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Abstract

A new method for measuring diffusion in the condensed phase of single aerosol particles is

proposed and demonstrated. The technique is based on the frequency-dependent response of a

binary particle to oscillations in the vapour phase of one of its chemical components. We discuss

how this physical situation allows for what would typically be a non-linear boundary value prob-

lem to be approximately reduced to a linear boundary value problem. For the case of aqueous

aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear

problem through a comparison with the numerical solution of the full problem. Then, using ex-

perimentally measured whispering gallery modes to track the frequency-dependent response of

aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a func-

tion of water activity. The measured diffusion coefficients are compared to previously reported

values found using the two common experiments: (i) the analysis of the sorption/desorption of

water from a particle after a step-wise change to the surrounding relative humidity and (ii) the

isotopic exchange of water between a particle and the vapour phase. The technique presented

here has two main strengths: First, when compared to the sorption/desorption experiment, it

does not require the numerical evaluation of a boundary value problem during the fitting process

as a closed-form expression is available. Second, when compared to the isotope exchange ex-

periment, it does not require the use of labeled molecules. Therefore, the frequency-dependent

experiment retains the advantages of these two commonly used methods but does not suffer

from their drawbacks.
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1 Introduction

Secondary organic aerosol (SOA) particles, formed after volatile organic compounds are oxi-

dized and condense,1–7 can be highly viscous under a wide range of atmospheric conditions.8–11

The high viscosity condensed phase of the SOA slows mass transfer due to low diffusivity.

Characteristic equilibration times associated with diffusion will be much larger in a high vis-

cosity SOA particle than in a liquid-phase particle.12 This can influence reactive uptake13–16

and greatly diminish the rate of water sorption and desorption.17,18

Accurate measurements of water diffusivity in SOA are key to modelling gas-particle parti-

tioning and understanding mass transport in the particle phase of atmospheric aerosols. Labo-

ratory based, single particle techniques allow measurements with low uncertainties due to the

absence of distributions in size and composition that will be present in an ensemble of aerosol

particles.19–25 For studies of SOA in the lab, binary systems consisting of water and a surrogate

for the oxygenated organic material found in an SOA are often examined due to ease of prepa-

ration and the availability of tabulations of physical parameters for such aqueous systems (e.g.

sucrose is commonly used). However, even in a model system, determining water diffusivity

across an atmospherically relevant range of temperature and relative humidity (RH) can be

challenging. First, small diffusivity that occurs at low temperature and/or low RH can result

in experimental timescales of days.17,26–28 Second, the retrieval of diffusion coefficients through

the analysis of measured data sets is not always easy. In the common sorption/desorption

experiment, the response of a particle to a step-wise change in RH is measured. Analyzing this

response is complicated and time consuming as the mathematical model (a non-linear boundary

value problem) needs to be evaluated numerically.17
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An alternative to the sorption/desorption experiment is the isotope exchange experiment.29–31

A particle is first equilibrated at the RH of interest using vapour that is pure H2O. Then, while

maintaining the same RH, the vapour source is changed to pure D2O. The uptake of D2O

(and loss of H2O) by the particle is easily tracked using Raman spectroscopy and the diffusion

coefficient can be determined from the change in the intensity of the scattered Raman light

over time. Analyzing the measurements does not involve the same mathematical complexity as

the sorption/desorption experiment due to the constant RH.32 The size of the particle remains

approximately constant so there is no moving boundary. Additionally, the activity of water

is uniform throughout the particle so the diffusion coefficient is constant (there are gradients

in the concentrations of H2O and D2O but not in overall amount of water). Finally, the non-

linear boundary condition that exists at the surface of the particle for the sorption/desorption

experiment is linear for the model that describes the isotope exchange experiment as the con-

centration of water at the surface does not change. All of these simplifications yield a linear

boundary value problem that can be solved analytically. The closed-form solution to the diffu-

sion problem makes the analysis of measurements much more straightforward compared to the

sorption/desorption experiments.

