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Interplay Between Geography and HIV Transmission 
Clusters in Los Angeles County
Britt Skaathun,1,  Manon Ragonnet-Cronin,1,2 Kathleen Poortinga,3 Zhijuan Sheng,3 Yunyin W. Hu,3 and Joel O. Wertheim1

1Department of Medicine, University of California San Diego, La Jolla, California, USA, 2Department of Infectious Disease Epidemiology, Imperial College London, London, UK, and 3Division of HIV 
and STD Programs, Department of Public Health, Los Angeles County, California, USA

Background. Clusters of HIV diagnoses in time and space and clusters of genetically linked cases can both serve as alerts for 
directing prevention and treatment activities. We assessed the interplay between geography and transmission across the Los Angeles 
County (LAC) HIV genetic transmission network.

Methods. Deidentified surveillance data reported for 8186 people with HIV residing in LAC from 2010 through 2016 were used 
to construct a transmission network using HIV-TRACE. We explored geographic assortativity, the tendency for people to link within 
the same geographic region; concordant time–space pairs, the proportion of genetically linked pairs from the same geographic 
region and diagnosis year; and Jaccard coefficient, the overlap between geographical and genetic clusters.

Results. Geography was assortative in the genetic transmission network but less so than either race/ethnicity or transmission 
risk. Only 18% of individuals were diagnosed in the same year and location as a genetically linked partner. Jaccard analysis revealed 
that cis-men and younger age at diagnosis had more overlap between genetic clusters and geography; the inverse association was 
observed for trans-women and Blacks/African Americans.

Conclusions. Within an urban setting with endemic HIV, genetic clustering may serve as a better indicator than time–space 
clustering to understand HIV transmission patterns and guide public health action.

Keywords.  cluster analysis; HIV infections/transmission; molecular epidemiology.

Trends in diagnosis of infectious diseases in time and space can 
identify outbreaks and clusters of transmission. Identification of 
these time–space clusters is an invaluable epidemiological tool 
for responding to outbreaks of infectious agents (eg, hepatitis 
A virus, HIV, pulmonary tuberculosis, legionellosis, etc.) [1–4].

Molecular epidemiology is the integration of pathogen ge-
netic sequence data and classic epidemiologic information  
[5, 6]. It is a powerful means to determine the drivers, char-
acteristics, geographic distribution, and dynamics of infectious 
disease transmission [7–9]. Genetic analyses draw inferences 
from the similarity between pathogen genetic sequences to re-
construct transmission histories and estimate epidemiologic 
parameters. This type of analysis is particularly useful in the 
context of HIV, where the high within-host diversity and di-
vergence due to HIV replication errors result in a nearly unique 
HIV genetic sequence within each infected individual. This ap-
proach has been used to investigate recent HIV outbreaks in 

the United States primarily among people who inject drugs 
(PWID), such as in Scott County, Seattle, and Massachusetts, 
and can help public health officials prioritize real-time inter-
vention strategies [10–12].

HIV incidence in the United States is declining, but concen-
trated efforts are required to achieve HIV elimination among 
populations where HIV transmission persists [13]. The US 
Department of Health and Human Services established the 
Ending the HIV Epidemic initiative, which aims to reduce HIV 
incidence in the United States by 90% by 2030 [14]. A pillar of 
this initiative involves the rapid detection of and response to 
emerging clusters of HIV diagnoses, as well as active partner-
ships between public health departments and providers [14]. 
The US Centers for Disease Control and Prevention (CDC) re-
commends investigating “priority” molecular clusters, defined 
as clusters characterized by rapid transmission history of re-
cently diagnosed individuals [15]. In the absence of timely and 
complete sequence data, the CDC has assessed spatiotemporal 
increases in HIV diagnoses (above expected levels in distinct 
geographic areas) using case surveillance data [16]. It has been 
suggested that cluster detection would be most effective if mo-
lecular data were combined with traditional public health case 
surveillance methods [16].

Los Angeles County (LAC) in California is the most popu-
lous county in the United States, with over 10 million residents 
[17]. The city of Los Angeles comprises ~4 million of these resi-
dents [18]. LAC spans across 4083 square miles and is divided 
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into 507 ZIP codes, 26 Health Districts (HDs), and 8 Service 
Planning Areas (SPAs) [19]. At the end of 2017, there were 
51 438 people with diagnosed HIV infection in LAC [20]. The 26 
Health Districts in LAC align with census tracts and were des-
ignated to help guide public health resource allocation (Figure 
1). In 2018, the Health District with the highest rate of new HIV 
diagnoses was Central, with 63 new HIV diagnoses per 100 000 
population. On the other extreme, the Health District with the 
lowest rate of new HIV diagnoses was Alhambra, with only 7 
new HIV diagnoses per 100 000 population. Here, we investi-
gate how spatial and temporal clusters of HIV cases relate to the 
underlying transmission patterns in LAC, with a focus prima-
rily at the Health District level.

