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1. Introductlon

The Lanczos algorithm was first proposed in 1950. Lanczos intended his algorithm to be
used with 2 symmetric matrix for computing 3 few of the extreme eigenvalues and their
corresponding eigenvectors. However, the algorithm was then adopted as a method for reducing a
symmetric matrix fo tridiagonal form. Lanczos himself observed that roundofl etror has a
significant effect on the algorithm and expensive modifications became necessary to overcome this
defect. By 1955 the Householder method replaced the Lanczos algorithm as a more efficient
methoed for tridiagonalizing a matrix,

In most engineering applications only a few eigenvalues at ome end of the spectrum is
required. For small problems the Householder-QR can find 2l the eigenvalues almost as fast as a
few. For large problems, the subspace iteration method could take advantage of the fact that
only a few eigenvalues are desired and therefore was more efficient both in storage and cost than
the Householder-QR method. Recently, the Lanczos algorithm has emerged as a viable alterna-

tive to both of these methods. The reasons for the slow acceptance of the method were two fold:

1. The early users of the Lanczos algorithm avoided using matrix factorization as part of their
solution procedure. When we are interested in the eigenvalues at the left end of the spec-

trum of a positive definite system this procedure results in long and therefore expensive
Lanczos runs.

2. Computer roundoff has a strong influence on the algorithm in its basic form. This effect
appears in the form of severe loss of orthogonality among the Lanczos .vectors and so casts
doubt on the ability of the Lanczos approximations to converge to the desired values.

These defects have now been overcome and the algorithm can be used effectively to compute the

desired eigenpairs.

In this chapter we are concerned with the application of the Lanczos algorithm to the gen-

eralized symmetric eigenproblem

[K - \Mjz =0 (1)



where K and M are n X n real symmetric matrices. We assume for the moment that the eigen-
values of (1) are real. In a later section we state the conditions on X and M that maust bold to
ensure real eigenvalues. The matrices in equation (1) are obtained by some form of discretization,
such as finite element, Snite difference, lumping, etc., of the continuum problem under considera-
tion. For example in vibration analysis K and M are the stiffness and mass matrices respectively;
then the eigenvalues of (1) are the squares of the frequencies and the eigenvectors are the modes

of free vibration.

In the following sections we will derive the generalized Lanczos algorithm for the solution of
the eigenproblem (1). The interrelation between the Lanczos method and vector iteration
methods is established. We then look at the effect of round off on the algorithm and the resalting
loss of orthogonality. We consider two possible modifications to the algorithm that can maintain
3 desired level of orthogona}ity' among the Lanczos vectors. Finally, we give a detailed descrip-

tion of the algorithm we prefer together with a listing of the computer subprograms.

2. Spectral Transformation

We turn now to an important misconception concerning the Lanczos algorithm. It is usu-

ally presented as a way of computing eigenpairs, {\, 2}, of the standard eigenproblem
[A-M]s=0 (2)
The Lanczos method is so powerful that one can work directly with A to evaluate eigenvalues at
both ends of the spectrum of {2) without solving any system of equations. Only products of A
with a sequence of vectors need be computed. This virtue blinded certain users of the L anczos
method to the great advantages to be gained by a shift and invert procedure. Of course there are
cases when factoring of A is not possible (e.g. when the matrix is only known implicitly) or not

desirable (e.g. when A has a given sparsity structure that can be destroyed when factored).

However, we are more interested in the generalized eigenproblem (1). For this problem
some form of inversion or factoring of a matrix, either explicitly or implicitly, is required. It is

interesting to note that when the structure of M is the same as that of K, as in the case of a con-
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sistent mass matrix, then the cost of the power iteration method is exactly the same as that for
inverse iteration method.
There are two different procedures for transforming the generalized eigenproblem to the

standard form:

{i) Factor M into M = CC7T. This is the Choleski factorization of M. Then

(K-MM)=C({C*'KCT-acT (3)
and the eigenproblem of (1) reduces to the standard form (A, - )I)i =0 where
A, =C'KC7T and = CTs. The eigenvalues of the reduced problem are the same as

those of the generalized problem. Note that if M is positive semi-definite then its Choleski

factors are singular and this transformation can not be performed.
(if}  Using a similar procedure, equation (1} can be transformed into
(Ag-ul)i =0 (4)
where A, = CTK™'C and gz = -;— Note in this case both the eigenvalues and the eigen-
vectors of Ag are different form those of {1).

A more general form of the second transformation is to first perform a linear transformation
or shift of the origin, [K, -~ (A\0)M|e = 0, where K, = K - oM, and then perform (ii). This
result in a standard eigenproblem with A, = CTK;C. The spectrum of A, is related to the ori-

ginal spectrum through

IR e (5
where v is the eigenvalue of A, [2].
The second reduction procedure requires two triangular factorizations; one for M and one

for K. It is possible to avoid the factorization of M by working with

(KoM - jz =0 (6)

Although the matrix of this transformation is not symmetric, it is self-adjoint with respect to the

inertial inner product defined by

{u,v)y = v Mu {7)



which is shown in the following steps;

(K;'Mu , v )y = v M K;'Mu
= (u, K;'Mv )u

This unsymmetric form is particularly advantageous since it has the same eigenvector as the origi-

nal problem [7]. The algorithm that is derived later in this chapter employs the transformation of

equation {6).

3. Conditions for Real Eigenvalues

Contrary to common belief, the fact that K and M are symmetric is not a sufficient condi-

tion to ensure real eigenvalues for (1). This can be illustrated using the following simple example.

Ezample:

1 1 1 O
Let K = [ ] and M = [ ] Then the eigenvzlues of {1} with these matrices are
1 0 0 -1

é(—l + iV3), where {2 = -1

The eigenvalues of (1} are all real if some linear combination of K and M is positive
definite; that is, pK + M is positive definite for some choice of p and 7. This is both a necessary
and sufficient condition. Fortunately, in many problems encountered in structural mechanics
either K or M or both are positive definite. However, in certain finite element implementations,
such as lumping of a consistent mass matrix, together with Lagrange parameter formulation of
various constraints in the problem, can result in indefinite M and K and complex eigenvalues {or

the pair. Special attention must be paid to these problems.

4. The Rayleigh-Ritz Approximation

Counsider a given set of vectors, X, = |x, ,5:2 s, Xpl, with m << n. We refer to

these as trial vectors. We proceed to obtain an approximation to some of the eigenvectors of (1)

by taking a linear combination of the trial vectors X,. Lety =X, 8 == Ex,s, be the desired

s==]

approximation. The i-th component of 8 is the coefficient of x, in this representation of y. We
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denote the corresponding approximation to the eigenvalues of {1) by 4. The residual, r, associ-
ated with the approximating pair {#, y ) is given by
r = Ky - My
The Rayleigh-Ritz method requires the residual vector, r, be orthogonal to each of the trial vee-
tors; that is
XIr = XKy - 6XMy =0
Substituting the representation of y in terms of the trial vectors, in the above orthogonality con-
dition for r, we obtain the reduced eigenproblem
(X, -M, s=0
where K,, = XJKX, and M,, = XIMX,. The eigenvector of the reduced eigenproblem, st*},
will determine the approximation, y(*) to the eigenvector of (1} and its eigenvalue will approxi-
mate those of {1}. We refer to y{*) as the Ritz vector and to its corresponding 4% as the Ritz

value, foreach k=1, -- -  'm.

5. Derlvation of The Lanczos Algorithm

The Lanczos method can be thought of as 2 means of constructing an orthogonal set of vec-
tors, known as Lanczos vectors, for use in the Rayleigh-Ritz procedure. The algorithm is closely
reiated to the inverse iteration and power methods for calculating a single eigenpair. Given a pair
of matrices K, = K -0oM and M, and a starting vector r these basic methods generate a
sequence of vectors, [r, K;'Mr, (K;'MPr, ... (K;'M)’ r], during j iterations. These vectors
are referred to as the Krylov sequence; the sequence converges to the eigenvector corresponding to

the eigenvalue, A, of {1} closest to the shift o.

The basic difference between the Lanczos method and the other two is that the information
contained in each successive vector of the Krylov sequence is used to obtain the best approxima-
tion to the wanted eigenvectors, instead of using only the last vector in the sequence. To be more
specific, the Lanczos algorithm is equivalent to obtaining the Rayleigh-Ritz approximation using

the vectors in the Krylov sequence as the trial vectors but it is much more efficient. This involves
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supplementing the Krylov sequence with the Gram-Schmidt orthogonalization process at each
step. The result is a set of M-orthonormal vectors {the Lanczos vectors} that is used in the
Rayleigh-Ritz procedure to reduce the dimension of the eigenproblem. We show below that
orthogonalization is required only with respect to two preceding vectors; a fact recognized by
Lanczos. The Rayleigh-Ritz procedure with the M-orthonormal bases for the Krylov subspace

leads to a standard eigenproblem with a tridiagonal matrix.

To derive the Lanczos algorithm it will be assumed for the moment that the first j Lanczos
vectors, {qy,qQqz, "~ - ,q,) have been found, and the comstruction of the j+ 1 vector will be
described. The resulting vectors ali satisfy the condition q‘-qu, = §,, where &, is the
Kronecker delta; that is, the vectors are orthonormal with respect to the mass matrix. To caleu-
late q,4.,, we must orthogonalize v, = {K;'™)’r) against the j Lanczos vectors computed so far.
From the definition of v, we obtain v, = K,"Mv, ;. Now, v, is the vector that is M-

orthonormalized against the first j—1 Lanczos vectors to obtain q,. Therefore

v}-—l = i viq,
1]
where v, is the component of v, ; along q,. This result is used to eliminate v, ; in the above
recursive relation for v,. We then get

v, = 2 v, K Mq;

t=f

-1
= y,K,Mgq, + Ev,Kqu,

[E— 11

Observe that each vector, K,Mq,, in the above summation can be written as a linear combina-
tion of the first i+ 1 Lanczos vectors. Therefore the sum c¢an be written as a linear combination
of the first ; Lanczos vectors. Consequently

v, =v,K,Mq, + z“ﬂ"q,
15

The M-orthogonalization of v, against the preceding ; Lanczos vectors will purge the component
of v, along each of q, and therefore the final resuit will be uneflected by the sum in the last equa-

tion. Therefore the next Lanczos vector, q,4+3, Will be obtained by first computing a preliminary



vector T, from the previous vector, q,.

F, = K;'Maq, (8)
and M-orthonormalizing it against all the previous Lanczos vectors. Now, in general it may be
assumed that this preliminary vector contains components from each of the preceding vectors.

Thus,

Fy=r, + a;q + fq,+ 7,9+ ' (9)

where ¢, is the “pure” component of T, orthogonal te all previous Lanczos vectors, and a,, 8,
¥,y - are the amplitudes of the previous vectors contained in ¥,. These amplitude coeflicients
are evaluated from the orthonormality of the Lanczos vectors. Thus, if both sides of Eq. {7) are

multiplied by quM, the result is

a/MF, = o/Mr, + a,q/Mq, + ;9 Ma, . + 7,4/ Mq, .+ - (10)
Here the first term on the right hand side vagishes by defigition, and all terms beyond the second
vanish similarly due to M-orthogonality. The normalizing definition applied to the second term
then reduces Eq. (10} to an expression for the amplitude of q ; along F:
a; = q,MF, (11)
The amplitude of q, ; contained in F, may be found similarly by multiplying Eq. {(9) by
q JEIM. In this case all terms except the third vanish by orthogonality, and the coefficient of B, is
upity, so 3, == q]{IMFJ. But, using Eq. (8) to eliminate ¥, this gives B, = qJEIMK;’MqJ and
applying the transpose of Eq. (8) to the q,7; vector gives
8, =¥ Mq, (12)
Finally, expanding ¥,; in terms of its pure compopent, ¢ ;-1 and the preceding Lanczos vectors,
as in Eq. (9), the transpose of Eq. (12) becomes
B, =q;Mr,; + a,-iQ;IMfl;-l + ﬁ;-;qqujmz + ‘7;’-1Q;TMQ;-3 + - {13}
It is evident that all terms except the first vanish on the right kand side. Now q, is the vectar

obtained by normalizing r,_, ie.

1
Q, = —————m— 14
DT et (14)
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where [|r,|lm = (rﬁer,_i)‘/z. Using this expression f{or q; in Eq. (13), we obtain §, as

1
8, = =
B IY

r ,Eer .1 OF

B%=rIMr {15)
This is an alternate expression, to {12), for evaluating §,. In 17} Scott established that comput-
ing g, using the expression in Eq. (15) is preferable to that given in (12) and numerical experi-

ments also confirm his results. Using the value of g, obtained via Eq. (15} ensures that the Lanc-

208 vectors are properly normalized even if orthogonality qj{,_ 1Mq, _; is not exactly zero.

