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Summary

The newest NERSC supercomputer Cori is a Cray XC40 system consisting of 2,388 Intel Xeon
Haswell nodes and 9,688 Intel Xeon-Phi “Knights Landing” (KNL) nodes. Compared to the
Xeon-based clusters NERSC users are familiar with, optimal performance on Cori requires consid-
eration of KNL mode settings; process, thread, and memory affinity; fine-grain parallelization;
vectorization; and use of the high-bandwidth MCDRAM memory. This paper describes our
efforts preparing NERSC users for KNL through the NERSC Exascale Science Application
Program, Web documentation, and user training. We discuss how we configured the Cori system
for usability and productivity, addressing programming concerns, batch system configurations,

and default KNL cluster and memory modes. System usage data, job completion analysis,
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programming and running jobs issues, and a few successful user stories on KNL are presented.
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1 | INTRODUCTION

1.1 | Motivation

As the high-performance computing (HPC) community moves toward exascale, it is being challenged to effectively exploit the energy-efficient
manycore processor architectures that will comprise exascale systems. For NERSC? users, this poses a significant challenge because adapting codes
to run efficiently on manycore processors will require a large investment in code optimization and tuning. Codes will have to identify and use
additional fine-grained thread parallelism, take advantage of wide SIMD units, and carefully manage data structures to optimally fit into a deep
memory hierarchy.

NERSC's newest supercomputer, named Cori? after Nobel prize-winning biologist Gerty Cori, introduces the NERSC user community to its
manycore future. Cori is a Cray XC40 system consisting of more 9,688 single-socket nodes with Intel Xeon Phi “Knights Landing” (KNL) manycore
processors.® The KNL Many Integrated Cores (MIC) architecture features 68 cores per node with 4 hardware threads each, 512-bit vector units,
and 16 GB on-package multi-channel DRAM (MCDRAM) high bandwidth memory. The KNL nodes offer many configuration options: MCDRAM
can be configured for explicit management as one or more NUMA nodes (“flat” mode) or as a transparent cache (“cache” mode), simultaneously
the cores and DDR memory can be managed as a single mesh (“quadrant” et al) or as two or four NUMA nodes (“snc2”, “snc4”).* Cori also has
2,388 dual-socket Intel Xeon “Haswell” nodes on the same Cray Aries high-speed interconnect network. This mix of node types makes Cori a rather
novel system at this scale in HPC.

When Cori was conceptualized, NERSC foresaw—through a series of requirements reviews with Department of Energy (DOE) Office of
Science computational scientists and conversations with its users—that users would need assistance to prepare their codes for manycore. The

NERSC Exascale Science Applications Program (NESAP),” in which code teams were connected to experts at NERSC, Intel, and Cray, was
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developed to help enable a significant fraction of the NERSC workload to run well on Cori. In addition to in-depth help from NERSC staff and
postdocs, NESAP teams were given access to tools, early hardware, user training programs, intensive “dungeon session” tuning sessions with Cray
and Intel, and extensive NERSC documentation on best practices for KNL optimization. NESAP and its results are described in Section 2.

In this paper, we discuss how we configured the Cori system for usability and productivity, addressing programming concerns, batch system
configurations, and default KNL cluster and memory modes. System usage data, job completion analysis, programming and running jobs issues,
and a few successful user stories on KNL are presented. The main focus is on using the Cori KNL architecture more effectively. Using DataWarp

and optimizing 10 are not part of the scope for this paper.

1.2 | Cori KNL system timeline

Preparation for Cori began with NESAP in the Fall of 2014, well before the Cori hardware arrived. NESAP teams used NERSC system Edison®
(a Cray XC30 with Intel Xeon IvyBridge compute nodes) and various test and development systems to analyze performance and begin optimization.

The first phase of Cori, 1,630 nodes with dual-socket 16-core Intel Xeon Haswell processors, arrived in late 2015. The operating system
underwent a major upgrade to CLE, required to support KNL, in June 2016 as the first phase-two cabinets arrived.

The second phase, consisting of more than 9,300 single-socket nodes with Intel Xeon Phi KNL processors, arrived at NERSC in mid 2016.
Following standalone testing, the two phases were integrated over a period of 6 weeks beginning mid-September 2016. A subset of service nodes
in Haswell cabinets were repositioned into KNL cabinets. The regained Haswell slots were filled with more compute nodes, bringing up the total
number of Haswell nodes to be 2,004.

NESAP users were given early access to the KNL nodes in November 2016. In January 2017, access to a subset of the KNL nodes was granted
to all users for code development, debugging, and optimization. Feedback from the NESAP early access users fed into the recommendations for
jobs described in Section 4 and the KNL default mode selection described in Section 5.1.

An additional two cabinets (384 nodes total) of KNL were integrated in February 2017, bringing up the total number of KNL compute nodes to
be 9,688. An additional two cabinets (384 nodes total) of Haswell were integrated in April 2017, bringing up the total number of Haswell compute
nodes to be 2,388.

The initially limited access for non-NESAP users was prompted in part by the substantial differences between KNL and traditional Xeon
multicore processors: Without significant investment in code readiness, applications are unlikely to make effective use of the KNL hardware.
Beginning in March 2017, we allowed all users full access to the KNL nodes once they had demonstrated some degree of application-readiness,
this gating procedure is described in Section 5.3.

Finally, the machine entered full production mode with none of these restrictions in July 2017.

1.3 | KNL usage data

NESAP teams and codes were chosen to give broad coverage to the NERSC workload, representing the spectrum of science fields within the DOE
Office of Science mission.
Figure 1 shows the breakdown of hours used on Cori KNL nodes in 2017 through April. Lattice QCD codes were ready to use KNL before
many others, VASP and Quantum Espresso Early User Program started in mid-January to allow longer wall limit, thus explaining their large usage.
The workload is highly parallel as shown in Figure 2. About half the hours from January to April 2017 were used by jobs using more than 500
nodes, and a quarter of the hours were used by jobs running on more than 1,280 nodes.

