs of indices a, b = ± and positions x, y with |x− y| finite in the limit of infinite

system size.

Also as in the example of Section 3.2, this part of the analysis requires more de-

tailed knowledge of the spectrum of the hamiltonian, or equivalently, of the propagator,

than is needed to show “gaussification”. Consequently, our treatment will be somewhat

schematic.

In terms of the matrix S of the Bogolyubov transformation Ψ̂ = S Γ̂ that diagonalizes

the hamiltonian Ĥ, the propagator may be written as

G(t) = Se−iΩt S−1, (3.137)

where

Ω ≡ diag(ω1, ω2, . . . , ωN ,−ω1,−ω2, . . . ,−ωN), (3.138)

and {ωj ≥ 0} is the spectrum of quasiparticle excitations. This form of G(t) is valid for

both fermions and for bosons; the difference between the two is the unitarity or pseudo-

unitarity of the matrix S. It is standard to regard the 2N columns of S as eigenvectors

of a fictitious single-particle problem whose eigenvalue spectrum is symmetric about zero

(while keeping in mind that, for bosons, the eigenvectors are orthonormal with respect to

η = IN⊕−IN rather than I2N). If we label these eigenvectors by their energy ε (ε = ±ωj)

and additional quantum numbers σ, so that (ε, σ) together form a complete set, we can

write

Gab
xy(t) =

∑
ε,σ

Sax(ε, σ) e−iεt (S−1)by(ε, σ). (3.139)
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The equal-time 2-point function is then given by

〈ψ̂−ax (t)ψ̂by(t)〉 =
∑

ε,σ, ε′,σ′

[Sax(ε, σ)]∗Sby(ε
′, σ′) e−i(ε−ε

′)t F (ε, σ; ε′, σ′), (3.140)

where

F (ε, σ; ε′, σ′) ≡ 〈Γ̂†(ε, σ)Γ̂(ε′, σ′)〉, (3.141)

and where

Γ̂(ε, σ) ≡


γ̂(ε, σ) if ε ≥ 0

γ̂†(−ε, σ) if ε < 0

. (3.142)

The GGE value of the same 2-point function is

〈ψ̂−ax ψ̂by〉GGE =
∑
ε,σ

[Sax(ε, σ)]∗Sby(ε, σ) 〈Γ̂†(ε, σ)Γ̂(ε, σ)〉. (3.143)

Equations (3.140–3.143) are the obvious generalizations of Eqs. (3.66), (3.67) and (3.62).

In the limit of large system size, the spectrum {ε} will in general consist of a con-

tinuous part due to spatially extended quasiparticle states and a discrete part due to

localized states. For now, we assume that all quasiparticle states are extended. We will

discuss what happens when the spectrum includes a discrete part coming from localized

states in Section 3.6 (see also the comments in Section 3.4.1).

Since the spectrum is by assumption purely continuous in the limit of large system

size, the sums over ε and ε′ in Eq. (3.140) become integrals in this limit (whether the

other quantum numbers σ are discrete or continuous is less important). The t → ∞

asymptotics of the (ε, ε′)-integral is then determined by the analytic structure of the

function F . This structure can in turn be deduced from general arguments of the type
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used in Section 3.2. Inverting the Bogoliubov transformation, we have

F (ε, σ; ε′, σ′) =
∑
a,b=±

∑
x,y

[(S−1)ax(ε, σ)]∗(S−1)by(ε
′, σ′) 〈ψ̂−ax ψ̂by〉. (3.144)

The sums over x and y in Eq. (3.144) may be performed with respect to the central

coordinate (x+y)/2 and relative coordinate (x−y). The sum over the relative coordinate

converges absolutely (due to clustering of correlations), whereas the central coordinate is

summed over the whole system (because the states are extended). It follows that F can

become singular only along “curves” in (ε, σ; ε′, σ′)-space, which we may identify with

the zero sets of appropriate functions Cj(ε, σ; ε′, σ′). The most obvious such curve is the

trivial one, (ε′, σ′) = (ε, σ), which may be identified with the function C0(ε, σ; ε′, σ′) ∼

(ε−ε′)(σ−σ′); additional curves Cj can occur if the initial state has an appropriate order

(in Section 3.2, for instance, we found that such curves were present if the initial state

had a density wave with nonzero wavevector q). We conclude that F has the (highly

schematic) general form

F (ε, σ; ε′, σ′) = δ(ε− ε′)δ(σ − σ′) 〈Γ̂†(ε, σ)Γ̂(ε, σ)〉

+
∑
j

δ(Cj(ε, σ; ε′, σ′)) fj(ε, σ) + f(ε, σ; ε′, σ′), (3.145)

where the sum in the second line is over a finite number of curves Cj that, as a consequence

of our assumption (3.134), remain distinct from the trivial curve in the limit of infinite

system size. The various deltas functions represent all of the possible singular dependence

of F on its arguments; 〈Γ̂†(ε, σ)Γ̂(ε, σ)〉, fj(ε, σ) and f(ε, σ; ε′, σ′) are smooth functions

in the relevant domains of integration.
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Taking account of this structure, Eq. (3.140) becomes

〈ψ̂−ax (t)ψ̂by(t)〉 =

∫
ε,σ

[Sax(ε, σ)]∗Sby(ε, σ) 〈Γ̂†(ε, σ)Γ̂(ε, σ)〉

+
∑
j

[δCj(t)]
ab
xy + [δC(t)]abxy. (3.146)

The first term reproduces the GGE result, Eq. (3.143). The remaining δCj and δC pieces

come from the second and third terms in Eq. (3.145) respectively.

Let us first analyze the δC term,

[δC(t)]abxy =

∫
ε,ε′

∫
σ,σ′

[Sax(ε, σ)]∗ Sby(ε
′, σ′) e−i(ε−ε

′)t f(ε, σ; ε′, σ′). (3.147)

The behavior of the integral as t→∞ can be extracted from a straightforward stationary

phase analysis (apart from the factor e−i(ε−ε
′)t, the integrand is a smooth function of the

integration variables). The phase function ϕ(ε, ε′) = (ε − ε′) clearly lacks stationary

points, so the dominant contribution to the integral as t→∞ comes from the corners of

the (ε, ε′)-integration region. Near each corner, the smooth function f can be regarded

as a function of σ and σ′ alone. The integrals over σ and σ′ will then yield factors

proportional to the (local) density of states g(ε) and g(ε′) near the band edges. We are

led to conclude that, as t→∞,

δC(t) ∼ (#)×
∣∣∣∣∫ dε g(ε)e−iεt

∣∣∣∣2. (3.148)

If, as is often the case, the density of states near the band edge has the form

g(ε) ∼ εs, (3.149)
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then
∫
dε g(ε) e−iεt ∼ t−(1+s)

∫
dz zse−iz, and we obtain the estimate

δC(t) ∼ t−2(1+s). (3.150)

This result assumes that f does not vanish at the corners of the (ε, ε′)-integration region.

Generically, this will be the case. In special fine-tuned circumstances, in which f does

vanish at the corners, the exponent of the power law may be larger (more negative).

We can perform a similar stationary phase analysis of each δCj term in Eq. (3.146).

In this case, the phase function ϕ is the restriction of (ε − ε′) to the curve Cj. If ϕ

is nonstationary along this curve, and if the curve terminates at the boundary of the

(ε, ε′) integration region, then the same reasoning that we applied to δC in the previous

paragraph yields the estimate

δCj(t) ∼ t−(1+s). (3.151)

Again, this result may be modified if the initial state or final hamiltonian are fine-

tuned. More complicated time-dependence will occur if the phase function ϕ is stationary

somewhere along the curve Cj; such a contribution, if present, will likely dominate the

t→∞ relaxation behavior. However, this must be analyzed on a case-by-case basis, and

we will not attempt to make any further statements about the general case.

If the hamiltonian Ĥ is translation-invariant, then one typically has

g(ε) ∼ ε(d/2−1) (3.152)

at each band edge, where d is the dimension of space. In this case the above estimates
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become

δC(t) ∼ t−d , (3.153a)

δCj(t) ∼ t−d/2. (3.153b)

The results obtained in the example of Section 3.2—Eqs. (3.80) and (3.81)—are recovered

if one sets d = 1.

It is interesting to compare Eq. (3.153), which gives the asymptotic relaxation of the

2-point function in a translation-invariant lattice system, to the asymptotic power law

with which such a system should gaussify according to the results of Section 3.4. The

latter power law is set by the lowest nonvanishing (n > 2)-point connected correlation

function. Assuming that this is n = 4, Eq. (3.108) suggests that the system gaussifies

like ∼ [V(t)]−1, where V(t) is the volume on which the 1-particle propagator is mean-

ingfully supported. In a translation-invariant lattice model, the propagator spreads at

the maximal group velocity, so we expect this volume to grow like V(t) ∼ td. Hence we

conclude that the system gaussifies like ∼ t−d. If there is a density wave of one or more of

the conserved quantities in the initial state, then δCj(t) terms are present in the 2-point

function; these relax like ∼ t−d/2 by Eq. (3.153b). Thus the system first gaussifies like

∼ t−d, and then relaxes to the GGE like ∼ t−d/2. If, on the other hand, the initial state

lacks such order, then only the δC(t) term is present in the 2-point function; this relaxes

like ∼ t−d by Eq. (3.153a), so gaussification and relaxation to the GGE both occur with

the power law ∼ t−d.

Notice that gaussification and relaxation of the 2-point function are controlled (in

translation-invariant systems) by fundamentally different aspects of the band structure:

gaussification is controlled by the maximal group velocity—typically a property of the

middle of the band(s)—whereas relaxation of the 2-point function is controlled by the
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density of single-particle levels at the band edge(s).

3.6 Effects due to localized states

Assume now that the quasiparticle spectrum of Ĥ contains, in the limit of large

system size, both discrete localized states and a continuum of extended states. We can

write the diagonalizing Bogoliubov transformation as

ψ̂ax =

∫
ε

∫
σ

Sax(ε, σ)Γ̂(ε, σ) +
∑
b=±

∑
j

Rab
xj γ̂

b
j , (3.154)

where, as before,

Γ̂(ε, σ) ≡


γ̂(ε, σ) if ε ≥ 0

γ̂†(−ε, σ) if ε < 0

. (3.155)

The operator γ̂†(ω, σ) creates a quasiparticle in the continuum level with energy ω ≥ 0

and additional quantum numbers σ; the operator γ̂+
j creates a quasiparticle in the discrete

level j with energy ωj ≥ 0.

3.6.1 The propagator

The propagator splits naturally into two pieces:

G(t) = Gext(t) +Gloc(t), (3.156)

where the first piece Gext(t) involves only the extended states, and the second piece

Gloc(t) involves only the localized states. For fermions,

[Gext(t)]
ab
xy =

∫
ε

∫
σ

Sax(ε, σ) e−iεt [Sby(ε, σ)]∗ (3.157)
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and

[Gloc(t)]
ab
xy =

∑
c=±

∑
j

Rac
xj e

ic ωjt [Rbc
yj]
∗. (3.158)

For bosons, one must multiply the integrand in Eq. (3.157) by −b sgn(ε), and the sum-

mand in Eq. (3.158) by bc.

The dynamics of the propagator G(t), as defined in Section 3.4.1, are thus in general

the sum of a delocalizing part, due to Gext(t), and a localizing part, due to Gloc(t). We

have already discussed general properties of Gext(t) in Sections 3.4.1 and 3.4.3. Let us

now briefly discuss general properties of Gloc(t):

Each level j of the discrete spectrum is exponentially localized near some position xj;

in other words,

Rac
xj ∼ e−|x−xj |/ζj for |x− xj| & ζj, (3.159)

where ζj > 0 is the decay length. It follows from Eq. (3.158) that

[Gloc(t)]
ab
xy ∼ e−|x−y|/ζx for |x− y| & ζx, (3.160)

where ζx is roughly the largest decay length of the states localized near x. Thus, [Gloc(t)]
ab
xy

is negligible whenever |x− y| � ζx. Given a position x, we may restrict the sum over

j in Eq. (3.158) to those levels that are localized within a few decay lengths ζj of x,

because the remaining levels give negligible contributions. Finally, for fixed x and y, the

propagator [Gloc(t)]
ab
xy oscillates forever without decaying as t→∞.

3.6.2 Gaussification

Having understood how the propagator is modified, let us study how the local-

ized states affect gaussification and the conclusions of Section 3.4. Consider the time-
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dependent connected n-point function. Equation (3.103) becomes

〈〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉〉 =
∑
{yi}

∑
{bi=±}

{
[Gext(t1) +Gloc(t1)]a1b1

x1y1
· · · [Gext(tn) +Gloc(tn)]anbnxnyn

× 〈〈ψ̂b1y1
· · · ψ̂bnyn〉〉

}
. (3.161)

Write this as

〈〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉〉 =
n∑
k=0

〈〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉〉k−loc, (3.162)

where 〈〈· · ·〉〉k−loc contains all terms in Eq. (3.161) that have k factors of Gloc and (n− k)

factors of Gext.