METHODS

Data Source and Phylogenetic Analyses

Deidentified HIV surveillance data were used for analyses. 
When a person is diagnosed with HIV in the United States, 
service providers report information about these persons to 
corresponding local health departments, and this information 
is subsequently passed on to the CDC. HIV-1 protease and 
reverse transcriptase (pol) genetic sequences are often gener-
ated for routine antiretroviral drug resistance testing and have 
been reportable to the LAC Department of Public Health since 
2006. We analyzed data reported to the LAC Department of 
Public Health from 8186 people with an HIV diagnosis from 
2010 to 2016 who resided in LAC at the time of diagnosis, 
were ≥13  years of age, and had a reported HIV pol gene se-
quence. These sequences were used to construct an HIV mo-
lecular transmission network using HIV-TRACE [21]. The first 
reported sequence for every person was used, unless this se-
quence was genetically linked to the HXB2 reference sequence 
(ie, potential laboratory contaminant) or had >5% nucleotide 
ambiguities (ie, problematic sequence). People were linked in 
our genetic network if the pairwise genetic distance between 
their viral sequences was ≤0.015 substitutions/site (ambiguity 
fraction of 0.015). This distance threshold is in accordance with 
the observed genetic distance between named HIV risk part-
ners in a public health surveillance setting [22].

Transmission risk categories were defined as men who have 
sex with men (MSM), PWID (including transgender women 
and MSM who inject drugs), cisgender men who reported 
high-risk heterosexual activity or have unknown risk, cisgender 
women who reported high-risk heterosexual activity or have 
unknown risk, and transgender women. Race/ethnicity was cat-
egorized as Hispanic/Latino, White, Black/African American, 
and Other (which includes multiracial, American Indian/
Alaska Native, Asian, Pacific Islander). We also included addi-
tional metadata including age at diagnosis, birth country, and 
CD4+ count (cells/mm3) at diagnosis. We compared the char-
acteristics of people in these clusters with those of nonclustered 
people using the Mantel-Haenszel χ 2 test in Stata, version 15.

Statistical Analyses

Residential information at the time of diagnosis was examined 
at 3 different levels of granularity: ZIP code, Health District, 
and Service Planning Area. We characterized the relationship 
between geography and the molecular transmission network 
using 3 distinct approaches: (i) geographic assortativity, the 
tendency for people to be genetically linked in the transmis-
sion network to other people residing in the same geographic 
region; (ii) concordant time–space pairs, the proportion of 
genetically linked pairs from the same geographic region and 
diagnosis year; and (iii) the Jaccard Coefficient, a measure 
of the similarity between sets of geographic region at diag-
nosis and cluster membership. Assortativity was assessed 
using Newman’s method, which ranges from –1, completely 
disassortative, to 1, completely assortative [23]. Significance 
for the geographic assortativity and concordant time–space 
pairs was determined using 1000 random permutations of the 
transmission network. Primary analyses were conducted on 
Health Districts using a genetic distance threshold of 0.015 
substitutions/site. Sensitivity analyses were conducted at the 
level of ZIP code and Service Planning Area and at genetic 
distance thresholds of 0.010 and 0.005 substitutions/site, 
which represent more conservative markers of direct or indi-
rect epidemiological relatedness. For the time–space analysis, 
we also considered time–space pairs diagnosed during the 
same calendar quarter. Assortativity analyses were conducted 
using RStudio, version 1.1.463, with the igraph package [24]. 
The Jaccard analysis was conducted at the Health District 
level to identify individual-level correlates of overlap between 
transmission clusters and geographic residence using a gen-
eralized linear model with the Jaccard Coefficient as the out-
come. Variables were selected for inclusion in adjusted models 
based on a priori knowledge about their interrelationships 
with HIV transmission dynamics. All regression analyses 
were conducted in Stata, version 15. Maps were created using  
Carto [25].

The study was approved by both the University of California, 
San Diego, and the LAC Department of Public Health institu-
tional review boards.

RESULTS

Of the 8186 HIV cases in our analysis, 4150 (50.7%) were clus-
tered in the network at 0.015 substitutions/site. A plurality of 
those clustered were between the ages of 20 and 29 (45%), were 
MSM (75%), were Hispanic/Latino (53%), were born in the 
United States (52%), and had a CD4+ count at diagnosis <500 
cells/mm3 (52%) (Table 1).

