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Abstract. This paper presents a mechanism for enhanced regulation of drift wave

turbulence by zonal flows in the presence of a fast ion population. It demonstrates that

dilution effects due to the energetic particles have a far-reaching impact on all aspects

of the nonlinear dynamics. The modulational growth of zonal flow shear and the

corresponding evolution of drift wave energy are calculated with dilution effects. The

coupled zonal flow growth and drift wave energy equations are reduced to a predator-

prey model. This is solved for the fixed points, which represents the various states of

the system. Results display a strong dependence on dilution, which leads to greatly

reduced levels of saturated turbulence and transport. Implications for the FIRE mode

plasma of KSTAR are discussed in detail. This model is perhaps the simplest dynamical

one which captures the beneficial effects of energetic particles on confinement.
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 2

1. Introduction

Energetic particles and their dynamics have long been of interest in magnetic

confinement, especially with auxiliary heating. Over time, a conceptual multi-

component model of the plasma as a ‘thermal’ population and an energetic particle

(EP) population has arisen. Each component can drive various collective modes, most

notably drift-ITG modes (DW) by the thermals [1] and Alfven eigenmodes (AEs) by the

EPs [2]. This concept in turn motivated the question of the effect of EPs on confinement

and transport, and recently, a rise in intense interest in cross-scale coupling between EP-

driven modes (typically AEs) and familiar drift wave turbulence [3–9]. One obvious locus

of interaction of EP-scale (high frequency) and thermal scale (low frequency) excitations

is via zonal modes (i.e., flows and corrugation) since quadratic self-beats of AEs and

DWs can both generate zonal flows [10–15].

A particular instance of improved confinement associated with a significant EP

population is the FIRE mode, recently discovered on KSTAR [16]. Here FIRE refers

to Fast Ion Regulated Enhancement. FIRE mode is a low-density, hot ion ITB plasma

with an L-mode edge. The FIRE plasma is characterized by a centrally peaked fast

ion distribution, with a significant charge density relative to the electron density - i.e.,

f = Zfnf0/ne0 ∼ 0.3. The EP profile is centrally peaked (R/Lnf ≫ 1) so the thermal

ion distribution is hollow (R/Lni < 0). And it is important to note that at the ITB

location the thermal plasma beta for FIRE is small. All of these features point toward

dilution as a possible cause of the improved confinement found in FIRE mode. Indeed,

in FIRE mode, χi decreases considerably - approaching neoclassical levels - and the

existence of a transport bifurcation underlying the ITB is evident from an empirically

constructed ion heat flux landscape.

All of the above considerations suggest that the effect of EP-induced dilution on

drift wave turbulence is a promising route to understanding enhanced confinement in

FIRE mode. However, simple linear theory and mixing length type estimates do not

offer a satisfactory explanation of the phenomena. Thus, one naturally turns to the

question of how EPs impact zonal flows and E×B shearing in plasmas with significant

diluteness. This emerges as perhaps the simplest means to address the challenge of

FIRE mode.

Recently, Hahm et al. [17] examined the effects of dilution on zonal flow generation,

with an emphasis on dilution effects on interaction resonances. For simplicity and

clarity, they focused on the prototypical Hasegawa-Mima model, which is generic.

The crux of the issue is that dilution weakens the effect of dispersion on the drift

wave frequency, so the well-known dispersion relation ω = ω∗/(1 + k2
⊥ρ

2
s) becomes

ω = (1−f)ηnω∗/[1+(1−f)k2
⊥ρ

2
s], where ηn ≡ Lne/Lni. As a consequence, the frequency

mismatch that must be overcome to allow zonal flow generation is reduced, and zonal

flow activity can be expected to be enhanced. There is some subtlety in the matter, as

dilution affects couplings, as well, and so enters the generation process in a variety of

ways.
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 3

Figure 1. Diagram illustrating the fast ion dilution effect on the drift wave turbulence-

zonal flow system. A typical case for core turbulence is illustrated. Note that changes

in both box sizes and the thickness of arrows roughly indicate the magnitudes. Red

arrows indicate drives and blue arrows indicate suppressing influences. Change in the

saturated zonal flow depends on the parameters.

In this paper, we examine the coupled zonal flow and drift wave system in the

presence of dilution. Both zonal flow generation and the effect of shearing on a drift

wave spectrum are calculated, thus closing the feedback loop. The zonal flow growth

rate and the evolution of the drift wave population are calculated self-consistently,

using wave kinetics. Both resonant interaction and non-resonant interaction limits are

considered. The former is more appropriate for strong turbulence, while the latter

is more appropriate for weak turbulence. The weak turbulence limit is clearly more

relevant to the core confinement of FIRE mode. The effects of dilution on the frictional

damping of zonal flows are also addressed. The upshot is a coupled set of equations

for the drift wave and zonal flow energies. Energy conservation is demonstrated in

this system. The coupled system can be simplified to the intuitive and familiar form

of a predator-prey model. The roots or fixed points of this system describe the basic

states of the system. As usual, zonal flow damping is crucial to the regulation of

the turbulence intensity for the non-trivial root. Alternatively put, predator damping

regulates the prey. A diagram illustrating the fast ion effects on the drift wave-zonal

flow system is shown in Fig. 1. A key result of this paper is that the saturated drift

wave intensity scales as εDW ∼ η2n(1 − f)3 in the weak turbulence regime. Thus, we

show dilution and density gradient flattening can strongly reduce drift wave turbulence

and the resulting transport, indeed to levels approaching neoclassical. This strengthens

the case for dilution as the mechanism underlying the enhanced confinement in FIRE

mode, by providing quantitative calculations of turbulence levels.
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 4