Geoscience
Biosciences 2%

2% N
High Energy

Physics
3%

Astrophysics
3%

—_—

Fusion Energy J -
4% omputer

Science

FIGURE 1 Breakdown of hours used on Cori KNL, January to April 2017
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Cori KNL Hours Used Jan.-Apr. 2017
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FIGURE 2 Cori KNL hours used in January to April 2017

2 | NESAP

2.1 | Introduction

To assist users with the transition to Xeon Phi, NERSC established the NESAP® concurrently with the procurement of Cori. NESAP is a collabora-
tion among NERSC staff and postdocs, application developers, and third-party library and tool developers, with the goal of preparing science
applications for the manycore architecture on Cori.

Because NERSC hosts 6,000 users running 700 different applications, devoting staff resources to assist all users with tuning their applications
for Xeon Phi is not feasible; instead, NERSC selected approximately twenty application teams” to participate in the NESAP program, with domains
spanning all six programs within the DOE Office of Science. Approximately 60% of NERSC hours are represented by these NESAP applications,
either directly or as proxy codes.

The investment in these application teams has been significant: They have received advanced training in the form of on-site visits from Intel
and Cray staff, visits to Intel campuses for intensive hackathons, and on-going collaborations with NERSC and Cray staff as part of a Center of
Excellence. In addition, these teams were provided access to preproduction Xeon Phi hardware prior to its delivery with the Cori system. Further-
more, eight of these application teams were paired with NERSC postdoctoral researchers, whose focus would be to profile and optimize these
codes for the Intel Xeon Phi architecture on Cori. By selecting a broad subset of applications running at NERSC which run a wide variety of
algorithms and documenting extensively their efforts to port their applications to Cori, the information gleaned from this subset of users would

then be disseminated to the rest of the NERSC user base via extensive Web documentation and user training.

2.2 | Optimization strategy and tools

It is the within-node architecture of Cori KNL nodes that is most disruptive to application performance: Cori uses the same Aries interconnect and
dragonfly topology as Edison,® its predecessor at NERSC.

The KNL processor has different performance constraints and several new or enhanced features that can benefit applications compared to
Xeon, such as many cores, more hyperthreads, wider vector units, added instructions, and on-package MCDRAM.

To help users navigate this complex optimization space, NERSC developed an optimization strategy that heavily utilizes the roofline
performance model®* developed at Lawrence Berkeley National Laboratory to frame our conversations with code teams. With Cray and Intel
staff, we developed a methodology for computing roofline ceilings for the Cori system as well as roofline positions for codes and kernels using
Intel's VTune,*? SDE,*® and Vector Advisor'* products.

The novelty of the roofline modeling approach is that a kernel's position on the roofline indicates whether optimizing for effective memory
bandwidth (eg, via cache blocking or explicit use of MCDRAM) or CPU-related improvements (vectorization, improved code generation) will be
more profitable. The model also allows us to visualize the effect of code optimization in terms of the theoretical limits of memory bandwidth
and compute speed—the principle components which constrain performance.

Figure 3 shows the performance of a specific kernel in the BerkeleyGW?® application after a series of optimization steps (2, addition of
OpenMP; 3, loop reordering for vector code generation; 4, cache blocking; 5,6, hyperthreading and refined vectorization).

2.3 | NESAP results

A summary of before-and-after NESAP code performance on Edison and Cori is shown in Figure 4. The numbers are collected from multinode
benchmarks representing larger scale science runs being performed by the teams. The runs compare performance on Cori KNL with performance

on the same number of Edison (dual socket Ivy Bridge) nodes.
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Example Roofline Optimization Path
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FIGURE 3 BerkeleyGW kernel optimization path after a series of optimization steps
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In Figure 4, we set the performance of the baseline code on Edison to 1. The number in parenthesis for each application in X-axis is the number
of nodes used. We see an approximate 3x performance increase on average due to optimizations on KNL and more than 1.5x average speedup
node-to-node on Cori KNL vs Edison for optimized codes.

We have also looked at the impact of various aspects of the Xeon-Phi hardware towards NESAP application performance. Figure 5 shows
the relative speedups when utilizing MCDRAM (in either cache or flat mode depending on the application preference) vs ignoring the
MCDRAM (running in flat mode utilizing only the traditional DRAM). In addition, we compare performance when compiling with full optimization
(-xMIC-AVX512) vs disabling vectorization (-no-vec -no-simd). It should be noted that the latter test does not include libraries or AVX intrinsic
codes where such compiler flags are ignored.

The NESAP optimization efforts and results are documented in more detail in Barnes et al*® and Kurth et al.”

3 | HETEROGENEOUS PROGRAMMING ENVIRONMENT

The heterogeneous Haswell/KNL system is considerably more complex than a homogeneous Xeon cluster. We describe some challenges encoun-
tered and the recommendations we formed around building applications with cross-compilation and binary compatibility.
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3.1 | Building software for a heterogeneous system

When Cori's OS was upgraded in mid-June 2016 from CLE5 to CLE6, which was required to support KNL, all NERSC installed software had to
be rebuilt.

Since binaries built for Haswell can run on KNL, but not vice versa, Cray builds its software to target Haswell and only builds KNL optimized
versions of key numerical libraries that can take advantage of the KNL architecture.

NERSC adopted the same strategy for the many software packages we install for the users. The materials science codes VASP and Quantum
Espresso were among the first scientific applications NERSC installed that target KNL architecture. We plan to install more KNL-specific builds of
applications and libraries as appropriate.

NERSC is actively working on streamlining the software build process by using the Spack software package manager for building supported

packages on all the Cray systems at NERSC, including Edison Ivy Bridge, Cori Haswell, and Cori KNL.*®

3.2 | Cross compilation

Compute nodes have no local storage and to speed up launch times for large jobs, NERSC configured the system to hold the OS image in memory
on the KNL compute nodes. In order to limit the memory used by the OS image, our compute nodes do not have a full build environment, so
applications targeting either Haswell or KNL must be built on the Haswell login nodes.