Continuing in the same way, the amplitude of q,_; contained in F, is found to be

T = QJT-.- T, (16)

Following the procedure used to derive Eq. (13), this leads to

Y, = q/Mr 2 + a,.q Mg, , + 8,20 Mq, 5 + 7,09/ Mq, 4+ - - (17}
But, using the normalizing relationship equivalent to Eq. (14), r, ; = 8, ;q, ;. Hence, when this
is substituted into Eq. {17} all terms on the right hand side vanish, with the result that v, = 0.
A corresponding procedure could be used to demonstrate that all further terms in the expansion
for ¥,, Eq. {7), vanish; in other words, the orthogonalization procedure used in geperating each

Lanczos vector need be applied only to the previous two vectors.
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In summary, the Lanczos algorithm may be expressed by the foilowing sequence of equa~-

tions:

1
{a) q; = E"“r;—i
3
{6) T, = K;'Mq,
(¢} a, = qMF; (18)
(d) r,=F,-a,q,-§q.,
(e} Bie1= (r}erJ)llz

The above process may be started from a given vector, r, with qu==0 and
By = (rfMr V% At a typical step, j, the Lanczos algorithm computes q;, a;, and 8,4, in
order. In addition to the storage needs of K, and M, the algorithm requires storage for 5 vectors
of length n; one for each of the vectors, q,_;, q,, Mgq,, ¥, and r,. The total cost for one step of
the algorithm involves a multiply with M, the solution of a system of equations with X, as the

coeflicient matrix, two inner products and three products of a scalar by a vector.

8. Reduction to Tridiagonal Form

Using the results of the previous section {9} can be rewritten 2s the three term relation

P= 0 =K'M q -9, o, -q,; 5, (19}
where o, = quM K;'M q, and r, is normalized with respect to the mass matrix to obtain

L
)

9,41 With normalizing factor 8, = (r erj) . After m Lanczos steps all the terms obtained

from equation {19) can be arranged in a giobal matrix form

[ -]

[
|
K;,'M ) Qn - Q- = 0 !rm = Py en{ {20)
|
I

Here e = (0,0, -+ ,0,1), Q. is an nX m matrix with columns q,, f = 1,2, -- - m, and

Tn is a tridiagonal matrix of the form
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a, Bz
Hp G2 Oy
Bs
T, == (21}
ﬁﬂl
Bm an

The orthogonality property of the Lanczos vectors, QI M Q, = I, can be used in eguation
(20) to obtain

QN{.M KJl MQ, = T (22)
where I, is the m X m identity matrix.

Choosing the set of Lanczos vectors, Q,,, for the trial vectors, the Rayleigh-Ritz procedure
can be used to obtain the best approximation to the eigenvectors of (6). The approximating Ritz
vectors will then be of the form

¥y =Q.™  i=1,-.m (23)
When a residual vector, [K;"My{™ - 8{™%y (™) associated with the pair {#{™, y{™!) is M-
orthogonal to the set of Lanczos vectors, then (3,(’“) , y,(”’)) is a Ritz pair. Accordingiy
Q M[K; My (™ - §(™y[™] =0
Using the relation between the Ritz vector, y{™ and the the Lanczos vectors, given in (23),
together with the orthonormality condition of Q,, and the tridiagonal properties of the Lanczos
vectors, Eq. {22), the above equation reduces to the tridiagonal eigenproblem
T, 8{™ - g{mlg(™) — ¢ (24)
Thus {(4{™),8{™) is an eigenpair of the tridiagonal matrix, T,,. As the total number of the Lanc-
10s vectors increase, i.e. as we take more Lanczos steps, the size of the tridiagonal matrix

increases and the eigenvalues of T, converge to the eigenvalues of the transformed problem (6),

3 1 - When m == n, the order of K, then 9{") = \ ! p for 21l ¢ but we hope to stop long
t = T

before m == n. The steps described by equation {18) is repeated until the all Ritz pairs

(9,{“3,yf“)) have sufficiently converged to the desired eigenpairs.
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Ezample:
3% -9 21 -11
1] -9 39 -11 21
K==l2a-n 3 -9
~-11 21 -9 39
For this example we assume the mass matrix is identity. Then the eigenvalue matrix
for this problem is A = diag{ 1/5,1/4,1/2,1]. The Lanczos algorithm presented
here requires the solution of a linear system of equations with K. We therefore give
K explicitly for convenience. Accordingly
5 03 1
1/]0 6 1-3
Kl= =~
213 1 6 O
1-3 0 6
Choosing a starting vector rg == I 1,0,0,0 }r then
slep 1
1 6
Ty 0 . 0
A= |rfl =1, D= g== o | Kl == o],
0 1
0
) 1] 9
o =qK'q; =3, n=K ‘I1“'11QI=—2' 31 Ty =[3]
1
giep 2:
0 5
V10 r 1 o -3
== |l - , T e SR s Klq, = ,
P = ||ri]| 3 R= 5= 7= 3 %= r=| g
1 3
0
1 -3
Gy = @K q =3, 1= K'q, -~ agas- g, = :
: =G A g 2 qQz ~ @2Q2 — foqy Tl o
0
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step 3:
i} 0
3 T -1 . 16
ﬂsx”rzuam, q‘s:.-::-és—% ol Kiqs:::-‘z— ~1 1
0 3
0
4 - 1}
ay=aqfK'qy =3, ry=K'g-a@-Ae= 3]
6
3 Vio/2
T,= {VI0/2 3 3/VI0
3/V10
34
atep 4:
0 0
4 Ty 1 |0 1 -8
— = , TR e T y K"l = '
fo=linl =75 =3 = 7w |1 U= %) 6
3 18

a,=qlK'qy, =3, r=K'lq-aq-8a=

o oo

3 V10/2
vi0/2 3 3/J/10
3/V10 3 4/Vi0
4/V10 3

The eigenvalues of the tridiagonal matrix converge to the inverses of the eigenvalues of K
in this example. This can be demonstrated by computiog the eigenvalues of the tnidiagonal

at each step as shown in table 1.
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J Eigenvalues of T

1 3.0000

2 14189, 4.5811

3 1.1561, 3.0000, 4.843¢

4 § 1.0000, 2.0000, 4.0000, 5.0000

Table 1. Convergence of the Ritz values for the small 4 X 4 example.

In figure 1. we plot the Ritz values for a larger example. Notice the convergence at both end of

the spectrum.
T | T
)
H v |
3ir J v i !
} ] ¥ } [
} | v i } i
6 | ! | v i ! i
! | | 9! | | !
| i ) | ) i ! | !
9+ | [ i | ¥i ! i ] I
| { ! } i y ! ! ! | |
j | i | } ] Vi | | | | i
2 i ! | ] | 1 ¥ | ! i ! | J
| { i ] | | v i | | i } ]
i | | ! ] i Y | | i i J i
15~ | I ! ! | I } ¥ J } i 1 ! | i
| | f } H { ! v | ! | i i ! | ]
| { { i H I ! ! T i | f | ] | ] |
18~ | ! | ] | | | I I ¥ 1 ] | I | ] ! i ¢
i f I I | I I ; ] ¥ | I | i I | | | ]
[ | | ! | ] i | I I ¥ 1 | 1 { i | } i ! i
rajad | | | | | | I | | t ¥ } ] | | | i | | i i
] i 1 ! 1 ! i | [ i i
-12. -10. -8 -6 wdes -2. o 2. & 6. 8. 10.
%
Figure 1. A typical pattern for the progress of the eigenvalues of the tridiagonal matrix, T,.

7 indicates the diagonals of T,.
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7. Convergence Criterlon for Eigenvalues

The eigenvalues, g1, i=1,.,7, of the tridiagonal T, are the Rayleigh-Ritz approxima-~
tions to eigenvalues of (6). As j increases these Ritz values get closer to the eigenvalues they are
approximating. Often users wait until the change in the computed quantities are within a

specified tolerance; that is

gr-n L gn
I 9(1)1

Suppose one is performing inverse iteration with a specified shift, o, in an interval of interest

< tol (25)

[y, az]; that is

=

= 701 + (1~ 7)og

where - is a positive number less than one. Further, assume that the problem has eigenvalues, A,

and X\;, outside this interval with A\, < o, and Ay > 0,. Then the corresponding eigenvalues of

and v, =

P b_a,withuf‘(t‘.)andv;){).

the transformed problem, Eq. (6), are v, =

Now, let us perform a step of inverse iteration method with an unfortunate starting vector,
x() == z,sinyy + s,cosy. Here, z, and 3, are eigenvectors corresponding to h, and X\; respec-
tively., We assume that the eigenvectors are normalized with respect to the mass matrix. Then
x" will also be normalized. The Ritz value due to xV is
41 = x(IT g i
= \,sin’yp + cos’y

Alter one step of inverse iteration the improved vector is

< = 1

—{v.2;5i09 + v,z cosy)
[v5in%y + vicos®y)?

and the Ritz value associated with x'® is

1

g3 = (D) sin®P + vncos®y)

1
T

[v3sin®y + vicos?y]

Now if A\, == o ~rand A\, == ¢ + rthen v, =——i—and vy #%then

V) = ¢ = (g - rlsin®y + {0 + rcos™P = o+ Teos2y
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These s, referred to as “ghost” eigenvalues in [16], satisiies the condition of Eq. {25), and there-
fore wili be accepted as an eigenvalue by test (25). Further, an appropriate choice for ¢ can
result in a Ritz value that is in the interval of interest. This behavior, although rare, has been
observed in certain implementations of subspace iteration method [16] and reflects a serious
difficulty. We refer to this as misconvergence [14] and as we observed it can not be detected by a
natural criterion such as (25). A rigorous inexpensive termination criterion can be obtained using

the residual error bound given bellow.

Consider a pair {#,y} which are approximations to an eigenpair (v, z) of Eq (6), where v is

the closest eigenvalue of (6) to #. For simplicity we consider only normalized Ritz vectors,

1
l¥ M = 1 where [l¥ lm = (yTMy)}? is the inertial norm of y. The residual vector associated

with this approximation is given by

r=K;'My - 9y (26)
The norm of the residual vector can then be used to assess the accuracy of ¢ through the inequal-
ity

[v-8] < lrfim (Z7)
For the proof and an in depth study see [12]. This result allows us to predict the acenracy of any

candidate eigenpair of a matrix.

We use the residual vector associated with the Ritz pair (8{m),y (™)) given by Eqs. {23) and

{24) to check for their convergence. The tridiagonal property of the Lanczos aigorithm, Eq. {20},
greatly simplifies the computation of the residual norm. Postmultiplying Eq. (20} by 8(™/ leads to
K;MQ,s{™ - Q. T,s{(" =r,els{™ (28)

Since s{™ is an eigenvector of T, ( see Eq. 23}, we can replace T,a{™ by 6{™'s(™), Further, by

definition (Eq. 24), Q8™ is simply the Ritz vector ¥." and so Eq. {28) will reduce to

KoMy{™ - 6{"y[™) = r e Ta{™) (29)

Taking norms
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[ KoMy (™ - g™y My = [rneas™fin
= flrnlim|easi™)|
= /3;4-11 11 1 (30)

where ¢, = e,,{'s‘("‘) is the bottom element of s.("‘), the normalized eigenvector of T,. J,4 15 2
scalar quantity that is computed in the course of the L anczos process. The bottom element of the
eigenvector of T, can be obtained at little cost, once the associated eigenvalue is found. There-
fore, the residual norm associated with a Ritz pair can be computed as g, = 8,41]¢ | and the
Ritz value is considered converged once p,, < fol. There is no need to compute y{™ until it has

converged.

Multiple Elgenvalues

In exact arithmetic the simple Lanczos algorithm can not compute a second copy of a
repeated eigenvalue. Suppose )\ is an eigenvalue with multiplicity two. Then there is no unique
eigenvector associated with A. In fact ome can obtain two vectors, 2, and 2, such that any linear
combination of these vectors is also an eigenvector of A\. Moreover, it is possible to obtain a
linear combination of 2; and 2,, T = §;3; + 8, that is orthogonal to q;. Then the eigenvector
% will be orthogonal to all the subsequent Lanczos vectors. Therefore only one copy of A will be

found.

Fortunately, the above argument oply holds in exact arithmetic. In finite precision,
roundoff comes to rescue. If q; is perfectly orthogonal to am eigenvector, E, then because of
roundof error q; will have a small component along 8. This component, although tiny, will even-
tually grow such that T can be represented by a linear combination of the computed Lanczos vec-

tors. However, the second copy of A will converge some steps after the first has converged.