Despite the simplifications that the isotope exchange experiment introduces to the analysis

of measurements, it currently cannot be thought of as a replacement for the sorption/desorption

experiment. This is because large discrepancies (in some cases orders of magnitude) between

diffusion coefficients retrieved using the two experiments have been reported.31,33 As of now

there is no satisfactory explanation as to the origin of these discrepancies and the preferred

use of results from the sorption/desorption experiment has been justified on the basis that the

experiment provides a closer representation of actual atmospheric processes.33
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In this work, we propose and demonstrate a new method to measure diffusion coefficients

in binary particles containing a volatile and a non-volatile component. The method relies on

measuring the frequency-dependent response (e.g. change in radius) of a particle to oscillations

of one of its chemical components in the vapour phase. Approximate analytical solutions to this

non-linear boundary value problem are found and discussed (Section 2). Then, the accuracy

of these solutions are assessed through a comparison to numerical simulations for an aqueous

sucrose particle as the RH oscillates at different frequencies (Section 3). Through the use of

simulations and experiments, it is shown that shifts in whispering gallery modes modes (WGMs)

are sensitive enough to track the response of a particle to very small RH oscillations (Sections 4

and 5). The closed-form expression for the amplitude of the oscillations is then used to analyze

measurements from both aqueous sucrose and citric acid particles (Section 5). This analysis

involves both the retrieval of diffusion coefficients from frequency-dependent measurements and

a comparison to previous parameterizations of diffusivity.

2 Theory

2.1 Overview

We will develop a mathematical model that describes the time-dependent change in the radius

of a particle containing two chemical components as the vapour phase concentration of one

component varies (e.g. by changing the RH if one component is water). We will focus on the

specific case where the variations in vapour phase concentration are small and vary sinusoidally

over time. Furthermore, we will assume that one component of the particle is non-volatile.

Section 2.2 outlines the boundary value problem and Section 2.3 provides an analytical solution
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to the problem of determining the concentration profile inside the particle while vapour phase

oscillations take place. Finally, in Section 2.4 the solution from Section 2.3 is used to determine

the time-dependent radius of the particle.

2.2 Statement of the problem

For a binary system containing species A and B with mass concentrations ρA and ρB, velocities

vA and vB, and mass fractions wA and wB the convection-diffusion equation for A is34

∂ρA
∂t

+∇ · (ρAv) = ∇ · (ρD∇wA) (1)

and the continuity equation is

∂ρ

∂t
+∇ · (ρv) = 0, (2)

where ρ is the mass density of solution, ρ = ρA+ρB, D is the concentration-dependent diffusion

coefficient, and v is the mass average velocity, v = wAvA + wBvB. We have used the Fickian

formulation of mass transfer where the non-ideality of the system is incorporated into D.35 If

the problem had been formulated using molar units, D would be identical.

For a spherical particle with a time-dependent radius, s(t), and a mass concentration that

only depends on r and t (spherical symmetry) the model is

∂ρA
∂t

+
1

r2
∂

∂r
(r2vrρA) =

1

r2
∂

∂r

(
r2ρD

∂wA
∂r

)
for 0 < r < s, t > 0, (3)

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρvr) = 0 for 0 < r < s, t > 0, (4)

where vr is the radial component of v.

For a particle where s(0) = s0, the initial conditions are

ρA = ρA0 and vr = 0 for r ≤ s0, t = 0. (5)
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Symmetry can be used to find the two boundary conditions

∂ρA
∂r

= 0 and vr = 0 at r = 0, t > 0. (6)

A third boundary condition can be found by assuming that the time-dependent mass concen-

tration of A outside of the particle, ρvA(t), is uniform across r and, at that the surface of the

particle, ρA is in equilibrium with this concentration. This gives

ρA =
RTsρs
γp0Ms

ρvA at r = s, t > 0, (7)

where γ is the activity coefficient of A for wA at r = s, p0 is the vapour pressure of A, R is

the gas constant, Ts is the temperature, Ms is the average molar mass of the solution at r = s,

and ρs is the mass density of the solution at r = s. The effect of surface curvature has been

ignored. For brevity, we will write the boundary condition in Eq. 7 as ρA = β(t) at r = s when

discussing it in the following sections.

