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Abstract
Normal bone remodeling depends of a balance between bone forming cells, osteoblasts and bone resorbing cells, the 
osteoclasts. In chronic arthritides and some inflammatory and autoimmune diseases such as rheumatoid arthritis, there is a 
great constellation of cytokines produced by pannus that impair bone formation and stimulate bone resorption by inducing 
osteoclast differentiation and inhibiting osteoblast maturation. Patients with chronic inflammation have multiple causes that 
lead to low bone mineral density, osteoporosis and a high risk of fracture including circulating cytokines, impaired mobil-
ity, chronic administration of glucocorticoids, low vitamin D levels and post-menopausal status in women, among others. 
Biologic agents and other therapeutic measures to reach prompt remission might ameliorate these deleterious effects. In 
many cases, bone acting agents need to be added to conventional treatment to reduce the risk of fractures and to preserve 
articular integrity and independency for daily living activities. A limited number of studies related to fractures in chronic 
arthritides were published, and future investigation is needed to determine the risk of fractures and the protective effects of 
different treatments to reduce this risk.

Keywords  Rheumatoid arthritis · Inflammation · Bone · Osteoporosis · Fractures · Bone mass

Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease 
occurring more frequently in women. RA affects approxi-
mately 1% of the overall population and is characterized by 
persistent synovitis which causes destruction of the cartilage 

and bone, eventually leading to joints disability, deteriora-
tion in quality of life, lack of independence and labor capac-
ity loss [1, 2].

The goal of management in chronic inflammatory 
arthropathies, is to control the disease activity, reduce 
symptoms, slow the progression of structural damage and 
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whenever it’s possible, prevent further complications as irre-
versible bone destruction. Loss of bone mineral density in 
the course of inflammatory arthropathy is a well-recognized 
phenomenon. Inflammation is associated with different del-
eterious outcomes affecting both bone and general health of 
the patient. The objective of this article is precisely to review 
the mechanisms involved in bone loss and the clinical and 
therapeutic implications that the clinician should consider 
as part of the comprehensive management of patients with 
inflammatory arthropathies, using rheumatoid arthritis as a 
model [3, 4]. Search strategy included key words such as: 
chronic arthritides, osteoporosis, fractures, chronic inflam-
mation, low bone mineral density. We included meta-anal-
ysis, reviews, original series related to chronic arthritides, 
osteoporosis, fractures and low bone mineral density.

Pathophysiology of bone structural damage

Chronic inflammatory manifestations in RA are driven 
by a constellation of cytokines such as IL-1, IL-6, IL-17, 
IL-23 and tumor necrosis factor (TNF-α) released from the 
inflamed synovium that leads to enhanced osteoclastic activ-
ity. In adults, prior to menopause and aging, bone turnover 
is tightly coupled and, bone resorption and bone formation 
processes are balanced and in a state of equilibrium. In 
inflammatory joint diseases, this balance is lost and there 
is enhanced osteoclastic activity and decreased osteoblas-
tic activity [5]. Also, there is often an inverse relationship 
between inflammatory activity levels and bone mineral 
density. Understanding this process provides a rational for 
therapeutic interventions [6, 7].

The bone remodeling cycle is a process in which there 
is activation of osteoclasts from precursors, resorption, a 
reversal and a bone formation phase mediated by osteoblasts. 
Bone mass is maintained in adults through repeated resorp-
tion of mature bone by osteoclasts and formation of new 
bone at site of resorption. This remodeling cycle is con-
stant and replace approximately 10% of bone mass yearly 
in humans [8, 9].

Osteoclasts are essential mediators of bone resorption 
under physiological conditions. In the RA synovium there 
are immune cells with phenotypic features of osteoclasts 
included in resorption lacunae at the bone synovial interface. 
Both the pannus and the inflammatory synovium are sources 
of myeloid precursors and immunomodulatory and proin-
flammatory factors that stimulate osteoclastogenic activity. 
Macrophage lineage cells can differentiate into osteoclasts 
induced by factors produced in RA synovium particularly 
the receptor activator for nuclear factor κB ligand (RANK-L) 
and macrophage colony-stimulating factors (M-CSF). The 
synovium adjacent to the resorption sites has been shown to 
be an abundant source of RANK-L [5, 7, 10].