We have already studied the contribution 〈〈· · ·〉〉0−loc, in which all the propagators

are Gext, in detail in Section 3.4.2. As t → ∞, 〈〈· · ·〉〉0−loc decays to zero as described

by Eq. (3.108). Next, consider the contribution 〈〈· · ·〉〉1−loc, in which a single propagator

is Gloc. According to the discussion above, this contribution is significant (at any time

t) only if one or more of the xi are located within a few decay lengths of a localized

state. The sum over the corresponding yi is restricted by the propagator [Gloc(ti)]
aibi
xiyi

to

a region of volume ∼ ζdxi around xi. Repeating the analysis of Section 3.4.2, the sums

over the relative y-coordinates converge absolutely due to cluster decomposition, so the

entire y-sum yields a finite, t-independent contribution as t → ∞. Meanwhile, typical

matrix elements of the propagators are of order Gext(t) ∼ [V(t)]−1/2 and Gloc(t) ∼ 1/ζdxi .

We conclude that, as t→∞,

〈〈· · ·〉〉1−loc ∼ [V(t)]−(n−1)/2. (3.163)

This decay is faster, by a factor of [V(t)]−1/2, than that of 〈〈· · ·〉〉0−loc.
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By similar reasoning, we conclude that

〈〈· · ·〉〉k−loc ∼ [V(t)]−(n−k)/2 (k ≥ 1). (3.164)

Note that, for k ≥ 1, 〈〈· · ·〉〉(k+1)−loc decays slower, by a factor of [V(t)]−1/2, than does

〈〈· · ·〉〉k−loc. Thus, the leading t → ∞ behavior of the connected (n > 2)-point function

is

〈〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉〉 ∼ 〈〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉〉n−loc +O([V(t)]−1/2). (3.165)

Only the fully localized contribution 〈〈· · ·〉〉n−loc survives in the limit t → ∞. Let us

analyze this term in more detail:

〈〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉〉n−loc =
∑
{yi}

∑
{bi=±}

[Gloc(t1)]a1b1
x1y1
· · · [Gloc(tn)]anbnxnyn 〈〈ψ̂b1y1

· · · ψ̂bnyn〉〉.

(3.166)

Using Eq. (3.158) or its bosonic version, we have

∑
b=±

∑
y

[Gloc(t)]
ab
xy ψ̂

b
y =

∑
c=±

∑
j

Rac
xj e

ic ωjt γ̂cj . (3.167)

Consequently,

〈〈ψ̂a1
x1

(t1) · · · ψ̂anxn(tn)〉〉n−loc =
∑
{ji}

∑
{ci=±}

Ra1c1
x1j1
· · ·Rancn

xnjn
ei

∑n
`=1 c`ωj` t` 〈〈γ̂c1j1 · · · γ̂

cn
jn
〉〉. (3.168)

Each sum over ji in Eq. (3.168) may be restricted to those levels that are localized near xi,

in accordance with our previous discussion. It is evident that the localized contribution is

negligible as t→∞ if and only if 〈〈γ̂c1j1 γ̂
c2
j2
· · · γ̂cnjn 〉〉 itself is negligible. In bosonic systems

prepared in generic initial states, this condition will be violated as soon as there is a

single localized level. This is because the nth cumulant of the occupation of this level,
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〈〈(γ̂+γ̂−)n〉〉, will be nonzero in general. In a fermionic system, on the other hand, the

occupation of a single localized level is characterized entirely by the expectation value

〈γ̂+γ̂−〉, so these higher cumulants all vanish.

Thus, consider a system of fermions in which the quasiparticle spectrum of Ĥ contains,

in addition to a continuum of extended states, a set of discrete levels {j} that are localized

near positions {x∗j} with decay lengths {ζj}. Assume that the initial state ρ̂0 has a finite

correlation length ξ, and that for each pair (i, j) of localized levels, |x∗i − x∗j | � ξ+ζi+ζj.

Then any connected function involving the operators of two distinct levels i 6= j, such

as 〈〈γ̂ai γ̂bj · · ·〉〉, is negligible. Of course, any connected function involving three or more

operators of the same level, such as 〈〈γ̂aj γ̂bj γ̂cj · · ·〉〉, vanishes identically. It follows that all

〈〈· · ·〉〉(k>2)−loc contributions to the connected n-point function are negligible. Since the

k = 0, 2 terms decay in the same manner with time, and since the k = 1 term decays

faster than either of them, we reach the following somewhat surprising conclusion:

Discrete localized levels in the quasiparticle spectrum of a quadratic fermion hamil-

tonian Ĥ have a negligible effect on gaussification if (i) the initial state has a finite

correlation length ξ, and (ii) the spatial distance between any pair of localized levels is

large relative to ξ.

3.6.3 GGE density operator

Next, we study how the localized states affect the conclusions of Section 3.5. Before

considering equilibration, we must revisit the construction of the GGE density operator

itself.

In Section 3.5.1, we showed that, for any quadratic time-independent hamiltonian Ĥ

which gives rise to delocalizing dynamics, all local conserved charges Îm are themselves

quadratic in the particle creation and annihilation operators. Let us see how this argu-
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ment changes with localized states. Equation (3.117) remains valid, but each propagator

factor now has an extended piece and a localized piece:

Ib1···bny1···yn =
∑
{xi}

∑
{ai=±}

Ia1···an
x1···xn [Gext(t) +Gloc(t)]

a1b1
x1y1
· · · [Gext(t) +Gloc(t)]

anbn
xnyn . (3.169)

As we did with the connected n-point function in Section 3.6.2, write this as

Ib1···bny1···yn =
n∑
k=0

[Ik−loc(t)]
b1···bn
y1···yn , (3.170)

where Ik−loc(t) contains all terms in Eq. (3.169) that have k factors of Gloc(t) and (n−k)

factors of Gext(t). Repeating the arguments of Section 3.6.2, we conclude that for n > 2,

only the In−loc(t) contribution survives as t→∞. Then, Eq. (3.170) requires that In−loc

actually be time-independent, and that I = In−loc. It is clear that the corresponding

local conserved quantities are those that can be built from the quasiparticle operators

γ̂±j of the localized levels:

Îm ∼ γ̂c1j1 γ̂
c2
j2
· · · γ̂cnjn , with

n∑
i=1

ci ωji = 0. (3.171)

In addition, the participating levels {ji} must all be localized in the same region of

space (otherwise Îm will not be local). Conversely, all local conserved charges involving

products of n > 3 creation or annihilation operators must be of this form. Thus, in

a bosonic system, the existence of even a single localized level leads to non-quadratic

local conserved charges (powers of the occupation of this level, (γ̂+γ̂−)n). In a fermionic

system, however, one can only construct non-quadratic local conserved charges if there

are two or more localized levels close enough to one another in space (how close depends

on how local we want the charges to be).
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We conclude that, in a quadratic bosonic system, the GGE (defined in terms of local

conserved quantities) is gaussian if and only if there are no localized levels at all, whereas

in a quadratic fermionic system, the GGE remains gaussian to an excellent approximation

even when localized levels do exist, as long as they are located sufficiently far apart in

space. In the latter case, the mode occupation numbers n̂j = γ̂+
j γ̂
−
j of these levels are local

conserved charges, and must be included in ρ̂GGE. The general analysis of Section 3.5.2

does not require modification.

3.6.4 Equilibration to the GGE

Finally, let us consider equilibration. As in Section 3.5.3, we must make an additional

assumption on the initial state, Eq. (3.134), to exclude situations in which the initial

profiles of local conserved densities are inhomogeneous on length scales comparable to

the system size.

Following Section 3.6.2, we may identify three contributions to the equal-time 2-point

function:

〈ψ̂−ax (t)ψ̂by(t)〉 =
2∑

k=0

〈ψ̂−ax (t)ψ̂by(t)〉k−loc. (3.172)

We have already studied the fully extended piece, 〈ψ̂−ax (t)ψ̂by(t)〉0−loc, in detail in Sec-

tion 3.5.3. It generically relaxes to its GGE value as t → ∞ in a manner described by

Eq. (3.150) or (3.151), and this relaxation is due to “interference” effects. On the other

hand, the 1−loc piece vanishes as t→∞ for simpler “phase space” reasons: the results

of Section 3.6.2, in particular Eq. (3.163), show that

〈ψ̂−ax (t)ψ̂by(t)〉1−loc ∼ [V(t)]−1/2 as t→∞. (3.173)

This piece is fully off-diagonal in the quasiparticle basis of Ĥ, so its GGE value is also
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zero.

Therefore, we only need to study the fully localized (2−loc) piece. It is given by

(compare Eq. (3.168)):

〈ψ̂−ax (t)ψ̂by(t)〉2−loc =
∑
j1,j2

∑
c1,c2=±

[Rac1
xj1

]∗Rbc2
yj2
e−i(c1ωj1− c2ωj2 )t 〈γ̂−c1j1

γ̂c2j2 〉, (3.174)

where the sums over j1 and j2 are over all levels in the discrete part of the spectrum.

Recall (Section 3.5.2) that the mode operators γ̂j can (and should) be chosen so that,

in each degenerate subspace (i.e. when ωj1 = ωj2), one has 〈γ̂−c1j1
γ̂c2j2 〉 ∝ δc1c2δj1j2 . This

ensures that the infinite time-average of Eq. (3.174) agrees with its GGE value:

〈ψ̂−ax ψ̂by〉GGE
2−loc =

∑
j

∑
c=±

[Rac
xj]
∗Rbc

yj 〈γ̂−cj γ̂cj〉. (3.175)

In general, the instantaneous difference

[δC2−loc(t)]
ab
xy ≡ 〈ψ̂−ax (t)ψ̂by(t)〉2−loc − 〈ψ̂−ax ψ̂by〉GGE

2−loc (3.176)

oscillates forever about zero without relaxing as t→∞. However, if the localized states

are located far enough apart in space that the initial correlations 〈γ̂−c1j1
γ̂c2j2 〉 between them

are negligible (this must hold for all nondegenerate pairs j1 6= j2), then it follows that

δC2−loc(t) is negligible at all times. We conclude that:

Dynamics generated by a quadratic fermion hamiltonian Ĥ whose quasiparticle spec-

trum includes discrete localized levels will still lead to gaussification and equilibration to

the GGE, as long as (i) the initial state has a finite correlation length ξ, and (ii) the

spatial distance between any pair of localized levels is large relative to ξ.
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3.7 Time-periodic hamiltonians and the “Floquet-

GGE”

Our arguments for gaussification in Section 3.4 were extremely general; they relied

only on clustering of correlations in the initial state, and on spreading of the propagator

G(t). Thus, they apply to any quadratic hamiltonian Ĥ(t), as long as it leads to delo-

calizing dynamics. In this section, we consider the particularly interesting time-periodic

case:

Ĥ(t) = 1
2
Ψ̂†H(t)Ψ̂ + constant, (3.177)

where

H(t) =

 h(t) ∆(t)

±∆∗(t) ±h∗(t)

 = H(t+ T ), (3.178)

and where, as before, the plus (minus) sign is for bosons (fermions). Ĥ(t) describes a

periodically driven, or “Floquet”, closed quantum system.

3.7.1 Floquet theory basics

Let us briefly review some simple facts about this problem [104]. In order to give a

complete “stroboscopic” description of the system at times t = nT (n = 0, 1, 2, · · · ) one

only needs to know the time-evolution operator over a single period,

Û(T ) = T e−i
∫ T
0 Ĥ(t′)dt′ (3.179)
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(to describe the system at intermediate times, one also needs to know Û(t) for all 0 <

t < T ). Since Û(T ) is unitary, it has a spectral decomposition of the form

Û(T ) =
∑
α

e−iεαT |α〉〈α| , (3.180)

where {|α〉} forms a basis for the Hilbert space of the system, and where the “quasiener-

gies” εα are defined modulo 2π/T . The associated “Floquet hamiltonian”

ĤF ≡
∑
α

εα |α〉〈α| (3.181)

generates

Û(T ) = e−iĤFT (3.182)

by construction. ĤF is quadratic because Ĥ(t) is quadratic (quadratic forms in fermion

or boson operators form a Lie algebra, and the unitary group is compact). Thus, apart

from the subtlety that the quasienergies {εα} take values on a circle rather than on the

real line, the dynamical problem at times t = nT is formally identical to one with a

time-independent quadratic hamiltonian

ĤF = 1
2
Ψ̂†HF Ψ̂ + constant, (3.183)

where

HF =

 hF ∆F

±∆∗F ±h∗F

 . (3.184)
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3.7.2 Propagator and gaussification

Recall that the propagator G(t) is defined by the solution of the Heisenberg equations

of motion,

Ψ̂(t) = G(t)Ψ̂(0). (3.185)

Since Ψ̂(t) ≡ Û †(t)Ψ̂(0)Û(t), and since Û(T ) = T e−i
∫ T
0 Ĥ(t′)dt′ = e−iĤFT , one obtains two

equivalent expressions for the propagator over one period:

G(T ) = T e−i
∫ x
0 TM(t′)dt′ = e−iMFT , (3.186)

where

M(t) =

 h(t) ∆(t)

−∆∗(t) −h∗(t)

 (3.187)

and

MF =

 hF ∆F

−∆∗F −h∗F

 . (3.188)

As one might expect for a quadratic system, G(T ) completely determines ĤF (modulo

shifting the quasienergies by multiples of 2π/T ).

