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Abstract

Stroke is a disturbance in blood supply to the brain resulting in the loss of brain functions, 

particularly motor function. A study was conducted by the UCI Neurorehabilitation Lab to 

investigate the impact of stroke on motor-related brain regions. Functional MRI (fMRI) data were 

collected from stroke patients and healthy controls while the subjects performed a simple motor 

task. In addition to affecting local neuronal activation strength, stroke might also alter 

communications (i.e., connectivity) between brain regions. We develop a hierarchical Bayesian 

modeling approach for the analysis of multi-subject fMRI data that allows us to explore brain 

changes due to stroke. Our approach simultaneously estimates activation and condition-specific 

connectivity at the group level, and provides estimates for region/subject-specific hemodynamic 

response functions. Moreover, our model uses spike and slab priors to allow for direct posterior 

inference on the connectivity network. Our results indicate that motor-control regions show greater 

activation in the unaffected hemisphere and the midline surface in stroke patients than those same 

regions in healthy controls during the simple motor task. We also note increased connectivity 

within secondary motor regions in stroke subjects. These findings provide insight into altered 

neural correlates of movement in subjects who suffered a stroke.

Keywords

fMRI; activation; connectivity; multi-subject

1. INTRODUCTION

Stroke is a disturbance in the blood supply to the brain that results in the death of neural 

tissue and subsequent behavioral deficits arising from the affected brain systems. One of the 

most commonly affected neural systems is the motor system, causing disability in people 

who suffered a stroke. In order to compensate for the loss of brain function in the affected 
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brain area, other areas within the motor system are often recruited—and, therefore, activated

—to assist in the execution of movements in stroke-impaired subjects. Also, 

communications—termed as connectivity in the neuroscience literature—may be altered 

between regions within the motor network.

To better understand the impact of stroke in brain motor activation and connectivity, we 

developed a model for analyzing functional magnetic resonance imaging (fMRI) data from a 

multi-subject stroke study conducted at the University of California Irvine 

Neurorehabilitation Lab (PI: Cramer). The study recruited healthy subjects and stroke 

patients with residual motor deficit as it was focused on understanding how brain motor 

function is altered after stroke. Motor-task-related fMRI scans were acquired for all the 

participants.

As an imaging modality, fMRI is able to indirectly measure neuronal activity in the brain 

through the hemodynamic response: higher level of neuronal activity at a localized region 

requires a greater amount of oxygen, which results in higher level of the blood-oxygen-level-

dependent (BOLD) contrast fMRI signal at that location. By analyzing fMRI data, one can 

study local neuronal activation as well as inter-regional connectivity. The hemodynamic 

response function (HRF) describes the shape of the hemodynamic response evoked by a 

point stimulus. The HRF is likely to vary across brain regions and subjects. Thus, it is very 

important to correctly estimate the HRF for each region and subject in order to correctly 

infer information regarding activation and connectivity, because neural activity is indirectly 

measured through the hemodynamic response. The goal of this Bayesian hierarchical 

modeling approach is to investigate the impact of stroke by comparing brain activation and 

connectivity of motor-related brain areas between stroke patients and healthy controls, while 

taking HRF variation into account.

1.1 Overview of the fMRI Stroke Study

The fMRI study involved patients who had suffered a stroke and had residual motor deficit 

on the right side of the body, and healthy subjects. During the fMRI experiment, each 

subject alternated between a right hand grasp-release movement (task condition, also called 

the stimulus condition) and rest (rest condition). Five brain regions of interest (ROI) known 

to be implicated in motor function are considered for this study (see Figure 1(a)): two 

primary motor regions including the left and right primary motor cortex (LM1 and RM1), 

three secondary motor regions including the left and right dorsal premotor cortex (LPMd 

and RPMd), and a midline supplementary motor area (SMA). Note that a stroke patient with 

injury on the left brain hemisphere will have motor function deficits on the right side of the 

body; and vice versa. Typically, when a healthy subject performs a simple right-hand 

movement task, it is expected that only LM1 (M1 in the left hemisphere) is likely to be 

activated. RM1 is expected to not activate, since it is primarily responsible for motor 

function of the left side of the body. The secondary motor regions (SMA and the two PMd 

regions) are primarily responsible for more advanced motor functions such as motor 

planning and bilateral coordination.
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1.2 Proposed Approach

To analyze these multi-subject fMRI stroke data, we developed a Bayesian approach that 

jointly estimates activation and connectivity. Our approach provides estimates of subject and 

region-specific hemodynamic response functions (HRFs). It utilizes the general linear model 

(GLM) to describe activation, a Bayesian vector-autoregressive model (BVAR) to measure 

connectivity, and a constrained linear basis set to model the unknown HRFs. The proposed 

model provides a hierarchical framework that handles group-level activation and 

connectivity, as well as their variability among subjects. With the hierarchical structure, 

subject-specific estimates for activation and connectivity are obtained by pooling 

information from other subjects. Spike and slab priors are placed on the model parameters 

that describe the connectivity network. This allows us to explore the full posterior 

distribution of possible connectivity networks. Additionally, we allow condition-specific 

connectivity measures, thus making it possible to detect differences in connectivity between 

experimental conditions. Our goal is to study local activation and connectivity between brain 

regions, and compare the inferred patterns for stroke patients and healthy controls in order to 

explore the effects of stroke on brain motor function, while controlling for variation in the 

HRFs.

1.3 Current Statistical Methods and Their Limitations

In the past 20 years, there has been an increasing number of papers on statistical methods for 

fMRI data. Lindquist (2008) and Zhang et al. (2015) provide detailed reviews on existing 

methods. Methods for brain activation are proposed in Friston et al. (1994); Worsley and 

Friston (1995); Smith and Fahrmeir (2007); David et al. (2008); Guo and Pagnoni (2008); 

Xu et al. (2009); Degras and Lindquist (2014). Methods for brain connectivity are developed 

in Friston et al. (2003); Harrison et al. (2003); Bowman et al. (2008); Cribben et al. (2012); 

Kang et al. (2012); Gorrostieta et al. (2013); Luo (2014).

While methods for activation usually do not consider connectivity estimation, David et al. 

(2008) in fact considered connectivity estimation, but used a two-stage approach that 

estimates connectivity from the residuals of the activation analysis, and hence is not optimal 

for properly assessing the uncertainty associated to those estimates. Harrison et al. (2003) 

estimated connectivity using vector-autoregressive (VAR) models, while Cribben et al. 

(2012) developed dynamic connectivity regression which models changes in connectivity, 

but none of these approaches take into account the systematic changes in the BOLD 

response induced by external stimuli. Gorrostieta et al. (2013) considered the BOLD 

response evoked by stimuli and also the differential connectivity across different 

experimental conditions. However, the BOLD response shape was based on a fixed HRF 

shape for all brain regions and subjects, which may lead to erroneous conclusions when 

inferring activation and connectivity (Yu et al., 2015). Bowman et al. (2008) and Luo (2014) 

also took the experimental conditions into account, but modeled connectivity through a two-

stage approach and used a pre-specified HRF. Kang et al. (2012) simultaneously analyzed 

activation and connectivity in the spectral domain, but also used a pre-specified HRF. Friston 

et al. (2003) used dynamic causal modeling (DCM) which addresses ROI-specific HRF and 

connectivity simultaneously. However, DCM heavily relies on the correct specification of 
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the biological assumptions, and needs a set of plausible connectivity networks a priori which 

are difficult to verify from the observed data.