Another crucial player, that will be discussed later on 
is the Wnt system and its regulators. The Wnt system, and 
its inhibitors sclerostin (SOST) and Dickkopf-1 (DKK1), 
can precisely regulate the RANK-L/Osteoprotegerin (OPG) 
ratio, which, as we previously mentioned, is crucial for 
balancing bone resorption/apposition [11]. For instance, 
in multiple myeloma, the overproduction of DKK1 causes 
increased bone resorption and decreased bone formation 
[12]. (See Fig. 1) This makes DKK1 an exemplary regulator 
of bone turnover. Interestingly, changes in DKK1 levels have 
been linked to disturbances in the bone turnover coupling. In 
diseases such as multiple myeloma and rheumatoid arthritis, 

Fig. 1   Rheumatoid arhthritis and bone damage. IL interleukin, RANK-L receptor activator for nuclear factor κB ligand, DKK-1 Dickkopf-1, 
MMPs metalloproteases, PMN polymorphonuclear cells
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DKK1 is overexpressed, leading to bone destruction and ero-
sions [2, 13, 14]. In contrast, in ankylosing spondylitis, dif-
fuse idiopathic skeletal hyperostosis (DISH), and fibrodys-
plasia ossificans progressive, DKK1 serum levels are below 
average, causing uncontrolled apposition of calcified tissue 
in both skeletal and non-skeletal areas [15, 16]. It is worth 
noting that TNF-α, a crucial cytokine in the pathogenesis 
of bone loss in chronic arthritides, significantly increases 
DKK1 expression [17].

Several studies and publications highlighted the impor-
tance of therapeutic regimens (biologic and non-biologic 
agents) in patients with RA to control inflammation and 
ameliorates bone impairment. In patients with RA, lym-
phocytes T, B and synovial fibroblasts express RANK-L 
protein, RANK-L precursors and tartrate-resistant acid 
phosphatase (TRAP). Osteoblasts and RANK-L are required 
for osteoclasts differentiation and function. Denosumab 60 
and 180 mg demonstrated to decrease modified Sharp ero-
sion score with a significant inhibition of erosions at both 
doses at 12 months [3, 18–21]. Although the mechanism 
of bone impairment associated to RA is well known, it is 
still not always possible to prevent it, even with appropriate 
initial treatment. As a matter of fact, many patients with RA 
experience radiographic progression despite being in clinical 
remission. This unmet need of RA will be discussed forward 
in this paper.

Animal models and joint damage

Animal models have shown that blockade of osteoclasts rep-
resents a logical approach to prevent bone resorption in RA. 
RANK-L knockout mice have an absence of osteoclasts and 
despite marked synovial inflammation and pannus formation 
these mice do not develop significant bone erosions com-
pared to control mice [22].

This fact highlights the concept that osteoclasts play an 
instrumental role in the pathogenesis of focal bone ero-
sions in RA. In addition to increased resorption, there is a 
decreased bone formation at the erosion sites in active RA 
indicating uncoupled bone remodeling. Importantly, when 
joint inflammation is reduced by treatment, a partial restora-
tion of bone formation may occur. Osteoblast differentiation 
involves both Wnt ligands and bone morphogenetic proteins 
(BMPs) to induce of bone formation. SOST and DKK1 are 
inhibitors of the classical canonical Wnt/β-Catenin signaling 
pathway, blocking the interaction between the receptor com-
plex consisting of low-density lipoprotein receptor-related 
protein 5 and 6 (LRP5/6), Frizzled and Wnt, resulting in a 
degradation of β-Catenin and inhibition of bone formation. 
An antibody to SOST has been shown to increase bone mass 
in animal models and humans as well as fracture repair [4, 
5, 7, 23].

Synovial fibroblasts are a very rich source of DKK1, and 
TNF-α is an important inducer [19, 24–26] Diarra et al. 
provided insights into the mechanism for the suppression 
of bone formation and repair in RA using animal models. 
They found inflamed synovial tissues in animals expressed 
high levels of DKK1. The author also showed that treat-
ing arthritic animals with anti-DKK1 antibody resulted in 
a marked inhibition in focal articular bone resorption. This 
effect was attributed to an increase in the production of 
OPG, a potent inhibitor of RANK-L [27].

Autoantibodies related to bone erosion

Two phases have been recognized in the pathogenesis 
of bone loss in patients with RA. An autoimmune phase 
induced by environmental factors such as smoking and envi-
ronmental pollution [28]. During this phase patients may 
develop rheumatoid factor (RF) and anti-citrullinated protein 
antibodies (ACPA) over 10 years before clinical manifesta-
tion of the disease [1]. Additionally, an inflammatory phase 
possibly induced by an infection or other environmental trig-
gers may lead to a chronic inflammatory state that can affect 
multiple organs including bone [29].