The propagator at any time t = nT + t′, where 0 ≤ t′ < T , is given by

G(nT + t′) = G(t′)[G(T )]n. (3.189)

As t → ∞, the relaxation behavior will be dominated by the [G(T )]n factor, except

possibly in some pathological cases. Therefore, we expect any local connected 3- or

higher-point function of the driven system to relax (or fail to relax) with time in ex-

actly the same manner as that of an undriven system with hamiltonian ĤF , up to a
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multiplicative periodic factor f(t) = f(t + T ) coming from the G(t′) part of the propa-

gator. The results of Sections 3.4.3, 3.4.4 and 3.4.5 may thus be applied with only minor

modifications.

3.7.3 Relaxation to the Floquet-GGE

Having discussed gaussification in the Floquet context, let us next consider the even-

tual fate of the effectively gaussian state. Following Section 3.5.2, we may construct a

GGE density operator ρ̂F out of the local conserved charges of the Floquet hamiltonian

ĤF ; the argument of Section 3.5.1, applied at stroboscopic times t = nT , shows that

these charges are all quadratic, so that ρ̂F is indeed gaussian. It is natural to suspect

that the system eventually relaxes to a state described by ρ̂F . Note that such a state is

a limit cycle: for any operator Ô, one has

Tr
(
Ô(t)ρ̂F

)
= Tr

(
Û(T )Ô(t+ T )Û †(T )ρ̂F

)
= Tr

(
Ô(t+ T )ρ̂F

)
(3.190)

(the second equality follows from the definition of ρ̂F ), but in general

Tr(Ô(t)ρ̂F ) 6= Tr(Ô(t′)ρ̂F ). (3.191)

This time-periodic limiting state has been called the “periodic Gibbs ensemble (PGE)”

or the Floquet-GGE [82, 105, 81].

We can generalize the analysis of Section 3.5.3 to study relaxation of the gaussified

state to the Floquet-GGE. It is sufficient to study this at stroboscopic times t = nT . As

in Section 3.5.3, we must make an additional assumption on the initial state, Eq. (3.134),

needed to exclude situations in which the initial profiles of local conserved densities

are inhomogeneous on length scales comparable to the system size. Equations (3.137–
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3.146) are unchanged, except that S must now be understood as the matrix of the

Bogoliubov transformation Ψ̂ = S Γ̂ that diagonalizes the Floquet hamiltonian ĤF , and

ε as a quasienergy defined modulo 2π/T .

First consider the limit of very fast driving, T → 0. In this limit, we expect that we

can ignore the periodicity of ε (since the period 2π/T →∞), and that the quasiparticle

states of ĤF are organized into one or more well-defined bands. If this is so, the remainder

of the analysis in Section 3.5.3 applies, and we conclude that the gaussified state relaxes

to ρ̂F with a power law; in the simplest cases, this power law is given by Eq. (3.150) or

(3.151).

Next consider the opposite limit of very slow driving, so that T → ∞ and Ĥ(t) is

a slowly varying function of t. On timescales t . T , we expect, based on an adiabatic

approximation and our arguments in the time-independent case, to observe power-law

relaxation to a GGE of the instantaneous hamiltonian Ĥ(t). On much longer timescales

t� T , the Floquet drive becomes important, and we except to eventually observe relax-

ation to the Floquet GGE, ρ̂F . Stationary phase analysis suggests that this relaxation

will be exponential in time, ∼ e−t/T . To see this, consider Eq. (3.147). The quasienergies

ε are defined on a circle of radius 2π/T → 0, so the spectrum is likely to be relatively

smooth, without well-defined bands. Therefore

δC(t) ∼
∫ 2π/T

0

dε

∫ 2π/T

0

dε′ a(ε, ε′) e−i(ε−ε
′)t

=
1

T 2

∫ 2π

0

dz

∫ 2π

0

dz′ a
( z
T
,
z′

T

)
e−i(z−z

′)t/T , (3.192)

where a(z/T, z′/T ) is a smooth function of z and z′ on the torus T. It follows that δC(t)

must vanish faster than any power of (t/T ) as (t/T ) → ∞. Similar arguments apply to

δCj(t).
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Thus, in the limit T → 0 of fast driving, we expect to observe power-law relaxation

to ρ̂F , the (time-periodic) GGE of the Floquet hamiltonian ĤF . In the opposite limit

T →∞ of slow driving, we expect to observe power-law relaxation toward a GGE of the

instantaneous hamiltonian Ĥ(t), followed by much slower exponential relaxation ∼ e−t/T

toward ρ̂F . It is more difficult to make semi-quantitive general statements about the

regime of intermediate driving, and we leave this as an interesting question for future

work.

3.8 A comment on spin models mappable to quadratic

fermion models

Everything that we have said also applies to any spin system that can be mapped

to a quadratic model of fermions (via a Jordan-Wigner transformation or otherwise),

assuming (i) that the observables of interest map to local operators in terms of the

fermions, and (ii) that the initial state ρ̂0 obeys cluster decomposition with respect to the

fermion operators. It is by no means obvious that a given physical initial state, which

obeys cluster decomposition with respect to spin operators, also does so with respect to

the fermions. It would be interesting to identify which states have this property.

3.9 Conclusions

In this chapter, we have presented a general framework for understanding relaxation

phenomena in systems described by quadratic fermion or boson hamiltonians that may

or may not be time-dependent. We have shown that, as long as the hamiltonian yields

delocalizing dynamics, and for any initial state that satisfies a condition on algebraic
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clustering of correlations, all local operators of the system relax to values consistent with

a gaussian state at late times—the system “gaussifies”. Furthermore, we have shown that

gaussification can be understood as a simple consequence of the spreading of operators

in real space, and that the exponents of the power laws with which quantities gaussify

can be extracted from the smooth envelope of the one-particle propagator of the system

(which does not depend on the initial state). In this sense, gaussification in quadratic

systems appears to be quite universal in character.

Using similar arguments, we have given a simple proof that all local conserved quan-

tities of a quadratic time-independent hamiltonian with delocalizing dynamics are them-

selves quadratic, and hence that the GGE density operator of such a system is gaussian.

We have described how to construct the GGE out of mode occupation numbers in a

manner that properly accounts for degeneracies in the mode spectrum. Under an addi-

tional assumption on the initial state (needed to avoid having to deal with hydrodynamic

timescales comparable to the system size), we have shown that the local 2-point function

of the system relaxes to its GGE value with a power law whose exponent can typically be

extracted from the local density of single-particle levels at the band edge. Combined with

our gaussification results, this proves relaxation to the GGE for a large class of quadratic

systems and a large family of initial states, and also gives quantitative information about

how local observables relax. We find that, if the initial state has a density wave of some

conserved quantity, the system generically relaxes first to a gaussian state, and then,

with a smaller inverse power of time, to the GGE. If the initial state is not ordered in

this sense, “gaussification” and relaxation to the GGE occur with the same powers of

time and cannot be distinguished as easily in general.

We have also studied situations in which these conclusions break down, such as the

case of free massless bosons in one dimension [97, 101], or when the mode spectrum of
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the hamiltonian includes localized levels, and have explained precisely why the break-

down occurs in these cases. We have argued that, perhaps unexpectedly, well-separated

localized levels in a system of fermions do not hinder gaussification or relaxation to the

GGE. Finally, we have applied our arguments to the case of periodically driven systems,

and have shown that the relaxation of such systems to the Floquet-GGE can also be

understood semi-quantitatively within our framework.
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Appendices

3.A Connected correlation functions

For completeness, in this section we review the standard definition of a connected

correlation function [85].

Let 〈X̂〉 ≡ Tr(X̂ρ̂) denote the expectation of the operator X̂ in a given state ρ̂. The

connected correlation function or cumulant 〈〈· · ·〉〉 of a set of operators X̂1, X̂2, . . . , X̂n is

defined inductively by the formula

〈X̂1X̂2 · · · X̂n〉 =
∑
P

(±)
∏
α∈P

〈〈X̂α(1)X̂α(2) · · ·〉〉, (3.193)

where the sum is over all partitions P of the set {1, 2, . . . , n}, each element αj of the

partition is ordered so that αj(1) < αj(2) < · · · , and the sign is + or − according to

whether the rearrangement

(1, 2, · · · , n) 7→ (α1(1), α1(2), · · · , α2(1), α2(2), · · · , · · · · · · ) (3.194)

involves altogether an even or odd number of exchanges of fermionic operators, respec-
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tively. Unpacking the definition for small values of n,

〈X̂1〉 = 〈〈X̂1〉〉, (3.195a)

〈X̂1X̂2〉 = 〈〈X̂1X̂2〉〉+ 〈〈X̂1〉〉〈〈X̂2〉〉, (3.195b)

〈X̂1X̂2X̂3〉 = 〈〈X̂1X̂2X̂3〉〉

+ 〈〈X̂1X̂2〉〉〈〈X̂3〉〉+ 〈〈X̂1〉〉〈〈X̂2X̂3〉〉 ± 〈〈X̂1X̂3〉〉〈〈X̂2〉〉

+ 〈〈X̂1〉〉〈〈X̂2〉〉〈〈X̂3〉〉, (3.195c)

and so on.

Informally, the cumulant 〈〈X̂1X̂2 · · · X̂n〉〉 equals the correlation function 〈X̂1X̂2 · · · X̂n〉,

minus all possible ways of factorizing this function into products of two or more lower-

order cumulants (with additional minus signs as needed to account for exchanges of

fermionic operators).

3.B Bounds on g(t) for bosons with pairing

Any quadratic time-independent hamiltonian Ĥ = 1
2
Ψ̂†HΨ̂ for a system of bosons, in

which H is positive-definite, can be diagonalized by a Bogolyubov transformation [103]:

Ψ̂ = S Γ̂, (3.196)

where

Γ̂ = (γ̂−1 , γ̂
−
2 , · · · , γ̂−N , γ̂+

1 , γ̂
+
2 , · · · , γ̂+

N)T . (3.197)

164



Relaxation to equilibrium in systems with quadratic hamiltonians Chapter 3

The transformation S has the block form

S =

U V ∗

V U∗

 , (3.198)

satisfies S†ηS = η, where η = IN ⊕ −IN , and diagonalizes the hamiltonian matrix:

S†HS = ηΩ, where

Ω ≡ diag(ω1, ω2, . . . , ωN ,−ω1,−ω2, . . . ,−ωN). (3.199)

Since H is positive-definite, all ωj > 0 (by Sylvester’s theorem of inertia). The condition

S†ηS = η may be rewritten as S† = ηS−1η. It follows that

ηH = SΩS−1. (3.200)

In terms of the quasiparticle operators, we have

Ĥ = E0 +
N∑
j=1

ωjn̂j, (3.201)

where n̂j = γ̂+
j γ̂
−
j .

It is very important to note that, since S is not in general a unitary transformation,

the boson mode energies ωj are not the eigenvalues of the hermitian matrix H. We will

denote the eigenvalues of the matrix H as εj. We recover ωj = εj only when all pairing

terms in the hamiltonian vanish; in this limit S is indeed unitary.