In this work, we consider the near-zero-frequency zonal flows which are typically the

dominant component of the zonal flows in both tokamak and stellarator core plasmas

as evidenced from both simulations [18] and experiments [19,20]. The geodesic acoustic

mode (GAM) [21] on the other hand, has a well-defined relatively high frequency and

therefore is not effective in shearing core turbulence eddies [22]. Its version excited by

resonant interaction with the fast ions is called the energetic particle-driven geodesic

acoustic mode (EGAM) [23]. It should be however noted that the resonant interaction

between the fast ions with a high characteristic frequency and the near-zero-frequency

zonal flows is unlikely to occur. So we do not consider the resonant interactions of fast

ions and zonal flows

The remainder of this paper is organized as follows. Section 2 presents the theory

of zonal flow generation with dilution. The evolution of the drift wave population in

the zonal flow shearing field is calculated in Section 3. Energy conservation is shown.

The dilution effect on collisional zonal flow damping is discussed in Section 4. Section

5 discusses and solves the predator-prey model, in both the resonant and non-resonant

limits. A discussion and Conclusion are given in Section 6. In particular, approaches to

validation are suggested and extensions to a model of ITB formation are outlined.

2. Zonal flow generation

Here we consider a simple model system consisting of drift wave and zonal flow with

fast ions’ contributions based on the Hasegawa-Mima equation, following Ref. [17]. The

effect of fast ions is encapsulated in a dilution factor f , which represents the ratio of

fast ion charge to electron charge. Fast ions are treated as passive. “Passive” here is

effectively equivalent to causing or contributing to dilution. As k∥v∥ ≫ ω for energetic

particles in drift wave fields, the energetic particles (EPs) to not undergo transport or

drive instability. The EPs are dynamically passive, entering via the quasi-neutrality

condition only. We start from the modified Hasegawa-Mima equation in the long-

wavelength regime k2
⊥ρ

2
s ≪ k2

⊥ρ
2
Tf ≪ 1 and q2ρ2s ≪ q2ρ2Tf ≪ 1, where k and q are

wavevectors of the drift wave and zonal flow, and ρs and ρf are the sound and fast ion

gyroradii. In this regime, the modified Hasegawa-Mima equation takes the following

form [17].

∂t{ϕ̃− (1− f)∇2ϕ̃−∇2ϕ} −∇ϕ× ẑ ·∇{ϕ̃− (1− f)∇2ϕ̃−∇2ϕ}
+(1− f)ηn∂yϕ̃ = 0. (1)

This full modified Hasegawa-Mima equation could be decomposed into the zonal flow

and the drift wave parts. Then, we have

∂t∇2
⊥ϕ−∇ϕ̃× ẑ ·∇(1− f)∇2

⊥ϕ̃ = 0, (2)

for the zonal flow evolution, and

∂t{ϕ̃− (1− f)∇2
⊥ϕ̃} −∇ϕ× ẑ ·∇{ϕ̃− (1− f)∇2

⊥ϕ̃}
+∇ϕ̃× ẑ ·∇∇2

⊥ϕ+ (1− f)ηn∂yϕ̃ = 0, (3)
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 5

for the drift wave evolution, which correspond to Eqs. (11) and (12) of Ref. [17]. Here,

we have ϕ = ϕ + ϕ̃ where ϕ and ϕ̃ are the zonal flow and the drift wave electric

potentials, respectively, where (· · ·) denotes the flux-surface average. ẑ is the direction

of the magnetic field and ⊥ is for the direction perpendicular to it. f ≡ Zfnf0/ne0 is

the fast ion charge density fraction, and ηn ≡ Lne/Lni captures relative steepness of the

thermal ion density profile compared to the electron one, where Lnj ≡ nj0/|∇nj0| is the
density gradient length of a species j. Note that the potential, space, and time have

been normalized by [17]

ϕ → Lne

ρs

eϕ

Te

, x → x

ρs
, t → Lne

cs
t. (4)

In the present work, we consider the interaction between the zonal flow and

broadband drift wave turbulence spectrum rather than coherent interactions between

the zonal flow and a few drift waves [17]. Accordingly, for the drift waves, we use the

wave-kinetic equation [12,13] which can be constructed from Eq. (3) [12,13,24–28],

∂tN + vg ·∇N −∇(ωk + kyuE) ·
∂N

∂k
= 2γkN − ∆ωk

N0

N2, (5)

for appropriate treatment of the modulational zonal flow generation [13]. Here,

N(x,k, t) is the wave action density representing the population of the drift wave quanta,

vg = ∂ωk/∂k is the group velocity of the drift waves, uE = uEŷ is the zonal flow velocity,

and γk and ∆ωk are the linear growth rate and the ambient decorrelation rate of the

drift wave turbulence. The drift wave frequency is, with fast ions’ contribution [17],

ωk =
(1− f)ηn

1 + (1− f)k2
⊥
ω∗, (6)

where ω∗ = ky is the normalized electron diamagnetic frequency. Note that the effect of

dilution is to reduce the effective diamagnetic frequency and to reduce the polarization

drift coupling. The latter is especially important since it reduces wave dispersion and

thus also lowers the mismatch which must be overcome for resonant interaction of drift

waves.