Network Assortativity

Geography at diagnosis, race/ethnicity, age at diagnosis, and 
transmission risk were significantly assortative (P  ≤  .001) 
(Table 2); however, the magnitude of the assortativity 
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varied. Race/ethnicity was the most assortative attribute 
(assortativity, 0.27), and ZIP code was the least assort-
ative attribute (assortativity, 0.02). Broader geographic 

categorizations were more assortative than smaller geo-
graphic categorizations: Service Planning Area, 0.15; Health 
District, 0.09; and ZIP code, 0.02.
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Figure 1. Los Angeles County Health Districts and Service Planning Area. Each Health District and Service Planning Area is shown in a unique color. Circles represent the 
number of new HIV diagnoses and sequences reported in each region, with the dark gray area proportional to the square root of the number of new HIV diagnoses and the 
light grey area proportional to the square root of the number of genomes reported in each region.
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We found little evidence for the recapitulation of Health 
Districts in the transmission network (Figure 2A). All 81 clus-
ters with at least 10 individuals had at least 3 Health Districts 
represented, with a median of 9 Health Districts. The largest 
cluster comprised 54 people from 23 unique Health Districts. 
Similar results were found when assessing the recapitulation of 
Service Planning Areas in the transmission network. The me-
dian number of 5 Service Planning Areas was represented in 

these clusters, and the largest cluster included people from 7 
of the 9 Service Planning Areas (Supplementary Figure 1). 
Assortativity coefficients for each individual Health District and 
Service Planning Area can be found in Supplementary Table 1.

When examining the assortativity of individual Health 
Districts in the genetic transmission network, only 6 (23%) 
Health Districts had an assortativity coefficient >0.10, and the 
maximum assortativity coefficient for a Health District was <0.20 
(Figure 2B). The 2 Health Districts with the highest assortativity 
coefficients are Long Beach and Hollywood-Wilshire. A report 
based on 2018 data found that Hollywood-Wilshire is ranked 
2 out of 26 for the rate of new HIV diagnoses in LAC (42 HIV 
diagnoses per 100 000 population) [26], and 94% of people re-
cently diagnosed with HIV in Hollywood-Wilshire are male. 
The second most assortative Health District is Long Beach, 
which ranks 5 out of 26 (tied with East Valley and Compton) 
for the rate of new HIV diagnoses in LAC (25 HIV diagnoses 
per 100 000 population), and 86% of people recently diagnosed 
with HIV in Long Beach are male [26]. The Health District with 
the lowest assortativity is Northeast. It ranks 12 out of 26 for 
the rate of new HIV diagnoses (16 HIV diagnoses per 100 000 

Table 2. Assortativity of Individual Characteristics Ranked From Least 
Assortative to Most Assortative Among Newly HIV Diagnosed Persons in 
Los Angeles County, 2010–2016

Characteristic
Observed Assortativity 

Coefficient*
95% CI of Null 
Assortativity Expectation

ZIP code 0.0249 –0.0019 to 0.0009

Age 0.0704 –0.0052 to 0.0041

Health district 0.0916 –0.0042 to 0.0036

Transmission risk 0.1546 –0.0091 to 0.0017

Service planning area 0.1519 –0.0076 to 0.0060

Race/ethnicity 0.2677 –0.0089 to –0.0063

*P < .001 for all characteristics.

Table 1. Breakdown of Individual-Level Characteristics by Genetic Distance Threshold Among Newly HIV-Diagnosed Persons in Los Angeles County, 
2010–2016

Characteristic

All TN93 ≤0.015 TN93 ≤0.01 TN93 ≤0.005

No. (%) No. (%) P Value No. (%) P Value No. (%) P Value

Total 8186 (100) 4150 (100) – 3246 (100) – 2120 (100) –

Age   <.001  <.001  <.001

 13–19 y 296 (4) 211 (5)  174 (5)  128 (6)  

 20–29 y 3037 (37) 1858 (45)  1499 (46)  1004 (47)  

 30–39 y 2310 (28) 1149 (28)  884 (27)  578 (27)  

 40–49 y 1598 (20) 615 (15)  459 (14)  272 (13)  

 50+ y 945 (12) 317 (8)  230 (7)  138 (7)  

Transmission risk/gender   <.001  <.001  <.001

 Cisgender men 1713 (21) 713 (17)  521 (16)  303 (14)  

 Cisgender women 200 (2) 64 (2)  51 (2)  33 (2)  

 Transgender women 115 (1) 63 (2)  53 (2)  29 (1)  

 MSM 5793 (71) 3123 (75)  2474 (76)  1664 (78)  

 PWID 365 (4) 187 (5)  147 (5)  91 (4)  

Race/ethnicity   <.001    <.001

 White 1848 (23) 888 (21)  682 (21)  428 (20)  

 African American 1664 (20) 754 (18)  569 (18)  359 (17)  

 Hispanic/Latino 4029 (49) 2193 (53)  1750 (54)  1192 (56)  

 Other 645 (8) 315 (8)  245 (8)  141 (7)  

Country of birth   <.001  .001  <.001

 US born/territory 4138 (51) 2175 (52)  1716 (53)  1129 (53)  

 Foreign-born 2136 (26) 1017 (25)  793 (24)  515 (24)  

 Unknown 1912 (23 958 (23)  737 (23)  476 (22)  

CD4+ at diagnosis   <.001  <.001  <.001

 <200 1666 (20) 559 (14)  389 (12)  224 (11)  

 200–499 2897 (35) 1592 (38)  1268 (39)  868 (41)  

 ≥500 2113 (26) 1234 (30)  994 (31)  648 (31)  

 Unknown 1490 (18) 757 (18)  590 (18)  376 (18)  

*P < .001 for all characteristics.