The propagator G(t) may be written in matrix form as

G(t) = e−iηHt = Se−iΩt S−1 = Se−iΩtηS†η. (3.202)
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At each time t, it satisfies G(t)η G†(t) = η. From this fact, we easily obtain the lower

bound 1 ≤ gax(t), as follows (no sum on x, a):

1 = |ηaaxx|

=

∣∣∣∣∣∑
b=±

∑
y

[G(t)]abxy η
bb
yy [G†(t)]bayx

∣∣∣∣∣
≤
∑
b=±

∑
y

|Gab
xy(t)|

2

= gax(t). (3.203)

More work is required to derive an upper bound on gax(t). We have

gax(t) =
∑
b=±

∑
y

|Gab
xy(t)|

2

= [G†(t)G(t)]aaxx (no sum on x, a). (3.204)

By definition of the operator norm ‖·‖,

gax(t) ≤ ‖G†(t)G(t)‖ . (3.205)

For bounded operators A and B, one has ‖AB‖ ≤ ‖A‖‖B‖ and ‖A†‖ = ‖A‖. Since

‖η‖ = ‖e−iΩt‖ = 1, it follows that

gax(t) ≤ ‖S‖4. (3.206)

We can derive a bound on ‖S‖ from the condition

S†HS = ηΩ = diag(ω1, ω2, . . . , ωN , ω1, ω2, . . . , ωN). (3.207)
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Since the hermitian matrix H is positive-definite, it has a unique positive-definite square

root, H1/2. Let R ≡ H1/2S, so that R†R = ηΩ. The operator norm of R equals the

square root of the largest eigenvalue of R†R, so

‖R‖2 = ωmax ≡ max{ω1, ω2, · · · , ωN}. (3.208)

Since S = (H1/2)−1R, it follows that

‖S‖ ≤ ‖(H1/2)−1‖ ‖R‖. (3.209)

The operator norm of (H1/2)−1 equals the square root of the largest eigenvalue of the

product ((H1/2)−1)†(H1/2)−1 = H−1, so

‖(H1/2)−1‖ =
1√
εmin

, (3.210)

where εmin = min{ε1, ε2, · · · , εN} is the smallest eigenvalue of H. Thus,

‖S‖ ≤
√
ωmax

εmin

, (3.211)

and we finally obtain the desired upper bound:

gax(t) ≤
(
ωmax

εmin

)2

. (3.212)

Equations (3.203) and (3.212) together yield Eq. (3.114).
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Chapter 4

Bounds on chaos from the eigenstate

thermalization hypothesis

In this chapter, we show that a known bound on the growth rate of the out-of-time-

order four-point correlator in chaotic many-body quantum systems follows directly from

the general structure of operator matrix elements in systems that obey the eigenstate

thermalization hypothesis. This ties together two key paradigms of thermal behavior in

isolated many-body quantum systems.

4.1 Introduction

In recent years there has been renewed interest in various ways of quantifying the rates

of runaway growth processes in quantum chaotic many-body systems. One particular

quantity that has been studied extensively is the four-point out-of-time-order (OTO)

correlator [106, 27, 28]; for a recent overview, see Ref. [26]. Here, following Ref. [28], we
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consider the thermally regulated OTO correlator,

Foto(t) ≡ Tr
[
ρ1/4A(t)ρ1/4A(0)ρ1/4A(t)ρ1/4A(0)

]
, (4.1)

where A(t) = eiHtAe−iHt is a local operator in the Heisenberg picture, H is the hamil-

tonian, ρ ≡ e−βH/Z is a thermal density operator at inverse temperature β, and Z ≡

Tr e−βH is the partition function. (We set h̄ = kB = 1 throughout.) Following Refs. [27,

28], we consider systems with a scrambling time (also called the Ehrenfest time) ts that

is large compared to the dissipation time td that governs the exponential decay rate of

the two-point correlator. In this case, for times td � t� ts, we expect

Foto(t) ∝ 1− eλ(t−ts), (4.2)

where λ is a growth rate that is analogous to the Lyapunov growth rate of the deviation

of nearby classical trajectories in chaotic systems. The hierarchy of time scales ts � td

typically arises only in systems that have a small parameter ε that determines ts via

ts ∼ λ−1 ln(1/ε). Examples include ε ∼ 1/N2 for the Sachdev–Ye–Kitaev model of

N � 1 Majorana fermions with all-to-all random four-point interactions [107, 27], and

for conformal field theories with N2 � 1 fields that have gravitational duals [28], and

ε ∼ h̄eff , an effective dimensionless Planck’s constant, for semiclassical systems such as

the kicked rotor [108] and quantized area-preserving maps [109].

Making a set of physical and mathematical assumptions that are plausible in such

systems, Maldecena et al. [28] argued that the growth rate λ should be bounded by

λ ≤ 2π/β. (4.3)
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This bound is saturated in the SYK model, and in large-N conformal field theories with

gravitational duals, where it is related to the physics of information scrambling in black

holes [29].

Another paradigm that is believed to apply broadly to many-body quantum systems

with sufficiently strong interactions and no disorder (or, more generally, disorder that does

not result in many-body localization [110]) is the eigenstate thermalization hypothesis

(ETH) [18, 19, 20, 21, 22], which supposes that the energy eigenstates of such a system

cannot be distinguished from a thermal density matrix when probed by local observables.

More precisely, according to ETH, the matrix elements of a local observable A in the

energy-eigenstate basis, H|i〉 = Ei|i〉, take the form

Aij = A(E)δij + e−S(E)/2f(E,ω)Rij, (4.4)

where E = (Ei + Ej)/2 is the average energy of the two eigenstates, ω = Ei − Ej is the

energy difference, A(E) = Tr ρA with β fixed by E = Tr ρH, S(E) is the thermodynamic

entropy (logarithm of the density of states) at energy E, f(E,ω) is a smooth, real function

of its two arguments with f(E,ω) = f(E,−ω), and Rij is a hermitian matrix of erratically

varying elements, with overall zero mean and unit variance in local ranges of E and ω.

It is consistent (as will be seen below) to treat E as an extensive quantity and ω as an

intensive quantity.

Our purpose in this chapter is to derive the bound on the OTO correlator growth

rate, Eq. (4.3), directly from ETH. In doing so, we relate two important paradigms of

thermal behavior in isolated many-body quantum systems.

Our methodology is to use known properties of the ETH matrix elements to put a

bound on the Fourier transform of the OTO correlator (more specifically, on its connected

part, defined below) at high frequencies. This bound can then be used to infer bounds
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on the OTO correlator itself at intermediate times, with some additional dependence on

its precise functional form. For a family of functions that includes the OTO correlator

for a conformal field in one spatial dimension, as computed by Maldacena et al. [111]

via the AdS2 gravity dual, we find that the bound of Eq. (4.3) must hold. For a simpler

family of functions that is sometimes used as an approximation to the OTO correlator,

we find a stronger bound, indicating that this approximation should be used with care.

Our methods do not require the factorization assumption that was used in Ref. [28] (and

which we review below). Hence we believe that our result is more general, and that

the bound on the exponential growth rate of the OTO correlator holds in any quantum

many-body system that obeys ETH and also has the hierarchy of time scales ts � td.

Note that we do not claim that ETH is either necessary or sufficient to have expo-

nential growth of the OTO correlator; we claim only that the exponential growth rate,

if nonzero, is bounded by Eq. (4.3) in systems that obey ETH. Also, it may also be

possible to weaken our assumptions and still prove the bound; for example, our proof

would go through if we allowed the envelope function f(E,ω) to become noisy (rather

than smooth) at sufficiently low frequencies ω.

4.2 Bounds on the high-frequency behavior of ETH

envelope functions

It will be most convenient to work with an observable A for which A(E) = 0, either

due to a symmetry, or simply by subtracting Tr ρA from A; we therefore take A(E) = 0

from here on.

We begin by considering a thermally regulated two-point correlator for such an ob-
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servable A at inverse temperature β,

F2(t) ≡ Tr
[
ρ1/2A(t)ρ1/2A(0)

]
. (4.5)

Inserting two complete sets of energy eigenstates and using Eq. (4.4) with A(E) = 0, we

have

F2(t) =
1

Z

∑
ij

e−S(E)−βE|f(E,ω)|2eiωt|Rij|2. (4.6)

We replace |Rij|2 with its statistical average 1, and then write each sum as an integral

with a suitable density of states,
∑

i →
∫∞

0
dEi e

S(Ei). Using Ei,j = E ± ω/2, we get

F2(t) =
1

Z

∫
E

∫
ω

eS(E+ω/2)+S(E−ω/2)−S(E)−βE |f(E,ω)|2eiωt, (4.7)

where
∫
E
≡
∫∞

0
dE and

∫
ω
≡
∫ +∞
−∞ dω. We now assume (and later verify) that f(E,ω)

falls rapidly enough at large ω that we can expand the exponent in powers of ω,

S(E ± 1
2
ω) = S(E)± 1

2
S ′(E)ω + 1

8
S ′′(E)ω2 + · · · , (4.8)

which yields

F2(t) =
1

Z

∫
E

eS(E)−βE
∫
ω

eS
′′(E)ω2/4eiωt|f(E,ω)|2. (4.9)

We do the E integral by Laplace’s method; this fixes E to be the solution of S ′(E) = β,

which is the usual thermodynamic relation between energy and temperature. We can

then also identify S ′′(E) = −β2/C, where C is the heat capacity of the system at inverse

temperature β. The remaining integral over E yields a factor of the partition function

Z. We therefore find

F2(t) =

∫
ω

e−β
2ω2/4Ceiωt|f(E,ω)|2. (4.10)
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Next we note that Tr(ρA2) is equal to F2(± iβ
2

), and this should be a finite quantity.

In the infinite-volume limit, C →∞, and we have

Tr
(
ρA2

)
=

∫
ω

eβω/2|f(E,ω)|2. (4.11)

For this to be finite, f(E,ω) must satisfy

|f(E,ω)| . exp(−β|ω|/4) as |ω| → ∞. (4.12)

We next consider the general four-point correlator for a single observable A at inverse

temperature β,

F4(t1, t2, t3) ≡ Tr
[
ρ1/4A(t1)ρ1/4A(t2)ρ1/4A(t3)ρ1/4A(0)

]
. (4.13)

Inserting four complete sets of energy eigenstates, we have

F4 =
1

Z

∑
ijkl

e−βEei(ω1t1+ω2t2+ω3t3)AijAjkAklAli, (4.14)

where E ≡ 1
4
(Ei + Ej + Ek + El), ω1 ≡ Ei − Ej, ω2 ≡ Ej − Ek, ω3 ≡ Ek − El. We use

Eq. (4.4) with A(E) = 0 for Aij. We then replace RijRjkRklRli by its statistical average,

which, following the general analysis of Foini and Kurchan [112], we take to be

RijRjkRklRli = δik + δjl + e−S(E)g(E,ω1, ω2, ω3). (4.15)

Here the first two terms account for the fact that for i = k or j = l the left-hand side

reduces to the product of the absolute square of two R’s, and then the statistical aver-

age is 1. The final term accounts for exponentially small correlations between different
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R’s. Such correlations arise from treating the inner product of energy eigenstates (in

a small range of energy) with eigenstates of A (in a small range of its eigenvalues) as

a pseudorandom unitary matrix [112]. We view this as a generalized version of Berry’s

conjecture [113] that the energy eigenstates of a chaotic quantum system can be ex-

pressed as superpositions of suitable basis states whose coefficients are pseudorandom

numbers with a gaussian distribution; the specific form of the appropriate basis states is

system-dependent [114, 115, 116]. Berry’s conjecture underlies the formulation of ETH

presented in Ref. [19], and so Eq. (4.15) should be viewed as a consequence of ETH.

Returning to Eq. (4.14), we replace the sums by integrals,
∑

i →
∫
Ei
eS(Ei), expand

the entropies to linear order about E, change the integration variables to E and the three

ω’s, and perform the integral over E by Laplace’s method. The final result, in the infinite

volume limit, is

F4(t1, t2, t3) = F2(t1 − t2 + iβ
4

)F2(t3 + iβ
4

) + F2(t1 − iβ
4

)F2(t3 − t2 − iβ
4

)

+ F4C(t1, t2, t3), (4.16)

where the connected part of the four-point function is

F4C(t1, t2, t3) =

∫
ω1···ω3

ei(ω1t1+ω2t2+ω3t3)f(ω1)f(ω2) f(ω3)f(−ω1 − ω2 − ω3) g(ω1, ω2, ω3).

(4.17)

Here we have suppressed the E dependence of f and g.

Next we note that

Tr
(
ρA4

)
− 2[Tr

(
ρA2

)
]2 = F4C(− iβ

4
,− iβ

2
,−3iβ

4
) (4.18)

should be a finite quantity. Given Eq. (4.12), convergence of the integral over ω3 in
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Eq. (4.17), with ω1 and ω2 fixed, requires that g(ω1, ω2, ω3) must satisfy

|g(ω1, ω2, ω3)| . exp(−β|ω3|/4) as |ω3| → ∞. (4.19)

4.3 The OTO correlator and “bound on chaos”

We now turn our attention to the OTO four-point correlator Foto(t) ≡ F4(t, 0, t),

which is given by

Foto(t) = 2 Re[F2(t+ iβ
4

)2] + F4C(t, 0, t). (4.20)

For times large compared to the dissipation time td, which itself should be comparable

to or larger than β, the first term in Eq. (4.20) will have decayed to a negligible value,

and we can replace Foto(t) with its connected part Fotoc(t) ≡ F4C(t, 0, t).