Regarding the zonal flow evolution, we can re-express the second term of Eq. (2)

using the Taylor identity [29,30] as follows,

∇ϕ̃× ẑ ·∇(1− f)∇2
⊥ϕ̃ = (1− f)∂2

x(∂yϕ̃)(∂xϕ̃), (7)

This relates the flux of the vorticity to the familiar Reynolds stress. Then, using the

Fourier representation for drift waves, we can rewrite Eq. (2) as

∂tϕ = (1− f)
∑
k

kxky|ϕ̃k|2. (8)

Considering the initial zonal flow generation, we have ϕ = δϕ, where δ denotes the

modulation. Accordingly, Eq. (8) becomes

∂tδϕ = (1− f)
∑
k

kxkyωk

[1 + (1− f)k2
⊥]
δN, (9)
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 6

where we have used the relation N = εk/ωk between the drift wave energy density

εk = [1 + (1− f)k2
⊥]|ϕ̃k|2 (10)

and the drift wave action density N(x,k, t) [24, 28].

Now, we need the response of the wave action density δN . Considering a linearized

response for simplicity, from Eq. (5), we have

∂tδN + vg ·∇δN − kyδu
′
E

∂⟨N⟩
∂kx

= 2γkδN − 2
∆ωk

N0

⟨N⟩δN. (11)

In Eq. (11), we have used N = ⟨N⟩ + δN , where ⟨N⟩ and δN are the mean and the

modulation parts of the drift wave action density. Here, the mean ⟨N⟩ is a coarse-grained
part of N spatially averaging the mesoscale modulation as an approximation of an

ensemble average. Fourier-decomposing δN =
∑

q,Ω δNq exp [i(qx− Ωt)] and similarly

for δuE, we obtain

δNq = iqkyδuEqRq
∂⟨N⟩
∂kx

= −q2kyRq
∂⟨N⟩
∂kx

δϕq, (12)

where

Rq ≡ (−iΩ + iqvgx + Λ)−1 (13)

is the propagator where Λ ≡ −2γk + 2∆ωk⟨N⟩/N0. Hereafter, we consider spatially

homogeneous mean drift wave action density ⟨N⟩(k, t). Then, with ⟨N⟩ ≃ N0, we have

2γk = ∆ωk and Λ ≃ 2γk ≃ ∆ωk. Details will be shown in the next section.

Substituting Eq. (12) into Eq. (9), we obtain

∂tδϕq = −(1− f)2ηnq
2
∑
k

k2
yω∗

[1 + (1− f)k2
⊥]

2
Rqkx

∂⟨N⟩
∂kx

δϕq. (14)

Note that one (1 − f) factor in Eq. (14) originating from the drift wave frequency ωk

in Eq. (9) will cancel with the 1/(1− f) dependence of the drift wave action density N

as will be shown in the next section.

First, we consider the limit |Ω− qvgx| ≪ γk which we call the resonant interaction

regime in this paper. Here, resonance refers to that between the zonal modulator

frequency Ω and the drift wave ballistic frequency qvgx. The resonant regime may

be thought of as a “strong turbulence” regime. A detailed explanation is presented in

Appendix A. The zonal flow growth rate is given by

Γ = −(1− f)q2
∑
k

k2
y(1− f)ηnω∗

[1 + (1− f)k2
⊥]

2

1

2|γk|
kx

∂⟨N⟩
∂kx

. (15)

In Eq. (15), we have a common (1 − f) dependence of the zonal flow growth rate Γ

originating from a reduction of the Reynolds stress in Eq. (8).

The factor 1/|γk| in Eq. (15) however can exhibit various behaviors, as the

dependence of the turbulence linear growth rate on fast ions is specific to macroscopic

parameters, as reported from gyrokinetic simulation studies [31–35]. A stabilizing

role of inverted density profile on the ion temperature gradient (ITG) mode is well-

known from simple linear analyses [36, 37]. It has been found that the fast ion dilution
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 7

stabilizes the trapped electron mode (TEM) for high Lne/LTe [31] but destabilizes for

low Lne/LTe [32]. Also, the wave-particle resonance with fast ions stabilizes the ITG

mode with low Lnf/LTf [33] but destabilizes with high Lnf/LTf [34]. Recently, ITG

mode stabilization by fast ion dilution has been studied in detail [35].

The 1/|γk| dependence of Eq. (15) indicates that the zonal flow generation could

be more efficient with fast ions if there is strong fast ion-induced linear stabilization of

drift wave turbulence. This is because 1/|γk| ultimately controls the correlation time of

the zonal modulation with the drift wave action response. As a result, there could be a

significant nonlinear zonal flow generation even with considerably weakened turbulence

by fast ions. This will further lower the turbulence level.

On the other hand, in the non-resonant, or weak turbulence regime, with |Ω −
qvgx| ≫ γk, Eq. (14) can be approximated as

Ω = (1− f)q2
∑
k

k2
y(1− f)ηnω∗

[1 + (1− f)k2
⊥]

2

1

Ω− qvgx
kx

∂⟨N⟩
∂kx

, (16)

where the expression of the radial group velocity of the drift wave is

vgx =
∂ωk

∂kx
= −2(1− f)2ηnω∗qkx

[1 + (1− f)k2
⊥]

2
. (17)

It is important to note that the radial group velocity vgx gives a finite threshold for

the zonal flow generation. Heuristically, Eq. (16) could be rearranged as follows [13],

neglecting the wavevector dependence of vgx.

Ω(Ω− qvgx) ≈ −γ2
mod, (18)

where

γ2
mod ≈ −(1− f)q2

∑
k

k2
y(1− f)ηnω∗

[1 + (1− f)k2
⊥]

2
kx

∂⟨N⟩
∂kx

, (19)

characterizes the modulational zonal flow drive. Then, the zonal flow dispersion relation,

Eq. (18), yields

Γ ≈
√

γ2
mod − (qvgx)2. (20)

Note that on the RHS of Eq. (20), the modulational drive γ2
mod is reduced by (1 − f)

due to the dilution-induced reduction of the Reynolds stress. However, the finite

threshold given by the drift wave dispersion (qvgx)
2 decreases much more significantly

with (1 − f)4. This is due to the effects of dilution on the drift wave frequency and

thus on the group velocity. As a consequence, the critical turbulence amplitude for the

zonal flow generation is significantly lowered by fast ions. Far from marginality, we

have Γ ∝
√
1− f indicating that the fast ion dilution reduces the zonal flow growth.