There are many ways to parameterize HRFs. Non-linear parameterization approaches 

include gamma functions, cosine functions (Zarahn, 2002), or inverse logit functions 

(Lindquist et al., 2008). Linear basis approaches such as spline basis functions, finite 

impulse response bases (Ollinger et al., 2001) and semi-parametric models (Zhang et al., 

2001) are also available. Non-linear parameterization takes more computational effort and is 

more prone to the local maxima problem and numerical stability issues. On the other hand, 

linear parameterization is easier from the inferential viewpoint, but often requires more 

parameters and constraints in order to provide enough flexibility in modeling HRF shapes. 

Woolrich et al. (2004) proposed constrained linear basis sets which are able to provide both 

flexible and reasonable HRF shapes with a relatively small number of HRF basis functions 

while keeping the computation cost low. Therefore, in this paper we adopt the constrained 

linear basis approach to parameterize the HRFs.

In a nutshell, we propose a model that has the following advantages over currently available 

methods: (1) it simultaneously estimates activation, connectivity and HRFs; (2) it provides 

ROI and subject-specific HRFs, as well as condition-specific connectivity measures; (3) it 

increases the power in detecting group differences by pooling information across subjects 

via hierarchical modeling; (4) it provides full posterior distributions of all the model 

parameters, including group-specific activation parameters and brain connectivity networks; 

(5) it can incorporate available scientifically relevant prior information. The remainder of the 

paper is organized as follows. In Section 2 we describe the stroke study and the fMRI data. 

In Section 3 we develop our approach including the model, the prior distributions and the 

inferential procedure. In Section 4 we present the simulation studies, and in Section 5 we 

present the analysis of the fMRI data from the stroke study. We summarize our approach and 

discuss future research directions in Section 6.

2. EXPERIMENTAL DESIGN AND FMRI DATA

Experiment

The study included 15 stroke patients and 12 healthy control subjects. All the subjects were 

right-handed. The stroke patients had ischemic stroke on the left brain hemisphere 11 – 26 

weeks prior to the study assessments, and continued to have residual motor deficit on the 

right side of the body at the time of the experiment. During the task condition, the subjects 

used their right hand to perform the hand grasp-release movement task. For the stroke 

patients, the right hand was also the hand that was affected by stroke. The experiment was 

divided into three sessions for stroke patients and two sessions for healthy controls. Each 

session had 48 consecutive scans, alternating between task and rest conditions twice, but 

always starting with rest condition (see Figure 2).

FMRI data

The fMRI images were acquired using a T2*-weighted gradient-echo-planar imaging 

sequence with repetition time (TR) = 2 s. Functional data from all the sessions were 
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preprocessed using the SPM8 software (Wellcome Trust Center for Neuroimaging, UCL, 

2009). Preprocessing steps included realignment to the first image, coregistration to the 

mean image, normalization to the standard MNI EPI template, and spatial smoothing 

(FWHM = 8 mm). The time series for each ROI were obtained by averaging the fMRI 

signals recorded across the voxels in the region. The mean time series were centered to zero 

and detrended with time as the covariate to remove the drift effect. Finally, the centered and 

detrended time series were scaled to have the same variance for all subjects and ROIs within 

each group.

Selected time series from the LM1 and RM1 regions in a healthy subject are shown in 

Figure 1(b). The block-shaped line at the bottom indicates the times when the subject 

performed the motor task. In LM1 (top plot) the fMRI signal generally follows the block-

shaped wave with some lag. It rises soon after the task condition begins and drops soon after 

the task condition ends, which suggests that this region is implicated in the motor task. 

However, in RM1 (bottom plot) the time series does not appear to be obviously associated 

with the timing of the motor task.

3. METHODOLOGY

In this section we develop the Bayesian hierarchical modeling approach and related 

inferential procedures for investigating the effect of stroke on brain motor function, 

specifically on activation and connectivity of the five ROIs related to motor function. The 

proposed model will be utilized to infer activation and connectivity at the group level while 

taking into account subject/region-specific variability in the HRFs.

3.1 Hierarchical Model: Subject Level

To describe the fMRI signal for a given ROI and subject, we use the general linear model:

(1)

with ROI p = 1, 2, …, P ; subject s = 1, 2, …, S; session r = 1, 2, …, R; and time (in a 

session) t = 1, 2, …, T (TR). The response variable  is the preprocessed fMRI signal; 

the covariate  represents the expected shape of BOLD response, which is the 

convolution between the HRF, denoted as , and the known binary condition indicator 

with ck(t), with ck(t) = 1 when the kth condition is on and zero otherwise (we use k = 1 for 

the task condition and k = 2 for the rest condition, see Figure 2 for the timing of the 

conditions); the regression coefficient  represents the amplitude of the BOLD response 

which indirectly reflects the strength of neuronal activity; and  is the noise that is not 

explained by the mean structure. The effect of the convolution is illustrated in Figure 3. The 

expected BOLD response is no longer block-shaped as the stimulus input, but is a smooth 

and delayed transformation of the input. In this model, we have imposed the following 
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assumptions: (1) the BOLD amplitude remains the same within a condition and across 

sessions; (2) the HRF shape within each ROI and subject remains constant across conditions 

and sessions.

On modeling activation—Neuroscientists are interested in estimating the difference 

between activity strength of two conditions as measured by a region-specific contrast, i.e., 

. When ROI p shows stronger activity during the task than during the 

control condition, it suggests that this ROI is implicated in executing the task. Therefore, 

when , ROI p is labeled as active in subject s, and is used to measure the 

strength of the local activation.

On modeling connectivity—Following Gorrostieta et al. (2013), the noise u(s,r)(t) ∈ ℝP 

is assumed to follow a Gaussian vector autoregressive model (VAR) with pre-determined 

order L and condition-dependent VAR coefficients, i.e.,

where , and

(2)

Denote the (p, q)-th element of Φ*(s)(ℓ, t) as Φ*(s)(ℓ, t)pq. This quantity describes the linear 

relation between ROIs p and q at time lag ℓ: when Φ*(s)(ℓ, t)pq ≠ 0, ROI q at time t − ℓ helps 

predict ROI p at the current time point t. The temporal precedence of ROI q in this 

relationship suggests the interpretation of Φ*(s)(ℓ, t)pq as a measure of the directed influence 

from ROI q to ROI p. This type of influence is termed as “effective connectivity” in 

neuroscience. Therefore, Φ*(s)(ℓ, t)pq can be used to measure effective connectivity from ROI 

q to ROI p. For simplicity, in the remainder of this paper we refer to this as “connectivity”. 