We will be interested in the Fourier transform of Fotoc(t), given by

F̃otoc(ω) ≡
∫ +∞

−∞

dt

2π
e−iωtFotoc(t)

=

∫
ω1, ω2

f(ω1)f(ω2)f(ω − ω1)f(−ω − ω2)g(ω1, ω2, ω − ω1). (4.21)

From the large frequency behavior of f and g specified by Eqs. (4.12) and (4.19), we can

infer that F̃otoc(ω) must fall off at large |ω| at least as fast as

F̃otoc(ω) ∼ exp(−3β|ω|/4). (4.22)

To use this information, we need a more complete specification of the OTO correlator

than is found in Eq. (4.2), which applies only for intermediate positive times. Assuming

an exponential decay at late positive times, a simple model is Fotoc(t) ∝ 1/(1 + z(t))η,
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where

z(t) ≡ eλ(t−ts), (4.23)

and η is a positive real parameter. However this Fotoc(t) is not time-reversal invariant,

whereas Eq. (4.1) is. To remedy this, and assuming λts � 1, we make the ansatz

Fotoc(t) = NG(z(t))G(z(−t)), (4.24)

where we take G(z) = 1/(1 + z)η; later we will consider other possibilities for G(z). The

normalization constant is

N = Tr
[
(ρ1/4A)4

]
− 2
(
Tr ρ3/4Aρ1/4A

)
2. (4.25)

From the product form of Eq. (4.24), it follows that the Fourier transform is given by

the convolution

F̃otoc(ω) = N
∫
ω′
G̃(ω − ω′)G̃(ω′). (4.26)

From this it follows that the large-ω behavior of F̃otoc(ω) is the same as the large-ω

behavior of G̃(ω). We find

G̃(ω) = e−iωts
Γ(η + iω/λ)Γ(0+ − iω/λ)

2πλΓ(η)
K(ω), (4.27)

where Γ(x) is the gamma function, and K(ω) = 1 has been introduced for later conve-

nience. Eq. (4.27) yields F̃otoc(ω) ∼ G̃(ω) ∼ exp(−π|ω|/λ) at large |ω|, independent of

η. Requiring this fall-off to be at least as fast as Eq. (4.22), we find the bound λ ≤ 4π/3β,

which is more stringent than Eq. (4.3). This shows that for λ = 2π/β (expected in confor-

mal field theories with gravity duals), the form G(z) = 1/(1 + z)η, which has sometimes

been used as an approximation (e.g., [117]), is inconsistent with our Eq. (4.22).
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Maldacena et al. [111] computed the OTO correlator for a conformal field with di-

mension ∆ = η/2 via the AdS2 gravity dual. In our notation, their result is

G(z) =

∫ ∞
0

du h(u)(1 + uz)−η (4.28)

with h(u) = e−uuη−1/Γ(η). This yields Eq. (4.27) with

K(ω) =

∫ ∞
0

du h(u)uiω/λ. (4.29)

For the h(u) of Ref. [111], K(ω) = Γ(η + iω/λ)/Γ(η) ∼ exp(−π|ω|/2λ), and hence

F̃otoc(ω) ∼ exp(−3π|ω|/2λ). Requiring this fall-off to be at least as fast as Eq. (4.22),

we find the bound λ ≤ 2π/β, the same as Eq. (4.3).

More generally, the bound λ ≤ 2π/β holds if K(ω) ∼ exp(−cπ|ω|/2λ) with c ≤ 1 at

large ω. The Paley–Wiener theorem [118] implies that this will be the case if and only if

there is a value of θ ∈ [−π/2, π/2] such that

∫ ∞
0

du u|h(eiθu)|2 =∞. (4.30)

For example, this is the case if h(u) ∼ ua exp(−buγ) at large u with a ≥ −1
2
, b ≥ 0

and γ ≥ 1. However, we have not been able to connect the mathematical condition of

Eq. (4.30) to a physical property of the system.

4.4 Discussion and conclusions

We can compare our derivation of Eq. (4.3) with that of Ref. [28]. A key assumption

used in Ref. [28], their Eq. (23), is an approximate factorization of a different regulariza-
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tion of the four-point function at intermediate times td � t� ts,

Tr
[
ρ1/2A(t)A(0)ρ1/2A(0)A(t)

]
≤
(
Tr ρ1/2Aρ1/2A

)
2 + ε, (4.31)

where ε is a small tolerance parameter. In our notation, this is equivalent to

|F2(t− iβ
2

)|2 + F4C(t− iβ
4
, t,− iβ

4
) ≤ ε. (4.32)

We expect the first term to be negligible at the relevant intermediate times, and it is

plausible that the second term, which is an in-time-order connected four-point function,

is also negligible. However, we do not need to assume this in our analysis.

Assuming Eq. (4.31), Ref. [28] then establishes that the rescaled correlator f(t) ≡

Foto(t)/[F2(0)2 + ε] obeys

∣∣∣∣ ddtf(t)

∣∣∣∣ ≤ 2π

β
coth

(
2πt

β

)
1− f(t)2

2
. (4.33)

Because of the factor of 1−f 2 on the right-hand side of Eq. (4.33), it provides a meaningful

bound on λ in Eq. (4.2) if and only if f(t) = 1− eλ(t−ts) for td � t � ts, where we now

have an equality rather than a proportionality. Equivalently, Foto(t) must be very close

to F2(0)2 for these intermediate times. In our notation, this requires N ≈ F2(0)2, where

N is the normalization constant of Eq. (4.25). Such a relation would follow from large-N

factorization, Eq. (9) in Ref. [28], but is not expected to be true more generally. Our

derivation of Eq. (4.3) does not require this assumption.

We note that the scrambling time ts appears as the period of an oscillation in the

amplitude of F̃otoc(ω), cf. Eqs. (4.26,4.27), that must have its origin in a correspoding

oscillation in the amplitude of g(ω1, ω2, ω3), cf. Eq. (4.21). The underlying physics of this
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sort of oscillation in the four-point correlation of operator matrix elements, cf. Eq. (4.15),

is worthy of further exploration.

Recently another measure of chaos was introduced by Parker et al. [119]: an operator

complexity growth rate α that was shown to be bounded by α ≤ π/β. This bound on

α is related to the the large-ω behavior of f(E,ω), and follows from Eq. (4.12). Parker

et al. conjecture that, very generally, λ ≤ 2α. Our analysis shows that the bound on

λ requires information about the large-ω behavior of g(E,ω1, ω2, ω3) in addition to the

large-ω behavior of f(E,ω). A proof that λ ≤ 2α would therefore imply a further

relationship between these two functions, and hence further structure in the ETH matrix

elements. This is an interesting topic for further research.

To conclude, we have derived the known bound of Eq. (4.3) on the growth rate of

the out-of-time-order four-point correlator from the structure of operator matrix ele-

ments that follows from the eigenstate thermalization hypothesis, Eqs. (4.4,4.15). We

also needed a mild assumption on the functional form of this correlator, as specified by

Eqs. (4.24,4.28,4.30). However, we did not need the assumptions of Eq. (4.31) and of

large-N factorization (or its equivalent) that were needed in the analysis of Ref. [28].

We hope that this unification of two key paradigms of thermal behavior in many-body

quantum systems will lead to further insights into this important branch of physics.

179



Chapter 5

Structure of chaotic eigenstates and

their entanglement entropy

In this chapter, we consider a chaotic many-body system (i.e., one that satisfies the eigen-

state thermalization hypothesis) that is split into two subsystems, with an interaction

along their mutual boundary, and study the entanglement properties of an energy eigen-

state with nonzero energy density. When the two subsystems have nearly equal volumes,

we find a universal correction to the entanglement entropy that is proportional to the

square root of the system’s heat capacity (or a sum of capacities, if there are conserved

quantities in addition to energy). Our conclusions are based on a refined version of a

model of a chaotic eigenstate originally due to Deutsch, and analyzed more recently by

Lu and Grover.

5.1 Introduction

Consider a macroscopic system of volume V partitioned into two spatial subsystems

1 and 2 with volumes V1 and V2 = V − V1. We assume, without loss of generality, that
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V1 ≤ V2. We also assume that the hamiltonian of the system is a sum of local terms, and

so can be partitioned as

H = H1 +H2 +H12, (5.1)

where Ha acts nontrivially only in region a (a = 1, 2) and all terms coupling the two

subsystems are contained in H12. We further assume that the system obeys the eigenstate

thermalization hypothesis (ETH) [18, 19, 21] for matrix elements of local observables

between energy eigenstates corresponding to nonzero energy densities.

To simplify notation, we take all energies to be in units of a fundamental energy scale

(e.g., the coefficient of an exchange term in a spin chain) and all lengths, areas, and

volumes to be in units of a fundamental length (e.g., the lattice spacing). We also set

kB = 1 throughout.

Let |E〉 denote an eigenstate of H with energy E, with nonzero energy density E/V .

For notational convenience, and again without loss of generality, we shift H12 by a con-

stant (if necessary) so that

〈E|H12|E〉 = 0. (5.2)

We can write |E〉 in a basis of tensor products of the eigenstates of H1 and H2,

|E〉 =
∑
i,J

MiJ |i〉1 ⊗ |J〉2 . (5.3)

Deutsch [32] conjectured that the coefficient matrix MiJ can be treated as a random

matrix with a narrow bandwidth that keeps the sum of the subsystem energies E1i +E2J

close to the total system energy E, and using this conjecture showed that the entangle-

ment entropy of the smaller subsystem equals its thermodynamic entropy. More recently,

Lu and Grover [120] used this ansatz to calculate the Rényi entropies of the subsystem.

Other related work on entanglement entropy at nonzero energy density in chaotic systems
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includes Refs. [121, 122, 123, 124, 125]; for a review of basic concepts, see Ref. [31].

Here, we refine the original conjecture by characterizing the coefficient matrix more

completely. We further show that at or very near V1 = V2, there is an extra contribution

to the entanglement entropy that scales like
√
V . Specifically, for V1 = V2 exactly, we

find that the entanglement entropy is given by

Sent =
1

2
S −

√
C

2π
+O(A), (5.4)

where S is the thermodynamic entropy of the system at energy E, C is its heat capacity,

and A is the area of the boundary between the two subsystems. When the system is far

from a critical point (which we assume for simplicity), both S and C typically scale like

the volume V of the system. We do not compute the coefficient of the O(A) term, since

it depends on details of the hamiltonian. The
√
C and O(A) terms are distinguished

by their scaling with system size (except in d = 2 spatial dimensions). They are also

distinguished by the fact that the latter depends on a property of the boundary between

the two subsystems, while the former depends on a property of the system as a whole.

The extension of Eq. (5.4) to V1 6= V2 is given in Eq. (5.16) below; the
√
C correction

remains significant for |V1 − V2| .
√
V .

A contribution to Sent scaling like
√
V was found previously by Vidmar and Rigol

[126] in a study of a one-dimensional system with one conserved quantum number. Our

explanation for the appearance of such a term is essentially the same as theirs, but our

formula applies more generally to any system that obeys ETH, and relates the correction

to thermodynamic properties of the system. Furthermore, we generalize our result to

systems with any finite number of conserved quantities in addition to energy. In such

cases, C in Eq. (5.4) becomes the sum of all entries in a matrix of capacities; see Sec. 5.5.

The rest of this chapter is organized as follows. In Section 5.2, we summarize all
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of our key results in more precise language, for the simplest case in which only energy

is conserved. Sections 5.3–5.5 elaborate on the derivation of the summarized results.

The generalization to systems with additional conserved quantities is discussed in the

second half of Sec. 5.5, and full details are provided in the Appendix. Section 5.6 has

our concluding discussion.

5.2 Summary of results

5.2.1 Structure of the coefficient matrix

Assuming, in line with Refs. [32, 120], that MiJ has the general structure of a random

matrix that is sharply banded in total energy, and neglecting any dependence of MiJ on

the energy difference E1i − E2J , we show that it takes the form

MiJ = e−S(E1i+E2J )/2F (E1i + E2J − E)1/2CiJ , (5.5)

where S(E) is the thermodynamic entropy of the full system at energy E (equal to the

logarithm of the density of states, and assumed to be a monotonically increasing function

of energy, so that temperature is nonnegative), F (ε) is a window function centered on

ε = 0 with a width ∆ equal to the quantum uncertainty in the interaction hamiltonian,

∆ =
√
〈E|H2

12|E〉, (5.6)

and CiJ is a matrix of coefficients which, when averaged over narrow bands of energies

of each subsystem near E1 and E2 (but with each band still containing many subsystem
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energy eigenstates), obeys

CiJ = 0, C∗iJCi′J ′ = δii′δJJ ′ , (5.7)

where the overbar denotes the dual narrow-band energy averaging. Furthermore, for a

system in two or more spatial dimensions, the window function is a gaussian,

F (ε) =
e−ε

2/2∆2

√
2π∆

. (5.8)

In two or more spatial dimensions, where H12 is a sum of local terms along the boundary

between the two subsystems, we show that ∆ ∼
√
A, where A is the area of the boundary.

For a one-dimensional system, ∆ is an order-one quantity (in terms of its scaling with

system size). These results are derived in Section 5.3.