The fast ion dilution effects on the zonal flow generation in this limit are quantitatively

consistent with previous theoretical work presented in Ref. [17] based on the 4-wave-

coupling analysis, except for the zonal flow wavenumber q-dependence of the threshold.
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 8

3. Drift wave evolution in the presence of zonal flows

In this section, drift wave evolution in the presence of zonal flows is presented. Taking

the mean part of Eq. (5), with ⟨N⟩(k, t), we have

∂t⟨N⟩ −
〈
ky(∂xuE)

∂δN

∂kx

〉
= 2γk⟨N⟩ − ∆ωk

N0

⟨N⟩2 − ∆ωk

N0

⟨(δN)2⟩. (21)

We divide ⟨N⟩ = N0(k)+N1(k, t), where N0(k) is the homogeneous stationary solution

of the wave kinetic equation describing the ambient drift wave turbulence in the absence

of the zonal flow. Then, we rewrite Eq. (21) as

∂tN1 −
〈
ky(∂xuE)

∂δN

∂kx

〉
= 2γkN0 −∆ωkN0

+ 2γkN1 − 2∆ωkN1 −
∆ωk

N0

N2
1 − ∆ωk

N0

⟨(δN)2⟩. (22)

In the limit of no zonal flow, we obtain 2γk = ∆ωk. Substituting it into Eq. (22), we

have

∂tN1 −
〈
ky(∂xuE)

∂δN

∂kx

〉
= −∆ωkN1 −

∆ωk

N0

N2
1 − ∆ωk

N0

⟨(δN)2⟩. (23)

Here, we have two terms originating from the modulation; the second term on the

left-hand side (LHS) and the last term on the RHS. With an auxiliary ordering

N1

N0

≪
k2
yq

2u2
E|Rq|

∆ωk∆k2
x

, (24)

where ∆kx is the width of the broadband drift wave spectrum, we neglect the first term

and accordingly the second term on the RHS of Eq. (23) as we are interested in the

initial zonal flow growth. We also neglect the third term based on ∆ωk|Rq| < 1. Then,

we obtain

∂t⟨N⟩ ≃ ∂

∂kx
⟨ky(∂xδuE)δN⟩ = ∂

∂kx

[∑
q

q2k2
y|δuEq|2Re(Rq)

]
∂⟨N⟩
∂kx

. (25)

The bracket [· · ·] on the RHS of Eq. (25) represents the spectral diffusion in kx space

by zonal flow-induced random shearing. Here, the shearing rate and the propagator

correspond to the step size for ∆kx and the shearing field-wave packet correlation

time, respectively. Eq. (25) is yet another appearance of the familiar induced diffusion

equation for ⟨N⟩ in kx space. Eq. (25) validity requires overlap of Ω = qvgx resonances.

The origin of the irreversibility that underlies induced diffusion is the chaos of drift wave

rays.

Now, we consider the evolution of the mean drift wave energy ⟨ε⟩ =
∑

k⟨εk⟩ to show
that our wave-kinetic approach is consistent with the energy conservation. Multiplying

Eq. (25) by ωk and taking k-space integration, we have

∂t⟨ε⟩ =
∫

d3kωk
∂

∂kx

[∑
q

q2k2
y|δuEq|2Re(Rq)

]
∂⟨N⟩
∂kx

(26)
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 9

= −
∫

d3k vgx

[∑
q

q2k2
y|δuEq|2Re(Rq)

]
∂⟨N⟩
∂kx

(27)

=
∑
q

∫
d3k

2(1− f)2ηnω∗

[1 + (1− f)k2
⊥]

2
q2k2

y|δuEq|2Re(Rq)kx
∂⟨N⟩
∂kx

. (28)

By multiplying Eq. (14) by δuE−q and taking the q-space sum, we obtain

∂t⟨u2
E⟩ = −

∑
q

∫
d3k

2(1− f)2ηnω∗

[1 + (1− f)k2
⊥]

2
q2k2

y|δuEq|2Re(Rq)kx
∂⟨N⟩
∂kx

. (29)

From Eqs. (28) and (29), we obtain the energy conservation relation for the drift wave-

zonal flow interaction,

∂t
[
⟨ε⟩+ ⟨u2

E⟩
]
= 0. (30)

The energy conservation could also be derived directly from the full modified Hasegawa-

Mima equation, Eq. (1). Multiplying ϕ to Eq. (1) and integrating over the system, we

readily obtain the global energy conservation law [17]

d

dt

∫
d3x

1

2

[
ϕ̃2 + (1− f)|∇ϕ̃|2 + |∇ϕ|2

]
= 0, (31)

which is consistent with Eq. (30). Note that Eqs. (30) and (31) confirm that Eq. (10) is

a proper expression of the drift wave energy density εk, which does not have an overall

proportionality to the dilution factor (1−f). Accordingly, the drift wave action density

N significantly changes with fast ion population by N = εk/ωk ∝ 1/(1− f).

4. Changes in collisional damping of zonal flows due to fast ions

While our main interest in this paper is the nonlinear interaction of zonal flows and

drift wave turbulence in the presence of fast ions, both changes in collisional linear

damping of zonal flows and linear growth rate of drift instabilities due to fast ions can

contribute to the nonlinearly saturated turbulence level and anomalous transport carried

by it. We present a simple characterization of the former in this section so that it can

be incorporated into the extended Predator-Prey model including the fast ions’ effect

presented in Sec. 5.