Also, it is possible that the manner in which an ROI influences another varies under different 

conditions. Hereby, we allow Φ*(s)(ℓ, t)pq to depend on the condition at the corresponding 

past time point as specified in Equation (2).

We use a Bayesian variable selection approach (Mitchell and Beauchamp, 1988; George and 

McCulloch, 1993; Ishwaran and Rao, 2005) to determine which elements of Φ*(s)(ℓ, t) are 

different from zero, and therefore infer the connectivity network across ROIs. More 

specifically, we impose a “spike and slab” structure on  given by

(3)
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so that , and 

. When , or equivalently when 

 for all ℓ, we say that there is no connectivity from ROI q to ROI p. Otherwise, 

there is connectivity from ROI q to ROI p.

On HRF modeling—A linear basis for the representation of the HRFs was obtained based 

on the approach of Woolrich et al. (2004). In particular, using this approach, the HRF of 

subject s and region p can be written in terms of J basis vectors as , 

where H is the T × J basis matrix with each column being a basis vector, and  is the 

vector of HRF basis coefficients for ROI p and subject s. For identifiability, we impose a 

normalization constraint on  so that . Further details on the basis 

representation and how to choose J are given in Section 3.3.

We use A(i, :), A(:, j), and A(i, j) to denote, respectively, the i-th row, the j-th column, and 

the (i, j)-th element of any matrix A. Then,  can be written as  with 

, and  can be written as 

, t = 1, 2, …, T, where the matrix Λk ∈ ℝT×J consists 

of the convolutions between each linear basis vector H(:, j), and the condition indicator ck(t). 
Therefore, combining this with Equation (1) leads to

3.2 Hierarchical Model: Group Level

Since the signal to noise ratio is usually low in fMRI data (typically below 5%), it is 

beneficial to borrow information across subjects within a relatively homogeneous group. In 

order to do this, we use a Bayesian hierarchical modeling approach. We define 

and . We then assume that each of the S subjects belongs to a 

single group, denoted by gs, from a total of G groups (e.g., in our case we have stroke 

patients and healthy controls, so G = 2), and consider the following distributions,
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Here , where , j = 0, 1, …, L. The j in  can 

be interpreted as the largest lag at which there is connectivity from ROI q to ROI p.

Therefore, all the subjects belonging to the same group, say group g, will have the same 

group parameters , and Σg. Note that  are the mean 

BOLD amplitudes and intercepts for group g,  are the mean HRF basis coefficients, 

are the mean connectivity strengths, and  is the overall probability that connectivity 

from ROI q to ROI p exists up to ℓ lags among the group. For simplicity, νΣ is taken as a 

fixed constant across groups, and  and  are assumed to be diagonal.

For any g, the distributions for the group parameters are taken as 

, and . Here μμβ,0, Σμβ,0, μμϕ,0, Σμϕ,0, aβ, bβ, ad, bd, aϕ, bϕ, and απ are 

pre-determined constants. The choices of these constants will be discussed in Sections 4 and 

5. In fMRI datasets with more than two groups, another level can be added to the hierarchy 

by imposing additional priors on the group parameters for activation, connectivity and those 

related to the HRFs.

The Bayesian hierarchical model is now fully specified. The quantities of interest are as 

follows.

Activation for ROI p—  is the activation strength for subject s, and 

is the mean activation strength for group g (group-level activation strength). Here 

denotes the element in  corresponding to .

Connectivity from ROI q to ROI p—  is the probability that such 

connectivity is present at lag ℓ for subject s, for ℓ = 1, …, L; , is the measure of the 

connectivity strength under condition k at lag ℓ for subject s;  is the probability that the 

largest lag of such connectivity is ℓ for group g (group-level presence probability of 

connectivity), and  is the mean connectivity for the group, (group-level connectivity 

strength).

HRF for ROI p—  is the HRF of ROI p for subject s and  is the 

mean HRF of ROI p for group g.

In the particular case of the stroke study, based on a preliminary analysis of the data, we 

found that there is a large within-group variability in the shape of the HRFs across subjects 

(see Figure 4). The preliminary analysis was done by computing the posterior mode of the 

activation and HRF parameters using a conditional maximization algorithm, ignoring all the 
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dependence across time, ROIs and subjects. We note that averaging curves of very different 

shapes within a group is likely to produce meaningless overall group-specific shapes due to 

the non-linearity involved. Hence, it is prudent to not pool the highly heterogeneous shapes 

of the HRFs across subjects. Therefore, specifically for the analysis of the stroke data, we fix 

 as a constant. This will be discussed in detail in the next subsection. However, we still 

combine information on activation and connectivity from other subjects.

3.3 Constrained Linear Basis for the HRFs

Here we briefly describe how to obtain the constrained linear basis for the HRFs. Following 

the general framework of Woolrich et al. (2004), one can simulate n discrete HRF vectors 

based on the half-cosine parameterization. The parameters involved are the temporal 

resolution δ, the duration parameters h1, h2, h3, h4, and the depth parameters f1 and f2 (see 

Figures A.1(a) and A.1(b) in the Appendix). Using principal component analysis (PCA) one 

can obtain J linear basis vectors for the HRFs, and the corresponding basis coefficients 

(loadings of the top J components), denoted as di, for the i-th simulated HRF, i = 1, 2, …, n. 

For the simulation study and the fMRI data analysis in this paper we used n = 1000, δ = 0.1, 

h1 ~ Unif(0, 2), h2 ~ Unif(2, 7), h3 ~ Unif(2, 8), h4 ~ Unif(2, 12), f1 = 0, f2 ~ Unif(0, 0.5), 

and J = 5. The reason for choosing J = 5 is that the top 5 principal components for the HRF 

basis set, i.e., the first J = 5 columns of the matrix H, explain about 99% of the total 

variability in the simulated HRFs (see Figure A.2(a) in the Appendix). Note that it is also the 

case that the first HRF basis vector is very similar to the canonical HRF (see Figure A.2(b) 

in the Appendix).

As a next step, we compute the empirical mean  and variance  of the 

basis coefficients . We then use the Gaussian distribution, , as the prior 

distribution for the HRF basis coefficients d(s), i.e., use  and  for all g. 
Such prior distribution on the constrained linear basis representation provides enough 

flexibility to capture the HRF shapes, e.g., time to peak, width of peak and time to 

undershoot, and simultaneously penalizes shapes that deviate from the space of reasonable 

shapes. Note that our prior beliefs about the HRFs are adopted through the choice of the 

duration parameters and the depth parameters. The normal distribution just provides a 

convenient approximation of such prior beliefs. In order to determine if the prior structure is 

reasonable, visual checks of the quality of the basis set can be performed by generating prior 

samples of the HRFs using the basis vectors and corresponding coefficients randomly 

sampled from the normal distribution described above. Figure A.2(c) displays examples of 

randomly generated HRFs from the HRF basis set used in our analysis. The HRFs sampled 

from the prior indicate that this HRF basis representation is sufficiently flexible in capturing 

time to peak, width of peak, time to undershoot, and lead to reasonable HRF shapes.