Abbreviations: MSM, men who have sex with men; PWID, people who inject drugs; TN93, Tamura-Nei 93 genetic distance threshold.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab211#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab211#supplementary-data
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population), with 98% of people recently diagnosed with HIV 
in the Northeast Health District being male [26]. The highest-
prevalence (Central) and lowest-prevalence (Alhambra) Health 
Districts were both unremarkable with regards to assortativity 
(Figure 2B).

Time–Space Linkage

To determine the relationship between HIV molecular trans-
mission clusters and temporal and spatial patterns in HIV 
diagnoses, we counted concordant time–space pairs (ie, the 

proportion of genetically linked pairs from the same geographic 
region and/or diagnosis year). Between 2010 and 2016, 2328 
people (56% of 4150 linked in the network at 0.015 substitu-
tions/site) were diagnosed in the same year as those genetically 
linked to them. Over that same time period, 696 people (17%) 
were linked to other newly diagnosed cases in the same ZIP 
code, 1802 (44%) people in the same Health District, and 2644 
(64%) people in the same Service Planning Area. Notably, few 
people were genetically linked to an individual who overlapped 
in both space and time. Only 275 people (7%) were linked to a 

HEALTH DISTRICTS

ALAMBRA

ANTELOPE VALLEY

BELLFLOWER

CENTRAL

COMPTON

EAST LA

EAST VALLEY

EL MONTE

FOOTHILL

GLENDALE

HARBOR

HOLLYWOOD-WILSHIRE

INGLEWOOD

LONG BEACH

NORTHEAST

PASADENA

POMONA

SAN ANTONIO

SAN FERNANDO

SOUTH

SOUTHEAST

SOUTHWEST

TORRANCE

WEST

WEST VALLEY

WHIITIER

A

800

B

600

400

N
o.

 o
f c

lu
st

er
ed

 p
eo

pl
e

in
 h

ea
lth

 d
is

tr
ic

t

200

–0.02 0.02 0.06 0.10

Assortativity

0.14 0.18 0.22

0

Figure 2. Assortativity of the Los Angeles County molecular transmission network by Health District residence at diagnosis. A, Clusters comprising ≥10 people. Color indi-
cates Health District. Edges denote viral sequences ≤0.015 substitutions/site divergent. B, Assortativity of each Health District. The height of the bars indicates the number 
of individuals with a reported HIV genetic sequence from each Health District included in our analysis. The gray bars indicate the null expectation (from 1000 permutations) 
if individuals were sorting at random.
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person with a diagnosis in the same year and ZIP code. As ex-
pected, this overlap was greater for larger geographical areas: 
773 (19%) were linked in the same diagnosis year and Health 
District, and 1255 (30%) were linked in the same diagnosis 
year and Service Planning Area. This overlap was markedly 
smaller when we considered shorter time intervals (quarterly 
rather than yearly): 134 (5%) for ZIP code, 337 (8%) for Health 
District, and 557 (14%) for Service Planning Area. Similar pat-
terns were seen for more conservative genetic distance thresh-
olds of 0.010 and 0.005 substitutions/site (Table 3).

Genetically linked pairs that were diagnosed in the same time 
and space were more likely to include at least 1 PWID than would 
be expected by chance. Of the 773 genetically linked pairs (at the 
0.015 substitutions/site threshold) diagnosed in the same Health 
District in the same year, 35 (4.5%) pairs included at least 1 PWID 
(Supplementary Table 2). This observed number of pairs with a 
PWID is 1.8 times larger than would be expected based on per-
mutation analysis (P = .001). Genetically linked pairs in the same 
Service Planning Area diagnosed in the same year (n = 71; 5.6%) 
were 1.4 times more frequent than expected (P = .009). We did 
not, however, observe an excess of genetically linked time–space 
pairs in which both members were PWID, likely owing to their 
relative rarity and likely underreporting of PWID in the data set: 
2 pairs in Health Districts and 3 pairs in Service Planning Areas.