Regarding collisional damping of zonal flows, it should be remembered that the

mass flow in a symmetric direction can be sustained for a long time in the absence

of turbulent damping because it can only be damped by the collisional viscosity [38].

So the zonal flows in a cylindrical geometry which is in the poloidal direction will be

damped with a rate proportional to

µvisc(0) ≃ νiiρ
2
i q

2
r . (32)

Then by characterizing the fast ions with their own temperature Tf , we expect their

contribution will reduced the viscous damping by

µvisc ≃ (1− f)µvisc(0), (33)
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 10

for Tf/Ti ≫ 1, noting νii ∝ T
−3/2
i .

In toroidal plasmas, the collisional viscosity is neoclassically enhanced by a factor

∼ q2 (here q is the safety factor, not zonal flow wavenumber, as in the rest of this paper)

without an inverse aspect ratio dependence even in the banana collisionality regime [38],

but the fast ion effect is still characterized by Eq. (33). More importantly, the zonal

flows’ collisional damping mainly in the poloidal direction can come from the friction

between trapped ions and passing ions in the form of a drag [38]. According to Ref. [39],

most of the damping occurs during a period τHR ≃ 1.5ϵ/νii, where ϵ = r/R0 is the local

inverse aspect ratio. Once again a simple characterization of fast ion population by Tf

and a scaling argument lead to an estimation that

γd ≃ (1− f)νii(0)/1.5ϵ = (1− f)γd(0), (34)

where γd(0) ≡ νii(0)/1.5ϵ, and Tf/Ti ≫ 1 has been assumed.

So with these caveats in mind, we use Eq. (34) for our characterization of the fast

ions’ effect on collisional damping of zonal flows.

5. Extended predator-prey model for drift wave-zonal flow system

In previous sections, various aspects of the drift wave-zonal flow interaction have been

studied in the presence of fast ions. These include the zonal flow generation by drift

wave turbulence in Sec. 2, the back reaction of zonal flows on drift waves in Sec. 3,

and the collisional (linear) damping of zonal flows in Sec. 4. In this section, we study

the self-consistent states of the system with the aforementioned processes as building

blocks. This will lead us to an overall assessment of the fast ion effects on turbulence,

while most previous studies considered only a part of the whole story in detail.

5.1. Resonant interaction (strong turbulence) regime

The simplest model describing this interacting system is the predator-prey model. First,

we consider a strong turbulence regime |Ω − qvgx| ≪ γk. The excitation of zonal flow

by drift waves is described by Eq. (15), while the collisional damping is given by Eq.

(34). Combining these, we have a zonal flow evolution equation,

∂t|uZF|2 = (1− f)AεDW|uZF|2 − (1− f)γd(0)|uZF|2. (35)

Here, using N = εk/ωk,

A ≡ −q2
∑
k

k2
yηn

[1 + (1− f)k2
⊥]

2

[
(1− f)ω∗

ωk

]
1

2|γk|
kx
⟨N⟩

∂⟨N⟩
∂kx

. (36)

The form of Eq. (35) is similar to that derived previously in Ref. [13] but with dilution

effects included. Note that, with Eq. (6), we expect [(1 − f)ω∗/ωk] in Eq. (36) to be

independent of (1−f) in the long-wavelength limit. Therefore, the fast ion effect on the

drift wave-zonal flow coupling coefficient A mostly comes from 1/|γk| which is strongly

case-dependent as discussed in Sec. 2.
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 11

The drift wave evolution under the random shearing by zonal flows is given by

Eq. (28). We note that an identical expression of the coefficients in Eq. (15) and Eq.

(28) is closely related to the energy conservation between drift waves and zonal flows in

the absence of growth and damping. Adding the linear growth rate and the expected

nonlinear mode couplings among drift waves, we can write the drift wave evolution

equation as,

∂tεDW = 2γεDW − (1− f)A|uZF|2εDW − (1− f)Bε2DW. (37)

An explicit formula for B is available from the literature, for instance, [40]. Eq. (37) also

closely resembles previous corresponding equations but with dilution effects included.

Note that (1 − f) in the turbulence decorrelation rate (1 − f)BεDW originates from

the reduced drift wave vorticity in the Hasegawa-Mima nonlinearity [17]. With non-

adiabatic electrons, the E×B nonlinearity enters [41] making the dilution effect on the

turbulence decorrelation complex, but this detail is outside of the scope of this paper.

It is well-known that a system of Eqs. (35) and (37) yields two types of steady-state

solution. In the case of strong zonal flow damping, i.e.,

(1− f)γd(0) >
2γA

B
, (38)

we get the solution for the case without zonal flow,

|uZF|2 = 0, and εDW =
2γ

(1− f)B
. (39)

For weaker zonal flow damping

(1− f)γd(0) <
2γA

B
, (40)

zonal flows and drift waves coexist with values at nonlinear saturation given by

εDW =
γd(0)
A

, (41)

and

|uZF|2 =
1

A

[
2γ −

(1− f)Bγd(0)
A

]
. (42)

Eqs. (41) and (42) exhibit large cancellations of the (1−f) factors coming from different

terms resulting in a weak dependence of nonlinear saturation levels of drift waves and

zonal flows on dilution. Note that Eq. (41) has the familiar ‘predator-prey structure’

of fluctuation level proportional to zonal flow damping. Case-specific reduction of drift

wave turbulence by fast ions is feasible through the manipulation of the linear growth

rate γ and thus zonal flow coupling coefficient A[γ], but no universal trend is anticipated

in the strong turbulence regime.