The final boundary condition can be found by first examining the mass conservation of B

across the surface of the particle:

(ρvB − ρB)
ds

dt
= jvB,r − jB,r + ρvBv

v
r − ρBvr at r = s, t > 0, (8)

where ρvB is mass concentration of B outside of the particle (in the vapour phase), jB,r and

jvB,r are the mass fluxes inside and outside of the particle, respectively, and vvr is the mass

average velocity outside of the sphere. Eq. 8 can be reduced as follows:36 First, assume that

B is non-volatile. This allows one to set ρvB = 0 and jvB,r = 0 for r > s. Second, insert the

relationship jB,r = −jA,r into the equation and apply the definition jA,r = −ρD∇wA. Then,

after some manipulation, Eq. 8 can be rewritten as

ds

dt
= vr +

D

1− wA
∇wA at r = s, t > 0. (9)
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2.3 Solution to the boundary value problem

The boundary value problem of interest is defined by Eqs. 3, 4, 5, 6, 7, and 9. For the

experiment discussed in Section 2.1, we define β(t) as

β(t) = ρA0 + ε sinωt, (10)

where ω and ε are the angular frequency and amplitude of the oscillations of the mass concen-

tration of A in the particle phase at r = s, respectively. In the following analysis we will assume

that the oscillations of A in the vapour phase are small and, therefore, ε� ρA0 . Consequently,

we will only be dealing with small changes in ρ and we will assume that the equilibrium mass

density ρeq is a linear function of ρA:

ρeq
ρ0

= 1 + α(ρA − ρA0), (11)

where ρ0 is the mass density of solution when ρA = ρA0 . Furthermore, because the variation of

ρ with r is small we will also assume that ∇ · (ρD∇wA) ≈ ∇ · (D∇ρA).

Setting ρeq = ρ in Eq. 11 and inserting the result into Eq. 4 gives an equation that can be

combined with Eq. 3 and integrated using the boundary condition in Eq. 6 to obtain

vr =
αD

αρA0 − 1

∂ρA
∂r

. (12)

With Eq. 12, vr can be eliminated from Eq. 3 to yield

∂ρA
∂t

=
1

r2
∂

∂r

(
r2Dc

∂ρA
∂r

)
, (13)

where

Dc = D

(
1− αρA

αρA0 − 1

)
.
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Again, because ε � ρA0 , both Dc and s(t) will be approximately constant. Therefore, we can

form the following linear boundary value problem from Eqs. 5, 6, 7, and 13:

∂ρA
∂t

=
Dc

r2
∂

∂r

(
r2
∂ρA
∂r

)
for 0 < r < s0, t > 0, (14)

ρA = ρA0 + ε sinωt at r = s0, t > 0, (15)

∂ρA
∂r

= 0 at r = 0, t > 0, (16)

ρA = ρA0 for r ≤ s0, t = 0. (17)

where ρA in Dc is set equal to ρA0 . An analytical solution to this problem can be found using

the method of eigenfunction expansion:

(18)
ρA(r, t) = ρA0 + ε sinωt+

∞∑
n=1

2s30(−1)nωε

r(π5n5D2
c + πns40ω

2)
sin

(
πnr

s0

)(
π2n2Dc cosωt

+ s20ω sinωt− π2n2Dce
−π2n2Dct/s20

)
.