Multinetwork Jaccard Analysis

To identify characteristics associated with overlap between mo-
lecular clusters and geographic clusters, we conducted gener-
alized linear regression analysis with the Jaccard coefficient as 
the outcome (ie, the union of molecular clusters and geographic 
clusters divided by the intersection of molecular clusters and 
geographic clusters). We found that the Jaccard coefficient 

differed by individual demographic and HIV risk character-
istics. Greater geographic similarity within clusters (ie, higher 
Jaccard coefficient) was associated with younger age at diag-
nosis (13–19 years vs 20–29 years; adjusted odds ratio [aOR], 
1.21; 95% CI, 1.04–1.40), cisgender men who do not report sex 
with men (vs MSM; aOR, 1.22; 95% CI, 1.11–1.34), and CD4+ 
<200 cells/mm3 at diagnosis (vs ≥500 cells/mm3; aOR, 1.16; 95% 
CI, 1.04–1.30). Less geographic similarity within clusters (lower 
Jaccard coefficient) was associated with older at diagnosis (30–
39 years vs 20–29 years; aOR, 0.90; 95% CI, 0.18–0.97), trans-
gender women (vs MSM; aOR, 0.60; 95% CI, 0.48–0.58), Black/
African American (vs Hispanic; aOR, 0.84; 95% CI, 0.77–0.92), 
and foreign born (vs US born; aOR, 0.90; 95% CI, 0.82–0.98) 
(Table 4). Similar results were found for more conservative ge-
netic distance thresholds (Supplementary Tables 3 and 4).

DISCUSSION

HIV molecular transmission clusters and spatial–temporal pat-
terns in HIV diagnoses represent 2 complementary approaches 
to understanding HIV transmission patterns. In Los Angeles 
County, we found statistically significant but weak associations 
between these 2 approaches. Overlap between geographic 
region of residency at HIV diagnosis and HIV transmission 
clusters increased as the size of the geographic region increased 
(ie it was higher for Service Planning Areas than ZIP codes). 
The genetic transmission network is modestly assortative for 
these large geographic regions, but this assortativity is weaker 
than has been reported for race/ethnicity and transmission risk 
[27]. These findings indicate that genetic clustering may be a 
better indicator of HIV transmission patterns than time–space 
clusters of diagnosis in urban HIV-endemic areas. Time–space 

Table 3. Relationship Between HIV Molecular Transmission Clusters and Temporal and Spatial Patterns in HIV Diagnoses

Level of Association

TN93 ≤0.015 TN93 ≤0.010 TN93 ≤0.005

No. (%) No. (%) No. (%)

All    

No. of linked nodes in network 4150 3224 2109

Geography-only    

No. of linked nodes in same ZIP code 696 (17) 499 (15) 306 (15)

No. of linked nodes in same HD 1802 (44) 1324 (41) 786 (37)

No. of linked nodes in same SPA 2644 (64) 1978 (61) 1181 (56)

Yearly

No. of linked nodes in same year 2328 (56) 1819 (56) 1150 (55)

No. of linked nodes in same year & ZIP code 275 (7) 216 (8) 155 (9)

No. of linked nodes in same year & HD 773 (19) 583 (18) 382 (18)

No. of linked nodes in same year & SPA 1255 (30) 976 (30) 594 (28)

Quarterly

No. of linked nodes in same quarter 1202 (29) 883 (27) 556 (26)

No. of linked nodes in same quarter & ZIP code 134 (5) 108 (6) 92 (10)

No. of linked nodes in same quarter & HD 337 (8) 274 (9) 205 (10)

No. of linked nodes in same quarter & SPA 557 (14) 438 (14) 295 (14)

Abbreviations: HD, Health District; SPA, Service Planning Area; TN93, Tamura-Nei 93 genetic distance (substitutions/site); ZIP, Zone Improvement Plan.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab211#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofab211#supplementary-data
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clustering may be a better indicator of changing transmission 
dynamics in larger areas, such as at the county or state level, or 
in nonendemic areas where the HIV burden is lower [28].

Within LAC, greater geographic similarity within clusters 
was associated with younger age at diagnosis, cisgender men, 
and having a CD4+ count <200 cells/mm3 at diagnosis. In con-
trast, less geographic similarity within clusters was associated 
with older age at diagnosis, transgender women, Blacks/African 
Americans, and being born outside of the United States. The 
greater geographic similarity among younger individuals and 
cisgender men might be the result of more frequent geospatial 
app use among these groups, as younger individuals (<21 years 
of age) are not permitted in venues that serve alcohol and thus 
seek partners closer to their home since they have lower mo-
bility [29]. Likewise, we observed less geographic similarity 
among those aged 30–39, which may represent higher income 
and therefore increased access to mobility, although we were 
not able to assess this relationship with our data. Interestingly, a 
previous analysis using the same data in LAC found that trans-
gender women were more likely to cluster than other risk groups 
and were more likely than expected to cluster with cisgender 
men [30]. Our findings show that transgender women, who 

themselves are highly assortative in the genetic network, tend 
to reside in geographic areas that are different from their geneti-
cally linked partners, indicating that clusters that include trans-
gender women are more geographically diverse. These findings 
illustrate how higher-risk minority groups may be geographi-
cally overdispersed. Consequently, time–space approaches for 
identifying trends in transmission and diagnosis within these 
groups may not be productive. On the other hand, our finding 
of an excess of PWID in genetically linked time–space pairs 
suggests that a geographic approach may be relevant to HIV 
prevention and response efforts among this risk group.