RA patients have an increased fracture rate that includes 
both vertebral, non-vertebral and hip fractures due to not 
only trabecular but also cortical bone loss in RA patients 
[1]. Bone structure damage includes reduced trabecular bone 
volume, cortical bone thickness, increased cortical porosity 
and overall reduced volumetric BMD. Interestingly, these 
findings have been seen in ACPA-positive non arthritic 
individuals compared to ACPA-negative controls. Several 
observations support that bone metabolism is altered before 
the onset of clinical manifestations of RA. ACPA-positive 
patients are at risk for developing severe bone erosions with 
extensive resorption of the trabecular network. Bone loss 
is strongly associated with ACPA positivity in RA. Higher 
ACPA titers correlate with increased systemic osteopenia, 
suggesting that ACPA might contribute to bone loss either 
directly or increasing systemic inflammation [6]. Llorente 
et al. described that ACPA was associated with baseline 
bone mass independently of disease activity suggesting a 
direct effect of ACPA on bone [30]. This was further con-
firmed in patients without clinical signs of RA who dis-
played signs of bone loss in metacarpal bone [31].

Complexes of ACPA and RF induce robust cytokine pro-
duction from human macrophages. TNF-α induces TRAP 
positive in the absence of RANK-L through the induction 
of the NF-kB pathway, TNF-α induces RANK expression 
by osteoclast precursors and TNF-α and RANK-L cooperate 
to induce osteoclast formation in a TNF receptor associated 
factor 6 (TRAF-6) independent pathway through TRAF-3 
signaling. IL-6 is also a powerful molecule to induce 
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osteoclast differentiation. In aggregate ACPA titer has been 
shown to aggravate bone impairment with eventually the 
development of osteoporosis and fractures in patients with 
RA [32–36].

Other autoantibodies associated to bone 
damage

Some proteins resulting from posttranslational modified 
protein epitopes (PTM) are capable of triggering an auto-
immune response in a healthy individual, through processes 
other than citrullination. Some examples are the autoanti-
bodies against carbamylated protein (anti-CarP), acetylated 
proteins, malondialdehyde, malondialdehyde-acetaldehyde 
and other post-translated modified epitopes, which has 
gained more clinical interest in the last decade [37]. Anti-
CarP are also associated with higher disease severity and 
increased bone erosion in RA subjects, although more 
research is needed to know the participating mechanisms 
[37–39].

A recent study evaluated the presence of anti-acetylated 
peptide antibodies (AAPA) in 531 patients with RA and 
other inflammatory diseases, and 99 healthy controls. The 
authors found that 60% and 68.7% of patients with early RA 
and stablished RA respectively presented AAPA positivity, 
while it was detected in 7.1–30.6% of patients with other 
inflammatory pathologies. AAPA was present in 40% of RA 
seronegative patients and in 22% of healthy controls were 
positive for AAPA. This demonstrates the highly prevalence 
of AAPA in RA independently of the presence of RF [40].

Fc gamma receptors family (FcγRs) possess four different 
classes known as FcγRI, FcγRIIB, FcγRIII and FcγRIV, that 
differ in their IgG binding capacity and downstream sign-
aling pathways [41]. Osteoclasts share many features with 
macrophages and both express FcγR with FcγRI, FcγRIIB 
and FcγRIIIA being upregulated during human ex vivo oste-
oclastogenesis. This suggests that FcγR regulate osteoclastic 
activity and bone resorption. The positive effects of FcγR 
signaling on osteoclastogenesis suggest that autoantibodies 
or autoimmune complexes could directly enhance osteoclas-
tic activity and osteoclast—mediated bone loss in patients 
with RA [1].

Affinity purified autoantibodies against citrullinated 
vimentin from RA patients, but not ACPA-depleted serum 
IgG were able to enhance osteoclastogenesis and bone 
resorption in ex vivo osteoclastogenesis assays [42]. This 
effect occurs on direct binding of autoantibodies to oste-
oclasts and their precursors resulting in the release of the 
pro-inflammatory cytokine TNF-α. Bone marrow edema in 
subchondral bone in RA predicts the development of bone 
erosions. Synovial inflammation induces bone loss by trig-
gering an imbalance between bone resorption and formation. 