Using the dimensionless variables

r̃ =
r

s0
, ω̃ =

s20ω

Dc

, t̃ =
Dct

s20
, ρ̃A =

ρA
ρA0

, and ε̃ =
ε

ρA0

,

Eq. 18 can be rewritten as

(19)ρ̃A(r̃, t̃) = 1 + ε̃ sin ω̃t̃+
2ω̃ε̃

r̃

∞∑
n=1

(−1)n sin πnr̃

π5n5 + πnω̃2

(
π2n2 cos ω̃t̃+ ω̃ sin ω̃t̃− π2n2e−π

2n2 t̃
)
.

Fig. 1 shows ρ̃A as a function of r̃ at various t̃ and ω̃. When ω̃ is very small, the spherical

particle will essentially equilibrate with the vapour at any t̃ and ρ̃A will be nearly constant

across r̃. As ω̃ increases, larger gradients in ρ̃A occur. These gradients are strongest near the

surface (r̃ = 1) and decrease when moving towards the particle centre (r̃ = 0). This inner-

surface localization of the gradients becomes more pronounced with increasing ω̃. Eventually,

at very large ω̃, ρ̃A ' 1 everywhere except at r̃ = 1.
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2.4 Time-dependent radius

To determine s(t), we first insert Eq. 12 into Eq. 9 and apply the approximations discussed

earlier. This yields

ds

dt
= Ds

∂ρA
∂r

at r = s0 for t > 0, (20)

where

Ds = D

(
α

αρA0 − 1
+

1

ρ0 − ρA0

)
. (21)

Then, inserting Eq. 18 into 20 and integrating with respect to time gives

s(t) = s0 + 2s0εDs

∞∑
n=1

s20ωe
−π2n2Dct/s20 + π2n2Dc sinωt− s20ω cosωt

π4n4D2
c + s40ω

2
. (22)

Using various trigonometric relationships and evaluating the infinite series that are products

with the sin and cos functions in Eq. 22 yields

s(t) = s0 + C sin(ωt+ θ) + 2s0εDs

∞∑
n=1

s20ωe
−π2n2Dct/s20

π4n4D2
c + s40ω

2
, (23)

where

C =
Dsε

ωs0

√
(µ cotµ− 1)(µ cothµ− 1), (24)

tan θ =
2i/µ− i cotµ+ cot iµ

i cot iµ− cotµ
, (25)

and

µ2 = i
s20ω

Dc

. (26)

For large values of t, the last term in Eq. 23 will be negligible and

s(t) = s0 + C sin(ωt+ θ). (27)

It is clear from Eq. 27 that the phase difference between the oscillations of s(t) and β(t) is θ and

that these oscillations occur with an amplitude C (when β(t) is defined using Eq. 10). It is also
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convenient that such a relatively simple expression like Eq. 27 can describe the steady-state

oscillations of s(t).

Fig. 2 shows C̃ and θ as a function of ω̃, where C̃ = CDc/(Dsεs0) (the dimensionless

amplitude). Both S-shaped curves have plateaus outside of the region between ω̃ ' 1 and

ω̃ ' 105. As ω̃ goes to zero, θ goes to zero and C̃ approaches its maximum value. As ω̃ goes to

infinity, θ goes to its minimum value of −π/4 and C̃ goes to zero.

3 Comparison between numerical and analytical results

for an aqueous particle

In this section we apply the theory developed in Section 2 to systems where species A is water

and β(t) is related to the time-dependent RH oscillations that occur in the vapour phase. As

will be shown in Section 5, such systems can be studied using single aerosol particles in a

laboratory using an RH controlled cell where measurements of C and/or θ at various ω allow

for the retrieval of D as a function of water activity. Here, we evaluate the accuracy of the

solutions found in Section 2.4 through a comparison with results found using a numerical scheme

that evaluates the non-linear boundary value problem. Numerical results are calculated using

the finite difference method outlined by Zobrist et al.17 The binary system considered here is

water and sucrose. This system is well-studied and sucrose has often been used as a surrogate

for oxygenated organics found in SOA particles.17,27,29,31,37

Fig. 3 shows the response of an aqueous sucrose particle to RH oscillations with an amplitude