One might conclude that this result is in contrast to the highly publicized recent

experimental findings of confinement improvements caused by fast ions [8, 16]. But we

should notice that the strong turbulence ordering |Ω − qvgx| ≪ γ is more likely to be

justified for the edge turbulence rather than the core turbulence (in the presence of

an internal transport barrier (ITB)). Indeed, most core enhanced confinement modes
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 12

are not accompanied by simultaneous confinement improvement at the edge leading to

H-mode transition. Specific examples include KSTAR [16], JET [8], TFTR [42,43], and

JT60-U [44,45].

5.2. Non-resonant interaction (weak turbulence) regime

In the weak turbulence regime with |Ω − qvgx| ≫ γk, Eq. (16) suggests an evolution

equation of the zonal flow in a form

∂t(∂t − iqvgx)|uZF|2 = · · · (43)

which is difficult for further analytic progress. Instead, we seek a simpler model based

on Eq. (20), i.e.,

∂t|uZF|2 =
√

γ2
mod −∆2

mmH(γmode −∆mm)|uZF|2 − (1− f)γd(0)|uZF|2, (44)

where γ2
mod → (1− f)A′εDW from Eq. (19),

A′ ≡ −q2
∑
k

k2
yηn

[1 + (1− f)k2
⊥]

2

[
(1− f)ω∗

ωk

]
kx
⟨N⟩

∂⟨N⟩
∂kx

, (45)

and H is the Heaviside function. Here, the continuum limit expression in the wave-

kinetic approach, (qvgx)
2, has been replaced by the original frequency mismatch ∆2

mm =

(1− f)4∆2
mm(0) where ∆

2
mm(0) = q4

∑
k η

2
nk

2
y [17]. Note that it can only reduce the zonal

flow growth rate down to zero, and cannot make the zonal flow growth negative by itself.

The corresponding drift wave energy evolution equation in this regime, which

satisfies the energy conservation relation in Eq. (30), is then

∂tεDW = 2γεDW−
√
γ2
mod −∆2

mmH(γmode−∆mm)|uZF|2−(1−f)Bε2DW.(46)

According to Eqs. (44) and (46), there is a trivial solution with no zonal flow,

|uZF|2 = 0, and εDW =
2γ

(1− f)B
, (47)

for the case of a strong zonal flow damping γ2
d > γ2

mod −∆2
mm, that is,

(1− f)2γ2
d(0) >

2γA′

B
− (1− f)4η2n∆

2
mm(0). (48)

In addition, there exists a non-trivial steady-state solution in which the zonal flow and

drift wave turbulence co-exist. In this case, the nonlinear saturation level of the drift

wave determined by Eq. (44) should satisfy

γ2
mod = ∆2

mm + γ2
d . (49)

This leads to

εDW =
(1− f)γ2

d(0)

A′

(
1 +

(1− f)2η2n∆
2
mm(0)

γ2
d(0)

)
, (50)
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 13

and

|uZF|2 =
γd(0)
A′

[
2γ −

(1− f)2Bγ2
d(0)

A′

(
1 +

(1− f)2η2n∆
2
mm(0)

γ2
d(0)

)]

×

(
1 +

(1− f)2η2n∆
2
mm(0)

γ2
d(0)

)
, (51)

for the case of a weak zonal flow damping

(1− f)2γ2
d(0) <

2γA′

B
− (1− f)4η2n∆

2
mm(0). (52)

Note that we expect a favorable role of the energetic particle-induced dilution for

confinement quantified by the (1−f) factor from Eq. (50), especially in the collisionless

limit in which ∆2
mm(0) ≫ γ2

d(0) which is applicable to core plasmas, i.e.,

εDW ≈
(1− f)3η2n∆

2
mm(0)

A′ , (53)

and

|uZF|2 ≈
(1− f)2η2n∆

2
mm(0)

A′γd(0)

[
2γ −

(1− f)4Bη2n∆
2
mm(0)

A′

]
. (54)

This trend is consistent with the well-known core confinement enhancement observed

in the energetic particle-dominated tokamak plasmas [8, 16, 42]. Note that unlike the

case-specific fast ion effect shown in Eq. (41) in the resonant regime, here in Eq. (53)

we have a significant universal reduction of saturated turbulence level due to fast ion

dilution by a factor of (1 − f)3. In addition, the relieved thermal ion density profile

gradient due to dilution further reduces the turbulence level by the factor η2n < 1. Eqs.

(53) and (54) are among the principal results of this paper.

Fig. 2 shows the linear growth rate γ dependence of the saturated drift wave and

zonal flow energies, for different f and ηn, of which expressions have been shown in Eqs.

(41), (42), (53) and (54). For the plot, we have used A ≈ A′/2γ from Eqs. (36) and

(45). In Fig. 2(a), we find that in the strong turbulence (resonant interaction) regime,

the fast ion dilution could reduce the saturated drift wave level only through the linear

stabilization of drift wave turbulence. Meanwhile in the weak turbulence (non-resonant

interaction) regime, more relevant to the core plasma with enhanced confinement, the

linear stabilizers have little influence in reducing the saturated turbulence energy. We

instead find a universal reduction of the saturated turbulence level by the direct impact

of the fast ion fraction f > 0 and the reduced thermal ion density gradient ηn < 1. It is

worth noting that for all cases with linear turbulence stabilization, the fast ion dilution

decreases the total saturated energy by reducing both turbulence and zonal flow. Fig.

3, showing the saturated drift wave and zonal flow energies depending on f , confirms

the reciprocal influence of γ and f (and ηn) on the turbulence suppression in the two

different turbulence regimes.