8. Loss of Orthogonality

In a previous section we derived the equations governing the Lanczos algorithm. These rela-
tions are only satisfied by quaatities obtained in exact arithmetic. In finite precision, however,
each computation introduces a small error and therefore each computed quantity will differ from

its exact counterpart. Our objective here is to describe the effect of roundoff error on the Lanczos
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process. For this purpose we need to introduce an important quantity that measures the accuracy
of the arithmetic. Let ¢ be the smallest number in the computer such that 1 + ¢ > 1. It is

known as the unit roundoff error.

Although the tridiagonal relation, Eq. (20}, is preserved to within roundoff, the M-
orthogonality property of the Lanczos vectors completely breaks down after a certain number of
steps depending on ¢ and the distribution of the eigenvalues of Eq. {6). The Lanczos vectors,
which are orthogonmal in exact arithmetic, not only loose their orthogonality, but may even
become linearly dependent. Initially it was believed that loss of orthogonality is due to cancella-
tions that occurs each time r, is evaluated using Eq. (19). This step is simply M-
orthogonalization of K;'Mq, against q, and q,.;. Comparing the final vector resulting from this
computation to the starting vector, one can obtain 2 measure of the cancellation that occurs in

this step; that is the ratio

N LY R -
TOIKIMg, w87+ oP+ B
indicates how much canceliation has occurred. X, is the sine of the angle between the vector

K;"™Mq, and the plane containing the vectors q, and q, ;. When this x, is zero it indicates that

in the j-th Lanczos step we are orthogonalizing a vector that is already in this plane against q,

and q,_l and therefore complete cancellation occurs. In practice X, rarely drops bellow —1-16-

When x, drops to say i-—é—a— it indicates that K;quj is nearly parallel to this plane and therefore

at the end of this Lanczos step the computed r, may not be orthogonal to the plane containing
q, and q,_; to working accuracy. In such cases r , should be orthogonalized against q,and q,; 2
second time. For a long time it was believed that loss of orthogonality was solely due to this can-
cellation. Indeed if this were the case then one would have no option other than a complete
reorthogonalization at each step. However, as we soon shall see a completely different mechanism

is at work.

Suppose for the moment the algorithm were carried out in exact arithmetics for J steps,

except that at some step £ < j a small error was introduced into the computation of q;. The
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first k-1 Lanczos vectors will be perfectly M-orthonormal, but they will not be orthogonal to all
the vectors computed after the k-th step. The error introduced at step k will be amplified in the

subsequent steps to such an extent that linear independency may also be lost.

Hence, the loss of orthogonality can be viewed as the subsequent amplification of the error
introduced after each computation. To analyze the way in which orthogonality deteriorates we
let @, denote the computed Lanczos vectors and define the following matrix

H, = QMQ, (32)
where the i, component of H,, is 7, , = q,TMqJ. In exact arithmetic H, is the identity matrix.
The off-diagonals of H, will depend on ¢, the unit roundoff error. Further, Eq. (19} will be
satisfied by the computed quantities only to within roundoff error. Now, multiply Eq. (19} by

q,”M and use the above definition to get the approximate relation

aMK;"Mgq, = a,7,, + 8,7, + 8141041 (33)

A similar equation can be obtained when the above procedure is repeated for the i-th Lanczos
step.

q}TMK;IMQI = a, ’I;.. + ﬁ!qj.i—l + ﬁ:-}-lﬂ;,p{-l (34)
By symmetry of MK;'M, the terms on the left hand side of Eqgs. (33) and (34) are equal and

therefore can be eliminated by subtraction, resulting in the relation

.5;4.17!;4.1,, =~ JB:+171;,1'+1 + (al - a))ﬂ;,: + 15177;,1-—1 - ﬂ;rf},:—l (35)

This recursion holds for 7 > 2and 1 € ¢ < j-1 and starts by assuming that the diagonal of H,,
is the Identity, #,, =1 for all j > 1, and the first off-diagenal of H, is at roundofl level,
M,,.1=¢ for j 2> 2. The above relation provides a means of estimating the elements of a
column of H, from the elements of T, and the elements in the previous columns of H,. This
recursion can be restated in the vector form

B4y =T by —ah, -5 b, (36)
where h,_;, h, and h,;; are vectors of length j-1 containing the top j-1 elements of the j-1, 7,
and j+ l-th columns of H,. Here, the bottom element of k,_; is zero. Then, all the terms in h,

depend on ¢. Taking norms we can show



-19-
Bimall by S UTToall + to, DB + 8, 1B,
< 2T, Y| max( b, ||, | ) (37)
This result shows that the level of orthogonality can grow by at most a factor of 2||'T, f| /8, .,
after each step. A drop in the value of 8, ., can result in a sudden loss of orthogonality but this

rarely occurs.

An alternative characterization of the pattern in which orthogonality is lost was presented
by Paige [0,10,11]. Instead, of examing the vector h,,; = Q™q, ., he looked at a linear com-
bination of the components in this vector. To be more specific he examined the inper preduct
between each Ritz vector y ) given by Eq. (23) and q,4,. That is

y ™™Mq,,, = s 7Q™Mq,,,
=8""h (38}

In exact arithmetic this value is zero. However, in his work Paige showed that

A€l T ]
O Tpgq = T2 BT 39
Y U+ ﬁ;+1[$’:i ( )

Recall that ¢, is the bottom element of s&’, the i-th eigenvector of T;. v, is a scalar quantity
usually close fo unity. We omit the derivation of this result and refer the interested reader to
[12]. Note that Paige’s result also shows that a sudden drop in 8 ;41 can result in a severe loss of
orthogonality. Moreover, recall the quantity in the denominator is 2lso a measure of the conver-
gence of the Ritz value §{') (see Eq. 30). The only way the left side of Eq. (39) can rise up to

values like 0.1 1s for o, { = B,4,]¢ |) to drop down to 10v,,¢]| T, |, so

Loss of orthogonality ==> Convergence of a Ritz value

When only a single Ritz value converges then Q,4, loses orthogonality by tilting towards
the converged Ritz vector which in turn is a liear combination of the previous Lanczos vectors.
When more than one Ritz vector converges simultaneously the picture is more complicated. In

this case, q, . tilts toward a linear combination of these vectors.

Return of Banished Ritz Vectors

In theory, if two successive Lanczos vectors, q,; and q,, are orthogonal to an eigenvector,
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z, then all the subsequent Lanczos vectors will also be orthogonal to z. In practice, however, a
converged Ritz vector, y,, will not remain orthogonal to all the subsequent Loanczos vectors. This
is a consequence of the same mechanism by which multiple eigenvalues are found. Roundoff
errors will add to each Lanczos vector 3 small component of y, whichk will grow eventually to
such a magnitude that orthogonality to jr, is lost. This phenomenon can also be observed in the
inverse iteration method: that is, orthogonalizing the starting vector against the first eigenvector,

does not guarantee convergence of the iteration vectors to the next eigenvector.

The state of orthogonality between a converged Ritz vector, y,, and the current Lanczos
vector, q, can be measured by the component of y, along q,. We define 7, = y,qu]. Then
multiplying Eq. {19} by ¥, "M and considering the efect of roundofl on (19) yields

8,4+, Mq, 4 =~ y"MK;'"Mgq, - a;y,"Mq, - 4,y Mq,,
Using the fact that y, is a converged Ritz value; that is K;'My, = 4,y,, together with the

definition of 7, we obtain

o (9; - aJ.)r, - 8,7,
7

i (40)

This recurrence can be updated for each converged Ritz value, 4,. The magnitude of 7, can be
used as an indicator for loss of orthogonality against a converged Ritz vector otherwise referred to

as the return of banished Ritz vector.

g. Restoring Orthogonality

In this section we look at a number of preventive measures that one can adopt to maintain
a certain level of orthogonality. Lanczos [5] was aware of the effects of roundoffl on the algorithm
when he presented his work. He proposed that the newly computed Lanczos vector, q,4;. be
explicitly orthogonalized against all the preceding vectors at the end of each step j. We will refer
to this technique as “full reorthogonalization” method. This scheme is also adopted in [3,20].

With this procedure the Lanczos vectors will meet the stringent requirement

a™Mq, | < ne (41)
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Although this scheme increases the overall cost of an eigenvalue computation, for short Lanczos
runs (when the number of Lanczos steps is less than the half bandwidth of K) the increase in cost
is small compared to the cost of solving a system of equations with K,. For longer runs the cost
of a full reorthogonalization step will begin to dominate the cost of a Lanczos step although vee-

tor computers will delay this effect.

The orthogonality condition of Eq. (41) can be replaced by a more relaxed condition
la™™q,| < Vne {42)
We refer to this as the “Semi-Orthogonality” condition, and to procedures that adopt the weaker
condition as “‘Selective Orthogonalization” methods. Imposing the more relaxed condition can
result in considerable reduction in the number of operations in the reorthogonalization step and

semi-orthogonality is sufficient to make T, exact to working precision.

We Consider two different reorthogonalization schemes that adopt the more relaxed condi-

tion of Eq. {42).

A.  Orthogonalization against Rilz vectors: This procedure is a consequence of the result of Paige
[9,10,11]. As soon as a Ritz value converges, its corresponding Ritz vector is computed and
the component of this vector along q,, is purged. Further, for each converged Ritz value
the three term recurrence for 1, is updated and whenever 7, becomes greater than VE in
absolute value, it signals that the component of the corresponding eigenvector has grown too

much. So the new Lanczos vector is orthogonalized against this known eigenvector [13,16].

B.  Orthogonalization against previous Lanczos vectors: This schemes can be based on either of
the techniques given in [4,18]. In [18] the vector h,, is updated using Eq. {36) and the
magnitude of its elements is monitored. Whenever the i-th element of k s41 18 greater than
Ve then semi-orthogonality is lost between 9,41 a0d q;. At this step the appropriate Lanc-
205 vectors are brought in from secondary store and their components along q;41 are

removed. This scheme is also adopted in [8].

Both schemes indicate loss of orthogonality at about the same step. The first method per-

forms orthogonalization against fewer vectors and therefore costs less. However, alone it has some
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shortcomings. We mentioned earlier that the quantity v, in Eq. {39) is close to one. This is only
true in the eariy stages of a Lanczos run. So long as |7,| < 1 scheme A maintains semi-
orthogonality, but as soon as v, becomes larger than one semi-orthogonality may be lost. For
long runs this characteristic appears in the form of a gradual loss of semi-orthogonality, For this
reason we do not use scheme A on its own. However, for short Lanczos runs where only a very

few {less than 10} eigenpairs are wanted scheme A is very effective.

We use a combination of the above two schemes. Whenever possible we orthogonalize
against a Ritz vector {scheme A) because of lower costs. We updates h,, using (36} and moni-
tors its elements. If any of the elements of b, is greater than V€ then semi-orthogonality may
have been lost. This is the only procedure we use to determire loss of semi-orthogonality which

can occur in two possible ways:
{i) Convergence of a Ritz value,
(ii) Growth of components of computed eigenvector along the Lanczos vector.

We take different actions for each of these. If the observed orthogorality loss is due to (i}, then
we perform a step of scheme B. The Lanczos vectors are brought in from secondary store and the
newly computed Lanczos vector, r,, is orthogonalized against them. Further, to minimize data
transfers from secondary storage we also compute some of the converged Ritz vectors at the same
time. Therefore, the computation of newly converged Ritz vectors are delayed until the Lanczos
vectors are brought back for reorthogonalization. We should note that when (i} occurs both
methods A and B would require recalling the Lanczos vectors from secondary store, but for
different reasons; the first for computing Ritz vectors and the later for reorthogonalization. We
perform both. Our method would clearly require more operations than scheme A but has the fol-

lowing two advantages:

(a) An eigenvector is computed few steps after the convergence of its eigenvalue and therefore

has more than half correct digits.

(b} The gradual loss of orthogonality mentioped above will not occur with the combined pro-

cedure.
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However, if loss of orthogonality is due to (ii), then we can use scheme A; that is orthogo-
nalize against a computed Ritz vector. For this reason the r recurrence, Eq. (40) is also moni-

tored to establish which Ritz vector, ¥;, has contaminated Q41

The orthogonalization of q,4, against y, alters the state of orthogonality among the Lanc-

zos vectors. The modified §,, is given by

El-;-.}-z = q,4;~ ¥

where €k = ykTMqJ_}_l. Let Ej'i'l = Q}TMa]-i-l' Then

K;«H = Q;IM(Q,:q-z - &)
=h,; ;- €8 (43)

An approximation to £, can be obtained via

£ = yiMq,4; = 8/QMq,4, =~ s/h, .,
If the approximate result for {; is used then {43} reduces to the orthogonalization of h, . against
8;. This simple step is used to modify h s+1 to reflect the changes caused by orthogonalizing Qw1
against a Ritz vector. The flowchart in figure 4 gives a global view of our implementation of

selective orthogonalization algorithm.