3.4 Posterior Inference via MCMC

The hierarchical structure of the model described in the previous section is such that 

information is pooled across subjects within a group and not across groups. This combined 

with the fact that the group-specific hyperparameters are fixed and known simplifies the 
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inference, as the full posterior distribution can be written as a product of group-specific 

components. This implies that sampling from the joint posterior distribution of all the 

parameters is equivalent to separately sampling from the group-specific joint posterior 

distributions. Therefore, we only discuss single group estimation and drop the group 

indicator in this section for convenience.

The subject level model can essentially be decomposed into three multivariate linear 

regression (MLR) components when conditioning on all the remaining components. We now 

describe each component. Define 

, and 

. Also define , and 

. Then,

(4)

Note that the noise terms u(s,r)(t) are correlated over time due to the VAR structure, and 

therefore we need an extra step to calculate the full conditionals: “whitening” the data. 

Define , where B is the backshift operator, then we have 

. Further define

(5)

(6)

(7)

(8)

Then, the equations in (4) can be written in terms of the temporally uncorrelated noise terms, 

leading to the following two MLR components, one for the BOLD amplitude parameters β(s) 

and another for the HRF parameters d(s) :
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(9)

(10)

For computational efficiency, we work with the likelihood that is conditional on the initial L 
observations in each session, instead of the full likelihood.

The third MLR component comes from the VAR structure, when we use the conditional 

likelihood and condition on all other parameters. More specifically, define

(11)

Then, the third MLR component can be expressed as

(12)

A MCMC algorithm was implemented to obtain samples from the joint posterior distribution 

of the model parameters. The fact that we have three MLR components simplifies the steps 

in the MCMC algorithm. In particular, combining Equations (9), (10) and (12) above with 

the Gaussian distributions for β(s), d(s) and ϕ(s), we have that the full conditional 

distributions for these parameters are also Gaussian, resulting in Gibbs steps. Similarly, the 

full conditional distributions for  and  are also Gaussian. The diagonal entries of 

the covariance matrices, Σβ(i, i)(g), Σϕ(i, i)(g) and Σd(i, i)(g), are sampled from Inverse-

Gamma distributions. The noise covariance matrices Σ(s), Σg are sampled from Inverse-

Wishart distributions. Sampling for  follows the approach of Koop and Korobilis (2009) 

for stochastic search variable selection. The probabilities  are sampled from Dirichlet 

distributions. The choice of conditionally conjugate priors for the model parameters largely 

simplifies the structure of the MCMC algorithm for posterior inference. The full conditional 

posterior distributions and all the steps of the MCMC algorithm are detailed in the 

supplementary material.

The point estimates for the quantities of interest presented here are based on posterior 

medians of the parameters obtained after MCMC convergence, the only exception being the 
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quantities  for each p, q, for which we use the posterior means. More 

specifically, inference for each quantity of interest is as follows.

Activation—We calculate a (1 − α) × 100% posterior credible interval, referred to as CI, 

for the group level contrast  for each ROI p. If the interval is entirely 

on the right side of zero, it indicates that ROI p is activated under the task condition for 

group g. For each specific subject, we calculate a (1 − α) × 100% posterior CI of the subject 

level contrast . If the interval is entirely on the right side of zero, it indicates that ROI p 
is activated for subject s. In our analysis we calculated the (1 − α) × 100% credible intervals 

as the intervals between the α/2-th and (1 − α/2)-th quantiles obtained using the MCMC 

posterior samples.

Connectivity—For connectivity from ROI q to ROI p at the subject level we estimate the 

probability , for j = 0, 1, …, L, using the posterior mean, and find the j that 

maximizes such probability. If j = 0, there is no connectivity from ROI q to p for subject s; 

otherwise there is connectivity. Posterior medians and CIs of  are calculated to 

measure the connectivity strength at lag ℓ = 1, 2, …, j if j > 0. At the group level, we 

calculate the posterior medians of  as the overall presence probability of the 

connectivity among the group. Further examination of the corresponding posterior CIs of 

, for ℓ = 1, …, j, provides inference on the direction and strength of the connectivity 

for each condition k.

HRFs—We derive posterior samples of the HRFs by calculating  for each posterior 

sample of ; pointwise credible bands of the HRFs can hence be calculated. Group-level 

HRF estimates and credible bands can also be obtained similarly from . 

Neuroscientists are usually interested in the time to peak, width of the peak measured by full 

width at half maximum (FWHM), and time to post-stimulus undershoot. Thus, we can also 

calculate CIs of these quantities from the HRF posterior samples.

3.5 Computational Aspects

Given the large number of parameters involved in the model, MCMC sampling is 

computationally heavy. In order to increase the computational efficiency, we implemented 

the sampling algorithm for the subject-level parameters in C++ core using the R package 

RcppArmadillo (Eddelbuettel and Sanderson, 2014). The sampling for the remaining 

parameters was implemented in R. We also considered parallel computing so that the 

subject-level parameters were sampled simultaneously for all subjects.

For datasets with a large number of ROIs the current MCMC algorithm can be too expensive 

computationally. This is mainly due to multiplications and inversions of large matrices 

involved in the estimation of the connectivity parameters ϕ(s), and the computation of the 

probabilities  given Y and the remaining parameters for j = 0, …, L; p, q = 1, …, 
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P, since they require likelihood evaluations sequentially for P2 times. Computation time can 

be reduced by imposing special sparsity structures, e.g., rowwise sparsity, instead of 

element-wise sparsity for the spike and slab prior, at the cost of decreasing flexibility on the 

sparsity of the connectivity. Another way to speed up the estimation is to consider 

algorithms that approximate the joint posterior distribution such as variational Bayes (VB). 

A VB algorithm for approximate posterior inference is discussed in the next subsection.

3.6 Approximate Posterior Inference via Variational Bayes

Variational Bayes (VB) algorithms (Jordan et al., 1999) have been used in many applied 

scenarios, including fMRI data analysis (Woolrich et al., 2004; Luessi et al., 2014), as a 

computationally efficient tool for obtaining approximations to the joint posterior 

distribution. We begin by discussing a VB algorithm for a single subject s, and then discuss 

extensions to handle multiple subjects. For simplicity, the superscript for subject s will be 

dropped unless otherwise stated.

The posterior density for the model described in the previous section can be written as

with f(Y|·) being the likelihood function and Θ = (β, d,ϕ, ξ11, ξ12, …, ξPP, Σ). The 

approximation function we use has the form Q(Θ) = Q(β)Q(d)Q(ϕ)Πpq Q(ξpq)Q(Σ). Let θ 
denote one of the parameter subsets in Θ, i.e., θ could be one of β, d, ϕ, ξpq, for some p, q, 
or Σ; and let θC denote Θ \ θ. In order to obtain logQ(θ), the approximate log posterior 

density for the parameter set θ that minimizes the Kullback-Leibler (KL) between the 

approximation and the posterior denoted as KL(Q||p), we need to calculate Q(θC) log p(Θ|

Y ) (see, e.g., Gelman et al., 2013). Then, we proceed as follows. Define . 