5.2.2 Structure of the reduced density matrix

The reduced density matrix ρ1 ≡ Tr2 |E〉〈E| of subsystem 1 takes the form

(ρ1)ij = e−S(E)+S2(E−E1)
[
δij + e−S2(E−E1)/2e−ω

2/8∆2

Rij

]
, (5.9)

where E1 ≡ (E1i + E1j)/2 and ω ≡ E1i − E1j, Sa(Ea) is the thermodynamic entropy of

subsystem a at energy Ea (a = 1, 2), and the Rij are O(1) numbers that vary erratically.

We have dropped terms of order ∆2 ∼ A and smaller in the exponents. Section 5.4

contains details of the derivation.

The diagonal term in Eq. (5.9) is in agreement with Lu and Grover [120], and matches

the “subsystem ETH” ansatz of Dymarsky et al. [127]. The off-diagonal term, though

exponentially smaller than the diagonal term, alters the spectrum of eigenvalues of ρ1 at
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energies E1 > E∗1 , where E∗1 is the solution to

S1(E∗1) = S2(E − E∗1). (5.10)

For E1 > E∗1 , the density of states of subsystem 2 is smaller than the density of states

of subsystem 1. However, the nonzero eigenvalues of ρ1 are the same as those of ρ2 ≡

Tr1 |E〉〈E|. This effect occurs locally in energy. Hence, in the energy interval [E1, E1 +

dE1] for E1 > E∗1 , ρ1 has approximately eS2(E−E1)dE1 nonzero eigenvalues, and each of

these nonzero eigenvalues is approximately equal to e−S(E)eS1(E1).

5.2.3 Correction to the entanglement entropy

From the discussion above, it follows that

Tr ρn1 =

∫
dE1 e

Smin(E1)
[
e−S(E)eSmax(E1)

]n
e−S(E)

∫
dE1 eSmin(E1)+Smax(E1)

, (5.11)

where

Smax(E1) ≡ max[S1(E1), S2(E − E1)], (5.12a)

Smin(E1) ≡ min[S1(E1), S2(E − E1)]. (5.12b)

The denominator in Eq. (5.11) is the numerator with n = 1, and itself equals one up to

small corrections; see Sec. 5.3. The entanglement entropy is the n → 1 limit of the nth

Rényi entropy,

Sent(E) = lim
n→1

SRen,n(E), (5.13)
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where

SRen,n(E) ≡ 1

1− n log Tr ρn1 . (5.14)

From Eqs. (5.11)–(5.14), we get

Sent(E) =

∫
dE1 e

S1(E1)+S2(E−E1)[S(E)− Smax(E1)]∫
dE1 eS1(E1)+S2(E−E1)

. (5.15)

After performing the integrals over E1 by Laplace’s method, we find

Sent(E) = min(S̄1, S̄2)−
√

2K

π
Φ

(
S̄2 − S̄1√

8K

)
+O(A), (5.16)

where S̄1 ≡ S1(Ē1) and S̄2 ≡ S2(E − Ē1) are the subsystem entropies at the stationary

point Ē1, given by

S ′1(Ē1) = S ′2(E − Ē1), (5.17)

K ≡ C1C2/(C1+C2) is the harmonic mean of the subsystem heat capacities Ca ≡ −β2/S̄ ′′a

at constant volume and inverse temperature β ≡ S ′1(Ē1), and we have defined the function

Φ(x) ≡
∫ +∞

−∞
dy e−y

2(|y − x| − |x|) =
√
π
(
x erf x− |x|

)
+ e−x

2

, (5.18)

where erf x is the error function; see Fig. 1. Since Φ(x) decays to zero exponentially from

Φ(0) = 1, this correction is negligible for |S̄2 − S̄1| �
√
K.

For a uniform system with V1 = fV , V2 = (1−f)V , and f ≤ 1
2
, we have S̄1 = fS(E),

S̄2 = (1−f)S(E), C1 = fC, C2 = (1−f)C, and K = f(1−f)C, where C ≡ −β2/S ′′(E)

is the heat capacity of the full system. The heat capacity C scales like the volume of the

system, so |S̄2 − S̄1| �
√
K is equivalent to |1

2
− f | � 1/

√
V . For f = 1

2
exactly, we

recover Eq. (5.4).

Section 5.5 contains details of the derivation of these results, and also describes their
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Figure 1: A plot of the function Φ(x) defined in Eq. (5.18), which parameterizes the
correction to the entanglement entropy, Eq. (5.16).

generalization to systems with additional conserved quantities.

5.2.4 Correction to the Rényi entropy for n < 1

Evaluating Eq. (5.11) by Laplace’s method, and then evaluating the leading terms in

Eq. (5.14), we find

SRen,n(E) =
[S1(E1) + nS2(E − E1)− nS(E)]

1− n , (5.19)

where

E1 ≡ min(Ē1, E
∗
1), (5.20)

E∗1 is the solution to Eq. (5.10), and Ē1 is the solution to

S ′1(Ē1) = nS ′2(E − Ē1). (5.21)

For Ē1 < E∗1 , Eq. (5.19) coincides with the result of Ref. [120]. For n > 1, the convexity

of the entropy function (equivalently, positivity of the temperature and the heat capacity)

guarantees that Ē1 < E∗1 . However, for n < 1, it is possible to have E∗1 < Ē1, and then
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Eq. (5.19) differs from the result of Ref. [120]. In particular, for a uniform system split

exactly in half, E∗1 < Ē1 for all n < 1, and then SRen,n<1(E) = S(E)/2, up to subleading

corrections.

5.3 Envelope function of the coefficient matrix

We first establish a useful identity. In the limit of ∆ → 0, we can ignore the energy

of the interaction. Then we can compute the density of states eS(E) of the total system

at energy E by dividing the energy between the two subsystems, and taking the product

of the number of states of each subsystem. This yields

eS(E) =

∫ E

0

dE1 e
S1(E1)eS2(E−E1). (5.22)

Note that Eq. (5.22) shows that the denominator in Eq. (5.11) equals one in the ∆→ 0

limit.

Next we warm up by computing 〈E|E〉 = 1. From Eqs. (5.3) and (5.5), we have

〈E|E〉 =
∑
iJ

e−S(E1i+E2J )F (E1i + E2J − E) |CiJ |2. (5.23)

The sums over i and J implement the narrow-band averaging of Eq. (5.7), and can then

be replaced by integrals over E1 and E2 with factors of the densities of states, yielding

〈E|E〉 =

∫ ∞
0

dE1 e
S1(E1)

∫ ∞
0

dE2 e
S2(E2) e−S(E1+E2)F (E1 + E2 − E). (5.24)

In the limit ∆→ 0, F (ε)→ δ(ε), the Dirac delta function. In this limit we have

〈E|E〉 = e−S(E)

∫ ∞
0

dE1 e
S1(E1)eS2(E−E1) = 1, (5.25)

188



Structure of chaotic eigenstates and their entanglement entropy Chapter 5

where the final result follows from Eq. (5.22).

For finite ∆, we take F (ε) to have the gaussian form of Eq. (5.8), although we only

need that F (ε) be sharply peaked at ε = 0 with width ∆. We then evaluate the integrals

in Eq. (5.24) by Laplace’s method. The conditions for a stationary point of the exponent

are

S ′1(E1) = S ′(E1 + E2) + (E1 + E2 − E)/∆2, (5.26a)

S ′2(E2) = S ′(E1 + E2) + (E1 + E2 − E)/∆2. (5.26b)

For small ∆, the solution is E1 = Ē1, E2 = Ē2, where

Ē1 + Ē2 = E, (5.27a)

S ′1(Ē1) = S ′2(Ē2) = S ′(E) =: β, (5.27b)

where β is again the inverse temperature of the system as a whole and of each subsystem.

Next we Taylor-expand the entropies about the stationary point,

S(E1 + E2) = S(E) + β(E1 + E2 − E)− 1
2
(β2/C)(E1 + E2 − E)2 + · · · , (5.28)

S1(E1) = S̄1 + β(E1 − Ē1)− 1
2
(β2/C1)(E1 − Ē1)2 + · · · , (5.29)

S2(E2) = S̄2 + β(E2 − Ē2)− 1
2
(β2/C2)(E2 − Ē2)2 + · · · . (5.30)

To leading order in the system volume, Eq. (5.22) implies

S̄1 + S̄2 = S(E). (5.31)

Thus the constant and linear terms all cancel in the combination S1(E1) + S2(E2) −
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S(E1 +E2) that appears in Eq. (5.24). This cancellation is why it was necessary to have

S(E1+E2) in the exponent in Eq. (5.5) rather than S(E). The remaining quadratic terms

yield gaussian integrals that give an O(1) result for the integral in Eq. (5.24). Adjusting

the O(1) terms in the entropies is then necessary to yield the final result of 〈E|E〉 = 1.

The heat capacities in Eqs. (5.28)–(5.30) are proportional to the volumes of the cor-

responding macroscopic regions, whereas ∆2 ∝ A (the area of the 1–2 boundary), as

will be demonstrated below. Consequently 1/∆2 � β2/C, β2/C1, β
2/C2, and hence the

distribution of E1 +E2 is controlled by F (ε). Then we have the following generalization

of Eq. (5.24),

〈E|(H1 +H2 − E)n|E〉 ≈
∫ +∞

−∞
dεF (ε)εn. (5.32)

We emphasize that the derivation of Eq. (5.32) from Eqs. (5.5) and (5.7) does not rely

on the precise form of F (ε); it relies only on F (ε) being sharply peaked at ε = 0 with

width ∆ that satisfies β2∆2 � C1, C2.

For n = 1, 2 in Eq. (5.32), we can replace H1 + H2 − E with H1 + H2 − H, since

H will always appear next to either the ket or bra form of its eigenstate. Then using

H1 +H2 −H = −H12, we find for n = 1 that

∫ +∞

−∞
dεF (ε)ε = −〈E|H12|E〉 = 0, (5.33)

where the second equality follows from our shift of H12. For n = 2, we get

∫ +∞

−∞
dεF (ε)ε2 = 〈E|H2

12|E〉. (5.34)

The left-hand side equals ∆2 by definition, and so Eq. (5.34) verifies Eq. (5.6).

In two or more spatial dimensions, our assumption on the locality of H implies that
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H12 is a sum of local terms on the boundary B between regions 1 and 2,

H12 =
∑
x∈B

hx. (5.35)

We then have

〈E|H2
12|E〉 =

∑
x,y∈B

〈E|hxhy|E〉. (5.36)

Assuming that ETH holds for the bilocal operator hxhy, the eigenstate expectation value

can be replaced by a thermal expectation value at inverse temperature β. We further

assume that this thermal correlation function decays rapidly for |x − y| � ξ to the

disconnected form 〈hx〉〈hy〉, where ξ is an appropriate correlation length 1. Summing the

disconnected form over x and/or y yields zero, by Eq. (5.2). Hence the double sum in

Eq. (5.36) effectively becomes a single sum over the boundary, yielding

∆2 = 〈E|H2
12|E〉 ∼ Aξd−1〈h2

x〉, (5.37)

where hx is any one term in H12, and the angle brackets denote either the eigenstate

or thermal average, which are equal by ETH. Equation (5.37) shows that ∆2 ∼ A, the

boundary area.

We can now generalize this argument to higher powers of H12, again assuming rapid

decay of 〈hxhy · · ·〉 whenever an index or group of indices is separated by more than ξ

from the others. The multiple sum over x, y, . . . will then yield approximately zero for

odd powers, and be dominated by the factorization into correlated pairs for even powers

1Note that the eigenstate expectation value 〈E|hxhy|E〉 must in general differ from the thermal
expectation value 〈hxhy〉 by O(1/V ), even when |x−y| � ξ; this is needed to recover 〈E|(H−E)2|E〉 = 0.
However, this difference only contributes an O(A/V ) correction to Eq. (5.37), and hence can be neglected.
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2. This then yields, in accord with the usual combinatorics of Wick’s theorem,

〈E|H2n
12 |E〉 ≈ (2n− 1)!! ∆2n, (5.38)

characteristic of a gaussian distribution.

Returning to Eq. (5.32), and using

H1 +H2 − E = H − E −H12, (5.39)

we have

∫ +∞

−∞
dεF (ε)ε2n ≈ 〈(H − E −H12)2n〉

≈ 〈H2n
12 〉 − 〈H12(H − E)H2n−2

12 〉+ · · · , (5.40)

The first term is given by Eq. (5.38), and we would like to show that the remaining terms

can be neglected. From Eqs. (5.37) and (5.38), we see that we effectively have H12 ∼
√
A,

so the terms in Eq. (5.40) with factors of H −E will be suppressed unless H −E ∼
√
A

as well. In each of these terms, H acts on a state of the form Hk
12|E〉. But H12 =

∑
x hx,

and each hx is an O(1) operator that can change the energy only by an O(1) amount.