For executables that will run on KNL, this means they should be cross-compiled on Haswell to target KNL. While compiling for Haswell has
been set to be the default on Cori, switching the target to KNL is straightforward if the Cray compiler wrappers (ftn, cc, CC) are used: simply swap
the “craype-haswell” module with the “cray-mic-knl” module and compile as normal. Although a Haswell binary will run on KNL (but not vice-versa),
that binary and the libraries it calls will use compiler optimizations targeting Haswell rather than KNL, so NERSC recommends that the appropriate
module be loaded when building applications.

It is also possible to build a merged binary that contains instructions appropriate to both Haswell and KNL by including a special compiler flag
“-axMIC-AVX512,CORE-AVX2" for Intel compilers. The overhead in terms of binary size depends on how many extra KNL instruction sets it
includes, and the overhead in terms of performance is just the startup check for the run architecture.

A frequently encountered difficulty when building software targeting the KNL nodes is that in some build systems (such as autoconf or cmake),
certain steps need to run a small test program in order to generate a Makefile. This will not work when building on Haswell for KNL since the binary

targeted for KNL (with the -xMIC-AVX512 flag) cannot run on Haswell. Our workaround is as follows:

% module load craype-haswell
% ./configure CC=cc FC=ftn CXX=CC ...
% module swap craype-haswell craype-mic-knl

% make

This allows the configure script to build for Haswell and test against Haswell and then has the actual build target KNL.

Cray has worked with Kitware to increase the compatibility of CMake with the programming environment on the Cray systems.'? Beginning
with version 3.5.0, CMake has been enhanced to work with the Cray Programming Environment. Cross-compiling can be enabled in CMake via the
following steps:

% export CRAYOS_VERSION=6
% cmake -DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment ...

In CMake scripts that invoke the try_run command, errors occur when cross compiling. The user must edit the TryRunResults.cmake file and
replace placeholder values or else use the CMAKE_CROSSCOMPILING_EMULATOR property (available starting with CMake version 3.6).

4 | RECOMMENDATIONS FOR JOBS

A KNL node is comprised of 34 dual-core tiles, which in some cluster modes are arranged into 4 non-equal NUMA domains.* This complicates task
placement and management especially for hybrid MPI/OpenMP applications, so we have developed a batch script generator to help users navigate
such additional complexity. In many cases, jobs use only 64 of the 68 cores per node. We discuss the reasoning leading to our recommendations
and our defaults for NUMA and cluster modes for managing hyperthreading and achieving optimal thread and memory affinity.

We use Slurm?® in “native” mode (ie, NERSC does not use the aprun job launcher from Cray ALPS)?%?2 to manage batch jobs on the Haswell
and KNL nodes as a single system. Slurm features including core specialization, affinity support, and sbcast (pre-execution broadcast of key files to

compute nodes) are more important for Cori than for previous systems and we discuss our usage of these features.
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4.1 | Job script recommendations

On previous NERSC systems, a simple job script was sufficient to run a simple job: specify node count and time required then start the desired
number of tasks across those nodes. Our Haswell nodes have 32 cores—a convenient power of two—and while hyperthreading is supported, most
of our workload does not use it.2> OpenMP was used in a minority of the NERSC workload,?>?* so 32 MPI tasks per node, evenly distributed,
generally gave optimal performance.

Xeon Phi nodes can be configured—on a job-by-job basis—with CPUs distributed over one, two (equal), or four (non-equal) NUMA nodes and
with MCDRAM configured as one or more NUMA nodes or a transparent cache.* The selected configuration is often significant for performance.
Neighboring Xeon Phi cores share an L2 cache and hyperthreading within a Xeon Phi core often does improve performance. More applications can
benefit from OpenMP parallelism—thanks to NESAP efforts—but Xeon Phi's core count of 68 doesn't conveniently divide over MPI tasks and
OpenMP threads, especially when configured for unequally sized NUMA nodes. Consequently, the distribution and placement of tasks has become
an important consideration for performance, and a naive job script is no longer sufficient.

For additional complexity Linux, Slurm, and the OpenMP runtimes of each compiler have overlapping features and limitations around task
placement and binding. Feedback from our users was that they would prefer a simple and reliable recipe for correct affinity.

Our strategy for mitigating this complexity is a mixture of recommendations, training, and provision of tools to help users prepare an optimal
job script.

As discussed in Section 5.1 of choosing default KNL mode, we recommend “quad,cache” configuration (all cores share a single NUMA node
with the DDR memory, MCDRAM is used as a transparent cache). For most users, this adds the least complexity at a usually minimal cost to
performance. We are recommending that jobs use “-c” and “--cpu_bind” options for srun (Slurm's task launcher) and the environment variables
OMP_NUM_THREADS, OMP_PROC_BIND and OMP_PLACES to control affinity in a consistent manner across OpenMP runtimes and node types.

On our web pages,?°>2¢

we provide recipes for users to calculate suitable values for each of these parameters.

Through training and documentation, we aim to give users the ability to deviate from our recommendations when it would be advantageous to
do so. We quickly learned that verbally describing the effect of affinity settings left users in confusion, but diagrams help to clarify. Using consistent
nomenclature is also important: what most users think of as a “cpu” corresponds to a “core” in Slurm and OpenMP, while “cpu” in Slurm means
“hyperthread” (or “logical cores”). We use diagrams?’ such as Figure 6 to illustrate the nomenclature and relationship among node components,
environment variables, and Slurm options.