Wkhen it becomes necessary to restore semi-orthogonality, the computed vector, q,,;, must
be orthogonalized against some linear combination of the previous Lanczos vectors. q, and q,
remain unchanged at the end of such step. But, at the next step, g, appears again in the compu-
tation of q;,5. If no action is taken then q;,, will be contaminated by q, and the reorthogonali-
zation efforts of the previous step would be wasted. Therefore a second reorthogonalization step
must be performed. If the Lanczos vectors or the converged Ritz vectors reside in secondary store

then they must be retrieved in two successive steps.

Alternatively, at the same time the orthogonality state of Q,+1 is being restored, one can
also perform similar modifications on q;. Then at the end of the next step, no reorthogonaliza-
tion of q,;, will be necessary. The number of operations for this scheme is the same as that of

the scheme above, but vectors are retrieved only once and therefore the 1/O overhead is halved.
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10. LANSEL Package

In this section we describe all the ingredients that go into the LANSEL eigenpackage and
provide sufficeint detail for installing LANSEL into a finite element program. The steps in each
subroutine are described in sequence followed by the listing. Higher level routines are described

first.

User Supplied Subrouiines

The only interface between the algorithm and the eigenproblem is through two user supplied
subroutines. In general, the structure of the matrices, K and M, vary greatly from problem to
problem. No single subroutine can be designed to take advantage of the special structure of K
and M for all problems. Furthermore, the charcteristics of a given equation solver depend
strongly on the computing eaviroment. Only the user is aware of the properties of his matrices
and the computer system that is being used. Therfore, the job of solving the linear system of
equations K,F, = p, and multiplication of a vector by the mass matrix, §, == MF, is relegated
to the user. This has the added advantage that a shifting strategy may be implemented withoat
modifying any part of the routines presented here. The two routines that connect K and M with

our program must take the form

1) SUBROUTINE OPK ( X, Y, N ). This solves the linear system of equations K;x = y. N

is the length of the vectors X and Y.

2) SUBROUTINE OPM ( X, Y, N ). This forms the matrix-vector product, x = My. Nis

the length of the vectors X and Y.

A third subroutine must also be provided for the management of the L anczos vectors. From

time to time the program calls the subroutine STORE. The subroutine statement for STORE is
SUBROUTINE STORE (V, N, J, ISW}

When ISW == 1 the routine must store the column vector V of length N and identifier J in the

available storage. When ISW = 2 a vector V with identifier J that is in secondary store must be
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fetched. This way the user can take full advaptage of any data management system that is avail-

able.

LANSEL also makes use of the LINPACK subroutines [1} called the BLAs {Basic Linear
Algebra). These are routines for performing basic vector operations such as additions of two vec-
tors. In many computer center there are carefully written assembly language implementations of
these subroutines wich are much faster. We give a list of BLAs that are used from LINPACK in

table 2 below.

BLA Description

DATX Computes the product of a scalar, 4, by a vector, x; y 1= ax.

DAXPY Computes the product of a scalar, a, by a vector, x, adding the
result to a vector, ¥, ¥ 1= ax + y.

DSCAL Scales the elements of a vector, y, by a scalar factor, a;
¥y = ay.

DZERO Resets the elements of a vector, y, to zero ; y := 0.

DDOT Computes the Eucleadian inner product of two vectors, x and y;
tdot! = xTy.

IDAMAX Finds the index of the element of a vector with maximum abso-

lute value; { == ary(miix fo.1)

Table 2. List of LINPACK subroutines used by LANSEL.
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Subroutine LANDRY

LANDRY is the driver for the main subroutine LANSEL. Table 3 bellow gives a brief

description of the list of parameters for LANDRY.

Name Type Dimension Description
N i scalar The dimension of the eigenproblem. K and M are
Nx N matrices.
LANMAX 1 scalar Upper limit to the number of Lanczos steps. LAN-
MAX must not exceed N.
MAXPRS I scalar Upper limit to the number of wanted eigenpairs.
MAXPRS must not exceed LANMAX.
ENDL F scalar Left end of the interval containing the wanted eigen-
values,
ENDR F scalar Right end of the interval containing the wanted
eigenvalues.
NwW I scalar Length of the work array W. INW must be at least
6XN + 2xXMAXPRS + 8xXLANMAX. A larger
NW can result in faster computation time. NW need
not be greater than 6xXN
+ 2xXMAXPRS + LANMAX X{ 6 + LANMAX ).
W F NW Work array of length NW. The frst N words of W
hold a user supplied starting vector.
I'w I MAXPRS Work array of length MAXPRS.
EIG F MAXPRS EIG wiil hold the converged Ritz values on return.
The Ritz values are in the order they were computed.
Y F MAXPRS XN | Y will hold the converged Ritz vectors on return. Y
is dimensioned as a two dimensional array
Y(N,MAXPRS) and the I-th columa of Y holds the
Ritz vector corresponding to EIG(I).
NEIG I scalar The number of computed eigenpairs.
IERR I scalar IERR is an error flag. A succesful exectution is indi-
cated when [ERR == 0. For a list of error flags see
table 4.

Table 3. Description of the parameters for LANDRYV.




.27 -
LANDRYV acts as an interface between the user and LANSEL. It performs the following
tasks before calling LANSEL:
{i}  Checks the control parameters for possible error.
(ii} Allocates the working memeory for LANSEL.
{ili} If user does not supply a starting vector in W then LANDRYV supplies a random vector.
{iv} Performs the first step of the Lanczos algerithm by calling STPONE.,

I an error is detected IERR is reset and retured as soon as the checking of the control
parameters is complete. Each bit of the integer [ERR is used as an error flag. IERR is set to
zero when enetring LANDRYV. The I-th bit of IERR can then be reset to 1 using the the com-
mand [ERR = [ERR + 2#+I. For example the third bit is set to 1 by adding 8 to IERR. Table

4 gives a description of possible errors indicated by IERR.

BIT Indicates
1 N<©o
2 LANMAX < 0
3 ENDR < ENDL
4 MAXPRS < 0

5 MAXPRS > LANMAX
6 LANMAX > N

7 NW too small

Table 4. List of errors indicated by JERR.

In addition, [IERR = -1 indiactes that the maximum number of Lanczos steps in LANSEL has

been reached.
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SUBROUTINE LANDRV{N,LANMAX ZMAXPRS ENDL,ENDR,EIG,Y W, IW,NW NEIG,

[ERR)
IR R E N R N N R NN EN NN EEEN NN SN RN EEEEEE R E NN NN
[
. LANCZOS ALORITHM WITH .
. SELECTIVE ORTHOGONAL IZATION .
. L AN S O .
[ ] .
[ FEEEFEE R ENENEEEEREFEEENENENEEEEENEREN SN ENRENNLRENLN]
INPUTS
N DIMENSION OF THE EIGENPROBLEM

LANMAX UPPER LIMIT TO THE NUMBER OF LANCZOS STEFPS
MAXPRS UPPER LIMIT TO THE NUMBER OF WANTED EIGENPAIRS

ENDL LEFT END OF THE INTERVAL CONTAINING THE WANTED EIGENVALUES
ENDR RIGHT END OF THE INTERVAL CONTAINING THE WANTED EIGENVALUES
NW LENGTH OF THE WORK ARRAY W

ud WORK ARRAY OF LENGTH Nw

CUTPUTS

Iw WCRK ARRAY OF LENGTH MAXPRS

EIG ARRAY OF LENGTH MAXPRS TO HOLD THE CONVERGED RITZ VALUES

Y ARRAY OF LENGTH MAXPRSeN TC HOLD THE CONVERGED RITZ VECTORS
IERR ERROR FLAG

SUBROQUTINES : DDOT, STPONE , LANSEL ,OPM, RANDCM

COMMON RDATA

RNM NORM OF THE RISIDUAL VECTOR IN R(1}

RNM2 SQUARE OF RNM

SPREAD WIDTH OF THE INTERVAL CONTAINING THE EIGENVALUES

TOL TOLARANCE FOR CONVERGENCE OF THE EIGENVALUES

EPS COMPUTER PRECISION

EPS1 EPS + SQRT{N)

COMMON IDATA

EIGL INNER MOST EIGENVALUE CONVERGED FROM LEFT END OF SPECTRUM
EIGR INNER MOST EIGENVALUE CONVERGED FROM RIGHT END OF SPECTRUM

NEIG TOTAL NUMBER COF CONVERGED EIGENVALUES

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON /RDATA/RNM, RNM2 , SPREAD , TOL , EPS , EPS1
COMMON /IDATA/EIGL ,EIGR NEIG

DIMENSION NQ(5),Y(1)} .EIG({1) ,W(1),IW{1)
DATA ONE,ZERQ/1.0D0,0.0D0/

CHECK INPUT DATA

IERR = 0
MT = 6¢N + 2+MAXPRS + 8+«LANMAX
IF ( N .LE. 0 ) IERR = IERR + 1
IF { LANMAX .LE. 0 ) IERR = IERR + 2
IF ( ENDR .LE. ENDL ) IERR == IERR + 4
IF { MAXPRS .LE. 6 ) [ERR = IERR + 8
IF ( MAXPRS .GT. LANMAX )} IERR = IERR + 16
IF { LANMAX .GT. N ) 1ERR == IERR + 32
IF ( MT .GT. NW ) IERR = lERR + 64
{F {IERR .GT. 0 } RETURN
CCMPUTE THE MACHINE PRECISION
EPS = ONE
DO 10 [ = 1,64

IF (ONE + EPS .GT. ONE} EPS = EPS+*0.5
CONT INUE

EPS = EPS + EPS
SET POINTERS

Ml == MAXPRS + 8N
M2 = MAXPRS + M1
M3 = MAXPRS + M2

M4 LANMAX -« M3
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NS = NW - MT + ©2+LANMAX
NQ(1) == N + 1
DO 20 1 = 2,5

NQ(Il)} = NQ{1-1) + N
CONTINUE

CHECK FOR STARTING VECTOR
RNM2 = ZERO
DO 30 | = I ,N

RNM2 = RNM2 + DABS(W(1))
CONTINUE
IF {RNM2 .EQ. ZERO)} THEN

GET RANDOM VECTOR

IRAND = N + LAMMAX + MAXPRS «+

DO 40 ! = 1 N
W({I} == RANDOM{ IRAND+1)
CONT INVE
END IF

CALL OPM{W WINGQ{3)), N)

RNM2 = DDOT{N W, 1,W{NQ(3}), 1)

Nw

CALL STPONE(N,W(M3) W(M4} W{Ms) W(M6) W,NQ)
CALL LANSEL (N,LANMAX ,MAXPRS ,NS, ENDL, ENDR W, W(M3) W(M4) W{Ms),
1 W(Me) EIG,W(MI} W(M2) ,W(MT7) W(Ms),IW,Y W(Ms) NQ,IERR)
RETURN
END
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Subroutine STPONE

This routine performs the initialization of ALF, BET, ALPH and BET2 as well as the first
step of the Lanczos algorithm. See section 5 for notation. Since q,; = 0 at the first step the
algorithm reduces to an orthogonalization of K;™r against q;. q; is obtained by normalizing r
and is stored in the array R starting at location NQ{1). Mr, stored in starting loaction NQ(3} of
R is then normalized to get Mq, which is put in R starting form NQ(4). NQ{2) and NQ(5) are

the loaction of q,_; and a temporary vector in R respectively.

SUBROUTINE STPONE{N,ALF, BET,ALPH,BETZ R,NQ)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON /RDATA/RNM, RNM2 , SPREAD, TOL , EPS,EPSI
DIMENSION NQ{1),R(1}

DATA ONE,ZERO/0.0D0,0.0D0/

THiS ROUTINE PERFCRMS THE FIRST STEP OF THE LANCIOS ALGORITHM.
N DIMENTION OF THE EIGENPROBLEM

ALF THE NEW DIAGONAL ELEMENTS OF T

BET THE NEW OFF-D{AGONAL ELEMENTS CF T

ALPH THE NEW DIAGONAL ELEMENTS OF THE DEFLATED T. SEE ANALZT.
BET? THE NEW OFF-DIAGONAL SQUARED ELEMENTS OF THE DEFLATED T
R AN ARRAY CONTAINING [R{J)},Q(J), Q(}-i) P(J) MR(J}]

NQ(5) LOCATION POINTERS FOR THE ARRAY

SUBROUTINES : DATX,DAXPY,DDOT,OFM, OPK

Qoa0a0aaanoa

EPS1 = EPS+DSQRT(DFLOAT(N}}
RMNM = DSQRT{RNM2}

BET2 == ZERO

BET = RMNM

T = ONE/RNM

CALL DATX(N,T.R, .R(NQ{I) 1)
3 .