The synovial inflammatory tissue instructs T cells to pro-
duce M-CSF and RANK-L which induce osteoclastogenesis. 
RANK-L is highly expressed in the synovial membrane of 
patients with RA leading to osteoclastic differentiation and 
activation. Denosumab, a human RANKL monoclonal anti-
body, increases lumbar spine BMD and reduces vertebral 
and non-vertebral fracture rates in postmenopausal women 
with osteoporosis but also protects patients with RA from 
bone erosions by arresting osteoclastic formation and acti-
vation. TNF-α, IL-1β, IL-6 are involved in the osteoclastic 
activation leading to bone loss in RA and TNF-α blocks 
bone formation by production inhibition of osteoblast dif-
ferentiation such as DKK1 and sclerostin in addition to 
enhance osteoclast differentiation. Therefore, blocking these 
cytokines can suppress bone erosions in addition to inhibit 
inflammation. IL-17 is one of the major drivers of RANK-
L production by fibroblasts in the synovial pannus [7, 32]. 
Besides the direct action of autoantibodies on osteoclas-
togenesis, the release of inflammatory cytokines by mac-
rophages upon antibody stimulation has been identified to 
enhance osteoclast differentiation and function. Lack of bal-
ance between pro and anti-inflammatory cytokine activities 
drives the induction of chronic inflammation and joint dam-
age. Macrophages play an instrumental role in the cytokine 
production in the joints of patients with RA and are a major 
source for most of the main mediators of disease, such as 
TNF-α and IL-6 but also other cytokines involved in the 
disease process such as IL-1β, IL-8 and chemokine (C–C 
motif) ligand 2 (CCL2) [7].

Inflammation and bone impairment

During the last three decades, many studies have shown 
that besides the joint inflammation and destruction, bone 
mass and mineral density is lower in patients with RA when 
compared with healthy controls and the risks of osteopo-
rosis and fractures are clearly increased [6, 43–45]. Most 
epidemiological studies provide a fracture risk increased by 
1.5 to twofold among patients with RA compared to general 
population In the United States. Data from the National Data 
Bank for Rheumatic Diseases indicated that osteoporosis 
fractures are the third cause of mortality in RA [46, 47]. 
Compared to non-arthritic age matched group the risk of 
sustaining any clinical fracture in the RA group was 1.49 
(1.26 vs. 1.75 p < 0.001). The risk of sustaining a hip frac-
ture significantly increased in the RA group (2.03 vs. 4.51 
(p < 0.001) [48].

Highly sensitive C-reactive protein (CRP) level is a pre-
dictor of the risk of fracture that is underlying the role of 
systemic inflammation. Studies of RA and fractures are 
listed in Table 1. Some studies showed alterations in bone 
mineral density, geometry and microarchitecture among 
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patients with RA compared to healthy individuals which 
may impair bone strength and lead to increased risk of frac-
tures. Compared with controls, patients with RA had signifi-
cantly larger bone area and lower total and trabecular vBMD 
at both distal radius and tibia. Lower cortical bone thickness 
was also shown at distal tibia assessed by HRpQCT tech-
niques [49, 50] (See Table 1).

Compared to patients with RA and without fractures, 
patients with fragility fractures showed lower trabecular 
and cortical vBMD, thinner cortical bone, impaired trabec-
ular microstructure and a trend of declined bone strength. 
Advanced age, low BMI, female sex, disease duration and 
activity were associated with decreased vBMD and impaired 
microstructure [51].

Simon et al. performed a cross sectional study to define 
normal sex and age dependent values of intra articular bone 
mass and microstructure in the metacarpal heads of healthy 
individuals by HR-pQCT and the effect of RA on these 
parameters. Human cadaveric metacarpal heads were used 
to define intra articular bone. Total, cortical and trabecular 
bone densities as well as microstructural parameters were 
compared between the different ages and sexes in healthy 
individuals and between metacarpal heads, the radius and 
between healthy individuals and RA patients [52].