Figures 7 and 8 show slides from our user training, illustrating the effect of key runtime settings for affinity.2®

OMP_PLACES=cores

(each OMP
thread is
assigned to one
core)
hyperthre
srun -c 4 --cpu_bind=cores r— T Eathe Core
(reserve 4 cpus -ie1core - - — .i?‘:::'}k“ (shared by
per SLURM task / MPI rank) hypertiend (b EE) h-threads) :
hyperthread (cpu 204) shared srun -c 8 --cpu_bind=cores
L2 cache | TileO (reserve 8 cpus - ie 2 cores -
srun -¢ 2 --cpu_bind=threads hyperthread (cpu ) L per SLURM task / MPI rank
{reserve 2 cpus - ie half of one hyperthread (cpu69) | [ 11 cache Core
core - per SLURM task / MPI rank) hyperthread (cpu 137) | | 32+32¢ ﬂ:;:gdi\;
hyperthread (cpu 205)

OMP_PLACES=threads
(each OMP thread is
assigned to one
hyperthread)

f
L
|
NUMA node 0 DDR DDR

B D

ORI
IES, I

NUMA node 1

l DDR
|
|

DDR DDR

)

FIGURE 6 A diagram to illustrate Cori compute node processor components, OpenMP environment variable, and Slurm srun task launching options
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Sample job script to run under the quad,cache mode

Sample Job script (MPI+OpenMP)  Process/thread affinity outcome

#1/bin/bash -I

Core 0 Core 1 Core 2 Core 3
#SBATCH-N 1 0 AR 1 (] 70 71

- — Rank 0
H#SBATCH —p regular 136 | 20a | 137 | 205 || 138 | 206 207
#SBATCH -t 1:00:00
Core 60 Core 61 Core 62 Core 63

#SBATCH -C knl,quad,cache 60 | 128 | &1 | 129 | PR 130 I 131 |

G —— Rank 15 —
export OMP_PROC_BIND=true 190 | 264 [ 1577] 265 |[[2987] 256 |y 267 |
export OMP_PLACES=threads Core 64 Core 65 Core 66 Core 67
export OMP_NUM_THREADS=8 64 [132 (65 [133 || 66 | 134 |67 | 135
srun —n16 —c16 --cpu_bind=cores ./a.out 200 | 268 | 201 | 269 || 202 | 270 | 203 | 271

With the above two OpenMP envs, each thread is

pinned to a single CPU on the cores allocated to R Ij I:l —
the task. The resulting process/thread is shown in
the right figure. E.g., for Rank 0, Thread 0 is pinned Thwadia |:| D Thread 5
to the CPU 0 (on Core 0), Thread 1 to the CPU 1 (on Thread 2 - |:| Thread 6
Corel), Threads 2 to CPU 2 (on Core 2), and so on. - -

Thread 3 Thread 7

FIGURE 7 Sample user training slide on running jobs on Cori

The -c option: --cpu_bind=cores vs —cpu_bind=threads
salloc =N 1 -p debug -C knl,quad,flat

srun -n 4 —c 6 —cpu_bind=cores ./a.out srun -n 4 —-c 6 —cpu_bind=threads ./a.out

Core 0 Core 0

Core 1 Core 1

Core 2
Core 3
Coreq

Core 2

Core 3

Core 4
Core 5 _Rank 3

Core 6

Core5
Core 6

Core 7 | CPUS Core7|CPuU | cPU | cPU | cPU

First 8 cores/32 First 6 cores/24

CPUS are used; CPUS are used;
rest 60 cores/240 rest 62 cares/248
CPUs stay idle CPUs stay idle

FIGURE 8 Sample user training slide on
running jobs on Cori

More advanced users can request nodes in a “flat” MCDRAM configuration, in which the MCDRAM is presented to the OS as one or more
secondary NUMA nodes. Linux will allocate memory on the DDR NUMA nodes first, so users must explicitly manage memory placement via
directives in source code or, at run time, via “numactl” or the “--mem_bind” option for srun. Our web pages?®> have example batch scripts
demonstrating these.

Navigating the options for affinity has proved challenging, so we also provide a tool to generate a job script template?® and a set of executables
(based on Cray's xthi.c??) to report the affinity they experience. The job script generator tool is described in more detail in Section 4.2, users can use
this as a starting point for their script. Users could also replace their application launch with the launch of an xthi executable to verify the task
placement that actually occurs.?®

Utilizing the core specialization feature of CLE and Slurm, it is also possible to reserve a specified number of cores for system operations. The
application will not use these cores which will reduce any contention for core resources from the operating system. On a system with many smaller
cores like Xeon Phi such a setting may be beneficial depending on the performance profile of an application.

4.2 | Job script generator

As discussed in the previous section, developing job scripts that achieve a good process and thread binding has become a byzantine task. It

becomes even more complicated with the addition of advanced Slurm features such as file broadcasting and core specialization, etc. However, most
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users are unconcerned about the details of how Slurm performs bindings behind the scenes but rather seek a quick submit script which will work
for their case. For that purpose, we provide an online job script generator28 on our user portal my.nersc.gov. The job script generator is a small
javascript application that guides the user to select from typical requirements and produces a job script with the directives and commands that will
satisfy those requirements.

The user can select among Edison, Cori-Haswell, and Cori-KNL, and based on that selection, the maximum number of allocatable nodes, cores
per CPU and sockets per node are set internally. Users then walk through the form and can enter details about their application, ie, assign a job
name, an executable string, or email address. Most importantly, they can select how many nodes they would like to use and how many MPI pro-
cesses per node as well as threads per process they want to use. The Cori-KNL tab offers additional KNL-specific selections such as the NUMA and
memory configuration.

When the user is ready and clicks on the button Generate Script, an error checking mechanism will highlight problematic sections in yellow
(warning) or red (error). Those are issued when allowed but probably sub-optimal or unallowed configurations were selected by the user,
respectively.

Concerning thread and MPI binding, the generator automatically selects a good binding for the given configuration. The generator also offers
an advanced mode in which the user can influence the thread binding to some degree. For jobs which ask for more than a certain number of MPI
ranks, the generator automatically adds the Slurm option sbcast (copy executables to compute nodes beforehand to reduce large scale job startup
time). Figure 9 is a sample screenshot with user choices and generated batch script.

4.3 | Launching large jobs

The high processor density of KNL and the scale of Cori introduces some challenges for the Lustre file system.
One example is that when launching an executable, each MPI process requests the appropriate pages for the executable from Lustre via a remote
procedure call (RPC). The Lustre metadata server (MDS) services these RPCs but cannot efficiently service a large volume of simultaneous RPCs all

Jobscript Generator

Job Information
This tool generates a batch script template which also realizes specific process and thread binding configurations.