1
CALL DATX(N,T.R(NQ{3)).1 R{NQ(4)},1)}
CALL OPK{R{NQ{4)).,R,N]
ALF = DDOT{N,R,1,R{NQ{4)).1}
ALPH = ALF
T == - ALF
CALL DAXPY{N ,R(‘Q(l)},x,n,l)
CALL OPM(R, R( NQ{3)),N
RNM2 = DDOT{(N,R,1 ,R(NQ{3)).1}

RETURN
END
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Subroutine LANSEL

LANSEL, LANczos algorithm with SELective orthogonalization, performs the main steps of

the procedure described in the previous sections. The flowchart of figure 2 gives a global struc-
ture of LANSEL. After some imitalizations the algorithm checks if any orthogonalization is neces-
sary by calling PURGE. Then it calls LANSIM to perform a step of simple Lanczos. The ortho-
gomality estimates and the eigenvalues of the tridiagonal matrix are updated by calling ORTBND
and ANALZT respectively. When enough eigenvalues have been computed loop 10 is terminated

and finally the wanted eigenvectors are computed using RITVEC.
LANSEL terminates the iteration if any of the following conditions are satisfied:

{(3) The norm of r, becomes small.

(b) The number of Lanczos steps reaches LANMAX, the maximum allowed. In this case IERR

is set to 1.
{c} The number of computed eigenvalues exceeds the maximum number requested, MAXPRS.
(d} An eigenvalue is found outside the interval [ENDL, ENDR| at each end.

If [ENDL, ENDRY/ is empty then LANSEL will continue until an eigenvalue has converged outside
each end of [ENDL, ENDR]. If the first MAXPRS eigenvalues are wanted, whatever they may be

then set ENDI, = —o0, and ENDR = + co.

Structure of R: The first vector starting at location 1 is p , when entering the subroutime. The
remaining 5 vectors are stored at locations NQ{1) through NQ(3). This eliminates the need for
moving the content of one array to another for swaping. Only the pointers of the arrays are
changed. The vectors q,, q,;, Mr; and Mgq, are held in R starting from locations NQ(1)
through NQ({4) respectively. The space in R starting form NQ(5) is used for a working vector in

other parts of the program.
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SUBROUT INE LANSEL{N, LANMAX MAXPRS,6 NS, 6 ENDL,ENDR,R,ALF,BET, 6 ALPH,

1 BET?2 ,EIG,TAU,OLDTAU, ETA OLDETA, INFO,Y, S ,NQ,
2 NEIG, 1ERR)

INPUTS

N DIMENSION OF THE E[GENPROBLEM

LANMAX UPPER LIMIT TO THE NUMBER OF LANCZGS STEPS
MAXPRS UPPER LIMIT TO THE NUMBER OF WANTED EIGENPAIRS

NS LENGTH OF THE ARRAY §

ENDL LEFT END OF THE INTERVAL CONTAINING THE WANTED EIGENVALUES

ENDR RIGHT END OF THE INTERVAL CONTAINING THE WANTED EIGENVALUES
. WORK SPACE

R HOLDS 6 VECTORS OF LENGTH N. SEE ABOVE FOR DETAILS.

NQ(S) CONTAINS THE POINTERS TC THE BEGINING OF EACH VECTOR IN R.

ALF ARRAY OF LENGTH LANMAX TO HOLD DIAGONAL OF THE TRIDIAGONAL T

BET ARRAY OF LENGTH LAMMAX TO HOLD OFF-DIAGONAL OF T

ALPH DIAGONAL OF THE DEFLATED TRID!AGONAL

BET?2 SQUARE OF THE OFF-DIAGONALS OF THE DEFLATED TRIDIAGONAL

TAU ORTHOGONAL ITY ESTIMATE OF RITZ VECTORS AT STEP J

OLDTAU ORTHOGONALITY ESTIMATE OF RITZ VECTCRS AT STEP J-1

ETA ORTHOGONAL ITY ESTIMATE OF LANCZOS VECTORS AT STEP I

OLDETA ORTHOGONALITY ESTIMATE OF LANCZOS VECTORS AT STEFP J-1

INFO INFORMATION ABCUT EIGENVECTORS OF T

3 ARRAY FOR THE EIGENVECTCRS OF THE TRIDiAGONAL

OUTPUTS

EIG ARRAY OF LENGTH MAXPRS TO HOLD THE CONVERGED RITZ VALUES

Y ARRAY OF LENGTH MAXPRSeN TO HOLD THE CONVERGED RITZ VECTOCRS

NEIG NUMBER OF COMPUTED EIGENPAIRS

IERR ERROR FLAG

SUBROUTINES: PURGE,LANSIM,ORTHBND,K ANALZIT . RITVEC

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /RDATA/RNM, RNM2 , SPREAD, TOL , EPS,EPS1

COMMON / IDATA/EIGL ,EIGR NEIG

DIMENSION R(1},Y(N.1),EIG{1), TAU(1)},6OLDTAU(1) ALF(1),BET(1),S(1)
DIMENSION NQ{1),ALPH{1),BET2{1),ETA{1) OLDETA{1), INFO(1)
LOGICAL ENOUGH

REPS = DSQRT(EPS)

Il =1

ETA(1) = EPS1

EIGL = ENDL - (ENDR - ENDL)

EIGR = ENDR + (ENDR - ENDL)

NEIG = 0

LANCZOS LOOP

DO 10 J = 2,LANMAX
NBUF = N$/J
11 == I+ 1
RNM = DSQRT({RNM2)

RESTORE THE SEM!-ORTHOGONALITY STATE WHEN NEEDED
CALL PURGE{R,R(NQ{1}).R(NQ(3}).R(NQ{4}) ,R{NQ(S$}).Y, ALF,BET,S,
1 EI1G,ETA,OLDETA, TAU,OLDTAU, INFO,N, J-1 ,NBUF)

IF (RMM .LT. REPS+*3PREAD) GO TO 20

TAKE A LANCZOS STEP
CALL LANSIM(R,ALF({J),BET(J),ALPH({JJ), BET2(JJ}, RNM, RNM2,NQ,
N, I}

UPDATE THE ORTHOGONALITY BOUNDS
CALL CRTBND{ALF,BET,I, EPS1 ETA,OLDETA, TAU,OLDTAU,EIG, INFO,
1 RMM, NEIG, N)

UPDATE THE RITZ VALUES
ENOUGH = NEIG .GE. MAXPRS .OR.

1 { ElIGL .GT. ENDL AND. EIGR .LT. ENDR)
IF { ENOUGH } THEN
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GC TC 20
ELSE
CALL ANALZT{J! ALPH,BET? ,ElG, TAU,OLDTAU, INFO)
END IF
CONTINUE
IERR == -1

COMPUTE THE REMAINING RITZ VECTORS
DO 40 I=1 NEIG
M= 1
DC 30 K = 1,NEIG
M = MINO({IABS{INFO(K}) M)
CONT INUE
IF ( M .EQ. 0 ) THEN
CALL RITVEC(R,R{NQ(1)) ,R(NQ(3)) . R(NQ(4}),R{NQ(5}),Y,ALF,
BET,EIG,S, INFO,N, ] ,NEIG,NBUF, .TRUE . }
ELSE

GO TO 50
END IF
CONT INUE
CONTINUE
RETURN
END



Take the First

Lancsos Step

!

Perform an orthog. step when

e g Deeded and compute the eigen-

vectors of just converged ¢

!

Take a

Lanczos step

!

Update eigenvalues of T,

and their érror bounds

No
et Enough eigenvalues
Compute remaining
. Retumn
eigenvectors
Figure 2. A global picture of the Lanczos method with selective orthogonalization indicating

the way the individual modules are used.
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Subroutine LANSIM

This routine performs a single step of the simple Lanczos process. The flowchart in figure 3

gives a global view of the algorithm. All the vectors required in this routine are stored in array
R.

SUBROUTINE LANSIM(R,ALF, BET ALPH,BET2,RNM,RNM2 NG, N, J)
IMPLICIT DOUBLE PRECISION {A-H,0-3)

DIMENSION NQ(1},R{1)

DATA ONE,ZERO/1.0D0,0.0D0/

THI3 ROUTINE PERFORMS A SINGLE STEP OF THE LANCZOS ALGORITHM.
IT PERFORMS A STEP OF LOCAL REORTHOGONALIZATION IF NEEDED.
SEE LANSEL FOR DEFINITIONS OF THE PARAMETERS.

J CURRENT LANCZOS STEP

SUBROUTINES : DATX,DAXPY,DDOT,OPM, OPK, STORE

aaaaaoaaon

SWAP Q(J) AND Q{J-1)
NTMP NQ(2)

NQ(2) = NO(1)
NQ{1} == NTMP
Q = R/BETA

T = ONE/RNM
CALL DATX(N,T.R,1,R{NQ{1}).1)

aaQ

P = PBAR/BETA
CALL DATX{N,T,R(NQ{3)},1,R{(NQ(4])).1)

R = { K INVERSE }»Q
CALL OPK(R{NQ(4)}.R,N)

Qo aa oo

R=1R - Q(J-1)sBETA
T = -RNM
CALL DAXPY(N,T,R(NQ{2)},1.R,1)

ao

STORE Q{J-1)

CALL STORE(R(NQ(2)}.,N.J-1,1)}
BET = RNM

BET2 = RNM2

ALF == ZERO

ALF = { R TRANSPOSE ) + P
DALF = DDOT{(N,R,1.R(NQ(4)}.1)}

aa aa

LOACL REORTHOGONAL IZATION WHEN WARRANTED
DO 10 I=1,2
CALL DAXPY({N, -DALF R{NQ(1}).1,R.1)
ALF = ALF + DALF
CALL OPM{R.R(NQ{3)}).N)
RNM?2 = DDOT{N,R,1,R{NQ(3)),1}
ALPH = ALF
IF (RNM2e256.0D0 .GT. (ALF++2 &
DALF == DDOT(N,R({NQ{1))}.1,R{NQ(3)
DBET = DDOT{N,R(NQ{2)},1,R{NQ{3}
CALL DAXPY({N, -DBET,RI{NGQ(2)}.1.R,
BET == BET + DBET
BET? = BETs#2
10 CONTINUE
END

ET2) .OR. 1 .EQ. 2) RETURN
1)
1)

B
)
}
1)



q, = r;4/f,
P, = P,./8
Solve K F,=p, for F,

F,=F, ~q,,f,

Store q,; 5

a, == 0

=T
fa, =T, p,

F, = F, - q,da,

P, = MF,

wln—

Brpr = (FP;)

a, = a, + da;

Second reorth. o Return

Yes

ba, = f:fq P

15; = ﬁ}' + is;qul

Figure 3. Flowchart description of the j-th step of the simple Lanczos algorithm.



-37-

Subroutine ORTBND

The subroutine ORTBND updates the orthogonality bounds, w,, of Eq. 35, and the 7 recu-
rance of Eq. 40 in section 7. These quantities are later examined in subroutine PURGE for possi-

ble loss of semi-orthogonality. LANSEL is the only routine that calls ORTBND.

SUBROUTINE CRTBND {ALF ,BET,J EPS1 ,ETA,OLDETA, TAU,OLDTAU  EIG, INFO,
1 RMM,NEIG,N)

IMPLICIT DOUBLE PRECISION (A-H,0-2}

DIMENSION ALF({1) BET(1),ETA(1),0LDETA(t)},TAU(1),OLDTAU(1),
1 EIG({1),INFO(1)

DATA ONE/1.0D6/

C
C.. INFPUTS
C.. FOR [ALF,BET,ETA,OLDETA,TAU,OLDTAU,N} SEE LANSEL .
C.. I ORDER OF T
C.. EFPS1 ESTIMATED DOT PRODUCT AFTER ORTHOG. = SCRT{N)}*EPS
<. EIG ARRAY OF CONVERGED EIGENVALUES
C.. INFO INFORMAT ION ARRAY FOR EIGENVECTORS OF T. SEE SUBTJ.
C.. RMNM NORM OF THE NEXT RESIDUAL VECTOR
c.. NEIG NUMBER OF CONVERGED EIGENVALUES
C
Cc.. UPDATE THE OMEGA AND TAU RECURANCES,
C
I#F {( J .GT. 1 } THEN
OLDETA(1) == BET{2}+ETA{2) -+ {ALF({1) - ALF(J))‘ETA(!}
1 - BET{J)+OLDETA{1}) / RNM
IF { J .GT. 2 } THEN
J1 == J - %
DO 100 K=2,6 Jt
OLDETA(K} == (BET{K+1)}+ETA(K+1) + (ALF{K) - ALF(J}}*ETA(K}
1 + BET{K}*ETA(K-1} - BET(J)‘OLDETA{K)} / RMNM
100 CONTINUE
END iF
DO 200 Re=1,J1
T = OLDETA{K}
OLDETA(K) == ETA{K)}
ETA(K) = T
200 CONT INUE
END IF
ETA(]} = EPS1<BET(2)}/RNM
C
C UPDATE THE TAU RECURANCE.
c
DO 300 I==1 ,NEIG
IF { INFO{1} .NE. 0 j THEN
T == TAU({1)} )
TAU(1) = (EIG{1) - ALF{J})sTAU(1)} - BET(J)=OLDTAU( )
OLDTAU{I) = T
END IF
300 CONTINUE
RETURN

END



Subroutine PURGE

PURGE examins first the array ETA, which holds the vector h,,,. See section 7. If the
element of ETA with largest absclute value is less than REPS, Ve, indicating no loss of semi-
orthogonality, then PURGE does nothing and returns. Otherwise, the elements of TAU are exam-
ined to determine if loss of orthogonality might be due to the return of a previously banished Ritz
vector. If of TAU(I) is greater than REPS in absolute value it indicates loss of semi-orthogonality
against the Ritz vector with index . The corresponding eigenvector of T, is computed using

GIVENS. ETA and OLDETA are orthogonalized against the computed eigenvector of T,.