of 2.5% at three different mid-point RHs. An amplitude of 2.5% was chosen as this is more than

adequate to allow for the response of a particle to be monitored using WGMs (see Sections 4
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and 5). The period, T , of the RH oscillations was 100 s (where T = 2π/ω). For these examples,

the analytical calculation of s was done using either Eq. 23 or 27. The only difference between

these two equations is the presence of the transient term in Eq. 23. This term allows Eq. 23

to correctly determine s at t = 0. Also, at small t it will more closely match the numerical

calculations. At longer t both analytical equations give similar results. From Fig. 3 it can be

seen that s determined using Eqs. 23 and 27 is systematically lower than s found numerically.

However, the accuracy of both the predicted amplitude and phase of the oscillations in s is

excellent. For the corresponding panels in Fig. 3, C calculated using Eq. 24 is (a) 0.44, (b)

1.75, and (c) 12.30 nm while the amplitude from the numerical plots is (a) 0.45, (b) 1.73, and

(c) 11.81 nm. Similarly, θ calculated using Eq. 25 closely matched the phase difference between

the RH oscillations and s calculated numerically.

The effect of RH oscillation amplitude on accuracy is examined in Fig. 4. As the amplitude

of the RH oscillations increases (Fig. 4a to d), the error between the analytical and numerical

results also increases. Several approximations are made in Section 2.3 that can lead to this

increasing error. Fig. 4e was generated using parameters identical to those used to generate

Fig. 4d except that D was constant. This leads to a significant reduction in the error between

the numerical and analytical calculations. Therefore, the assumption that D is constant with

respect to ρA appears to rapidly become invalid with increasing RH amplitude (as oppose to

the assumption of constant s or the linearization of ρ).

The above examples demonstrate the potential accuracy of the solutions presented in Section

2.4. However, only one T was considered in Figs. 3 and 4. In order to investigate the accuracy

across a larger range of conditions, C and θ were calculated both analytically and numerically

from T = 10−1 to 107 s for three different mid-point RHs (Fig. 5). Note that it is very time
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consuming to calculate multiple values of C and θ numerically whereas when Eqs. 24 and

25 are used a curve across any range of T can be generated immediately. Overall, there is

excellent agreement between the analytical and numerical calculations across this large range

of T . Therefore, Eqs. 24 and 25 can be used when analyzing the response of aqueous particles

to small oscillations in RH for systems with similar physical parameters to those analyzed here.

4 Tracking the response of a particle using WGMs

The response of a spherical particle to changes in the surrounding RH can be tracked using

WGMs. The position of the WGMs are very sensitive to both changes in s and m (refractive

index) of the sphere.22,38 For example, Fig. 6a shows the calculated extinction efficiency, Qext,

of an aqueous sucrose particle equilibrated at RH = 30%. As oscillations in RH occur, the

peaks in Qext will shift as both s and the profile of m inside the particle change in response

to the oscillating RH. In Fig. 6b, the peak associated with the TE3
57 mode is shown during

a sinusoidal RH oscillation with T = 100 s and an amplitude of 2.5%. Although the peak

only shifts several tenths of a nanometre during the RH oscillation, this type of change can

readily be detected.39 Larger amplitudes in RH oscillations will lead to larger shifts. However,

as discussed in Section 3, the accuracy of the model developed here decreases with increasing

RH amplitude. Experimentally one needs to balance the amplitude of RH oscillations with

the observed amplitude of oscillations in the WGM resonance positions. The amplitude of RH

oscillations must be large enough to give a clear signal but not so large that the model used to

analyze the data will be inaccurate.