Machine

#U/bin/bash
Select the machine on which you want to submit your job. #SBATCH -N 128
#SBATCH -C knl,quad,flat
Cori - KNL ' #SBATCH -p regular

#SBATCH -t 00:30:00
Application Name
#0penMP settings:
export OMP_NUM_THREADS=16
export OMP_PLACES=threads

Specify your application including the full path.

myapp.x
i export OMP_PROGC_BIND=spread
Job Name
Specify a name for your job. #run the application:
srun -n 512 -c 68 --cpu_bind=cores numactl -p 1 myapp.x
Email Address

Specify your email address to get notified when the job enters a certain state.

Wallclock Time

Specify the duration of the job.

0 & 30 & 0 =
hours minutes seconds
Partition
Select the partition you want to run your job on. 4
regular v
Number of Nodes

How many nodes are used?

128 »

Basic Thread Binding Advanced Thread Binding

FIGURE 9 Sample screenshot of the NERSC job script generator on my.nersc.gov with user choices and generated batch script
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Effect of Hugepages on VASP Performance on Cori KNL Nodes
(Quad,Cache, 8 OpenMP threads per MPI task, Test case:Si256_HSE )
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FIGURE 10 Hugepages effects on VASP performance running on 1 to 16 KNL nodes

requesting the same pages. If a user tries to run an application with a large number of MPI processes per node, this can lead to a long delay (up to
several minutes) between the first and last processes on each node starting the job. Users can mitigate this startup delay by using Slurm's “sbcast”

feature, which broadcasts the executable from Lustre to each node's RAM disk, thereby funneling each MPI process' RPCs to its own local memory.

4.4 | Performance tuning

Compared to Haswell or Ivy Bridge, KNL requires more cores to drive the network. We recommend that users with hybrid MPI/OpenMP codes run
with at least 8 processes per node to get the best communication performance from the Aries high speed network.

The use of hugepages® to get the best communication performance is also recommended because the Aries NIC has resources to track a
limited number of pages of memory. With bigger pages, more memory addresses can be utilized simultaneously, especially for codes that have
many small point-to-point messages or MPI_Alltoall calls with small buffer sizes. We have found that the 2M pages provided by craype-
hugepages2M module is sufficient in many cases. Figure 10 shows hugepages effect for the VASP performance running on 1 to 16 nodes.®! Other
NESAP applications which are known to see significant benefit from hugepages are MILC, MFDn, and HipMer. Since the hugepages availability may
decrease the longer a node is up, it is recommended for system admins to monitor this via Cray Node Health Check (NHC) tool and reboot nodes
from time to time.

In addition to uGNI, Cray provides an alternative low-level communication library DMAPP. For some collective and RDMA operations, Cray
offers optimizations based on the DMAPP interface. The interface can be enabled by linking libdmapp and setting MPICH_USE_DMAPP_COLL=1.
This setting also enables some hardware acceleration for some operations such as barriers and alltoall.

By default, MKL uses multi-threaded libraries in a single-threaded region and single-threaded libraries within an OpenMP region. We worked
with Intel to come up with recommendations to our users to turn this default off and allow the MKL to use multiple threads, as if it is a nested

OpenMP region under the outer layer of OpenMP.

5 | OTHER CONSIDERATIONS

5.1 | KNL default mode selection

The Xeon Phi has the option of being configured at boot-time in a variety of sub-NUMA clustering (SNC) modes which control the degree of
memory locality within the on-chip mesh network. Depending on the mode, the chip can appear to the OS as having 1 (“quadrant”, or “quad” mode),
2 (“snc2”), or 4 (“snc4”) NUMA domains for the cores. It is also possible to configure the MCDRAM as a direct-map cache (“cache” mode) or to
expose it as a separate NUMA domain from the DDR (“flat” mode).

In our testing, it was found that the SNC modes introduce significant complexity into user job scripts, especially due to additional NUMA issues
and the uneven number of cores in each quadrant in snc4 mode. Our initial testing of modes was done with a variety of NERSC-8 and APEX3?
benchmark applications including MILC, GTC-P, AMG, MiniDFT, SNAP, and PENNANT in additional to other applications. In our testing, when
we were able to utilize modes other than quadrant + cache, we found at most 5% differences, with not all codes seeing any benefit from specific
combinations.

The MCDRAM configured in flat mode outperforms cache mode by a few percent in memory bandwidth bound benchmarks such as stream
provided the working set size is less than 16 GB. In real applications, the performance difference is often minimal with cache mode sometimes
outperforming flat mode. Effectively utilizing a node configured in flat mode with data sizes larger than 16 GB requires additional programming

effort. Utilizing only flat mode also introduces more settings into the standard batch script.
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For these reasons, we chose a default of quad,cache mode for our KNL nodes. However, for those users who are able to take advantage of
other modes, we allow approximately 3,000 nodes to be rebooted by the job scheduler. We introduced this limit to avoid overhead related to
rebooting nodes, which could last 40 min or longer for each reboot in the early system days.

5.2 | Using MCDRAM

As discussed in the above Section 5.1, most of the KNL compute nodes will be used in either quad,cache mode or quad,flat mode. In quad,cache
mode, there is no need to explicitly use MCDRAM since it is treated as the cache for the DDR memory.

In flat mode, Linux sees the MCDRAM as farther from the cores than DDR (eg, in quad mode DDR is NUMA domain O and MCDRAM is domain
1), so memory will be allocated preferentially in DDR. To use the MCDRAM in flat mode, users must allocate to it explicitly either at job launch or
with NUMA-aware memory allocation in the code.

At job launch, a user can specify mandatory or preferred placement, either with srun options or by starting processes via numactl.
With mandatory placement (“srun --mem_bind=map_mem:1” or “numactl -m 1", for domain 1), a malloc that cannot be satisfied when
the selected NUMA domain has no sufficient free memory will fail, typically resulting in the application terminating. Preferred placement
(“srun --mem_bind=preferred,map_mem:1” or “numactl -p 1") allows the memory to be allocated in some other NUMA domain if it cannot be
allocated in the preferred one.

Before version 17.02 Slurm did not support preferred placement with the native mem_bind option so we were recommending the numactl
method. At NERSC's request to SchedMD this capability was added in 17.02 and installed here in March 2017. Since then, we are recommending
srun options.