Hence, acting with k such operators can change the energy by at most an O(k) amount,

which is O(1) in terms of its scaling with A. Summing over x can increase the coefficient

of the normalized state, but does not increase the maximum change in energy. Hence

H −E ∼ O(1), and so the terms with one or more factors of H −E in Eq. (5.40) can be

2More precisely, the third and higher cumulants of H12/∆ in the state |E〉 are suppressed relative to
the variance, 〈E|(H12/∆)2|E〉 ≡ 1, by powers of 1/

√
A.
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neglected. We conclude that, up to corrections suppressed by powers of ξd−1/A or A/V ,

∫ +∞

−∞
dεF (ε)ε2n = (2n− 1)!! ∆2n, (5.41)

and therefore that F (ε) is a gaussian with width ∆, Eq. (5.8).

In one spatial dimension, H12 is a single term, rather than a sum of O(A) terms.

Hence the combinatoric analysis that led to Eq. (5.38) does not apply, and so we cannot

conclude that the shape of F (ε) is gaussian. However, Eqs. (5.33) and (5.34) are still valid,

and so F (ε) is still sharply peaked at ε = 0 with a width ∆ that is given by Eq. (5.6). All

of our results for the corrections to the entanglement entropy, including Eqs. (5.4) and

(5.16), and their generalizations to multiple conserved quantities via Eqs. (5.57)–(5.59)

below, only depend on this sharply-peaked nature of F (ε), and not on the details of its

shape, and so hold for all dimensions, including d = 1.

5.4 Reduced density matrix

From Eq. (5.3), the reduced density matrix of subsystem 1 is

(ρ1)ij =
∑
K

MiKM
∗
jK . (5.42)

Using Eqs. (5.5), (5.8), and (5.28), assuming ∆2 � C/β2, and neglecting prefactors, we

have

(ρ1)ij = e−S(E)−ω2/8∆2
∑
K

e−β(E2K+E1−E)−(E2K+E1−E)2/2∆2

CiKC
∗
jK , (5.43)
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where E1 ≡ (E1i + E1j)/2 and ω ≡ E1i − E1j. Taking the statistical average and using

Eq. (5.7), only the diagonal term survives, hence ω = 0, and we get

(ρ1)ij = e−S(E)
∑
K

e−β(E2K+E1−E)−(E2K+E1−E)2/2∆2

δij. (5.44)

We again replace the sum over K with an integral over E2 weighted by the density of

states of subsystem 2, which yields

(ρ1)ij = e−S(E)

∫ ∞
0

dE2 e
S2(E2)e−β(E2+E1−E)−(E2+E1−E)2/2∆2

δij. (5.45)

The last exponential factor, arising from the window function F (ε), forces E2 to be close

to E − E1. Expanding S2(E2) about this point, we have

S2(E2) = S2(E − E1) + β21(E2 + E1 − E) + · · · , (5.46)

where β21 ≡ S ′2(E − E1) is the inverse temperature of subsystem 2 when its energy is

E − E1. Performing the integral over E2 in Eq. (5.45) then yields

(ρ1)ij = e−S(E)+S2(E−E1)+∆2(β−β21)2/2δij. (5.47)

Since ∆2 ∼ A, the last term in the exponent is smaller than the first two, which scale like

volume. Additionally, we expect other terms of O(A) to arise from finer structure in the

CiJ coefficients that we have neglected. These are necessary to produce the usual “area

law” for the entanglement entropy of the ground state (for a review, see Ref. [128]), and

we expect such correlations to persist at nonzero energy density.

To estimate the size of the fluctuating off-diagonal elements of ρ1, we compute the

statistical average of the absolute square of (ρ1)ij, i 6= j. We neglect any statistical
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correlations in the CiK coefficients, and assume that

CiKC∗jKC
∗
iLCjL = δKL. (5.48)

Then we have

|(ρ1)ij|2 = e−2S(E)−ω2/4∆2
∑
K

e−2β(E2K+E1−E)−(E2K+E1−E)2/∆2

. (5.49)

Following the same steps that led to Eq. (5.47), we get

|(ρ1)ij|2 = e−2S(E)+S2(E−E1)−ω2/4∆2+∆2(β−β21/2)2

. (5.50)

As in the case of the diagonal components, we expect additional terms of O(A) to arise

from neglected correlations in the CiK coefficients. In the limit that we neglect O(A)

corrections, Eqs. (5.47) and (5.50) together yield Eq. (5.9).

5.5 Corrections to the entanglement and Rényi en-

tropies

In the limit that we neglect all subleading corrections, we evaluate the numerator of

Eq. (5.11) by Laplace’s method, which simply yields the maximum value of the integrand.

This gives Eq. (5.19) for the nth Rényi entropy.

We consider subleading corrections only in the case of the entanglement entropy,

n = 1. In this case we must evaluate Eq. (5.15). We have

Smax = 1
2
(S1 + S2) + 1

2
|S1 − S2|. (5.51)
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Using Eqs (5.27a) and (5.29)–(5.31), and changing the integration variable from E1 to

u ≡ β(E1 − Ē1), (5.52)

we get

S1 + S2 = S − u2/2K, (5.53)

S1 − S2 = S̄1 − S̄2 + 2u+O(u2/K), (5.54)

where again K ≡ C1C2/(C1 + C2). The factor of e−u
2/2K in the integrand is peaked

well away from the lower limit of integration, which can therefore be extended to −∞.

When performing the gaussian integral, values of u2 larger than K are exponentially

suppressed; thus the O(u2/K) term in Eq. (5.54) gives only an O(1) contribution, and

can be neglected. Putting all of this together, Eq. (5.15) becomes

Sent = 1
2
S −

∫ +∞
−∞ du e−u

2/2K
∣∣1

2
(S̄2 − S̄1)− u

∣∣∫ +∞
−∞ du e−u2/2K

. (5.55)

Making a final rescaling of u→
√

2Ky, we get Eq. (5.16).

Note that, if we are interested in infinite temperature (β = 0), then we should also

take Cj → 0 so that β2/Cj remains finite and nonzero. In this limit, C → 0, and so the

correction in Eq. (5.4) vanishes. Also note that the precise distribution of eigenvalues of ρ1

near E1 makes at most an O(1) correction to the entanglement entropy. For example, the

Marčenko-Pastur law [129] gives the Page correction −eSmin/2eSmax to the entanglement

entropy of a random state [33, 130]. This can be neglected.

We can also generalize to the case of a system with additional conserved quantities,

such as particle number. In the most general case, there are m conserved quantities Qa
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(a = 1, . . . ,m), including energy, which we take to be Q1. A quantum state is then

labeled by the values of all m quantities. We can then repeat our entire analysis (see

Appendix 5.A for details). The thermodynamic entropy of the full system as a function

of the Qa’s (near the values that label the state) takes the form

S(Q+ δQ) = S(Q) + λaδQa − 1
2
(C−1)ab λ

aδQaλbδQb + · · · , (5.56)

with λ1 ≡ β. This generalizes Eq. (5.28); similar generalizations apply to the subsystem

entropies. We then ultimately arrive at Eq. (5.55) with u ≡ λaδQa and

K ≡
m∑

a,b=1

[
(C−1

1 + C−1
2 )−1

]
ab

(5.57)

= f(1− f)
m∑

a,b=1

Cab, (5.58)

where C1 and C2 are the capacity matrices for the two subsystems, and the second

equality holds for a uniform system with capacity matrix C and with f = V1/V . Equa-

tion (5.16) then holds with K given by Eq. (5.57), and Eq. (5.4) holds with

C =
m∑

a,b=1

Cab. (5.59)

We can now reproduce the results of Ref. [126] for a system with a conserved particle

number. There the system was studied near infinite temperature, so that the thermo-

dynamic entropy was taken to be effectively independent of system energy. Hence the

problem reduces to the case of a single conserved quantity, the filling fraction n. Then

the thermodynamic entropy of the system takes the form

S(n) = −L [n lnn+ (1− n) ln(1− n)], (5.60)
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where L is the linear volume of the one-dimensional system; this is Eq. (13) in Ref. [126].

In the notation of our Eq. (5.56), with a single Q that we identify as n, we have

λ = S ′(n), (5.61)

λ2C−1 = −S ′′(n), (5.62)

which yields

C = Ln(1− n)

[
ln

(
1− n
n

)]2

. (5.63)

When used in Eq. (5.4), this reproduces Eq. (17) of Ref. [126] (with LA = L/2).

5.6 Conclusions

We have reconsidered the ansatz of Refs. [32, 120] for an energy eigenstate of a chaotic

many-body system that, by assumption, obeys the eigenstate thermalization hypothesis

for local observables. This ansatz expresses the energy eigenstate of the full system in

the basis of energy eigenstates of two subsystems, each contiguous in space, that interact

along their mutual boundary, and is specified by Eqs. (5.3), (5.5), and (5.7).

One of the results of this chapter is that the width ∆ of the energy window function

F (ε) is given by Eq. (5.6) in terms of the subsystem interaction hamiltonian, and that

(in two or more spatial dimensions) F (ε) has the gaussian form of Eq. (5.8).

We further showed that the ansatz for the energy eigenstate leads to a reduced density

matrix that takes the form of Eq. (5.9). The off-diagonal elements, though exponentially

small, are relevant to the calculation of Rényi entropies when the fraction of the energy

in the smaller subsystem is large enough to give it a larger entropy than the larger

subsystem; this modifies the results of Ref. [120] for n < 1.
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In the case of equal or nearly equal volume for the two subsystems, there is a universal

correction to the entanglement entropy (corresponding to Rényi index n = 1) that scales

like the square-root of the system volume. In the case of equal subsystem volumes, this

correction, displayed in Eq. (5.4), is ∆Sent = −
√
C/2π, where C is the heat capacity of

the whole system. Such a correction was previously found in a specific system by Vidmar

and Rigol [126]; our analysis is more general and shows that the effect is generic. We also

extended our results to the case of multiple conserved quantities. The correction to the

entanglement entropy at equal subsystem volumes is the same, but with C now given by

a sum of the elements of a matrix of capacities.

We believe that this work further illuminates the role of the entanglement and Rényi

entropies of a subsystem as quantities worthy of study that encode key features of the

physical properties of the system as a whole.
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5.A Multiple conserved quantities

In the most general case, there are m conserved quantities Qa (a = 1, . . . ,m), includ-

ing energy, which we take to be Q1. We assume that each Qa is a sum of local terms,

and so can be partitioned as in Eq. (5.1),

Qa = Qa
1 +Qa

2 +Qa
12, (5.64)

with

[
Qa, Qb

]
= 0, (5.65a)[

Qa
1, Q

b
1

]
= 0, (5.65b)[

Qa
2, Q

b
2

]
= 0. (5.65c)

Let |q〉 denote a simultaneous eigenstate of the Qa, with eigenvalues qa. Without loss of

generality, we shift each Qa
12 so that

〈q|Qa
12|q〉 = 0. (5.66)
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We can write |q〉 in a basis of tensor products of the eigenstates of Qa
1 and Qa

2,

|q〉 =
∑
i,J

MiJ |i〉1 ⊗ |J〉2 , (5.67)

where Qa
1 |i〉1 = qa1i |i〉1 and Qa

2 |J〉2 = qa2J |J〉2. The thermodynamic entropy of the full

system is now a function S(q) ≡ S(q1, . . . , qm) of all the qa’s. Its Taylor expansion, about

the values that label the state, takes the form

S(q + δq) = S(q) + λaδqa − 1
2
(C−1)ab λ

aδqaλbδqb + · · · , (5.68)

with λ1 ≡ β. This generalizes Eq. (5.28). We assume that λa > 0 and that the capacity

matrix C is positive definite; this generalizes positivity of temperature and heat capacity.

Similar generalizations apply to the subsystem entropies.

We can then repeat our entire analysis. The coefficient matrix MiJ takes the form

MiJ = e−S(q1i+q2J )/2F (q1i + q2J − q)1/2CiJ . (5.69)

Here F (z) is a window function centered on za = 0 with second moments given by

∫
dmz F (z) zazb = Dab ≡ 〈q|Qa

12Q
b
12|q〉. (5.70)

Equations (5.64) and (5.65) together imply

〈q|
[
Qa

12, Q
b
12

]
|q〉 = 0, (5.71)

so Dab is symmetric, as it needs to be for the equality in Eq. (5.70) to make sense. The CiJ

coefficients obey Eq. (5.7), with the averaging now over narrow bands of all components
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of q1 and q2. For a system in two or more spatial dimensions, the window function is a

multivariate gaussian,

F (z) =
e−z·D

−1z/2

(2π)m/2
√

det D
. (5.72)

The matrix elements of D scale like Dab ∼ A, where A is the area of the boundary

between regions 1 and 2. When m = 1 (i.e. only energy is conserved), D reduces to ∆2.