Tracking particle response using WGMs introduces the problem that one is measuring peak

positions over time rather than the desired radius over time. For a homogeneous spherical
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particle this is not an issue as the process of determining both s and m from WGM positions

is fast and accurate.38 Here, though, the concentration profile inside the particle is no longer

uniform once the RH oscillations begin so the process of converting measured WGMs into s is

not straightforward. Using a fitting algorithm for a homogeneous sphere will not give accurate

results (except in the plateau regions of Fig. 2). In principle, peak positions for a sphere with

a non-uniform concentration profile can be calculated using an electromagnetic scattering code

for a multilayered sphere.40 For instance, the Qext curves in the previously discussed Fig. 6b

were generated using such code. However, these calculations are extremely time consuming if

the concentration profile is not known beforehand (and that would be the case during the fitting

process). Therefore, we will focus on the direct analysis of the oscillations in WGM positions

and the information that can be extracted from these measurements.

Fig. 7 shows the amplitude of the oscillations in peak position for the TE3
57 mode at

various T for aqueous sucrose at a mid-RH of 30%. The calculated amplitude from Eq. 24

is superimposed on these data points. The correlation between the curve and the data points

is quite good. This demonstrates a straightforward method for determining D as a function

of water activity: First, use the measured amplitude of mode oscillations across a range of

T to create a set of measured data points. Second, fit these measurements using Eq. 24 to

retrieve D for a particular mid-RH. Finally, perform a series of similar experiments where the

only parameter that is altered is the mid-RH. This will allow for D to be found over a range

of water activities. The tradeoffs for the simplicity of this approach are: (i) the amplitude

scale is arbitrary so information about the magnitude of the oscillations is not used during

the fitting process, and (ii) the phase of the oscillations cannot be directly extracted from the

WGM positions. This second point is a consequence of the fact that along with s changing
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during the RH oscillations so does the profile of m inside the particle. If m were uniform,

phase information could be directly extracted from the WGM positions. However, as discussed

earlier, the assumption of a homogeneous sphere is not satisfactory here so this is not feasible

with this simple method.

5 Experimental determination of diffusivity using the re-

sponse of an aerosol particle to RH oscillations

Experimental verification of the frequency-dependent method described in the earlier sections

was achieved using an Aerosol Optical Tweezers (Biral AOT-100). Details on the use of optical

tweezers for aerosol research have been presented in detail elsewhere31 and are recounted only

summarily here. Aqueous particles of either sucrose or citric acid were generated in a nebulizer

plume and introduced into an environmentally controlled chamber where a single particle be-

came confined at the focal point of a 532 nm laser (Laser Quantum 2W Opus) focused through

a microscope objective (Olympus PLFLN 100X objective). Typical trapping powers were be-

tween 30 and 50 mW. For the equilibrated particle, s0 was determined at a given mid-RH using

the observed positions of WGM wavelengths in the Raman spectrum.22,38 Raman spectra were

acquired using a Princeton Instruments Acton SP2500i spectrometer with a grating of 1200

grooves/mm and a PIX-256E CCD. After equilibration, the RH was then varied sinusoidally

with an amplitude of 2.5% by varying the ratio of wet and dry nitrogen gas flows delivered

by two mass flow controllers (MKS MF-1). The total flow rate was a constant 300 sccm. The

response of the particle to RH oscillations at various T and mid-RHs was monitored using the

location of WGM wavelengths. During the experiment, RH was measured as a function of
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time using RH probes (Honeywell HIH-4602C) that were placed before and after the trapping

chamber.

Fig. 8 shows the dependence of two WGM peaks arising from an aqueous sucrose particle

with s0 = 4630 nm at four different T and a mid-RH of 39%. For the chosen RH amplitude

of 2.5%, oscillations in WGMs are readily observed. With increasing T , the amplitude of the

WGM oscillations in both mode orders shown in Fig. 8 increases and the phase difference

between the RH oscillations and WGM oscillations approaches zero. In Section 4, we discussed

why the analysis of phase information from WGM measurements is a challenge. To reiterate,

in general, m is not uniform at any given t during the experiment so there is no straightforward

way to relate the phase of WGMs to the phase of s. Therefore, we will focus on the analysis of

amplitude for the remainder of this section. As discussed in Section 4, the amplitude of WGM

oscillations correlates well with the amplitude of oscillations in s.