For an application that will not fit entirely within MCDRAM, specifying memory-bandwidth-critical variables to allocate to MCDRAM allows

1'2 can help to identify these

the code to benefit from MCDRAM bandwidth without the constraints on size. The Intel VTune memory access too
memory-bandwidth-critical variables.

To explicitly allocate these variables into MCDRAM, source code modifications are needed. Cray and Intel Fortran compilers support directive-
based hints such as “'DIR$ ATTRIBUTES FASTMEM:: a,b,c”. In C, “hbw_malloc(size)” instead of the usual “malloc” function can be used. The Cray
compiler wrappers automatically add “-Imemkind -Inuma” to the link line and switch to dynamic linking. This may not be a desired behavior for some
applications so NERSC installed a custom memkind package with both the static and shared libraries. When loaded, compiler wrappers will add
“-Imemkind -liemalloc -Inuma” automatically, and the default build is static.

Another method requiring no source code modification is to use MCDRAM via AutoHBW. At runtime, users specify a range of array sizes in an
environment variable. Arrays meeting the size criteria will be allocated to MCDRAM. When the AutoHBW module is loaded, compiler wrappers will

add “-Imemkind -liemalloc -Inuma” automatically, and the default build is static.

5.3 | KNLEAP gating

The NESAP program ensured the bulk of the NERSC workload was ready for KNL. For our remaining users, we implemented a gating procedure to
gain full KNL access before the system goes into full production mode in July 2017. Using a small number of KNL nodes, the procedure guides users
through a list of experiments such as thread-scaling, comparisons between cache and flat-mode performance, vectorization efficiency, and strong
and/or weak multi-node scaling. This demonstrates readiness for KNL while helping users to get familiar with its distinct features, to think about
their application performance, and to test different process and thread topologies.

When Cori KNL nodes first became available for benchmarking and production jobs, only NERSC staff and developers of NESAP applications
were granted access to the whole machine. After the first few weeks, we opened the “debug” queue access to all users, allowing 30-minute jobs
(and later in “regular” partition for up to 2 hours) and on up to 512 nodes on Cori-KNL. The restricted access was because KNL is substantially
different from regular multi-core CPUs, a non-negligible development effort has to be made to utilize this new architecture efficiently. NESAP
teams had access to early hardware revisions and support from Intel and Cray staff and thus could prepare their codes for KNL, while many other
NERSC users did not have that opportunity. However, those users were able to use the debug queue to optimize their application and to make sure
that their code runs well on KNL before graduating to the full machine.

To facilitate this graduation, we created an application form for the KNL Early Access Program (KNLEAP)3® on my.nersc.gov Web portal. After
logging in to the myNERSC service, users can submit an application for full Cori-KNL access on behalf of one of their repos (allocations). The
applicant is asked general information about the application, eg, a short science description and specify the programming languages and kernels
used. Subsequently, the applicant has to provide time-to-solution for each of a list of experiments. The results are entered into the Web form which
provides examples and live plotting functionality to help the user to achieve the proper formatting. Finally, if the form passes a simple validation
test, the user can submit the application. This action will write the application data into a MySQL database backend and automatically generate
a ticket in ServiceNow (the NERSC ticketing system) which contains some brief information about the application as well as the database index.
This ticket can then be assigned to the consultant on duty who will review the application or forward it to a more suitable NERSC staff member.
Once the application is accepted, we notify users via ticket that they have full Cori-KNL access.

Figure 11 shows a sample of live plotting functionality on the KNLEAP application form.


http://nersc.gov
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|+ Application Performance

Thread Scaling Results (required)
Instructions and Example.

Paste your results from the thread scaling study for Haswell (Cori Phase I} and KNL (Cori Phase lI) into the text field and click on "Plot
Results” to draw a plot.

Thread Scaling Results =
ncores,nht,arch,time
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FIGURE 11 Live plotting functionality on the NERSC KNL Early Access Program (KNLEAP) application form

5.4 | Job completion

Job completion statistics are useful indications of how successfully user applications are running on the system.

Figure 12 shows a sample of the percentage of KNL node-hours spent by jobs with each exit state. To provide a quick visual aid regarding what
percentages of jobs failed on a certain day due to system and user issues, we arrange the failures of which causes can be attributed to system prob-
lems in the top area of the plot, job terminations due to a user issue or successful runs at the bottom, and job states with termination causes being
difficult to attribute to either in the middle.

Around two-thirds of our KNL workload completes either successfully or with a timeout (many NERSC workflows are based on regular
checkpointing, running until the job is killed by timeout, and then continuing from the latest checkpoint in a new job). A smaller percentage is
cancelled by the user or fails, this likely reflects the debug workload as users prepare their codes for larger-scale KNL use. A small percentage at
the top of the chart fails due to system issues.

The Slurm job accounting database is valuable for job completion analysis, and we use this and system usage data to analyze the rate,
categories, and causes of job failures.

Slurm records the exit code®* of an application using an 8-bit integer for each job step, and a signal, if it is responsible for a termination of the
job step. Slurm also summarizes the job or step's state with one of the 14 pre-defined state values. Among these, 7 states (BOOT_FAIL,
CANCELLED, COMPLETED, FAILED, NODE_FAIL, PREEMPTED, and TIMEOUT) are relevant to completed jobs, and they can be used for a job
completion analysis. For our analysis, we add one more category, “CANCELLED_SYSTEM,” for cancelled jobs whose job steps ran well past their
batch jobs due to a system issue. The exit code, a signal and the state value for a job can be queried using the sacct command.

The exit code for the entire job is from the exit code of the last process executed in the batch job. Slurm provides another exit code, called the
derived exit code, which is the highest exit code value among all the job steps. Considering the exit codes, the derived exit codes and the state

values, we have determined with some confidence the true job states, and we are able to see daily job completion statistics.

100

80
- NODE_FAIL g
2 6 BOOT_FAI Ly
2 CANCELLED_SYSTEM
2 FAILED g
L]
g w0 CANCELLED g
=3 TIMEOUT

PREEMPTED
20 COMPLETED g
0
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Date

FIGURE 12 Cori job completion breakdown in node hours
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NERSC has traditionally adopted an approach for a job completion analysis per batch job, instead of per individual application run, mainly
because identifying the main cause of a job failure could often be correctly determined after parsing through stdout and stderr messages saved
for the batch job. Following this approach, our preliminary job completion analysis uses a batch job-based analysis although we have not started

capturing job stdout and stderr messages and using them for a more correct analysis, yet.