The elements of ETA are examined for a second time. If ETA still hoids an element with
absolute value greater than REPS, then loss of orthogonality is also due to the convergence of a
Ritz value. Then RITVEC is called and the contents of TAU, OLDTAU, ETA and OLDETA are
all set to EPS1 = vn ¢ Othéwise, q, and r,, held in Q and R, are orthogonalized against those
Ritz vectors in columns of Y with TAU value greater than REPS in absolute value. These ele-

ments of TAU and OLDTAU are then set to EPS1.

All orthogonalizations of the Lanczos vectors are performed with respect to the inertial
inner product and therfore we require two vectors, QA and RA that hold Mq, and Mr, respec-

tively. At the end of PURGE, Mq, and Mr; are recomputed if q, and r, are modified.

SUBRCUT INE PURGE{R,Q,RA,QA.T,Y, ALF,BET,S,EIG,ETA OLDETA, TAU,
1 OLDTAU, INFO, N, ] ,NBUF )
IMPLICIT DOUBLE PRECISION{A-H,0-Z)
COMMON /1DATA;/ EIGL,EIGR, NEIG
COMMON /RDATA/ RNM,RNM2, SPREAD, TEST,EPS, EPS1
DIMENSION R{1).Q(1},RA{1),QA{1) ,T(1) Y(N, 1} ALF(1) BET(1),8(J 1)},
1 EIG(1),ETA{1),OLDETA{1),TAU(1),OLDTAU(1}, INFO(1}
LOGICAL ORTHO

FCR [ALF,BET,EIG,ETA,OLDETA,TAU,OLDTAU,iNFO,N,J] SEE LANSEL.
R THE RESIDUAL VECTOR TO BECCOME THE NEXT LANCZOS VECTOR
Q THE CURRENT LANCZOS VECTOR

.. RA THE PRODUCT OF THE MASS MATRIX AND R

. QA THE PRODUCT OF THE MASS MATRIX AND Q

T A TEMPORARY VECTOR TO HOLD THE PREVIOUS LANCZOS VECTORS
Y CONTAINES THE CCOMPUTED RITIVECTORS
s VECTOR FOR COMPUTING EIGENVECTCRS OF T{J)
NBUF NUMBER OF VECTORS [N 8

SUBROUTINES : DAXPY,DZERQ,DDOT, IDAMAX, SUBTJ, GIVENS , OPM

.. THIS ROUTINE EXAMINES ETA, OLDETA, TAU AND OLDTAU TO DECIDE
_ WHICH FORM OF REORTHOGONALIZATION [Ff ANY SHOULD BE PERFORMED.

OQGOQOOQOOC)QOOOO

ORTHO == .FALSE.
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aa 0 Qe

REPS = DSQRT{EPS)
TOL = REPS+SPREAD
K = IDAMAX{J-2 ETA.1)
IF (DABS(ETA(K)) .GT. REPS) THEN
DO 10 Imi NEIG
IF {INFO(I} .NE. 0 .AND. DABS(TAU{
CALL DZERG({J,S,1)

1)) .GT. REPS) THEN

CALL SUBTIJ{EIG,INFO,TOL, I ,N,NEIG,J L K M)

CALL GIVENS({K-M+1,L-M+1, ALF{M),
S, RESID,RAYCOR)
ZETA = - DDOT(J,ETA.1,S,1}
CALL DAXPY(J,ZETA,S,1 ETA,1)
ZETA = - DDOT(J,OLDETA,1,8,1)
CALL DAXPY{J,ZETA,S,1,OLDETA1}
END IF
CONT INUE

K = IDAMAX(J-2,ETA, 1}

IF (DABS{ETA{X)} .GT. REPS) THEN
GRAM- SCHMIDT NEEDED
ORTHO = .TRUE.
CALL RITVEC(R,Q,RA,QA,T,Y, ALF,BET,
NBUF, .FALSE.)
DO 20 I=1,NEIG
TAU(1)} = EPSI
OLDTAU( 1)} = EPS1
CONTINUE
DO 30 I=t,J-1
ETA{1) = EPS1
OLDETA(1) == EPS1
CONT I NUE
ELSE

REMOVE COMPONENTS OF A RITZ VECTCR
ORTHO = .TRUE.
DO 40 I=1,NEIG

IF {DABS(TAU{1})

TAU(1) = EPS1
OLDTAU{I} == EPS1

ZETA = DDOT(N,RA,1,Y

(1,1),1
CALL DAXPY(N,-ZETA,Y(1,1),1,
ZETA = DDOT(N,QA,1,Y{1,1},1}
CALL DAXPY(N,-ZETA,Y{1,1},1,
END IF
CONT INUE
END IF
END IF

IF { ORTHO ) THEN
CALL OPM{R,RA,N)

END IF

RETURN

END

BET (M) ,EIG(1} ,EPS,

El1G,s,INFO,N,J NEIG,

.GT. REPS) THEN
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Figure 4.

A Howchart for selective orthogonalization method.




.41 -

Subroutine RITVEC

The purpose of this routine is two fold:
{1} compute the Ritz vector corresponding to a converged Ritz value
(2) perform a full reorthogonalization step.

The first step of the program is to compute some eigenvectors of the tridiagonal T ,. The eigen-
vectors of T, are stored in an array S and the number of computed vectors depends on the avail-
able storage indicated by NBUF. GIVENS is used to obtain the wanted eigenvectors. The next
step is to recall all the Lanczos vectors from secondary store (by calling STORE) and compute
the Ritz vectors using Eq. 23, accumulating the result in columns of Y. The old Lanczos vector
that is brought in is stored in the temporary vector T. In the same loop, when EVONLY is false,
the two current Lanczos vectors, q, and r ;o held in Q and R, are orthogonalized against the pre-
vious Lanczos vectors held in T. In t!ﬁs way the number of I/O transfers is minimized. Arrays
QA and RA that hold Mq, and Mr, respectively are also needed by RITVEC to perform the

orthogonalization with respect to the inertial inner product.

SUBROUTINE RITVEC(R,Q,RA,QA.T,Y,ALF,BET,EIG,S, INFO,N, J,NEIG, NBUF,
1 EVONLY}

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON /RDATA/RNM, RNM2 , SPREAD , TEST . EPS , EPS1

DIMENSION R(1),Q(1),RA(1},QA(1),T{1),Y{N,1),ALF(1} BET{1).5(J,1),
1 EIG(1), INFO(1)

LOGICAL EVONLY

C
C.. SUBROUTINES : DAXPY,DZERO,DDOT, IDAMAX, SUBTJ,GIVENS , STORE
C
C.. IF EVONLY = .TRUE. COMPUTES ONLY RITZVECTORS {NO RECRTHOG. }
C.. THIS ROUTINE COMPUTES SCME RITZVECTORS AND PERFORMS A
C.. REORTHOGONAL IZATICON OF THE LANCZOS VECTORS.
C.. FOR [R,Q,RA,QA,T.Y,ALF,BET,E?G,S, INFO,N,J ,NEIG,NBUF! SEE
C.. PURGE AND LANSEL.
C

IBUF = ¢

TOL = DSQRT(EPS)sSPREAD

RNEPS == RNM+EPS
C
C.. COMPUTE EIGENVECTORS OF T AND PUT IN THE BUFFER.
C

DO 30 I=NEIG,1,-1
IF (INFO(1) .GE. 0 .AND. IBUF .LT. NBUF) THEN
iF (EVONLY .AND. INFO{I) .NE. 0) GO TO 30
IBUF = IBUF + 1
CALL SUBTJI{EIG, INFO,TOL,I ,N,NEIG,J L ,K,M)
CALL DZERO(N,Y{1,1).1)
DO 10 1DUM=t,J
CALL DZERG(J,$(1,1BUF),1)
CALL GIVENS(K-M+1,L-M+1,ALF (M), BET(M),EIG(!), EPSI,
1 S(M, IBUF) ,RESID,RAYCOR)
IF (RESID .LE. TOL} GO TO 20
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K=K+ 1
IF {K GT. J) K =1
CONTINUE

EIG(1) = EIG(I) + RAYCOR
INFO(1) = NeIDAMAX(J,S(1,1BUF), 1) + J - 1
END IF

CONTINUE
COMPUTE THE RITZ VECTORS AND PERFORM G-3 ORTHOGONALIZATION.

DO 50 I==1,J-1

CALL STCRE(T,N,1,2)
KBUF = 0
DO 40 K=NEIG,1,-1
IF {INFO(K) .GE. 0 .AND. KBUF .LT. I[BUF) THEN
KBUF == KBUF + 1
SI = ${1{ ,KBUF)
IF (DABS(SI} .GT. EPS) CALL DAXPY(N,SI,T,1,Y{1.K),1)
END IF
CONT INUE
IF { .NOT.EVONLY) THEN
ZETOLD = -DDOT{N,QA,1,T,1)

IF { DABS{ZETOLD) .GT. EP3 } CALL DAXPY({N,ZETOLD,T,1.,Q, 1)

ZETA = -DDOT{N,RA.1,T,1)
{F { DABS(ZETA) .GT. RNEPS )} CALL DAXPY(N,ZETA,T,1.,R, 1)
END IF
CONT INUE
KBUF = 0
DO 60 I=NEIG,1,-1
IF {INFO(I) .GE. 0 _AND KBUF .LT. I1BUF) THEN
KBUF == KBUF + 1

IF (DABS(S({J,KBUF)) .LT. EPS1) INFO(1) = -INFO(I)
CALL DAXPY{N,S(J KBUF),Q,1,Y{1,1),1) :
END IF
CONTINUE
RETURN

END
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Subroutine GIVENS

This routine computes the eigenvector of a tridiagonal with corresponding to an eigenvalue
stored in THET. It first assumes a value for the bottom element of the eigenvector and solves for
the rest using the Givens recurrance [19] going backward. This phase is terminated once the K-th
element of S has been obtained. Then all the terms computed thus far are scaled to make ${K)
unity. A similar procedure is performed starting form the top element and running the recurrance
in the forward direction. Then the computed vector is normalized and finally the residual and the
Rayliegh correction to THETA are computed and returned in RES and COR respectively. The

algorithm scales of S to avoid overflow whenever it becomes necessary.

SUBROUTINE GIVENS(K,J, ALF ,BET K THET,EPS S ,RES,CCR}
IMPLICIT DOQUBLE PRECISION {A-H, 0-2)

DIMENSION ALF{1),BET{1).8(1)

DATA ONE,ZERQ/1.0D0,8.0Do/

GIVENS RECURANCE FOR COMPUTING EIGENVECTORS OF A TRIDIAGONAL T.

INPUTS :

FOR {ALF BET,EPS| SEE LANSEL.