Given the conjugate structure in the model, when θ is equal to β, d or ϕ we have 

, implying that Q(θ) = N(μθ̃, Σ̃θ). Similarly, when θ = ξpq, we 

have , and therefore 

. Finally, when θ = Σ, we have 

 implying that Q(θ) = InvWishart(Ψ̃θ, νθ̃). The 

values of μ̃β, Σ̃β, μ̃d, Σ̃d, μ̃ϕ, Σ̃ϕ, π̃
j,ξpq, for j = 0, … , L, and Ψ̃Σ can be computed in an 

iterative manner until convergence, as briefly outlined below; and νΣ̃ is a fixed constant. 

Details are given in the supplementary material.

Define π̃ξ,pq = [π̃
0,ξpq, … , π̃

L,ξpq]. Let μ̃ξ,pq and Σ̃ξ,pq denote the mean and the covariance 

matrix for ξpq = [ξpq(1), … , ξpq(L)] under Q(·); both quantities can be derived from π̃ξ,pq 

according to the Multinomial distributions. Let μ̃ξ and Σ̃ξ denote {μ̃ξ,pq : p, q ∈ {1, … , P}} 

and {Σ̃ξ,pq : p, q ∈ {1, … , P}}, respectively; and let μξ̃,−pq and Σ̃ξ,−pq denote {Σ̃ξ,p′q′: p′, q
′ ∈ {1, … , P}2\{(p, q)}} and {Σ̃ξ,p′q′: p′, q′ ∈ {1, … , P}2\{(p, q)}}. Define μ̃Σ−1 to be 

. Then, as shown in the supplementary material, it is possible to write, μ̃β 
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= fμ̃β(μ̃d, μ̃ϕ, μ̃ξ, μ̃Σ−1), Σ̃β = fΣ̃β(μ̃d, μ̃ϕ, μ̃ξ, μ̃Σ−1), μ̃d = fμ̃d(μ̃β, μ̃ϕ, μ̃ξ, μ̃Σ−1), Σ̃d = fΣ̃d(μ̃β, μ̃ϕ, 
μ̃ξ, μ̃Σ−1), μ̃ϕ = fμ̃ϕ(μ̃ξ, Σ̃ξ, μ̃d, μ̃β, μΣ̃−1), Σ̃ϕ = fΣ̃ϕ(μ̃d, μ̃β, μ̃ξ, Σ̃ξ, μ̃Σ−1), πξ̃,pq = fπ̃ξ,pq(μ̃ϕ, Σ̃ϕ, 
μ̃ξ,−pq, Σ̃ξ,−pq, μ̃d, Σ̃d, μ̃β, Σ̃β, μ̃Σ−1), μ̃Σ−1 = fμ̃Σ−1(μ̃β, μ̃d, μ̃ϕ, Σ̃ϕ, μ̃ξ, Σ̃ξ,pq) and ν̃Σ = νΣ + (T 
− L)R. Note that, to simplify these calculations we approximate Q(θθ′) by Q(θ) Q(θ)′ 
when computing the moments of the approximate distributions of θ = β, and θ = d. 

However, we do not use such approximation when computing the moments of the 

approximate distributions of θ = ϕ, θ = ξpq and θ = Σ, in order to get more accurate 

connectivity results. The VB algorithm works by first specifying the initial values for μ̃β, Σ̃β, 

μ̃d, Σ̃d, μ̃ϕ, Σ̃ϕ, π̃ξ and μ̃Σ−1, and then updating their values according to the updating 

functions repeatedly until convergence. Details of the VB algorithm are provided in the 

supplementary material. The joint posterior distribution can then be approximated by 

sampling β ~ N(μ̃β, Σ̃β), d ~ N(μ̃d, Σ̃d), ϕ ~ N(μ̃ϕ, Σ̃ϕ), ξpq ~ Multinomial(1, π̃ξ,pq), and Σ ~ 
InvWishart(Ψ̃Σ, ν̃Σ).

The VB algorithm described above can be easily extended to consider the full multi-subject 

model. In such case, the approximation becomes

where Q(Θ(s)) has the same form as that used for the single subject model and Θ(s) is the set 

of subject-level parameters for subject s, i.e., 

 The calculations for Q(Θ(s)) are similar to 

those described above, except that the previously fixed group parameters are replaced with 

their expectations under Q(·). The calculations of Q(·) for the group parameters also use the 

conjugate structure in the model and so they are standard. In particular, we have that 

, and  follow Gaussian distributions,  follow Dirichlet distributions, 

, and  follow Inverse-Gamma distributions, and Σ(g) follow 

Inverse-Wishart distributions. Again, note that in the stroke study  and  are fixed as 

constants, and therefore we do not need the terms  and  in the equation 

above.

4. SIMULATION STUDY

In this section we show the performance of our proposed models in two simulation studies. 

Model performance based on MCMC posterior inference is assessed in a first simulation 

study. We then compare the MCMC and VB algorithms in a second simulation study. More 

specifically, Section 4.1 describes the simulation settings used to generate the datasets in the 

first simulation study; Section 4.2 discusses the prior distributions and provides some details 

about the MCMC sampler used to obtain posterior inference in this setting; Section 4.3 

summarizes the results and discusses the performance of the proposed model; finally, 
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Section 4.4 compares the performance of the MCMC and VB algorithms in a second 

simulation study.

4.1 Simulation Settings

We simulated 30 datasets of a single group of 30 subjects, 2 conditions, 5 ROIs, 3 

independent sessions with 48 time points for each session, and TR = 2 seconds. Each dataset 

was independently generated according to the model described in the previous section with 

L = 1. The BOLD amplitudes β(s), the connectivity parameters ϕ(s) and the HRF basis 

coefficients d(s) for each subject were generated independently using multivariate normal 

distributions. ROI 2 was simulated to be not activated. The BOLD amplitudes for the two 

conditions in this ROI were the same, and therefore had a low signal to noise ratio due to a 

flat BOLD response shape. The connectivity network and the connectivity strength implied 

by the group-level connectivity parameter  are summarized in Figure 5(a). The 

connectivities that are not present in Figure 5(a) are set to be zero for all subjects, i.e., the 

presence/absence of each connectivity is the same across all subjects. The mean HRFs for 

the five ROIs are displayed in Figure 5(b). ROIs 3 and 4 have the same HRF shapes. Σ(s) was 

constrained to be the same across the subjects. The exact values of the simulation parameters 

are listed in the supplementary material. Selected simulated time series for ROIs 1, 2, and 3 

are shown in Figure 6.

4.2 Analysis

Here we discuss the prior distributions for the group parameters used in the analysis of the 

simulated data. We set νΣ = P +1, the smallest value that leads to a proper Inverse-Wishart 

distribution for Σ(s). We also set , with  and  obtained from the 

constrained linear basis as described in Section 3.3. The remaining priors are as follows: 

, with the variance chosen to match the scale of the data, i.e., the 

variance was set to be a little larger than the maximum of all , 

as we do not expect  to be much larger than 1;  and 

 chosen so that  and  are allowed to have 

large variability; , so that  has a relatively large variability but does 

not favor in any specific number of lags j ∈ {0, 1, 2, .., L}. The maximum number of lags 

allowed in the model was set to L = 1.