6 | SYSTEM ISSUES AFFECTING USERS

During the KNL early access period, we have seen jobs perform inconsistently or large jobs fail to start, unexplained node failures, timeouts caused

by high speed network (HSN) quiesces associated with warm swapping of compute blades, and job or application errors.

6.1 | KNL node reboot time

Reconfiguring the MCDRAM or NUMA mode of a KNL node requires a time-consuming reboot of the node.

Slurm does not consider the current mode of the KNL nodes before it schedules and allocates nodes to next highest priority jobs. KNL node
reboot (also called reprovisioning) occurs after the number of requested nodes have been allocated to a user's batch job, but one or more nodes are
not in the requested cluster mode. The reboot could take from 40 min to a full hour in the early system days. It now takes about 25 min to reboot as
of July 2017. Slurm shows the job as in the “CF” state, which stands for “CONFIGURING,” meaning resources are now allocated to the job, but the
job itself could not start until after all allocated resources are ready for use (eg, reboot for each node has completed).

Slurm recognizes the reboot time and counts the wallclock time used by the job as starting from when the job actually starts to run—after node
reboots complete.

The long reboot time confuses users and wastes computing resources. We try to minimize node rebooting as much as possible by keeping the
majority of the KNL nodes fixed in quad,cache mode and allowing only the remaining 3,000 nodes to be rebooted by users at job run time. This is a
compromise between statically partitioning the cluster by mode (which would disallow full system jobs) and having a significant percentage of the
cluster always unavailable due to reboots-in-progress.

Slurm version 17.02 we installed in March 2017 allows users to specify the maximum additional time (we set the default value of 2 days) they
are willing to leave their job queued in order to avoid the node reboot, so that groups of nodes can be allocated to subsequent jobs requesting same
cluster modes.

6.2 | High-speed network (HSN) Quiesces

We have observed Cori Aries HSN quiesces, link failures, and throttling during warm swap operations. This impacts user applications performing
MPI communication and 10 operations enough that user jobs may time out or experience significant run time variations.

Unexpected link failures were seen following warm swapping adjacent compute blades. A patch was provided for NERSC in March 2017, and a
request for enhancement (RFE) was filed with Cray to allow multiple cables to be swapped.

When a network quiesce was in progress, large-job startup failures were observed. We worked with SchedMD and applied a workaround of
increasing a couple of Slurm timeout parameter which stabilized the large job startup in February 2017.

Link recovery following a link failure or network throttle sometimes triggers an NFS failure at the boot node, resulting in failures of service
nodes providing DVS, Slurm, DataWarp, or Lustre LNET routing.

We are mitigating these issues by performing warm swaps of compute nodes only at prearranged times and with the Slurm batch scheduler

paused to prevent jobs from attempting to start during the network interruption.

6.3 | Runtime variations

Even in applications with perfect load balancing, run time variability of 30% has been observed on both Haswell and KNL. There are several possible
sources of variability. We believe the main contributing factors are network interference from other user jobs, the direct map cache of the KNL
when MCDRAM s configured in cache mode, turbo mode being enabled on the compute nodes, HSN quiesces, file systems 10 load variations,
and more synchronization requirements when an equivalent problem is decomposed over many more cores.

We are investigating different packet routing strategies and topology-aware scheduling to mitigate the impact of network performance on user
jobs. The routing of packets is controlled by environment variables described in the MPI man pages, however the effects from outside mean that
changing this setting for all user jobs is needed for a full study. Slurm has some topology awareness through the --switches=N@HH:MM:SS option
where a switch corresponds to a group in the Aries network and the time value tells Slurm how long to delay a job in order for it to get the

requested number of groups. Running on fewer groups may mitigate the influence of other jobs on communication performance.
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6.4 | Zone sort

The MCDRAM in cache-mode is a direct-mapped cache which is physically addressed and tagged. This means that cache lines with the same
physical address modulo the size of the cache cannot be in the cache at the same time. In Linux, the list of free memory pages is not kept
contiguous in address space, which means that over time it is likely that even when using less than the size of MCDRAM conflicts will exist in
the cache and performance will suffer. This is highly dependent on the memory usage of the application and how long a compute node has been
booted, in some cases a 30% or higher loss of performance is observed.

To mitigate the impact of the direct map cache on KNL, we have enabled a kernel module called “zonesort.” This kernel module is made available
by Intel and functions by sorting the Linux kernel's list of free pages. We run the zonesort operation in the prolog of each Slurm job step and
optionally periodically during a user job. Our testing has shown it to be effective at significantly reducing the impact of direct map cache conflicts.

6.5 | Compute node failures

We have encountered a higher than expected number of compute node failures from various hardware and software concerns. This especially
affects large jobs. A few of the failure modes are as follows:

We have observed that large scale KNL mode changes (reboots) are unreliable. Either the node reboot may fail leaving the node unresponsive,
or the boot node managing the reboot can become overloaded and de-stablize the system.

We had a reproducible user-application-triggered node failure “graceful” node power-off during runtime from a Lattice QCD application. This
has been traced by Intel to an L2 cache queue control issue and a combined BIOS change that mitigates this by reducing the XQWB Queue depth
slightly (and to fix some other issues related to this problem) was installed on Cori. The patch was confirmed to have fixed this specific node
failure mode, but since it had other bad effects causing system unstable, we had to pull out this patch. A standalone patch was installed in late May.

Another reproducible node failure from user application was seen when using Intel VTune stack sampling. The cause was identified as an
interaction between the Intel VTSSPP driver and CLE kernel and has been fixed in VTune version 2017.up2, installed on Cori in March 2017.

7 | SELECTED USER STORIES

Here, we highlight some of our successful endeavors to get applications and users from different science domains and programming model

categories ready for the Cori KNL system.