In the United States, the relative lack of clustering by ge-
ography was also found in Chicago (Cook County) [31]. The 
Chicago study used Kulldorff ’s spatial scan statistic on 920 pol 
sequences sampled between 2008 and 2011 in Cook County and 
did not find any significant geographic groups, even after lim-
iting to cluster sizes of >5. An earlier analysis in Mississippi of 
799 pol sequences sampled between 2005 and 2008 also found 
that clusters that included Black MSM (their population of in-
terest) were geographically heterogeneous. However, growing 
clusters were found to be assortative by Field Services Region 
in North Carolina; Field Services Regions are larger geographic 

Table 4. Multivariate Generalized Linear Model Assessing Relationship Between Individual Characteristics and the Jaccard Coefficient, at the Level of 
Health District

Characteristic Adjusted Odds Ratio 95% CI P Value

Age    

 13–19 y 1.208 1.043 to 1.399 .011

 20–29 y Ref. – -

 30–39 y 0.896 0.182 to 0.966 .004

 40–49 y 0.901 0.809 to 1.003 .056

 50+ y –0.06 0.808 to 1.087 .394

Transmission risk/gender    

 Cisgender mena 1.222 1.111 to 1.342 <.001

 Cisgender women 1.049 0.861 to 1.279 .633

 Transgender women 0.602 0.479 to 0.575 <.001

 MSM Ref. – -

 PWID 0.972 0.812 to 1.165 .760

Race/ethnicity    

 White 0.964 0.872 to 1.065 .466

 African American 0.837 0.765 to 0.915 <.001

 Hispanic/Latino Ref. – -

 Other 0.874 0.789 to 0.968 .010

Country of birth    

 US born/territory Ref. – -

 Foreign-born 0.899 0.821 to 0.984 .020

 Unknown 0.958 0.879 to 1.043 .324

CD4+ at diagnosis    

 <200 1.162 1.037 to 1.302 .010

 200–499 1.081 0.996 to 1.174 .061

 ≥500 Ref. – -

 Unknown 1.106 1.006 to 1.215 <.001

Bold values indicate P value <.05. Model includes all variables present in the table.

Abbreviations: MSM, men who have sex with men; PWID, people who inject drugs.
aCisgender men who do not report sex with men.
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areas that group counties across the state for public health re-
sponse [32]. The accumulation of these results indicates that 
small-scale geographic boundaries may not be useful for the di-
rection of public health resources.

Our analyses and conclusions are restricted to only those in-
dividuals with an HIV diagnosis and a viral resistance geno-
type reported to the LAC Department of Public Health. This 
type of comparison is only feasible for individuals with a re-
ported viral sequence. Although genotype reporting complete-
ness does vary by geography, undersampling is not expected to 
strongly bias assortativity estimates in the genetic network [27]. 
Notably, HIV infection and diagnosis may occur in different 
time periods due to infrequent testing. Future analyses that in-
corporate social network data could enhance the completeness 
of the overall network by incorporating both HIV-uninfected 
individuals and people with HIV who do not have a reported 
viral genotype. These data may also give us a better under-
standing of transmission patterns and identify those at risk of 
HIV infection who are eligible for pre-exposure prophylaxis 
(PrEP) and people with HIV who could benefit from linkage to 
care or other support services.

In conclusion, the low magnitude of the associations found 
between HIV transmission clusters and geographic residence at 
diagnosis indicate that within an urban setting with endemic 
HIV, genetic clustering may serve as a better indicator of HIV 
transmission patterns than time–space clustering to inform 
public health action.
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the posted materials are not copyedited and are the sole responsibility 
of the authors, so questions or comments should be addressed to the 
corresponding author.

Acknowledgments
Financial support. This work was supported by the San Diego Center 

for AIDS Research (SD CFAR), an National Institutes of Health (NIH)-
funded program (P30 AI036214). B.S. was also funded by an NIH-NIDA 
K01 (DA049665). M.R.C. acknowledges joint center funding from the UK 
Medical Research Council and Department for International Development 
(MR/R015600/1). J.O.W. was funded by a California HIV/AIDS Research 
Program IDEA Award (ID15-SD-052), an NIH-NIAID K01 Career 
Development Award (K01AI110181), and an NIH-NIAID R01 (AI135992).