K INDEX OF THE RIGHT HAND SIGE E(K)
THET EIGENVALUE OF T

QUTPUTS

5{1) COMPUTED EIGENVECTOR

RES NCEM OF THE RESIDUAL

COR RAYLEIGH CORRECTION FOR THET

SUBROUTINES : DSCAL

QOOOOOOOOOOOOOOO

BACKWARD RECURRENCE
EPS2 = ONE/(EPSs+2)
RES = ZERO
S$(J) = EPS
S{J-1) = -{ALF(J) - THET)+*EPS/BET(I)
SUM2 == EPSss2 + S(J-1)ee2
DO 10 I = J-1,K+1,-1
${I-1} = -({ALF(1} - THET}*S(1) + BET(I+1)sS(I+1}))/BET(I}

SCALE TO AVOID OVERFLOW

IF ( S(I-1) .GT. EPS2 )} THEN
F = ONE/S({1-1)
$(1-1) = ONE
CALL DSCAL{J-1+1,F,S(1},1)
SUM2 = (SUM2+F)+F

END iF

SUM2 = SUM2 + S(I-1)ss2

19 CONTINUE

F = ONE/S(K)

S(K} = ONE

SUM2 = SUMZ2sF3s2

CALL DSCAL(I-K,F,S{X+1),1)

IF ( K .LE. 1 ) GO TO 30

GO

a0

FORWARD RECURRENCE
X = ZERO
${1) = EPS
SUM1 = EPSes?



w 0

(1} - THET)+S(1}}/BET(2)
(2)22

ALF(1) - THET)*S{1}) + BET(1}+S{1-1))/BET(1+1)
{?Ti)Epsz } THEN
k4

|
Q
&

J
DSCAL{1 ,F S, 1)
SUMI == (SUM1IsF)sF

SUMi == SUMI1 + S{I+1}ve2
CONT INUE
X = BET{K-1)+¢5{K-2}
END IF
¥ = -{X + {ALF{K-1} - THET)*S{K-1})/BET{K)

MATCH X WITH S(K)
If { X .EQ. ZERO ) THEN

RES = ONE
RETURN
END IF

CALL DSCAL(K-1,F,5,1)
SUM2 = SUM2 + SUM1eFes2
RES = BET{K}*${K-1)

NORMAL 1ZE S
F = ONE/DSQRT{SUM2)
CALL DSCAL{J,F,S,1)
RES*F + (ALF(K) - THET)*S{K) + BET(K+1)eS(K+1)

RES =
COR = S{K)*RES
RES = DABS({RES)
RETURN

END
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Subroutine SUBTJ

In theory unreduced tridiagonal matrices do not have equal eigenvalues but in practice they
can have two eigenvalues that are so close to one another that they are indistinguishable in Snite
precision. This creates certain defficulties when computing eigenvectors with close eiegnvalues,
The problem is solved by working with a submatrix T of the tridiagonal T,. This routine
obtains an estimate of the indices | and m that define a submatrix for which EIG{I} is simple.
INFO{I} = NXK + I stores the two indices J and K. T is the step at which the eigenvector
corresponding to EIG(I) was computed and K is the index of the element of this eigenvector with

largest absolute value. When INFO({I} is negative it indicates that the Ritz vector in Y{I} is con-

verged.
SUBROUTINE SUBTJ{EIG,!NFO.TOL,I.N,NEIG,J,L,K,M}
IMPLICIT DOUBLE PRECISION {(A-H,0-2Z)
DIMENSION EIG(1), INFO(1)
C
C.. INFUTS
C.. TOL TOLARANCE FOR FINDING COPIES OF EIG{1)}
C.. 1 INDEX OF THE EIGENVALUE CONSIDERED
C.. FOR [EI1G,N|] SEE LANSEL. FOR INFO SEE ABOVE.
C
C.. QOUTPUTS
C.. K INDEX OF THE RIGHT HAND SIDE FOR GIVENS
C.... L INDEX OF THE LAST ELEMENT OF THE SUBMATRIX
C.... M INDEX OF THE FIRST ELEMENT OF THE SUBMATRIX
C
C.. TH1S ROUTINE SCANS BACK THROUGH THE CONVERGED EIGEN VALUES
C.. FOR COPIES OF EIG(!) TO DETERMINE THE SUBMATRIX T{M,L} AND
C.. THE RIGHT HAND SIDE E(K) FOR THE GIVENS RECURENCE.
C

L o= )
EIGI = EIG(1)
DO 19¢ It = 1-1,1, .1
IF (DABS{EIG! - EIG(11}} .LT. TOL) GO TO 110
100 CONT INUE
110 IF {l1 .LT. 1t} THEN

C.... EIG(1) IS DISTINCT
M=1
K =}
ELSE
C.... EiG(1) HAS A REPEATED COPY

Me | 4+ IABS({INFO{I1)}}/N
K = (3+MOD{IABS(INFO(T1}},N} + I)/4
END IF
IF { INFO(l} .GT. 0 ) K = INFO(I)/N
DO 200 12 = I+1,NEIG
IF {DABS(EIGI - EIG(12)) .LT. TOL) GO TO 210
200 CONTINUE
210 IF {12 .LE. NEIG) THEN
L = IABS(INFO(I2})/N - 1
IF (INFO(I2) .EQ. 0) L = MOD{IABS(INFO{!}},N}
END IF
RETURN
END
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Subroutine ANALZT

The goal of this routine is to obtain the smallest possible inerval that contains a single
eigenvalue of T,. It makes full use of the corresponding information that was obtained at the
previous step. When J = 2 it simply computes the eigenvalues of the 2X 2 tridiagonal matrix.
Phase I of the routine updates the data structure {THETA, BJ), that containes those eigenvalués
of T,_; that are about to converge to eigenvalues of the big problem. Their residual bounds go in

RJ. Phase II of the routine appends some new items to this data structure. Any converged eigen-

value is removed form THETA and put into EIG and then explicitly deflated form the tridiago-

nal. This routine is called by LANSEL. For a more detailed description see {15].

SUBROUTINE ANALZT{J,6ALF,BET2,EIG,TAU,OLDTAU, INFO)

C

C.. THIS ROUTINE UPDATES SOME EIGENVALUES OF A TRIDIAGONAL T{J} USING
C.. THE EIGENVALUES OF T(i-1}.

c

c ] ORDER OF THE TRIDIAGONAL T.

< ALF DIAGONAL OF T.

C BET?2 SQUARES OF THE OFFDIAGONAL TERMS, BET2{1) = 0.0D0

C THET EXTERIOR EIGENVALUES OF T, NEARLY CONVERGED

C RITZVALUES. THET{1)=LEFTMOST, THET{3)=RIGHTMOST.

C B ERRCR BOUND ON THET

C BJ(1) IS SET TO -1 IF THET{!) DISAPPEARS.

C NED CONTAINES L AND R IN THE TEXT.

C SPREAD THET{8) - THET(1}

C EFS PRECISION OF ARITHMATIC OPERATIONS

C IP IP=t FOR UPDATING LEFT END, IP=2 FCOR THE RIGHTEND.

C INC [NC==1 FOR UPDATING LEFT END, INC=-1 FOR THE RIGHTEND.
C 18 STARTING INDEX (EITHER 1 OR 3}

c NEWRTZ FALSE UNLESS AN EXTRA RITZ VALUE HAS BEEN INSERTED.

C START LEFT BOUND ON EIGENVALUES (INC=1}, RIGHT BOUND (INC=-1}
c PROBE THE OUTER END OF THE NEXT SUBINTERVAL TO BE UPDATED.
c INDXOK TRUE, IF THERE ARE [-INC RITZ VALUES EXTERIOR TO THE
o] NEW THET(1).

c.. FOR |[EIG,TAU,OLDTAU,N| SEE LANSEL. FOR [INFO| SEE SUBTIJ.

c

C SUBROUT I NES : NEWCOR , DEFLAT ,MOVE1 ,NUMLES

G

IMPLICIT DOUBLE PRECISION({A-H,0-Z)

CCMMON /RDATA/RNM, RNM2 , SPREAD, TOL ,EPS, EPS!
COMMON /ATDATA/THET(8) BJ{8) NBD{2) 3
COMMON / IDATA/E!GL,EiGR,NEIG

DIMENSION ALF(1),BET2(1),EIG(1),TAU(1) OLDTAU(1), INFO(1)

LOGICAL INSERT, INDXOK,APPEND

DATA ONE / 1.0D0 /,ZERO / 0.0D0/

IF { J .LE. 1) RETURN

IF { J _EQ. 2) THEN

THET(1) = (ALF{1) + ALF({2) - DSQRT({4.*BET2(2) +
1 (ALF(1) - ALF{2})}se2}))/2.
THET{8) = ALF{1) + ALF{2) - THET{1)
Bi{1) = DSQRT(RMNM2/(ONE + BET2{2)/(THET(1) - ALF{1))ss2))
BI(8) = DSQRT(RNM2/(CNE + BET2{2)/(THET(8) - ALF{1]}+*2)}
NBD(1} =1
NBD(2) = 8
SPREAD = THET(8) - THET(1)
REPS = DSGRT{EPS)
RETURN

END IF
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TOL = 2.0+REPS+SPREAD
W = 64.+TOL

BEGIN PHASE 1.
LOOP FOR LEFT END, THEN RIGHT

DG 100 IP = 1,2
INC = 3 - 2P
I§ = 7+]|P - &
I = 18

INSERT == . FALSE. _

START = (THET(1) + ALF{J) - INCDSQRT(BET2(J)es4. +
(ALF(J) - THET(1))ee2}}/2.

PROBE == THET(1) - INC*BI{1)

INDXCK = NUMLES{ALF BET? PROBE, !, INC EPS) .EQ. ©
DO 50 IDUMMY =1,8
iF {1 - NBD{IP} .EQ. INC) GO TO 100

EXAMINE I TH SUBINTERVAL

I¥ (INDXOK) THEN
IF (INSERT) THEN
START == THET{ 1}
THET{1)} = START + INCsDMINI(Bse2/

1 DABS(START - THET(I-INC}} , B)

ELSE
END I
CHECK FOR DISJOINT SUBINTERVALS

IF {1 .EQ. NBD(IP)) THEN

PROBE=THET( 1 )+ INC* (THET(NBD(2})-THET(NBD(1)))/(4.0%J)

ELSE ,
PROBE = THET(I+INC)} - INCsBJ(I+ING)

END IF

IF (INT{DSIGN(ONE,PROBE - THET(!)}) .EQ. INC) THEN

CHECK FOR AN EXTRA RITZIVALUE

K = NUMLES{ALF,BET2,PROBE, J, INC,EPS)
IF (K .LT. IABS{I - IS + INC)) THEN

THET{1) DISAPPEARS

BJ{1) = -ONE
ELSE

RECORD INDEXOK FOR NEXT LOCP. USE REFINED BCUNDS.

IF { .NOT. INSERT} THEN

B = BI(1)
INDXOK = (K .LE. IABS{iI - 1S + INC))
BND = DMINI {B+¢2/DABS(PROBE-THET(!)) , B)
IF (INDXOK.AND.BND.LT.DABS(THET(I)-START}) THEN
START = THET(!) - INC+BND
END IF
END IF
END IF
END IF

ELSE
PREPARE FOR AN INTRUDING RITZVALUE

IF ({I5.EQ.NBD(IP) .OR. BJ(NBD{IP)-INC).LT.W) .AND.
} NBD{IP) = NBD{!P) + INC
CALL MOVEIL (THET, [ ,NBD(IP}, - INC, PROBE}
CALL MOVE!I({BJ,I,NBD({IP},-INC,2.0+TOL)
INSERT == .TRUE.
INDXOK == . TRUE.
END IF

IF {INT{DSIGN{ONE,PROBE-START))} .EQ. INC) START=PROBE
F
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IF { BI{1) .GT. TOL ) THEN
USE NEWTON I[TERATION TO FIND NEW THET(i)

CALL NEWCOR{ALF , BET?2,START,THET ,BJ ,NBD,INC,I,1)
END IF

tF ( BJ(I) .LT. & ) THEN
THET(1} DISAPPEARS

CALL MOVE1 (THET,NBD(IP), [, INC, ZERO)
CALL MOVEL(BJ NBD{{P},I,INC,ZERO)
NBD{IP) = NBD{IP) - INC
INSERT = .FALSE.
INDXOK == .TRUE.
I =1 - INC

END IF

I =1 + INC

CONT INUE

END OF PHASE 1
CONTINUE
BEGIN PHASE 2.

APPEND MORE RITZVALUES AND CHECK FOR CONVERGED RITZVALUES.

DO 200 P == 1,2
INC = 3 - 2+]P
1§ = TeIP - &
I = I8
DO 150 IDUMMY ==

i

1

NREM = J - NBD(1} + NBD{2) - 9

IF ( {!-NBD{IP})*INC .GT. 0

} GO TO 200

APPEND = | .EQ. NBD({IP) .AND. (BJ(I) .LT. W .OR. (I .EQ.

LAND.

NBD(IP) .EQ. IS)) .AND. NREM .GT. 0

IF (APPEND) THEN

START = THET(!)