7.1 | VASP

Vienna Ab Initio Simulation Package (VASP),%> a computational materials science code, has been the top-ranking code at NERSC for many years. It
alone consumes more than 10% of the computing cycles each year and has more than 850 registered VASP users at NERSC. Getting VASP code
and users ready for KNL is therefore critical. NERSC has worked with Intel and VASP on this optimization effort and performed extensive
performance analysis with a representative VASP workload. NERSC has hosted a beta-testing program for the resulting KNL-optimized hybrid
MPI + OpenMP VASP code, provides comprehensive performance guidance for users and with the help of VASP developers held a workshop
for NERSC VASP users. These efforts have resulted in three times better performance on KNL in comparison to that on Haswell with

representative workloads. Details of this effort are described in Zhao et al.>*

7.2 | PHOENIX

PHOENIX is a multi-physics simulation code designed to compute synthetic spectra and images for both terrestrial and astronomical objects.3¢-%8

It includes equations of state for atoms, ions, molecules, and solids; modules for various opacity sources; a detailed multi-level treatment of non-
equilibrium rate equations for atoms, ions and molecules; and a detailed solution of the 3D radiative transfer problem.

In optimizing PHOENIX/3D for KNL, the developers first concentrated on the 3D radiative transfer (3DRT) module, which uses about 80% of
the time in the unmodified PHOENIX/3D version. The 3DRT inherently (via the physics of the problem) shows a complex/chaotic memory access
pattern as characteristics (rays) are tracked from all solid angles through the voxel grid. The solution of the transfer problem (complex via the
presence of scattering) is found with an operator splitting method using a non-local operator, leading to a sparse linear system with a rank equal
to the number of voxels.

To improve performance on KNL, a new “tracker” was designed to use a multi-pass method (which needs more RAM) that can more efficiently
use OpenMP than the original version. In addition, explicit vectorization with SIMD statements was required as the compiler was not auto-
vectorizing many loops due to (incorrect) cost estimates.

Close inspection of the compiler messages showed an important (time-consuming) loop was not correctly vectorized and only after including a
(vectorized) subroutine internally (“contained”) to the tracker did the loop vectorize. In addition, loops outside of the tracker were threaded and
vectorized with OpenMP directives, as they started to consume a larger fraction of the overall time after the tracker was optimized. As a result

of these optimizations, not only is the KNL version now 2.2 times faster than the original version and slightly faster than a Cori Haswell node
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Original vs optimized PHOENIX/3D solver
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FIGURE 13  Phoenix/3D solver performance before and after optimization

(which contains two Haswell CPUs), the Haswell version is now 1.4 times faster than the original code as well. A summary of the solver

performance gain is shown in Figure 13.

7.3 | HPX

We are looking into new programming models for the KNL architecture. One of these is HPX (High Performance ParalleX),>? a general purpose C++
runtime system for parallel and distributed applications. Rather than combining MPI with OpenMP on a node, the intent of HPX is to provide a
unified programming model which transparently utilizes the available resources to achieve unprecedented levels of scalability. The HPX library
conforms to the C++11 Standard and leverages the Boost C++ Libraries. We have installed HPX on Cori and tested it with the HPX STREAM
benchmark and several other applications. Improvements to the runtime are ongoing, so the data here shows just a snapshot in time. Ongoing also
are first tests on a full astrophysics application with HPX. These will be presented in an upcoming publication. Currently, the full application is
running well on 2,048 KNL nodes with the roughly same code that has been optimized for Edison, demonstrating the portability of the HPX model.

A full discussion of the STREAM benchmark in the HPX version and the C++ standard is given in Heller et al*® and a STREAM itself is
introduced in McCalpin.** In Heller et al*° the portability of HPX is stressed as the same benchmark gives comparable performance to native CUDA
on GPU architectures and native OpenMP on a two socket, 12 cores per socket, Intel NUMA system with Xeon CPU E5-2650v2 processors.
STREAM times the performance of copy, scale, add, and a triad calculation measuring sustainable memory bandwidth (in MB/s) and the corre-
sponding computation rate for these simple vector kernels.** The take-away from the HPX STREAM results is in being able to provide a single
source, generic, and extensible abstraction for expressing parallelism, with no loss in performance compared to optimized CUDA and OpenMP
implementations, while at the same time adhering to the C++ standard.

Figures 14 and 15 show the performance of the currently achievable bandwidth with the HPX version of the STREAM benchmark. When
running in quad mode, the performance is as expected when placing the memory in DRAM, that is, we achieve close to the nominal peak. When
the memory is placed in the high-bandwidth memory, we see a significant increase in performance for using up to 100 or so worker threads. We see
a significant drop with more threads which is mostly due to the fact that the grain size of the different chunks to perform the respective benchmark

is too little compared to the costs of synchronizing once the parallel region has been executed. That is, in order to exploit the maximal performance

Cori (KNL) HPX-STREAM Benchmark in quad,flat mode
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of the KNL, one has to consider considerable larger grain sizes than on regular platforms like Haswell. In its current implementation, the benchmark
cannot fully utilize the sub NUMA clustering modes; however, we expect it to result in much better performance compared to the “quad” mode,
since the scheduling (that is task stealing) is confined to one sub NUMA domain, as well as the synchronization. Further investigation is needed
on that front, however, since we believe that a runtime system like HPX should be able to utilize the SNC modes in a similar fashion as shown when

using GPUs in Heller et al.*®

8 | SUMMARY

Although most applications can run unmodified on the newest Cori system with the Intel Xeon-Phi KNL nodes, users must explore fine-grained
parallelization, vectorization, and use of high-bandwidth memory to achieve optimized performance on KNL. The KNL architecture is complex
but affords a great deal of flexibility for experienced users. There are multiple memory modes, and changing from one to another requires a
time-consuming reboot of the node.

There are many aspects an HPC center should consider to achieve best system utilization and efficiency for a KNL system. This paper summa-
rizes NERSC experiences in preparing and transitioning users from the traditional Xeon architecture to the Xeon Phi KNL architecture. Practical
aspects of system configuration, programming, and user-facing runtime issues are presented in detail. We hope that the information shared in this

paper is useful to other centers when deploying a large KNL system on their computer floors.
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