This cadaveric study allowed exact definition of the 
intraarticular and intracapsular bone margins. These data 
were applied in measuring intra-articular and radial bone 
parameters in 214 women and men (108 healthy controls, 
106 RA patients). Correlations between intra-articular 
and radial bone parameters were good (r = 0.51 to 0.62, 
p < 0.001). In contrast to radial bone, intra-articular bone 
remained stable until 60 years of age (between 297 and 
312 mg HA/cm3) but decrease significantly (p < 0.001) in 
women thereafter (237.5 ± 44.3) with loss of both corti-
cal and trabecular bone. RA patients showed significant 
(p < 0.001) loss of intra-articular total (263 ± 44.8), trabecu-
lar (171.2 ± 35.6) and cortical bone (610.2 ± 62) compared 
with sex and aged- adjusted controls [52].

Pathological bone metabolism in RA

The incidence of osteoporosis in patients with RA is approx-
imately twice as high as that of the general population of 
similar age. RA patients have a 1.3-fold increased risk of 
femoral fractures and 2.4-fold increased risk of spinal frac-
tures [43, 45, 53, 54]. Osteoporosis is a comorbidity found 
in 40–50% of patients with RA. Factors contributing to this 
high incidence are: postmenopausal status, inflammation, 
high levels of proinflammatory cytokines produced by pan-
nus, deteriorated cortical bone quality, impaired mobility, 
GC, nutritional deficiency and low vitamin D levels [55].

The prevalence of vertebral fractures ranges from 8 to 
50%; the risk of fracture, despite the site, is always higher 
in RA patients than in the general population. In a large 
case–control study of 30,262 patients with RA, using the 
British General Practice Research Database, the increased 
risk of fracture compared to the general population was most 
marked at the hip (RR: 2.0, 95% CI 1.8–2.3) and spine (RR: 
2.4, 95% CI 2.0–2.8) [6, 56].

In the Women’s Health Initiative prospective study (WHI) 
the risk of sustaining any clinical fracture comprising self-
reported spinal fracture in the RA group was 1.49 (1.26, 
1.75) when compared to the non- arthritis group (p < 0.001) 
[46, 48]. Moreover, the risk of sustaining a hip fracture 
significantly increased in the RA group (3.03, 2.03, 4.51) 
(p < 0.001) [48]. A Canadian nested-case control study 
conducted using Quebec physician billing and hospital dis-
charge data found that the incidence rate of non-vertebral 
osteoporotic fractures is 11/1000 person-years in the popula-
tion of RA patients aged 50 years and more [46]. In another 
large study conducted based on a health database on both 
sexes aged more than 18 years comparing 92,827 RA to 
921,715 non-RA controls, the incidence rate of fracture at 
any of the four sites (wrist, humerus, hip and pelvis) among 
RA patients was 9.6 per 1000 person-years and 1.5 times 
higher than that of non-RA patients (6.3 per 1000 person-
years) particularly in those patients receiving GC [46].

Epidemiological studies on the frequency of fractures in 
RA populations can be observational, case-controlled, con-
ducted on databases or prospective. Most of them provide a 
fracture risk increased by 1.5 to 2.0-fold among patients with 
RA compared to the general population [6, 44–46]. Patients 
with RA are at high risk of vertebral fractures. However, the 
prevalence of spine fractures varies according to the popu-
lation included (age, women alone or both sexes, etc.), the 
way to assess fractures (VFA of Rx) and the source of data 
(cohort, registry, randomized trial).

Risk factors independent from inflammation

Many patients with RA receive GC during flares. It is well 
known that GC suppresses osteogenesis through initiation 
of apoptosis of osteoblasts, inhibition of Wnt signaling path-
ways and regulation of microRNA expression in osteoblasts 
and osteocytes. On the other hand, excessive GC also sup-
press the OPG expression and promote bone resorption [7, 
57]. Fracture incidence in RA patients exposed to GC is 
twice as it is among non-exposed patients. However, some 
controversy still remains on the true harmfulness of short-
term, and low dose treatment with GC in active RA. These 
controversies are based on the established benefits of GC in 
controlling disease activity, improving mobility, that may 
counterbalance the deleterious effects on GC on bone. So 
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far, the most disseminated FRAX version is not able to dis-
criminate between long and short-term users or between 
high and low GC doses. For this reason, in some national 
guidelines FRAX is not included to stratify patients’ risk 
and in others is included only in the GC dose adjusted ver-
sion [58–60].

In a large cross-sectional study including patients previ-
ously or currently exposed to GC at doses ≤ 5 mg/day of 
prednisone did not seem to be associated with negative 
effects on bone mineral density. Higher daily GC dosages 
lost their negative association with BMD after adjust-
ment for confounding factors. In patients with RA GC 
doses > 7.5 mg daily seemed to be negatively associated 
with BMD only in combination with moderate or high dis-
ease activity. GC should be used in an optimum dose with 
both benefit and harm in mind to achieve remission and to 
support bone health in patients with chronic inflammatory 
rheumatic diseases [61].