4.3 Results

Here we summarize the posterior results based on the MCMC algorithm. The MCMC was 

run for 5,000 iterations after a burn-in period of 3,000 iterations. No convergence problems 

were detected.

Activation—All the ROIs were correctly identified as activated or not activated for all 30 

datasets. The average bias in the group-level activation contrast μβ,p,(c), was 0.48; the 

average relative bias (i.e., the bias divided by the true value) was 2.9% for activated regions, 
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and specifically [0.079, 0.041, 0.033, 0.044]×100% for ROIs 1, 3, 4, and 5. The coverage of 

the 95% posterior CI for the contrast was 86.7% on average, and [1.00, 1.00, 0.80, 0.67, 
0.87] × 100% for ROIs 1–5. While ROI 4 had a relatively low coverage, it also had a 

relatively small bias compared to other ROIs, which suggests that the variability of the 

activation parameter at this ROI could be underestimated.

Connectivity—At the subject level, the full connectivity network was correctly inferred for 

96.7% individuals across the datasets. Even for connectivity from ROI 5 to ROI 3, which is 

non-zero for the task condition and zero for the rest condition, the presence of connectivity 

was also correctly inferred. The overall sensitivity for the presence of connectivity was 

99.5%, and the overall specificity was 100%. These results are based on a 0.5 threshold, i.e., 

we used  to determine the presence of connectivity. Other thresholds 

ranging from 0.05 to 0.95 were also applied, and the results were similar. At the group level, 

the bias in the connectivity presence probability  was 0.0019, averaged across all 1 ≤ 

p, q ≤ P. Specifically, this number was 0.0080 for connectivities that are present, and 2 × 
10−5 for connectivities that are absent. For the connectivities that exist in the simulated 

network, the average coverage of the 95% posterior CI of the corresponding VAR 

parameters was 100%, with average bias around 4.69 × 10−5, about 1.2% of the average of 

the elements of μ̃ϕ, the group-level connectivity strength.

HRFs—The coverage of pointwise 95% posterior credible bands for subject and ROI 

specific HRFs was around 94.5% overall, and [0.911, 1.000, 0.958, 0.935, 0.922]×100% on 

average for each ROI. Pointwise 95% posterior CIs of average HRFs at ROIs 1, 2, and 5 for 

a specific dataset are shown in Figure 7. As expected, ROI 2, the non-activated ROI, shows a 

larger variability in HRF estimates than the other ROIs, due to low signal to noise ratio, 

however, the mean shape for this HRF is relatively well captured in spite of this.

Overall, our approach is able to correctly infer activation, connectivity and the HRF shapes. 

It also has relatively small biases and good coverages of the 95% posterior CIs in general, 

except that the variation of the activation parameters is a slightly underestimated for one of 

the ROIs, although the HRF for this ROI was appropriately estimated. Moreover, the 

connectivity results were found to be very robust to the choice of threshold for determining 

whether the connectivity is present or not at the subject level.

4.4 Comparison Between MCMC and VB

We ran a smaller and simpler simulation study to compare the performance of the 

Variational Bayes algorithm for approximate posterior inference, with that of the MCMC 

which is slower but allows us to obtain full posterior inference. More specifically, in this 

simulation we generated fMRI data only for 15 subjects using the same simulation settings 

described in Section 4.1, and we ignored the model structure at the group level, i.e., we 

conducted only single-subject analysis. The prior distributions used in this particular 

simulation were β(s) ~ N(0, 502I), , ϕ(s) ~ N(0, 0.52I), , νΣ = P 
+ 1, and Σg = I. We applied both the VB and MCMC algorithms to the simulated fMRI data 
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for each of the 15 subjects. For MCMC, we used a burn-in period of 5,000 iterations, and 

obtained a posterior sample of size 5,000. No convergence problems were detected.

The VB algorithm converged within 150 iterations for all subjects. The VB results are based 

on 5,000 samples from the approximate posterior. The MCMC took 104 seconds (for all the 

subjects) while the VB algorithm took 2 seconds, with the same hardware used in the 

previous simulation study, e.g., a Linux platform in a computer with 64 AMD64 processors 

and 256G memory.

The results in terms of bias, relative bias (“rbias”), 95% CI coverage (“cover”), true positive 

rate (“tp”) and true negative rate (“tn”) are summarized in Table 1. Tp, Tw and Tu denote 

time to peak, FWHM, and time to post-stimulus undershoot (in seconds), respectively. 

Overall, VB provides a reasonable approximation to the joint posterior distribution. VB led 

to larger biases than MCMC for most of the parameters, except for FWHM, Tw, and Tu 

which show slighlty smaller biases. In terms of the 95% CIs, VB seems to yield intervals 

with smaller coverage than MCMC. Also, for inferring whether a connectivity is present, or 

inferring whether a region is activated, VB seems to report more false positives (lower β.tn 

and ϕ.tn compared to MCMC).

Overall, we found that VB approximations could greatly reduce the computation time at the 

cost of lower specificity and smaller coverage of the 95% CIs. In cases where false positives 

are of less concern and MCMC sampling is too slow for the problem at hand, such as fMRI 

datasets with a large number of ROIs and many subjects/treatments, the VB approximation 

provides a feasible and good alternative to the MCMC approach.

5. ANALYSIS FOR THE STROKE STUDY

We now consider the analysis of the real fMRI dataset described in Section 1.1. Full MCMC 

analysis is feasible in this setting given the dimension of the dataset, so we do not consider 

approximate VB inference in this case.

5.1 Analysis

We use g = (healthy), (stroke) to denote, respectively, the healthy group and the stroke 

group. The results below are based on a VAR structure with a maximum lag of L = 1. 

Diagnostic plots were generated to check the lag and other aspects of model fit, which will 

be discussed in the next subsection. Overall we found that a model with L = 1 was 

appropriate for most of the subjects in this study.

We used the same prior distributions used for the simulation study, with the exception of the 

prior for the activation strength. This prior was set to  so that the standard 

deviation is about the largest  obtained from the preliminary data analysis based on the 

method in Woolrich et al. (2004). In addition, in order to check the sensitivity of the results 

to the choice of prior distributions, the following alternative prior distributions were also 

considered. Sensitivity with respect to the choice of απ : we considered two alternative prior 

settings with απ = [0.2, 0.1] and απ = [0.1, 0.2]. The first one assumes that the presence 
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probability of connectivity is most likely to be around , the second assumes that such 

probability is most likely to be around , while the original prior, απ = [0.1, 0.1], assumes 

the probability is equally likely to be < 0.5 or > 0.5. Sensitivity with respect to the priors on 

 and : we considered two alternative sets of priors, namely (1) 

, and (2) 

. The first set has a larger variability compared to 

the original set of priors and the second set has a smaller variability. All of these priors led to 

very similar posterior results.