PROBE = INC» (THET(NBD(2)) - THET(NBD(1)}))/NREM
END IF
iF (BJ(1} .LT. TOL) THEN

INSERT THET(I) INTO BIG

NEIG = NEIG + 1
IF (IP .EQ. 1 ) THEN

EIGL = DMAX! (EIGL,THET(!})
NEIGL = NEIGL + 1
ELSE
EIGR = DMINt{EIGR,THET(!})
NEIGR = NEIGR + 1
END IF
EIG(NEIG) = THET{!)
INFO(NEIG) = 0

REMOVING STABLIZED RITZ VALUES

CALL DEFLAT{ALF,BETZ,THET{[),RNM2, J)
CALL MOVE! (THET,NBD(1P), !, INC, ZERO)
CALL MOVEL(BJ.NBD{IP}, I, INC,ZERO)
NBD{iP} = NBD(!P) - INC
1 =1 - INC
END IF
[F (APPEND .AND. NBD{2)-mNBD(1)} .GT. 1) THEN
T = START + PROBE
NBD(1P) = NBD(IP) + INC
1K = !ABS(I8 - NBD(IP})
DO 110 IDUM = 1,J
IF (NUMLES{ALF,BET2,T,J,INC,EPS} .NE. [K) GO TO 120
T = T + PROBE ,
CONT INUE



150
200

300

THET(NBD({ IP})} = T
START = T - PROBE

NP = NBD{ IP)

CALL NEWCOR (ALF,BET2,START,THET,BJ, NBD, INC,NBD{ 1P}, J)

END IF
IF (J.GT.28 .AND. ! .EQ.NBD(IP) .AND. I .NE.IS .AND. BJ{I).GT.
BJ(I1-INC) .AND. BJ(I-INC).GT.W} NBD{IP) = NBD({IP) - INC
I =1+ INC
CONT INUE
CONT INUE

DO 300 IP = 1,2

INC = 3 - 2¢}P

IS = T7sIP -

8

If {NBD{IP} .EQ. 1S-INC) THEN
THET{IS) = THET{NBD(3-1P))

BJ{IS) = BJ{NBD(3-IP)}
NBD(I1P) = IS
NBD(3-1P}= NBD{3-1P) + INC
END IF
CONT INUE

SPREAD = THET(8)
RETURN
END

- THET{1)
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Subroutine NEWCOR

The object of this routine is to find an eigenvalue of T, in a given interval. It uses a com-
bination of bisection and Newton’s method. For a detailed description see [15]. INDEX points to
the position in THETA that will evantually hold the computed eigenvalue. On entry
THETA(INDEX) contains the eigenvalue of T,_, that is also one end of the interval and ZETA is
the other. ZETA is also the starting for Newton’s method. If this interval is too large then the
algorithm performs a few steps of bisection to obtain a better estimate, ZETA, to the desired
eigenvalue. The eigenvalue counts are obtained by calling NUMLES. Then Newton's iteration is
used to compute the eigenvalue to the full computer precision. The Newton correction is com-
puted using a recurrence that is given in [15]. The convergence of mewton is guaranteed by

deflating the eigenvalues exterior to ZETA implicitly. NEWCOR is called only by ANALZT.

SUBROUTINE NEWCOR(ALF,BET2,ZETA,THET,BI NBD, INC, INDX, J}

c
c COMPUTES EXTRERIOR EIGENVALUES OF A TRIDIAGONAL USING A
c COMBINATION OF BISECTIONS AND NEWTON METHOD
c
c ALF DIAGONAL OF T.
c BET2 SQUARES OF THE OFFDIAGONAL TERMS, BET2{1)} = 0.0D0
C ZETA EXTERIOR BOUND FOR EIGENVALUE OF T IN THET(INDEX)
c THET EXTERIOR EIGENVALUES OF T, NEARLY CONVERGED
c RITZVALUES. THET{1)=LEFTMOST, THET(S )=RIGHTMOST.
C BJ ERROR BOUND ON THET
C NBD CONTAINES LEFTMOST OR RIGHTMOST INDEX OF THETA.
c SPREAD THET{8} - THET{1)
c INC INC==1 FOR UPDATING LEFT END, INC=-1 FOR THE RIGHTEND.
< INDX INDEX OF THET TO BE UPDATED.
c J ORDER OF THE TRIDIAGONAL T.
C
c SUBROUTINES : NUMLES,QLBOT
c
IMPLIC!IT DOUBLE PRECISION({A-H,0-Z}
COMMON /RDATA/RNM, RNM2 , SPREAD, TOL , EPS, EPS1
DIMENSION ALF(1)},BET2(1)},THET{1) ,BJ{1) ,NBD(1)
REPS == DSQRT(EPS)
IF { J .EQ. 1 } THEN
ZETA = THET{ INDX)
THET{ [NDX) = ALF{J)
BI{INDX) == DSQRT{RNM2)
RETURN
END IF
c
C.... PERFORM BISECTION FOR AN IMPROVED ZETA
c

18 = {9 - 7¢INC}/2
FACT = 32.0+DFLOAT(J)+DLOG{DFLOAT{J}))
WIDTH = (THET{INDX) - ZETA)/2.
IF { WIDTH .EQ. 0.0D0 } WIDTH = BJ(INDX}/2.
JOLD = IABS(IS - INDX)
DO 10 IDUMMY = 1,135
IF {DABS{WIDTH)sFACT .LE. DABS{THET({9-1S)-THET({INDX)}) GO TO 20
ZNEW = ZETA + WIDTH
INEW = NUMLES(ALF,BET?2, ZNEW, J, [NC,EPS)
WIDTH = WIDTH/2 .
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IF { INEW .EQ. IOLD } ZETA = INEW

10 CONTINUE
20 CONTINUE
C

DO 50 IDUMMY = 1,30
U = ALF(1) - ZETA
TT = 0.1%EPS+BET2(2)
IF { U _EQ. 0.0D0 ) U = 6.1+EPSeBET2(2)

SUM == RAT
DO 30 I = 2,1

H = BET2{1}/U

U = ALF(!} - ZETA - H

IF (U .EQ. 6.0D0 ) U == 0.1+EPSe(H + BET2(1))

RAT = ( 1.0D8 + HeRAT }/U
SUM == SUM -+ RAT
30 CONT INUE
BOT = Us+SUM

c
c.. DEFLATION
c
DO 40 I = 18, INDX-INC, INC
DEL = ZETA - THET(!)
IF (DABS(DEL).LT.EPSsDABS({ZETA)) DEL = EPSeDABS(ZETA)
SUM = SUM + 1.6D0/DEL
40 CONTINUE
c
c.. CHECK FOR CONVERGENCE
C

ZETA = ZETA + 1.0D0/SUM
IF {DABS(SUM*SPREAD*REPS) .GT. 1.0D0 ) GO TO 60
50 CONTINUE
WRITE(6.2000}
60 CONT INUE
CALL QLBOT{ALF,6BET2, ZETA,BOT, J}
BOT = DSQRT(RNM2+BOT)

INEW = THET{ INDX)
THET( INDX} = ZETA
ZETA = INEW
BJ{ INDX) = BOT
RETURN
2000 FORMAT(' NO CONVERGENCE IN NEWI'ON AFTER 30 STEPS')
END
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Subroutine DEFLAT

The subroutine DEFLAT deflates tridiagonal T, using an eigenvalue THETA. One step of
the QR algorithm is used to perform the deflation. Each of the last few QR rotations will be
almost a row and column interchange. For a more detail description of the algorithm see [15].

ANALZT is the only routine that calls DEFLAT.

SUBROUTINE DEFLAT(ALF,BET2, THET ,RNM2,J)
IMPLICIT DOUBLE PRECISION{A-H,0-3Z)
DIMENSION ALF{1),6BET2{1)

DATA ONE,ZERO/1.0GD0,0.0D0/

INPUTS

THET EIGENYALUE OF T TO BE DEFLATED EXPLICITLY
RINM2 SQUARE OF THE NORM OF THE RESIDUAL VECTOR
J DIMENSION OF THE TRIDIAGONAL MATRIX

OUTPUTS
ALF{J-1) MODIFIED DIAGONALS OF T
BET{J-1) MODIFIED OFF-DIAGONALS OF T

THE ROQUTINE PERFORMS AN EXPLICIT DEFLATION OF THET.

OF)OC)OC)OC)OC)O(?

<
S

CONE
ZERO
G = ALF(1) - THET
P Gee2
DO 190 [==1,J-1
B = BET2{1+1)
R=P+ B
BET2(l)} == SeR
OLDPC = C
C = P/R
S = B/R
OLDG =
A == ALF
G Co (
1

g

- THET) - S+OLDG
{ OLDG + (A - G)
!F { C .EQ. ZERO ) THEN
P = OLDC*B

G
{1+1}
A

ELSE
P = Gee2/C
END IF
100 CONTINUE

BET2{J) = SaF
ALF({J) = G + THET
RMM?2 = RNM?2s8
J =1 -1
RETURN
END
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Function NUMLESS

value counts for T, - ¢ By Sylvester inertia theorm {12}, D has the same signature as T, -¢ L
is not needed and therefore is not computed. The diagonal elements of D are not preserved but a

record of the number of negative or positive terms is kept and returned in NUMLES. NUMLES

This routine performs the LDL7 factorization of the tridaigonal matrix T, to obtain eigen-

is called by ANALZT and NEWCOR.

aaoaaaaaaaano

INTEGER FUNCTION NUMLES{ALF,LBET2,ZETA.N, INC,EPS)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION ALF(1),BET2{(1)

DATA ONE,ZERO/1.0D0,0.0D0/

ROUTINE TO PERFOM THE SPECTRUM SLICING OF A TRIDIAGONAL MATRIX.

IF INC == }, NUMLES RETURNS THE NUMBER OF EIGENVALUES BELOW ZETA .
IF INC = -1, NUMLES RETURNS THE NUMBER OF EIGENVALUES ABOVE ZETA.
INPUTS

ZETA THE SHIFT TO BE APLIED TO T

N DIMENSION OF THE TRIDIAGONAL MATRIYX

INC INDEX TO INDICATE ABOVE OR BELOW

OUTPUTS

NUMLES THE NUMBER OF EIGENVALUES ABOVE/BELOW ZETA.

DEL == ONE

K=29

DO 10 J=1,N
DEL = (ALF{J) - ZETA) - BET2(J}/DEL
IF ( DEL .EQ. ZERO ) DEL = EPSeBET2{J+1}+INC
IF ( DEL .LT. ZERO } K = K + 1

CONTINUE

NUMLES == K

IF ( INC .LT. ¢ ) NUMLES = N - K
RETURN

END
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Subroutine QLBOT

This routine computes the bottom element of the eigenvector of tridiagonal T, correspond-
ing to the eigenvalue contained in THET. The algerithm performs a step of the QL factorization,
The product of the sine of the rotation angles is the desired bottem element and is returned in

BOT. NEWCOR is the only routine that calls QLBOT.

SUBRCUTINE QLBOT({ALF,BET2,THET, BOT, )

IMPLICIT DOUBLE PRECISION(A-H,0-2) -
DIMENSION ALF(1),BET2(1)

DATA ONE,ZERO/1.0De,0.0D0/

C
C.. COMPUTE THE BOTTOM ELEMENT OF THE NORMALIZED EIGENVECTOR OF A
C.. TRID]AGONAL MATRIX CORRESPONDING TO EIGENVALUE THET.
C
C.. INPUTS
c.. ALF{J]} DIAGONALS OF T
C.. BET2(J} SQUAR OF THE OFF-DIAGCNALS OF T
C.. THET EIGENVALUE OF T
C.. J DIMENSION OF THE TRIDIAGONAL MATRIX
C
C.. OUTFUTS
C.. BOT BOTTOM ELEMENT OF THE NORMALIZED EIGENVECTCR
C
BOT = ONE
C = ONE
$ == ZERO
G = ALF{J) - THET
P = Gee2
DO 100 I=J-1,1,-1
B = BET2{I+1}
R=P+ B
OLDC =
C = P/R
S = B/R
OLDG = G
A = ALF(1I)
G = C+{A - THET} - S+COLDG
IF ( C .EQ. ZERO ) THEN
P = CLDCeB
ELSE
P == Gee2/C
END (F
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Subroutine MOVE1

This routine inserts the value of T into the L-th location of the array Y. Elements of Y are
shifted up or down to make room for T. If MINC is positive the shift is downward. MOVE!L is

only called by ANALZT for data management.,

SUBROUTINE MOVEL (Y K, L MINC, T}

C
C.... MOVES THE CONTENT OF Y TO OPEN A SPACE FOR T.
c
c.... Y THE ARRAY TO TO BE REORGANIZED.
c.... K THE POSITION IN Y OF THE NEW ELEMENTS T.
C.... L END OF THE DATA IN Y
C.... MINC THE INCREAMENT +1 OR -1
C.... T THE NEW ELEMENT TO BE INSERTED.
c

IMPLICIT DOUBLE PRECISION(A-H,0-2)}

DIMENSION Y{1)

DO 100 I=L, K K-MINC,MINC

Y{1) = Y{I1+MINC)

166  CONTINUE

Y{K) = T

RETURN

END
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