Potential conflicts of interest. B.S., M.R.C., K.P., Z.S., and Y.W.H. have 
no conflicts of interest to report. J.O.W.  has additional funding from the 
CDC through contracts to his institution. All authors have submitted the 
ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that 
the editors consider relevant to the content of the manuscript have been 
disclosed.

Patient consent. The study was approved by the University of 
California (UC) San Diego and LAC DPH Institutional Review Boards. 
All data were collected through standard surveillance protocols, and the 
study therefore did not necessitate written patient consent. Per the terms 
of a Data Use Agreement between LAC DPH and UC San Diego, all data 
were deidentified before sharing with UC San Diego researchers. To further 
preserve individual privacy, only month and year for the date of diagnosis 
and lab tests were shared.

Prior presentation. This information has been presented in part at 
the 27th Conference on Retroviruses and Opportunistic Infections and the 
EPIDEMICS7 conference.

References
1. Mentasti M, Afshar B, Collins S, et al. Rapid investigation of cases and clusters of 

Legionnaires’ disease in England and Wales using direct molecular typing. J Med 
Microbiol 2016; 65:484–93.

2. Murray M, Nardell E. Molecular epidemiology of tuberculosis: achievements and 
challenges to current knowledge. Bull World Health Organ 2002; 80:477–82.

3. Chudy M, Budek I, Keller-Stanislawski B, et al. A new cluster of hepatitis A in-
fection in hemophiliacs traced to a contaminated plasma pool. J Med Virol 1999; 
57:91–9.

4. Yirrell DL, Robertson P, Goldberg DJ, et al. Molecular investigation into outbreak 
of HIV in a Scottish prison. BMJ 1997; 314:1446–50.

5. Eybpoosh S, Haghdoost AA, Mostafavi E, et al. Molecular epidemiology of infec-
tious diseases. Electron Physician 2017; 9:5149–58.

6. Vineis P. Commentary: First steps in molecular epidemiology: Lower et al. 1979. 
Int J Epidemiol 2007; 36:20–22.

7. Grenfell BT, Pybus O, Gog J, et al. Unifying the epidemiological and evolutionary 
dynamics of pathogens. Science 2004; 303:327–32. 

8. Honardoost M, Rajabpour A, Vakili L. Molecular epidemiology; New but impres-
sive. Med J Islam Repub Iran 2018; 32:53.

9. Schulte P, Perera F. Molecular Epidemiology: Principles and Practice. San Diego, 
CA: Academic Press Inc; 1993.

10. Oster AM, Wertheim JO, Hernandez AL, et al. Using molecular HIV surveillance 
data to understand transmission between subpopulations in the United States. J 
Acquir Immune Defic Syndr 2015; 70:444–51.

11. Golden MR, Lechtenberg R, Glick SN, et al. Outbreak of human immunode-
ficiency virus infection among heterosexual persons who are living homeless 
and inject drugs — Seattle, Washington, 2018. MMWR Morbid Mortal Wkly 
Rep 2018; 68:334–49.

12. Alpren C, Dawson EL, John B, et al. Opioid use fueling HIV transmission in an 
urban setting: an outbreak of HIV infection among people who inject drugs-
Massachusetts, 2015–2018. Am J Public Health 2020; 110:37–44.

13. Centers for Disease Control and Prevention. HIV in the United States: at a 
glance. Available at: https://www.cdc.gov/hiv/statistics/overview/ataglance.html. 
Accessed 7 September 2018.

14. Fauci AS, Redfield RR, Sigounas G, et al. Ending the HIV epidemic: a plan for the 
United States. JAMA 2019; 321:844–5.

15. Centers for Disease Control and Prevention. Detecting and responding to HIV 
transmission clusters: a guide for health departments. Draft version 2.0 ed. 2018. 
Available at: https://www.cdc.gov/hiv/pdf/funding/announcements/ps18-1802/
CDC-HIV-PS18-1802-AttachmentE-Detecting-Investigating-and-Responding-
to-HIV-Transmission-Clusters.pdf. Accessed 11 October 2019.

16. Fitzmaurice AG, Linley L, Zhang C, et al. Novel method for rapid detection of 
spatiotemporal HIV clusters potentially warranting intervention.  Emerg Infect 
Dis  2019; 25:988–91.

17. United States Census Bureau. QuickFacts: Los Angeles County, California; 
California. Available at: https://www.census.gov/quickfacts/fact/table/
losangelescountycalifornia,CA/PST045218. Accessed 11 October 2019.

18. US Census Bureau. Annual estimates of the resident population for incorporated 
places of 50 000 or more, ranked by July 1, 2018 population: April 1, 2010 to July 
1, 2018. Available at: https://factfinder.census.gov/. Accessed 13 October 2019.