The oscillatory response was measured for both aqueous sucrose and aqueous citric acid

particles for a range of T and mid-RH values. Amplitudes taken from these responses are

summarized in Figs. 9 and 10 and compared to the predicted dependencies using three pa-

rameterizations of water diffusion for sucrose17,29,31 and one for citric acid.31 In both Figs.

9 and 10, error bars of ±0.05 are representative of the uncertainty in the amplitude, arising

from the instrument response at short time periods, the amplitude at infinite time periods,

and the variability in amplitudes across all resonant modes in the Raman spectrum. Over-

all, the agreement between measurements taken using the frequency-dependent method and

parameterizations found using the isotopic exchange experiment is good.

The phase and amplitude offset in the measured RH for high frequency oscillations arise

primarily due to the time-response of the probes (with e-folding times of approximately 60 s)
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and the time for the chamber to respond (on the order of 10-30 s). Calibration experiments using

LiCl particles (assumed to exhibit no diffusion limitations under these conditions) confirmed

that the RH cycling experienced by particles in the trap retained the same amplitude across

all experimental frequencies reported. The instrument response is also shown in Fig. 10. This

represents an upper limit of the amplitude that can be measured at any given T . Based on this

limit and typical particle sizes, with the current setup, it is not possible to measure amplitudes

for aqueous systems where D is above the order of 10−13 m2/s. Therefore, the method described

here is suitable for retrieving diffusion coefficients of viscous, aqueous particles.

6 Conclusion

We have found a closed-form expression that describes the response of a particle to vapour

phase oscillations. Through a comparison with numerical results, the accuracy of this solution

was discussed for cases where aqueous particles are exposed to oscillations in the surrounding

RH and its suitability was demonstrated for RH oscillations with an amplitude of 2.5%. For

aqueous particles, it was shown, through both modelling and experiment, that the measured

amplitude from the response of WGMs to RH oscillations could be used to determine diffusivity

across a range of water activities. This represents a new method for retrieving water diffusivity

in aerosol particles. The advantages of this approach over existing methods are that it does not

require the numerical evaluation of partial differential equations during the retrieval process

(unlike the sorption/desorption experiment) and it does not require the use of isotopic labels

(unlike D2O/H2O isotopic exchange experiments). Given the benefits of this experiment we are

hopeful that it will find use in laboratories that study water diffusivity in high viscosity aerosol

particles.
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Figure 1: The dimensionless mass concentration of component A, ρ̃A, as a function of the

dimensionless radial coordinate, r̃, at various dimensionless times, t̃, for (a) ω̃ = 1, (b) ω̃ = 10,

(c) ω̃ = 100, and (d) ω̃ = 1000, where ω̃ is the dimensionless angular frequency. The values

of t̃ are between t̃ = 0 and t̃ = 2π/ω̃ (across one period). In all cases ε̃ = 0.01, where ε̃ is the

dimensionless amplitude of oscillation of ρ̃A at r̃ = 1 (the particle surface).
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Figure 3: Comparison between the radius, s, calculated analytically using either Eq. 23 or 27

and s calculated numerically for sinusoidal RH oscillations with a period, T , of 100 s and an

amplitude of 2.5% at mid-RHs of (a) 10%, (b) 30%, and (c) 50%. The diffusion coefficients at

the mid-RHs are (a) 2.92× 10−16 m2/s, (b) 2.39× 10−15 m2/s, and (c) 6.00× 10−14 m2/s. The

temperature was set to 298 K and the initial radius, s0, was 5 µm. Parameters for aqueous

sucrose were taken from Ref. 17.
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Figure 4: Comparison between the radius, s, calculated analytically using either Eq. 23 or