The reduced density matrix ρ1 ≡ Tr2 |q〉〈q| of subsystem 1 takes the form

(ρ1)ij = e−S(q)+S2(q−q1)
[
δij + e−S2(q−q1)/2e−w·D

−1w/8Rij

]
, (5.73)

where qa1 ≡ (qa1i+q
a
1j)/2 and wa ≡ qa1i−qa1j, the Rij are O(1) numbers that vary erratically,

and we have dropped terms of order Dab ∼ A in the exponents.

We adopt the notation

q1 ≺ q∗1 if S1(q1) < S2(q − q1), (5.74a)

q1 � q∗1 if S1(q1) > S2(q − q1), (5.74b)

q1 ∼ q∗1 if S1(q1) = S2(q − q1). (5.74c)

In other words, � is the order on q1 induced by the function S1(q1)− S2(q − q1), and q∗1

is some point at which this function vanishes.

The off-diagonal term in Eq. (5.73), though exponentially smaller than the diagonal

term, is relevant for q1 � q∗1. In the small box [q1
1, q

1
1+dq1

1]×· · ·×[qm1 , q
m
1 +dqm1 ] for q1 � q∗1,

ρ1 has approximately eS2(q−q1)dq1
1 · · · dqm1 nonzero eigenvalues, each one approximately

equal to e−S(E)eS1(q1).
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Equation (5.19) for the Rényi entropy generalizes to

SRen,n(q) =
[S1(Q1) + nS2(q −Q1)− nS(q)]

1− n , (5.75)

where Q1 is the point at which S1(q1)+nS2(q−q1) attains its maximal value in the region

q1 - q∗1. For n > 1, the convexity of the entropy function guarantees that Q1 ≺ q∗1. In

this case, Q1 = q̄1, the solution to

∇S1(q̄1) = n∇S2(q − q̄1). (5.76)

However, for n < 1, it is possible to have Q1 ∼ q∗1 ≺ q̄1. In particular, for a uniform

system split exactly in half, q∗1 ≺ q̄1 for all n < 1, and then SRen,n<1(q) = S(q)/2, up to

subleading corrections.

For the entanglement entropy, we repeat the steps in Sec. 5.5 and arrive at the

generalization of Eq. (5.55),

Sent = 1
2
S −

∫
dmv e−v·K

−1v/2
∣∣1

2
(S̄2 − S̄1)− r · v

∣∣∫
dmv e−v·K−1v/2

, (5.77)

where K−1 ≡ C−1
1 + C−1

2 , C1 and C2 are the capacity matrices for the two subsystems,

r ≡ (1, 1, . . . , 1), va ≡ λa(qa1 − q̄a1), S̄1 ≡ S1(q̄1), S̄2 ≡ S2(q− q̄1), and q̄1 is the solution to

∇S1(q̄1) = ∇S2(q − q̄1). (5.78)
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The integral in Eq. (5.77) is of the form

I =

∫
dmv e−v·K

−1v/2f(r · v)

=

∫
du

∫
dmv e−v·K

−1v/2δ(u− r · v) f(u)

=

∫
du

∫
dk

2π

∫
dmv e−v·K

−1v/2+ik(u−r·v)f(u). (5.79)

Performing all the gaussian integrals,

I ∝
∫
du e−u

2/(2 r·Kr)f(u). (5.80)

Thus, Eq. (5.77) reduces to Eq. (5.55) with

K = r ·K r =
m∑

a,b=1

Kab, (5.81)

which is equivalent to Eq. (5.57).
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Future directions

The results presented in Chapter 2 on “almost perfect metals” suggest a few natural

directions for follow-up work. The first is to try and observe absolutely q-stable Luttinger

liquids in experiments. We saw that absolutely q-stable LL phases can occur in one-

dimensional quantum wires with as few as 2 channels of strongly interacting fermions.

Furthermore, we saw that these phases can occur even for purely repulsive interactions,

and even when the unperturbed system has time-reversal or inversion symmetry (but not

both). Thus, they can in principle be realized in as simple a system as a single-spinful-

channel quantum wire with strong spin-orbit coupling. One could also try to realize them

in other experimental platforms that are inherently more tunable, such as gate-defined

wires in a two-dimensional electron gas (2DEG), or quantum gas (“cold atom”) systems.

To actually realize absolutely q-stable phases, it will be helpful to understand which

microscopic models (and in particular, which patterns of microscopic interactions) lead to

the patterns of effective low-energy interactions that we identified in Chapter 2 as required

for absolutely q-stability. This is a nontrivial task, and will likely require a combination

of physical intuition and extensive numerical work. It will also be important to identify

and calculate physically measurable properties, either thermodynamic or transport, that
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can serve as experimental signatures of absolutely q-stability (or which can be used to

infer the pattern of effective interactions in the experimental system directly, thereby

pointing one in the right direction).

On the theoretical side, one could explore whether the geometric ideas described in

Chapter 2 also form a useful paradigm for thinking about higher-dimensional non-Fermi

liquids, and whether our q-stability results have interesting consequences for classical

systems 1 of experimental interest. There are also some lingering mathematical questions

that would be nice to resolve, in particular: “what is the minimum number of channels N

required to obtain an absolutely ∞-stable (or just ∞-stable) phase?” Abstracting away

the physics interpretation, the question is: “what is the smallest positive integer N for

which there exists A ∈ SO(N,N) such that ‖Am‖2 > 4 for all m ∈ Z2N (or just for all

m ∈ Z2N that satisfy mTKm = 0, where K ≡ −IN ⊕ IN) 2 ?” Call the solutions to this

question N1 (N2).

So far, we only have very loose bounds: 12 ≤ N1 ≤ 52 and 2 ≤ N2 ≤ 23 (as discussed

in Chapter 2). For N1, the problem is to find a lattice in R2N1 whose shortest vector has

length > 2 and for which there exists a generator matrix (that is, a matrix whose columns

constitute a basis for the lattice) belonging to SO(N1, N1). Motivated by this problem, I

have constructed SO(N,N) generator matrices for a few famous lattices (A2, D4, E8,Λ24)

that are known to be optimal 3 in their respective dimensions (2N = 2, 4, 8, 24); see

Appendix 6.A. It is possible that a similar construction might also yield good lattices in

dimension 2N > 24; this remains to be seen. From a mathematical point of view, the 12-

1(via the usual mapping between a quantum system in d dimensions and a classical system in d+ 1
dimensions)

2This would ensure stability with respect to both bosonic and fermionic perturbations (the latter
are physically meaningful if we consider an array of coupled wires). If one is only interested in bosonic
perturbations, one can replace Z2N by D2N ≡ {m ∈ Z2N : |m| ∈ 2Z}, the “checkerboard lattice”.

3Given a normalized lattice L of dimension n (normalized means that the unit cell of L has volume
1), define µ(L) to be the length-squared of the shortest nonzero lattice vector in L. The lattice L is said
to be optimal if µ(L) ≥ µ(L′) for any other lattice L′ of dimension n; we then write µ(L) ≡ µn, which
defines the Hermite constant µn.
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channel Luttinger liquid associated to the Leech lattice Λ24 (via the above construction)

is quite fascinating. At tree level, it has no RG relevant operators, but 196584 marginal

ones (one marginal vertex operator for each minimal vector of the Leech lattice, along

with the 24 currents ∂xφI)! The one-loop analysis is therefore formidable. However,

given the remarkable and mysterious properties of the Leech lattice, and its central

role (along with E8) in the mathematical theory of lattices [58], we can speculate that

aspects of the one-loop analysis may have number-theoretic significance; it would be

interesting to explore whether such connections indeed exist. For N2, the problem is

further complicated by the fact that the set of lattice vectors satisfying mTKm = 0 do

not in general form a sublattice. Finally, I note (as mentioned in Chapter 2 in connection

with the distinction between stability and absolute stability) that the effect of relevant

spin non-zero operators on the IR physics of a Luttinger liquid is still unclear [131, 132]:

everyone agrees that they cannot directly open a gap, but a generally accepted picture

of how they renormalize the scaling dimensions of spin-zero operators—that can open a

gap—is lacking. It would be useful to develop such a picture.

The results of Chapter 3 on relaxation to generalized Gibbs ensembles in systems

with quadratic hamiltonians also suggest some natural directions for follow-up work.

Our analysis there led to several quantitative predictions. In particular, we argued that

connected correlation functions of local operators will generically decay to their GGE

values according to model-independent power laws, and we predicted the exponents of

these power laws. These predictions appear to be testable in quantum gas experiments

with existing technology. By utilizing Feshbach resonances, it is possible to prepare

an ultracold gas of particles in a strongly interacting initial state, and then to quench

the interactions to zero and study the subsequent evolution [133, 64]. In addition, the

measurement of higher-order correlation functions (up to tenth order!) has already been
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demonstrated experimentally in such setups [134]. Thus, we hope that our predictions

will be tested experimentally in the near future.

On the theoretical side, the results of Chapter 3 (or their weaker but rigorous ana-

logues, cf. Refs. [72, 80]) may serve as a starting point to develop a satisfactory theory

of relaxation to thermal equilibrium in generic weakly interacting (nonintegrable) sys-

tems. Here, the standard description of non-equilibrium dynamics involves some sort

of quantum Boltzmann equation, with a collision integral accounting for the interac-

tions [135]. Such a description has many desirable properties, most notably physical

transparency. However, its mathematical derivation from the underlying microscopic

dynamics (i.e. the Heisenberg evolution of operators) involves several uncontrolled ap-

proximations associated with truncation of the BBGKY hierarchy of evolution equations

for connected correlation functions (or corresponding uncontrolled approximations in the

Keldysh technique [136]). It is possible that our results on relaxation of correlation func-

tions in the absence of interactions can be used to bound the errors introduced by these

approximations, and hence to theoretically justify the quantum Boltzmann equation in

a wide range of situations.

Finally, there are some—rather more vague and speculative—directions suggested by

the results of Chapters 4 and 5. In the former, we established a relation between the

“bound on chaos” λ ≤ 2π/β and the Eigenstate Thermalization Hypothesis. One might

hope that other similar, conjectured, bounds on transport coefficients can also be related

to the ETH. In the latter, we characterized the bipartite entanglement structure of finite-

energy-density eigenstates in chaotic systems. One might hope to similarly characterize

tripartite entanglement, etc. There are two different ways to obtain a given tripartition of

a system via successive bipartitions, but both must lead to the same final decomposition

of the state in the tripartite tensor product basis. The resulting consistency conditions

208



Future directions Chapter 6

may have interesting implications for the entanglement structure of eigenstates; this is

worth exploring.
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Appendices

6.A Optimal lattices with Gram matrices belonging

to SO(N,N)

Here, I write down Gram matrices M ∈ SO(N,N) for the following normalized

lattices, known to be optimal in dimensions 2N = 2, 4, 8 and 24 respectively: A2 (the

hexagonal lattice; µ2 = 2/
√

3), D4 (normalized even sublattice of Z4; µ4 =
√

2), E8

(µ8 = 2), and Λ24 (Leech lattice; µ24 = 4). In all cases, the Gram matrix has the form

M =

 µ2N IN
√
µ2

2N − 1R√
µ2

2N − 1RT µ2N IN

 , (6.1)

where R ∈ O(N). An associated generator matrix A ∈ SO(N,N) is easily obtained as

A = M1/2 (the unique positive definite square root of M).

For A2, simply take RA2 = ±1.

For D4, take

RD4 =
1√
2

1 1

1 −1

 . (6.2)
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For E8, take

RE8 =
1√
3



1 −1 1 0

1 1 0 −1

−1 0 1 −1

0 1 1 1


. (6.3)

For the Leech lattice, the off-diagonal block
√

15 RΛ24 is constructed by finding 12

mutually orthogonal vectors of the form (±111,±2), and stacking them into a matrix.

Explicitly,

RΛ24 =
1√
15



−1 1 1 −1 −1 −1 −2 1 1 −1 −1 1

−1 −1 −1 −1 −1 2 −1 1 −1 1 1 1

−1 −1 1 −2 1 −1 1 −1 −1 1 −1 1

1 −2 1 1 1 −1 −1 1 −1 −1 1 1

−1 −1 −1 1 1 −1 −1 1 1 2 −1 −1

1 −1 1 −1 −2 −1 1 1 1 1 1 −1

−1 −1 1 −1 1 1 −1 −1 1 −1 1 −2

1 −1 −2 −1 −1 −1 −1 −1 −1 −1 −1 −1

1 −1 1 1 −1 1 −1 −2 1 1 −1 1

−1 −1 1 1 −1 1 1 1 −1 −1 −2 −1

1 −1 −1 −1 1 1 1 1 2 −1 −1 1

−2 −1 −1 1 −1 −1 1 −1 1 −1 1 1



. (6.4)
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