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The leaf economics spectrum is one of the 
few organizing principles in plant ecology. 
Across thousands of species from biomes 
worldwide, correlations among leaf struc-
tural, chemical and physiological traits 
constrain trait variation to a single axis 
(Wright et al., 2004). Along this axis, leaf 
syndromes range from ‘fast’, with traits 
that facilitate resource acquisition and 
growth (e.g. a high nitrogen content and 
maximum photosynthetic rate), to ‘slow’, 
with traits that conserve resources and 
support leaf persistence (e.g. high struc-
tural investment and mechanical strength) 
(Onoda et  al., 2011; Reich, 2014). The 
physiological trade-offs that generate the 
leaf economics spectrum have been hy-
pothesized to mechanistically link these 
traits to other stress resistance syndromes, 
which would integrate an even wider 
range of ecological and evolutionary strat-
egies into a single, universal spectrum 
(Hallik et  al., 2009; Reich, 2014; Nadal 
et al., 2018; Zhu et al., 2018). However, 
other findings have challenged this view 
(Bartlett et  al., 2012; Maréchaux et  al., 
2020), and raised questions about how 
and why coordination between leaf traits 
varies across the plant kingdom (Mason 
and Donovan, 2015; Fletcher et al., 2018). 
In this issue of Annals of Botany, Meng 
et  al. (2022) test whether the same rela-
tionships between the leaf economics 
spectrum and drought tolerance apply to 

phylogenetically diverse angiosperms and 
a clade of closely related gymnosperms, 
cycads. They show that cycads exhibit 
new and, initially, counterintuitive rela-
tionships between drought and mechan-
ical resistance that are the opposite from 
angiosperms, allowing these taxa to use 
different strategies to diversify across 
similar climatic gradients.

Drought tolerance has been hypothesized 
to be a part of a ‘slow’, persistent strategy 
(Reich, 2014). Meng et  al. measured 
drought tolerance as the leaf turgor loss 
point (π tlp), or the water potential at which 
the cells lose turgor pressure and cell walls 
collapse (Cheung et al., 1975). Turgor loss 
disrupts water transport and gas exchange 
and causes the leaves to wilt (Brodribb 
et al., 2003; Scoffoni et al., 2017). A more 
negative π tlp indicates greater drought 
tolerance since turgor loss occurs at a more 
negative water potential. π tlp is determined 
by the cell solute concentration, but, across 
species, a more negative π tlp is generally 
correlated with greater cell wall stiffness 
(i.e. a higher modulus of elasticity, ε) 
(Bartlett et  al., 2012). Stiffer walls help 
maintain cell hydration by providing 
structural resistance to the changes in cell 
volume required for water loss (Cheung 
et  al., 1975; Bartlett et  al., 2012). This 
relationship to ε has been hypothesized 
to link π tlp to the leaf economics spectrum 
(Salleo and Nardini, 2000; Nadal et  al., 
2018), since stiffer cell walls are expected 
to be thicker, and modelling analyses 
suggest wall thickness is a major driver of 
the economics spectrum traits (John et al., 
2017; Onoda et  al., 2017). Increasing 
wall thickness would increase the leaf dry 
mass per area (LMA), which increases 
the mechanical strength of the leaves and, 
thus, leaf lifespan (Wright et  al., 2004; 
Onoda et al., 2011). However, increasing 
wall thickness would also reduce the leaf 
nitrogen content, and potentially impede 
mesophyll conductance, both of which 
would reduce the maximum photosynthetic 
rate (Onoda et  al., 2017; Nadal et  al., 
2018). Together, these relationships would 
generate the trade-offs between resource 
acquisition and persistence traits that 
define the leaf economics spectrum and 
link this spectrum to π tlp. Mechanical 
resistance would thus be a fundamental 
adaptation to dry environments (Salleo and 
Nardini, 2000; Reich, 2014).