27 and s calculated numerically for sinusoidal RH oscillations with a period, T , of 100 s and

amplitudes of (a) 1%, (b) 2.5%, (c) 5%, and (d) 10% around a mid-RH of 30%. The temperature

was set to 298 K and the initial radius, s0, was 5 µm. Parameters for aqueous sucrose were

taken from Ref. 17. All calculations in (e) are identical to (d) except that D does not vary with

water activity and is fixed at its value when the RH = 30%.
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Figure 5: Calculated phase, θ, and amplitude, C, for spherical aqueous sucrose particles as

a function of the period, T , of sinusoidal RH oscillations with mid-RHs of (a) 10%, (b) 30%,

and (c) 50% with an amplitude of 2.5%. Analytical calculations for θ and C were performed

using Eqs. 25 and 24, respectively. Numerical values of θ and C were found by fitting results

calculated using the method described in Ref. 17. The temperature was set to 298 K and the

initial radius, s0, was 5 µm. Parameters for aqueous sucrose were taken from Ref. 17.
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Figure 6: (a) Calculated extinction efficiency, Qext, for a spherical aqueous sucrose particle

equilibrated at RH = 30%. The temperature was set to 298 K and the initial radius, s0, was

5 µm. All third order modes have been labeled. (b) The TE3
57 peak plotted in 5 s intervals

during a sinusoidal RH oscillation with a period, T , of 100 s with an amplitude of 2.5%. The

traces in (b) have been offset for clarity. Parameters for aqueous sucrose were taken from Ref.

17. Qext was calculated using the code for electromagnetic scattering from a multilayered sphere

(discussed in Ref. 40).
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caption of Fig. 6.
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Figure 8: Observed time-dependence of WGM position for the TE1
62 and TM2

56 modes in an

optically trapped aqueous sucrose particle. The RH in the trapping cell oscillates sinusoidally

with a period T and amplitude of 2.5% and has a mid-RH of 39%. Measurements of RH were

taken before and after the trapping cell and are overlaid on the mode position plots. The values

of T are (a) 200 s, (b) 333 s, (c) 1000 s, and (d) 5000 s. Mode positions were extracted from the

locations of sharp peaks in cavity-enhanced Raman spectra of the particle. The initial radius

of the particle, s0, was 4630 nm.
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Figure 9: Measured amplitude (arbitrary units) of time-dependent oscillations in one WGM for

an aqueous sucrose particle in response to RH oscillations with an amplitude of 2.5% at various

periods, T . Particles were held at mid-RHs of (a) 37%, (b) 39%, and (c) 50%. The initial radii,

s0, of the aqueous particles when they were equilibrated at their respective mid-RHs were (a)

5300 nm, (b) 4630 nm and (c) 5000 nm. Solid curves were calculated using Eq. 24 and the

parameterizations of the diffusion coefficient, D, from either Davies and Wilson,31 Price et al.,29

or Zobrist et al.17 The values of D that gave the curves of best-fit were (a) 6.89× 10−15 m2/s,

(b) 1.36 × 10−14 m2/s, and (c) 1.01 × 10−13 m2/s. All measurements and calculations were

performed at a temperature of 293 K.
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Figure 10: Measured amplitude (arbitrary units) of time-dependent oscillations in one WGM

for an aqueous citric acid particle in response to RH oscillations with an amplitude of 2.5% at

various periods, T . Particles with initial radii, s0, of 5500 nm, 5100 nm, 5500 nm, and 5600 nm

were held at mid-RHs of 16%, 18%, 22%, and 25%, respectively. Solid curves were calculated

using Eq. 24 and the parameterizations of the diffusion coefficient, D, from Ref. 31. Dotted

lines are curves of best-fit. The values of D that gave the curves of best-fit (for the listed

mid-RH) were 1.10×10−14 m2/s (16%), 2.43×10−14 m2/s (18%), 6.00×10−14 m2/s (22%), and

1.18× 10−13 m2/s (25%). All measurements and calculations were performed at a temperature

of 293 K.
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