In addition to studying the posterior distributions of the activation and connectivity 

parameters within each group, we also obtained posterior inference on the difference in the 

presence probabilities of connectivity from ROI q to ROI p for stroke and healthy subjects, 

i.e., , and also on the difference in connectivity strength, 

, for ℓ = 1. The 95% posterior CIs of these quantities were computed. If 

the 95% posterior CI of the difference of a given quantity does not include 0, then we say 

that there is sufficient evidence to claim that such quantity is different for the stroke group 

and the healthy group.

A posterior sample of size 5,000 was obtained after a burn-in period of 3,000 iterations. The 

analysis was carried out on Linux platform in a computer with 64 AMD64 processors and 

256G memory. The total computation time was 50 min.

5.2 Results

Activation—We found that all the ROIs were activated in response to the task condition for 

the stroke patients, and all the ROIs were activated for the healthy subjects except for RM1 

(see Figures 8(a) and (b)). In both groups, LM1, which is primarily responsible for the motor 

function of the right side of the body, was found to be highly activated. A formal comparison 

of the activations between the groups is shown in Figure 8(c). Red indicates a positive 

difference. The plot shows there is sufficient evidence that the stroke group is more activated 

than the healthy group in RPMd, RM1 and SMA. This indicates a compensatory effect that 

requires M1 from the unaffected brain hemisphere and secondary motor regions to aid in 

executing the motor task.

Connectivity—Plots 9(a) and (b) list all the connectivities that are present in at least one 

subject for each group, and describe how likely is the presence of connectivity in each group 

in terms of the thickness of the arrow. Connectivity from LM1 to LPMd in healthy 

participants has the highest presence probability, around 1.00. Connectivity from RPMd to 

RM1 in stroke patients has the lowest presence probability, around 0.08, apart from the 

connectivities that are not listed. The solid arrows represent those connectivities that are 

predominant, i.e., those for which the presence probability exceeds 0.5, or , 

while the dashed arrows correspond to connectivities that exist at least in one subject in the 
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group (i.e.,  for at least one s), but are not predominant in the group 

(i.e., . All the listed connectivities have positive  values, indicating a 

positive lagged association, i.e., the larger the current signal at ROI q is, the larger the future 

signal at ROI p is expected to be. In both groups, connectivity within LM1 is present in the 

majority of the subjects. This suggests that there may be positive feedback within M1 on the 

hemisphere corresponding to the moving hand. In the healthy group, the predominant 

connectivities are mostly interregional and all start from LM1. However, in the stroke group, 

the predominant connectivities are all intraregional.

Figure 9(c) lists all the differences in connectivity presence probability between the two 

groups ( ) whose 95% posterior CI does not include 0. The red 

connectivities are more likely in the stroke group than the healthy group, while the blue 

connectivities are more likely in the healthy group than the stroke group. For the stroke 

group, there are larger connectivity values from secondary motor regions (LPMd, SMA) to 

themselves or to other regions; while for the healthy group, there are larger connectivity 

values from LM1, the region primarily responsible for the right hand movement, to other 

regions.

We also calculated the posterior samples of the difference in connectivity strength between 

the groups, . However, all of the 95% posterior CIs of the difference in 

connectivity strength cover 0; i.e., there is not sufficient evidence for differences in the 

strength of connectivities across different groups.

HRFs—The estimated HRF (pointwise posterior median) for each region and subject is 

shown in Figure 10. There are no obvious differences between the two groups, except that in 

general there seems to be more interindividual variability in the subject-specific HRFs from 

the stroke group.

We checked the goodness of fit by examining the estimated mean, denoted by y*(s,r)(t), and 

the temporally uncorrelated noise, ε(s,r)(t). For each subject s and session r, we obtained 

posterior samples of y*(s,r)(t) by calculating (y*(s,r)(t))(m) = (X(s)(t)(m) (β(s))(m) for each 

iteration m in the MCMC algorithm; and then calculated a posterior estimate, ŷ*(s,r)(t), by 

taking the median of the posterior samples . Similarly, we obtained 

posterior samples of ε(s,r)(t) by calculating 

, where 

, (u(s)(t))(m) = y(s,r)(t) – 

(y*(s,r)(t))(m), and calculated ε̂(s,r)(t) as the median. We inspected the time series plot of 

ε̂(s,r)(t) for each ROI, and did not find any obvious temporal patterns in most of these time 

series plots. In addition, PACF plots also indicated that L = 1 was sufficient for most 

subjects, sessions and regions, but some of these plots suggest that a model with L = 2 may 

be required for a small number of subjects. Finally, plots of ŷ*(s,r)(t) also show that the 

group model captures the mean trend of the data, especially for the ROIs that have relatively 
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strong activations (e.g., LM1). Figure A.3 in the Appendix shows examples of time series 

plots of ŷ*(s,r)(t) and ε̂(s,r)(t), and the PACF plots of ε̂(s,r)(t), for LM1 and two subjects, one 

healthy and the other one a stroke patient.

5.3 Discussion of the Analysis

Using our model, we obtained interesting results about the relative activation patterns in 

stroke patients compared to control subjects. First, as expected, we found that there was 

strong activation within LM1 for both the stroke and control groups. This is consistent with 

the fact that LM1 is primarily responsible for motor function of the right hand. All the ROIs 

were activated in response to the task condition (see Figure 8(a)) for the stroke patients; and 

all the ROIs were activated for healthy subjects except for RM1 (see Figure 8(b)), which is 

primarily responsible for the motor function of the left side of the body.

Activation of secondary motor areas in healthy controls initially seemed counterintuitive. 

However, the control subjects were age matched to the stroke group and, therefore, were of 

50+ years of age. It is established that these regions are involved in the control of unilateral 

movement (Beaulé et al., 2012) and with aging we see increasing involvement of secondary 

brain regions to support simple motor movements (Ward, 2003).

Second, we found greater activation strength in the 3 motor regions, namely, SMA, RM1 and 

RPMd for stroke patients compared to healthy controls. The literature confirms this finding. 

After stroke, such secondary motor regions are routinely more activated to support execution 

of post-stroke movements, particularly in more impaired patients (Ward et al., 2003).

The connectivity modeling produced some unexpected results. After stroke, fMRI 

connectivity studies show that there are excitatory and inhibitory connections between 

primary motor cortex in the stroke-affected hemisphere and secondary motor regions within 

the affected and unaffected hemispheres (Rehme and Grefkes, 2013). Therefore, Figure 9(b), 

showing a lack of connectivity between LM1 and other regions like RM1 and RPMd in 

stroke patients is surprising.

Stroke is a highly heterogeneous disorder and perhaps in the stroke group there was 

sufficient noise and variation across the patients leaving the current statistical approach 

unable to detect predominant between-region connections. To our knowledge, there is a 

dearth of literature describing how activity within a region predicts subsequent activation in 

the region. A recent study from our group did identify that this intraregional activation 

prediction is present for LM1, LPMd, SMA, and RPMd (Gorrostieta et al., 2013), largely 

confirming what we observed in the current analyses. Together the data suggest possible 

positive feedforward connectivity in these regions. Furthermore, the greater likelihood of the 

connectivity being present in stroke patients versus healthy controls may lend support for 

these areas being more important to guiding and coordinating movement after stroke.