19. County of Los Angeles. Statistics. Available at: https://lacounty.gov/government/
geography-statistics/statistics/. Accessed 13 October 2019.

20. Los Angeles County Department of Public Health. 2017 annual HIV surveillance 
report. 2018. http://publichealth. lacounty.gov/dhsp/Reports/HIV/2019Annual_
HIV_Surveillance_Report_08202020_Final_revised_Sept2020.pdf. Accessed 11 
October 2019.

21. Kosakovsky Pond SL, Weaver S, Leigh Brown AJ, Wertheim JO. HIV-TRACE 
(TRAnsmission Cluster Engine): a tool for large scale molecular epidemi-
ology of HIV-1 and other rapidly evolving pathogens. Mol Biol Evol 2018; 
35:1812–9.

22. Wertheim JO, Kosakovsky Pond SL, Forgione LA, et al. Social and genetic net-
works of HIV-1 transmission in New York City. PLoS Pathog 2017; 13:e1006000.

23. Newman MEJ. Mixing patterns in networks. Physical Review E 2003; 67:026126.
24. Csardi G, Nepusz T. The igraph software package for complex network research. 

InterJournal 2006. Complex Systems, 1695. https://igraph.org
25. Location Intelligence Platform. https://carto.com/
26. Division of HIV and STD Programs, Department of Public Health, County of 

Los Angeles. HIV Surveillance Annual Report, 2019. Published May 2020. http://
publichealth.lacounty.gov/dhsp/Reports.htm. Accessed 11 October 2019.

https://www.cdc.gov/hiv/statistics/overview/ataglance.html
https://www.cdc.gov/hiv/pdf/funding/announcements/ps18-1802/CDC-HIV-PS18-1802-AttachmentE-Detecting-Investigating-and-Responding-to-HIV-Transmission-Clusters.pdf
https://www.cdc.gov/hiv/pdf/funding/announcements/ps18-1802/CDC-HIV-PS18-1802-AttachmentE-Detecting-Investigating-and-Responding-to-HIV-Transmission-Clusters.pdf
https://www.cdc.gov/hiv/pdf/funding/announcements/ps18-1802/CDC-HIV-PS18-1802-AttachmentE-Detecting-Investigating-and-Responding-to-HIV-Transmission-Clusters.pdf
https://www.census.gov/quickfacts/fact/table/losangelescountycalifornia,CA/PST045218
https://www.census.gov/quickfacts/fact/table/losangelescountycalifornia,CA/PST045218
https://factfinder.census.gov/
https://lacounty.gov/government/geography-statistics/statistics/
https://lacounty.gov/government/geography-statistics/statistics/
http://publichealth. lacounty.gov/dhsp/Reports/HIV/2019Annual_HIV_Surveillance_Report_08202020_Final_revised_Sept2020.pdf
http://publichealth. lacounty.gov/dhsp/Reports/HIV/2019Annual_HIV_Surveillance_Report_08202020_Final_revised_Sept2020.pdf
https://igraph.org
https://carto.com/
http://publichealth.lacounty.gov/dhsp/Reports.htm
http://publichealth.lacounty.gov/dhsp/Reports.htm


Geography and HIV clusters in Los Angeles County • ofid • 9

27. Ragonnet-Cronin M, Benbow N, Hayford C, et al. Sorting by race/ethnicity across 
HIV genetic transmission networks in three major metropolitan areas in the 
United States. AIDS Res Hum Retroviruses 2021; doi:10.1089/AID.2020.0145

28. Gonsalves  GS, Crawford  FW. Dynamics of the HIV outbreak and response in 
Scott County, IN, USA, 2011-15: a modelling study. Lancet HIV 2018; 5:e569–77.

29. Badal HJ, Stryker JE, DeLuca N, Purcell DW. Swipe right: dating website and app 
use among men who have sex with men. AIDS Behav 2018; 22:1265–72.

30. Ragonnet-Cronin  M, Hu  YW, Morris  SR, et  al. HIV transmission net-
works among transgender women in Los Angeles County, CA, USA: 

a phylogenetic analysis of surveillance data. Lancet HIV 2019; 6: 
e164–72.

31. Lubelchek  RJ, Hoehnen  SC, Hotton  AL, et  al. Transmission clustering among 
newly diagnosed HIV patients in Chicago, 2008 to 2011: using phylogenetics 
to expand knowledge of regional HIV transmission patterns. J Acquir Immune 
Defic Syndr 2015; 68:46–54.

32. Dennis  AM, Hué  S, Billock  R, et  al. Human immunodeficiency virus type 1 
phylodynamics to detect and characterize active transmission clusters in North 
Carolina. J Infect Dis 2020; 221:1321–30.

https://doi.org/10.1089/AID.2020.0145