Another risk factor to take into account is the concomitant 
use of proton pump inhibitors (PPIs), which are the most 
commonly prescribed medication for patients with RA along 
with GC [62]. In 2010, the FDA issued a warning about the 
potential risk of fracture associated to PPI’s consumption, 
this warning was updated in 2011 [63]. The potential side 
effects of these drugs on bone health have been evaluated 
in the last years, and it’s believed that the hypochlorhydria 
induced by the PPIs mechanism of action impairs calcium 
solubility and decrease its absorption, leading to secondary 
hyperparathyroidism and bone resorption. This impairs bone 
mineral density and increases the risk of fractures [64].

Abtahi et al. evaluated the association between concomi-
tant use of oral GC and PPIs and the risk of osteoporotic 
fractures in 12,351 patients with RA. This study found that 
concomitant intake of oral GC and PPIs was associated with 
a 1.6-fold increased risk of osteoporotic fractures compared 
with non-use (adjusted HR: 1.60, 95% CI 1.35 to 1.89). In 
patients taking GC or PPI alone, there was a statistically 
difference from a 1.2-fold increased osteoporotic fracture 
risk associated [62].

Hypomagnesaemia is another effect well described in lit-
erature, which may cause an imbalance between osteoblastic 
and osteoclastic differentiation enhanced by the activity of 
the nitric oxide, reducing osteoblastic activity. Magnesium 
is also a cofactor for vitamin D-intermediates hydroxylation 
pathways and the lacking of this mineral might impair PTH 
secretion making organs as kidney and bone resistant to its 
action [65].

Hinson et al. found that chronic PPIs exposure was asso-
ciated with mild hyperparathyroidism in elderly adults. 
Chronic PPI exposure was associated with statistically sig-
nificantly higher PTH levels (65.5 vs. 30.3 pg/mL, p < 0.001; 
normal range 10–55 pg/mL) regardless of concurrent use of 
oral bisphosphonates [66].

Effects of RA treatment on bone metabolism 
and risks of fracture

Inflammatory cytokines such as TNF-α and IL-6 promote 
RANK-L expression in the synovial tissue in RA. RANK-
L-independent osteoclast-like cells induced by TNF-α 
and IL-6 under RA condition have been found. Besides, 
TNF-α increases the expression of DKK1 which inhibits 
osteogenesis. These facts suggest that the treatment of RA 
with biological agents (bDMARD) and janus kinase (JAK) 
inhibitors have protective effects on bone metabolism [2, 
32]. However, a recently published post hoc analysis from 
the ORAL surveillance study found that tofacitinib treat-
ment (10 mg bid) was associated with a higher incidence 
of fragility fractures compared to TNF inhibitors [67]. 
Such result has been corroborated by another study that 
analyzed the World Health Organization (WHO) phar-
macovigilance database and found a disproportion on the 
osteoporosis related adverse events reports for tofacitinib 
[68]. Nonetheless, Pawar and colleagued compared the 
risk of non-vertebral fractures risk among patients treated 
with tsDMARDs and bDMARDs and found no incremen-
tal risk in the latter population [69]. More studies related 
to biologic agents and fracture reduction in patients with 
RA are warranted.

Final remarks

Chronic rheumatic diseases include a wide spectrum of 
inflammatory conditions characterized by destruction 
of several skeletal structures. Bone tissue is commonly 
involved in many rheumatic diseases and osteoporosis 
and fractures are the most frequent disease and complica-
tions. Physicians should be aware of the increased risk of 
developing osteoporosis in these patients. These effects are 
induced by a constellation of cytokines produced by pan-
nus and may be moderated using appropriate treatments 
such as biologic agents and antiosteoporotic drugs as bis-
phosphonates, denosumab and teriparatide.

Chronic administration of steroids at doses higher than 
5 mg for more than 3 months imposes a greater risk to 
develop osteoporosis. It is very important to ensure an ade-
quate calcium intake, keeping levels of vitamin D above 
30 ng/mL and reaching remission of the arthritis as soon 
as possible, to maintain independence in activities of daily 
living and mobility. Finally, sarcopenia should be consid-
ered and avoided by performing active exercises programs.
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