In healthy control subjects, our model identified probable connections from LM1 to the 

secondary motor regions. Although the exact neurobiological underpinnings of the 

connectivity cannot be determined from these analyses, considering the older age of the 

control group, the predominant connection from LM1 to LPMd is perhaps suggestive of 
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recruitment of a secondary motor area in the hemisphere responsible for movement of the 

right hand.

The activation and connectivity patterns specific to stroke patients that have been found in 

this analysis may be linked to compensatory effects that are related to post-stroke recovery. 

These findings may help neuroscientists in the design of future studies that can lead to a 

deeper understanding of the association between neurophysiology (activation and 

connectivity) and the degree of post-stroke recovery and therefore to a proper evaluation of 

the effect of a particular treatment.

6. CONCLUSIONS

Our approach presents several advantages with respect to currently available methods: (1) it 

is able to simultaneously infer activation, connectivity and HRFs; (2) it is able to provide 

ROI-specific and subject-specific HRFs, as well as condition-specific connectivity; (3) it is 

able to borrow information across subjects via hierarchical modeling to increase power for 

group comparison; this is particularly relevant for data with low signal to noise ratio; (4) it is 

able to easily incorporate relevant information derived from other studies but, unlike the 

dynamic causal modeling approach, it does not rely on biological assumptions that are 

difficult to verify from the data.

As a note of caution, the inference on connectivity patterns obtained using our approach is at 

the hemodynamic level instead of the neuronal level, i.e., connectivity from ROI q to ROI p 
here means there is an association between the current hemodynamic activity in ROI q to the 

future hemodynamic activity in ROI p. This type of connectivity is more difficult to interpret 

compared to neuronal-level connectivity mainly due to two limitations. One limitation is that 

the information transmission happening between the neurons is much faster than the fMRI 

sampling frequency, and spurious connectivity may be captured by VAR models due to 

downsampling. This type of behavior is illustrated in Fig. 7 in Valdes-Sosa et al. (2011). of 

further studies for measuring the degree One solution is to use vector autoregressive moving 

average models (VARMA) which are more robust to this issue, however, they are more 

computationally challenging than VAR models. The second limitation is that the sparsity of 

the neuronal-level connectivity may be distorted when transferred to the hemodynamic level 

through convolution (Valdes-Sosa et al., 2011; Smith et al., 2012). According to Penny et al. 

(2005), a solution to this limitation is to model the neuronal dynamics through a state space 

model. In a state space model, the fMRI signals are treated as the observed variables and the 

neuronal dynamics as the hidden states. Neuronal-level connectivity is thus modeled via the 

hidden states. Approximate posterior inference for this type of model can also be obtained 

efficiently by variational Bayes algorithms (Ryali et al., 2011; Luessi et al., 2014). However, 

we are concerned that the hidden states in the state space model are modeled at a much 

lower resolution than the actual neuronal activity, and thus do not accurately represent the 

underlying neuronal process. This leads us to suspect that such connectivity might still be 

difficult to interpret. Despite the limitations, our model seemed to appropriately capture the 

differential patterns between the stroke patients and the healthy subjects in this stroke study; 

we speculate that this is partially due to the fact that we modeled the region-specific HRFs.
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Besides the limitations and possible solutions mentioned above, in future work we will make 

improvements to our statistical approach in the following ways. In the current approach we 

assume independence across groups and analyze the groups separately; in the future we will 

consider incorporating grouping factors into the model. This may further help increase the 

power of detecting the differences between groups since we can borrow information across 

more subjects. The current approach also assumes that the activation strength is the same 

across sessions; in future studies we will extend our model to take into account the variation 

in the activation strength among different sessions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Figure A.1. 
(a) Half-cosine parameterization of the HRF. (b) Simulated HRFs.

Figure A.2. 
(a) Variability explained by the basis vectors; (b) HRF basis set; (c) HRFs generated by the 

constrained linear basis.

Figure A.3. 
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(a)  (black) and  (blue). (b) . (c) PACFs of . The first row is for 

LM1 of a healthy subject, and the second row is for LM1 of a stroke patient.

Yu et al. Page 25

J Am Stat Assoc. Author manuscript; available in PMC 2017 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(a) Locations of the five regions of interest: LM1 and RM1 (left and right primary motor 

cortex), LPMd and RPMd (left and right dorsal premotor cortex), and SMA (supplementary 

motor area). (b) FMRI time series from a healthy subject at LM1 (top) and RM1 (bottom); 

the lines at the bottom of each plot indicate the task condition (high value) and the rest 

condition (low value). The time series of the two independent sessions (each with 48 scans) 

are concatenated on the plot. The dashed lines separate the two sessions.
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Figure 2. 
Block design of the experiment for each session.
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Figure 3. 
(a) Canonical HRF. (b) Condition indicator function. (c) BOLD response.
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Figure 4. 
A preliminary analysis of HRFs. (a) HRFs of all healthy subjects at a given ROI. (b) HRFs 

of all stroke subjects at the same ROI. The black curve is canonical HRF.
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Figure 5. 
(a) Simulated connectivity network; connectivities not shown in the graph are not present in 

any of the subjects. The numbers without parentheses represent the group-level connectivity 

strength under task condition; the numbers in parentheses represent the group-level 

connectivity strength under rest condition. (b) Simulated mean HRFs.
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Figure 6. 
Examples of simulated fMRI time series at different ROIs from a single subject. Green lines 

separate different sessions. Blue lines indicate when the task condition is on.
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Figure 7. 
Posterior HRF results for ROIs 1, 2, and 5 in a given subject. Gray curves correspond to 

posterior samples of the HRFs, blue curves are the bounds of the 95% pointwise posterior 

credible bands, the red curves are the true HRFs, the black curves are the posterior median 

HRFs.
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Figure 8. 
Activation strength for the two groups and activation difference between the groups. Darker 

color indicates higher activation (or activation difference). Red indicates a positive value, 

and white represents zero. The black line outside the circle indicates that the corresponding 

95% posterior CI does not include zero. The rectangular frame indicates the ROIs in the 

hemisphere corresponding to the moving hand.
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Figure 9. 
The probabilities of the presence of connectivity for the two groups and the probability 

differences between the groups. A thicker arrow indicates a higher chance that connectivity 

is present in the group (plots (a) and (b)), or greater difference in the probability of 

connectivity between the two groups (plot (c)). In (a) and (b), those connectivities that are 

absent in all subjects in each group are not shown; a dashed arrow represents a connectivity 

whose presence probability does not exceed 0.5; the probabilities of the most likely and the 

least likely connectivities among the listed connectivities are also provided. In (c), red 

indicates that the connectivity is more likely to be present in the stroke group than the 

healthy group, and blue indicates that the connectivity is less likely to be present in the 

stroke group; only those differences whose 95% posterior CI does not contain 0 are 

included.
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Figure 10. 
Estimated HRF (pointwise posterior median) for each ROI and subject for the two groups. 

The vertical dashed line is at 5 sec and the horizontal dashed line is at the baseline value. 

The black curve is the median HRF of the corresponding group.
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