Page 13 of 20 AUTHOR SUBMITTED MANUSCRIPT - NF-106466.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



On how fast ions enhance the regulation of drift wave turbulence by zonal flows 14

Figure 2. Dependence of the saturated (a) drift wave and (b) zonal flow energies on

the linear growth rate γ ∝ E0 in weak (non-resonant) and strong (resonant) turbulence

regimes, for different fast ion fraction f and relative thermal ion density gradient ηn.

Here, E0 = 2γ/B is the saturated drift wave energy without zonal flow in the absence

of fast ions, and Eref = ∆2
mm0/A

′ is a collisionless limit form of the saturated drift wave

energy with zonal flow in weak turbulence regime in the absence of fast ions.

Figure 3. Dependence of the saturated (a) drift wave and (b) zonal flow energies

on the fast ion density fraction f in weak and strong turbulence regimes, for different

linear growth rate γ. Here, ηn is set to unity for simple illustrations.

A connection to transport remains to be established. Eqs. (53) and (54) determine

the level of saturated drift wave fluctuations and zonal flows. The effective diffusion

coefficient for drift wave turbulence is given by:

D =
∑
k

|ṽrk|2Rk, (55a)

where the response operator Rk is given by:

Rk =
∆ωk

(ωk − kyuZF)2 +∆ω2
k

. (55b)

Page 14 of 20AUTHOR SUBMITTED MANUSCRIPT - NF-106466.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



On how fast ions enhance the regulation of drift wave turbulence by zonal flows 15

Here, ∆ωk = 1/τck is the linewidth associated with the correlation time τck of mode

k. Eq. (55a) incorporates the effects of Doppler shift and possible wave-zonal flow

resonance absorption. In the strong turbulence limit

D ≃
∑
k

|ṽrk|2

∆ωk

. (55c)

In the resonant, weak turbulence limit (∆ωk < ∆ω)

D ≃
∑
k

|ṽrk|2πδ(ω − kyuZF) ≃
∑
k

|ṽrk|2τac, (55d)

where τac is the wave-particle auto-correlation time, determined by the spectral width

∆ω, which is distinct from the linewidth ∆ωk. More explanation of the two limits is

presented in Appendix B. The resonant, weak turbulence limit is the relevant one for

regimes of significant dilution and enhanced confinement.

Thus, we see that transport tracks fluctuation energy density ∼ ⟨ṽ2⟩ ∼ εDW and so

also scales with (1−f)3. We note that not only the main ion fraction dilution (1−f) but

also the reduction of the main ion density gradient quantified by ηn = Lne/Lni contribute

to the turbulence level and transport. This observation indicates the favorable role of

a centrally peaked fast ion profile and suggests that the predator-prey model developed

here should be extended to 1D, including profile evolution. This is discussed further in

the conclusion.

Finally, we note that the effects discussed here can be quantitatively significant.

For the recently discovered KSTAR FIRE mode [16], estimates suggest f ∼ 0.3, so

(1− f)3 ∼ 0.3 making for a drastic reduction in D, to levels which may not be so easily

distinguished from neoclassical.

6. Conclusion

Interest in the effects of an energetic particle component on plasma confinement and

transport grows steadily. In this paper, we analyze perhaps the simplest incarnation

of a model of this system - namely drift wave turbulence, with dilution effects due to

energetic particles. Here, dilution, represented by the presence of finite f = Zfnf0/ne0,

modifies couplings and dispersion in the governing drift wave equations. Otherwise, the

fast particles are treated as passive, but do enter charge balance. The principal results

of this paper are:

i) the expressions for the modulational growth of zonal flows in a broadband gas

of drift waves modified by dilution. These are Eq. (15) and Eqs. (19)-(20), for

resonant and non-resonant limits, respectively. Loosely speaking, the resonant limit

corresponds to strong turbulence while the non-resonant limit to weak turbulence.

The latter is more relevant to enhanced confinement regimes.

ii) the induced diffusion (quasilinear) equation for the drift wave action density in

the presence of a zonal flow spectrum, as in Eq. (25). Energy conservation is

demonstrated for the system of drift waves and zonal modes.
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On how fast ions enhance the regulation of drift wave turbulence by zonal flows 16

iii) zonal flow damping due to collisional friction is shown to be modified by dilution.

This is important since zonal flow damping regulates the system.

iv) the coupled zonal flow growth and induced diffusion equations are combined and

used to derive a predator-prey type model for the evolution of the drift wave-zonal

flow system. This is specialized to both the resonant interaction (strong turbulence)

and non-resonant (weak turbulence) cases. The fixed point solutions are given by

Eqs. (39), (41), (42) and Eqs. (47), (50), (51) respectively.

v) in particular, the drift wave energy saturation level in the weak turbulence regime

is derived on Eq. (53), and is εDW = (1 − f)3η2n∆
2
mm(0)/A

′. The weak turbulence

regime is likely most relevant to core turbulence, especially in cases of stronger

dilution. Results show a strong effect of dilution ∼ (1 − f)3, leading to greatly

reduced saturated turbulence levels. These in turn reduce the level of transport,

and so improve confinement. Dilution is thus seen as a likely cause of confinement

improvement in recent experiments with a large fraction of energetic particles.

It is noteworthy that several nonlinear gyrokinetic simulations reported considerable

levels of zonal flow shear and significantly reduced drift wave turbulence levels and

transport in the presence of fast ions. These trends are in agreement with our theoretical

predictions in this paper. These include simulations using parameters based on the

experiments on ASDEX-U [34], JET [8] and KSTAR [35].

This paper offers several testable predictions, including both the relation of

transport and turbulence intensity to dilution, and the associated change in zonal

flow energy and mean square shear. The latter suggests a highly relevant validation

test, namely to compare the core zonal flow intensity and structure in FIRE mode,

with the corresponding L-mode pattern. This is easily accomplished by Electron

Cyclotron Emission Imaging (ECEI) [46] and Beam Emission Spectroscopy (BES) [47].