However, support for this hypothesis 
has been mixed. ε was found to correlate 

with leaf density (Niinemets, 2001) and 
cell wall thickness (Peguero-Pina et  al., 
2017), but not specific leaf area (LMA−1) 
(Salleo and Nardini, 2000). A  more 
negative π tlp and ‘slow’ economics traits 
were both correlated (Zhu et  al., 2018) 
and unrelated (Bartlett et al., 2012) across 
phylogenetically diverse angiosperms 
from a wide range of ecosystems. π tlp 
and economics spectrum traits were also 
unrelated across co-occurring species 
from tropical ecosystems (Rosas et  al., 
2019; Maréchaux et al., 2020) and across 
a clade of closely related Mediterranean 
species (Fletcher et  al., 2018). Overall, 
the consensus has been that π tlp can be 
functionally decoupled from the economics 
spectrum traits, potentially because 
different tissues govern leaf hydraulics and 
photosynthesis (Li et al., 2015), while the 
correlations observed across species from 
different ecosystems reflect selection for 
both resource conservation and drought 
tolerance by drier environments (Salleo 
and Nardini, 2000; Nardini, 2022).

Meng and co-workers provide an 
interesting new perspective on these 
relationships by showing that drought 
and mechanical resistance can be 
negatively correlated, and that strong 
selection for economics spectrum traits 
can generate seemingly counterintuitive 
associations between a higher π tlp and drier 
environments. The authors measured leaf 
structure, nutrient content, gas exchange, 
mechanical strength, construction costs 
and π tlp for 41 cycad species in a common 
garden. Previous studies have characterized 
relationships between the leaf economics 
spectrum traits in cycads (e.g. Zhang et al., 
2015; Marler and Lindström, 2018), and this 
study extends these findings to mechanics, 
construction costs and drought tolerance. 
The authors compared trait correlations 
across the cycads and woody angiosperm 
species from similar ecosystems, and 
tested trait relationships with climate 
in the cycads’ native geographical 
ranges, to evaluate which traits drove the 
diversification of the Zamiaceae species 
from the more primitive Cycadaceae. 
Across the cycads, greater drought 
tolerance was significantly associated with 
thinner leaves, less mechanical toughness 
and lower construction costs, while 
these correlations were significant in the 
opposite direction for the angiosperms. 
Further, the Zamiaceae diversified into 
drier environments by increasing leaf 
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thickness, and, unexpectedly, π tlp, since 
these traits were positively correlated. Few 
studies have compared the role of different 
leaf traits in species diversification, but 
these results are contrary to findings for 
Mediterranean woody shrubs, where 
the subgenus Cerastes diversified from 
Ceanothus into drier environments by 
evolving more negative π tlp, independently 
of the economics spectrum traits (Fletcher 
et al., 2018).

Meng et  al. suggest that these 
seemingly counterintuitive results reflect 
selection for greater succulence in the 
Zamiaceae. They found that thicker 
leaves contained a larger cross-section 
of accessory transfusion tissue (Fig. 
1). Transfusion tissue is a universal 
structure in gymnosperms, while 
accessory transfusion tissue, which 
extends between the palisade and spongy 
mesophyll, is unique to cycads and 
some Podocarpus species (Hu and Yao, 
1981). Transfusion tissue is involved in 
water transport and storage, suggesting 
thicker cycad leaves contain more dilute, 
readily water-releasing cells, which 
would increase π tlp. Consistent with this 
hypothesis, succulence also increased 
π tlp in angiosperms (Leverett et  al., 
2021). Interestingly, in Taxus, water 
stress induced a reversible collapse in the 
transfusion tissues that acted as a ‘circuit-
breaker’ to stop transpiration before the 
xylem embolized, analogous to the role 
of declines in extraxylary conductance 
in angiosperm leaves (Zhang et  al., 
2016; Scoffoni et al., 2017). Thus, more 
vulnerable transfusion tissues could 

potentially help the Zamiaceae avoid 
embolism in drier environments.

Altogether, Meng and co-workers 
show that cycads have fundamentally 
different patterns in trait coordination 
and adaptations to dry environments than 
co-occurring angiosperms, indicating 
the relationship between drought and 
mechanical resistance is more complex 
than a single, universal spectrum across 
plants. Their findings also highlight 
the need for more studies within 
closely related clades to understand the 
evolutionary drivers of trait coordination.
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Fig. 1.  Representative leaf cross-sections for a Cycadaceae species, Cycas hainanensis (A), and a Zamiaceae species, Encephalartos ferox (B). Red arrows indi-
cate accessory transfusion tissue. The thicker leaves in the Zamiaceae contain more accessory transfusion tissue, which is important to water transport and storage. 

Note the differences in scale between A and B. Images provided by the authors of Meng et al. (2022).
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