Furthermore, BES velocimetry could be implemented to determine the flux ⟨ṽrñ⟩ and

the turbulence spreading flux ⟨ṽrññ⟩. The latter has recently been measured by BES

velocimetry on the DIII-D tokamak [48]. Here it should be noted that ṽr is more

akin to a particle velocity than an E×B velocity. Nevertheless, ⟨ṽrñ⟩ is indicative of

transport, and ⟨ṽrññ⟩ is indicative of spreading, avalanching etc and thus of mesoscopic

relaxation activity [49]. Both should drop as zonal and mean E×B shear increases. Such

a study would constitute a more discriminating validation test than the usual simplistic

χi comparisons.

It is also worthwhile to note that dilution effects can be expected to modify the

structure of mesoscopic structures, such as E×B staircases [50]. Note that since dilution

weakens dispersion, it necessarily will modify the effective Rhines scale [51] for the

system. This will in turn reduce the emergent mixing scale. Recall that staircases can

be formed by a bistable mixing process [52,53], and that the emergent mixing scale will

set the effective step size. Thus dilution-induced modification of staircase structure is

to be expected.

At this point, we arrive at the inevitable question of “what next”? The analysis so

Page 16 of 20AUTHOR SUBMITTED MANUSCRIPT - NF-106466.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



On how fast ions enhance the regulation of drift wave turbulence by zonal flows 17

far ignores the evolution of thermal plasma profiles and of mean electric field shear.

Neoclassical heat transport for thermals should be retained, also. Combining ion

temperature gradient profile evolution, including turbulent and neoclassical transport

and a heating power source, using radial force balance for mean ⟨Er⟩, and including a

realistic model of the profile-dependent drift mode growth rate will bring us to a 1D

counterpart of the model of Ref. [54]. Here, f will no longer be a fixed parameter, but

rather a quantity varying in radius and evolving in time, i.e., f = f(r, t). The profile

of f is obviously crucial, both to saturation levels and transport, and to the triggering,

propagation and extent of any ITB. The spatiotemporal evolution of f will feed through

the nonlinear dynamics, via dependence of coupling coefficients on dilution. It is not

hard to see that this system can exhibit at least two regimes of enhanced confinement.

These are:

a) at modest heat input, a regime of dilution enhanced zonal flow activity with

improved confinement but still with finite drift wave fluctuations. Note that the

latter are required to support the zonal flow.

b) at higher input power, a strong ITB state, with transport reduced close to or to

neoclassical levels, a strong mean E×B shear, and little or no surviving zonal flow

activity. Note that dilution would serve to reduce the power threshold to access

this state, as compared to the level required with no dilution. The ITB state would,

of course, be hysteretic. This may be exploited to expand the regime of enhanced

confinement. An investigation of the scenario proposed above is the logical next

step in our study of the dilution model.

Finally, it should be noted that the use of the dilution factor f is a crude surrogate

for the evolution of the energetic particle (EP) distribution. For higher powers, the EPs

can no longer be treated as passive. Instead, the EPs will unleash the beloved animalia

of AEs and related EP modes. The EP distribution will then evolve dynamically,

and the AEs will drive phase space structures and zonal modes. AE transport will

result, and cross-scale coupling can be expected to occur between high-frequency AEs,

mid-frequency drift waves, and low-frequency nonlinear structures and zonal modes.

The theoretical description of this system is a very challenging problem in multi-scale

interaction which will require significant future effort. Further discussion is not possible

at this time.
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Appendix A

The response of wave action density to δuE is given by Eqs. (12) and (13).

δNq = iqkxδuE,q
∂⟨N⟩
∂kx

(56)

Rq = (−iΩ + iqvgx + Λ)−1. (57)

Hereafter Λ = |γq| as a convenient, calculable surrogate for decorrelation rate. Note

then:

Rq =
i

Ω− qvgx + i|γq|
. (58)

Then, proceeding as in the familiar, related case of the 1D Vlasov response [13],

Rq ∼
1

|γq|
, for Ω ≈ qvgx, (59)

and

Rq ∼
1

Ω− qvgx
, for |Ω− qvgx| > |γq|. (60)

The first case occurs for resonance between the modulation field (zonal flow) and the

drift wave packet and hence is referred to as the ‘resonant’ limit. It corresponds to

‘strong turbulence’ since the correlation time of δN and δuE is ultimately set by |γq|−1,

which is long and which represents the decorrelation rate.

The second case occurs when |Ω− qvgx| is finite and indeed > |γq|. In this case, the

modulator field (zonal flow) and the drift wave packet are not resonant, so the limit is

called ‘non-resonant’. This corresponds to ‘weak turbulence’ since the correlation time

of δN and δuE is shorter, so interaction is weaker.

Strong turbulence is frequently observed at the edge, where fluctuation levels are

larger. Weak turbulence is thought to occur in the core, where levels are usually lower.

Appendix B

The response operator for Rk for drift wave turbulence is given by

Rk =
∆ωk

(ωk − kyuZF)2 +∆ω2
k

. (61)

For ∆ωk > ∆ω(∼ 1/τac), we have “strong turbulence”. In the case where ωk ∼ kyuZF,

Rk ∼ 1

∆ωk

, (62)
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the resonant, strong turbulence response, giving Eq. (55c). For ∆ωk < ∆ω,

Rk ≈ πδ(ωk − kyuZF), (63)

leading to Eq. (55d). This is the resonant, weak turbulence response, familiar from

quasilinear theory. Note both cases are resonant. What differs is the relative size of the

spectral width ∆ω and the linewidth ∆ωk.
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